1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Unforce SMBus mode in PHY */
226 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229 
230 			/* Unforce SMBus mode in MAC */
231 			mac_reg = er32(CTRL_EXT);
232 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 			ew32(CTRL_EXT, mac_reg);
234 		}
235 	}
236 
237 	return true;
238 }
239 
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 	u32 mac_reg;
250 
251 	/* Set Phy Config Counter to 50msec */
252 	mac_reg = er32(FEXTNVM3);
253 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 	ew32(FEXTNVM3, mac_reg);
256 
257 	/* Toggle LANPHYPC Value bit */
258 	mac_reg = er32(CTRL);
259 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 	ew32(CTRL, mac_reg);
262 	e1e_flush();
263 	usleep_range(10, 20);
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 
268 	if (hw->mac.type < e1000_pch_lpt) {
269 		msleep(50);
270 	} else {
271 		u16 count = 20;
272 
273 		do {
274 			usleep_range(5000, 6000);
275 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276 
277 		msleep(30);
278 	}
279 }
280 
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 	struct e1000_adapter *adapter = hw->adapter;
291 	u32 mac_reg, fwsm = er32(FWSM);
292 	s32 ret_val;
293 
294 	/* Gate automatic PHY configuration by hardware on managed and
295 	 * non-managed 82579 and newer adapters.
296 	 */
297 	e1000_gate_hw_phy_config_ich8lan(hw, true);
298 
299 	/* It is not possible to be certain of the current state of ULP
300 	 * so forcibly disable it.
301 	 */
302 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 	if (ret_val)
305 		e_warn("Failed to disable ULP\n");
306 
307 	ret_val = hw->phy.ops.acquire(hw);
308 	if (ret_val) {
309 		e_dbg("Failed to initialize PHY flow\n");
310 		goto out;
311 	}
312 
313 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314 	 * inaccessible and resetting the PHY is not blocked, toggle the
315 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 	 */
317 	switch (hw->mac.type) {
318 	case e1000_pch_lpt:
319 	case e1000_pch_spt:
320 	case e1000_pch_cnp:
321 	case e1000_pch_tgp:
322 	case e1000_pch_adp:
323 	case e1000_pch_mtp:
324 	case e1000_pch_lnp:
325 	case e1000_pch_ptp:
326 	case e1000_pch_nvp:
327 		if (e1000_phy_is_accessible_pchlan(hw))
328 			break;
329 
330 		/* Before toggling LANPHYPC, see if PHY is accessible by
331 		 * forcing MAC to SMBus mode first.
332 		 */
333 		mac_reg = er32(CTRL_EXT);
334 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
335 		ew32(CTRL_EXT, mac_reg);
336 
337 		/* Wait 50 milliseconds for MAC to finish any retries
338 		 * that it might be trying to perform from previous
339 		 * attempts to acknowledge any phy read requests.
340 		 */
341 		msleep(50);
342 
343 		fallthrough;
344 	case e1000_pch2lan:
345 		if (e1000_phy_is_accessible_pchlan(hw))
346 			break;
347 
348 		fallthrough;
349 	case e1000_pchlan:
350 		if ((hw->mac.type == e1000_pchlan) &&
351 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
352 			break;
353 
354 		if (hw->phy.ops.check_reset_block(hw)) {
355 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
356 			ret_val = -E1000_ERR_PHY;
357 			break;
358 		}
359 
360 		/* Toggle LANPHYPC Value bit */
361 		e1000_toggle_lanphypc_pch_lpt(hw);
362 		if (hw->mac.type >= e1000_pch_lpt) {
363 			if (e1000_phy_is_accessible_pchlan(hw))
364 				break;
365 
366 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
367 			 * so ensure that the MAC is also out of SMBus mode
368 			 */
369 			mac_reg = er32(CTRL_EXT);
370 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
371 			ew32(CTRL_EXT, mac_reg);
372 
373 			if (e1000_phy_is_accessible_pchlan(hw))
374 				break;
375 
376 			ret_val = -E1000_ERR_PHY;
377 		}
378 		break;
379 	default:
380 		break;
381 	}
382 
383 	hw->phy.ops.release(hw);
384 	if (!ret_val) {
385 
386 		/* Check to see if able to reset PHY.  Print error if not */
387 		if (hw->phy.ops.check_reset_block(hw)) {
388 			e_err("Reset blocked by ME\n");
389 			goto out;
390 		}
391 
392 		/* Reset the PHY before any access to it.  Doing so, ensures
393 		 * that the PHY is in a known good state before we read/write
394 		 * PHY registers.  The generic reset is sufficient here,
395 		 * because we haven't determined the PHY type yet.
396 		 */
397 		ret_val = e1000e_phy_hw_reset_generic(hw);
398 		if (ret_val)
399 			goto out;
400 
401 		/* On a successful reset, possibly need to wait for the PHY
402 		 * to quiesce to an accessible state before returning control
403 		 * to the calling function.  If the PHY does not quiesce, then
404 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
405 		 *  the PHY is in.
406 		 */
407 		ret_val = hw->phy.ops.check_reset_block(hw);
408 		if (ret_val)
409 			e_err("ME blocked access to PHY after reset\n");
410 	}
411 
412 out:
413 	/* Ungate automatic PHY configuration on non-managed 82579 */
414 	if ((hw->mac.type == e1000_pch2lan) &&
415 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
416 		usleep_range(10000, 11000);
417 		e1000_gate_hw_phy_config_ich8lan(hw, false);
418 	}
419 
420 	return ret_val;
421 }
422 
423 /**
424  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
425  *  @hw: pointer to the HW structure
426  *
427  *  Initialize family-specific PHY parameters and function pointers.
428  **/
429 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
430 {
431 	struct e1000_phy_info *phy = &hw->phy;
432 	s32 ret_val;
433 
434 	phy->addr = 1;
435 	phy->reset_delay_us = 100;
436 
437 	phy->ops.set_page = e1000_set_page_igp;
438 	phy->ops.read_reg = e1000_read_phy_reg_hv;
439 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
440 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
441 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
442 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
443 	phy->ops.write_reg = e1000_write_phy_reg_hv;
444 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
445 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
446 	phy->ops.power_up = e1000_power_up_phy_copper;
447 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
448 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
449 
450 	phy->id = e1000_phy_unknown;
451 
452 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
453 	if (ret_val)
454 		return ret_val;
455 
456 	if (phy->id == e1000_phy_unknown)
457 		switch (hw->mac.type) {
458 		default:
459 			ret_val = e1000e_get_phy_id(hw);
460 			if (ret_val)
461 				return ret_val;
462 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
463 				break;
464 			fallthrough;
465 		case e1000_pch2lan:
466 		case e1000_pch_lpt:
467 		case e1000_pch_spt:
468 		case e1000_pch_cnp:
469 		case e1000_pch_tgp:
470 		case e1000_pch_adp:
471 		case e1000_pch_mtp:
472 		case e1000_pch_lnp:
473 		case e1000_pch_ptp:
474 		case e1000_pch_nvp:
475 			/* In case the PHY needs to be in mdio slow mode,
476 			 * set slow mode and try to get the PHY id again.
477 			 */
478 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
479 			if (ret_val)
480 				return ret_val;
481 			ret_val = e1000e_get_phy_id(hw);
482 			if (ret_val)
483 				return ret_val;
484 			break;
485 		}
486 	phy->type = e1000e_get_phy_type_from_id(phy->id);
487 
488 	switch (phy->type) {
489 	case e1000_phy_82577:
490 	case e1000_phy_82579:
491 	case e1000_phy_i217:
492 		phy->ops.check_polarity = e1000_check_polarity_82577;
493 		phy->ops.force_speed_duplex =
494 		    e1000_phy_force_speed_duplex_82577;
495 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
496 		phy->ops.get_info = e1000_get_phy_info_82577;
497 		phy->ops.commit = e1000e_phy_sw_reset;
498 		break;
499 	case e1000_phy_82578:
500 		phy->ops.check_polarity = e1000_check_polarity_m88;
501 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
502 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
503 		phy->ops.get_info = e1000e_get_phy_info_m88;
504 		break;
505 	default:
506 		ret_val = -E1000_ERR_PHY;
507 		break;
508 	}
509 
510 	return ret_val;
511 }
512 
513 /**
514  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
515  *  @hw: pointer to the HW structure
516  *
517  *  Initialize family-specific PHY parameters and function pointers.
518  **/
519 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
520 {
521 	struct e1000_phy_info *phy = &hw->phy;
522 	s32 ret_val;
523 	u16 i = 0;
524 
525 	phy->addr = 1;
526 	phy->reset_delay_us = 100;
527 
528 	phy->ops.power_up = e1000_power_up_phy_copper;
529 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
530 
531 	/* We may need to do this twice - once for IGP and if that fails,
532 	 * we'll set BM func pointers and try again
533 	 */
534 	ret_val = e1000e_determine_phy_address(hw);
535 	if (ret_val) {
536 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
537 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
538 		ret_val = e1000e_determine_phy_address(hw);
539 		if (ret_val) {
540 			e_dbg("Cannot determine PHY addr. Erroring out\n");
541 			return ret_val;
542 		}
543 	}
544 
545 	phy->id = 0;
546 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
547 	       (i++ < 100)) {
548 		usleep_range(1000, 1100);
549 		ret_val = e1000e_get_phy_id(hw);
550 		if (ret_val)
551 			return ret_val;
552 	}
553 
554 	/* Verify phy id */
555 	switch (phy->id) {
556 	case IGP03E1000_E_PHY_ID:
557 		phy->type = e1000_phy_igp_3;
558 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
559 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
560 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
561 		phy->ops.get_info = e1000e_get_phy_info_igp;
562 		phy->ops.check_polarity = e1000_check_polarity_igp;
563 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
564 		break;
565 	case IFE_E_PHY_ID:
566 	case IFE_PLUS_E_PHY_ID:
567 	case IFE_C_E_PHY_ID:
568 		phy->type = e1000_phy_ife;
569 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
570 		phy->ops.get_info = e1000_get_phy_info_ife;
571 		phy->ops.check_polarity = e1000_check_polarity_ife;
572 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
573 		break;
574 	case BME1000_E_PHY_ID:
575 		phy->type = e1000_phy_bm;
576 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
577 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
578 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
579 		phy->ops.commit = e1000e_phy_sw_reset;
580 		phy->ops.get_info = e1000e_get_phy_info_m88;
581 		phy->ops.check_polarity = e1000_check_polarity_m88;
582 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
583 		break;
584 	default:
585 		return -E1000_ERR_PHY;
586 	}
587 
588 	return 0;
589 }
590 
591 /**
592  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
593  *  @hw: pointer to the HW structure
594  *
595  *  Initialize family-specific NVM parameters and function
596  *  pointers.
597  **/
598 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
599 {
600 	struct e1000_nvm_info *nvm = &hw->nvm;
601 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
602 	u32 gfpreg, sector_base_addr, sector_end_addr;
603 	u16 i;
604 	u32 nvm_size;
605 
606 	nvm->type = e1000_nvm_flash_sw;
607 
608 	if (hw->mac.type >= e1000_pch_spt) {
609 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
610 		 * STRAP register. This is because in SPT the GbE Flash region
611 		 * is no longer accessed through the flash registers. Instead,
612 		 * the mechanism has changed, and the Flash region access
613 		 * registers are now implemented in GbE memory space.
614 		 */
615 		nvm->flash_base_addr = 0;
616 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
617 		    * NVM_SIZE_MULTIPLIER;
618 		nvm->flash_bank_size = nvm_size / 2;
619 		/* Adjust to word count */
620 		nvm->flash_bank_size /= sizeof(u16);
621 		/* Set the base address for flash register access */
622 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
623 	} else {
624 		/* Can't read flash registers if register set isn't mapped. */
625 		if (!hw->flash_address) {
626 			e_dbg("ERROR: Flash registers not mapped\n");
627 			return -E1000_ERR_CONFIG;
628 		}
629 
630 		gfpreg = er32flash(ICH_FLASH_GFPREG);
631 
632 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 		 * Add 1 to sector_end_addr since this sector is included in
634 		 * the overall size.
635 		 */
636 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638 
639 		/* flash_base_addr is byte-aligned */
640 		nvm->flash_base_addr = sector_base_addr
641 		    << FLASH_SECTOR_ADDR_SHIFT;
642 
643 		/* find total size of the NVM, then cut in half since the total
644 		 * size represents two separate NVM banks.
645 		 */
646 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
647 					<< FLASH_SECTOR_ADDR_SHIFT);
648 		nvm->flash_bank_size /= 2;
649 		/* Adjust to word count */
650 		nvm->flash_bank_size /= sizeof(u16);
651 	}
652 
653 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
654 
655 	/* Clear shadow ram */
656 	for (i = 0; i < nvm->word_size; i++) {
657 		dev_spec->shadow_ram[i].modified = false;
658 		dev_spec->shadow_ram[i].value = 0xFFFF;
659 	}
660 
661 	return 0;
662 }
663 
664 /**
665  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
666  *  @hw: pointer to the HW structure
667  *
668  *  Initialize family-specific MAC parameters and function
669  *  pointers.
670  **/
671 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
672 {
673 	struct e1000_mac_info *mac = &hw->mac;
674 
675 	/* Set media type function pointer */
676 	hw->phy.media_type = e1000_media_type_copper;
677 
678 	/* Set mta register count */
679 	mac->mta_reg_count = 32;
680 	/* Set rar entry count */
681 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
682 	if (mac->type == e1000_ich8lan)
683 		mac->rar_entry_count--;
684 	/* FWSM register */
685 	mac->has_fwsm = true;
686 	/* ARC subsystem not supported */
687 	mac->arc_subsystem_valid = false;
688 	/* Adaptive IFS supported */
689 	mac->adaptive_ifs = true;
690 
691 	/* LED and other operations */
692 	switch (mac->type) {
693 	case e1000_ich8lan:
694 	case e1000_ich9lan:
695 	case e1000_ich10lan:
696 		/* check management mode */
697 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
698 		/* ID LED init */
699 		mac->ops.id_led_init = e1000e_id_led_init_generic;
700 		/* blink LED */
701 		mac->ops.blink_led = e1000e_blink_led_generic;
702 		/* setup LED */
703 		mac->ops.setup_led = e1000e_setup_led_generic;
704 		/* cleanup LED */
705 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
706 		/* turn on/off LED */
707 		mac->ops.led_on = e1000_led_on_ich8lan;
708 		mac->ops.led_off = e1000_led_off_ich8lan;
709 		break;
710 	case e1000_pch2lan:
711 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
712 		mac->ops.rar_set = e1000_rar_set_pch2lan;
713 		fallthrough;
714 	case e1000_pch_lpt:
715 	case e1000_pch_spt:
716 	case e1000_pch_cnp:
717 	case e1000_pch_tgp:
718 	case e1000_pch_adp:
719 	case e1000_pch_mtp:
720 	case e1000_pch_lnp:
721 	case e1000_pch_ptp:
722 	case e1000_pch_nvp:
723 	case e1000_pchlan:
724 		/* check management mode */
725 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
726 		/* ID LED init */
727 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
728 		/* setup LED */
729 		mac->ops.setup_led = e1000_setup_led_pchlan;
730 		/* cleanup LED */
731 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
732 		/* turn on/off LED */
733 		mac->ops.led_on = e1000_led_on_pchlan;
734 		mac->ops.led_off = e1000_led_off_pchlan;
735 		break;
736 	default:
737 		break;
738 	}
739 
740 	if (mac->type >= e1000_pch_lpt) {
741 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
742 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
743 		mac->ops.setup_physical_interface =
744 		    e1000_setup_copper_link_pch_lpt;
745 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
746 	}
747 
748 	/* Enable PCS Lock-loss workaround for ICH8 */
749 	if (mac->type == e1000_ich8lan)
750 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
751 
752 	return 0;
753 }
754 
755 /**
756  *  __e1000_access_emi_reg_locked - Read/write EMI register
757  *  @hw: pointer to the HW structure
758  *  @address: EMI address to program
759  *  @data: pointer to value to read/write from/to the EMI address
760  *  @read: boolean flag to indicate read or write
761  *
762  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
763  **/
764 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
765 					 u16 *data, bool read)
766 {
767 	s32 ret_val;
768 
769 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
770 	if (ret_val)
771 		return ret_val;
772 
773 	if (read)
774 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
775 	else
776 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
777 
778 	return ret_val;
779 }
780 
781 /**
782  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
783  *  @hw: pointer to the HW structure
784  *  @addr: EMI address to program
785  *  @data: value to be read from the EMI address
786  *
787  *  Assumes the SW/FW/HW Semaphore is already acquired.
788  **/
789 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
790 {
791 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
792 }
793 
794 /**
795  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
796  *  @hw: pointer to the HW structure
797  *  @addr: EMI address to program
798  *  @data: value to be written to the EMI address
799  *
800  *  Assumes the SW/FW/HW Semaphore is already acquired.
801  **/
802 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
803 {
804 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
805 }
806 
807 /**
808  *  e1000_set_eee_pchlan - Enable/disable EEE support
809  *  @hw: pointer to the HW structure
810  *
811  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
812  *  the link and the EEE capabilities of the link partner.  The LPI Control
813  *  register bits will remain set only if/when link is up.
814  *
815  *  EEE LPI must not be asserted earlier than one second after link is up.
816  *  On 82579, EEE LPI should not be enabled until such time otherwise there
817  *  can be link issues with some switches.  Other devices can have EEE LPI
818  *  enabled immediately upon link up since they have a timer in hardware which
819  *  prevents LPI from being asserted too early.
820  **/
821 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
822 {
823 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
824 	s32 ret_val;
825 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
826 
827 	switch (hw->phy.type) {
828 	case e1000_phy_82579:
829 		lpa = I82579_EEE_LP_ABILITY;
830 		pcs_status = I82579_EEE_PCS_STATUS;
831 		adv_addr = I82579_EEE_ADVERTISEMENT;
832 		break;
833 	case e1000_phy_i217:
834 		lpa = I217_EEE_LP_ABILITY;
835 		pcs_status = I217_EEE_PCS_STATUS;
836 		adv_addr = I217_EEE_ADVERTISEMENT;
837 		break;
838 	default:
839 		return 0;
840 	}
841 
842 	ret_val = hw->phy.ops.acquire(hw);
843 	if (ret_val)
844 		return ret_val;
845 
846 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
847 	if (ret_val)
848 		goto release;
849 
850 	/* Clear bits that enable EEE in various speeds */
851 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
852 
853 	/* Enable EEE if not disabled by user */
854 	if (!dev_spec->eee_disable) {
855 		/* Save off link partner's EEE ability */
856 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
857 						    &dev_spec->eee_lp_ability);
858 		if (ret_val)
859 			goto release;
860 
861 		/* Read EEE advertisement */
862 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
863 		if (ret_val)
864 			goto release;
865 
866 		/* Enable EEE only for speeds in which the link partner is
867 		 * EEE capable and for which we advertise EEE.
868 		 */
869 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
870 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
871 
872 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
873 			e1e_rphy_locked(hw, MII_LPA, &data);
874 			if (data & LPA_100FULL)
875 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
876 			else
877 				/* EEE is not supported in 100Half, so ignore
878 				 * partner's EEE in 100 ability if full-duplex
879 				 * is not advertised.
