1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Switching PHY interface always returns MDI error
226 			 * so disable retry mechanism to avoid wasting time
227 			 */
228 			e1000e_disable_phy_retry(hw);
229 
230 			/* Unforce SMBus mode in PHY */
231 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
232 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
234 
235 			e1000e_enable_phy_retry(hw);
236 
237 			/* Unforce SMBus mode in MAC */
238 			mac_reg = er32(CTRL_EXT);
239 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
240 			ew32(CTRL_EXT, mac_reg);
241 		}
242 	}
243 
244 	return true;
245 }
246 
247 /**
248  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249  *  @hw: pointer to the HW structure
250  *
251  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252  *  used to reset the PHY to a quiescent state when necessary.
253  **/
254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255 {
256 	u32 mac_reg;
257 
258 	/* Set Phy Config Counter to 50msec */
259 	mac_reg = er32(FEXTNVM3);
260 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262 	ew32(FEXTNVM3, mac_reg);
263 
264 	/* Toggle LANPHYPC Value bit */
265 	mac_reg = er32(CTRL);
266 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268 	ew32(CTRL, mac_reg);
269 	e1e_flush();
270 	usleep_range(10, 20);
271 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272 	ew32(CTRL, mac_reg);
273 	e1e_flush();
274 
275 	if (hw->mac.type < e1000_pch_lpt) {
276 		msleep(50);
277 	} else {
278 		u16 count = 20;
279 
280 		do {
281 			usleep_range(5000, 6000);
282 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283 
284 		msleep(30);
285 	}
286 }
287 
288 /**
289  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
290  *  @hw: pointer to the HW structure
291  *
292  *  Workarounds/flow necessary for PHY initialization during driver load
293  *  and resume paths.
294  **/
295 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
296 {
297 	struct e1000_adapter *adapter = hw->adapter;
298 	u32 mac_reg, fwsm = er32(FWSM);
299 	s32 ret_val;
300 
301 	/* Gate automatic PHY configuration by hardware on managed and
302 	 * non-managed 82579 and newer adapters.
303 	 */
304 	e1000_gate_hw_phy_config_ich8lan(hw, true);
305 
306 	/* It is not possible to be certain of the current state of ULP
307 	 * so forcibly disable it.
308 	 */
309 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
310 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
311 	if (ret_val)
312 		e_warn("Failed to disable ULP\n");
313 
314 	ret_val = hw->phy.ops.acquire(hw);
315 	if (ret_val) {
316 		e_dbg("Failed to initialize PHY flow\n");
317 		goto out;
318 	}
319 
320 	/* There is no guarantee that the PHY is accessible at this time
321 	 * so disable retry mechanism to avoid wasting time
322 	 */
323 	e1000e_disable_phy_retry(hw);
324 
325 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
326 	 * inaccessible and resetting the PHY is not blocked, toggle the
327 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
328 	 */
329 	switch (hw->mac.type) {
330 	case e1000_pch_lpt:
331 	case e1000_pch_spt:
332 	case e1000_pch_cnp:
333 	case e1000_pch_tgp:
334 	case e1000_pch_adp:
335 	case e1000_pch_mtp:
336 	case e1000_pch_lnp:
337 	case e1000_pch_ptp:
338 	case e1000_pch_nvp:
339 		if (e1000_phy_is_accessible_pchlan(hw))
340 			break;
341 
342 		/* Before toggling LANPHYPC, see if PHY is accessible by
343 		 * forcing MAC to SMBus mode first.
344 		 */
345 		mac_reg = er32(CTRL_EXT);
346 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
347 		ew32(CTRL_EXT, mac_reg);
348 
349 		/* Wait 50 milliseconds for MAC to finish any retries
350 		 * that it might be trying to perform from previous
351 		 * attempts to acknowledge any phy read requests.
352 		 */
353 		msleep(50);
354 
355 		fallthrough;
356 	case e1000_pch2lan:
357 		if (e1000_phy_is_accessible_pchlan(hw))
358 			break;
359 
360 		fallthrough;
361 	case e1000_pchlan:
362 		if ((hw->mac.type == e1000_pchlan) &&
363 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
364 			break;
365 
366 		if (hw->phy.ops.check_reset_block(hw)) {
367 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
368 			ret_val = -E1000_ERR_PHY;
369 			break;
370 		}
371 
372 		/* Toggle LANPHYPC Value bit */
373 		e1000_toggle_lanphypc_pch_lpt(hw);
374 		if (hw->mac.type >= e1000_pch_lpt) {
375 			if (e1000_phy_is_accessible_pchlan(hw))
376 				break;
377 
378 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
379 			 * so ensure that the MAC is also out of SMBus mode
380 			 */
381 			mac_reg = er32(CTRL_EXT);
382 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
383 			ew32(CTRL_EXT, mac_reg);
384 
385 			if (e1000_phy_is_accessible_pchlan(hw))
386 				break;
387 
388 			ret_val = -E1000_ERR_PHY;
389 		}
390 		break;
391 	default:
392 		break;
393 	}
394 
395 	e1000e_enable_phy_retry(hw);
396 
397 	hw->phy.ops.release(hw);
398 	if (!ret_val) {
399 
400 		/* Check to see if able to reset PHY.  Print error if not */
401 		if (hw->phy.ops.check_reset_block(hw)) {
402 			e_err("Reset blocked by ME\n");
403 			goto out;
404 		}
405 
406 		/* Reset the PHY before any access to it.  Doing so, ensures
407 		 * that the PHY is in a known good state before we read/write
408 		 * PHY registers.  The generic reset is sufficient here,
409 		 * because we haven't determined the PHY type yet.
410 		 */
411 		ret_val = e1000e_phy_hw_reset_generic(hw);
412 		if (ret_val)
413 			goto out;
414 
415 		/* On a successful reset, possibly need to wait for the PHY
416 		 * to quiesce to an accessible state before returning control
417 		 * to the calling function.  If the PHY does not quiesce, then
418 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
419 		 *  the PHY is in.
420 		 */
421 		ret_val = hw->phy.ops.check_reset_block(hw);
422 		if (ret_val)
423 			e_err("ME blocked access to PHY after reset\n");
424 	}
425 
426 out:
427 	/* Ungate automatic PHY configuration on non-managed 82579 */
428 	if ((hw->mac.type == e1000_pch2lan) &&
429 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
430 		usleep_range(10000, 11000);
431 		e1000_gate_hw_phy_config_ich8lan(hw, false);
432 	}
433 
434 	return ret_val;
435 }
436 
437 /**
438  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
439  *  @hw: pointer to the HW structure
440  *
441  *  Initialize family-specific PHY parameters and function pointers.
442  **/
443 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
444 {
445 	struct e1000_phy_info *phy = &hw->phy;
446 	s32 ret_val;
447 
448 	phy->addr = 1;
449 	phy->reset_delay_us = 100;
450 
451 	phy->ops.set_page = e1000_set_page_igp;
452 	phy->ops.read_reg = e1000_read_phy_reg_hv;
453 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
454 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
455 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
456 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
457 	phy->ops.write_reg = e1000_write_phy_reg_hv;
458 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
459 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
460 	phy->ops.power_up = e1000_power_up_phy_copper;
461 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
462 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
463 
464 	phy->id = e1000_phy_unknown;
465 
466 	if (hw->mac.type == e1000_pch_mtp) {
467 		phy->retry_count = 2;
468 		e1000e_enable_phy_retry(hw);
469 	}
470 
471 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
472 	if (ret_val)
473 		return ret_val;
474 
475 	if (phy->id == e1000_phy_unknown)
476 		switch (hw->mac.type) {
477 		default:
478 			ret_val = e1000e_get_phy_id(hw);
479 			if (ret_val)
480 				return ret_val;
481 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
482 				break;
483 			fallthrough;
484 		case e1000_pch2lan:
485 		case e1000_pch_lpt:
486 		case e1000_pch_spt:
487 		case e1000_pch_cnp:
488 		case e1000_pch_tgp:
489 		case e1000_pch_adp:
490 		case e1000_pch_mtp:
491 		case e1000_pch_lnp:
492 		case e1000_pch_ptp:
493 		case e1000_pch_nvp:
494 			/* In case the PHY needs to be in mdio slow mode,
495 			 * set slow mode and try to get the PHY id again.
496 			 */
497 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
498 			if (ret_val)
499 				return ret_val;
500 			ret_val = e1000e_get_phy_id(hw);
501 			if (ret_val)
502 				return ret_val;
503 			break;
504 		}
505 	phy->type = e1000e_get_phy_type_from_id(phy->id);
506 
507 	switch (phy->type) {
508 	case e1000_phy_82577:
509 	case e1000_phy_82579:
510 	case e1000_phy_i217:
511 		phy->ops.check_polarity = e1000_check_polarity_82577;
512 		phy->ops.force_speed_duplex =
513 		    e1000_phy_force_speed_duplex_82577;
514 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
515 		phy->ops.get_info = e1000_get_phy_info_82577;
516 		phy->ops.commit = e1000e_phy_sw_reset;
517 		break;
518 	case e1000_phy_82578:
519 		phy->ops.check_polarity = e1000_check_polarity_m88;
520 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
521 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
522 		phy->ops.get_info = e1000e_get_phy_info_m88;
523 		break;
524 	default:
525 		ret_val = -E1000_ERR_PHY;
526 		break;
527 	}
528 
529 	return ret_val;
530 }
531 
532 /**
533  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
534  *  @hw: pointer to the HW structure
535  *
536  *  Initialize family-specific PHY parameters and function pointers.
537  **/
538 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
539 {
540 	struct e1000_phy_info *phy = &hw->phy;
541 	s32 ret_val;
542 	u16 i = 0;
543 
544 	phy->addr = 1;
545 	phy->reset_delay_us = 100;
546 
547 	phy->ops.power_up = e1000_power_up_phy_copper;
548 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
549 
550 	/* We may need to do this twice - once for IGP and if that fails,
551 	 * we'll set BM func pointers and try again
552 	 */
553 	ret_val = e1000e_determine_phy_address(hw);
554 	if (ret_val) {
555 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
556 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
557 		ret_val = e1000e_determine_phy_address(hw);
558 		if (ret_val) {
559 			e_dbg("Cannot determine PHY addr. Erroring out\n");
560 			return ret_val;
561 		}
562 	}
563 
564 	phy->id = 0;
565 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
566 	       (i++ < 100)) {
567 		usleep_range(1000, 1100);
568 		ret_val = e1000e_get_phy_id(hw);
569 		if (ret_val)
570 			return ret_val;
571 	}
572 
573 	/* Verify phy id */
574 	switch (phy->id) {
575 	case IGP03E1000_E_PHY_ID:
576 		phy->type = e1000_phy_igp_3;
577 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
578 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
579 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
580 		phy->ops.get_info = e1000e_get_phy_info_igp;
581 		phy->ops.check_polarity = e1000_check_polarity_igp;
582 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
583 		break;
584 	case IFE_E_PHY_ID:
585 	case IFE_PLUS_E_PHY_ID:
586 	case IFE_C_E_PHY_ID:
587 		phy->type = e1000_phy_ife;
588 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
589 		phy->ops.get_info = e1000_get_phy_info_ife;
590 		phy->ops.check_polarity = e1000_check_polarity_ife;
591 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
592 		break;
593 	case BME1000_E_PHY_ID:
594 		phy->type = e1000_phy_bm;
595 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
596 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
597 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
598 		phy->ops.commit = e1000e_phy_sw_reset;
599 		phy->ops.get_info = e1000e_get_phy_info_m88;
600 		phy->ops.check_polarity = e1000_check_polarity_m88;
601 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
602 		break;
603 	default:
604 		return -E1000_ERR_PHY;
605 	}
606 
607 	return 0;
608 }
609 
610 /**
611  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
612  *  @hw: pointer to the HW structure
613  *
614  *  Initialize family-specific NVM parameters and function
615  *  pointers.
616  **/
617 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
618 {
619 	struct e1000_nvm_info *nvm = &hw->nvm;
620 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
621 	u32 gfpreg, sector_base_addr, sector_end_addr;
622 	u16 i;
623 	u32 nvm_size;
624 
625 	nvm->type = e1000_nvm_flash_sw;
626 
627 	if (hw->mac.type >= e1000_pch_spt) {
628 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
629 		 * STRAP register. This is because in SPT the GbE Flash region
630 		 * is no longer accessed through the flash registers. Instead,
631 		 * the mechanism has changed, and the Flash region access
632 		 * registers are now implemented in GbE memory space.
633 		 */
634 		nvm->flash_base_addr = 0;
635 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
636 		    * NVM_SIZE_MULTIPLIER;
637 		nvm->flash_bank_size = nvm_size / 2;
638 		/* Adjust to word count */
639 		nvm->flash_bank_size /= sizeof(u16);
640 		/* Set the base address for flash register access */
641 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
642 	} else {
643 		/* Can't read flash registers if register set isn't mapped. */
644 		if (!hw->flash_address) {
645 			e_dbg("ERROR: Flash registers not mapped\n");
646 			return -E1000_ERR_CONFIG;
647 		}
648 
649 		gfpreg = er32flash(ICH_FLASH_GFPREG);
650 
651 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
652 		 * Add 1 to sector_end_addr since this sector is included in
653 		 * the overall size.
654 		 */
655 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
656 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
657 
658 		/* flash_base_addr is byte-aligned */
659 		nvm->flash_base_addr = sector_base_addr
660 		    << FLASH_SECTOR_ADDR_SHIFT;
661 
662 		/* find total size of the NVM, then cut in half since the total
663 		 * size represents two separate NVM banks.
664 		 */
665 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
666 					<< FLASH_SECTOR_ADDR_SHIFT);
667 		nvm->flash_bank_size /= 2;
668 		/* Adjust to word count */
669 		nvm->flash_bank_size /= sizeof(u16);
670 	}
671 
672 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
673 
674 	/* Clear shadow ram */
675 	for (i = 0; i < nvm->word_size; i++) {
676 		dev_spec->shadow_ram[i].modified = false;
677 		dev_spec->shadow_ram[i].value = 0xFFFF;
678 	}
679 
680 	return 0;
681 }
682 
683 /**
684  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
685  *  @hw: pointer to the HW structure
686  *
687  *  Initialize family-specific MAC parameters and function
688  *  pointers.
689  **/
690 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
691 {
692 	struct e1000_mac_info *mac = &hw->mac;
693 
694 	/* Set media type function pointer */
695 	hw->phy.media_type = e1000_media_type_copper;
696 
697 	/* Set mta register count */
698 	mac->mta_reg_count = 32;
699 	/* Set rar entry count */
700 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
701 	if (mac->type == e1000_ich8lan)
702 		mac->rar_entry_count--;
703 	/* FWSM register */
704 	mac->has_fwsm = true;
705 	/* ARC subsystem not supported */
706 	mac->arc_subsystem_valid = false;
707 	/* Adaptive IFS supported */
708 	mac->adaptive_ifs = true;
709 
710 	/* LED and other operations */
711 	switch (mac->type) {
712 	case e1000_ich8lan:
713 	case e1000_ich9lan:
714 	case e1000_ich10lan:
715 		/* check management mode */
716 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
717 		/* ID LED init */
718 		mac->ops.id_led_init = e1000e_id_led_init_generic;
719 		/* blink LED */
720 		mac->ops.blink_led = e1000e_blink_led_generic;
721 		/* setup LED */
722 		mac->ops.setup_led = e1000e_setup_led_generic;
723 		/* cleanup LED */
724 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
725 		/* turn on/off LED */
726 		mac->ops.led_on = e1000_led_on_ich8lan;
727 		mac->ops.led_off = e1000_led_off_ich8lan;
728 		break;
729 	case e1000_pch2lan:
730 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
731 		mac->ops.rar_set = e1000_rar_set_pch2lan;
732 		fallthrough;
733 	case e1000_pch_lpt:
734 	case e1000_pch_spt:
735 	case e1000_pch_cnp:
736 	case e1000_pch_tgp:
737 	case e1000_pch_adp:
738 	case e1000_pch_mtp:
739 	case e1000_pch_lnp:
740 	case e1000_pch_ptp:
741 	case e1000_pch_nvp:
742 	case e1000_pchlan:
743 		/* check management mode */
744 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
745 		/* ID LED init */
746 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
747 		/* setup LED */
748 		mac->ops.setup_led = e1000_setup_led_pchlan;
749 		/* cleanup LED */
750 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
751 		/* turn on/off LED */
752 		mac->ops.led_on = e1000_led_on_pchlan;
753 		mac->ops.led_off = e1000_led_off_pchlan;
754 		break;
755 	default:
756 		break;
757 	}
758 
759 	if (mac->type >= e1000_pch_lpt) {
760 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
761 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
762 		mac->ops.setup_physical_interface =
763 		    e1000_setup_copper_link_pch_lpt;
764 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
765 	}
766 
767 	/* Enable PCS Lock-loss workaround for ICH8 */
768 	if (mac->type == e1000_ich8lan)
769 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
770 
771 	return 0;
772 }
773 
774 /**
775  *  __e1000_access_emi_reg_locked - Read/write EMI register
776  *  @hw: pointer to the HW structure
777  *  @address: EMI address to program
778  *  @data: pointer to value to read/write from/to the EMI address
779  *  @read: boolean flag to indicate read or write
780  *
781  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
782  **/
783 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
784 					 u16 *data, bool read)
785 {
786 	s32 ret_val;
787 
788 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
789 	if (ret_val)
790 		return ret_val;
791 
792 	if (read)
793 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
794 	else
795 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
796 
797 	return ret_val;
798 }
799 
800 /**
801  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
802  *  @hw: pointer to the HW structure
803  *  @addr: EMI address to program
804  *  @data: value to be read from the EMI address
805  *
806  *  Assumes the SW/FW/HW Semaphore is already acquired.
807  **/
808 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
809 {
810 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
811 }
812 
813 /**
814  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
815  *  @hw: pointer to the HW structure
816  *  @addr: EMI address to program
817  *  @data: value to be written to the EMI address
818  *
819  *  Assumes the SW/FW/HW Semaphore is already acquired.
820  **/
821 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
822 {
823 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
824 }
825 
826 /**
827  *  e1000_set_eee_pchlan - Enable/disable EEE support
828  *  @hw: pointer to the HW structure
829  *
830  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
831  *  the link and the EEE capabilities of the link partner.  The LPI Control
832  *  register bits will remain set only if/when link is up.
833  *
834  *  EEE LPI must not be asserted earlier than one second after link is up.
835  *  On 82579, EEE LPI should not be enabled until such time otherwise there
836  *  can be link issues with some switches.  Other devices can have EEE LPI
837  *  enabled immediately upon link up since they have a timer in hardware which
838  *  prevents LPI from being asserted too early.
839  **/
840 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
841 {
842 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
843 	s32 ret_val;
844 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
845 
846 	switch (hw->phy.type) {
847 	case e1000_phy_82579:
848 		lpa = I82579_EEE_LP_ABILITY;
849 		pcs_status = I82579_EEE_PCS_STATUS;
850 		adv_addr = I82579_EEE_ADVERTISEMENT;
851 		break;
852 	case e1000_phy_i217:
853 		lpa = I217_EEE_LP_ABILITY;
854 		pcs_status = I217_EEE_PCS_STATUS;
855 		adv_addr = I217_EEE_ADVERTISEMENT;
856 		break;
857 	default:
858 		return 0;
859 	}
860 
861 	ret_val = hw->phy.ops.acquire(hw);
862 	if (ret_val)
863 		return ret_val;
864 
865 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
866 	if (ret_val)
867 		goto release;
868 
869 	/* Clear bits that enable EEE in various speeds */
870 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
871 
872 	/* Enable EEE if not disabled by user */
873 	if (!dev_spec->eee_disable) {
874 		/* Save off link partner's EEE ability */
875 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
876 						    &dev_spec->eee_lp_ability);
877 		if (ret_val)
878 			goto release;
879 
880 		/* Read EEE advertisement */
881 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
882 		if (ret_val)
883 			goto release;
884 
885 		/* Enable EEE only for speeds in which the link partner is
886 		 * EEE capable and for which we advertise EEE.
887 		 */
888 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
889 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
890 
891 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
892 			e1e_rphy_locked(hw, MII_LPA, &data);
893 			if (data & LPA_100FULL)
894 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
895 			else
896 				/* EEE is not supported in 100Half, so ignore
897 				 * partner's EEE in 100 ability if full-duplex
898 				 * is not advertised.
899 				 */
900 				dev_spec->eee_lp_ability &=
901 				    ~I82579_EEE_100_SUPPORTED;
902 		}
903 	}
904 
905 	if (hw->phy.type == e1000_phy_82579) {
906 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
907 						    &data);
908 		if (ret_val)
909 			goto release;
910 
911 		data &= ~I82579_LPI_100_PLL_SHUT;
912 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
913 						     data);
914 	}
915 
916 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
917 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
918 	if (ret_val)
919 		goto release;
920 
921 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
922 release:
923 	hw->phy.ops.release(hw);
924 
925 	return ret_val;
926 }
927 
928 /**
929  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
930  *  @hw:   pointer to the HW structure
931  *  @link: link up bool flag
932  *
933  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
934  *  preventing further DMA write requests.  Workaround the issue by disabling
935  *  the de-assertion of the clock request when in 1Gpbs mode.
936  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
937  *  speeds in order to avoid Tx hangs.