880 				 */
881 				dev_spec->eee_lp_ability &=
882 				    ~I82579_EEE_100_SUPPORTED;
883 		}
884 	}
885 
886 	if (hw->phy.type == e1000_phy_82579) {
887 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
888 						    &data);
889 		if (ret_val)
890 			goto release;
891 
892 		data &= ~I82579_LPI_100_PLL_SHUT;
893 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
894 						     data);
895 	}
896 
897 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
898 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
899 	if (ret_val)
900 		goto release;
901 
902 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
903 release:
904 	hw->phy.ops.release(hw);
905 
906 	return ret_val;
907 }
908 
909 /**
910  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
911  *  @hw:   pointer to the HW structure
912  *  @link: link up bool flag
913  *
914  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
915  *  preventing further DMA write requests.  Workaround the issue by disabling
916  *  the de-assertion of the clock request when in 1Gpbs mode.
917  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
918  *  speeds in order to avoid Tx hangs.
919  **/
920 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
921 {
922 	u32 fextnvm6 = er32(FEXTNVM6);
923 	u32 status = er32(STATUS);
924 	s32 ret_val = 0;
925 	u16 reg;
926 
927 	if (link && (status & E1000_STATUS_SPEED_1000)) {
928 		ret_val = hw->phy.ops.acquire(hw);
929 		if (ret_val)
930 			return ret_val;
931 
932 		ret_val =
933 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
934 						&reg);
935 		if (ret_val)
936 			goto release;
937 
938 		ret_val =
939 		    e1000e_write_kmrn_reg_locked(hw,
940 						 E1000_KMRNCTRLSTA_K1_CONFIG,
941 						 reg &
942 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
943 		if (ret_val)
944 			goto release;
945 
946 		usleep_range(10, 20);
947 
948 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
949 
950 		ret_val =
951 		    e1000e_write_kmrn_reg_locked(hw,
952 						 E1000_KMRNCTRLSTA_K1_CONFIG,
953 						 reg);
954 release:
955 		hw->phy.ops.release(hw);
956 	} else {
957 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
958 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
959 
960 		if ((hw->phy.revision > 5) || !link ||
961 		    ((status & E1000_STATUS_SPEED_100) &&
962 		     (status & E1000_STATUS_FD)))
963 			goto update_fextnvm6;
964 
965 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
966 		if (ret_val)
967 			return ret_val;
968 
969 		/* Clear link status transmit timeout */
970 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
971 
972 		if (status & E1000_STATUS_SPEED_100) {
973 			/* Set inband Tx timeout to 5x10us for 100Half */
974 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
975 
976 			/* Do not extend the K1 entry latency for 100Half */
977 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
978 		} else {
979 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
980 			reg |= 50 <<
981 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
982 
983 			/* Extend the K1 entry latency for 10 Mbps */
984 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
985 		}
986 
987 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
988 		if (ret_val)
989 			return ret_val;
990 
991 update_fextnvm6:
992 		ew32(FEXTNVM6, fextnvm6);
993 	}
994 
995 	return ret_val;
996 }
997 
998 /**
999  *  e1000_platform_pm_pch_lpt - Set platform power management values
1000  *  @hw: pointer to the HW structure
1001  *  @link: bool indicating link status
1002  *
1003  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1004  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1005  *  when link is up (which must not exceed the maximum latency supported
1006  *  by the platform), otherwise specify there is no LTR requirement.
1007  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1008  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1009  *  Capability register set, on this device LTR is set by writing the
1010  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1011  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1012  *  message to the PMC.
1013  **/
1014 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1015 {
1016 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1017 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1018 	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1019 	u32 lat_enc_d = 0;	/* latency decoded */
1020 	u16 lat_enc = 0;	/* latency encoded */
1021 
1022 	if (link) {
1023 		u16 speed, duplex, scale = 0;
1024 		u16 max_snoop, max_nosnoop;
1025 		u16 max_ltr_enc;	/* max LTR latency encoded */
1026 		u64 value;
1027 		u32 rxa;
1028 
1029 		if (!hw->adapter->max_frame_size) {
1030 			e_dbg("max_frame_size not set.\n");
1031 			return -E1000_ERR_CONFIG;
1032 		}
1033 
1034 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1035 		if (!speed) {
1036 			e_dbg("Speed not set.\n");
1037 			return -E1000_ERR_CONFIG;
1038 		}
1039 
1040 		/* Rx Packet Buffer Allocation size (KB) */
1041 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1042 
1043 		/* Determine the maximum latency tolerated by the device.
1044 		 *
1045 		 * Per the PCIe spec, the tolerated latencies are encoded as
1046 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1047 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1048 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1049 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1050 		 */
1051 		rxa *= 512;
1052 		value = (rxa > hw->adapter->max_frame_size) ?
1053 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1054 			0;
1055 
1056 		while (value > PCI_LTR_VALUE_MASK) {
1057 			scale++;
1058 			value = DIV_ROUND_UP(value, BIT(5));
1059 		}
1060 		if (scale > E1000_LTRV_SCALE_MAX) {
1061 			e_dbg("Invalid LTR latency scale %d\n", scale);
1062 			return -E1000_ERR_CONFIG;
1063 		}
1064 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1065 
1066 		/* Determine the maximum latency tolerated by the platform */
1067 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1068 				     &max_snoop);
1069 		pci_read_config_word(hw->adapter->pdev,
1070 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1071 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1072 
1073 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1074 			     (1U << (E1000_LTRV_SCALE_FACTOR *
1075 			     ((lat_enc & E1000_LTRV_SCALE_MASK)
1076 			     >> E1000_LTRV_SCALE_SHIFT)));
1077 
1078 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1079 				 (1U << (E1000_LTRV_SCALE_FACTOR *
1080 				 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1081 				 >> E1000_LTRV_SCALE_SHIFT)));
1082 
1083 		if (lat_enc_d > max_ltr_enc_d)
1084 			lat_enc = max_ltr_enc;
1085 	}
1086 
1087 	/* Set Snoop and No-Snoop latencies the same */
1088 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1089 	ew32(LTRV, reg);
1090 
1091 	return 0;
1092 }
1093 
1094 /**
1095  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1096  *  @hw: pointer to the HW structure
1097  *  @to_sx: boolean indicating a system power state transition to Sx
1098  *
1099  *  When link is down, configure ULP mode to significantly reduce the power
1100  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1101  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1102  *  system, configure the ULP mode by software.
1103  */
1104 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1105 {
1106 	u32 mac_reg;
1107 	s32 ret_val = 0;
1108 	u16 phy_reg;
1109 	u16 oem_reg = 0;
1110 
1111 	if ((hw->mac.type < e1000_pch_lpt) ||
1112 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1113 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1114 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1115 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1116 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1117 		return 0;
1118 
1119 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1120 		/* Request ME configure ULP mode in the PHY */
1121 		mac_reg = er32(H2ME);
1122 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1123 		ew32(H2ME, mac_reg);
1124 
1125 		goto out;
1126 	}
1127 
1128 	if (!to_sx) {
1129 		int i = 0;
1130 
1131 		/* Poll up to 5 seconds for Cable Disconnected indication */
1132 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1133 			/* Bail if link is re-acquired */
1134 			if (er32(STATUS) & E1000_STATUS_LU)
1135 				return -E1000_ERR_PHY;
1136 
1137 			if (i++ == 100)
1138 				break;
1139 
1140 			msleep(50);
1141 		}
1142 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1143 		      (er32(FEXT) &
1144 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1145 	}
1146 
1147 	ret_val = hw->phy.ops.acquire(hw);
1148 	if (ret_val)
1149 		goto out;
1150 
1151 	/* Force SMBus mode in PHY */
1152 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1153 	if (ret_val)
1154 		goto release;
1155 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1156 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1157 
1158 	/* Force SMBus mode in MAC */
1159 	mac_reg = er32(CTRL_EXT);
1160 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1161 	ew32(CTRL_EXT, mac_reg);
1162 
1163 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1164 	 * LPLU and disable Gig speed when entering ULP
1165 	 */
1166 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1167 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1168 						       &oem_reg);
1169 		if (ret_val)
1170 			goto release;
1171 
1172 		phy_reg = oem_reg;
1173 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1174 
1175 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1176 							phy_reg);
1177 
1178 		if (ret_val)
1179 			goto release;
1180 	}
1181 
1182 	/* Set Inband ULP Exit, Reset to SMBus mode and
1183 	 * Disable SMBus Release on PERST# in PHY
1184 	 */
1185 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1186 	if (ret_val)
1187 		goto release;
1188 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1189 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1190 	if (to_sx) {
1191 		if (er32(WUFC) & E1000_WUFC_LNKC)
1192 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1193 		else
1194 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1195 
1196 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1197 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1198 	} else {
1199 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1200 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1201 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1202 	}
1203 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1204 
1205 	/* Set Disable SMBus Release on PERST# in MAC */
1206 	mac_reg = er32(FEXTNVM7);
1207 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1208 	ew32(FEXTNVM7, mac_reg);
1209 
1210 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1211 	phy_reg |= I218_ULP_CONFIG1_START;
1212 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1213 
1214 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1215 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1216 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1217 							oem_reg);
1218 		if (ret_val)
1219 			goto release;
1220 	}
1221 
1222 release:
1223 	hw->phy.ops.release(hw);
1224 out:
1225 	if (ret_val)
1226 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1227 	else
1228 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1229 
1230 	return ret_val;
1231 }
1232 
1233 /**
1234  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1235  *  @hw: pointer to the HW structure
1236  *  @force: boolean indicating whether or not to force disabling ULP
1237  *
1238  *  Un-configure ULP mode when link is up, the system is transitioned from
1239  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1240  *  system, poll for an indication from ME that ULP has been un-configured.
1241  *  If not on an ME enabled system, un-configure the ULP mode by software.
1242  *
1243  *  During nominal operation, this function is called when link is acquired
1244  *  to disable ULP mode (force=false); otherwise, for example when unloading
1245  *  the driver or during Sx->S0 transitions, this is called with force=true
1246  *  to forcibly disable ULP.
1247  */
1248 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1249 {
1250 	s32 ret_val = 0;
1251 	u32 mac_reg;
1252 	u16 phy_reg;
1253 	int i = 0;
1254 
1255 	if ((hw->mac.type < e1000_pch_lpt) ||
1256 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1257 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1258 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1259 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1260 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1261 		return 0;
1262 
1263 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1264 		struct e1000_adapter *adapter = hw->adapter;
1265 		bool firmware_bug = false;
1266 
1267 		if (force) {
1268 			/* Request ME un-configure ULP mode in the PHY */
1269 			mac_reg = er32(H2ME);
1270 			mac_reg &= ~E1000_H2ME_ULP;
1271 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1272 			ew32(H2ME, mac_reg);
1273 		}
1274 
1275 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1276 		 * If this takes more than 1 second, show a warning indicating a
1277 		 * firmware bug
1278 		 */
1279 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1280 			if (i++ == 250) {
1281 				ret_val = -E1000_ERR_PHY;
1282 				goto out;
1283 			}
1284 			if (i > 100 && !firmware_bug)
1285 				firmware_bug = true;
1286 
1287 			usleep_range(10000, 11000);
1288 		}
1289 		if (firmware_bug)
1290 			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1291 			       i * 10);
1292 		else
1293 			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1294 			      i * 10);
1295 
1296 		if (force) {
1297 			mac_reg = er32(H2ME);
1298 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1299 			ew32(H2ME, mac_reg);
1300 		} else {
1301 			/* Clear H2ME.ULP after ME ULP configuration */
1302 			mac_reg = er32(H2ME);
1303 			mac_reg &= ~E1000_H2ME_ULP;
1304 			ew32(H2ME, mac_reg);
1305 		}
1306 
1307 		goto out;
1308 	}
1309 
1310 	ret_val = hw->phy.ops.acquire(hw);
1311 	if (ret_val)
1312 		goto out;
1313 
1314 	if (force)
1315 		/* Toggle LANPHYPC Value bit */
1316 		e1000_toggle_lanphypc_pch_lpt(hw);
1317 
1318 	/* Unforce SMBus mode in PHY */
1319 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1320 	if (ret_val) {
1321 		/* The MAC might be in PCIe mode, so temporarily force to
1322 		 * SMBus mode in order to access the PHY.
1323 		 */
1324 		mac_reg = er32(CTRL_EXT);
1325 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1326 		ew32(CTRL_EXT, mac_reg);
1327 
1328 		msleep(50);
1329 
1330 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1331 						       &phy_reg);
1332 		if (ret_val)
1333 			goto release;
1334 	}
1335 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1336 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1337 
1338 	/* Unforce SMBus mode in MAC */
1339 	mac_reg = er32(CTRL_EXT);
1340 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1341 	ew32(CTRL_EXT, mac_reg);
1342 
1343 	/* When ULP mode was previously entered, K1 was disabled by the
1344 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1345 	 */
1346 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1347 	if (ret_val)
1348 		goto release;
1349 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1350 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1351 
1352 	/* Clear ULP enabled configuration */
1353 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1354 	if (ret_val)
1355 		goto release;
1356 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1357 		     I218_ULP_CONFIG1_STICKY_ULP |
1358 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1359 		     I218_ULP_CONFIG1_WOL_HOST |
1360 		     I218_ULP_CONFIG1_INBAND_EXIT |
1361 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1362 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1363 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1364 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1365 
1366 	/* Commit ULP changes by starting auto ULP configuration */
1367 	phy_reg |= I218_ULP_CONFIG1_START;
1368 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1369 
1370 	/* Clear Disable SMBus Release on PERST# in MAC */
1371 	mac_reg = er32(FEXTNVM7);
1372 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1373 	ew32(FEXTNVM7, mac_reg);
1374 
1375 release:
1376 	hw->phy.ops.release(hw);
1377 	if (force) {
1378 		e1000_phy_hw_reset(hw);
1379 		msleep(50);
1380 	}
1381 out:
1382 	if (ret_val)
1383 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1384 	else
1385 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1386 
1387 	return ret_val;
1388 }
1389 
1390 /**
1391  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1392  *  @hw: pointer to the HW structure
1393  *
1394  *  Checks to see of the link status of the hardware has changed.  If a
1395  *  change in link status has been detected, then we read the PHY registers
1396  *  to get the current speed/duplex if link exists.
1397  **/
1398 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1399 {
1400 	struct e1000_mac_info *mac = &hw->mac;
1401 	s32 ret_val, tipg_reg = 0;
1402 	u16 emi_addr, emi_val = 0;
1403 	bool link;
1404 	u16 phy_reg;
1405 
1406 	/* We only want to go out to the PHY registers to see if Auto-Neg
1407 	 * has completed and/or if our link status has changed.  The
1408 	 * get_link_status flag is set upon receiving a Link Status
1409 	 * Change or Rx Sequence Error interrupt.
1410 	 */
1411 	if (!mac->get_link_status)
1412 		return 0;
1413 	mac->get_link_status = false;
1414 
1415 	/* First we want to see if the MII Status Register reports
1416 	 * link.  If so, then we want to get the current speed/duplex
1417 	 * of the PHY.
1418 	 */
1419 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1420 	if (ret_val)
1421 		goto out;
1422 
1423 	if (hw->mac.type == e1000_pchlan) {
1424 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1425 		if (ret_val)
1426 			goto out;
1427 	}
1428 
1429 	/* When connected at 10Mbps half-duplex, some parts are excessively
1430 	 * aggressive resulting in many collisions. To avoid this, increase
1431 	 * the IPG and reduce Rx latency in the PHY.
1432 	 */
1433 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1434 		u16 speed, duplex;
1435 
1436 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1437 		tipg_reg = er32(TIPG);
1438 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1439 
1440 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1441 			tipg_reg |= 0xFF;
1442 			/* Reduce Rx latency in analog PHY */
1443 			emi_val = 0;
1444 		} else if (hw->mac.type >= e1000_pch_spt &&
1445 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1446 			tipg_reg |= 0xC;
1447 			emi_val = 1;
1448 		} else {
1449 
1450 			/* Roll back the default values */
1451 			tipg_reg |= 0x08;
1452 			emi_val = 1;
1453 		}
1454 
1455 		ew32(TIPG, tipg_reg);
1456 
1457 		ret_val = hw->phy.ops.acquire(hw);
1458 		if (ret_val)
1459 			goto out;
1460 
1461 		if (hw->mac.type == e1000_pch2lan)
1462 			emi_addr = I82579_RX_CONFIG;
1463 		else
1464 			emi_addr = I217_RX_CONFIG;
1465 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1466 
1467 		if (hw->mac.type >= e1000_pch_lpt) {
1468 			u16 phy_reg;
1469 
1470 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1471 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1472 			if (speed == SPEED_100 || speed == SPEED_10)
1473 				phy_reg |= 0x3E8;
1474 			else
1475 				phy_reg |= 0xFA;
1476 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1477 
1478 			if (speed == SPEED_1000) {
1479 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1480 							    &phy_reg);
1481 
1482 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1483 
1484 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1485 							     phy_reg);
1486 			}
1487 		}
1488 		hw->phy.ops.release(hw);
1489 
1490 		if (ret_val)
1491 			goto out;
1492 
1493 		if (hw->mac.type >= e1000_pch_spt) {
1494 			u16 data;
1495 			u16 ptr_gap;
1496 
1497 			if (speed == SPEED_1000) {
1498 				ret_val = hw->phy.ops.acquire(hw);
1499 				if (ret_val)
1500 					goto out;
1501 
1502 				ret_val = e1e_rphy_locked(hw,
1503 							  PHY_REG(776, 20),
1504 							  &data);
1505 				if (ret_val) {
1506 					hw->phy.ops.release(hw);
1507 					goto out;
1508 				}
1509 
1510 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1511 				if (ptr_gap < 0x18) {
1512 					data &= ~(0x3FF << 2);
1513 					data |= (0x18 << 2);
1514 					ret_val =
1515 					    e1e_wphy_locked(hw,
1516 							    PHY_REG(776, 20),
1517 							    data);
1518 				}
1519 				hw->phy.ops.release(hw);
1520 				if (ret_val)
1521 					goto out;
1522 			} else {
1523 				ret_val = hw->phy.ops.acquire(hw);
1524 				if (ret_val)
1525 					goto out;
1526 
1527 				ret_val = e1e_wphy_locked(hw,
1528 							  PHY_REG(776, 20),
1529 							  0xC023);
1530 				hw->phy.ops.release(hw);
1531 				if (ret_val)
1532 					goto out;
1533 
1534 			}
1535 		}
1536 	}
1537 
1538 	/* I217 Packet Loss issue:
1539 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1540 	 * on power up.
1541 	 * Set the Beacon Duration for I217 to 8 usec
1542 	 */
1543 	if (hw->mac.type >= e1000_pch_lpt) {
1544 		u32 mac_reg;
1545 
1546 		mac_reg = er32(FEXTNVM4);
1547 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1548 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1549 		ew32(FEXTNVM4, mac_reg);
1550 	}
1551 
1552 	/* Work-around I218 hang issue */
1553 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1554 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1555 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1556 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1557 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1558 		if (ret_val)
1559 			goto out;
1560 	}
1561 	if (hw->mac.type >= e1000_pch_lpt) {
1562 		/* Set platform power management values for
1563 		 * Latency Tolerance Reporting (LTR)
1564 		 */
1565 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1566 		if (ret_val)
1567 			goto out;
1568 	}
1569 
1570 	/* Clear link partner's EEE ability */
1571 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1572 
1573 	if (hw->mac.type >= e1000_pch_lpt) {
1574 		u32 fextnvm6 = er32(FEXTNVM6);
1575 
1576 		if (hw->mac.type == e1000_pch_spt) {
1577 			/* FEXTNVM6 K1-off workaround - for SPT only */
1578 			u32 pcieanacfg = er32(PCIEANACFG);
1579 
1580 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1581 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1582 			else
1583 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1584 		}
1585 
1586 		ew32(FEXTNVM6, fextnvm6);
1587 	}
1588 
1589 	if (!link)
1590 		goto out;
1591 
1592 	switch (hw->mac.type) {
1593 	case e1000_pch2lan:
1594 		ret_val = e1000_k1_workaround_lv(hw);
1595 		if (ret_val)
1596 			return ret_val;
1597 		fallthrough;
1598 	case e1000_pchlan:
1599 		if (hw->phy.type == e1000_phy_82578) {
1600 			ret_val = e1000_link_stall_workaround_hv(hw);
1601 			if (ret_val)
1602 				return ret_val;
1603 		}
1604 
1605 		/* Workaround for PCHx parts in half-duplex:
1606 		 * Set the number of preambles removed from the packet
1607 		 * when it is passed from the PHY to the MAC to prevent
1608 		 * the MAC from misinterpreting the packet type.
1609 		 */
1610 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1611 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1612 
1613 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1614 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1615 
1616 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1617 		break;
1618 	default:
1619 		break;
1620 	}
1621 
1622 	/* Check if there was DownShift, must be checked
1623 	 * immediately after link-up
1624 	 */
1625 	e1000e_check_downshift(hw);
1626 
1627 	/* Enable/Disable EEE after link up */
1628 	if (hw->phy.type > e1000_phy_82579) {
1629 		ret_val = e1000_set_eee_pchlan(hw);
1630 		if (ret_val)
1631 			return ret_val;
1632 	}
1633 
1634 	/* If we are forcing speed/duplex, then we simply return since
1635 	 * we have already determined whether we have link or not.
1636 	 */
1637 	if (!mac->autoneg)
1638 		return -E1000_ERR_CONFIG;
1639 
1640 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1641 	 * of MAC speed/duplex configuration.  So we only need to
1642 	 * configure Collision Distance in the MAC.
1643 	 */
1644 	mac->ops.config_collision_dist(hw);
1645 
1646 	/* Configure Flow Control now that Auto-Neg has completed.
1647 	 * First, we need to restore the desired flow control
1648 	 * settings because we may have had to re-autoneg with a
1649 	 * different link partner.
1650 	 */
1651 	ret_val = e1000e_config_fc_after_link_up(hw);
1652 	if (ret_val)
1653 		e_dbg("Error configuring flow control\n");
1654 
1655 	return ret_val;
1656 
1657 out:
1658 	mac->get_link_status = true;
1659 	return ret_val;
1660 }
1661 
1662 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1663 {
1664 	struct e1000_hw *hw = &adapter->hw;
1665 	s32 rc;
1666 
1667 	rc = e1000_init_mac_params_ich8lan(hw);
1668 	if (rc)
1669 		return rc;
1670 
1671 	rc = e1000_init_nvm_params_ich8lan(hw);
1672 	if (rc)
1673 		return rc;
1674 
1675 	switch (hw->mac.type) {
1676 	case e1000_ich8lan:
1677 	case e1000_ich9lan:
1678 	case e1000_ich10lan:
1679 		rc = e1000_init_phy_params_ich8lan(hw);
1680 		break;
1681 	case e1000_pchlan:
1682 	case e1000_pch2lan:
1683 	case e1000_pch_lpt:
1684 	case e1000_pch_spt:
1685 	case e1000_pch_cnp:
1686 	case e1000_pch_tgp:
1687 	case e1000_pch_adp:
1688 	case e1000_pch_mtp:
1689 	case e1000_pch_lnp:
1690 	case e1000_pch_ptp:
1691 	case e1000_pch_nvp:
1692 		rc = e1000_init_phy_params_pchlan(hw);
1693 		break;
1694 	default:
1695 		break;
1696 	}
1697 	if (rc)
1698 		return rc;
1699 
1700 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1701 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1702 	 */
1703 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1704 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1705 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1706 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1707 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1708 
1709 		hw->mac.ops.blink_led = NULL;
1710 	}
1711 
1712 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1713 	    (adapter->hw.phy.type != e1000_phy_ife))
1714 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1715 
1716 	/* Enable workaround for 82579 w/ ME enabled */
1717 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1718 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1719 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1720 
1721 	return 0;
1722 }
1723 
1724 static DEFINE_MUTEX(nvm_mutex);
1725 
1726 /**
1727  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1728  *  @hw: pointer to the HW structure
1729  *
1730  *  Acquires the mutex for performing NVM operations.
1731  **/
1732 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1733 {
1734 	mutex_lock(&nvm_mutex);
1735 
1736 	return 0;
1737 }
1738 
1739 /**
1740  *  e1000_release_nvm_ich8lan - Release NVM mutex
1741  *  @hw: pointer to the HW structure
1742  *
1743  *  Releases the mutex used while performing NVM operations.
1744  **/
1745 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1746 {
1747 	mutex_unlock(&nvm_mutex);
1748 }
1749 
1750 /**
1751  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1752  *  @hw: pointer to the HW structure
1753  *
1754  *  Acquires the software control flag for performing PHY and select
1755  *  MAC CSR accesses.
1756  **/
1757 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1758 {
1759 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1760 	s32 ret_val = 0;
1761 
1762 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1763 			     &hw->adapter->state)) {
1764 		e_dbg("contention for Phy access\n");
1765 		return -E1000_ERR_PHY;
1766 	}
1767 
1768 	while (timeout) {
1769 		extcnf_ctrl = er32(EXTCNF_CTRL);
1770 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1771 			break;
1772 
1773 		mdelay(1);
1774 		timeout--;
1775 	}
1776 
1777 	if (!timeout) {
1778 		e_dbg("SW has already locked the resource.\n");
1779 		ret_val = -E1000_ERR_CONFIG;
1780 		goto out;
1781 	}
1782 
1783 	timeout = SW_FLAG_TIMEOUT;
1784 
1785 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1786 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1787 
1788 	while (timeout) {
1789 		extcnf_ctrl = er32(EXTCNF_CTRL);
1790 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1791 			break;
1792 
1793 		mdelay(1);
1794 		timeout--;
1795 	}
1796 
1797 	if (!timeout) {
1798 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1799 		      er32(FWSM), extcnf_ctrl);
1800 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1801 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1802 		ret_val = -E1000_ERR_CONFIG;
1803 		goto out;
1804 	}
1805 
1806 out:
1807 	if (ret_val)
1808 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1809 
1810 	return ret_val;
1811 }
1812 
1813 /**
1814  *  e1000_release_swflag_ich8lan - Release software control flag
1815  *  @hw: pointer to the HW structure
1816  *
1817  *  Releases the software control flag for performing PHY and select
1818  *  MAC CSR accesses.
1819  **/
1820 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1821 {
1822 	u32 extcnf_ctrl;
1823 
1824 	extcnf_ctrl = er32(EXTCNF_CTRL);
1825 
1826 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1827 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1828 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1829 	} else {
1830 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1831 	}
1832 
1833 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1834 }
1835 
1836 /**
1837  *  e1000_check_mng_mode_ich8lan - Checks management mode
1838  *  @hw: pointer to the HW structure
1839  *
1840  *  This checks if the adapter has any manageability enabled.
1841  *  This is a function pointer entry point only called by read/write
1842  *  routines for the PHY and NVM parts.
1843  **/
1844 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1845 {
1846 	u32 fwsm;
1847 
1848 	fwsm = er32(FWSM);
1849 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1850 		((fwsm & E1000_FWSM_MODE_MASK) ==
1851 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1852 }
1853 
1854 /**
1855  *  e1000_check_mng_mode_pchlan - Checks management mode
1856  *  @hw: pointer to the HW structure
1857  *
1858  *  This checks if the adapter has iAMT enabled.
1859  *  This is a function pointer entry point only called by read/write
1860  *  routines for the PHY and NVM parts.
1861  **/
1862 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1863 {
1864 	u32 fwsm;
1865 
1866 	fwsm = er32(FWSM);
1867 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1868 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1869 }
1870 
1871 /**
1872  *  e1000_rar_set_pch2lan - Set receive address register
1873  *  @hw: pointer to the HW structure
1874  *  @addr: pointer to the receive address
1875  *  @index: receive address array register
1876  *
1877  *  Sets the receive address array register at index to the address passed
1878  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1879  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1880  *  Use SHRA[0-3] in place of those reserved for ME.
1881  **/
1882 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1883 {
1884 	u32 rar_low, rar_high;
1885 
1886 	/* HW expects these in little endian so we reverse the byte order
1887 	 * from network order (big endian) to little endian
1888 	 */
1889 	rar_low = ((u32)addr[0] |
1890 		   ((u32)addr[1] << 8) |
1891 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1892 
1893 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1894 
1895 	/* If MAC address zero, no need to set the AV bit */
1896 	if (rar_low || rar_high)
1897 		rar_high |= E1000_RAH_AV;
1898 
1899 	if (index == 0) {
1900 		ew32(RAL(index), rar_low);
1901 		e1e_flush();
1902 		ew32(RAH(index), rar_high);
1903 		e1e_flush();
1904 		return 0;
1905 	}
1906 
1907 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1908 	 * next address into the SHRA register array.
1909 	 */
1910 	if (index < (u32)(hw->mac.rar_entry_count)) {
1911 		s32 ret_val;
1912 
1913 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1914 		if (ret_val)
1915 			goto out;
1916 
1917 		ew32(SHRAL(index - 1), rar_low);
1918 		e1e_flush();
1919 		ew32(SHRAH(index - 1), rar_high);
1920 		e1e_flush();
1921 
1922 		e1000_release_swflag_ich8lan(hw);
1923 
1924 		/* verify the register updates */
1925 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1926 		    (er32(SHRAH(index - 1)) == rar_high))
1927 			return 0;
1928 
1929 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1930 		      (index - 1), er32(FWSM));
1931 	}
1932 
1933 out:
1934 	e_dbg("Failed to write receive address at index %d\n", index);
1935 	return -E1000_ERR_CONFIG;
1936 }
1937 
1938 /**
1939  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1940  *  @hw: pointer to the HW structure
1941  *
1942  *  Get the number of available receive registers that the Host can
1943  *  program. SHRA[0-10] are the shared receive address registers
1944  *  that are shared between the Host and manageability engine (ME).
1945  *  ME can reserve any number of addresses and the host needs to be
1946  *  able to tell how many available registers it has access to.
1947  **/
1948 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1949 {
1950 	u32 wlock_mac;
1951 	u32 num_entries;
1952 
1953 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1954 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1955 
1956 	switch (wlock_mac) {
1957 	case 0:
1958 		/* All SHRA[0..10] and RAR[0] available */
1959 		num_entries = hw->mac.rar_entry_count;
1960 		break;
1961 	case 1:
1962 		/* Only RAR[0] available */
1963 		num_entries = 1;
1964 		break;
1965 	default:
1966 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1967 		num_entries = wlock_mac + 1;
1968 		break;
1969 	}
1970 
1971 	return num_entries;
1972 }
1973 
1974 /**
1975  *  e1000_rar_set_pch_lpt - Set receive address registers
1976  *  @hw: pointer to the HW structure
1977  *  @addr: pointer to the receive address
1978  *  @index: receive address array register
1979  *
1980  *  Sets the receive address register array at index to the address passed
1981  *  in by addr. For LPT, RAR[0] is the base address register that is to
1982  *  contain the MAC address. SHRA[0-10] are the shared receive address
1983  *  registers that are shared between the Host and manageability engine (ME).
1984  **/
1985 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1986 {
1987 	u32 rar_low, rar_high;
1988 	u32 wlock_mac;
1989 
1990 	/* HW expects these in little endian so we reverse the byte order
1991 	 * from network order (big endian) to little endian
1992 	 */
1993 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1994 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1995 
1996 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1997 
1998 	/* If MAC address zero, no need to set the AV bit */
1999 	if (rar_low || rar_high)
2000 		rar_high |= E1000_RAH_AV;
2001 
2002 	if (index == 0) {
2003 		ew32(RAL(index), rar_low);
2004 		e1e_flush();
2005 		ew32(RAH(index), rar_high);
2006 		e1e_flush();
2007 		return 0;
2008 	}
2009 
2010 	/* The manageability engine (ME) can lock certain SHRAR registers that
2011 	 * it is using - those registers are unavailable for use.
2012 	 */
2013 	if (index < hw->mac.rar_entry_count) {
2014 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2015 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2016 
2017 		/* Check if all SHRAR registers are locked */
2018 		if (wlock_mac == 1)
2019 			goto out;
2020 
2021 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2022 			s32 ret_val;
2023 
2024 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2025 
2026 			if (ret_val)
2027 				goto out;
2028 
2029 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2030 			e1e_flush();
2031 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2032 			e1e_flush();
2033 
2034 			e1000_release_swflag_ich8lan(hw);
2035 
2036 			/* verify the register updates */
2037 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2038 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2039 				return 0;
2040 		}
2041 	}
2042 
2043 out:
2044 	e_dbg("Failed to write receive address at index %d\n", index);
2045 	return -E1000_ERR_CONFIG;
2046 }
2047 
2048 /**
2049  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2050  *  @hw: pointer to the HW structure
2051  *
2052  *  Checks if firmware is blocking the reset of the PHY.
2053  *  This is a function pointer entry point only called by
2054  *  reset routines.
2055  **/
2056 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2057 {
2058 	bool blocked = false;
2059 	int i = 0;
2060 
2061 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2062 	       (i++ < 30))
2063 		usleep_range(10000, 11000);
2064 	return blocked ? E1000_BLK_PHY_RESET : 0;
2065 }
2066 
2067 /**
2068  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2069  *  @hw: pointer to the HW structure
2070  *
2071  *  Assumes semaphore already acquired.
2072  *
2073  **/
2074 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2075 {
2076 	u16 phy_data;
2077 	u32 strap = er32(STRAP);
2078 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2079 	    E1000_STRAP_SMT_FREQ_SHIFT;
2080 	s32 ret_val;
2081 
2082 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2083 
2084 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2085 	if (ret_val)
2086 		return ret_val;
2087 
2088 	phy_data &= ~HV_SMB_ADDR_MASK;
2089 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2090 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2091 
2092 	if (hw->phy.type == e1000_phy_i217) {
2093 		/* Restore SMBus frequency */
2094 		if (freq--) {
2095 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2096 			phy_data |= (freq & BIT(0)) <<
2097 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2098 			phy_data |= (freq & BIT(1)) <<
2099 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2100 		} else {
2101 			e_dbg("Unsupported SMB frequency in PHY\n");
2102 		}
2103 	}
2104 
2105 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2106 }
2107 
2108 /**
2109  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2110  *  @hw:   pointer to the HW structure
2111  *
2112  *  SW should configure the LCD from the NVM extended configuration region
2113  *  as a workaround for certain parts.
2114  **/
2115 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2116 {
2117 	struct e1000_phy_info *phy = &hw->phy;
2118 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2119 	s32 ret_val = 0;
2120 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2121 
2122 	/* Initialize the PHY from the NVM on ICH platforms.  This
2123 	 * is needed due to an issue where the NVM configuration is
2124 	 * not properly autoloaded after power transitions.
2125 	 * Therefore, after each PHY reset, we will load the
2126 	 * configuration data out of the NVM manually.
2127 	 */
2128 	switch (hw->mac.type) {
2129 	case e1000_ich8lan:
2130 		if (phy->type != e1000_phy_igp_3)
2131 			return ret_val;
2132 
2133 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2134 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2135 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2136 			break;
2137 		}
2138 		fallthrough;
2139 	case e1000_pchlan:
2140 	case e1000_pch2lan:
2141 	case e1000_pch_lpt:
2142 	case e1000_pch_spt:
2143 	case e1000_pch_cnp:
2144 	case e1000_pch_tgp:
2145 	case e1000_pch_adp:
2146 	case e1000_pch_mtp:
2147 	case e1000_pch_lnp:
2148 	case e1000_pch_ptp:
2149 	case e1000_pch_nvp:
2150 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2151 		break;
2152 	default:
2153 		return ret_val;
2154 	}
2155 
2156 	ret_val = hw->phy.ops.acquire(hw);
2157 	if (ret_val)
2158 		return ret_val;
2159 
2160 	data = er32(FEXTNVM);
2161 	if (!(data & sw_cfg_mask))
2162 		goto release;
2163 
2164 	/* Make sure HW does not configure LCD from PHY
2165 	 * extended configuration before SW configuration
2166 	 */
2167 	data = er32(EXTCNF_CTRL);
2168 	if ((hw->mac.type < e1000_pch2lan) &&
2169 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2170 		goto release;
2171 
2172 	cnf_size = er32(EXTCNF_SIZE);
2173 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2174 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2175 	if (!cnf_size)
2176 		goto release;
2177 
2178 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2179 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2180 
2181 	if (((hw->mac.type == e1000_pchlan) &&
2182 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2183 	    (hw->mac.type > e1000_pchlan)) {
2184 		/* HW configures the SMBus address and LEDs when the
2185 		 * OEM and LCD Write Enable bits are set in the NVM.
2186 		 * When both NVM bits are cleared, SW will configure
2187 		 * them instead.
2188 		 */
2189 		ret_val = e1000_write_smbus_addr(hw);
2190 		if (ret_val)
2191 			goto release;
2192 
2193 		data = er32(LEDCTL);
2194 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2195 							(u16)data);
2196 		if (ret_val)
2197 			goto release;
2198 	}
2199 
2200 	/* Configure LCD from extended configuration region. */
2201 
2202 	/* cnf_base_addr is in DWORD */
2203 	word_addr = (u16)(cnf_base_addr << 1);
2204 
2205 	for (i = 0; i < cnf_size; i++) {
2206 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2207 		if (ret_val)
2208 			goto release;
2209 
2210 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2211 					 1, &reg_addr);
2212 		if (ret_val)
2213 			goto release;
2214 
2215 		/* Save off the PHY page for future writes. */
2216 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2217 			phy_page = reg_data;
2218 			continue;
2219 		}
2220 
2221 		reg_addr &= PHY_REG_MASK;
2222 		reg_addr |= phy_page;
2223 
2224 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2225 		if (ret_val)
2226 			goto release;
2227 	}
2228 
2229 release:
2230 	hw->phy.ops.release(hw);
2231 	return ret_val;
2232 }
2233 
2234 /**
2235  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2236  *  @hw:   pointer to the HW structure
2237  *  @link: link up bool flag
2238  *
2239  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2240  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2241  *  If link is down, the function will restore the default K1 setting located
2242  *  in the NVM.