938  **/
939 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
940 {
941 	u32 fextnvm6 = er32(FEXTNVM6);
942 	u32 status = er32(STATUS);
943 	s32 ret_val = 0;
944 	u16 reg;
945 
946 	if (link && (status & E1000_STATUS_SPEED_1000)) {
947 		ret_val = hw->phy.ops.acquire(hw);
948 		if (ret_val)
949 			return ret_val;
950 
951 		ret_val =
952 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
953 						&reg);
954 		if (ret_val)
955 			goto release;
956 
957 		ret_val =
958 		    e1000e_write_kmrn_reg_locked(hw,
959 						 E1000_KMRNCTRLSTA_K1_CONFIG,
960 						 reg &
961 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
962 		if (ret_val)
963 			goto release;
964 
965 		usleep_range(10, 20);
966 
967 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
968 
969 		ret_val =
970 		    e1000e_write_kmrn_reg_locked(hw,
971 						 E1000_KMRNCTRLSTA_K1_CONFIG,
972 						 reg);
973 release:
974 		hw->phy.ops.release(hw);
975 	} else {
976 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
977 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
978 
979 		if ((hw->phy.revision > 5) || !link ||
980 		    ((status & E1000_STATUS_SPEED_100) &&
981 		     (status & E1000_STATUS_FD)))
982 			goto update_fextnvm6;
983 
984 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
985 		if (ret_val)
986 			return ret_val;
987 
988 		/* Clear link status transmit timeout */
989 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
990 
991 		if (status & E1000_STATUS_SPEED_100) {
992 			/* Set inband Tx timeout to 5x10us for 100Half */
993 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
994 
995 			/* Do not extend the K1 entry latency for 100Half */
996 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
997 		} else {
998 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
999 			reg |= 50 <<
1000 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001 
1002 			/* Extend the K1 entry latency for 10 Mbps */
1003 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004 		}
1005 
1006 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007 		if (ret_val)
1008 			return ret_val;
1009 
1010 update_fextnvm6:
1011 		ew32(FEXTNVM6, fextnvm6);
1012 	}
1013 
1014 	return ret_val;
1015 }
1016 
1017 /**
1018  *  e1000_platform_pm_pch_lpt - Set platform power management values
1019  *  @hw: pointer to the HW structure
1020  *  @link: bool indicating link status
1021  *
1022  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024  *  when link is up (which must not exceed the maximum latency supported
1025  *  by the platform), otherwise specify there is no LTR requirement.
1026  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028  *  Capability register set, on this device LTR is set by writing the
1029  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031  *  message to the PMC.
1032  **/
1033 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034 {
1035 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037 	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1038 	u32 lat_enc_d = 0;	/* latency decoded */
1039 	u16 lat_enc = 0;	/* latency encoded */
1040 
1041 	if (link) {
1042 		u16 speed, duplex, scale = 0;
1043 		u16 max_snoop, max_nosnoop;
1044 		u16 max_ltr_enc;	/* max LTR latency encoded */
1045 		u64 value;
1046 		u32 rxa;
1047 
1048 		if (!hw->adapter->max_frame_size) {
1049 			e_dbg("max_frame_size not set.\n");
1050 			return -E1000_ERR_CONFIG;
1051 		}
1052 
1053 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054 		if (!speed) {
1055 			e_dbg("Speed not set.\n");
1056 			return -E1000_ERR_CONFIG;
1057 		}
1058 
1059 		/* Rx Packet Buffer Allocation size (KB) */
1060 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061 
1062 		/* Determine the maximum latency tolerated by the device.
1063 		 *
1064 		 * Per the PCIe spec, the tolerated latencies are encoded as
1065 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069 		 */
1070 		rxa *= 512;
1071 		value = (rxa > hw->adapter->max_frame_size) ?
1072 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073 			0;
1074 
1075 		while (value > PCI_LTR_VALUE_MASK) {
1076 			scale++;
1077 			value = DIV_ROUND_UP(value, BIT(5));
1078 		}
1079 		if (scale > E1000_LTRV_SCALE_MAX) {
1080 			e_dbg("Invalid LTR latency scale %d\n", scale);
1081 			return -E1000_ERR_CONFIG;
1082 		}
1083 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084 
1085 		/* Determine the maximum latency tolerated by the platform */
1086 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087 				     &max_snoop);
1088 		pci_read_config_word(hw->adapter->pdev,
1089 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091 
1092 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093 			     (1U << (E1000_LTRV_SCALE_FACTOR *
1094 			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095 
1096 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097 			(1U << (E1000_LTRV_SCALE_FACTOR *
1098 				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099 
1100 		if (lat_enc_d > max_ltr_enc_d)
1101 			lat_enc = max_ltr_enc;
1102 	}
1103 
1104 	/* Set Snoop and No-Snoop latencies the same */
1105 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106 	ew32(LTRV, reg);
1107 
1108 	return 0;
1109 }
1110 
1111 /**
1112  *  e1000e_force_smbus - Force interfaces to transition to SMBUS mode.
1113  *  @hw: pointer to the HW structure
1114  *
1115  *  Force the MAC and the PHY to SMBUS mode. Assumes semaphore already
1116  *  acquired.
1117  *
1118  * Return: 0 on success, negative errno on failure.
1119  **/
1120 static s32 e1000e_force_smbus(struct e1000_hw *hw)
1121 {
1122 	u16 smb_ctrl = 0;
1123 	u32 ctrl_ext;
1124 	s32 ret_val;
1125 
1126 	/* Switching PHY interface always returns MDI error
1127 	 * so disable retry mechanism to avoid wasting time
1128 	 */
1129 	e1000e_disable_phy_retry(hw);
1130 
1131 	/* Force SMBus mode in the PHY */
1132 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &smb_ctrl);
1133 	if (ret_val) {
1134 		e1000e_enable_phy_retry(hw);
1135 		return ret_val;
1136 	}
1137 
1138 	smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS;
1139 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, smb_ctrl);
1140 
1141 	e1000e_enable_phy_retry(hw);
1142 
1143 	/* Force SMBus mode in the MAC */
1144 	ctrl_ext = er32(CTRL_EXT);
1145 	ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS;
1146 	ew32(CTRL_EXT, ctrl_ext);
1147 
1148 	return 0;
1149 }
1150 
1151 /**
1152  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1153  *  @hw: pointer to the HW structure
1154  *  @to_sx: boolean indicating a system power state transition to Sx
1155  *
1156  *  When link is down, configure ULP mode to significantly reduce the power
1157  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1158  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1159  *  system, configure the ULP mode by software.
1160  */
1161 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1162 {
1163 	u32 mac_reg;
1164 	s32 ret_val = 0;
1165 	u16 phy_reg;
1166 	u16 oem_reg = 0;
1167 
1168 	if ((hw->mac.type < e1000_pch_lpt) ||
1169 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1170 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1171 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1172 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1173 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1174 		return 0;
1175 
1176 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1177 		/* Request ME configure ULP mode in the PHY */
1178 		mac_reg = er32(H2ME);
1179 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1180 		ew32(H2ME, mac_reg);
1181 
1182 		goto out;
1183 	}
1184 
1185 	if (!to_sx) {
1186 		int i = 0;
1187 
1188 		/* Poll up to 5 seconds for Cable Disconnected indication */
1189 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1190 			/* Bail if link is re-acquired */
1191 			if (er32(STATUS) & E1000_STATUS_LU)
1192 				return -E1000_ERR_PHY;
1193 
1194 			if (i++ == 100)
1195 				break;
1196 
1197 			msleep(50);
1198 		}
1199 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1200 		      (er32(FEXT) &
1201 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1202 	}
1203 
1204 	ret_val = hw->phy.ops.acquire(hw);
1205 	if (ret_val)
1206 		goto out;
1207 
1208 	ret_val = e1000e_force_smbus(hw);
1209 	if (ret_val) {
1210 		e_dbg("Failed to force SMBUS: %d\n", ret_val);
1211 		goto release;
1212 	}
1213 
1214 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1215 	 * LPLU and disable Gig speed when entering ULP
1216 	 */
1217 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1218 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1219 						       &oem_reg);
1220 		if (ret_val)
1221 			goto release;
1222 
1223 		phy_reg = oem_reg;
1224 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1225 
1226 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1227 							phy_reg);
1228 
1229 		if (ret_val)
1230 			goto release;
1231 	}
1232 
1233 	/* Set Inband ULP Exit, Reset to SMBus mode and
1234 	 * Disable SMBus Release on PERST# in PHY
1235 	 */
1236 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1237 	if (ret_val)
1238 		goto release;
1239 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1240 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1241 	if (to_sx) {
1242 		if (er32(WUFC) & E1000_WUFC_LNKC)
1243 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1244 		else
1245 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1246 
1247 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1248 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1249 	} else {
1250 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1251 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1252 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1253 	}
1254 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1255 
1256 	/* Set Disable SMBus Release on PERST# in MAC */
1257 	mac_reg = er32(FEXTNVM7);
1258 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1259 	ew32(FEXTNVM7, mac_reg);
1260 
1261 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1262 	phy_reg |= I218_ULP_CONFIG1_START;
1263 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1264 
1265 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1266 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1267 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1268 							oem_reg);
1269 		if (ret_val)
1270 			goto release;
1271 	}
1272 
1273 release:
1274 	hw->phy.ops.release(hw);
1275 out:
1276 	if (ret_val)
1277 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1278 	else
1279 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1280 
1281 	return ret_val;
1282 }
1283 
1284 /**
1285  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1286  *  @hw: pointer to the HW structure
1287  *  @force: boolean indicating whether or not to force disabling ULP
1288  *
1289  *  Un-configure ULP mode when link is up, the system is transitioned from
1290  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1291  *  system, poll for an indication from ME that ULP has been un-configured.
1292  *  If not on an ME enabled system, un-configure the ULP mode by software.
1293  *
1294  *  During nominal operation, this function is called when link is acquired
1295  *  to disable ULP mode (force=false); otherwise, for example when unloading
1296  *  the driver or during Sx->S0 transitions, this is called with force=true
1297  *  to forcibly disable ULP.
1298  */
1299 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1300 {
1301 	s32 ret_val = 0;
1302 	u32 mac_reg;
1303 	u16 phy_reg;
1304 	int i = 0;
1305 
1306 	if ((hw->mac.type < e1000_pch_lpt) ||
1307 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1308 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1309 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1310 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1311 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1312 		return 0;
1313 
1314 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1315 		struct e1000_adapter *adapter = hw->adapter;
1316 		bool firmware_bug = false;
1317 
1318 		if (force) {
1319 			/* Request ME un-configure ULP mode in the PHY */
1320 			mac_reg = er32(H2ME);
1321 			mac_reg &= ~E1000_H2ME_ULP;
1322 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1323 			ew32(H2ME, mac_reg);
1324 		}
1325 
1326 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1327 		 * If this takes more than 1 second, show a warning indicating a
1328 		 * firmware bug
1329 		 */
1330 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1331 			if (i++ == 250) {
1332 				ret_val = -E1000_ERR_PHY;
1333 				goto out;
1334 			}
1335 			if (i > 100 && !firmware_bug)
1336 				firmware_bug = true;
1337 
1338 			usleep_range(10000, 11000);
1339 		}
1340 		if (firmware_bug)
1341 			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1342 			       i * 10);
1343 		else
1344 			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1345 			      i * 10);
1346 
1347 		if (force) {
1348 			mac_reg = er32(H2ME);
1349 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1350 			ew32(H2ME, mac_reg);
1351 		} else {
1352 			/* Clear H2ME.ULP after ME ULP configuration */
1353 			mac_reg = er32(H2ME);
1354 			mac_reg &= ~E1000_H2ME_ULP;
1355 			ew32(H2ME, mac_reg);
1356 		}
1357 
1358 		goto out;
1359 	}
1360 
1361 	ret_val = hw->phy.ops.acquire(hw);
1362 	if (ret_val)
1363 		goto out;
1364 
1365 	if (force)
1366 		/* Toggle LANPHYPC Value bit */
1367 		e1000_toggle_lanphypc_pch_lpt(hw);
1368 
1369 	/* Switching PHY interface always returns MDI error
1370 	 * so disable retry mechanism to avoid wasting time
1371 	 */
1372 	e1000e_disable_phy_retry(hw);
1373 
1374 	/* Unforce SMBus mode in PHY */
1375 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1376 	if (ret_val) {
1377 		/* The MAC might be in PCIe mode, so temporarily force to
1378 		 * SMBus mode in order to access the PHY.
1379 		 */
1380 		mac_reg = er32(CTRL_EXT);
1381 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1382 		ew32(CTRL_EXT, mac_reg);
1383 
1384 		msleep(50);
1385 
1386 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1387 						       &phy_reg);
1388 		if (ret_val)
1389 			goto release;
1390 	}
1391 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1392 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1393 
1394 	e1000e_enable_phy_retry(hw);
1395 
1396 	/* Unforce SMBus mode in MAC */
1397 	mac_reg = er32(CTRL_EXT);
1398 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1399 	ew32(CTRL_EXT, mac_reg);
1400 
1401 	/* When ULP mode was previously entered, K1 was disabled by the
1402 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1403 	 */
1404 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1405 	if (ret_val)
1406 		goto release;
1407 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1408 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1409 
1410 	/* Clear ULP enabled configuration */
1411 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1412 	if (ret_val)
1413 		goto release;
1414 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1415 		     I218_ULP_CONFIG1_STICKY_ULP |
1416 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1417 		     I218_ULP_CONFIG1_WOL_HOST |
1418 		     I218_ULP_CONFIG1_INBAND_EXIT |
1419 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1420 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1421 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1422 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1423 
1424 	/* Commit ULP changes by starting auto ULP configuration */
1425 	phy_reg |= I218_ULP_CONFIG1_START;
1426 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1427 
1428 	/* Clear Disable SMBus Release on PERST# in MAC */
1429 	mac_reg = er32(FEXTNVM7);
1430 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1431 	ew32(FEXTNVM7, mac_reg);
1432 
1433 release:
1434 	hw->phy.ops.release(hw);
1435 	if (force) {
1436 		e1000_phy_hw_reset(hw);
1437 		msleep(50);
1438 	}
1439 out:
1440 	if (ret_val)
1441 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1442 	else
1443 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1444 
1445 	return ret_val;
1446 }
1447 
1448 /**
1449  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1450  *  @hw: pointer to the HW structure
1451  *
1452  *  Checks to see of the link status of the hardware has changed.  If a
1453  *  change in link status has been detected, then we read the PHY registers
1454  *  to get the current speed/duplex if link exists.
1455  **/
1456 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1457 {
1458 	struct e1000_mac_info *mac = &hw->mac;
1459 	s32 ret_val, tipg_reg = 0;
1460 	u16 emi_addr, emi_val = 0;
1461 	bool link;
1462 	u16 phy_reg;
1463 
1464 	/* We only want to go out to the PHY registers to see if Auto-Neg
1465 	 * has completed and/or if our link status has changed.  The
1466 	 * get_link_status flag is set upon receiving a Link Status
1467 	 * Change or Rx Sequence Error interrupt.
1468 	 */
1469 	if (!mac->get_link_status)
1470 		return 0;
1471 	mac->get_link_status = false;
1472 
1473 	/* First we want to see if the MII Status Register reports
1474 	 * link.  If so, then we want to get the current speed/duplex
1475 	 * of the PHY.
1476 	 */
1477 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1478 	if (ret_val)
1479 		goto out;
1480 
1481 	if (hw->mac.type == e1000_pchlan) {
1482 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1483 		if (ret_val)
1484 			goto out;
1485 	}
1486 
1487 	/* When connected at 10Mbps half-duplex, some parts are excessively
1488 	 * aggressive resulting in many collisions. To avoid this, increase
1489 	 * the IPG and reduce Rx latency in the PHY.
1490 	 */
1491 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1492 		u16 speed, duplex;
1493 
1494 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1495 		tipg_reg = er32(TIPG);
1496 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1497 
1498 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1499 			tipg_reg |= 0xFF;
1500 			/* Reduce Rx latency in analog PHY */
1501 			emi_val = 0;
1502 		} else if (hw->mac.type >= e1000_pch_spt &&
1503 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1504 			tipg_reg |= 0xC;
1505 			emi_val = 1;
1506 		} else {
1507 
1508 			/* Roll back the default values */
1509 			tipg_reg |= 0x08;
1510 			emi_val = 1;
1511 		}
1512 
1513 		ew32(TIPG, tipg_reg);
1514 
1515 		ret_val = hw->phy.ops.acquire(hw);
1516 		if (ret_val)
1517 			goto out;
1518 
1519 		if (hw->mac.type == e1000_pch2lan)
1520 			emi_addr = I82579_RX_CONFIG;
1521 		else
1522 			emi_addr = I217_RX_CONFIG;
1523 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1524 
1525 		if (hw->mac.type >= e1000_pch_lpt) {
1526 			u16 phy_reg;
1527 
1528 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1529 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1530 			if (speed == SPEED_100 || speed == SPEED_10)
1531 				phy_reg |= 0x3E8;
1532 			else
1533 				phy_reg |= 0xFA;
1534 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1535 
1536 			if (speed == SPEED_1000) {
1537 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1538 							    &phy_reg);
1539 
1540 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1541 
1542 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1543 							     phy_reg);
1544 			}
1545 		}
1546 		hw->phy.ops.release(hw);
1547 
1548 		if (ret_val)
1549 			goto out;
1550 
1551 		if (hw->mac.type >= e1000_pch_spt) {
1552 			u16 data;
1553 			u16 ptr_gap;
1554 
1555 			if (speed == SPEED_1000) {
1556 				ret_val = hw->phy.ops.acquire(hw);
1557 				if (ret_val)
1558 					goto out;
1559 
1560 				ret_val = e1e_rphy_locked(hw,
1561 							  PHY_REG(776, 20),
1562 							  &data);
1563 				if (ret_val) {
1564 					hw->phy.ops.release(hw);
1565 					goto out;
1566 				}
1567 
1568 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1569 				if (ptr_gap < 0x18) {
1570 					data &= ~(0x3FF << 2);
1571 					data |= (0x18 << 2);
1572 					ret_val =
1573 					    e1e_wphy_locked(hw,
1574 							    PHY_REG(776, 20),
1575 							    data);
1576 				}
1577 				hw->phy.ops.release(hw);
1578 				if (ret_val)
1579 					goto out;
1580 			} else {
1581 				ret_val = hw->phy.ops.acquire(hw);
1582 				if (ret_val)
1583 					goto out;
1584 
1585 				ret_val = e1e_wphy_locked(hw,
1586 							  PHY_REG(776, 20),
1587 							  0xC023);
1588 				hw->phy.ops.release(hw);
1589 				if (ret_val)
1590 					goto out;
1591 
1592 			}
1593 		}
1594 	}
1595 
1596 	/* I217 Packet Loss issue:
1597 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1598 	 * on power up.
1599 	 * Set the Beacon Duration for I217 to 8 usec
1600 	 */
1601 	if (hw->mac.type >= e1000_pch_lpt) {
1602 		u32 mac_reg;
1603 
1604 		mac_reg = er32(FEXTNVM4);
1605 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1606 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1607 		ew32(FEXTNVM4, mac_reg);
1608 	}
1609 
1610 	/* Work-around I218 hang issue */
1611 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1612 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1613 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1614 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1615 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1616 		if (ret_val)
1617 			goto out;
1618 	}
1619 	if (hw->mac.type >= e1000_pch_lpt) {
1620 		/* Set platform power management values for
1621 		 * Latency Tolerance Reporting (LTR)
1622 		 */
1623 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1624 		if (ret_val)
1625 			goto out;
1626 	}
1627 
1628 	/* Clear link partner's EEE ability */
1629 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1630 
1631 	if (hw->mac.type >= e1000_pch_lpt) {
1632 		u32 fextnvm6 = er32(FEXTNVM6);
1633 
1634 		if (hw->mac.type == e1000_pch_spt) {
1635 			/* FEXTNVM6 K1-off workaround - for SPT only */
1636 			u32 pcieanacfg = er32(PCIEANACFG);
1637 
1638 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1639 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1640 			else
1641 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1642 		}
1643 
1644 		ew32(FEXTNVM6, fextnvm6);
1645 	}
1646 
1647 	if (!link)
1648 		goto out;
1649 
1650 	switch (hw->mac.type) {
1651 	case e1000_pch2lan:
1652 		ret_val = e1000_k1_workaround_lv(hw);
1653 		if (ret_val)
1654 			return ret_val;
1655 		fallthrough;
1656 	case e1000_pchlan:
1657 		if (hw->phy.type == e1000_phy_82578) {
1658 			ret_val = e1000_link_stall_workaround_hv(hw);
1659 			if (ret_val)
1660 				return ret_val;
1661 		}
1662 
1663 		/* Workaround for PCHx parts in half-duplex:
1664 		 * Set the number of preambles removed from the packet
1665 		 * when it is passed from the PHY to the MAC to prevent
1666 		 * the MAC from misinterpreting the packet type.
1667 		 */
1668 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1669 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1670 
1671 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1672 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1673 
1674 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1675 		break;
1676 	default:
1677 		break;
1678 	}
1679 
1680 	/* Check if there was DownShift, must be checked
1681 	 * immediately after link-up
1682 	 */
1683 	e1000e_check_downshift(hw);
1684 
1685 	/* Enable/Disable EEE after link up */
1686 	if (hw->phy.type > e1000_phy_82579) {
1687 		ret_val = e1000_set_eee_pchlan(hw);
1688 		if (ret_val)
1689 			return ret_val;
1690 	}
1691 
1692 	/* If we are forcing speed/duplex, then we simply return since
1693 	 * we have already determined whether we have link or not.
1694 	 */
1695 	if (!mac->autoneg)
1696 		return -E1000_ERR_CONFIG;
1697 
1698 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1699 	 * of MAC speed/duplex configuration.  So we only need to
1700 	 * configure Collision Distance in the MAC.
1701 	 */
1702 	mac->ops.config_collision_dist(hw);
1703 
1704 	/* Configure Flow Control now that Auto-Neg has completed.
1705 	 * First, we need to restore the desired flow control
1706 	 * settings because we may have had to re-autoneg with a
1707 	 * different link partner.