2243  **/
2244 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2245 {
2246 	s32 ret_val = 0;
2247 	u16 status_reg = 0;
2248 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2249 
2250 	if (hw->mac.type != e1000_pchlan)
2251 		return 0;
2252 
2253 	/* Wrap the whole flow with the sw flag */
2254 	ret_val = hw->phy.ops.acquire(hw);
2255 	if (ret_val)
2256 		return ret_val;
2257 
2258 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2259 	if (link) {
2260 		if (hw->phy.type == e1000_phy_82578) {
2261 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2262 						  &status_reg);
2263 			if (ret_val)
2264 				goto release;
2265 
2266 			status_reg &= (BM_CS_STATUS_LINK_UP |
2267 				       BM_CS_STATUS_RESOLVED |
2268 				       BM_CS_STATUS_SPEED_MASK);
2269 
2270 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2271 					   BM_CS_STATUS_RESOLVED |
2272 					   BM_CS_STATUS_SPEED_1000))
2273 				k1_enable = false;
2274 		}
2275 
2276 		if (hw->phy.type == e1000_phy_82577) {
2277 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2278 			if (ret_val)
2279 				goto release;
2280 
2281 			status_reg &= (HV_M_STATUS_LINK_UP |
2282 				       HV_M_STATUS_AUTONEG_COMPLETE |
2283 				       HV_M_STATUS_SPEED_MASK);
2284 
2285 			if (status_reg == (HV_M_STATUS_LINK_UP |
2286 					   HV_M_STATUS_AUTONEG_COMPLETE |
2287 					   HV_M_STATUS_SPEED_1000))
2288 				k1_enable = false;
2289 		}
2290 
2291 		/* Link stall fix for link up */
2292 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2293 		if (ret_val)
2294 			goto release;
2295 
2296 	} else {
2297 		/* Link stall fix for link down */
2298 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2299 		if (ret_val)
2300 			goto release;
2301 	}
2302 
2303 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2304 
2305 release:
2306 	hw->phy.ops.release(hw);
2307 
2308 	return ret_val;
2309 }
2310 
2311 /**
2312  *  e1000_configure_k1_ich8lan - Configure K1 power state
2313  *  @hw: pointer to the HW structure
2314  *  @k1_enable: K1 state to configure
2315  *
2316  *  Configure the K1 power state based on the provided parameter.
2317  *  Assumes semaphore already acquired.
2318  *
2319  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2320  **/
2321 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2322 {
2323 	s32 ret_val;
2324 	u32 ctrl_reg = 0;
2325 	u32 ctrl_ext = 0;
2326 	u32 reg = 0;
2327 	u16 kmrn_reg = 0;
2328 
2329 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2330 					      &kmrn_reg);
2331 	if (ret_val)
2332 		return ret_val;
2333 
2334 	if (k1_enable)
2335 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2336 	else
2337 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2338 
2339 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2340 					       kmrn_reg);
2341 	if (ret_val)
2342 		return ret_val;
2343 
2344 	usleep_range(20, 40);
2345 	ctrl_ext = er32(CTRL_EXT);
2346 	ctrl_reg = er32(CTRL);
2347 
2348 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2349 	reg |= E1000_CTRL_FRCSPD;
2350 	ew32(CTRL, reg);
2351 
2352 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2353 	e1e_flush();
2354 	usleep_range(20, 40);
2355 	ew32(CTRL, ctrl_reg);
2356 	ew32(CTRL_EXT, ctrl_ext);
2357 	e1e_flush();
2358 	usleep_range(20, 40);
2359 
2360 	return 0;
2361 }
2362 
2363 /**
2364  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2365  *  @hw:       pointer to the HW structure
2366  *  @d0_state: boolean if entering d0 or d3 device state
2367  *
2368  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2369  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2370  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2371  **/
2372 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2373 {
2374 	s32 ret_val = 0;
2375 	u32 mac_reg;
2376 	u16 oem_reg;
2377 
2378 	if (hw->mac.type < e1000_pchlan)
2379 		return ret_val;
2380 
2381 	ret_val = hw->phy.ops.acquire(hw);
2382 	if (ret_val)
2383 		return ret_val;
2384 
2385 	if (hw->mac.type == e1000_pchlan) {
2386 		mac_reg = er32(EXTCNF_CTRL);
2387 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2388 			goto release;
2389 	}
2390 
2391 	mac_reg = er32(FEXTNVM);
2392 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2393 		goto release;
2394 
2395 	mac_reg = er32(PHY_CTRL);
2396 
2397 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2398 	if (ret_val)
2399 		goto release;
2400 
2401 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2402 
2403 	if (d0_state) {
2404 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2405 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2406 
2407 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2408 			oem_reg |= HV_OEM_BITS_LPLU;
2409 	} else {
2410 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2411 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2412 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2413 
2414 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2415 			       E1000_PHY_CTRL_NOND0A_LPLU))
2416 			oem_reg |= HV_OEM_BITS_LPLU;
2417 	}
2418 
2419 	/* Set Restart auto-neg to activate the bits */
2420 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2421 	    !hw->phy.ops.check_reset_block(hw))
2422 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2423 
2424 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2425 
2426 release:
2427 	hw->phy.ops.release(hw);
2428 
2429 	return ret_val;
2430 }
2431 
2432 /**
2433  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2434  *  @hw:   pointer to the HW structure
2435  **/
2436 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2437 {
2438 	s32 ret_val;
2439 	u16 data;
2440 
2441 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2442 	if (ret_val)
2443 		return ret_val;
2444 
2445 	data |= HV_KMRN_MDIO_SLOW;
2446 
2447 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2448 
2449 	return ret_val;
2450 }
2451 
2452 /**
2453  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2454  *  @hw: pointer to the HW structure
2455  *
2456  *  A series of PHY workarounds to be done after every PHY reset.
2457  **/
2458 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2459 {
2460 	s32 ret_val = 0;
2461 	u16 phy_data;
2462 
2463 	if (hw->mac.type != e1000_pchlan)
2464 		return 0;
2465 
2466 	/* Set MDIO slow mode before any other MDIO access */
2467 	if (hw->phy.type == e1000_phy_82577) {
2468 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2469 		if (ret_val)
2470 			return ret_val;
2471 	}
2472 
2473 	if (((hw->phy.type == e1000_phy_82577) &&
2474 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2475 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2476 		/* Disable generation of early preamble */
2477 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2478 		if (ret_val)
2479 			return ret_val;
2480 
2481 		/* Preamble tuning for SSC */
2482 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2483 		if (ret_val)
2484 			return ret_val;
2485 	}
2486 
2487 	if (hw->phy.type == e1000_phy_82578) {
2488 		/* Return registers to default by doing a soft reset then
2489 		 * writing 0x3140 to the control register.
2490 		 */
2491 		if (hw->phy.revision < 2) {
2492 			e1000e_phy_sw_reset(hw);
2493 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2494 			if (ret_val)
2495 				return ret_val;
2496 		}
2497 	}
2498 
2499 	/* Select page 0 */
2500 	ret_val = hw->phy.ops.acquire(hw);
2501 	if (ret_val)
2502 		return ret_val;
2503 
2504 	hw->phy.addr = 1;
2505 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2506 	hw->phy.ops.release(hw);
2507 	if (ret_val)
2508 		return ret_val;
2509 
2510 	/* Configure the K1 Si workaround during phy reset assuming there is
2511 	 * link so that it disables K1 if link is in 1Gbps.
2512 	 */
2513 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2514 	if (ret_val)
2515 		return ret_val;
2516 
2517 	/* Workaround for link disconnects on a busy hub in half duplex */
2518 	ret_val = hw->phy.ops.acquire(hw);
2519 	if (ret_val)
2520 		return ret_val;
2521 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2522 	if (ret_val)
2523 		goto release;
2524 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2525 	if (ret_val)
2526 		goto release;
2527 
2528 	/* set MSE higher to enable link to stay up when noise is high */
2529 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2530 release:
2531 	hw->phy.ops.release(hw);
2532 
2533 	return ret_val;
2534 }
2535 
2536 /**
2537  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2538  *  @hw:   pointer to the HW structure
2539  **/
2540 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2541 {
2542 	u32 mac_reg;
2543 	u16 i, phy_reg = 0;
2544 	s32 ret_val;
2545 
2546 	ret_val = hw->phy.ops.acquire(hw);
2547 	if (ret_val)
2548 		return;
2549 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2550 	if (ret_val)
2551 		goto release;
2552 
2553 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2554 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2555 		mac_reg = er32(RAL(i));
2556 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2557 					   (u16)(mac_reg & 0xFFFF));
2558 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2559 					   (u16)((mac_reg >> 16) & 0xFFFF));
2560 
2561 		mac_reg = er32(RAH(i));
2562 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2563 					   (u16)(mac_reg & 0xFFFF));
2564 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2565 					   (u16)((mac_reg & E1000_RAH_AV)
2566 						 >> 16));
2567 	}
2568 
2569 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2570 
2571 release:
2572 	hw->phy.ops.release(hw);
2573 }
2574 
2575 /**
2576  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2577  *  with 82579 PHY
2578  *  @hw: pointer to the HW structure
2579  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2580  **/
2581 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2582 {
2583 	s32 ret_val = 0;
2584 	u16 phy_reg, data;
2585 	u32 mac_reg;
2586 	u16 i;
2587 
2588 	if (hw->mac.type < e1000_pch2lan)
2589 		return 0;
2590 
2591 	/* disable Rx path while enabling/disabling workaround */
2592 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2593 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2594 	if (ret_val)
2595 		return ret_val;
2596 
2597 	if (enable) {
2598 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2599 		 * SHRAL/H) and initial CRC values to the MAC
2600 		 */
2601 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2602 			u8 mac_addr[ETH_ALEN] = { 0 };
2603 			u32 addr_high, addr_low;
2604 
2605 			addr_high = er32(RAH(i));
2606 			if (!(addr_high & E1000_RAH_AV))
2607 				continue;
2608 			addr_low = er32(RAL(i));
2609 			mac_addr[0] = (addr_low & 0xFF);
2610 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2611 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2612 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2613 			mac_addr[4] = (addr_high & 0xFF);
2614 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2615 
2616 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2617 		}
2618 
2619 		/* Write Rx addresses to the PHY */
2620 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2621 
2622 		/* Enable jumbo frame workaround in the MAC */
2623 		mac_reg = er32(FFLT_DBG);
2624 		mac_reg &= ~BIT(14);
2625 		mac_reg |= (7 << 15);
2626 		ew32(FFLT_DBG, mac_reg);
2627 
2628 		mac_reg = er32(RCTL);
2629 		mac_reg |= E1000_RCTL_SECRC;
2630 		ew32(RCTL, mac_reg);
2631 
2632 		ret_val = e1000e_read_kmrn_reg(hw,
2633 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2634 					       &data);
2635 		if (ret_val)
2636 			return ret_val;
2637 		ret_val = e1000e_write_kmrn_reg(hw,
2638 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2639 						data | BIT(0));
2640 		if (ret_val)
2641 			return ret_val;
2642 		ret_val = e1000e_read_kmrn_reg(hw,
2643 					       E1000_KMRNCTRLSTA_HD_CTRL,
2644 					       &data);
2645 		if (ret_val)
2646 			return ret_val;
2647 		data &= ~(0xF << 8);
2648 		data |= (0xB << 8);
2649 		ret_val = e1000e_write_kmrn_reg(hw,
2650 						E1000_KMRNCTRLSTA_HD_CTRL,
2651 						data);
2652 		if (ret_val)
2653 			return ret_val;
2654 
2655 		/* Enable jumbo frame workaround in the PHY */
2656 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2657 		data &= ~(0x7F << 5);
2658 		data |= (0x37 << 5);
2659 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2660 		if (ret_val)
2661 			return ret_val;
2662 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2663 		data &= ~BIT(13);
2664 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2665 		if (ret_val)
2666 			return ret_val;
2667 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2668 		data &= ~(0x3FF << 2);
2669 		data |= (E1000_TX_PTR_GAP << 2);
2670 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2671 		if (ret_val)
2672 			return ret_val;
2673 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2674 		if (ret_val)
2675 			return ret_val;
2676 		e1e_rphy(hw, HV_PM_CTRL, &data);
2677 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2678 		if (ret_val)
2679 			return ret_val;
2680 	} else {
2681 		/* Write MAC register values back to h/w defaults */
2682 		mac_reg = er32(FFLT_DBG);
2683 		mac_reg &= ~(0xF << 14);
2684 		ew32(FFLT_DBG, mac_reg);
2685 
2686 		mac_reg = er32(RCTL);
2687 		mac_reg &= ~E1000_RCTL_SECRC;
2688 		ew32(RCTL, mac_reg);
2689 
2690 		ret_val = e1000e_read_kmrn_reg(hw,
2691 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692 					       &data);
2693 		if (ret_val)
2694 			return ret_val;
2695 		ret_val = e1000e_write_kmrn_reg(hw,
2696 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2697 						data & ~BIT(0));
2698 		if (ret_val)
2699 			return ret_val;
2700 		ret_val = e1000e_read_kmrn_reg(hw,
2701 					       E1000_KMRNCTRLSTA_HD_CTRL,
2702 					       &data);
2703 		if (ret_val)
2704 			return ret_val;
2705 		data &= ~(0xF << 8);
2706 		data |= (0xB << 8);
2707 		ret_val = e1000e_write_kmrn_reg(hw,
2708 						E1000_KMRNCTRLSTA_HD_CTRL,
2709 						data);
2710 		if (ret_val)
2711 			return ret_val;
2712 
2713 		/* Write PHY register values back to h/w defaults */
2714 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2715 		data &= ~(0x7F << 5);
2716 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2717 		if (ret_val)
2718 			return ret_val;
2719 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2720 		data |= BIT(13);
2721 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2722 		if (ret_val)
2723 			return ret_val;
2724 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2725 		data &= ~(0x3FF << 2);
2726 		data |= (0x8 << 2);
2727 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2728 		if (ret_val)
2729 			return ret_val;
2730 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2731 		if (ret_val)
2732 			return ret_val;
2733 		e1e_rphy(hw, HV_PM_CTRL, &data);
2734 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2735 		if (ret_val)
2736 			return ret_val;
2737 	}
2738 
2739 	/* re-enable Rx path after enabling/disabling workaround */
2740 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2741 }
2742 
2743 /**
2744  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2745  *  @hw: pointer to the HW structure
2746  *
2747  *  A series of PHY workarounds to be done after every PHY reset.
2748  **/
2749 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2750 {
2751 	s32 ret_val = 0;
2752 
2753 	if (hw->mac.type != e1000_pch2lan)
2754 		return 0;
2755 
2756 	/* Set MDIO slow mode before any other MDIO access */
2757 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2758 	if (ret_val)
2759 		return ret_val;
2760 
2761 	ret_val = hw->phy.ops.acquire(hw);
2762 	if (ret_val)
2763 		return ret_val;
2764 	/* set MSE higher to enable link to stay up when noise is high */
2765 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2766 	if (ret_val)
2767 		goto release;
2768 	/* drop link after 5 times MSE threshold was reached */
2769 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2770 release:
2771 	hw->phy.ops.release(hw);
2772 
2773 	return ret_val;
2774 }
2775 
2776 /**
2777  *  e1000_k1_workaround_lv - K1 Si workaround
2778  *  @hw:   pointer to the HW structure
2779  *
2780  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2781  *  Disable K1 in 1000Mbps and 100Mbps
2782  **/
2783 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2784 {
2785 	s32 ret_val = 0;
2786 	u16 status_reg = 0;
2787 
2788 	if (hw->mac.type != e1000_pch2lan)
2789 		return 0;
2790 
2791 	/* Set K1 beacon duration based on 10Mbs speed */
2792 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2793 	if (ret_val)
2794 		return ret_val;
2795 
2796 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2797 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2798 		if (status_reg &
2799 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2800 			u16 pm_phy_reg;
2801 
2802 			/* LV 1G/100 Packet drop issue wa  */
2803 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2804 			if (ret_val)
2805 				return ret_val;
2806 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2807 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2808 			if (ret_val)
2809 				return ret_val;
2810 		} else {
2811 			u32 mac_reg;
2812 
2813 			mac_reg = er32(FEXTNVM4);
2814 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2815 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2816 			ew32(FEXTNVM4, mac_reg);
2817 		}
2818 	}
2819 
2820 	return ret_val;
2821 }
2822 
2823 /**
2824  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2825  *  @hw:   pointer to the HW structure
2826  *  @gate: boolean set to true to gate, false to ungate
2827  *
2828  *  Gate/ungate the automatic PHY configuration via hardware; perform
2829  *  the configuration via software instead.
2830  **/
2831 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2832 {
2833 	u32 extcnf_ctrl;
2834 
2835 	if (hw->mac.type < e1000_pch2lan)
2836 		return;
2837 
2838 	extcnf_ctrl = er32(EXTCNF_CTRL);
2839 
2840 	if (gate)
2841 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2842 	else
2843 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2844 
2845 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2846 }
2847 
2848 /**
2849  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2850  *  @hw: pointer to the HW structure
2851  *
2852  *  Check the appropriate indication the MAC has finished configuring the
2853  *  PHY after a software reset.
2854  **/
2855 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2856 {
2857 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2858 
2859 	/* Wait for basic configuration completes before proceeding */
2860 	do {
2861 		data = er32(STATUS);
2862 		data &= E1000_STATUS_LAN_INIT_DONE;
2863 		usleep_range(100, 200);
2864 	} while ((!data) && --loop);
2865 
2866 	/* If basic configuration is incomplete before the above loop
2867 	 * count reaches 0, loading the configuration from NVM will
2868 	 * leave the PHY in a bad state possibly resulting in no link.
2869 	 */
2870 	if (loop == 0)
2871 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2872 
2873 	/* Clear the Init Done bit for the next init event */
2874 	data = er32(STATUS);
2875 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2876 	ew32(STATUS, data);
2877 }
2878 
2879 /**
2880  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2881  *  @hw: pointer to the HW structure
2882  **/
2883 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2884 {
2885 	s32 ret_val = 0;
2886 	u16 reg;
2887 
2888 	if (hw->phy.ops.check_reset_block(hw))
2889 		return 0;
2890 
2891 	/* Allow time for h/w to get to quiescent state after reset */
2892 	usleep_range(10000, 11000);
2893 
2894 	/* Perform any necessary post-reset workarounds */
2895 	switch (hw->mac.type) {
2896 	case e1000_pchlan:
2897 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2898 		if (ret_val)
2899 			return ret_val;
2900 		break;
2901 	case e1000_pch2lan:
2902 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2903 		if (ret_val)
2904 			return ret_val;
2905 		break;
2906 	default:
2907 		break;
2908 	}
2909 
2910 	/* Clear the host wakeup bit after lcd reset */
2911 	if (hw->mac.type >= e1000_pchlan) {
2912 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2913 		reg &= ~BM_WUC_HOST_WU_BIT;
2914 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2915 	}
2916 
2917 	/* Configure the LCD with the extended configuration region in NVM */
2918 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2919 	if (ret_val)
2920 		return ret_val;
2921 
2922 	/* Configure the LCD with the OEM bits in NVM */
2923 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2924 
2925 	if (hw->mac.type == e1000_pch2lan) {
2926 		/* Ungate automatic PHY configuration on non-managed 82579 */
2927 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2928 			usleep_range(10000, 11000);
2929 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2930 		}
2931 
2932 		/* Set EEE LPI Update Timer to 200usec */
2933 		ret_val = hw->phy.ops.acquire(hw);
2934 		if (ret_val)
2935 			return ret_val;
2936 		ret_val = e1000_write_emi_reg_locked(hw,
2937 						     I82579_LPI_UPDATE_TIMER,
2938 						     0x1387);
2939 		hw->phy.ops.release(hw);
2940 	}
2941 
2942 	return ret_val;
2943 }
2944 
2945 /**
2946  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2947  *  @hw: pointer to the HW structure
2948  *
2949  *  Resets the PHY
2950  *  This is a function pointer entry point called by drivers
2951  *  or other shared routines.