1708 	 */
1709 	ret_val = e1000e_config_fc_after_link_up(hw);
1710 	if (ret_val)
1711 		e_dbg("Error configuring flow control\n");
1712 
1713 	return ret_val;
1714 
1715 out:
1716 	mac->get_link_status = true;
1717 	return ret_val;
1718 }
1719 
1720 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1721 {
1722 	struct e1000_hw *hw = &adapter->hw;
1723 	s32 rc;
1724 
1725 	rc = e1000_init_mac_params_ich8lan(hw);
1726 	if (rc)
1727 		return rc;
1728 
1729 	rc = e1000_init_nvm_params_ich8lan(hw);
1730 	if (rc)
1731 		return rc;
1732 
1733 	switch (hw->mac.type) {
1734 	case e1000_ich8lan:
1735 	case e1000_ich9lan:
1736 	case e1000_ich10lan:
1737 		rc = e1000_init_phy_params_ich8lan(hw);
1738 		break;
1739 	case e1000_pchlan:
1740 	case e1000_pch2lan:
1741 	case e1000_pch_lpt:
1742 	case e1000_pch_spt:
1743 	case e1000_pch_cnp:
1744 	case e1000_pch_tgp:
1745 	case e1000_pch_adp:
1746 	case e1000_pch_mtp:
1747 	case e1000_pch_lnp:
1748 	case e1000_pch_ptp:
1749 	case e1000_pch_nvp:
1750 		rc = e1000_init_phy_params_pchlan(hw);
1751 		break;
1752 	default:
1753 		break;
1754 	}
1755 	if (rc)
1756 		return rc;
1757 
1758 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1759 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1760 	 */
1761 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1762 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1763 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1764 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1765 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1766 
1767 		hw->mac.ops.blink_led = NULL;
1768 	}
1769 
1770 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1771 	    (adapter->hw.phy.type != e1000_phy_ife))
1772 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1773 
1774 	/* Enable workaround for 82579 w/ ME enabled */
1775 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1776 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1777 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1778 
1779 	return 0;
1780 }
1781 
1782 static DEFINE_MUTEX(nvm_mutex);
1783 
1784 /**
1785  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1786  *  @hw: pointer to the HW structure
1787  *
1788  *  Acquires the mutex for performing NVM operations.
1789  **/
1790 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1791 {
1792 	mutex_lock(&nvm_mutex);
1793 
1794 	return 0;
1795 }
1796 
1797 /**
1798  *  e1000_release_nvm_ich8lan - Release NVM mutex
1799  *  @hw: pointer to the HW structure
1800  *
1801  *  Releases the mutex used while performing NVM operations.
1802  **/
1803 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1804 {
1805 	mutex_unlock(&nvm_mutex);
1806 }
1807 
1808 /**
1809  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1810  *  @hw: pointer to the HW structure
1811  *
1812  *  Acquires the software control flag for performing PHY and select
1813  *  MAC CSR accesses.
1814  **/
1815 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1816 {
1817 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1818 	s32 ret_val = 0;
1819 
1820 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1821 			     &hw->adapter->state)) {
1822 		e_dbg("contention for Phy access\n");
1823 		return -E1000_ERR_PHY;
1824 	}
1825 
1826 	while (timeout) {
1827 		extcnf_ctrl = er32(EXTCNF_CTRL);
1828 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1829 			break;
1830 
1831 		mdelay(1);
1832 		timeout--;
1833 	}
1834 
1835 	if (!timeout) {
1836 		e_dbg("SW has already locked the resource.\n");
1837 		ret_val = -E1000_ERR_CONFIG;
1838 		goto out;
1839 	}
1840 
1841 	timeout = SW_FLAG_TIMEOUT;
1842 
1843 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1844 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1845 
1846 	while (timeout) {
1847 		extcnf_ctrl = er32(EXTCNF_CTRL);
1848 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1849 			break;
1850 
1851 		mdelay(1);
1852 		timeout--;
1853 	}
1854 
1855 	if (!timeout) {
1856 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1857 		      er32(FWSM), extcnf_ctrl);
1858 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1859 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1860 		ret_val = -E1000_ERR_CONFIG;
1861 		goto out;
1862 	}
1863 
1864 out:
1865 	if (ret_val)
1866 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1867 
1868 	return ret_val;
1869 }
1870 
1871 /**
1872  *  e1000_release_swflag_ich8lan - Release software control flag
1873  *  @hw: pointer to the HW structure
1874  *
1875  *  Releases the software control flag for performing PHY and select
1876  *  MAC CSR accesses.
1877  **/
1878 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1879 {
1880 	u32 extcnf_ctrl;
1881 
1882 	extcnf_ctrl = er32(EXTCNF_CTRL);
1883 
1884 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1885 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1886 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1887 	} else {
1888 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1889 	}
1890 
1891 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1892 }
1893 
1894 /**
1895  *  e1000_check_mng_mode_ich8lan - Checks management mode
1896  *  @hw: pointer to the HW structure
1897  *
1898  *  This checks if the adapter has any manageability enabled.
1899  *  This is a function pointer entry point only called by read/write
1900  *  routines for the PHY and NVM parts.
1901  **/
1902 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1903 {
1904 	u32 fwsm;
1905 
1906 	fwsm = er32(FWSM);
1907 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1908 		((fwsm & E1000_FWSM_MODE_MASK) ==
1909 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1910 }
1911 
1912 /**
1913  *  e1000_check_mng_mode_pchlan - Checks management mode
1914  *  @hw: pointer to the HW structure
1915  *
1916  *  This checks if the adapter has iAMT enabled.
1917  *  This is a function pointer entry point only called by read/write
1918  *  routines for the PHY and NVM parts.
1919  **/
1920 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1921 {
1922 	u32 fwsm;
1923 
1924 	fwsm = er32(FWSM);
1925 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1926 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1927 }
1928 
1929 /**
1930  *  e1000_rar_set_pch2lan - Set receive address register
1931  *  @hw: pointer to the HW structure
1932  *  @addr: pointer to the receive address
1933  *  @index: receive address array register
1934  *
1935  *  Sets the receive address array register at index to the address passed
1936  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1937  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1938  *  Use SHRA[0-3] in place of those reserved for ME.
1939  **/
1940 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1941 {
1942 	u32 rar_low, rar_high;
1943 
1944 	/* HW expects these in little endian so we reverse the byte order
1945 	 * from network order (big endian) to little endian
1946 	 */
1947 	rar_low = ((u32)addr[0] |
1948 		   ((u32)addr[1] << 8) |
1949 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1950 
1951 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1952 
1953 	/* If MAC address zero, no need to set the AV bit */
1954 	if (rar_low || rar_high)
1955 		rar_high |= E1000_RAH_AV;
1956 
1957 	if (index == 0) {
1958 		ew32(RAL(index), rar_low);
1959 		e1e_flush();
1960 		ew32(RAH(index), rar_high);
1961 		e1e_flush();
1962 		return 0;
1963 	}
1964 
1965 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1966 	 * next address into the SHRA register array.
1967 	 */
1968 	if (index < (u32)(hw->mac.rar_entry_count)) {
1969 		s32 ret_val;
1970 
1971 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1972 		if (ret_val)
1973 			goto out;
1974 
1975 		ew32(SHRAL(index - 1), rar_low);
1976 		e1e_flush();
1977 		ew32(SHRAH(index - 1), rar_high);
1978 		e1e_flush();
1979 
1980 		e1000_release_swflag_ich8lan(hw);
1981 
1982 		/* verify the register updates */
1983 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1984 		    (er32(SHRAH(index - 1)) == rar_high))
1985 			return 0;
1986 
1987 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1988 		      (index - 1), er32(FWSM));
1989 	}
1990 
1991 out:
1992 	e_dbg("Failed to write receive address at index %d\n", index);
1993 	return -E1000_ERR_CONFIG;
1994 }
1995 
1996 /**
1997  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1998  *  @hw: pointer to the HW structure
1999  *
2000  *  Get the number of available receive registers that the Host can
2001  *  program. SHRA[0-10] are the shared receive address registers
2002  *  that are shared between the Host and manageability engine (ME).
2003  *  ME can reserve any number of addresses and the host needs to be
2004  *  able to tell how many available registers it has access to.
2005  **/
2006 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
2007 {
2008 	u32 wlock_mac;
2009 	u32 num_entries;
2010 
2011 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2012 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2013 
2014 	switch (wlock_mac) {
2015 	case 0:
2016 		/* All SHRA[0..10] and RAR[0] available */
2017 		num_entries = hw->mac.rar_entry_count;
2018 		break;
2019 	case 1:
2020 		/* Only RAR[0] available */
2021 		num_entries = 1;
2022 		break;
2023 	default:
2024 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2025 		num_entries = wlock_mac + 1;
2026 		break;
2027 	}
2028 
2029 	return num_entries;
2030 }
2031 
2032 /**
2033  *  e1000_rar_set_pch_lpt - Set receive address registers
2034  *  @hw: pointer to the HW structure
2035  *  @addr: pointer to the receive address
2036  *  @index: receive address array register
2037  *
2038  *  Sets the receive address register array at index to the address passed
2039  *  in by addr. For LPT, RAR[0] is the base address register that is to
2040  *  contain the MAC address. SHRA[0-10] are the shared receive address
2041  *  registers that are shared between the Host and manageability engine (ME).
2042  **/
2043 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2044 {
2045 	u32 rar_low, rar_high;
2046 	u32 wlock_mac;
2047 
2048 	/* HW expects these in little endian so we reverse the byte order
2049 	 * from network order (big endian) to little endian
2050 	 */
2051 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2052 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2053 
2054 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2055 
2056 	/* If MAC address zero, no need to set the AV bit */
2057 	if (rar_low || rar_high)
2058 		rar_high |= E1000_RAH_AV;
2059 
2060 	if (index == 0) {
2061 		ew32(RAL(index), rar_low);
2062 		e1e_flush();
2063 		ew32(RAH(index), rar_high);
2064 		e1e_flush();
2065 		return 0;
2066 	}
2067 
2068 	/* The manageability engine (ME) can lock certain SHRAR registers that
2069 	 * it is using - those registers are unavailable for use.
2070 	 */
2071 	if (index < hw->mac.rar_entry_count) {
2072 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2073 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2074 
2075 		/* Check if all SHRAR registers are locked */
2076 		if (wlock_mac == 1)
2077 			goto out;
2078 
2079 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2080 			s32 ret_val;
2081 
2082 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2083 
2084 			if (ret_val)
2085 				goto out;
2086 
2087 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2088 			e1e_flush();
2089 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2090 			e1e_flush();
2091 
2092 			e1000_release_swflag_ich8lan(hw);
2093 
2094 			/* verify the register updates */
2095 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2096 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2097 				return 0;
2098 		}
2099 	}
2100 
2101 out:
2102 	e_dbg("Failed to write receive address at index %d\n", index);
2103 	return -E1000_ERR_CONFIG;
2104 }
2105 
2106 /**
2107  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2108  *  @hw: pointer to the HW structure
2109  *
2110  *  Checks if firmware is blocking the reset of the PHY.
2111  *  This is a function pointer entry point only called by
2112  *  reset routines.
2113  **/
2114 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2115 {
2116 	bool blocked = false;
2117 	int i = 0;
2118 
2119 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2120 	       (i++ < 30))
2121 		usleep_range(10000, 11000);
2122 	return blocked ? E1000_BLK_PHY_RESET : 0;
2123 }
2124 
2125 /**
2126  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2127  *  @hw: pointer to the HW structure
2128  *
2129  *  Assumes semaphore already acquired.
2130  *
2131  **/
2132 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2133 {
2134 	u16 phy_data;
2135 	u32 strap = er32(STRAP);
2136 	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2137 	s32 ret_val;
2138 
2139 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2140 
2141 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2142 	if (ret_val)
2143 		return ret_val;
2144 
2145 	phy_data &= ~HV_SMB_ADDR_MASK;
2146 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2147 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2148 
2149 	if (hw->phy.type == e1000_phy_i217) {
2150 		/* Restore SMBus frequency */
2151 		if (freq--) {
2152 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2153 			phy_data |= (freq & BIT(0)) <<
2154 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2155 			phy_data |= (freq & BIT(1)) <<
2156 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2157 		} else {
2158 			e_dbg("Unsupported SMB frequency in PHY\n");
2159 		}
2160 	}
2161 
2162 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2163 }
2164 
2165 /**
2166  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2167  *  @hw:   pointer to the HW structure
2168  *
2169  *  SW should configure the LCD from the NVM extended configuration region
2170  *  as a workaround for certain parts.
2171  **/
2172 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2173 {
2174 	struct e1000_phy_info *phy = &hw->phy;
2175 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2176 	s32 ret_val = 0;
2177 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2178 
2179 	/* Initialize the PHY from the NVM on ICH platforms.  This
2180 	 * is needed due to an issue where the NVM configuration is
2181 	 * not properly autoloaded after power transitions.
2182 	 * Therefore, after each PHY reset, we will load the
2183 	 * configuration data out of the NVM manually.
2184 	 */
2185 	switch (hw->mac.type) {
2186 	case e1000_ich8lan:
2187 		if (phy->type != e1000_phy_igp_3)
2188 			return ret_val;
2189 
2190 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2191 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2192 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2193 			break;
2194 		}
2195 		fallthrough;
2196 	case e1000_pchlan:
2197 	case e1000_pch2lan:
2198 	case e1000_pch_lpt:
2199 	case e1000_pch_spt:
2200 	case e1000_pch_cnp:
2201 	case e1000_pch_tgp:
2202 	case e1000_pch_adp:
2203 	case e1000_pch_mtp:
2204 	case e1000_pch_lnp:
2205 	case e1000_pch_ptp:
2206 	case e1000_pch_nvp:
2207 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2208 		break;
2209 	default:
2210 		return ret_val;
2211 	}
2212 
2213 	ret_val = hw->phy.ops.acquire(hw);
2214 	if (ret_val)
2215 		return ret_val;
2216 
2217 	data = er32(FEXTNVM);
2218 	if (!(data & sw_cfg_mask))
2219 		goto release;
2220 
2221 	/* Make sure HW does not configure LCD from PHY
2222 	 * extended configuration before SW configuration
2223 	 */
2224 	data = er32(EXTCNF_CTRL);
2225 	if ((hw->mac.type < e1000_pch2lan) &&
2226 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2227 		goto release;
2228 
2229 	cnf_size = er32(EXTCNF_SIZE);
2230 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2231 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2232 	if (!cnf_size)
2233 		goto release;
2234 
2235 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2236 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2237 
2238 	if (((hw->mac.type == e1000_pchlan) &&
2239 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2240 	    (hw->mac.type > e1000_pchlan)) {
2241 		/* HW configures the SMBus address and LEDs when the
2242 		 * OEM and LCD Write Enable bits are set in the NVM.
2243 		 * When both NVM bits are cleared, SW will configure
2244 		 * them instead.
2245 		 */
2246 		ret_val = e1000_write_smbus_addr(hw);
2247 		if (ret_val)
2248 			goto release;
2249 
2250 		data = er32(LEDCTL);
2251 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2252 							(u16)data);
2253 		if (ret_val)
2254 			goto release;
2255 	}
2256 
2257 	/* Configure LCD from extended configuration region. */
2258 
2259 	/* cnf_base_addr is in DWORD */
2260 	word_addr = (u16)(cnf_base_addr << 1);
2261 
2262 	for (i = 0; i < cnf_size; i++) {
2263 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2264 		if (ret_val)
2265 			goto release;
2266 
2267 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2268 					 1, &reg_addr);
2269 		if (ret_val)
2270 			goto release;
2271 
2272 		/* Save off the PHY page for future writes. */
2273 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2274 			phy_page = reg_data;
2275 			continue;
2276 		}
2277 
2278 		reg_addr &= PHY_REG_MASK;
2279 		reg_addr |= phy_page;
2280 
2281 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2282 		if (ret_val)
2283 			goto release;
2284 	}
2285 
2286 release:
2287 	hw->phy.ops.release(hw);
2288 	return ret_val;
2289 }
2290 
2291 /**
2292  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2293  *  @hw:   pointer to the HW structure
2294  *  @link: link up bool flag
2295  *
2296  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2297  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2298  *  If link is down, the function will restore the default K1 setting located
2299  *  in the NVM.
2300  **/
2301 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2302 {
2303 	s32 ret_val = 0;
2304 	u16 status_reg = 0;
2305 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2306 
2307 	if (hw->mac.type != e1000_pchlan)
2308 		return 0;
2309 
2310 	/* Wrap the whole flow with the sw flag */
2311 	ret_val = hw->phy.ops.acquire(hw);
2312 	if (ret_val)
2313 		return ret_val;
2314 
2315 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2316 	if (link) {
2317 		if (hw->phy.type == e1000_phy_82578) {
2318 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2319 						  &status_reg);
2320 			if (ret_val)
2321 				goto release;
2322 
2323 			status_reg &= (BM_CS_STATUS_LINK_UP |
2324 				       BM_CS_STATUS_RESOLVED |
2325 				       BM_CS_STATUS_SPEED_MASK);
2326 
2327 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2328 					   BM_CS_STATUS_RESOLVED |
2329 					   BM_CS_STATUS_SPEED_1000))
2330 				k1_enable = false;
2331 		}
2332 
2333 		if (hw->phy.type == e1000_phy_82577) {
2334 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2335 			if (ret_val)
2336 				goto release;
2337 
2338 			status_reg &= (HV_M_STATUS_LINK_UP |
2339 				       HV_M_STATUS_AUTONEG_COMPLETE |
2340 				       HV_M_STATUS_SPEED_MASK);
2341 
2342 			if (status_reg == (HV_M_STATUS_LINK_UP |
2343 					   HV_M_STATUS_AUTONEG_COMPLETE |
2344 					   HV_M_STATUS_SPEED_1000))
2345 				k1_enable = false;
2346 		}
2347 
2348 		/* Link stall fix for link up */
2349 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2350 		if (ret_val)
2351 			goto release;
2352 
2353 	} else {
2354 		/* Link stall fix for link down */
2355 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2356 		if (ret_val)
2357 			goto release;
2358 	}
2359 
2360 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2361 
2362 release:
2363 	hw->phy.ops.release(hw);
2364 
2365 	return ret_val;
2366 }
2367 
2368 /**
2369  *  e1000_configure_k1_ich8lan - Configure K1 power state
2370  *  @hw: pointer to the HW structure
2371  *  @k1_enable: K1 state to configure
2372  *
2373  *  Configure the K1 power state based on the provided parameter.
2374  *  Assumes semaphore already acquired.
2375  *
2376  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2377  **/
2378 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2379 {
2380 	s32 ret_val;
2381 	u32 ctrl_reg = 0;
2382 	u32 ctrl_ext = 0;
2383 	u32 reg = 0;
2384 	u16 kmrn_reg = 0;
2385 
2386 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2387 					      &kmrn_reg);
2388 	if (ret_val)
2389 		return ret_val;
2390 
2391 	if (k1_enable)
2392 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2393 	else
2394 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2395 
2396 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2397 					       kmrn_reg);
2398 	if (ret_val)
2399 		return ret_val;
2400 
2401 	usleep_range(20, 40);
2402 	ctrl_ext = er32(CTRL_EXT);
2403 	ctrl_reg = er32(CTRL);
2404 
2405 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2406 	reg |= E1000_CTRL_FRCSPD;
2407 	ew32(CTRL, reg);
2408 
2409 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2410 	e1e_flush();
2411 	usleep_range(20, 40);
2412 	ew32(CTRL, ctrl_reg);
2413 	ew32(CTRL_EXT, ctrl_ext);
2414 	e1e_flush();
2415 	usleep_range(20, 40);
2416 
2417 	return 0;
2418 }
2419 
2420 /**
2421  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2422  *  @hw:       pointer to the HW structure
2423  *  @d0_state: boolean if entering d0 or d3 device state
2424  *
2425  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2426  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2427  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2428  **/
2429 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2430 {
2431 	s32 ret_val = 0;
2432 	u32 mac_reg;
2433 	u16 oem_reg;
2434 
2435 	if (hw->mac.type < e1000_pchlan)
2436 		return ret_val;
2437 
2438 	ret_val = hw->phy.ops.acquire(hw);
2439 	if (ret_val)
2440 		return ret_val;
2441 
2442 	if (hw->mac.type == e1000_pchlan) {
2443 		mac_reg = er32(EXTCNF_CTRL);
2444 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2445 			goto release;
2446 	}
2447 
2448 	mac_reg = er32(FEXTNVM);
2449 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2450 		goto release;
2451 
2452 	mac_reg = er32(PHY_CTRL);
2453 
2454 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2455 	if (ret_val)
2456 		goto release;
2457 
2458 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2459 
2460 	if (d0_state) {
2461 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2462 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2463 
2464 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2465 			oem_reg |= HV_OEM_BITS_LPLU;
2466 	} else {
2467 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2468 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2469 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2470 
2471 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2472 			       E1000_PHY_CTRL_NOND0A_LPLU))
2473 			oem_reg |= HV_OEM_BITS_LPLU;
2474 	}
2475 
2476 	/* Set Restart auto-neg to activate the bits */
2477 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2478 	    !hw->phy.ops.check_reset_block(hw))
2479 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2480 
2481 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2482 
2483 release:
2484 	hw->phy.ops.release(hw);
2485 
2486 	return ret_val;
2487 }
2488 
2489 /**
2490  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2491  *  @hw:   pointer to the HW structure
2492  **/
2493 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2494 {
2495 	s32 ret_val;
2496 	u16 data;
2497 
2498 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2499 	if (ret_val)
2500 		return ret_val;
2501 
2502 	data |= HV_KMRN_MDIO_SLOW;
2503 
2504 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2505 
2506 	return ret_val;
2507 }
2508 
2509 /**
2510  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2511  *  @hw: pointer to the HW structure
2512  *
2513  *  A series of PHY workarounds to be done after every PHY reset.
2514  **/
2515 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2516 {
2517 	s32 ret_val = 0;
2518 	u16 phy_data;
2519 
2520 	if (hw->mac.type != e1000_pchlan)
2521 		return 0;
2522 
2523 	/* Set MDIO slow mode before any other MDIO access */
2524 	if (hw->phy.type == e1000_phy_82577) {
2525 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2526 		if (ret_val)
2527 			return ret_val;
2528 	}
2529 
2530 	if (((hw->phy.type == e1000_phy_82577) &&
2531 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2532 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2533 		/* Disable generation of early preamble */
2534 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2535 		if (ret_val)
2536 			return ret_val;
2537 
2538 		/* Preamble tuning for SSC */
2539 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2540 		if (ret_val)
2541 			return ret_val;
2542 	}
2543 
2544 	if (hw->phy.type == e1000_phy_82578) {
2545 		/* Return registers to default by doing a soft reset then
2546 		 * writing 0x3140 to the control register.
2547 		 */
2548 		if (hw->phy.revision < 2) {
2549 			e1000e_phy_sw_reset(hw);
2550 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2551 			if (ret_val)
2552 				return ret_val;
2553 		}
2554 	}
2555 
2556 	/* Select page 0 */
2557 	ret_val = hw->phy.ops.acquire(hw);
2558 	if (ret_val)
2559 		return ret_val;
2560 
2561 	hw->phy.addr = 1;
2562 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2563 	hw->phy.ops.release(hw);
2564 	if (ret_val)
2565 		return ret_val;
2566 
2567 	/* Configure the K1 Si workaround during phy reset assuming there is
2568 	 * link so that it disables K1 if link is in 1Gbps.
2569 	 */
2570 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2571 	if (ret_val)
2572 		return ret_val;
2573 
2574 	/* Workaround for link disconnects on a busy hub in half duplex */
2575 	ret_val = hw->phy.ops.acquire(hw);
2576 	if (ret_val)
2577 		return ret_val;
2578 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2579 	if (ret_val)
2580 		goto release;
2581 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2582 	if (ret_val)
2583 		goto release;
2584 
2585 	/* set MSE higher to enable link to stay up when noise is high */
2586 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2587 release:
2588 	hw->phy.ops.release(hw);
2589 
2590 	return ret_val;
2591 }
2592 
2593 /**
2594  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2595  *  @hw:   pointer to the HW structure
2596  **/
2597 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2598 {
2599 	u32 mac_reg;
2600 	u16 i, phy_reg = 0;
2601 	s32 ret_val;
2602 
2603 	ret_val = hw->phy.ops.acquire(hw);
2604 	if (ret_val)
2605 		return;
2606 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2607 	if (ret_val)
2608 		goto release;
2609 
2610 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2611 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2612 		mac_reg = er32(RAL(i));
2613 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2614 					   (u16)(mac_reg & 0xFFFF));
2615 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2616 					   (u16)((mac_reg >> 16) & 0xFFFF));
2617 
2618 		mac_reg = er32(RAH(i));
2619 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2620 					   (u16)(mac_reg & 0xFFFF));
2621 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2622 					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
2623 	}
2624 
2625 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2626 
2627 release:
2628 	hw->phy.ops.release(hw);
2629 }
2630 
2631 /**
2632  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2633  *  with 82579 PHY
2634  *  @hw: pointer to the HW structure
2635  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2636  **/
2637 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2638 {
2639 	s32 ret_val = 0;
2640 	u16 phy_reg, data;
2641 	u32 mac_reg;
2642 	u16 i;
2643 
2644 	if (hw->mac.type < e1000_pch2lan)
2645 		return 0;
2646 
2647 	/* disable Rx path while enabling/disabling workaround */
2648 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2649 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2650 	if (ret_val)
2651 		return ret_val;
2652 
2653 	if (enable) {
2654 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2655 		 * SHRAL/H) and initial CRC values to the MAC
2656 		 */
2657 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2658 			u8 mac_addr[ETH_ALEN] = { 0 };
2659 			u32 addr_high, addr_low;
2660 
2661 			addr_high = er32(RAH(i));
2662 			if (!(addr_high & E1000_RAH_AV))
2663 				continue;
2664 			addr_low = er32(RAL(i));
2665 			mac_addr[0] = (addr_low & 0xFF);
2666 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2667 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2668 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2669 			mac_addr[4] = (addr_high & 0xFF);
2670 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2671 
2672 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2673 		}
2674 
2675 		/* Write Rx addresses to the PHY */
2676 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2677 
2678 		/* Enable jumbo frame workaround in the MAC */
2679 		mac_reg = er32(FFLT_DBG);
2680 		mac_reg &= ~BIT(14);
2681 		mac_reg |= (7 << 15);
2682 		ew32(FFLT_DBG, mac_reg);
2683 
2684 		mac_reg = er32(RCTL);
2685 		mac_reg |= E1000_RCTL_SECRC;
2686 		ew32(RCTL, mac_reg);
2687 
2688 		ret_val = e1000e_read_kmrn_reg(hw,
2689 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2690 					       &data);
2691 		if (ret_val)
2692 			return ret_val;
2693 		ret_val = e1000e_write_kmrn_reg(hw,
2694 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2695 						data | BIT(0));
2696 		if (ret_val)
2697 			return ret_val;
2698 		ret_val = e1000e_read_kmrn_reg(hw,
2699 					       E1000_KMRNCTRLSTA_HD_CTRL,
2700 					       &data);
2701 		if (ret_val)
2702 			return ret_val;
2703 		data &= ~(0xF << 8);
2704 		data |= (0xB << 8);
2705 		ret_val = e1000e_write_kmrn_reg(hw,
2706 						E1000_KMRNCTRLSTA_HD_CTRL,
2707 						data);
2708 		if (ret_val)
2709 			return ret_val;
2710 
2711 		/* Enable jumbo frame workaround in the PHY */
2712 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2713 		data &= ~(0x7F << 5);
2714 		data |= (0x37 << 5);
2715 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2716 		if (ret_val)
2717 			return ret_val;
2718 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2719 		data &= ~BIT(13);
2720 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2721 		if (ret_val)
2722 			return ret_val;
2723 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2724 		data &= ~(0x3FF << 2);
2725 		data |= (E1000_TX_PTR_GAP << 2);
2726 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2727 		if (ret_val)
2728 			return ret_val;
2729 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2730 		if (ret_val)
2731 			return ret_val;
2732 		e1e_rphy(hw, HV_PM_CTRL, &data);
2733 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2734 		if (ret_val)
2735 			return ret_val;
2736 	} else {
2737 		/* Write MAC register values back to h/w defaults */
2738 		mac_reg = er32(FFLT_DBG);
2739 		mac_reg &= ~(0xF << 14);
2740 		ew32(FFLT_DBG, mac_reg);
2741 
2742 		mac_reg = er32(RCTL);
2743 		mac_reg &= ~E1000_RCTL_SECRC;
2744 		ew32(RCTL, mac_reg);
2745 
2746 		ret_val = e1000e_read_kmrn_reg(hw,
2747 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2748 					       &data);
2749 		if (ret_val)
2750 			return ret_val;
2751 		ret_val = e1000e_write_kmrn_reg(hw,
2752 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2753 						data & ~BIT(0));
2754 		if (ret_val)
2755 			return ret_val;
2756 		ret_val = e1000e_read_kmrn_reg(hw,
2757 					       E1000_KMRNCTRLSTA_HD_CTRL,
2758 					       &data);
2759 		if (ret_val)
2760 			return ret_val;
2761 		data &= ~(0xF << 8);
2762 		data |= (0xB << 8);
2763 		ret_val = e1000e_write_kmrn_reg(hw,
2764 						E1000_KMRNCTRLSTA_HD_CTRL,
2765 						data);
2766 		if (ret_val)
2767 			return ret_val;
2768 
2769 		/* Write PHY register values back to h/w defaults */
2770 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2771 		data &= ~(0x7F << 5);
2772 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2773 		if (ret_val)
2774 			return ret_val;
2775 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2776 		data |= BIT(13);
2777 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2778 		if (ret_val)
2779 			return ret_val;
2780 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2781 		data &= ~(0x3FF << 2);
2782 		data |= (0x8 << 2);
2783 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2784 		if (ret_val)
2785 			return ret_val;
2786 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2787 		if (ret_val)
2788 			return ret_val;
2789 		e1e_rphy(hw, HV_PM_CTRL, &data);
2790 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2791 		if (ret_val)
2792 			return ret_val;
2793 	}
2794 
2795 	/* re-enable Rx path after enabling/disabling workaround */
2796 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2797 }
2798 
2799 /**
2800  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2801  *  @hw: pointer to the HW structure
2802  *
2803  *  A series of PHY workarounds to be done after every PHY reset.
2804  **/
2805 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2806 {
2807 	s32 ret_val = 0;
2808 
2809 	if (hw->mac.type != e1000_pch2lan)
2810 		return 0;
2811 
2812 	/* Set MDIO slow mode before any other MDIO access */
2813 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2814 	if (ret_val)
2815 		return ret_val;
2816 
2817 	ret_val = hw->phy.ops.acquire(hw);
2818 	if (ret_val)
2819 		return ret_val;
2820 	/* set MSE higher to enable link to stay up when noise is high */
2821 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2822 	if (ret_val)
2823 		goto release;
2824 	/* drop link after 5 times MSE threshold was reached */
2825 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2826 release:
2827 	hw->phy.ops.release(hw);
2828 
2829 	return ret_val;
2830 }
2831 
2832 /**
2833  *  e1000_k1_workaround_lv - K1 Si workaround
2834  *  @hw:   pointer to the HW structure
2835  *
2836  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2837  *  Disable K1 in 1000Mbps and 100Mbps
2838  **/
2839 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2840 {
2841 	s32 ret_val = 0;
2842 	u16 status_reg = 0;
2843 
2844 	if (hw->mac.type != e1000_pch2lan)
2845 		return 0;
2846 
2847 	/* Set K1 beacon duration based on 10Mbs speed */
2848 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2849 	if (ret_val)
2850 		return ret_val;
2851 
2852 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2853 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2854 		if (status_reg &
2855 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2856 			u16 pm_phy_reg;
2857 
2858 			/* LV 1G/100 Packet drop issue wa  */
2859 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2860 			if (ret_val)
2861 				return ret_val;
2862 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2863 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2864 			if (ret_val)
2865 				return ret_val;
2866 		} else {
2867 			u32 mac_reg;
2868 
2869 			mac_reg = er32(FEXTNVM4);
2870 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2871 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2872 			ew32(FEXTNVM4, mac_reg);
2873 		}
2874 	}
2875 
2876 	return ret_val;
2877 }
2878 
2879 /**
2880  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2881  *  @hw:   pointer to the HW structure
2882  *  @gate: boolean set to true to gate, false to ungate
2883  *
2884  *  Gate/ungate the automatic PHY configuration via hardware; perform
2885  *  the configuration via software instead.
2886  **/
2887 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2888 {
2889 	u32 extcnf_ctrl;
2890 
2891 	if (hw->mac.type < e1000_pch2lan)
2892 		return;
2893 
2894 	extcnf_ctrl = er32(EXTCNF_CTRL);
2895 
2896 	if (gate)
2897 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2898 	else
2899 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2900 
2901 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2902 }
2903 
2904 /**
2905  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2906  *  @hw: pointer to the HW structure
2907  *
2908  *  Check the appropriate indication the MAC has finished configuring the
2909  *  PHY after a software reset.
2910  **/
2911 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2912 {
2913 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2914 
2915 	/* Wait for basic configuration completes before proceeding */
2916 	do {
2917 		data = er32(STATUS);
2918 		data &= E1000_STATUS_LAN_INIT_DONE;
2919 		usleep_range(100, 200);
2920 	} while ((!data) && --loop);
2921 
2922 	/* If basic configuration is incomplete before the above loop
2923 	 * count reaches 0, loading the configuration from NVM will
2924 	 * leave the PHY in a bad state possibly resulting in no link.
2925 	 */
2926 	if (loop == 0)
2927 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2928 
2929 	/* Clear the Init Done bit for the next init event */
2930 	data = er32(STATUS);
2931 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2932 	ew32(STATUS, data);
2933 }
2934 
2935 /**
2936  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2937  *  @hw: pointer to the HW structure
2938  **/
2939 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2940 {
2941 	s32 ret_val = 0;
2942 	u16 reg;
2943 
2944 	if (hw->phy.ops.check_reset_block(hw))
2945 		return 0;
2946 
2947 	/* Allow time for h/w to get to quiescent state after reset */
2948 	usleep_range(10000, 11000);
2949 
2950 	/* Perform any necessary post-reset workarounds */
2951 	switch (hw->mac.type) {
2952 	case e1000_pchlan:
2953 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2954 		if (ret_val)
2955 			return ret_val;
2956 		break;
2957 	case e1000_pch2lan:
2958 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2959 		if (ret_val)
2960 			return ret_val;
2961 		break;
2962 	default:
2963 		break;
2964 	}
2965 
2966 	/* Clear the host wakeup bit after lcd reset */
2967 	if (hw->mac.type >= e1000_pchlan) {
2968 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2969 		reg &= ~BM_WUC_HOST_WU_BIT;
2970 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2971 	}
2972 
2973 	/* Configure the LCD with the extended configuration region in NVM */
2974 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2975 	if (ret_val)
2976 		return ret_val;
2977 
2978 	/* Configure the LCD with the OEM bits in NVM */
2979 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2980 
2981 	if (hw->mac.type == e1000_pch2lan) {
2982 		/* Ungate automatic PHY configuration on non-managed 82579 */
2983 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2984 			usleep_range(10000, 11000);
2985 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2986 		}
2987 
2988 		/* Set EEE LPI Update Timer to 200usec */
2989 		ret_val = hw->phy.ops.acquire(hw);
2990 		if (ret_val)
2991 			return ret_val;
2992 		ret_val = e1000_write_emi_reg_locked(hw,
2993 						     I82579_LPI_UPDATE_TIMER,
2994 						     0x1387);
2995 		hw->phy.ops.release(hw);
2996 	}
2997 
2998 	return ret_val;
2999 }
3000 
3001 /**
3002  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3003  *  @hw: pointer to the HW structure
3004  *
3005  *  Resets the PHY
3006  *  This is a function pointer entry point called by drivers
3007  *  or other shared routines.
3008  **/
3009 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3010 {
3011 	s32 ret_val = 0;
3012 
3013 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3014 	if ((hw->mac.type == e1000_pch2lan) &&
3015 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3016 		e1000_gate_hw_phy_config_ich8lan(hw, true);
3017 
3018 	ret_val = e1000e_phy_hw_reset_generic(hw);
3019 	if (ret_val)
3020 		return ret_val;
3021 
3022 	return e1000_post_phy_reset_ich8lan(hw);
3023 }
3024 
3025 /**
3026  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3027  *  @hw: pointer to the HW structure
3028  *  @active: true to enable LPLU, false to disable
3029  *
3030  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3031  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3032  *  the phy speed. This function will manually set the LPLU bit and restart
3033  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3034  *  since it configures the same bit.
3035  **/
3036 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3037 {
3038 	s32 ret_val;
3039 	u16 oem_reg;
3040 
3041 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3042 	if (ret_val)
3043 		return ret_val;
3044 
3045 	if (active)
3046 		oem_reg |= HV_OEM_BITS_LPLU;
3047 	else
3048 		oem_reg &= ~HV_OEM_BITS_LPLU;
3049 
3050 	if (!hw->phy.ops.check_reset_block(hw))
3051 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3052 
3053 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3054 }
3055 
3056 /**
3057  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3058  *  @hw: pointer to the HW structure
3059  *  @active: true to enable LPLU, false to disable
3060  *
3061  *  Sets the LPLU D0 state according to the active flag.  When
3062  *  activating LPLU this function also disables smart speed
3063  *  and vice versa.  LPLU will not be activated unless the
3064  *  device autonegotiation advertisement meets standards of
3065  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3066  *  This is a function pointer entry point only called by
3067  *  PHY setup routines.
3068  **/
3069 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3070 {
3071 	struct e1000_phy_info *phy = &hw->phy;
3072 	u32 phy_ctrl;
3073 	s32 ret_val = 0;
3074 	u16 data;
3075 
3076 	if (phy->type == e1000_phy_ife)
3077 		return 0;
3078 
3079 	phy_ctrl = er32(PHY_CTRL);
3080 
3081 	if (active) {
3082 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3083 		ew32(PHY_CTRL, phy_ctrl);
3084 
3085 		if (phy->type != e1000_phy_igp_3)
3086 			return 0;
3087 
3088 		/* Call gig speed drop workaround on LPLU before accessing
3089 		 * any PHY registers
3090 		 */
3091 		if (hw->mac.type == e1000_ich8lan)
3092 			e1000e_gig_downshift_workaround_ich8lan(hw);
3093 
3094 		/* When LPLU is enabled, we should disable SmartSpeed */
3095 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3096 		if (ret_val)
3097 			return ret_val;
3098 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3099 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3100 		if (ret_val)
3101 			return ret_val;
3102 	} else {
3103 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3104 		ew32(PHY_CTRL, phy_ctrl);
3105 
3106 		if (phy->type != e1000_phy_igp_3)
3107 			return 0;
3108 
3109 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3110 		 * during Dx states where the power conservation is most
3111 		 * important.  During driver activity we should enable
3112 		 * SmartSpeed, so performance is maintained.
3113 		 */
3114 		if (phy->smart_speed == e1000_smart_speed_on) {
3115 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116 					   &data);
3117 			if (ret_val)
3118 				return ret_val;
3119 
3120 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3121 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122 					   data);
3123 			if (ret_val)
3124 				return ret_val;
3125 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3126 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3127 					   &data);
3128 			if (ret_val)
3129 				return ret_val;
3130 
3131 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3132 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3133 					   data);
3134 			if (ret_val)
3135 				return ret_val;
3136 		}
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 /**
3143  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3144  *  @hw: pointer to the HW structure
3145  *  @active: true to enable LPLU, false to disable
3146  *
3147  *  Sets the LPLU D3 state according to the active flag.  When
3148  *  activating LPLU this function also disables smart speed
3149  *  and vice versa.  LPLU will not be activated unless the
3150  *  device autonegotiation advertisement meets standards of
3151  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3152  *  This is a function pointer entry point only called by
3153  *  PHY setup routines.
3154  **/
3155 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3156 {
3157 	struct e1000_phy_info *phy = &hw->phy;
3158 	u32 phy_ctrl;
3159 	s32 ret_val = 0;
3160 	u16 data;
3161 
3162 	phy_ctrl = er32(PHY_CTRL);
3163 
3164 	if (!active) {
3165 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3166 		ew32(PHY_CTRL, phy_ctrl);
3167 
3168 		if (phy->type != e1000_phy_igp_3)
3169 			return 0;
3170 
3171 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3172 		 * during Dx states where the power conservation is most
3173 		 * important.  During driver activity we should enable
3174 		 * SmartSpeed, so performance is maintained.
3175 		 */
3176 		if (phy->smart_speed == e1000_smart_speed_on) {
3177 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3178 					   &data);
3179 			if (ret_val)
3180 				return ret_val;
3181 
3182 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3183 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3184 					   data);
3185 			if (ret_val)
3186 				return ret_val;
3187 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3188 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3189 					   &data);
3190 			if (ret_val)
3191 				return ret_val;
3192 
3193 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3194 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3195 					   data);
3196 			if (ret_val)
3197 				return ret_val;
3198 		}
3199 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3200 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3201 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3202 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3203 		ew32(PHY_CTRL, phy_ctrl);
3204 
3205 		if (phy->type != e1000_phy_igp_3)
3206 			return 0;
3207 
3208 		/* Call gig speed drop workaround on LPLU before accessing
3209 		 * any PHY registers
3210 		 */
3211 		if (hw->mac.type == e1000_ich8lan)
3212 			e1000e_gig_downshift_workaround_ich8lan(hw);
3213 
3214 		/* When LPLU is enabled, we should disable SmartSpeed */
3215 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3216 		if (ret_val)
3217 			return ret_val;
3218 
3219 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3220 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3221 	}
3222 
3223 	return ret_val;
3224 }
3225 
3226 /**
3227  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3228  *  @hw: pointer to the HW structure
3229  *  @bank:  pointer to the variable that returns the active bank
3230  *
3231  *  Reads signature byte from the NVM using the flash access registers.
3232  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3233  **/
3234 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3235 {
3236 	u32 eecd;
3237 	struct e1000_nvm_info *nvm = &hw->nvm;
3238 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3239 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3240 	u32 nvm_dword = 0;
3241 	u8 sig_byte = 0;
3242 	s32 ret_val;
3243 
3244 	switch (hw->mac.type) {
3245 	case e1000_pch_spt:
3246 	case e1000_pch_cnp:
3247 	case e1000_pch_tgp:
3248 	case e1000_pch_adp:
3249 	case e1000_pch_mtp:
3250 	case e1000_pch_lnp:
3251 	case e1000_pch_ptp:
3252 	case e1000_pch_nvp:
3253 		bank1_offset = nvm->flash_bank_size;
3254 		act_offset = E1000_ICH_NVM_SIG_WORD;
3255 
3256 		/* set bank to 0 in case flash read fails */
3257 		*bank = 0;
3258 
3259 		/* Check bank 0 */
3260 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3261 							 &nvm_dword);
3262 		if (ret_val)
3263 			return ret_val;
3264 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3265 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3266 		    E1000_ICH_NVM_SIG_VALUE) {
3267 			*bank = 0;
3268 			return 0;
3269 		}
3270 
3271 		/* Check bank 1 */
3272 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3273 							 bank1_offset,
3274 							 &nvm_dword);
3275 		if (ret_val)
3276 			return ret_val;
3277 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3278 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3279 		    E1000_ICH_NVM_SIG_VALUE) {
3280 			*bank = 1;
3281 			return 0;
3282 		}
3283 
3284 		e_dbg("ERROR: No valid NVM bank present\n");
3285 		return -E1000_ERR_NVM;
3286 	case e1000_ich8lan:
3287 	case e1000_ich9lan:
3288 		eecd = er32(EECD);
3289 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3290 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3291 			if (eecd & E1000_EECD_SEC1VAL)
3292 				*bank = 1;
3293 			else
3294 				*bank = 0;
3295 
3296 			return 0;
3297 		}
3298 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3299 		fallthrough;
3300 	default:
3301 		/* set bank to 0 in case flash read fails */
3302 		*bank = 0;
3303 
3304 		/* Check bank 0 */
3305 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3306 							&sig_byte);
3307 		if (ret_val)
3308 			return ret_val;
3309 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3310 		    E1000_ICH_NVM_SIG_VALUE) {
3311 			*bank = 0;
3312 			return 0;
3313 		}
3314 
3315 		/* Check bank 1 */
3316 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3317 							bank1_offset,
3318 							&sig_byte);
3319 		if (ret_val)
3320 			return ret_val;
3321 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3322 		    E1000_ICH_NVM_SIG_VALUE) {
3323 			*bank = 1;
3324 			return 0;
3325 		}
3326 
3327 		e_dbg("ERROR: No valid NVM bank present\n");
3328 		return -E1000_ERR_NVM;
3329 	}
3330 }
3331 
3332 /**
3333  *  e1000_read_nvm_spt - NVM access for SPT
3334  *  @hw: pointer to the HW structure
3335  *  @offset: The offset (in bytes) of the word(s) to read.