2952  **/
2953 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2954 {
2955 	s32 ret_val = 0;
2956 
2957 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2958 	if ((hw->mac.type == e1000_pch2lan) &&
2959 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2960 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2961 
2962 	ret_val = e1000e_phy_hw_reset_generic(hw);
2963 	if (ret_val)
2964 		return ret_val;
2965 
2966 	return e1000_post_phy_reset_ich8lan(hw);
2967 }
2968 
2969 /**
2970  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2971  *  @hw: pointer to the HW structure
2972  *  @active: true to enable LPLU, false to disable
2973  *
2974  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2975  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2976  *  the phy speed. This function will manually set the LPLU bit and restart
2977  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2978  *  since it configures the same bit.
2979  **/
2980 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2981 {
2982 	s32 ret_val;
2983 	u16 oem_reg;
2984 
2985 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2986 	if (ret_val)
2987 		return ret_val;
2988 
2989 	if (active)
2990 		oem_reg |= HV_OEM_BITS_LPLU;
2991 	else
2992 		oem_reg &= ~HV_OEM_BITS_LPLU;
2993 
2994 	if (!hw->phy.ops.check_reset_block(hw))
2995 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2996 
2997 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2998 }
2999 
3000 /**
3001  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3002  *  @hw: pointer to the HW structure
3003  *  @active: true to enable LPLU, false to disable
3004  *
3005  *  Sets the LPLU D0 state according to the active flag.  When
3006  *  activating LPLU this function also disables smart speed
3007  *  and vice versa.  LPLU will not be activated unless the
3008  *  device autonegotiation advertisement meets standards of
3009  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3010  *  This is a function pointer entry point only called by
3011  *  PHY setup routines.
3012  **/
3013 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3014 {
3015 	struct e1000_phy_info *phy = &hw->phy;
3016 	u32 phy_ctrl;
3017 	s32 ret_val = 0;
3018 	u16 data;
3019 
3020 	if (phy->type == e1000_phy_ife)
3021 		return 0;
3022 
3023 	phy_ctrl = er32(PHY_CTRL);
3024 
3025 	if (active) {
3026 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3027 		ew32(PHY_CTRL, phy_ctrl);
3028 
3029 		if (phy->type != e1000_phy_igp_3)
3030 			return 0;
3031 
3032 		/* Call gig speed drop workaround on LPLU before accessing
3033 		 * any PHY registers
3034 		 */
3035 		if (hw->mac.type == e1000_ich8lan)
3036 			e1000e_gig_downshift_workaround_ich8lan(hw);
3037 
3038 		/* When LPLU is enabled, we should disable SmartSpeed */
3039 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3040 		if (ret_val)
3041 			return ret_val;
3042 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3043 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3044 		if (ret_val)
3045 			return ret_val;
3046 	} else {
3047 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3048 		ew32(PHY_CTRL, phy_ctrl);
3049 
3050 		if (phy->type != e1000_phy_igp_3)
3051 			return 0;
3052 
3053 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3054 		 * during Dx states where the power conservation is most
3055 		 * important.  During driver activity we should enable
3056 		 * SmartSpeed, so performance is maintained.
3057 		 */
3058 		if (phy->smart_speed == e1000_smart_speed_on) {
3059 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060 					   &data);
3061 			if (ret_val)
3062 				return ret_val;
3063 
3064 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3065 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066 					   data);
3067 			if (ret_val)
3068 				return ret_val;
3069 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3070 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071 					   &data);
3072 			if (ret_val)
3073 				return ret_val;
3074 
3075 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077 					   data);
3078 			if (ret_val)
3079 				return ret_val;
3080 		}
3081 	}
3082 
3083 	return 0;
3084 }
3085 
3086 /**
3087  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3088  *  @hw: pointer to the HW structure
3089  *  @active: true to enable LPLU, false to disable
3090  *
3091  *  Sets the LPLU D3 state according to the active flag.  When
3092  *  activating LPLU this function also disables smart speed
3093  *  and vice versa.  LPLU will not be activated unless the
3094  *  device autonegotiation advertisement meets standards of
3095  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3096  *  This is a function pointer entry point only called by
3097  *  PHY setup routines.
3098  **/
3099 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3100 {
3101 	struct e1000_phy_info *phy = &hw->phy;
3102 	u32 phy_ctrl;
3103 	s32 ret_val = 0;
3104 	u16 data;
3105 
3106 	phy_ctrl = er32(PHY_CTRL);
3107 
3108 	if (!active) {
3109 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3110 		ew32(PHY_CTRL, phy_ctrl);
3111 
3112 		if (phy->type != e1000_phy_igp_3)
3113 			return 0;
3114 
3115 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3116 		 * during Dx states where the power conservation is most
3117 		 * important.  During driver activity we should enable
3118 		 * SmartSpeed, so performance is maintained.
3119 		 */
3120 		if (phy->smart_speed == e1000_smart_speed_on) {
3121 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122 					   &data);
3123 			if (ret_val)
3124 				return ret_val;
3125 
3126 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3127 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3128 					   data);
3129 			if (ret_val)
3130 				return ret_val;
3131 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3132 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3133 					   &data);
3134 			if (ret_val)
3135 				return ret_val;
3136 
3137 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3138 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3139 					   data);
3140 			if (ret_val)
3141 				return ret_val;
3142 		}
3143 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3144 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3145 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3146 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3147 		ew32(PHY_CTRL, phy_ctrl);
3148 
3149 		if (phy->type != e1000_phy_igp_3)
3150 			return 0;
3151 
3152 		/* Call gig speed drop workaround on LPLU before accessing
3153 		 * any PHY registers
3154 		 */
3155 		if (hw->mac.type == e1000_ich8lan)
3156 			e1000e_gig_downshift_workaround_ich8lan(hw);
3157 
3158 		/* When LPLU is enabled, we should disable SmartSpeed */
3159 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3160 		if (ret_val)
3161 			return ret_val;
3162 
3163 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3164 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3165 	}
3166 
3167 	return ret_val;
3168 }
3169 
3170 /**
3171  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3172  *  @hw: pointer to the HW structure
3173  *  @bank:  pointer to the variable that returns the active bank
3174  *
3175  *  Reads signature byte from the NVM using the flash access registers.
3176  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3177  **/
3178 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3179 {
3180 	u32 eecd;
3181 	struct e1000_nvm_info *nvm = &hw->nvm;
3182 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3183 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3184 	u32 nvm_dword = 0;
3185 	u8 sig_byte = 0;
3186 	s32 ret_val;
3187 
3188 	switch (hw->mac.type) {
3189 	case e1000_pch_spt:
3190 	case e1000_pch_cnp:
3191 	case e1000_pch_tgp:
3192 	case e1000_pch_adp:
3193 	case e1000_pch_mtp:
3194 	case e1000_pch_lnp:
3195 	case e1000_pch_ptp:
3196 	case e1000_pch_nvp:
3197 		bank1_offset = nvm->flash_bank_size;
3198 		act_offset = E1000_ICH_NVM_SIG_WORD;
3199 
3200 		/* set bank to 0 in case flash read fails */
3201 		*bank = 0;
3202 
3203 		/* Check bank 0 */
3204 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3205 							 &nvm_dword);
3206 		if (ret_val)
3207 			return ret_val;
3208 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3209 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3210 		    E1000_ICH_NVM_SIG_VALUE) {
3211 			*bank = 0;
3212 			return 0;
3213 		}
3214 
3215 		/* Check bank 1 */
3216 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3217 							 bank1_offset,
3218 							 &nvm_dword);
3219 		if (ret_val)
3220 			return ret_val;
3221 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3222 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3223 		    E1000_ICH_NVM_SIG_VALUE) {
3224 			*bank = 1;
3225 			return 0;
3226 		}
3227 
3228 		e_dbg("ERROR: No valid NVM bank present\n");
3229 		return -E1000_ERR_NVM;
3230 	case e1000_ich8lan:
3231 	case e1000_ich9lan:
3232 		eecd = er32(EECD);
3233 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3234 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3235 			if (eecd & E1000_EECD_SEC1VAL)
3236 				*bank = 1;
3237 			else
3238 				*bank = 0;
3239 
3240 			return 0;
3241 		}
3242 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3243 		fallthrough;
3244 	default:
3245 		/* set bank to 0 in case flash read fails */
3246 		*bank = 0;
3247 
3248 		/* Check bank 0 */
3249 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3250 							&sig_byte);
3251 		if (ret_val)
3252 			return ret_val;
3253 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3254 		    E1000_ICH_NVM_SIG_VALUE) {
3255 			*bank = 0;
3256 			return 0;
3257 		}
3258 
3259 		/* Check bank 1 */
3260 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3261 							bank1_offset,
3262 							&sig_byte);
3263 		if (ret_val)
3264 			return ret_val;
3265 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3266 		    E1000_ICH_NVM_SIG_VALUE) {
3267 			*bank = 1;
3268 			return 0;
3269 		}
3270 
3271 		e_dbg("ERROR: No valid NVM bank present\n");
3272 		return -E1000_ERR_NVM;
3273 	}
3274 }
3275 
3276 /**
3277  *  e1000_read_nvm_spt - NVM access for SPT
3278  *  @hw: pointer to the HW structure
3279  *  @offset: The offset (in bytes) of the word(s) to read.
3280  *  @words: Size of data to read in words.
3281  *  @data: pointer to the word(s) to read at offset.
3282  *
3283  *  Reads a word(s) from the NVM
3284  **/
3285 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3286 			      u16 *data)
3287 {
3288 	struct e1000_nvm_info *nvm = &hw->nvm;
3289 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3290 	u32 act_offset;
3291 	s32 ret_val = 0;
3292 	u32 bank = 0;
3293 	u32 dword = 0;
3294 	u16 offset_to_read;
3295 	u16 i;
3296 
3297 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3298 	    (words == 0)) {
3299 		e_dbg("nvm parameter(s) out of bounds\n");
3300 		ret_val = -E1000_ERR_NVM;
3301 		goto out;
3302 	}
3303 
3304 	nvm->ops.acquire(hw);
3305 
3306 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3307 	if (ret_val) {
3308 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3309 		bank = 0;
3310 	}
3311 
3312 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3313 	act_offset += offset;
3314 
3315 	ret_val = 0;
3316 
3317 	for (i = 0; i < words; i += 2) {
3318 		if (words - i == 1) {
3319 			if (dev_spec->shadow_ram[offset + i].modified) {
3320 				data[i] =
3321 				    dev_spec->shadow_ram[offset + i].value;
3322 			} else {
3323 				offset_to_read = act_offset + i -
3324 				    ((act_offset + i) % 2);
3325 				ret_val =
3326 				  e1000_read_flash_dword_ich8lan(hw,
3327 								 offset_to_read,
3328 								 &dword);
3329 				if (ret_val)
3330 					break;
3331 				if ((act_offset + i) % 2 == 0)
3332 					data[i] = (u16)(dword & 0xFFFF);
3333 				else
3334 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3335 			}
3336 		} else {
3337 			offset_to_read = act_offset + i;
3338 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3339 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3340 				ret_val =
3341 				  e1000_read_flash_dword_ich8lan(hw,
3342 								 offset_to_read,
3343 								 &dword);
3344 				if (ret_val)
3345 					break;
3346 			}
3347 			if (dev_spec->shadow_ram[offset + i].modified)
3348 				data[i] =
3349 				    dev_spec->shadow_ram[offset + i].value;
3350 			else
3351 				data[i] = (u16)(dword & 0xFFFF);
3352 			if (dev_spec->shadow_ram[offset + i].modified)
3353 				data[i + 1] =
3354 				    dev_spec->shadow_ram[offset + i + 1].value;
3355 			else
3356 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3357 		}
3358 	}
3359 
3360 	nvm->ops.release(hw);
3361 
3362 out:
3363 	if (ret_val)
3364 		e_dbg("NVM read error: %d\n", ret_val);
3365 
3366 	return ret_val;
3367 }
3368 
3369 /**
3370  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3371  *  @hw: pointer to the HW structure
3372  *  @offset: The offset (in bytes) of the word(s) to read.
3373  *  @words: Size of data to read in words
3374  *  @data: Pointer to the word(s) to read at offset.
3375  *
3376  *  Reads a word(s) from the NVM using the flash access registers.
3377  **/
3378 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3379 				  u16 *data)
3380 {
3381 	struct e1000_nvm_info *nvm = &hw->nvm;
3382 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3383 	u32 act_offset;
3384 	s32 ret_val = 0;
3385 	u32 bank = 0;
3386 	u16 i, word;
3387 
3388 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3389 	    (words == 0)) {
3390 		e_dbg("nvm parameter(s) out of bounds\n");
3391 		ret_val = -E1000_ERR_NVM;
3392 		goto out;
3393 	}
3394 
3395 	nvm->ops.acquire(hw);
3396 
3397 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3398 	if (ret_val) {
3399 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3400 		bank = 0;
3401 	}
3402 
3403 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3404 	act_offset += offset;
3405 
3406 	ret_val = 0;
3407 	for (i = 0; i < words; i++) {
3408 		if (dev_spec->shadow_ram[offset + i].modified) {
3409 			data[i] = dev_spec->shadow_ram[offset + i].value;
3410 		} else {
3411 			ret_val = e1000_read_flash_word_ich8lan(hw,
3412 								act_offset + i,
3413 								&word);
3414 			if (ret_val)
3415 				break;
3416 			data[i] = word;
3417 		}
3418 	}
3419 
3420 	nvm->ops.release(hw);
3421 
3422 out:
3423 	if (ret_val)
3424 		e_dbg("NVM read error: %d\n", ret_val);
3425 
3426 	return ret_val;
3427 }
3428 
3429 /**
3430  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3431  *  @hw: pointer to the HW structure
3432  *
3433  *  This function does initial flash setup so that a new read/write/erase cycle
3434  *  can be started.
3435  **/
3436 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3437 {
3438 	union ich8_hws_flash_status hsfsts;
3439 	s32 ret_val = -E1000_ERR_NVM;
3440 
3441 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3442 
3443 	/* Check if the flash descriptor is valid */
3444 	if (!hsfsts.hsf_status.fldesvalid) {
3445 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3446 		return -E1000_ERR_NVM;
3447 	}
3448 
3449 	/* Clear FCERR and DAEL in hw status by writing 1 */
3450 	hsfsts.hsf_status.flcerr = 1;
3451 	hsfsts.hsf_status.dael = 1;
3452 	if (hw->mac.type >= e1000_pch_spt)
3453 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3454 	else
3455 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3456 
3457 	/* Either we should have a hardware SPI cycle in progress
3458 	 * bit to check against, in order to start a new cycle or
3459 	 * FDONE bit should be changed in the hardware so that it
3460 	 * is 1 after hardware reset, which can then be used as an
3461 	 * indication whether a cycle is in progress or has been
3462 	 * completed.
3463 	 */
3464 
3465 	if (!hsfsts.hsf_status.flcinprog) {
3466 		/* There is no cycle running at present,
3467 		 * so we can start a cycle.
3468 		 * Begin by setting Flash Cycle Done.
3469 		 */
3470 		hsfsts.hsf_status.flcdone = 1;
3471 		if (hw->mac.type >= e1000_pch_spt)
3472 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3473 		else
3474 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3475 		ret_val = 0;
3476 	} else {
3477 		s32 i;
3478 
3479 		/* Otherwise poll for sometime so the current
3480 		 * cycle has a chance to end before giving up.
3481 		 */
3482 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3483 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3484 			if (!hsfsts.hsf_status.flcinprog) {
3485 				ret_val = 0;
3486 				break;
3487 			}
3488 			udelay(1);
3489 		}
3490 		if (!ret_val) {
3491 			/* Successful in waiting for previous cycle to timeout,
3492 			 * now set the Flash Cycle Done.
3493 			 */
3494 			hsfsts.hsf_status.flcdone = 1;
3495 			if (hw->mac.type >= e1000_pch_spt)
3496 				ew32flash(ICH_FLASH_HSFSTS,
3497 					  hsfsts.regval & 0xFFFF);
3498 			else
3499 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3500 		} else {
3501 			e_dbg("Flash controller busy, cannot get access\n");
3502 		}
3503 	}
3504 
3505 	return ret_val;
3506 }
3507 
3508 /**
3509  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3510  *  @hw: pointer to the HW structure
3511  *  @timeout: maximum time to wait for completion
3512  *
3513  *  This function starts a flash cycle and waits for its completion.
3514  **/
3515 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3516 {
3517 	union ich8_hws_flash_ctrl hsflctl;
3518 	union ich8_hws_flash_status hsfsts;
3519 	u32 i = 0;
3520 
3521 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3522 	if (hw->mac.type >= e1000_pch_spt)
3523 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3524 	else
3525 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3526 	hsflctl.hsf_ctrl.flcgo = 1;
3527 
3528 	if (hw->mac.type >= e1000_pch_spt)
3529 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3530 	else
3531 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3532 
3533 	/* wait till FDONE bit is set to 1 */
3534 	do {
3535 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3536 		if (hsfsts.hsf_status.flcdone)
3537 			break;
3538 		udelay(1);
3539 	} while (i++ < timeout);
3540 
3541 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3542 		return 0;
3543 
3544 	return -E1000_ERR_NVM;
3545 }
3546 
3547 /**
3548  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3549  *  @hw: pointer to the HW structure
3550  *  @offset: offset to data location
3551  *  @data: pointer to the location for storing the data
3552  *
3553  *  Reads the flash dword at offset into data.  Offset is converted
3554  *  to bytes before read.
3555  **/
3556 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3557 					  u32 *data)
3558 {
3559 	/* Must convert word offset into bytes. */
3560 	offset <<= 1;
3561 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3562 }
3563 
3564 /**
3565  *  e1000_read_flash_word_ich8lan - Read word from flash
3566  *  @hw: pointer to the HW structure
3567  *  @offset: offset to data location
3568  *  @data: pointer to the location for storing the data
3569  *
3570  *  Reads the flash word at offset into data.  Offset is converted
3571  *  to bytes before read.
3572  **/
3573 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3574 					 u16 *data)
3575 {
3576 	/* Must convert offset into bytes. */
3577 	offset <<= 1;
3578 
3579 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3580 }
3581 
3582 /**
3583  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3584  *  @hw: pointer to the HW structure
3585  *  @offset: The offset of the byte to read.
3586  *  @data: Pointer to a byte to store the value read.
3587  *
3588  *  Reads a single byte from the NVM using the flash access registers.
3589  **/
3590 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3591 					 u8 *data)
3592 {
3593 	s32 ret_val;
3594 	u16 word = 0;
3595 
3596 	/* In SPT, only 32 bits access is supported,
3597 	 * so this function should not be called.
3598 	 */
3599 	if (hw->mac.type >= e1000_pch_spt)
3600 		return -E1000_ERR_NVM;
3601 	else
3602 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3603 
3604 	if (ret_val)
3605 		return ret_val;
3606 
3607 	*data = (u8)word;
3608 
3609 	return 0;
3610 }
3611 
3612 /**
3613  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3614  *  @hw: pointer to the HW structure
3615  *  @offset: The offset (in bytes) of the byte or word to read.
3616  *  @size: Size of data to read, 1=byte 2=word
3617  *  @data: Pointer to the word to store the value read.
3618  *
3619  *  Reads a byte or word from the NVM using the flash access registers.
3620  **/
3621 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3622 					 u8 size, u16 *data)
3623 {
3624 	union ich8_hws_flash_status hsfsts;
3625 	union ich8_hws_flash_ctrl hsflctl;
3626 	u32 flash_linear_addr;
3627 	u32 flash_data = 0;
3628 	s32 ret_val = -E1000_ERR_NVM;
3629 	u8 count = 0;
3630 
3631 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3632 		return -E1000_ERR_NVM;
3633 
3634 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3635 			     hw->nvm.flash_base_addr);
3636 
3637 	do {
3638 		udelay(1);
3639 		/* Steps */
3640 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3641 		if (ret_val)
3642 			break;
3643 
3644 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3645 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3646 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3647 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3648 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3649 
3650 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3651 
3652 		ret_val =
3653 		    e1000_flash_cycle_ich8lan(hw,
3654 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3655 
3656 		/* Check if FCERR is set to 1, if set to 1, clear it
3657 		 * and try the whole sequence a few more times, else
3658 		 * read in (shift in) the Flash Data0, the order is
3659 		 * least significant byte first msb to lsb
3660 		 */
3661 		if (!ret_val) {
3662 			flash_data = er32flash(ICH_FLASH_FDATA0);
3663 			if (size == 1)
3664 				*data = (u8)(flash_data & 0x000000FF);
3665 			else if (size == 2)
3666 				*data = (u16)(flash_data & 0x0000FFFF);
3667 			break;
3668 		} else {
3669 			/* If we've gotten here, then things are probably
3670 			 * completely hosed, but if the error condition is
3671 			 * detected, it won't hurt to give it another try...
3672 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3673 			 */
3674 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3675 			if (hsfsts.hsf_status.flcerr) {
3676 				/* Repeat for some time before giving up. */
3677 				continue;
3678 			} else if (!hsfsts.hsf_status.flcdone) {
3679 				e_dbg("Timeout error - flash cycle did not complete.\n");
3680 				break;
3681 			}
3682 		}
3683 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3684 
3685 	return ret_val;
3686 }
3687 
3688 /**
3689  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3690  *  @hw: pointer to the HW structure
3691  *  @offset: The offset (in bytes) of the dword to read.
3692  *  @data: Pointer to the dword to store the value read.
3693  *
3694  *  Reads a byte or word from the NVM using the flash access registers.
3695  **/
3696 
3697 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3698 					   u32 *data)
3699 {
3700 	union ich8_hws_flash_status hsfsts;
3701 	union ich8_hws_flash_ctrl hsflctl;
3702 	u32 flash_linear_addr;
3703 	s32 ret_val = -E1000_ERR_NVM;
3704 	u8 count = 0;
3705 
3706 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3707 		return -E1000_ERR_NVM;
3708 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3709 			     hw->nvm.flash_base_addr);
3710 
3711 	do {
3712 		udelay(1);
3713 		/* Steps */
3714 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3715 		if (ret_val)
3716 			break;
3717 		/* In SPT, This register is in Lan memory space, not flash.
3718 		 * Therefore, only 32 bit access is supported
3719 		 */
3720 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3721 
3722 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3723 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3724 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3725 		/* In SPT, This register is in Lan memory space, not flash.
3726 		 * Therefore, only 32 bit access is supported
3727 		 */
3728 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3729 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3730 
3731 		ret_val =
3732 		   e1000_flash_cycle_ich8lan(hw,
3733 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3734 
3735 		/* Check if FCERR is set to 1, if set to 1, clear it
3736 		 * and try the whole sequence a few more times, else
3737 		 * read in (shift in) the Flash Data0, the order is
3738 		 * least significant byte first msb to lsb
3739 		 */
3740 		if (!ret_val) {
3741 			*data = er32flash(ICH_FLASH_FDATA0);
3742 			break;
3743 		} else {
3744 			/* If we've gotten here, then things are probably
3745 			 * completely hosed, but if the error condition is
3746 			 * detected, it won't hurt to give it another try...
3747 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3748 			 */
3749 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3750 			if (hsfsts.hsf_status.flcerr) {
3751 				/* Repeat for some time before giving up. */
3752 				continue;
3753 			} else if (!hsfsts.hsf_status.flcdone) {
3754 				e_dbg("Timeout error - flash cycle did not complete.\n");
3755 				break;
3756 			}
3757 		}
3758 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3759 
3760 	return ret_val;
3761 }
3762 
3763 /**
3764  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3765  *  @hw: pointer to the HW structure
3766  *  @offset: The offset (in bytes) of the word(s) to write.
3767  *  @words: Size of data to write in words
3768  *  @data: Pointer to the word(s) to write at offset.
3769  *
3770  *  Writes a byte or word to the NVM using the flash access registers.
3771  **/
3772 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3773 				   u16 *data)
3774 {
3775 	struct e1000_nvm_info *nvm = &hw->nvm;
3776 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3777 	u16 i;
3778 
3779 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3780 	    (words == 0)) {
3781 		e_dbg("nvm parameter(s) out of bounds\n");
3782 		return -E1000_ERR_NVM;
3783 	}
3784 
3785 	nvm->ops.acquire(hw);
3786 
3787 	for (i = 0; i < words; i++) {
3788 		dev_spec->shadow_ram[offset + i].modified = true;
3789 		dev_spec->shadow_ram[offset + i].value = data[i];
3790 	}
3791 
3792 	nvm->ops.release(hw);
3793 
3794 	return 0;
3795 }
3796 
3797 /**
3798  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3799  *  @hw: pointer to the HW structure
3800  *
3801  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3802  *  which writes the checksum to the shadow ram.  The changes in the shadow
3803  *  ram are then committed to the EEPROM by processing each bank at a time
3804  *  checking for the modified bit and writing only the pending changes.
3805  *  After a successful commit, the shadow ram is cleared and is ready for
3806  *  future writes.
3807  **/
3808 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3809 {
3810 	struct e1000_nvm_info *nvm = &hw->nvm;
3811 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3812 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3813 	s32 ret_val;
3814 	u32 dword = 0;
3815 
3816 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3817 	if (ret_val)
3818 		goto out;
3819 
3820 	if (nvm->type != e1000_nvm_flash_sw)
3821 		goto out;
3822 
3823 	nvm->ops.acquire(hw);
3824 
3825 	/* We're writing to the opposite bank so if we're on bank 1,
3826 	 * write to bank 0 etc.  We also need to erase the segment that
3827 	 * is going to be written
3828 	 */
3829 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3830 	if (ret_val) {
3831 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3832 		bank = 0;
3833 	}
3834 
3835 	if (bank == 0) {
3836 		new_bank_offset = nvm->flash_bank_size;
3837 		old_bank_offset = 0;
3838 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3839 		if (ret_val)
3840 			goto release;
3841 	} else {
3842 		old_bank_offset = nvm->flash_bank_size;
3843 		new_bank_offset = 0;
3844 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3845 		if (ret_val)
3846 			goto release;
3847 	}
3848 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3849 		/* Determine whether to write the value stored
3850 		 * in the other NVM bank or a modified value stored
3851 		 * in the shadow RAM
3852 		 */
3853 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3854 							 i + old_bank_offset,
3855 							 &dword);
3856 
3857 		if (dev_spec->shadow_ram[i].modified) {
3858 			dword &= 0xffff0000;
3859 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3860 		}
3861 		if (dev_spec->shadow_ram[i + 1].modified) {
3862 			dword &= 0x0000ffff;
3863 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3864 				  << 16);
3865 		}
3866 		if (ret_val)
3867 			break;
3868 
3869 		/* If the word is 0x13, then make sure the signature bits
3870 		 * (15:14) are 11b until the commit has completed.
3871 		 * This will allow us to write 10b which indicates the
3872 		 * signature is valid.  We want to do this after the write
3873 		 * has completed so that we don't mark the segment valid
3874 		 * while the write is still in progress
3875 		 */
3876 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3877 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3878 
3879 		/* Convert offset to bytes. */
3880 		act_offset = (i + new_bank_offset) << 1;
3881 
3882 		usleep_range(100, 200);
3883 
3884 		/* Write the data to the new bank. Offset in words */
3885 		act_offset = i + new_bank_offset;
3886 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3887 								dword);
3888 		if (ret_val)
3889 			break;
3890 	}
3891 
3892 	/* Don't bother writing the segment valid bits if sector
3893 	 * programming failed.
3894 	 */
3895 	if (ret_val) {
3896 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3897 		e_dbg("Flash commit failed.\n");
3898 		goto release;
3899 	}
3900 
3901 	/* Finally validate the new segment by setting bit 15:14
3902 	 * to 10b in word 0x13 , this can be done without an
3903 	 * erase as well since these bits are 11 to start with
3904 	 * and we need to change bit 14 to 0b
3905 	 */
3906 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3907 
3908 	/*offset in words but we read dword */
3909 	--act_offset;
3910 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3911 
3912 	if (ret_val)
3913 		goto release;
3914 
3915 	dword &= 0xBFFFFFFF;
3916 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3917 
3918 	if (ret_val)
3919 		goto release;
3920 
3921 	/* offset in words but we read dword */
3922 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3923 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3924 
3925 	if (ret_val)
3926 		goto release;
3927 
3928 	dword &= 0x00FFFFFF;
3929 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3930 
3931 	if (ret_val)
3932 		goto release;
3933 
3934 	/* Great!  Everything worked, we can now clear the cached entries. */
3935 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3936 		dev_spec->shadow_ram[i].modified = false;
3937 		dev_spec->shadow_ram[i].value = 0xFFFF;
3938 	}
3939 
3940 release:
3941 	nvm->ops.release(hw);
3942 
3943 	/* Reload the EEPROM, or else modifications will not appear
3944 	 * until after the next adapter reset.
3945 	 */
3946 	if (!ret_val) {
3947 		nvm->ops.reload(hw);
3948 		usleep_range(10000, 11000);
3949 	}
3950 
3951 out:
3952 	if (ret_val)
3953 		e_dbg("NVM update error: %d\n", ret_val);
3954 
3955 	return ret_val;
3956 }
3957 
3958 /**
3959  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3960  *  @hw: pointer to the HW structure
3961  *
3962  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3963  *  which writes the checksum to the shadow ram.  The changes in the shadow
3964  *  ram are then committed to the EEPROM by processing each bank at a time
3965  *  checking for the modified bit and writing only the pending changes.
3966  *  After a successful commit, the shadow ram is cleared and is ready for
3967  *  future writes.
3968  **/
3969 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3970 {
3971 	struct e1000_nvm_info *nvm = &hw->nvm;
3972 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3973 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3974 	s32 ret_val;
3975 	u16 data = 0;
3976 
3977 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3978 	if (ret_val)
3979 		goto out;
3980 
3981 	if (nvm->type != e1000_nvm_flash_sw)
3982 		goto out;
3983 
3984 	nvm->ops.acquire(hw);
3985 
3986 	/* We're writing to the opposite bank so if we're on bank 1,
3987 	 * write to bank 0 etc.  We also need to erase the segment that
3988 	 * is going to be written
3989 	 */
3990 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3991 	if (ret_val) {
3992 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3993 		bank = 0;
3994 	}
3995 
3996 	if (bank == 0) {
3997 		new_bank_offset = nvm->flash_bank_size;
3998 		old_bank_offset = 0;
3999 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4000 		if (ret_val)
4001 			goto release;
4002 	} else {
4003 		old_bank_offset = nvm->flash_bank_size;
4004 		new_bank_offset = 0;
4005 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4006 		if (ret_val)
4007 			goto release;
4008 	}
4009 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4010 		if (dev_spec->shadow_ram[i].modified) {
4011 			data = dev_spec->shadow_ram[i].value;
4012 		} else {
4013 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4014 								old_bank_offset,
4015 								&data);
4016 			if (ret_val)
4017 				break;
4018 		}
4019 
4020 		/* If the word is 0x13, then make sure the signature bits
4021 		 * (15:14) are 11b until the commit has completed.
4022 		 * This will allow us to write 10b which indicates the
4023 		 * signature is valid.  We want to do this after the write
4024 		 * has completed so that we don't mark the segment valid
4025 		 * while the write is still in progress
4026 		 */
4027 		if (i == E1000_ICH_NVM_SIG_WORD)
4028 			data |= E1000_ICH_NVM_SIG_MASK;
4029 
4030 		/* Convert offset to bytes. */
4031 		act_offset = (i + new_bank_offset) << 1;
4032 
4033 		usleep_range(100, 200);
4034 		/* Write the bytes to the new bank. */
4035 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4036 							       act_offset,
4037 							       (u8)data);
4038 		if (ret_val)
4039 			break;
4040 
4041 		usleep_range(100, 200);
4042 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4043 							       act_offset + 1,
4044 							       (u8)(data >> 8));
4045 		if (ret_val)
4046 			break;
4047 	}
4048 
4049 	/* Don't bother writing the segment valid bits if sector
4050 	 * programming failed.
4051 	 */
4052 	if (ret_val) {
4053 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4054 		e_dbg("Flash commit failed.\n");
4055 		goto release;
4056 	}
4057 
4058 	/* Finally validate the new segment by setting bit 15:14
4059 	 * to 10b in word 0x13 , this can be done without an
4060 	 * erase as well since these bits are 11 to start with
4061 	 * and we need to change bit 14 to 0b
4062 	 */
4063 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4064 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4065 	if (ret_val)
4066 		goto release;
4067 
4068 	data &= 0xBFFF;
4069 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4070 						       act_offset * 2 + 1,
4071 						       (u8)(data >> 8));
4072 	if (ret_val)
4073 		goto release;
4074 
4075 	/* And invalidate the previously valid segment by setting
4076 	 * its signature word (0x13) high_byte to 0b. This can be
4077 	 * done without an erase because flash erase sets all bits
4078 	 * to 1's. We can write 1's to 0's without an erase
4079 	 */
4080 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4081 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4082 	if (ret_val)
4083 		goto release;
4084 
4085 	/* Great!  Everything worked, we can now clear the cached entries. */
4086 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4087 		dev_spec->shadow_ram[i].modified = false;
4088 		dev_spec->shadow_ram[i].value = 0xFFFF;
4089 	}
4090 
4091 release:
4092 	nvm->ops.release(hw);
4093 
4094 	/* Reload the EEPROM, or else modifications will not appear
4095 	 * until after the next adapter reset.
4096 	 */
4097 	if (!ret_val) {
4098 		nvm->ops.reload(hw);
4099 		usleep_range(10000, 11000);
4100 	}
4101 
4102 out:
4103 	if (ret_val)
4104 		e_dbg("NVM update error: %d\n", ret_val);
4105 
4106 	return ret_val;
4107 }
4108 
4109 /**
4110  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4111  *  @hw: pointer to the HW structure
4112  *
4113  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4114  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4115  *  calculated, in which case we need to calculate the checksum and set bit 6.
4116  **/
4117 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4118 {
4119 	s32 ret_val;
4120 	u16 data;
4121 	u16 word;
4122 	u16 valid_csum_mask;
4123 
4124 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4125 	 * the checksum needs to be fixed.  This bit is an indication that
4126 	 * the NVM was prepared by OEM software and did not calculate
4127 	 * the checksum...a likely scenario.
4128 	 */
4129 	switch (hw->mac.type) {
4130 	case e1000_pch_lpt:
4131 	case e1000_pch_spt:
4132 	case e1000_pch_cnp:
4133 	case e1000_pch_tgp:
4134 	case e1000_pch_adp:
4135 	case e1000_pch_mtp:
4136 	case e1000_pch_lnp:
4137 	case e1000_pch_ptp:
4138 	case e1000_pch_nvp:
4139 		word = NVM_COMPAT;
4140 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4141 		break;
4142 	default:
4143 		word = NVM_FUTURE_INIT_WORD1;
4144 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4145 		break;
4146 	}
4147 
4148 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4149 	if (ret_val)
4150 		return ret_val;
4151 
4152 	if (!(data & valid_csum_mask)) {
4153 		e_dbg("NVM Checksum valid bit not set\n");
4154 
4155 		if (hw->mac.type < e1000_pch_tgp) {
4156 			data |= valid_csum_mask;
4157 			ret_val = e1000_write_nvm(hw, word, 1, &data);
4158 			if (ret_val)
4159 				return ret_val;
4160 			ret_val = e1000e_update_nvm_checksum(hw);
4161 			if (ret_val)
4162 				return ret_val;
4163 		}
4164 	}
4165 
4166 	return e1000e_validate_nvm_checksum_generic(hw);
4167 }
4168 
4169 /**
4170  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4171  *  @hw: pointer to the HW structure
4172  *
4173  *  To prevent malicious write/erase of the NVM, set it to be read-only
4174  *  so that the hardware ignores all write/erase cycles of the NVM via
4175  *  the flash control registers.  The shadow-ram copy of the NVM will
4176  *  still be updated, however any updates to this copy will not stick
4177  *  across driver reloads.
4178  **/
4179 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4180 {
4181 	struct e1000_nvm_info *nvm = &hw->nvm;
4182 	union ich8_flash_protected_range pr0;
4183 	union ich8_hws_flash_status hsfsts;
4184 	u32 gfpreg;
4185 
4186 	nvm->ops.acquire(hw);
4187 
4188 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4189 
4190 	/* Write-protect GbE Sector of NVM */
4191 	pr0.regval = er32flash(ICH_FLASH_PR0);
4192 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4193 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4194 	pr0.range.wpe = true;
4195 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4196 
4197 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4198 	 * PR0 to prevent the write-protection from being lifted.
4199 	 * Once FLOCKDN is set, the registers protected by it cannot
4200 	 * be written until FLOCKDN is cleared by a hardware reset.
4201 	 */
4202 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4203 	hsfsts.hsf_status.flockdn = true;
4204 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4205 
4206 	nvm->ops.release(hw);
4207 }
4208 
4209 /**
4210  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4211  *  @hw: pointer to the HW structure
4212  *  @offset: The offset (in bytes) of the byte/word to read.
4213  *  @size: Size of data to read, 1=byte 2=word
4214  *  @data: The byte(s) to write to the NVM.
4215  *
4216  *  Writes one/two bytes to the NVM using the flash access registers.