3336  *  @words: Size of data to read in words.
3337  *  @data: pointer to the word(s) to read at offset.
3338  *
3339  *  Reads a word(s) from the NVM
3340  **/
3341 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3342 			      u16 *data)
3343 {
3344 	struct e1000_nvm_info *nvm = &hw->nvm;
3345 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3346 	u32 act_offset;
3347 	s32 ret_val = 0;
3348 	u32 bank = 0;
3349 	u32 dword = 0;
3350 	u16 offset_to_read;
3351 	u16 i;
3352 
3353 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3354 	    (words == 0)) {
3355 		e_dbg("nvm parameter(s) out of bounds\n");
3356 		ret_val = -E1000_ERR_NVM;
3357 		goto out;
3358 	}
3359 
3360 	nvm->ops.acquire(hw);
3361 
3362 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3363 	if (ret_val) {
3364 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3365 		bank = 0;
3366 	}
3367 
3368 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3369 	act_offset += offset;
3370 
3371 	ret_val = 0;
3372 
3373 	for (i = 0; i < words; i += 2) {
3374 		if (words - i == 1) {
3375 			if (dev_spec->shadow_ram[offset + i].modified) {
3376 				data[i] =
3377 				    dev_spec->shadow_ram[offset + i].value;
3378 			} else {
3379 				offset_to_read = act_offset + i -
3380 				    ((act_offset + i) % 2);
3381 				ret_val =
3382 				  e1000_read_flash_dword_ich8lan(hw,
3383 								 offset_to_read,
3384 								 &dword);
3385 				if (ret_val)
3386 					break;
3387 				if ((act_offset + i) % 2 == 0)
3388 					data[i] = (u16)(dword & 0xFFFF);
3389 				else
3390 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3391 			}
3392 		} else {
3393 			offset_to_read = act_offset + i;
3394 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3395 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3396 				ret_val =
3397 				  e1000_read_flash_dword_ich8lan(hw,
3398 								 offset_to_read,
3399 								 &dword);
3400 				if (ret_val)
3401 					break;
3402 			}
3403 			if (dev_spec->shadow_ram[offset + i].modified)
3404 				data[i] =
3405 				    dev_spec->shadow_ram[offset + i].value;
3406 			else
3407 				data[i] = (u16)(dword & 0xFFFF);
3408 			if (dev_spec->shadow_ram[offset + i].modified)
3409 				data[i + 1] =
3410 				    dev_spec->shadow_ram[offset + i + 1].value;
3411 			else
3412 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3413 		}
3414 	}
3415 
3416 	nvm->ops.release(hw);
3417 
3418 out:
3419 	if (ret_val)
3420 		e_dbg("NVM read error: %d\n", ret_val);
3421 
3422 	return ret_val;
3423 }
3424 
3425 /**
3426  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3427  *  @hw: pointer to the HW structure
3428  *  @offset: The offset (in bytes) of the word(s) to read.
3429  *  @words: Size of data to read in words
3430  *  @data: Pointer to the word(s) to read at offset.
3431  *
3432  *  Reads a word(s) from the NVM using the flash access registers.
3433  **/
3434 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3435 				  u16 *data)
3436 {
3437 	struct e1000_nvm_info *nvm = &hw->nvm;
3438 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3439 	u32 act_offset;
3440 	s32 ret_val = 0;
3441 	u32 bank = 0;
3442 	u16 i, word;
3443 
3444 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3445 	    (words == 0)) {
3446 		e_dbg("nvm parameter(s) out of bounds\n");
3447 		ret_val = -E1000_ERR_NVM;
3448 		goto out;
3449 	}
3450 
3451 	nvm->ops.acquire(hw);
3452 
3453 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3454 	if (ret_val) {
3455 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3456 		bank = 0;
3457 	}
3458 
3459 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3460 	act_offset += offset;
3461 
3462 	ret_val = 0;
3463 	for (i = 0; i < words; i++) {
3464 		if (dev_spec->shadow_ram[offset + i].modified) {
3465 			data[i] = dev_spec->shadow_ram[offset + i].value;
3466 		} else {
3467 			ret_val = e1000_read_flash_word_ich8lan(hw,
3468 								act_offset + i,
3469 								&word);
3470 			if (ret_val)
3471 				break;
3472 			data[i] = word;
3473 		}
3474 	}
3475 
3476 	nvm->ops.release(hw);
3477 
3478 out:
3479 	if (ret_val)
3480 		e_dbg("NVM read error: %d\n", ret_val);
3481 
3482 	return ret_val;
3483 }
3484 
3485 /**
3486  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3487  *  @hw: pointer to the HW structure
3488  *
3489  *  This function does initial flash setup so that a new read/write/erase cycle
3490  *  can be started.
3491  **/
3492 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3493 {
3494 	union ich8_hws_flash_status hsfsts;
3495 	s32 ret_val = -E1000_ERR_NVM;
3496 
3497 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3498 
3499 	/* Check if the flash descriptor is valid */
3500 	if (!hsfsts.hsf_status.fldesvalid) {
3501 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3502 		return -E1000_ERR_NVM;
3503 	}
3504 
3505 	/* Clear FCERR and DAEL in hw status by writing 1 */
3506 	hsfsts.hsf_status.flcerr = 1;
3507 	hsfsts.hsf_status.dael = 1;
3508 	if (hw->mac.type >= e1000_pch_spt)
3509 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3510 	else
3511 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3512 
3513 	/* Either we should have a hardware SPI cycle in progress
3514 	 * bit to check against, in order to start a new cycle or
3515 	 * FDONE bit should be changed in the hardware so that it
3516 	 * is 1 after hardware reset, which can then be used as an
3517 	 * indication whether a cycle is in progress or has been
3518 	 * completed.
3519 	 */
3520 
3521 	if (!hsfsts.hsf_status.flcinprog) {
3522 		/* There is no cycle running at present,
3523 		 * so we can start a cycle.
3524 		 * Begin by setting Flash Cycle Done.
3525 		 */
3526 		hsfsts.hsf_status.flcdone = 1;
3527 		if (hw->mac.type >= e1000_pch_spt)
3528 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3529 		else
3530 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3531 		ret_val = 0;
3532 	} else {
3533 		s32 i;
3534 
3535 		/* Otherwise poll for sometime so the current
3536 		 * cycle has a chance to end before giving up.
3537 		 */
3538 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3539 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3540 			if (!hsfsts.hsf_status.flcinprog) {
3541 				ret_val = 0;
3542 				break;
3543 			}
3544 			udelay(1);
3545 		}
3546 		if (!ret_val) {
3547 			/* Successful in waiting for previous cycle to timeout,
3548 			 * now set the Flash Cycle Done.
3549 			 */
3550 			hsfsts.hsf_status.flcdone = 1;
3551 			if (hw->mac.type >= e1000_pch_spt)
3552 				ew32flash(ICH_FLASH_HSFSTS,
3553 					  hsfsts.regval & 0xFFFF);
3554 			else
3555 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3556 		} else {
3557 			e_dbg("Flash controller busy, cannot get access\n");
3558 		}
3559 	}
3560 
3561 	return ret_val;
3562 }
3563 
3564 /**
3565  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3566  *  @hw: pointer to the HW structure
3567  *  @timeout: maximum time to wait for completion
3568  *
3569  *  This function starts a flash cycle and waits for its completion.
3570  **/
3571 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3572 {
3573 	union ich8_hws_flash_ctrl hsflctl;
3574 	union ich8_hws_flash_status hsfsts;
3575 	u32 i = 0;
3576 
3577 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3578 	if (hw->mac.type >= e1000_pch_spt)
3579 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3580 	else
3581 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3582 	hsflctl.hsf_ctrl.flcgo = 1;
3583 
3584 	if (hw->mac.type >= e1000_pch_spt)
3585 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3586 	else
3587 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3588 
3589 	/* wait till FDONE bit is set to 1 */
3590 	do {
3591 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3592 		if (hsfsts.hsf_status.flcdone)
3593 			break;
3594 		udelay(1);
3595 	} while (i++ < timeout);
3596 
3597 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3598 		return 0;
3599 
3600 	return -E1000_ERR_NVM;
3601 }
3602 
3603 /**
3604  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3605  *  @hw: pointer to the HW structure
3606  *  @offset: offset to data location
3607  *  @data: pointer to the location for storing the data
3608  *
3609  *  Reads the flash dword at offset into data.  Offset is converted
3610  *  to bytes before read.
3611  **/
3612 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3613 					  u32 *data)
3614 {
3615 	/* Must convert word offset into bytes. */
3616 	offset <<= 1;
3617 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3618 }
3619 
3620 /**
3621  *  e1000_read_flash_word_ich8lan - Read word from flash
3622  *  @hw: pointer to the HW structure
3623  *  @offset: offset to data location
3624  *  @data: pointer to the location for storing the data
3625  *
3626  *  Reads the flash word at offset into data.  Offset is converted
3627  *  to bytes before read.
3628  **/
3629 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3630 					 u16 *data)
3631 {
3632 	/* Must convert offset into bytes. */
3633 	offset <<= 1;
3634 
3635 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3636 }
3637 
3638 /**
3639  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3640  *  @hw: pointer to the HW structure
3641  *  @offset: The offset of the byte to read.
3642  *  @data: Pointer to a byte to store the value read.
3643  *
3644  *  Reads a single byte from the NVM using the flash access registers.
3645  **/
3646 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3647 					 u8 *data)
3648 {
3649 	s32 ret_val;
3650 	u16 word = 0;
3651 
3652 	/* In SPT, only 32 bits access is supported,
3653 	 * so this function should not be called.
3654 	 */
3655 	if (hw->mac.type >= e1000_pch_spt)
3656 		return -E1000_ERR_NVM;
3657 	else
3658 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3659 
3660 	if (ret_val)
3661 		return ret_val;
3662 
3663 	*data = (u8)word;
3664 
3665 	return 0;
3666 }
3667 
3668 /**
3669  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3670  *  @hw: pointer to the HW structure
3671  *  @offset: The offset (in bytes) of the byte or word to read.
3672  *  @size: Size of data to read, 1=byte 2=word
3673  *  @data: Pointer to the word to store the value read.
3674  *
3675  *  Reads a byte or word from the NVM using the flash access registers.
3676  **/
3677 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3678 					 u8 size, u16 *data)
3679 {
3680 	union ich8_hws_flash_status hsfsts;
3681 	union ich8_hws_flash_ctrl hsflctl;
3682 	u32 flash_linear_addr;
3683 	u32 flash_data = 0;
3684 	s32 ret_val = -E1000_ERR_NVM;
3685 	u8 count = 0;
3686 
3687 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3688 		return -E1000_ERR_NVM;
3689 
3690 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3691 			     hw->nvm.flash_base_addr);
3692 
3693 	do {
3694 		udelay(1);
3695 		/* Steps */
3696 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3697 		if (ret_val)
3698 			break;
3699 
3700 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3701 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3702 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3703 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3704 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3705 
3706 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3707 
3708 		ret_val =
3709 		    e1000_flash_cycle_ich8lan(hw,
3710 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3711 
3712 		/* Check if FCERR is set to 1, if set to 1, clear it
3713 		 * and try the whole sequence a few more times, else
3714 		 * read in (shift in) the Flash Data0, the order is
3715 		 * least significant byte first msb to lsb
3716 		 */
3717 		if (!ret_val) {
3718 			flash_data = er32flash(ICH_FLASH_FDATA0);
3719 			if (size == 1)
3720 				*data = (u8)(flash_data & 0x000000FF);
3721 			else if (size == 2)
3722 				*data = (u16)(flash_data & 0x0000FFFF);
3723 			break;
3724 		} else {
3725 			/* If we've gotten here, then things are probably
3726 			 * completely hosed, but if the error condition is
3727 			 * detected, it won't hurt to give it another try...
3728 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3729 			 */
3730 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3731 			if (hsfsts.hsf_status.flcerr) {
3732 				/* Repeat for some time before giving up. */
3733 				continue;
3734 			} else if (!hsfsts.hsf_status.flcdone) {
3735 				e_dbg("Timeout error - flash cycle did not complete.\n");
3736 				break;
3737 			}
3738 		}
3739 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3740 
3741 	return ret_val;
3742 }
3743 
3744 /**
3745  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3746  *  @hw: pointer to the HW structure
3747  *  @offset: The offset (in bytes) of the dword to read.
3748  *  @data: Pointer to the dword to store the value read.
3749  *
3750  *  Reads a byte or word from the NVM using the flash access registers.
3751  **/
3752 
3753 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3754 					   u32 *data)
3755 {
3756 	union ich8_hws_flash_status hsfsts;
3757 	union ich8_hws_flash_ctrl hsflctl;
3758 	u32 flash_linear_addr;
3759 	s32 ret_val = -E1000_ERR_NVM;
3760 	u8 count = 0;
3761 
3762 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3763 		return -E1000_ERR_NVM;
3764 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3765 			     hw->nvm.flash_base_addr);
3766 
3767 	do {
3768 		udelay(1);
3769 		/* Steps */
3770 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3771 		if (ret_val)
3772 			break;
3773 		/* In SPT, This register is in Lan memory space, not flash.
3774 		 * Therefore, only 32 bit access is supported
3775 		 */
3776 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3777 
3778 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3779 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3780 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3781 		/* In SPT, This register is in Lan memory space, not flash.
3782 		 * Therefore, only 32 bit access is supported
3783 		 */
3784 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3785 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3786 
3787 		ret_val =
3788 		   e1000_flash_cycle_ich8lan(hw,
3789 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3790 
3791 		/* Check if FCERR is set to 1, if set to 1, clear it
3792 		 * and try the whole sequence a few more times, else
3793 		 * read in (shift in) the Flash Data0, the order is
3794 		 * least significant byte first msb to lsb
3795 		 */
3796 		if (!ret_val) {
3797 			*data = er32flash(ICH_FLASH_FDATA0);
3798 			break;
3799 		} else {
3800 			/* If we've gotten here, then things are probably
3801 			 * completely hosed, but if the error condition is
3802 			 * detected, it won't hurt to give it another try...
3803 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3804 			 */
3805 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3806 			if (hsfsts.hsf_status.flcerr) {
3807 				/* Repeat for some time before giving up. */
3808 				continue;
3809 			} else if (!hsfsts.hsf_status.flcdone) {
3810 				e_dbg("Timeout error - flash cycle did not complete.\n");
3811 				break;
3812 			}
3813 		}
3814 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3815 
3816 	return ret_val;
3817 }
3818 
3819 /**
3820  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3821  *  @hw: pointer to the HW structure
3822  *  @offset: The offset (in bytes) of the word(s) to write.
3823  *  @words: Size of data to write in words
3824  *  @data: Pointer to the word(s) to write at offset.
3825  *
3826  *  Writes a byte or word to the NVM using the flash access registers.
3827  **/
3828 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3829 				   u16 *data)
3830 {
3831 	struct e1000_nvm_info *nvm = &hw->nvm;
3832 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3833 	u16 i;
3834 
3835 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3836 	    (words == 0)) {
3837 		e_dbg("nvm parameter(s) out of bounds\n");
3838 		return -E1000_ERR_NVM;
3839 	}
3840 
3841 	nvm->ops.acquire(hw);
3842 
3843 	for (i = 0; i < words; i++) {
3844 		dev_spec->shadow_ram[offset + i].modified = true;
3845 		dev_spec->shadow_ram[offset + i].value = data[i];
3846 	}
3847 
3848 	nvm->ops.release(hw);
3849 
3850 	return 0;
3851 }
3852 
3853 /**
3854  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3855  *  @hw: pointer to the HW structure
3856  *
3857  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3858  *  which writes the checksum to the shadow ram.  The changes in the shadow
3859  *  ram are then committed to the EEPROM by processing each bank at a time
3860  *  checking for the modified bit and writing only the pending changes.
3861  *  After a successful commit, the shadow ram is cleared and is ready for
3862  *  future writes.
3863  **/
3864 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3865 {
3866 	struct e1000_nvm_info *nvm = &hw->nvm;
3867 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3868 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3869 	s32 ret_val;
3870 	u32 dword = 0;
3871 
3872 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3873 	if (ret_val)
3874 		goto out;
3875 
3876 	if (nvm->type != e1000_nvm_flash_sw)
3877 		goto out;
3878 
3879 	nvm->ops.acquire(hw);
3880 
3881 	/* We're writing to the opposite bank so if we're on bank 1,
3882 	 * write to bank 0 etc.  We also need to erase the segment that
3883 	 * is going to be written
3884 	 */
3885 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3886 	if (ret_val) {
3887 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3888 		bank = 0;
3889 	}
3890 
3891 	if (bank == 0) {
3892 		new_bank_offset = nvm->flash_bank_size;
3893 		old_bank_offset = 0;
3894 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3895 		if (ret_val)
3896 			goto release;
3897 	} else {
3898 		old_bank_offset = nvm->flash_bank_size;
3899 		new_bank_offset = 0;
3900 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3901 		if (ret_val)
3902 			goto release;
3903 	}
3904 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3905 		/* Determine whether to write the value stored
3906 		 * in the other NVM bank or a modified value stored
3907 		 * in the shadow RAM
3908 		 */
3909 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3910 							 i + old_bank_offset,
3911 							 &dword);
3912 
3913 		if (dev_spec->shadow_ram[i].modified) {
3914 			dword &= 0xffff0000;
3915 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3916 		}
3917 		if (dev_spec->shadow_ram[i + 1].modified) {
3918 			dword &= 0x0000ffff;
3919 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3920 				  << 16);
3921 		}
3922 		if (ret_val)
3923 			break;
3924 
3925 		/* If the word is 0x13, then make sure the signature bits
3926 		 * (15:14) are 11b until the commit has completed.
3927 		 * This will allow us to write 10b which indicates the
3928 		 * signature is valid.  We want to do this after the write
3929 		 * has completed so that we don't mark the segment valid
3930 		 * while the write is still in progress
3931 		 */
3932 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3933 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3934 
3935 		/* Convert offset to bytes. */
3936 		act_offset = (i + new_bank_offset) << 1;
3937 
3938 		usleep_range(100, 200);
3939 
3940 		/* Write the data to the new bank. Offset in words */
3941 		act_offset = i + new_bank_offset;
3942 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3943 								dword);
3944 		if (ret_val)
3945 			break;
3946 	}
3947 
3948 	/* Don't bother writing the segment valid bits if sector
3949 	 * programming failed.
3950 	 */
3951 	if (ret_val) {
3952 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3953 		e_dbg("Flash commit failed.\n");
3954 		goto release;
3955 	}
3956 
3957 	/* Finally validate the new segment by setting bit 15:14
3958 	 * to 10b in word 0x13 , this can be done without an
3959 	 * erase as well since these bits are 11 to start with
3960 	 * and we need to change bit 14 to 0b
3961 	 */
3962 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3963 
3964 	/*offset in words but we read dword */
3965 	--act_offset;
3966 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3967 
3968 	if (ret_val)
3969 		goto release;
3970 
3971 	dword &= 0xBFFFFFFF;
3972 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3973 
3974 	if (ret_val)
3975 		goto release;
3976 
3977 	/* offset in words but we read dword */
3978 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3979 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3980 
3981 	if (ret_val)
3982 		goto release;
3983 
3984 	dword &= 0x00FFFFFF;
3985 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3986 
3987 	if (ret_val)
3988 		goto release;
3989 
3990 	/* Great!  Everything worked, we can now clear the cached entries. */
3991 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3992 		dev_spec->shadow_ram[i].modified = false;
3993 		dev_spec->shadow_ram[i].value = 0xFFFF;
3994 	}
3995 
3996 release:
3997 	nvm->ops.release(hw);
3998 
3999 	/* Reload the EEPROM, or else modifications will not appear
4000 	 * until after the next adapter reset.
4001 	 */
4002 	if (!ret_val) {
4003 		nvm->ops.reload(hw);
4004 		usleep_range(10000, 11000);
4005 	}
4006 
4007 out:
4008 	if (ret_val)
4009 		e_dbg("NVM update error: %d\n", ret_val);
4010 
4011 	return ret_val;
4012 }
4013 
4014 /**
4015  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4016  *  @hw: pointer to the HW structure
4017  *
4018  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4019  *  which writes the checksum to the shadow ram.  The changes in the shadow
4020  *  ram are then committed to the EEPROM by processing each bank at a time
4021  *  checking for the modified bit and writing only the pending changes.
4022  *  After a successful commit, the shadow ram is cleared and is ready for
4023  *  future writes.
4024  **/
4025 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4026 {
4027 	struct e1000_nvm_info *nvm = &hw->nvm;
4028 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4029 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4030 	s32 ret_val;
4031 	u16 data = 0;
4032 
4033 	ret_val = e1000e_update_nvm_checksum_generic(hw);
4034 	if (ret_val)
4035 		goto out;
4036 
4037 	if (nvm->type != e1000_nvm_flash_sw)
4038 		goto out;
4039 
4040 	nvm->ops.acquire(hw);
4041 
4042 	/* We're writing to the opposite bank so if we're on bank 1,
4043 	 * write to bank 0 etc.  We also need to erase the segment that
4044 	 * is going to be written
4045 	 */
4046 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4047 	if (ret_val) {
4048 		e_dbg("Could not detect valid bank, assuming bank 0\n");
4049 		bank = 0;
4050 	}
4051 
4052 	if (bank == 0) {
4053 		new_bank_offset = nvm->flash_bank_size;
4054 		old_bank_offset = 0;
4055 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4056 		if (ret_val)
4057 			goto release;
4058 	} else {
4059 		old_bank_offset = nvm->flash_bank_size;
4060 		new_bank_offset = 0;
4061 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4062 		if (ret_val)
4063 			goto release;
4064 	}
4065 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4066 		if (dev_spec->shadow_ram[i].modified) {
4067 			data = dev_spec->shadow_ram[i].value;
4068 		} else {
4069 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4070 								old_bank_offset,
4071 								&data);
4072 			if (ret_val)
4073 				break;
4074 		}
4075 
4076 		/* If the word is 0x13, then make sure the signature bits
4077 		 * (15:14) are 11b until the commit has completed.