4217  **/
4218 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4219 					  u8 size, u16 data)
4220 {
4221 	union ich8_hws_flash_status hsfsts;
4222 	union ich8_hws_flash_ctrl hsflctl;
4223 	u32 flash_linear_addr;
4224 	u32 flash_data = 0;
4225 	s32 ret_val;
4226 	u8 count = 0;
4227 
4228 	if (hw->mac.type >= e1000_pch_spt) {
4229 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4230 			return -E1000_ERR_NVM;
4231 	} else {
4232 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4233 			return -E1000_ERR_NVM;
4234 	}
4235 
4236 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4237 			     hw->nvm.flash_base_addr);
4238 
4239 	do {
4240 		udelay(1);
4241 		/* Steps */
4242 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4243 		if (ret_val)
4244 			break;
4245 		/* In SPT, This register is in Lan memory space, not
4246 		 * flash.  Therefore, only 32 bit access is supported
4247 		 */
4248 		if (hw->mac.type >= e1000_pch_spt)
4249 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4250 		else
4251 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4252 
4253 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4254 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4255 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4256 		/* In SPT, This register is in Lan memory space,
4257 		 * not flash.  Therefore, only 32 bit access is
4258 		 * supported
4259 		 */
4260 		if (hw->mac.type >= e1000_pch_spt)
4261 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4262 		else
4263 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4264 
4265 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4266 
4267 		if (size == 1)
4268 			flash_data = (u32)data & 0x00FF;
4269 		else
4270 			flash_data = (u32)data;
4271 
4272 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4273 
4274 		/* check if FCERR is set to 1 , if set to 1, clear it
4275 		 * and try the whole sequence a few more times else done
4276 		 */
4277 		ret_val =
4278 		    e1000_flash_cycle_ich8lan(hw,
4279 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4280 		if (!ret_val)
4281 			break;
4282 
4283 		/* If we're here, then things are most likely
4284 		 * completely hosed, but if the error condition
4285 		 * is detected, it won't hurt to give it another
4286 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4287 		 */
4288 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4289 		if (hsfsts.hsf_status.flcerr)
4290 			/* Repeat for some time before giving up. */
4291 			continue;
4292 		if (!hsfsts.hsf_status.flcdone) {
4293 			e_dbg("Timeout error - flash cycle did not complete.\n");
4294 			break;
4295 		}
4296 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4297 
4298 	return ret_val;
4299 }
4300 
4301 /**
4302 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4303 *  @hw: pointer to the HW structure
4304 *  @offset: The offset (in bytes) of the dwords to read.
4305 *  @data: The 4 bytes to write to the NVM.
4306 *
4307 *  Writes one/two/four bytes to the NVM using the flash access registers.
4308 **/
4309 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4310 					    u32 data)
4311 {
4312 	union ich8_hws_flash_status hsfsts;
4313 	union ich8_hws_flash_ctrl hsflctl;
4314 	u32 flash_linear_addr;
4315 	s32 ret_val;
4316 	u8 count = 0;
4317 
4318 	if (hw->mac.type >= e1000_pch_spt) {
4319 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4320 			return -E1000_ERR_NVM;
4321 	}
4322 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4323 			     hw->nvm.flash_base_addr);
4324 	do {
4325 		udelay(1);
4326 		/* Steps */
4327 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4328 		if (ret_val)
4329 			break;
4330 
4331 		/* In SPT, This register is in Lan memory space, not
4332 		 * flash.  Therefore, only 32 bit access is supported
4333 		 */
4334 		if (hw->mac.type >= e1000_pch_spt)
4335 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4336 			    >> 16;
4337 		else
4338 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4339 
4340 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4341 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4342 
4343 		/* In SPT, This register is in Lan memory space,
4344 		 * not flash.  Therefore, only 32 bit access is
4345 		 * supported
4346 		 */
4347 		if (hw->mac.type >= e1000_pch_spt)
4348 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4349 		else
4350 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4351 
4352 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4353 
4354 		ew32flash(ICH_FLASH_FDATA0, data);
4355 
4356 		/* check if FCERR is set to 1 , if set to 1, clear it
4357 		 * and try the whole sequence a few more times else done
4358 		 */
4359 		ret_val =
4360 		   e1000_flash_cycle_ich8lan(hw,
4361 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4362 
4363 		if (!ret_val)
4364 			break;
4365 
4366 		/* If we're here, then things are most likely
4367 		 * completely hosed, but if the error condition
4368 		 * is detected, it won't hurt to give it another
4369 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4370 		 */
4371 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4372 
4373 		if (hsfsts.hsf_status.flcerr)
4374 			/* Repeat for some time before giving up. */
4375 			continue;
4376 		if (!hsfsts.hsf_status.flcdone) {
4377 			e_dbg("Timeout error - flash cycle did not complete.\n");
4378 			break;
4379 		}
4380 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4381 
4382 	return ret_val;
4383 }
4384 
4385 /**
4386  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4387  *  @hw: pointer to the HW structure
4388  *  @offset: The index of the byte to read.
4389  *  @data: The byte to write to the NVM.
4390  *
4391  *  Writes a single byte to the NVM using the flash access registers.
4392  **/
4393 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4394 					  u8 data)
4395 {
4396 	u16 word = (u16)data;
4397 
4398 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4399 }
4400 
4401 /**
4402 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4403 *  @hw: pointer to the HW structure
4404 *  @offset: The offset of the word to write.
4405 *  @dword: The dword to write to the NVM.
4406 *
4407 *  Writes a single dword to the NVM using the flash access registers.
4408 *  Goes through a retry algorithm before giving up.
4409 **/
4410 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4411 						 u32 offset, u32 dword)
4412 {
4413 	s32 ret_val;
4414 	u16 program_retries;
4415 
4416 	/* Must convert word offset into bytes. */
4417 	offset <<= 1;
4418 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4419 
4420 	if (!ret_val)
4421 		return ret_val;
4422 	for (program_retries = 0; program_retries < 100; program_retries++) {
4423 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4424 		usleep_range(100, 200);
4425 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4426 		if (!ret_val)
4427 			break;
4428 	}
4429 	if (program_retries == 100)
4430 		return -E1000_ERR_NVM;
4431 
4432 	return 0;
4433 }
4434 
4435 /**
4436  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4437  *  @hw: pointer to the HW structure
4438  *  @offset: The offset of the byte to write.
4439  *  @byte: The byte to write to the NVM.
4440  *
4441  *  Writes a single byte to the NVM using the flash access registers.
4442  *  Goes through a retry algorithm before giving up.
4443  **/
4444 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4445 						u32 offset, u8 byte)
4446 {
4447 	s32 ret_val;
4448 	u16 program_retries;
4449 
4450 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4451 	if (!ret_val)
4452 		return ret_val;
4453 
4454 	for (program_retries = 0; program_retries < 100; program_retries++) {
4455 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4456 		usleep_range(100, 200);
4457 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4458 		if (!ret_val)
4459 			break;
4460 	}
4461 	if (program_retries == 100)
4462 		return -E1000_ERR_NVM;
4463 
4464 	return 0;
4465 }
4466 
4467 /**
4468  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4469  *  @hw: pointer to the HW structure
4470  *  @bank: 0 for first bank, 1 for second bank, etc.
4471  *
4472  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4473  *  bank N is 4096 * N + flash_reg_addr.
4474  **/
4475 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4476 {
4477 	struct e1000_nvm_info *nvm = &hw->nvm;
4478 	union ich8_hws_flash_status hsfsts;
4479 	union ich8_hws_flash_ctrl hsflctl;
4480 	u32 flash_linear_addr;
4481 	/* bank size is in 16bit words - adjust to bytes */
4482 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4483 	s32 ret_val;
4484 	s32 count = 0;
4485 	s32 j, iteration, sector_size;
4486 
4487 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4488 
4489 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4490 	 * register
4491 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4492 	 *     consecutive sectors.  The start index for the nth Hw sector
4493 	 *     can be calculated as = bank * 4096 + n * 256
4494 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4495 	 *     The start index for the nth Hw sector can be calculated
4496 	 *     as = bank * 4096
4497 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4498 	 *     (ich9 only, otherwise error condition)
4499 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4500 	 */
4501 	switch (hsfsts.hsf_status.berasesz) {
4502 	case 0:
4503 		/* Hw sector size 256 */
4504 		sector_size = ICH_FLASH_SEG_SIZE_256;
4505 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4506 		break;
4507 	case 1:
4508 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4509 		iteration = 1;
4510 		break;
4511 	case 2:
4512 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4513 		iteration = 1;
4514 		break;
4515 	case 3:
4516 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4517 		iteration = 1;
4518 		break;
4519 	default:
4520 		return -E1000_ERR_NVM;
4521 	}
4522 
4523 	/* Start with the base address, then add the sector offset. */
4524 	flash_linear_addr = hw->nvm.flash_base_addr;
4525 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4526 
4527 	for (j = 0; j < iteration; j++) {
4528 		do {
4529 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4530 
4531 			/* Steps */
4532 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4533 			if (ret_val)
4534 				return ret_val;
4535 
4536 			/* Write a value 11 (block Erase) in Flash
4537 			 * Cycle field in hw flash control
4538 			 */
4539 			if (hw->mac.type >= e1000_pch_spt)
4540 				hsflctl.regval =
4541 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4542 			else
4543 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4544 
4545 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4546 			if (hw->mac.type >= e1000_pch_spt)
4547 				ew32flash(ICH_FLASH_HSFSTS,
4548 					  hsflctl.regval << 16);
4549 			else
4550 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4551 
4552 			/* Write the last 24 bits of an index within the
4553 			 * block into Flash Linear address field in Flash
4554 			 * Address.
4555 			 */
4556 			flash_linear_addr += (j * sector_size);
4557 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4558 
4559 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4560 			if (!ret_val)
4561 				break;
4562 
4563 			/* Check if FCERR is set to 1.  If 1,
4564 			 * clear it and try the whole sequence
4565 			 * a few more times else Done
4566 			 */
4567 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4568 			if (hsfsts.hsf_status.flcerr)
4569 				/* repeat for some time before giving up */
4570 				continue;
4571 			else if (!hsfsts.hsf_status.flcdone)
4572 				return ret_val;
4573 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4574 	}
4575 
4576 	return 0;
4577 }
4578 
4579 /**
4580  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4581  *  @hw: pointer to the HW structure
4582  *  @data: Pointer to the LED settings
4583  *
4584  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4585  *  settings is all 0's or F's, set the LED default to a valid LED default
4586  *  setting.
4587  **/
4588 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4589 {
4590 	s32 ret_val;
4591 
4592 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4593 	if (ret_val) {
4594 		e_dbg("NVM Read Error\n");
4595 		return ret_val;
4596 	}
4597 
4598 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4599 		*data = ID_LED_DEFAULT_ICH8LAN;
4600 
4601 	return 0;
4602 }
4603 
4604 /**
4605  *  e1000_id_led_init_pchlan - store LED configurations
4606  *  @hw: pointer to the HW structure
4607  *
4608  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4609  *  the PHY LED configuration register.
4610  *
4611  *  PCH also does not have an "always on" or "always off" mode which
4612  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4613  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4614  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4615  *  link based on logic in e1000_led_[on|off]_pchlan().
4616  **/
4617 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4618 {
4619 	struct e1000_mac_info *mac = &hw->mac;
4620 	s32 ret_val;
4621 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4622 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4623 	u16 data, i, temp, shift;
4624 
4625 	/* Get default ID LED modes */
4626 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4627 	if (ret_val)
4628 		return ret_val;
4629 
4630 	mac->ledctl_default = er32(LEDCTL);
4631 	mac->ledctl_mode1 = mac->ledctl_default;
4632 	mac->ledctl_mode2 = mac->ledctl_default;
4633 
4634 	for (i = 0; i < 4; i++) {
4635 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4636 		shift = (i * 5);
4637 		switch (temp) {
4638 		case ID_LED_ON1_DEF2:
4639 		case ID_LED_ON1_ON2:
4640 		case ID_LED_ON1_OFF2:
4641 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4642 			mac->ledctl_mode1 |= (ledctl_on << shift);
4643 			break;
4644 		case ID_LED_OFF1_DEF2:
4645 		case ID_LED_OFF1_ON2:
4646 		case ID_LED_OFF1_OFF2:
4647 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4648 			mac->ledctl_mode1 |= (ledctl_off << shift);
4649 			break;
4650 		default:
4651 			/* Do nothing */
4652 			break;
4653 		}
4654 		switch (temp) {
4655 		case ID_LED_DEF1_ON2:
4656 		case ID_LED_ON1_ON2:
4657 		case ID_LED_OFF1_ON2:
4658 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4659 			mac->ledctl_mode2 |= (ledctl_on << shift);
4660 			break;
4661 		case ID_LED_DEF1_OFF2:
4662 		case ID_LED_ON1_OFF2:
4663 		case ID_LED_OFF1_OFF2:
4664 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4665 			mac->ledctl_mode2 |= (ledctl_off << shift);
4666 			break;
4667 		default:
4668 			/* Do nothing */
4669 			break;
4670 		}
4671 	}
4672 
4673 	return 0;
4674 }
4675 
4676 /**
4677  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4678  *  @hw: pointer to the HW structure
4679  *
4680  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4681  *  register, so the bus width is hard coded.
4682  **/
4683 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4684 {
4685 	struct e1000_bus_info *bus = &hw->bus;
4686 	s32 ret_val;
4687 
4688 	ret_val = e1000e_get_bus_info_pcie(hw);
4689 
4690 	/* ICH devices are "PCI Express"-ish.  They have
4691 	 * a configuration space, but do not contain
4692 	 * PCI Express Capability registers, so bus width
4693 	 * must be hardcoded.
4694 	 */
4695 	if (bus->width == e1000_bus_width_unknown)
4696 		bus->width = e1000_bus_width_pcie_x1;
4697 
4698 	return ret_val;
4699 }
4700 
4701 /**
4702  *  e1000_reset_hw_ich8lan - Reset the hardware
4703  *  @hw: pointer to the HW structure
4704  *
4705  *  Does a full reset of the hardware which includes a reset of the PHY and
4706  *  MAC.
4707  **/
4708 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4709 {
4710 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4711 	u16 kum_cfg;
4712 	u32 ctrl, reg;
4713 	s32 ret_val;
4714 
4715 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4716 	 * on the last TLP read/write transaction when MAC is reset.
4717 	 */
4718 	ret_val = e1000e_disable_pcie_master(hw);
4719 	if (ret_val)
4720 		e_dbg("PCI-E Master disable polling has failed.\n");
4721 
4722 	e_dbg("Masking off all interrupts\n");
4723 	ew32(IMC, 0xffffffff);
4724 
4725 	/* Disable the Transmit and Receive units.  Then delay to allow
4726 	 * any pending transactions to complete before we hit the MAC
4727 	 * with the global reset.
4728 	 */
4729 	ew32(RCTL, 0);
4730 	ew32(TCTL, E1000_TCTL_PSP);
4731 	e1e_flush();
4732 
4733 	usleep_range(10000, 11000);
4734 
4735 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4736 	if (hw->mac.type == e1000_ich8lan) {
4737 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4738 		ew32(PBA, E1000_PBA_8K);
4739 		/* Set Packet Buffer Size to 16k. */
4740 		ew32(PBS, E1000_PBS_16K);
4741 	}
4742 
4743 	if (hw->mac.type == e1000_pchlan) {
4744 		/* Save the NVM K1 bit setting */
4745 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4746 		if (ret_val)
4747 			return ret_val;
4748 
4749 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4750 			dev_spec->nvm_k1_enabled = true;
4751 		else
4752 			dev_spec->nvm_k1_enabled = false;
4753 	}
4754 
4755 	ctrl = er32(CTRL);
4756 
4757 	if (!hw->phy.ops.check_reset_block(hw)) {
4758 		/* Full-chip reset requires MAC and PHY reset at the same
4759 		 * time to make sure the interface between MAC and the
4760 		 * external PHY is reset.
4761 		 */
4762 		ctrl |= E1000_CTRL_PHY_RST;
4763 
4764 		/* Gate automatic PHY configuration by hardware on
4765 		 * non-managed 82579
4766 		 */
4767 		if ((hw->mac.type == e1000_pch2lan) &&
4768 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4769 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4770 	}
4771 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4772 	e_dbg("Issuing a global reset to ich8lan\n");
4773 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4774 	/* cannot issue a flush here because it hangs the hardware */
4775 	msleep(20);
4776 
4777 	/* Set Phy Config Counter to 50msec */
4778 	if (hw->mac.type == e1000_pch2lan) {
4779 		reg = er32(FEXTNVM3);
4780 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4781 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4782 		ew32(FEXTNVM3, reg);
4783 	}
4784 
4785 	if (!ret_val)
4786 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4787 
4788 	if (ctrl & E1000_CTRL_PHY_RST) {
4789 		ret_val = hw->phy.ops.get_cfg_done(hw);
4790 		if (ret_val)
4791 			return ret_val;
4792 
4793 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4794 		if (ret_val)
4795 			return ret_val;
4796 	}
4797 
4798 	/* For PCH, this write will make sure that any noise
4799 	 * will be detected as a CRC error and be dropped rather than show up
4800 	 * as a bad packet to the DMA engine.
4801 	 */
4802 	if (hw->mac.type == e1000_pchlan)
4803 		ew32(CRC_OFFSET, 0x65656565);
4804 
4805 	ew32(IMC, 0xffffffff);
4806 	er32(ICR);
4807 
4808 	reg = er32(KABGTXD);
4809 	reg |= E1000_KABGTXD_BGSQLBIAS;
4810 	ew32(KABGTXD, reg);
4811 
4812 	return 0;
4813 }
4814 
4815 /**
4816  *  e1000_init_hw_ich8lan - Initialize the hardware
4817  *  @hw: pointer to the HW structure
4818  *
4819  *  Prepares the hardware for transmit and receive by doing the following:
4820  *   - initialize hardware bits
4821  *   - initialize LED identification
4822  *   - setup receive address registers
4823  *   - setup flow control
4824  *   - setup transmit descriptors
4825  *   - clear statistics
4826  **/
4827 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4828 {
4829 	struct e1000_mac_info *mac = &hw->mac;
4830 	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4831 	s32 ret_val;
4832 	u16 i;
4833 
4834 	e1000_initialize_hw_bits_ich8lan(hw);
4835 
4836 	/* Initialize identification LED */
4837 	ret_val = mac->ops.id_led_init(hw);
4838 	/* An error is not fatal and we should not stop init due to this */
4839 	if (ret_val)
4840 		e_dbg("Error initializing identification LED\n");
4841 
4842 	/* Setup the receive address. */
4843 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4844 
4845 	/* Zero out the Multicast HASH table */
4846 	e_dbg("Zeroing the MTA\n");
4847 	for (i = 0; i < mac->mta_reg_count; i++)
4848 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4849 
4850 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4851 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4852 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4853 	 */
4854 	if (hw->phy.type == e1000_phy_82578) {
4855 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4856 		i &= ~BM_WUC_HOST_WU_BIT;
4857 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4858 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4859 		if (ret_val)
4860 			return ret_val;
4861 	}
4862 
4863 	/* Setup link and flow control */
4864 	ret_val = mac->ops.setup_link(hw);
4865 
4866 	/* Set the transmit descriptor write-back policy for both queues */
4867 	txdctl = er32(TXDCTL(0));
4868 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4869 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4870 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4871 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4872 	ew32(TXDCTL(0), txdctl);
4873 	txdctl = er32(TXDCTL(1));
4874 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4875 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4876 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4877 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4878 	ew32(TXDCTL(1), txdctl);
4879 
4880 	/* ICH8 has opposite polarity of no_snoop bits.