4078 		 * This will allow us to write 10b which indicates the
4079 		 * signature is valid.  We want to do this after the write
4080 		 * has completed so that we don't mark the segment valid
4081 		 * while the write is still in progress
4082 		 */
4083 		if (i == E1000_ICH_NVM_SIG_WORD)
4084 			data |= E1000_ICH_NVM_SIG_MASK;
4085 
4086 		/* Convert offset to bytes. */
4087 		act_offset = (i + new_bank_offset) << 1;
4088 
4089 		usleep_range(100, 200);
4090 		/* Write the bytes to the new bank. */
4091 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4092 							       act_offset,
4093 							       (u8)data);
4094 		if (ret_val)
4095 			break;
4096 
4097 		usleep_range(100, 200);
4098 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4099 							       act_offset + 1,
4100 							       (u8)(data >> 8));
4101 		if (ret_val)
4102 			break;
4103 	}
4104 
4105 	/* Don't bother writing the segment valid bits if sector
4106 	 * programming failed.
4107 	 */
4108 	if (ret_val) {
4109 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4110 		e_dbg("Flash commit failed.\n");
4111 		goto release;
4112 	}
4113 
4114 	/* Finally validate the new segment by setting bit 15:14
4115 	 * to 10b in word 0x13 , this can be done without an
4116 	 * erase as well since these bits are 11 to start with
4117 	 * and we need to change bit 14 to 0b
4118 	 */
4119 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4120 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4121 	if (ret_val)
4122 		goto release;
4123 
4124 	data &= 0xBFFF;
4125 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4126 						       act_offset * 2 + 1,
4127 						       (u8)(data >> 8));
4128 	if (ret_val)
4129 		goto release;
4130 
4131 	/* And invalidate the previously valid segment by setting
4132 	 * its signature word (0x13) high_byte to 0b. This can be
4133 	 * done without an erase because flash erase sets all bits
4134 	 * to 1's. We can write 1's to 0's without an erase
4135 	 */
4136 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4137 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4138 	if (ret_val)
4139 		goto release;
4140 
4141 	/* Great!  Everything worked, we can now clear the cached entries. */
4142 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4143 		dev_spec->shadow_ram[i].modified = false;
4144 		dev_spec->shadow_ram[i].value = 0xFFFF;
4145 	}
4146 
4147 release:
4148 	nvm->ops.release(hw);
4149 
4150 	/* Reload the EEPROM, or else modifications will not appear
4151 	 * until after the next adapter reset.
4152 	 */
4153 	if (!ret_val) {
4154 		nvm->ops.reload(hw);
4155 		usleep_range(10000, 11000);
4156 	}
4157 
4158 out:
4159 	if (ret_val)
4160 		e_dbg("NVM update error: %d\n", ret_val);
4161 
4162 	return ret_val;
4163 }
4164 
4165 /**
4166  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4167  *  @hw: pointer to the HW structure
4168  *
4169  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4170  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4171  *  calculated, in which case we need to calculate the checksum and set bit 6.
4172  **/
4173 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4174 {
4175 	s32 ret_val;
4176 	u16 data;
4177 	u16 word;
4178 	u16 valid_csum_mask;
4179 
4180 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4181 	 * the checksum needs to be fixed.  This bit is an indication that
4182 	 * the NVM was prepared by OEM software and did not calculate
4183 	 * the checksum...a likely scenario.
4184 	 */
4185 	switch (hw->mac.type) {
4186 	case e1000_pch_lpt:
4187 	case e1000_pch_spt:
4188 	case e1000_pch_cnp:
4189 	case e1000_pch_tgp:
4190 	case e1000_pch_adp:
4191 	case e1000_pch_mtp:
4192 	case e1000_pch_lnp:
4193 	case e1000_pch_ptp:
4194 	case e1000_pch_nvp:
4195 		word = NVM_COMPAT;
4196 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4197 		break;
4198 	default:
4199 		word = NVM_FUTURE_INIT_WORD1;
4200 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4201 		break;
4202 	}
4203 
4204 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4205 	if (ret_val)
4206 		return ret_val;
4207 
4208 	if (!(data & valid_csum_mask)) {
4209 		e_dbg("NVM Checksum valid bit not set\n");
4210 
4211 		if (hw->mac.type < e1000_pch_tgp) {
4212 			data |= valid_csum_mask;
4213 			ret_val = e1000_write_nvm(hw, word, 1, &data);
4214 			if (ret_val)
4215 				return ret_val;
4216 			ret_val = e1000e_update_nvm_checksum(hw);
4217 			if (ret_val)
4218 				return ret_val;
4219 		}
4220 	}
4221 
4222 	return e1000e_validate_nvm_checksum_generic(hw);
4223 }
4224 
4225 /**
4226  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4227  *  @hw: pointer to the HW structure
4228  *
4229  *  To prevent malicious write/erase of the NVM, set it to be read-only
4230  *  so that the hardware ignores all write/erase cycles of the NVM via
4231  *  the flash control registers.  The shadow-ram copy of the NVM will
4232  *  still be updated, however any updates to this copy will not stick
4233  *  across driver reloads.
4234  **/
4235 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4236 {
4237 	struct e1000_nvm_info *nvm = &hw->nvm;
4238 	union ich8_flash_protected_range pr0;
4239 	union ich8_hws_flash_status hsfsts;
4240 	u32 gfpreg;
4241 
4242 	nvm->ops.acquire(hw);
4243 
4244 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4245 
4246 	/* Write-protect GbE Sector of NVM */
4247 	pr0.regval = er32flash(ICH_FLASH_PR0);
4248 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4249 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4250 	pr0.range.wpe = true;
4251 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4252 
4253 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4254 	 * PR0 to prevent the write-protection from being lifted.
4255 	 * Once FLOCKDN is set, the registers protected by it cannot
4256 	 * be written until FLOCKDN is cleared by a hardware reset.
4257 	 */
4258 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4259 	hsfsts.hsf_status.flockdn = true;
4260 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4261 
4262 	nvm->ops.release(hw);
4263 }
4264 
4265 /**
4266  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4267  *  @hw: pointer to the HW structure
4268  *  @offset: The offset (in bytes) of the byte/word to read.
4269  *  @size: Size of data to read, 1=byte 2=word
4270  *  @data: The byte(s) to write to the NVM.
4271  *
4272  *  Writes one/two bytes to the NVM using the flash access registers.
4273  **/
4274 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4275 					  u8 size, u16 data)
4276 {
4277 	union ich8_hws_flash_status hsfsts;
4278 	union ich8_hws_flash_ctrl hsflctl;
4279 	u32 flash_linear_addr;
4280 	u32 flash_data = 0;
4281 	s32 ret_val;
4282 	u8 count = 0;
4283 
4284 	if (hw->mac.type >= e1000_pch_spt) {
4285 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4286 			return -E1000_ERR_NVM;
4287 	} else {
4288 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4289 			return -E1000_ERR_NVM;
4290 	}
4291 
4292 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4293 			     hw->nvm.flash_base_addr);
4294 
4295 	do {
4296 		udelay(1);
4297 		/* Steps */
4298 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4299 		if (ret_val)
4300 			break;
4301 		/* In SPT, This register is in Lan memory space, not
4302 		 * flash.  Therefore, only 32 bit access is supported
4303 		 */
4304 		if (hw->mac.type >= e1000_pch_spt)
4305 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4306 		else
4307 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4308 
4309 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4310 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4311 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4312 		/* In SPT, This register is in Lan memory space,
4313 		 * not flash.  Therefore, only 32 bit access is
4314 		 * supported
4315 		 */
4316 		if (hw->mac.type >= e1000_pch_spt)
4317 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4318 		else
4319 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4320 
4321 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4322 
4323 		if (size == 1)
4324 			flash_data = (u32)data & 0x00FF;
4325 		else
4326 			flash_data = (u32)data;
4327 
4328 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4329 
4330 		/* check if FCERR is set to 1 , if set to 1, clear it
4331 		 * and try the whole sequence a few more times else done
4332 		 */
4333 		ret_val =
4334 		    e1000_flash_cycle_ich8lan(hw,
4335 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4336 		if (!ret_val)
4337 			break;
4338 
4339 		/* If we're here, then things are most likely
4340 		 * completely hosed, but if the error condition
4341 		 * is detected, it won't hurt to give it another
4342 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4343 		 */
4344 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4345 		if (hsfsts.hsf_status.flcerr)
4346 			/* Repeat for some time before giving up. */
4347 			continue;
4348 		if (!hsfsts.hsf_status.flcdone) {
4349 			e_dbg("Timeout error - flash cycle did not complete.\n");
4350 			break;
4351 		}
4352 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4353 
4354 	return ret_val;
4355 }
4356 
4357 /**
4358 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4359 *  @hw: pointer to the HW structure
4360 *  @offset: The offset (in bytes) of the dwords to read.
4361 *  @data: The 4 bytes to write to the NVM.
4362 *
4363 *  Writes one/two/four bytes to the NVM using the flash access registers.
4364 **/
4365 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4366 					    u32 data)
4367 {
4368 	union ich8_hws_flash_status hsfsts;
4369 	union ich8_hws_flash_ctrl hsflctl;
4370 	u32 flash_linear_addr;
4371 	s32 ret_val;
4372 	u8 count = 0;
4373 
4374 	if (hw->mac.type >= e1000_pch_spt) {
4375 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4376 			return -E1000_ERR_NVM;
4377 	}
4378 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4379 			     hw->nvm.flash_base_addr);
4380 	do {
4381 		udelay(1);
4382 		/* Steps */
4383 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4384 		if (ret_val)
4385 			break;
4386 
4387 		/* In SPT, This register is in Lan memory space, not
4388 		 * flash.  Therefore, only 32 bit access is supported
4389 		 */
4390 		if (hw->mac.type >= e1000_pch_spt)
4391 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4392 			    >> 16;
4393 		else
4394 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4395 
4396 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4397 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4398 
4399 		/* In SPT, This register is in Lan memory space,
4400 		 * not flash.  Therefore, only 32 bit access is
4401 		 * supported
4402 		 */
4403 		if (hw->mac.type >= e1000_pch_spt)
4404 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4405 		else
4406 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4407 
4408 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4409 
4410 		ew32flash(ICH_FLASH_FDATA0, data);
4411 
4412 		/* check if FCERR is set to 1 , if set to 1, clear it
4413 		 * and try the whole sequence a few more times else done
4414 		 */
4415 		ret_val =
4416 		   e1000_flash_cycle_ich8lan(hw,
4417 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4418 
4419 		if (!ret_val)
4420 			break;
4421 
4422 		/* If we're here, then things are most likely
4423 		 * completely hosed, but if the error condition
4424 		 * is detected, it won't hurt to give it another
4425 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4426 		 */
4427 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4428 
4429 		if (hsfsts.hsf_status.flcerr)
4430 			/* Repeat for some time before giving up. */
4431 			continue;
4432 		if (!hsfsts.hsf_status.flcdone) {
4433 			e_dbg("Timeout error - flash cycle did not complete.\n");
4434 			break;
4435 		}
4436 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4437 
4438 	return ret_val;
4439 }
4440 
4441 /**
4442  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4443  *  @hw: pointer to the HW structure
4444  *  @offset: The index of the byte to read.
4445  *  @data: The byte to write to the NVM.
4446  *
4447  *  Writes a single byte to the NVM using the flash access registers.
4448  **/
4449 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4450 					  u8 data)
4451 {
4452 	u16 word = (u16)data;
4453 
4454 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4455 }
4456 
4457 /**
4458 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4459 *  @hw: pointer to the HW structure
4460 *  @offset: The offset of the word to write.
4461 *  @dword: The dword to write to the NVM.
4462 *
4463 *  Writes a single dword to the NVM using the flash access registers.
4464 *  Goes through a retry algorithm before giving up.
4465 **/
4466 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4467 						 u32 offset, u32 dword)
4468 {
4469 	s32 ret_val;
4470 	u16 program_retries;
4471 
4472 	/* Must convert word offset into bytes. */
4473 	offset <<= 1;
4474 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4475 
4476 	if (!ret_val)
4477 		return ret_val;
4478 	for (program_retries = 0; program_retries < 100; program_retries++) {
4479 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4480 		usleep_range(100, 200);
4481 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4482 		if (!ret_val)
4483 			break;
4484 	}
4485 	if (program_retries == 100)
4486 		return -E1000_ERR_NVM;
4487 
4488 	return 0;
4489 }
4490 
4491 /**
4492  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4493  *  @hw: pointer to the HW structure
4494  *  @offset: The offset of the byte to write.
4495  *  @byte: The byte to write to the NVM.
4496  *
4497  *  Writes a single byte to the NVM using the flash access registers.
4498  *  Goes through a retry algorithm before giving up.
4499  **/
4500 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4501 						u32 offset, u8 byte)
4502 {
4503 	s32 ret_val;
4504 	u16 program_retries;
4505 
4506 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4507 	if (!ret_val)
4508 		return ret_val;
4509 
4510 	for (program_retries = 0; program_retries < 100; program_retries++) {
4511 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4512 		usleep_range(100, 200);
4513 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4514 		if (!ret_val)
4515 			break;
4516 	}
4517 	if (program_retries == 100)
4518 		return -E1000_ERR_NVM;
4519 
4520 	return 0;
4521 }
4522 
4523 /**
4524  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4525  *  @hw: pointer to the HW structure
4526  *  @bank: 0 for first bank, 1 for second bank, etc.
4527  *
4528  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4529  *  bank N is 4096 * N + flash_reg_addr.
4530  **/
4531 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4532 {
4533 	struct e1000_nvm_info *nvm = &hw->nvm;
4534 	union ich8_hws_flash_status hsfsts;
4535 	union ich8_hws_flash_ctrl hsflctl;
4536 	u32 flash_linear_addr;
4537 	/* bank size is in 16bit words - adjust to bytes */
4538 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4539 	s32 ret_val;
4540 	s32 count = 0;
4541 	s32 j, iteration, sector_size;
4542 
4543 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4544 
4545 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4546 	 * register
4547 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4548 	 *     consecutive sectors.  The start index for the nth Hw sector
4549 	 *     can be calculated as = bank * 4096 + n * 256
4550 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4551 	 *     The start index for the nth Hw sector can be calculated
4552 	 *     as = bank * 4096
4553 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4554 	 *     (ich9 only, otherwise error condition)
4555 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4556 	 */
4557 	switch (hsfsts.hsf_status.berasesz) {
4558 	case 0:
4559 		/* Hw sector size 256 */
4560 		sector_size = ICH_FLASH_SEG_SIZE_256;
4561 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4562 		break;
4563 	case 1:
4564 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4565 		iteration = 1;
4566 		break;
4567 	case 2:
4568 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4569 		iteration = 1;
4570 		break;
4571 	case 3:
4572 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4573 		iteration = 1;
4574 		break;
4575 	default:
4576 		return -E1000_ERR_NVM;
4577 	}
4578 
4579 	/* Start with the base address, then add the sector offset. */
4580 	flash_linear_addr = hw->nvm.flash_base_addr;
4581 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4582 
4583 	for (j = 0; j < iteration; j++) {
4584 		do {
4585 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4586 
4587 			/* Steps */
4588 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4589 			if (ret_val)
4590 				return ret_val;
4591 
4592 			/* Write a value 11 (block Erase) in Flash
4593 			 * Cycle field in hw flash control
4594 			 */
4595 			if (hw->mac.type >= e1000_pch_spt)
4596 				hsflctl.regval =
4597 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4598 			else
4599 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4600 
4601 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4602 			if (hw->mac.type >= e1000_pch_spt)
4603 				ew32flash(ICH_FLASH_HSFSTS,
4604 					  hsflctl.regval << 16);
4605 			else
4606 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4607 
4608 			/* Write the last 24 bits of an index within the
4609 			 * block into Flash Linear address field in Flash
4610 			 * Address.
4611 			 */
4612 			flash_linear_addr += (j * sector_size);
4613 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4614 
4615 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4616 			if (!ret_val)
4617 				break;
4618 
4619 			/* Check if FCERR is set to 1.  If 1,
4620 			 * clear it and try the whole sequence
4621 			 * a few more times else Done
4622 			 */
4623 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4624 			if (hsfsts.hsf_status.flcerr)
4625 				/* repeat for some time before giving up */
4626 				continue;
4627 			else if (!hsfsts.hsf_status.flcdone)
4628 				return ret_val;
4629 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4630 	}
4631 
4632 	return 0;
4633 }
4634 
4635 /**
4636  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4637  *  @hw: pointer to the HW structure
4638  *  @data: Pointer to the LED settings
4639  *
4640  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4641  *  settings is all 0's or F's, set the LED default to a valid LED default
4642  *  setting.
4643  **/
4644 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4645 {
4646 	s32 ret_val;
4647 
4648 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4649 	if (ret_val) {
4650 		e_dbg("NVM Read Error\n");
4651 		return ret_val;
4652 	}
4653 
4654 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4655 		*data = ID_LED_DEFAULT_ICH8LAN;
4656 
4657 	return 0;
4658 }
4659 
4660 /**
4661  *  e1000_id_led_init_pchlan - store LED configurations
4662  *  @hw: pointer to the HW structure
4663  *
4664  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4665  *  the PHY LED configuration register.
4666  *
4667  *  PCH also does not have an "always on" or "always off" mode which
4668  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4669  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4670  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4671  *  link based on logic in e1000_led_[on|off]_pchlan().
4672  **/
4673 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4674 {
4675 	struct e1000_mac_info *mac = &hw->mac;
4676 	s32 ret_val;
4677 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4678 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4679 	u16 data, i, temp, shift;
4680 
4681 	/* Get default ID LED modes */
4682 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4683 	if (ret_val)
4684 		return ret_val;
4685 
4686 	mac->ledctl_default = er32(LEDCTL);
4687 	mac->ledctl_mode1 = mac->ledctl_default;
4688 	mac->ledctl_mode2 = mac->ledctl_default;
4689 
4690 	for (i = 0; i < 4; i++) {
4691 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4692 		shift = (i * 5);
4693 		switch (temp) {
4694 		case ID_LED_ON1_DEF2:
4695 		case ID_LED_ON1_ON2:
4696 		case ID_LED_ON1_OFF2:
4697 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4698 			mac->ledctl_mode1 |= (ledctl_on << shift);
4699 			break;
4700 		case ID_LED_OFF1_DEF2:
4701 		case ID_LED_OFF1_ON2:
4702 		case ID_LED_OFF1_OFF2:
4703 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4704 			mac->ledctl_mode1 |= (ledctl_off << shift);
4705 			break;
4706 		default:
4707 			/* Do nothing */
4708 			break;
4709 		}
4710 		switch (temp) {
4711 		case ID_LED_DEF1_ON2:
4712 		case ID_LED_ON1_ON2:
4713 		case ID_LED_OFF1_ON2:
4714 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4715 			mac->ledctl_mode2 |= (ledctl_on << shift);
4716 			break;
4717 		case ID_LED_DEF1_OFF2:
4718 		case ID_LED_ON1_OFF2:
4719 		case ID_LED_OFF1_OFF2:
4720 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4721 			mac->ledctl_mode2 |= (ledctl_off << shift);
4722 			break;
4723 		default:
4724 			/* Do nothing */
4725 			break;
4726 		}
4727 	}
4728 
4729 	return 0;
4730 }
4731 
4732 /**
4733  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4734  *  @hw: pointer to the HW structure
4735  *
4736  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4737  *  register, so the bus width is hard coded.
4738  **/
4739 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4740 {
4741 	struct e1000_bus_info *bus = &hw->bus;
4742 	s32 ret_val;
4743 
4744 	ret_val = e1000e_get_bus_info_pcie(hw);
4745 
4746 	/* ICH devices are "PCI Express"-ish.  They have
4747 	 * a configuration space, but do not contain
4748 	 * PCI Express Capability registers, so bus width
4749 	 * must be hardcoded.
4750 	 */
4751 	if (bus->width == e1000_bus_width_unknown)
4752 		bus->width = e1000_bus_width_pcie_x1;
4753 
4754 	return ret_val;
4755 }
4756 
4757 /**
4758  *  e1000_reset_hw_ich8lan - Reset the hardware
4759  *  @hw: pointer to the HW structure
4760  *
4761  *  Does a full reset of the hardware which includes a reset of the PHY and
4762  *  MAC.
4763  **/
4764 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4765 {
4766 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4767 	u16 kum_cfg;
4768 	u32 ctrl, reg;
4769 	s32 ret_val;
4770 
4771 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4772 	 * on the last TLP read/write transaction when MAC is reset.
4773 	 */
4774 	ret_val = e1000e_disable_pcie_master(hw);
4775 	if (ret_val)
4776 		e_dbg("PCI-E Master disable polling has failed.\n");
4777 
4778 	e_dbg("Masking off all interrupts\n");
4779 	ew32(IMC, 0xffffffff);
4780 
4781 	/* Disable the Transmit and Receive units.  Then delay to allow
4782 	 * any pending transactions to complete before we hit the MAC
4783 	 * with the global reset.
4784 	 */
4785 	ew32(RCTL, 0);
4786 	ew32(TCTL, E1000_TCTL_PSP);
4787 	e1e_flush();
4788 
4789 	usleep_range(10000, 11000);
4790 
4791 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4792 	if (hw->mac.type == e1000_ich8lan) {
4793 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4794 		ew32(PBA, E1000_PBA_8K);
4795 		/* Set Packet Buffer Size to 16k. */
4796 		ew32(PBS, E1000_PBS_16K);
4797 	}
4798 
4799 	if (hw->mac.type == e1000_pchlan) {
4800 		/* Save the NVM K1 bit setting */
4801 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4802 		if (ret_val)
4803 			return ret_val;
4804 
4805 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4806 			dev_spec->nvm_k1_enabled = true;
4807 		else
4808 			dev_spec->nvm_k1_enabled = false;
4809 	}
4810 
4811 	ctrl = er32(CTRL);
4812 
4813 	if (!hw->phy.ops.check_reset_block(hw)) {
4814 		/* Full-chip reset requires MAC and PHY reset at the same
4815 		 * time to make sure the interface between MAC and the
4816 		 * external PHY is reset.
4817 		 */
4818 		ctrl |= E1000_CTRL_PHY_RST;
4819 
4820 		/* Gate automatic PHY configuration by hardware on
4821 		 * non-managed 82579
4822 		 */
4823 		if ((hw->mac.type == e1000_pch2lan) &&
4824 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4825 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4826 	}
4827 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4828 	e_dbg("Issuing a global reset to ich8lan\n");
4829 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4830 	/* cannot issue a flush here because it hangs the hardware */
4831 	msleep(20);
4832 
4833 	/* Set Phy Config Counter to 50msec */
4834 	if (hw->mac.type == e1000_pch2lan) {
4835 		reg = er32(FEXTNVM3);
4836 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4837 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4838 		ew32(FEXTNVM3, reg);
4839 	}
4840 
4841 	if (!ret_val)
4842 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4843 
4844 	if (ctrl & E1000_CTRL_PHY_RST) {
4845 		ret_val = hw->phy.ops.get_cfg_done(hw);
4846 		if (ret_val)
4847 			return ret_val;
4848 
4849 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4850 		if (ret_val)
4851 			return ret_val;
4852 	}
4853 
4854 	/* For PCH, this write will make sure that any noise
4855 	 * will be detected as a CRC error and be dropped rather than show up
4856 	 * as a bad packet to the DMA engine.
4857 	 */
4858 	if (hw->mac.type == e1000_pchlan)
4859 		ew32(CRC_OFFSET, 0x65656565);
4860 
4861 	ew32(IMC, 0xffffffff);
4862 	er32(ICR);
4863 
4864 	reg = er32(KABGTXD);
4865 	reg |= E1000_KABGTXD_BGSQLBIAS;
4866 	ew32(KABGTXD, reg);
4867 
4868 	return 0;
4869 }
4870 
4871 /**
4872  *  e1000_init_hw_ich8lan - Initialize the hardware
4873  *  @hw: pointer to the HW structure
4874  *
4875  *  Prepares the hardware for transmit and receive by doing the following:
4876  *   - initialize hardware bits
4877  *   - initialize LED identification
4878  *   - setup receive address registers
4879  *   - setup flow control
4880  *   - setup transmit descriptors
4881  *   - clear statistics
4882  **/
4883 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4884 {
4885 	struct e1000_mac_info *mac = &hw->mac;
4886 	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4887 	s32 ret_val;
4888 	u16 i;
4889 
4890 	e1000_initialize_hw_bits_ich8lan(hw);
4891 
4892 	/* Initialize identification LED */
4893 	ret_val = mac->ops.id_led_init(hw);
4894 	/* An error is not fatal and we should not stop init due to this */
4895 	if (ret_val)
4896 		e_dbg("Error initializing identification LED\n");
4897 
4898 	/* Setup the receive address. */
4899 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4900 
4901 	/* Zero out the Multicast HASH table */
4902 	e_dbg("Zeroing the MTA\n");
4903 	for (i = 0; i < mac->mta_reg_count; i++)
4904 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4905 
4906 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4907 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4908 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4909 	 */
4910 	if (hw->phy.type == e1000_phy_82578) {
4911 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4912 		i &= ~BM_WUC_HOST_WU_BIT;
4913 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4914 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4915 		if (ret_val)
4916 			return ret_val;
4917 	}
4918 
4919 	/* Setup link and flow control */
4920 	ret_val = mac->ops.setup_link(hw);
4921 
4922 	/* Set the transmit descriptor write-back policy for both queues */
4923 	txdctl = er32(TXDCTL(0));
4924 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4925 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4926 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4927 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4928 	ew32(TXDCTL(0), txdctl);
4929 	txdctl = er32(TXDCTL(1));
4930 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4931 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4932 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4933 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4934 	ew32(TXDCTL(1), txdctl);
4935 
4936 	/* ICH8 has opposite polarity of no_snoop bits.
4937 	 * By default, we should use snoop behavior.
4938 	 */
4939 	if (mac->type == e1000_ich8lan)
4940 		snoop = PCIE_ICH8_SNOOP_ALL;
4941 	else
4942 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4943 	e1000e_set_pcie_no_snoop(hw, snoop);
4944 
4945 	/* Enable workaround for packet loss issue on TGP PCH
4946 	 * Do not gate DMA clock from the modPHY block
4947 	 */
4948 	if (mac->type >= e1000_pch_tgp) {
4949 		fflt_dbg = er32(FFLT_DBG);
4950 		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4951 		ew32(FFLT_DBG, fflt_dbg);
4952 	}
4953 
4954 	ctrl_ext = er32(CTRL_EXT);
4955 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4956 	ew32(CTRL_EXT, ctrl_ext);
4957 
4958 	/* Clear all of the statistics registers (clear on read).  It is
4959 	 * important that we do this after we have tried to establish link
4960 	 * because the symbol error count will increment wildly if there
4961 	 * is no link.
4962 	 */
4963 	e1000_clear_hw_cntrs_ich8lan(hw);
4964 
4965 	return ret_val;
4966 }
4967 
4968 /**
4969  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4970  *  @hw: pointer to the HW structure
4971  *
4972  *  Sets/Clears required hardware bits necessary for correctly setting up the
4973  *  hardware for transmit and receive.
4974  **/
4975 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4976 {
4977 	u32 reg;
4978 
4979 	/* Extended Device Control */
4980 	reg = er32(CTRL_EXT);
4981 	reg |= BIT(22);
4982 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4983 	if (hw->mac.type >= e1000_pchlan)
4984 		reg |= E1000_CTRL_EXT_PHYPDEN;
4985 	ew32(CTRL_EXT, reg);
4986 
4987 	/* Transmit Descriptor Control 0 */
4988 	reg = er32(TXDCTL(0));
4989 	reg |= BIT(22);
4990 	ew32(TXDCTL(0), reg);
4991 
4992 	/* Transmit Descriptor Control 1 */
4993 	reg = er32(TXDCTL(1));
4994 	reg |= BIT(22);
4995 	ew32(TXDCTL(1), reg);
4996 
4997 	/* Transmit Arbitration Control 0 */
4998 	reg = er32(TARC(0));
4999 	if (hw->mac.type == e1000_ich8lan)
5000 		reg |= BIT(28) | BIT(29);
5001 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
5002 	ew32(TARC(0), reg);
5003 
5004 	/* Transmit Arbitration Control 1 */
5005 	reg = er32(TARC(1));
5006 	if (er32(TCTL) & E1000_TCTL_MULR)
5007 		reg &= ~BIT(28);
5008 	else
5009 		reg |= BIT(28);
5010 	reg |= BIT(24) | BIT(26) | BIT(30);
5011 	ew32(TARC(1), reg);
5012 
5013 	/* Device Status */
5014 	if (hw->mac.type == e1000_ich8lan) {
5015 		reg = er32(STATUS);
5016 		reg &= ~BIT(31);
5017 		ew32(STATUS, reg);
5018 	}
5019 
5020 	/* work-around descriptor data corruption issue during nfs v2 udp
5021 	 * traffic, just disable the nfs filtering capability
5022 	 */
5023 	reg = er32(RFCTL);
5024 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5025 
5026 	/* Disable IPv6 extension header parsing because some malformed
5027 	 * IPv6 headers can hang the Rx.
5028 	 */
5029 	if (hw->mac.type == e1000_ich8lan)
5030 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5031 	ew32(RFCTL, reg);
5032 
5033 	/* Enable ECC on Lynxpoint */
5034 	if (hw->mac.type >= e1000_pch_lpt) {
5035 		reg = er32(PBECCSTS);
5036 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5037 		ew32(PBECCSTS, reg);
5038 
5039 		reg = er32(CTRL);
5040 		reg |= E1000_CTRL_MEHE;
5041 		ew32(CTRL, reg);
5042 	}
5043 }
5044 
5045 /**
5046  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5047  *  @hw: pointer to the HW structure
5048  *
5049  *  Determines which flow control settings to use, then configures flow
5050  *  control.  Calls the appropriate media-specific link configuration
5051  *  function.  Assuming the adapter has a valid link partner, a valid link
5052  *  should be established.  Assumes the hardware has previously been reset
5053  *  and the transmitter and receiver are not enabled.
5054  **/
5055 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5056 {
5057 	s32 ret_val;
5058 
5059 	if (hw->phy.ops.check_reset_block(hw))
5060 		return 0;
5061 
5062 	/* ICH parts do not have a word in the NVM to determine
5063 	 * the default flow control setting, so we explicitly
5064 	 * set it to full.
5065 	 */
5066 	if (hw->fc.requested_mode == e1000_fc_default) {
5067 		/* Workaround h/w hang when Tx flow control enabled */
5068 		if (hw->mac.type == e1000_pchlan)
5069 			hw->fc.requested_mode = e1000_fc_rx_pause;
5070 		else
5071 			hw->fc.requested_mode = e1000_fc_full;
5072 	}
5073 
5074 	/* Save off the requested flow control mode for use later.  Depending
5075 	 * on the link partner's capabilities, we may or may not use this mode.
5076 	 */
5077 	hw->fc.current_mode = hw->fc.requested_mode;
5078 
5079 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5080 
5081 	/* Continue to configure the copper link. */
5082 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5083 	if (ret_val)
5084 		return ret_val;
5085 
5086 	ew32(FCTTV, hw->fc.pause_time);
5087 	if ((hw->phy.type == e1000_phy_82578) ||
5088 	    (hw->phy.type == e1000_phy_82579) ||
5089 	    (hw->phy.type == e1000_phy_i217) ||
5090 	    (hw->phy.type == e1000_phy_82577)) {
5091 		ew32(FCRTV_PCH, hw->fc.refresh_time);
5092 
5093 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5094 				   hw->fc.pause_time);
5095 		if (ret_val)
5096 			return ret_val;
5097 	}
5098 
5099 	return e1000e_set_fc_watermarks(hw);
5100 }
5101 
5102 /**
5103  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5104  *  @hw: pointer to the HW structure
5105  *
5106  *  Configures the kumeran interface to the PHY to wait the appropriate time
5107  *  when polling the PHY, then call the generic setup_copper_link to finish
5108  *  configuring the copper link.
5109  **/
5110 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5111 {
5112 	u32 ctrl;
5113 	s32 ret_val;
5114 	u16 reg_data;
5115 
5116 	ctrl = er32(CTRL);
5117 	ctrl |= E1000_CTRL_SLU;
5118 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5119 	ew32(CTRL, ctrl);
5120 
5121 	/* Set the mac to wait the maximum time between each iteration
5122 	 * and increase the max iterations when polling the phy;
5123 	 * this fixes erroneous timeouts at 10Mbps.
5124 	 */
5125 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5126 	if (ret_val)
5127 		return ret_val;
5128 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5129 				       &reg_data);
5130 	if (ret_val)
5131 		return ret_val;
5132 	reg_data |= 0x3F;
5133 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5134 					reg_data);
5135 	if (ret_val)
5136 		return ret_val;
5137 
5138 	switch (hw->phy.type) {
5139 	case e1000_phy_igp_3:
5140 		ret_val = e1000e_copper_link_setup_igp(hw);
5141 		if (ret_val)
5142 			return ret_val;
5143 		break;
5144 	case e1000_phy_bm:
5145 	case e1000_phy_82578:
5146 		ret_val = e1000e_copper_link_setup_m88(hw);
5147 		if (ret_val)
5148 			return ret_val;
5149 		break;
5150 	case e1000_phy_82577:
5151 	case e1000_phy_82579:
5152 		ret_val = e1000_copper_link_setup_82577(hw);
5153 		if (ret_val)
5154 			return ret_val;
5155 		break;
5156 	case e1000_phy_ife:
5157 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5158 		if (ret_val)
5159 			return ret_val;
5160 
5161 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5162 
5163 		switch (hw->phy.mdix) {
5164 		case 1:
5165 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5166 			break;
5167 		case 2:
5168 			reg_data |= IFE_PMC_FORCE_MDIX;
5169 			break;
5170 		case 0:
5171 		default:
5172 			reg_data |= IFE_PMC_AUTO_MDIX;
5173 			break;
5174 		}
5175 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5176 		if (ret_val)
5177 			return ret_val;
5178 		break;
5179 	default:
5180 		break;
5181 	}
5182 
5183 	return e1000e_setup_copper_link(hw);
5184 }
5185 
5186 /**
5187  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5188  *  @hw: pointer to the HW structure
5189  *
5190  *  Calls the PHY specific link setup function and then calls the
5191  *  generic setup_copper_link to finish configuring the link for
5192  *  Lynxpoint PCH devices
5193  **/
5194 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5195 {
5196 	u32 ctrl;
5197 	s32 ret_val;
5198 
5199 	ctrl = er32(CTRL);
5200 	ctrl |= E1000_CTRL_SLU;
5201 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5202 	ew32(CTRL, ctrl);
5203 
5204 	ret_val = e1000_copper_link_setup_82577(hw);
5205 	if (ret_val)
5206 		return ret_val;
5207 
5208 	return e1000e_setup_copper_link(hw);
5209 }
5210 
5211 /**
5212  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5213  *  @hw: pointer to the HW structure
5214  *  @speed: pointer to store current link speed
5215  *  @duplex: pointer to store the current link duplex
5216  *
5217  *  Calls the generic get_speed_and_duplex to retrieve the current link
5218  *  information and then calls the Kumeran lock loss workaround for links at
5219  *  gigabit speeds.
5220  **/
5221 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5222 					  u16 *duplex)
5223 {
5224 	s32 ret_val;
5225 
5226 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5227 	if (ret_val)
5228 		return ret_val;
5229 
5230 	if ((hw->mac.type == e1000_ich8lan) &&
5231 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5232 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5233 	}
5234 
5235 	return ret_val;
5236 }
5237 
5238 /**
5239  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5240  *  @hw: pointer to the HW structure
5241  *
5242  *  Work-around for 82566 Kumeran PCS lock loss:
5243  *  On link status change (i.e. PCI reset, speed change) and link is up and
5244  *  speed is gigabit-
5245  *    0) if workaround is optionally disabled do nothing
5246  *    1) wait 1ms for Kumeran link to come up
5247  *    2) check Kumeran Diagnostic register PCS lock loss bit
5248  *    3) if not set the link is locked (all is good), otherwise...
5249  *    4) reset the PHY
5250  *    5) repeat up to 10 times
5251  *  Note: this is only called for IGP3 copper when speed is 1gb.
5252  **/
5253 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5254 {
5255 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5256 	u32 phy_ctrl;
5257 	s32 ret_val;
5258 	u16 i, data;
5259 	bool link;
5260 
5261 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5262 		return 0;
5263 
5264 	/* Make sure link is up before proceeding.  If not just return.
5265 	 * Attempting this while link is negotiating fouled up link
5266 	 * stability
5267 	 */
5268 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5269 	if (!link)
5270 		return 0;
5271 
5272 	for (i = 0; i < 10; i++) {
5273 		/* read once to clear */
5274 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5275 		if (ret_val)
5276 			return ret_val;
5277 		/* and again to get new status */
5278 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5279 		if (ret_val)
5280 			return ret_val;
5281 
5282 		/* check for PCS lock */
5283 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5284 			return 0;
5285 
5286 		/* Issue PHY reset */
5287 		e1000_phy_hw_reset(hw);
5288 		mdelay(5);
5289 	}
5290 	/* Disable GigE link negotiation */
5291 	phy_ctrl = er32(PHY_CTRL);
5292 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5293 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5294 	ew32(PHY_CTRL, phy_ctrl);
5295 
5296 	/* Call gig speed drop workaround on Gig disable before accessing
5297 	 * any PHY registers
5298 	 */
5299 	e1000e_gig_downshift_workaround_ich8lan(hw);
5300 
5301 	/* unable to acquire PCS lock */
5302 	return -E1000_ERR_PHY;
5303 }
5304 
5305 /**
5306  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5307  *  @hw: pointer to the HW structure
5308  *  @state: boolean value used to set the current Kumeran workaround state
5309  *
5310  *  If ICH8, set the current Kumeran workaround state (enabled - true
5311  *  /disabled - false).
5312  **/
5313 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5314 						  bool state)
5315 {
5316 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5317 
5318 	if (hw->mac.type != e1000_ich8lan) {
5319 		e_dbg("Workaround applies to ICH8 only.\n");
5320 		return;
5321 	}
5322 
5323 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5324 }
5325 
5326 /**
5327  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5328  *  @hw: pointer to the HW structure
5329  *
5330  *  Workaround for 82566 power-down on D3 entry:
5331  *    1) disable gigabit link
5332  *    2) write VR power-down enable
5333  *    3) read it back
5334  *  Continue if successful, else issue LCD reset and repeat
5335  **/
5336 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5337 {
5338 	u32 reg;
5339 	u16 data;
5340 	u8 retry = 0;
5341 
5342 	if (hw->phy.type != e1000_phy_igp_3)
5343 		return;
5344 
5345 	/* Try the workaround twice (if needed) */
5346 	do {
5347 		/* Disable link */
5348 		reg = er32(PHY_CTRL);
5349 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5350 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5351 		ew32(PHY_CTRL, reg);
5352 
5353 		/* Call gig speed drop workaround on Gig disable before
5354 		 * accessing any PHY registers
5355 		 */
5356 		if (hw->mac.type == e1000_ich8lan)
5357 			e1000e_gig_downshift_workaround_ich8lan(hw);
5358 
5359 		/* Write VR power-down enable */
5360 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5361 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5362 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5363 
5364 		/* Read it back and test */
5365 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5366 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5367 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5368 			break;
5369 
5370 		/* Issue PHY reset and repeat at most one more time */
5371 		reg = er32(CTRL);
5372 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5373 		retry++;
5374 	} while (retry);
5375 }
5376 
5377 /**
5378  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5379  *  @hw: pointer to the HW structure
5380  *
5381  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5382  *  LPLU, Gig disable, MDIC PHY reset):
5383  *    1) Set Kumeran Near-end loopback
5384  *    2) Clear Kumeran Near-end loopback
5385  *  Should only be called for ICH8[m] devices with any 1G Phy.
5386  **/
5387 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5388 {
5389 	s32 ret_val;
5390 	u16 reg_data;
5391 
5392 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5393 		return;
5394 
5395 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5396 				       &reg_data);
5397 	if (ret_val)
5398 		return;
5399 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5400 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5401 					reg_data);
5402 	if (ret_val)
5403 		return;
5404 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5405 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5406 }
5407 
5408 /**
5409  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5410  *  @hw: pointer to the HW structure
5411  *
5412  *  During S0 to Sx transition, it is possible the link remains at gig
5413  *  instead of negotiating to a lower speed.  Before going to Sx, set
5414  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5415  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5416  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5417  *  needs to be written.
5418  *  Parts that support (and are linked to a partner which support) EEE in
5419  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5420  *  than 10Mbps w/o EEE.
5421  **/
5422 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5423 {
5424 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5425 	u32 phy_ctrl;
5426 	s32 ret_val;
5427 
5428 	phy_ctrl = er32(PHY_CTRL);
5429 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5430 
5431 	if (hw->phy.type == e1000_phy_i217) {
5432 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5433 
5434 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5435 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5436 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5437 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5438 		    (hw->mac.type >= e1000_pch_spt)) {
5439 			u32 fextnvm6 = er32(FEXTNVM6);
5440 
5441 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5442 		}
5443 
5444 		ret_val = hw->phy.ops.acquire(hw);
5445 		if (ret_val)
5446 			goto out;
5447 
5448 		if (!dev_spec->eee_disable) {
5449 			u16 eee_advert;
5450 
5451 			ret_val =
5452 			    e1000_read_emi_reg_locked(hw,
5453 						      I217_EEE_ADVERTISEMENT,
5454 						      &eee_advert);
5455 			if (ret_val)
5456 				goto release;
5457 
5458 			/* Disable LPLU if both link partners support 100BaseT
5459 			 * EEE and 100Full is advertised on both ends of the
5460 			 * link, and enable Auto Enable LPI since there will
5461 			 * be no driver to enable LPI while in Sx.
5462 			 */
5463 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5464 			    (dev_spec->eee_lp_ability &
5465 			     I82579_EEE_100_SUPPORTED) &&
5466 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5467 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5468 					      E1000_PHY_CTRL_NOND0A_LPLU);
5469 
5470 				/* Set Auto Enable LPI after link up */
5471 				e1e_rphy_locked(hw,
5472 						I217_LPI_GPIO_CTRL, &phy_reg);
5473 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5474 				e1e_wphy_locked(hw,
5475 						I217_LPI_GPIO_CTRL, phy_reg);
5476 			}
5477 		}
5478 
5479 		/* For i217 Intel Rapid Start Technology support,
5480 		 * when the system is going into Sx and no manageability engine
5481 		 * is present, the driver must configure proxy to reset only on
5482 		 * power good.  LPI (Low Power Idle) state must also reset only
5483 		 * on power good, as well as the MTA (Multicast table array).
5484 		 * The SMBus release must also be disabled on LCD reset.
5485 		 */
5486 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5487 			/* Enable proxy to reset only on power good. */
5488 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5489 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5490 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5491 
5492 			/* Set bit enable LPI (EEE) to reset only on
5493 			 * power good.
5494 			 */
5495 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5496 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5497 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5498 
5499 			/* Disable the SMB release on LCD reset. */
5500 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5501 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5502 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5503 		}
5504 
5505 		/* Enable MTA to reset for Intel Rapid Start Technology
5506 		 * Support
5507 		 */
5508 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5509 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5510 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5511 
5512 release:
5513 		hw->phy.ops.release(hw);
5514 	}
5515 out:
5516 	ew32(PHY_CTRL, phy_ctrl);
5517 
5518 	if (hw->mac.type == e1000_ich8lan)
5519 		e1000e_gig_downshift_workaround_ich8lan(hw);
5520 
5521 	if (hw->mac.type >= e1000_pchlan) {
5522 		e1000_oem_bits_config_ich8lan(hw, false);
5523 
5524 		/* Reset PHY to activate OEM bits on 82577/8 */
5525 		if (hw->mac.type == e1000_pchlan)
5526 			e1000e_phy_hw_reset_generic(hw);
5527 
5528 		ret_val = hw->phy.ops.acquire(hw);
5529 		if (ret_val)
5530 			return;
5531 		e1000_write_smbus_addr(hw);
5532 		hw->phy.ops.release(hw);
5533 	}
5534 }
5535 
5536 /**
5537  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5538  *  @hw: pointer to the HW structure
5539  *
5540  *  During Sx to S0 transitions on non-managed devices or managed devices
5541  *  on which PHY resets are not blocked, if the PHY registers cannot be
5542  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5543  *  the PHY.
5544  *  On i217, setup Intel Rapid Start Technology.
5545  **/
5546 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5547 {
5548 	s32 ret_val;
5549 
5550 	if (hw->mac.type < e1000_pch2lan)
5551 		return;
5552 
5553 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5554 	if (ret_val) {
5555 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5556 		return;
5557 	}
5558 
5559 	/* For i217 Intel Rapid Start Technology support when the system
5560 	 * is transitioning from Sx and no manageability engine is present
5561 	 * configure SMBus to restore on reset, disable proxy, and enable
5562 	 * the reset on MTA (Multicast table array).
5563 	 */
5564 	if (hw->phy.type == e1000_phy_i217) {
5565 		u16 phy_reg;
5566 
5567 		ret_val = hw->phy.ops.acquire(hw);
5568 		if (ret_val) {
5569 			e_dbg("Failed to setup iRST\n");
5570 			return;
5571 		}
5572 
5573 		/* Clear Auto Enable LPI after link up */
5574 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5575 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5576 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5577 
5578 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5579 			/* Restore clear on SMB if no manageability engine
5580 			 * is present
5581 			 */
5582 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5583 			if (ret_val)
5584 				goto release;
5585 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5586 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5587 
5588 			/* Disable Proxy */
5589 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5590 		}
5591 		/* Enable reset on MTA */
5592 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5593 		if (ret_val)
5594 			goto release;
5595 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5596 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5597 release:
5598 		if (ret_val)
5599 			e_dbg("Error %d in resume workarounds\n", ret_val);
5600 		hw->phy.ops.release(hw);
5601 	}
5602 }
5603 
5604 /**
5605  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5606  *  @hw: pointer to the HW structure
5607  *
5608  *  Return the LED back to the default configuration.
5609  **/
5610 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5611 {
5612 	if (hw->phy.type == e1000_phy_ife)
5613 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5614 
5615 	ew32(LEDCTL, hw->mac.ledctl_default);
5616 	return 0;
5617 }
5618 
5619 /**
5620  *  e1000_led_on_ich8lan - Turn LEDs on
5621  *  @hw: pointer to the HW structure
5622  *
5623  *  Turn on the LEDs.
5624  **/
5625 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5626 {
5627 	if (hw->phy.type == e1000_phy_ife)
5628 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5629 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5630 
5631 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5632 	return 0;
5633 }
5634 
5635 /**
5636  *  e1000_led_off_ich8lan - Turn LEDs off
5637  *  @hw: pointer to the HW structure
5638  *
5639  *  Turn off the LEDs.
5640  **/
5641 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5642 {
5643 	if (hw->phy.type == e1000_phy_ife)
5644 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5645 				(IFE_PSCL_PROBE_MODE |
5646 				 IFE_PSCL_PROBE_LEDS_OFF));
5647 
5648 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5649 	return 0;
5650 }
5651 
5652 /**
5653  *  e1000_setup_led_pchlan - Configures SW controllable LED
5654  *  @hw: pointer to the HW structure
5655  *
5656  *  This prepares the SW controllable LED for use.
5657  **/
5658 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5659 {
5660 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5661 }
5662 
5663 /**
5664  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5665  *  @hw: pointer to the HW structure
5666  *
5667  *  Return the LED back to the default configuration.
5668  **/
5669 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5670 {
5671 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5672 }
5673 
5674 /**
5675  *  e1000_led_on_pchlan - Turn LEDs on
5676  *  @hw: pointer to the HW structure
5677  *
5678  *  Turn on the LEDs.
5679  **/
5680 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5681 {
5682 	u16 data = (u16)hw->mac.ledctl_mode2;
5683 	u32 i, led;
5684 
5685 	/* If no link, then turn LED on by setting the invert bit
5686 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5687 	 */
5688 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5689 		for (i = 0; i < 3; i++) {
5690 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5691 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5692 			    E1000_LEDCTL_MODE_LINK_UP)
5693 				continue;
5694 			if (led & E1000_PHY_LED0_IVRT)
5695 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5696 			else
5697 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5698 		}
5699 	}
5700 
5701 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5702 }
5703 
5704 /**
5705  *  e1000_led_off_pchlan - Turn LEDs off
5706  *  @hw: pointer to the HW structure
5707  *
5708  *  Turn off the LEDs.
5709  **/
5710 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5711 {
5712 	u16 data = (u16)hw->mac.ledctl_mode1;
5713 	u32 i, led;
5714 
5715 	/* If no link, then turn LED off by clearing the invert bit
5716 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5717 	 */
5718 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5719 		for (i = 0; i < 3; i++) {
5720 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5721 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5722 			    E1000_LEDCTL_MODE_LINK_UP)
5723 				continue;
5724 			if (led & E1000_PHY_LED0_IVRT)
5725 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5726 			else
5727 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5728 		}
5729 	}
5730 
5731 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5732 }
5733 
5734 /**
5735  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5736  *  @hw: pointer to the HW structure
5737  *
5738  *  Read appropriate register for the config done bit for completion status
5739  *  and configure the PHY through s/w for EEPROM-less parts.
5740  *
5741  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5742  *  config done bit, so only an error is logged and continues.  If we were
5743  *  to return with error, EEPROM-less silicon would not be able to be reset
5744  *  or change link.
5745  **/
5746 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5747 {
5748 	s32 ret_val = 0;
5749 	u32 bank = 0;
5750 	u32 status;
5751 
5752 	e1000e_get_cfg_done_generic(hw);
5753 
5754 	/* Wait for indication from h/w that it has completed basic config */
5755 	if (hw->mac.type >= e1000_ich10lan) {
5756 		e1000_lan_init_done_ich8lan(hw);
5757 	} else {
5758 		ret_val = e1000e_get_auto_rd_done(hw);
5759 		if (ret_val) {
5760 			/* When auto config read does not complete, do not
5761 			 * return with an error. This can happen in situations
5762 			 * where there is no eeprom and prevents getting link.
5763 			 */
5764 			e_dbg("Auto Read Done did not complete\n");
5765 			ret_val = 0;
5766 		}
5767 	}
5768 
5769 	/* Clear PHY Reset Asserted bit */
5770 	status = er32(STATUS);
5771 	if (status & E1000_STATUS_PHYRA)
5772 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5773 	else
5774 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5775 
5776 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5777 	if (hw->mac.type <= e1000_ich9lan) {
5778 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5779 		    (hw->phy.type == e1000_phy_igp_3)) {
5780 			e1000e_phy_init_script_igp3(hw);
5781 		}
5782 	} else {
5783 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5784 			/* Maybe we should do a basic PHY config */
5785 			e_dbg("EEPROM not present\n");
5786 			ret_val = -E1000_ERR_CONFIG;
5787 		}
5788 	}
5789 
5790 	return ret_val;
5791 }
5792 
5793 /**
5794  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5795  * @hw: pointer to the HW structure
5796  *
5797  * In the case of a PHY power down to save power, or to turn off link during a
5798  * driver unload, or wake on lan is not enabled, remove the link.
5799  **/
5800 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5801 {
5802 	/* If the management interface is not enabled, then power down */
5803 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5804 	      hw->phy.ops.check_reset_block(hw)))
5805 		e1000_power_down_phy_copper(hw);
5806 }
5807 
5808 /**
5809  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5810  *  @hw: pointer to the HW structure
5811  *
5812  *  Clears hardware counters specific to the silicon family and calls
5813  *  clear_hw_cntrs_generic to clear all general purpose counters.
5814  **/
5815 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5816 {
5817 	u16 phy_data;
5818 	s32 ret_val;
5819 
5820 	e1000e_clear_hw_cntrs_base(hw);
5821 
5822 	er32(ALGNERRC);
5823 	er32(RXERRC);
5824 	er32(TNCRS);
5825 	er32(CEXTERR);
5826 	er32(TSCTC);
5827 	er32(TSCTFC);
5828 
5829 	er32(MGTPRC);
5830 	er32(MGTPDC);
5831 	er32(MGTPTC);
5832 
5833 	er32(IAC);
5834 	er32(ICRXOC);
5835 
5836 	/* Clear PHY statistics registers */
5837 	if ((hw->phy.type == e1000_phy_82578) ||
5838 	    (hw->phy.type == e1000_phy_82579) ||
5839 	    (hw->phy.type == e1000_phy_i217) ||
5840 	    (hw->phy.type == e1000_phy_82577)) {
5841 		ret_val = hw->phy.ops.acquire(hw);
5842 		if (ret_val)
5843 			return;
5844 		ret_val = hw->phy.ops.set_page(hw,
5845 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5846 		if (ret_val)
5847 			goto release;
5848 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5849 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5850 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5851 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5852 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5853 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5854 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5855 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5856 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5857 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5858 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5859 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5860 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5861 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5862 release:
5863 		hw->phy.ops.release(hw);
5864 	}
5865 }
5866 
5867 static const struct e1000_mac_operations ich8_mac_ops = {
5868 	/* check_mng_mode dependent on mac type */
5869 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5870 	/* cleanup_led dependent on mac type */
5871 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5872 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5873 	.set_lan_id		= e1000_set_lan_id_single_port,
5874 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5875 	/* led_on dependent on mac type */
5876 	/* led_off dependent on mac type */
5877 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5878 	.reset_hw		= e1000_reset_hw_ich8lan,
5879 	.init_hw		= e1000_init_hw_ich8lan,
5880 	.setup_link		= e1000_setup_link_ich8lan,
5881 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5882 	/* id_led_init dependent on mac type */
5883 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5884 	.rar_set		= e1000e_rar_set_generic,
5885 	.rar_get_count		= e1000e_rar_get_count_generic,
5886 };
5887 
5888 static const struct e1000_phy_operations ich8_phy_ops = {
5889 	.acquire		= e1000_acquire_swflag_ich8lan,
5890 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5891 	.commit			= NULL,
5892 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5893 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5894 	.read_reg		= e1000e_read_phy_reg_igp,
5895 	.release		= e1000_release_swflag_ich8lan,
5896 	.reset			= e1000_phy_hw_reset_ich8lan,
5897 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5898 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5899 	.write_reg		= e1000e_write_phy_reg_igp,
5900 };
5901 
5902 static const struct e1000_nvm_operations ich8_nvm_ops = {
5903 	.acquire		= e1000_acquire_nvm_ich8lan,
5904 	.read			= e1000_read_nvm_ich8lan,
5905 	.release		= e1000_release_nvm_ich8lan,
5906 	.reload			= e1000e_reload_nvm_generic,
5907 	.update			= e1000_update_nvm_checksum_ich8lan,
5908 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5909 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5910 	.write			= e1000_write_nvm_ich8lan,
5911 };
5912 
5913 static const struct e1000_nvm_operations spt_nvm_ops = {
5914 	.acquire		= e1000_acquire_nvm_ich8lan,
5915 	.release		= e1000_release_nvm_ich8lan,
5916 	.read			= e1000_read_nvm_spt,
5917 	.update			= e1000_update_nvm_checksum_spt,
5918 	.reload			= e1000e_reload_nvm_generic,
5919 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5920 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5921 	.write			= e1000_write_nvm_ich8lan,
5922 };
5923 
5924 const struct e1000_info e1000_ich8_info = {
5925 	.mac			= e1000_ich8lan,
5926 	.flags			= FLAG_HAS_WOL
5927 				  | FLAG_IS_ICH
5928 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5929 				  | FLAG_HAS_AMT
5930 				  | FLAG_HAS_FLASH
5931 				  | FLAG_APME_IN_WUC,
5932 	.pba			= 8,
5933 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5934 	.get_variants		= e1000_get_variants_ich8lan,
5935 	.mac_ops		= &ich8_mac_ops,
5936 	.phy_ops		= &ich8_phy_ops,
5937 	.nvm_ops		= &ich8_nvm_ops,
5938 };
5939 
5940 const struct e1000_info e1000_ich9_info = {
5941 	.mac			= e1000_ich9lan,
5942 	.flags			= FLAG_HAS_JUMBO_FRAMES
5943 				  | FLAG_IS_ICH
5944 				  | FLAG_HAS_WOL
5945 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5946 				  | FLAG_HAS_AMT
5947 				  | FLAG_HAS_FLASH
5948 				  | FLAG_APME_IN_WUC,
5949 	.pba			= 18,
5950 	.max_hw_frame_size	= DEFAULT_JUMBO,
5951 	.get_variants		= e1000_get_variants_ich8lan,
5952 	.mac_ops		= &ich8_mac_ops,
5953 	.phy_ops		= &ich8_phy_ops,
5954 	.nvm_ops		= &ich8_nvm_ops,
5955 };
5956 
5957 const struct e1000_info e1000_ich10_info = {
5958 	.mac			= e1000_ich10lan,
5959 	.flags			= FLAG_HAS_JUMBO_FRAMES
5960 				  | FLAG_IS_ICH
5961 				  | FLAG_HAS_WOL
5962 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5963 				  | FLAG_HAS_AMT
5964 				  | FLAG_HAS_FLASH
5965 				  | FLAG_APME_IN_WUC,
5966 	.pba			= 18,
5967 	.max_hw_frame_size	= DEFAULT_JUMBO,
5968 	.get_variants		= e1000_get_variants_ich8lan,
5969 	.mac_ops		= &ich8_mac_ops,
5970 	.phy_ops		= &ich8_phy_ops,
5971 	.nvm_ops		= &ich8_nvm_ops,
5972 };
5973 
5974 const struct e1000_info e1000_pch_info = {
5975 	.mac			= e1000_pchlan,
5976 	.flags			= FLAG_IS_ICH
5977 				  | FLAG_HAS_WOL
5978 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5979 				  | FLAG_HAS_AMT
5980 				  | FLAG_HAS_FLASH
5981 				  | FLAG_HAS_JUMBO_FRAMES
5982 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5983 				  | FLAG_APME_IN_WUC,
5984 	.flags2			= FLAG2_HAS_PHY_STATS,
5985 	.pba			= 26,
5986 	.max_hw_frame_size	= 4096,
5987 	.get_variants		= e1000_get_variants_ich8lan,
5988 	.mac_ops		= &ich8_mac_ops,
5989 	.phy_ops		= &ich8_phy_ops,
5990 	.nvm_ops		= &ich8_nvm_ops,
5991 };
5992 
5993 const struct e1000_info e1000_pch2_info = {
5994 	.mac			= e1000_pch2lan,
5995 	.flags			= FLAG_IS_ICH
5996 				  | FLAG_HAS_WOL
5997 				  | FLAG_HAS_HW_TIMESTAMP
5998 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5999 				  | FLAG_HAS_AMT
6000 				  | FLAG_HAS_FLASH
6001 				  | FLAG_HAS_JUMBO_FRAMES
6002 				  | FLAG_APME_IN_WUC,
6003 	.flags2			= FLAG2_HAS_PHY_STATS
6004 				  | FLAG2_HAS_EEE
6005 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6006 	.pba			= 26,
6007 	.max_hw_frame_size	= 9022,
6008 	.get_variants		= e1000_get_variants_ich8lan,
6009 	.mac_ops		= &ich8_mac_ops,
6010 	.phy_ops		= &ich8_phy_ops,
6011 	.nvm_ops		= &ich8_nvm_ops,
6012 };
6013 
6014 const struct e1000_info e1000_pch_lpt_info = {
6015 	.mac			= e1000_pch_lpt,
6016 	.flags			= FLAG_IS_ICH
6017 				  | FLAG_HAS_WOL
6018 				  | FLAG_HAS_HW_TIMESTAMP
6019 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6020 				  | FLAG_HAS_AMT
6021 				  | FLAG_HAS_FLASH
6022 				  | FLAG_HAS_JUMBO_FRAMES
6023 				  | FLAG_APME_IN_WUC,
6024 	.flags2			= FLAG2_HAS_PHY_STATS
6025 				  | FLAG2_HAS_EEE
6026 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6027 	.pba			= 26,
6028 	.max_hw_frame_size	= 9022,
6029 	.get_variants		= e1000_get_variants_ich8lan,
6030 	.mac_ops		= &ich8_mac_ops,
6031 	.phy_ops		= &ich8_phy_ops,
6032 	.nvm_ops		= &ich8_nvm_ops,
6033 };
6034 
6035 const struct e1000_info e1000_pch_spt_info = {
6036 	.mac			= e1000_pch_spt,
6037 	.flags			= FLAG_IS_ICH
6038 				  | FLAG_HAS_WOL
6039 				  | FLAG_HAS_HW_TIMESTAMP
6040 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6041 				  | FLAG_HAS_AMT
6042 				  | FLAG_HAS_FLASH
6043 				  | FLAG_HAS_JUMBO_FRAMES
6044 				  | FLAG_APME_IN_WUC,
6045 	.flags2			= FLAG2_HAS_PHY_STATS
6046 				  | FLAG2_HAS_EEE,
6047 	.pba			= 26,
6048 	.max_hw_frame_size	= 9022,
6049 	.get_variants		= e1000_get_variants_ich8lan,
6050 	.mac_ops		= &ich8_mac_ops,
6051 	.phy_ops		= &ich8_phy_ops,
6052 	.nvm_ops		= &spt_nvm_ops,
6053 };
6054 
6055 const struct e1000_info e1000_pch_cnp_info = {
6056 	.mac			= e1000_pch_cnp,
6057 	.flags			= FLAG_IS_ICH
6058 				  | FLAG_HAS_WOL
6059 				  | FLAG_HAS_HW_TIMESTAMP
6060 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6061 				  | FLAG_HAS_AMT
6062 				  | FLAG_HAS_FLASH
6063 				  | FLAG_HAS_JUMBO_FRAMES
6064 				  | FLAG_APME_IN_WUC,
6065 	.flags2			= FLAG2_HAS_PHY_STATS
6066 				  | FLAG2_HAS_EEE,
6067 	.pba			= 26,
6068 	.max_hw_frame_size	= 9022,
6069 	.get_variants		= e1000_get_variants_ich8lan,
6070 	.mac_ops		= &ich8_mac_ops,
6071 	.phy_ops		= &ich8_phy_ops,
6072 	.nvm_ops		= &spt_nvm_ops,
6073 };
6074 
6075 const struct e1000_info e1000_pch_tgp_info = {
6076 	.mac			= e1000_pch_tgp,
6077 	.flags			= FLAG_IS_ICH
6078 				  | FLAG_HAS_WOL
6079 				  | FLAG_HAS_HW_TIMESTAMP
6080 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6081 				  | FLAG_HAS_AMT
6082 				  | FLAG_HAS_FLASH
6083 				  | FLAG_HAS_JUMBO_FRAMES
6084 				  | FLAG_APME_IN_WUC,
6085 	.flags2			= FLAG2_HAS_PHY_STATS
6086 				  | FLAG2_HAS_EEE,
6087 	.pba			= 26,
6088 	.max_hw_frame_size	= 9022,
6089 	.get_variants		= e1000_get_variants_ich8lan,
6090 	.mac_ops		= &ich8_mac_ops,
6091 	.phy_ops		= &ich8_phy_ops,
6092 	.nvm_ops		= &spt_nvm_ops,
6093 };
6094 
6095 const struct e1000_info e1000_pch_adp_info = {
6096 	.mac			= e1000_pch_adp,
6097 	.flags			= FLAG_IS_ICH
6098 				  | FLAG_HAS_WOL
6099 				  | FLAG_HAS_HW_TIMESTAMP
6100 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6101 				  | FLAG_HAS_AMT
6102 				  | FLAG_HAS_FLASH
6103 				  | FLAG_HAS_JUMBO_FRAMES
6104 				  | FLAG_APME_IN_WUC,
6105 	.flags2			= FLAG2_HAS_PHY_STATS
6106 				  | FLAG2_HAS_EEE,
6107 	.pba			= 26,
6108 	.max_hw_frame_size	= 9022,
6109 	.get_variants		= e1000_get_variants_ich8lan,
6110 	.mac_ops		= &ich8_mac_ops,
6111 	.phy_ops		= &ich8_phy_ops,
6112 	.nvm_ops		= &spt_nvm_ops,
6113 };
6114 
6115 const struct e1000_info e1000_pch_mtp_info = {
6116 	.mac			= e1000_pch_mtp,
6117 	.flags			= FLAG_IS_ICH
6118 				  | FLAG_HAS_WOL
6119 				  | FLAG_HAS_HW_TIMESTAMP
6120 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6121 				  | FLAG_HAS_AMT
6122 				  | FLAG_HAS_FLASH
6123 				  | FLAG_HAS_JUMBO_FRAMES
6124 				  | FLAG_APME_IN_WUC,
6125 	.flags2			= FLAG2_HAS_PHY_STATS
6126 				  | FLAG2_HAS_EEE,
6127 	.pba			= 26,
6128 	.max_hw_frame_size	= 9022,
6129 	.get_variants		= e1000_get_variants_ich8lan,
6130 	.mac_ops		= &ich8_mac_ops,
6131 	.phy_ops		= &ich8_phy_ops,
6132 	.nvm_ops		= &spt_nvm_ops,
6133 };
6134