4881 	 * By default, we should use snoop behavior.
4882 	 */
4883 	if (mac->type == e1000_ich8lan)
4884 		snoop = PCIE_ICH8_SNOOP_ALL;
4885 	else
4886 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4887 	e1000e_set_pcie_no_snoop(hw, snoop);
4888 
4889 	/* Enable workaround for packet loss issue on TGP PCH
4890 	 * Do not gate DMA clock from the modPHY block
4891 	 */
4892 	if (mac->type >= e1000_pch_tgp) {
4893 		fflt_dbg = er32(FFLT_DBG);
4894 		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4895 		ew32(FFLT_DBG, fflt_dbg);
4896 	}
4897 
4898 	ctrl_ext = er32(CTRL_EXT);
4899 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4900 	ew32(CTRL_EXT, ctrl_ext);
4901 
4902 	/* Clear all of the statistics registers (clear on read).  It is
4903 	 * important that we do this after we have tried to establish link
4904 	 * because the symbol error count will increment wildly if there
4905 	 * is no link.
4906 	 */
4907 	e1000_clear_hw_cntrs_ich8lan(hw);
4908 
4909 	return ret_val;
4910 }
4911 
4912 /**
4913  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4914  *  @hw: pointer to the HW structure
4915  *
4916  *  Sets/Clears required hardware bits necessary for correctly setting up the
4917  *  hardware for transmit and receive.
4918  **/
4919 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4920 {
4921 	u32 reg;
4922 
4923 	/* Extended Device Control */
4924 	reg = er32(CTRL_EXT);
4925 	reg |= BIT(22);
4926 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4927 	if (hw->mac.type >= e1000_pchlan)
4928 		reg |= E1000_CTRL_EXT_PHYPDEN;
4929 	ew32(CTRL_EXT, reg);
4930 
4931 	/* Transmit Descriptor Control 0 */
4932 	reg = er32(TXDCTL(0));
4933 	reg |= BIT(22);
4934 	ew32(TXDCTL(0), reg);
4935 
4936 	/* Transmit Descriptor Control 1 */
4937 	reg = er32(TXDCTL(1));
4938 	reg |= BIT(22);
4939 	ew32(TXDCTL(1), reg);
4940 
4941 	/* Transmit Arbitration Control 0 */
4942 	reg = er32(TARC(0));
4943 	if (hw->mac.type == e1000_ich8lan)
4944 		reg |= BIT(28) | BIT(29);
4945 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4946 	ew32(TARC(0), reg);
4947 
4948 	/* Transmit Arbitration Control 1 */
4949 	reg = er32(TARC(1));
4950 	if (er32(TCTL) & E1000_TCTL_MULR)
4951 		reg &= ~BIT(28);
4952 	else
4953 		reg |= BIT(28);
4954 	reg |= BIT(24) | BIT(26) | BIT(30);
4955 	ew32(TARC(1), reg);
4956 
4957 	/* Device Status */
4958 	if (hw->mac.type == e1000_ich8lan) {
4959 		reg = er32(STATUS);
4960 		reg &= ~BIT(31);
4961 		ew32(STATUS, reg);
4962 	}
4963 
4964 	/* work-around descriptor data corruption issue during nfs v2 udp
4965 	 * traffic, just disable the nfs filtering capability
4966 	 */
4967 	reg = er32(RFCTL);
4968 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4969 
4970 	/* Disable IPv6 extension header parsing because some malformed
4971 	 * IPv6 headers can hang the Rx.
4972 	 */
4973 	if (hw->mac.type == e1000_ich8lan)
4974 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4975 	ew32(RFCTL, reg);
4976 
4977 	/* Enable ECC on Lynxpoint */
4978 	if (hw->mac.type >= e1000_pch_lpt) {
4979 		reg = er32(PBECCSTS);
4980 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4981 		ew32(PBECCSTS, reg);
4982 
4983 		reg = er32(CTRL);
4984 		reg |= E1000_CTRL_MEHE;
4985 		ew32(CTRL, reg);
4986 	}
4987 }
4988 
4989 /**
4990  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4991  *  @hw: pointer to the HW structure
4992  *
4993  *  Determines which flow control settings to use, then configures flow
4994  *  control.  Calls the appropriate media-specific link configuration
4995  *  function.  Assuming the adapter has a valid link partner, a valid link
4996  *  should be established.  Assumes the hardware has previously been reset
4997  *  and the transmitter and receiver are not enabled.
4998  **/
4999 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5000 {
5001 	s32 ret_val;
5002 
5003 	if (hw->phy.ops.check_reset_block(hw))
5004 		return 0;
5005 
5006 	/* ICH parts do not have a word in the NVM to determine
5007 	 * the default flow control setting, so we explicitly
5008 	 * set it to full.
5009 	 */
5010 	if (hw->fc.requested_mode == e1000_fc_default) {
5011 		/* Workaround h/w hang when Tx flow control enabled */
5012 		if (hw->mac.type == e1000_pchlan)
5013 			hw->fc.requested_mode = e1000_fc_rx_pause;
5014 		else
5015 			hw->fc.requested_mode = e1000_fc_full;
5016 	}
5017 
5018 	/* Save off the requested flow control mode for use later.  Depending
5019 	 * on the link partner's capabilities, we may or may not use this mode.
5020 	 */
5021 	hw->fc.current_mode = hw->fc.requested_mode;
5022 
5023 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5024 
5025 	/* Continue to configure the copper link. */
5026 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5027 	if (ret_val)
5028 		return ret_val;
5029 
5030 	ew32(FCTTV, hw->fc.pause_time);
5031 	if ((hw->phy.type == e1000_phy_82578) ||
5032 	    (hw->phy.type == e1000_phy_82579) ||
5033 	    (hw->phy.type == e1000_phy_i217) ||
5034 	    (hw->phy.type == e1000_phy_82577)) {
5035 		ew32(FCRTV_PCH, hw->fc.refresh_time);
5036 
5037 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5038 				   hw->fc.pause_time);
5039 		if (ret_val)
5040 			return ret_val;
5041 	}
5042 
5043 	return e1000e_set_fc_watermarks(hw);
5044 }
5045 
5046 /**
5047  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5048  *  @hw: pointer to the HW structure
5049  *
5050  *  Configures the kumeran interface to the PHY to wait the appropriate time
5051  *  when polling the PHY, then call the generic setup_copper_link to finish
5052  *  configuring the copper link.
5053  **/
5054 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5055 {
5056 	u32 ctrl;
5057 	s32 ret_val;
5058 	u16 reg_data;
5059 
5060 	ctrl = er32(CTRL);
5061 	ctrl |= E1000_CTRL_SLU;
5062 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5063 	ew32(CTRL, ctrl);
5064 
5065 	/* Set the mac to wait the maximum time between each iteration
5066 	 * and increase the max iterations when polling the phy;
5067 	 * this fixes erroneous timeouts at 10Mbps.
5068 	 */
5069 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5070 	if (ret_val)
5071 		return ret_val;
5072 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5073 				       &reg_data);
5074 	if (ret_val)
5075 		return ret_val;
5076 	reg_data |= 0x3F;
5077 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5078 					reg_data);
5079 	if (ret_val)
5080 		return ret_val;
5081 
5082 	switch (hw->phy.type) {
5083 	case e1000_phy_igp_3:
5084 		ret_val = e1000e_copper_link_setup_igp(hw);
5085 		if (ret_val)
5086 			return ret_val;
5087 		break;
5088 	case e1000_phy_bm:
5089 	case e1000_phy_82578:
5090 		ret_val = e1000e_copper_link_setup_m88(hw);
5091 		if (ret_val)
5092 			return ret_val;
5093 		break;
5094 	case e1000_phy_82577:
5095 	case e1000_phy_82579:
5096 		ret_val = e1000_copper_link_setup_82577(hw);
5097 		if (ret_val)
5098 			return ret_val;
5099 		break;
5100 	case e1000_phy_ife:
5101 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5102 		if (ret_val)
5103 			return ret_val;
5104 
5105 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5106 
5107 		switch (hw->phy.mdix) {
5108 		case 1:
5109 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5110 			break;
5111 		case 2:
5112 			reg_data |= IFE_PMC_FORCE_MDIX;
5113 			break;
5114 		case 0:
5115 		default:
5116 			reg_data |= IFE_PMC_AUTO_MDIX;
5117 			break;
5118 		}
5119 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5120 		if (ret_val)
5121 			return ret_val;
5122 		break;
5123 	default:
5124 		break;
5125 	}
5126 
5127 	return e1000e_setup_copper_link(hw);
5128 }
5129 
5130 /**
5131  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5132  *  @hw: pointer to the HW structure
5133  *
5134  *  Calls the PHY specific link setup function and then calls the
5135  *  generic setup_copper_link to finish configuring the link for
5136  *  Lynxpoint PCH devices
5137  **/
5138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5139 {
5140 	u32 ctrl;
5141 	s32 ret_val;
5142 
5143 	ctrl = er32(CTRL);
5144 	ctrl |= E1000_CTRL_SLU;
5145 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5146 	ew32(CTRL, ctrl);
5147 
5148 	ret_val = e1000_copper_link_setup_82577(hw);
5149 	if (ret_val)
5150 		return ret_val;
5151 
5152 	return e1000e_setup_copper_link(hw);
5153 }
5154 
5155 /**
5156  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5157  *  @hw: pointer to the HW structure
5158  *  @speed: pointer to store current link speed
5159  *  @duplex: pointer to store the current link duplex
5160  *
5161  *  Calls the generic get_speed_and_duplex to retrieve the current link
5162  *  information and then calls the Kumeran lock loss workaround for links at
5163  *  gigabit speeds.
5164  **/
5165 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5166 					  u16 *duplex)
5167 {
5168 	s32 ret_val;
5169 
5170 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5171 	if (ret_val)
5172 		return ret_val;
5173 
5174 	if ((hw->mac.type == e1000_ich8lan) &&
5175 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5176 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5177 	}
5178 
5179 	return ret_val;
5180 }
5181 
5182 /**
5183  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5184  *  @hw: pointer to the HW structure
5185  *
5186  *  Work-around for 82566 Kumeran PCS lock loss:
5187  *  On link status change (i.e. PCI reset, speed change) and link is up and
5188  *  speed is gigabit-
5189  *    0) if workaround is optionally disabled do nothing
5190  *    1) wait 1ms for Kumeran link to come up
5191  *    2) check Kumeran Diagnostic register PCS lock loss bit
5192  *    3) if not set the link is locked (all is good), otherwise...
5193  *    4) reset the PHY
5194  *    5) repeat up to 10 times
5195  *  Note: this is only called for IGP3 copper when speed is 1gb.
5196  **/
5197 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5198 {
5199 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5200 	u32 phy_ctrl;
5201 	s32 ret_val;
5202 	u16 i, data;
5203 	bool link;
5204 
5205 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5206 		return 0;
5207 
5208 	/* Make sure link is up before proceeding.  If not just return.
5209 	 * Attempting this while link is negotiating fouled up link
5210 	 * stability
5211 	 */
5212 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5213 	if (!link)
5214 		return 0;
5215 
5216 	for (i = 0; i < 10; i++) {
5217 		/* read once to clear */
5218 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5219 		if (ret_val)
5220 			return ret_val;
5221 		/* and again to get new status */
5222 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5223 		if (ret_val)
5224 			return ret_val;
5225 
5226 		/* check for PCS lock */
5227 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5228 			return 0;
5229 
5230 		/* Issue PHY reset */
5231 		e1000_phy_hw_reset(hw);
5232 		mdelay(5);
5233 	}
5234 	/* Disable GigE link negotiation */
5235 	phy_ctrl = er32(PHY_CTRL);
5236 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5237 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5238 	ew32(PHY_CTRL, phy_ctrl);
5239 
5240 	/* Call gig speed drop workaround on Gig disable before accessing
5241 	 * any PHY registers
5242 	 */
5243 	e1000e_gig_downshift_workaround_ich8lan(hw);
5244 
5245 	/* unable to acquire PCS lock */
5246 	return -E1000_ERR_PHY;
5247 }
5248 
5249 /**
5250  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5251  *  @hw: pointer to the HW structure
5252  *  @state: boolean value used to set the current Kumeran workaround state
5253  *
5254  *  If ICH8, set the current Kumeran workaround state (enabled - true
5255  *  /disabled - false).
5256  **/
5257 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5258 						  bool state)
5259 {
5260 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5261 
5262 	if (hw->mac.type != e1000_ich8lan) {
5263 		e_dbg("Workaround applies to ICH8 only.\n");
5264 		return;
5265 	}
5266 
5267 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5268 }
5269 
5270 /**
5271  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5272  *  @hw: pointer to the HW structure
5273  *
5274  *  Workaround for 82566 power-down on D3 entry:
5275  *    1) disable gigabit link
5276  *    2) write VR power-down enable
5277  *    3) read it back
5278  *  Continue if successful, else issue LCD reset and repeat
5279  **/
5280 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5281 {
5282 	u32 reg;
5283 	u16 data;
5284 	u8 retry = 0;
5285 
5286 	if (hw->phy.type != e1000_phy_igp_3)
5287 		return;
5288 
5289 	/* Try the workaround twice (if needed) */
5290 	do {
5291 		/* Disable link */
5292 		reg = er32(PHY_CTRL);
5293 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5294 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5295 		ew32(PHY_CTRL, reg);
5296 
5297 		/* Call gig speed drop workaround on Gig disable before
5298 		 * accessing any PHY registers
5299 		 */
5300 		if (hw->mac.type == e1000_ich8lan)
5301 			e1000e_gig_downshift_workaround_ich8lan(hw);
5302 
5303 		/* Write VR power-down enable */
5304 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5305 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5306 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5307 
5308 		/* Read it back and test */
5309 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5310 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5311 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5312 			break;
5313 
5314 		/* Issue PHY reset and repeat at most one more time */
5315 		reg = er32(CTRL);
5316 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5317 		retry++;
5318 	} while (retry);
5319 }
5320 
5321 /**
5322  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5323  *  @hw: pointer to the HW structure
5324  *
5325  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5326  *  LPLU, Gig disable, MDIC PHY reset):
5327  *    1) Set Kumeran Near-end loopback
5328  *    2) Clear Kumeran Near-end loopback
5329  *  Should only be called for ICH8[m] devices with any 1G Phy.
5330  **/
5331 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5332 {
5333 	s32 ret_val;
5334 	u16 reg_data;
5335 
5336 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5337 		return;
5338 
5339 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5340 				       &reg_data);
5341 	if (ret_val)
5342 		return;
5343 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5344 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5345 					reg_data);
5346 	if (ret_val)
5347 		return;
5348 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5349 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5350 }
5351 
5352 /**
5353  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5354  *  @hw: pointer to the HW structure
5355  *
5356  *  During S0 to Sx transition, it is possible the link remains at gig
5357  *  instead of negotiating to a lower speed.  Before going to Sx, set
5358  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5359  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5360  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5361  *  needs to be written.
5362  *  Parts that support (and are linked to a partner which support) EEE in
5363  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5364  *  than 10Mbps w/o EEE.
5365  **/
5366 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5367 {
5368 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5369 	u32 phy_ctrl;
5370 	s32 ret_val;
5371 
5372 	phy_ctrl = er32(PHY_CTRL);
5373 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5374 
5375 	if (hw->phy.type == e1000_phy_i217) {
5376 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5377 
5378 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5379 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5380 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5381 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5382 		    (hw->mac.type >= e1000_pch_spt)) {
5383 			u32 fextnvm6 = er32(FEXTNVM6);
5384 
5385 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5386 		}
5387 
5388 		ret_val = hw->phy.ops.acquire(hw);
5389 		if (ret_val)
5390 			goto out;
5391 
5392 		if (!dev_spec->eee_disable) {
5393 			u16 eee_advert;
5394 
5395 			ret_val =
5396 			    e1000_read_emi_reg_locked(hw,
5397 						      I217_EEE_ADVERTISEMENT,
5398 						      &eee_advert);
5399 			if (ret_val)
5400 				goto release;
5401 
5402 			/* Disable LPLU if both link partners support 100BaseT
5403 			 * EEE and 100Full is advertised on both ends of the
5404 			 * link, and enable Auto Enable LPI since there will
5405 			 * be no driver to enable LPI while in Sx.
5406 			 */
5407 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5408 			    (dev_spec->eee_lp_ability &
5409 			     I82579_EEE_100_SUPPORTED) &&
5410 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5411 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5412 					      E1000_PHY_CTRL_NOND0A_LPLU);
5413 
5414 				/* Set Auto Enable LPI after link up */
5415 				e1e_rphy_locked(hw,
5416 						I217_LPI_GPIO_CTRL, &phy_reg);
5417 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5418 				e1e_wphy_locked(hw,
5419 						I217_LPI_GPIO_CTRL, phy_reg);
5420 			}
5421 		}
5422 
5423 		/* For i217 Intel Rapid Start Technology support,
5424 		 * when the system is going into Sx and no manageability engine
5425 		 * is present, the driver must configure proxy to reset only on
5426 		 * power good.  LPI (Low Power Idle) state must also reset only
5427 		 * on power good, as well as the MTA (Multicast table array).
5428 		 * The SMBus release must also be disabled on LCD reset.
5429 		 */
5430 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5431 			/* Enable proxy to reset only on power good. */
5432 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5433 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5434 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5435 
5436 			/* Set bit enable LPI (EEE) to reset only on
5437 			 * power good.
5438 			 */
5439 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5440 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5441 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5442 
5443 			/* Disable the SMB release on LCD reset. */
5444 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5445 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5446 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5447 		}
5448 
5449 		/* Enable MTA to reset for Intel Rapid Start Technology
5450 		 * Support
5451 		 */
5452 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5453 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5454 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5455 
5456 release:
5457 		hw->phy.ops.release(hw);
5458 	}
5459 out:
5460 	ew32(PHY_CTRL, phy_ctrl);
5461 
5462 	if (hw->mac.type == e1000_ich8lan)
5463 		e1000e_gig_downshift_workaround_ich8lan(hw);
5464 
5465 	if (hw->mac.type >= e1000_pchlan) {
5466 		e1000_oem_bits_config_ich8lan(hw, false);
5467 
5468 		/* Reset PHY to activate OEM bits on 82577/8 */
5469 		if (hw->mac.type == e1000_pchlan)
5470 			e1000e_phy_hw_reset_generic(hw);
5471 
5472 		ret_val = hw->phy.ops.acquire(hw);
5473 		if (ret_val)
5474 			return;
5475 		e1000_write_smbus_addr(hw);
5476 		hw->phy.ops.release(hw);
5477 	}
5478 }
5479 
5480 /**
5481  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5482  *  @hw: pointer to the HW structure
5483  *
5484  *  During Sx to S0 transitions on non-managed devices or managed devices
5485  *  on which PHY resets are not blocked, if the PHY registers cannot be
5486  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5487  *  the PHY.
5488  *  On i217, setup Intel Rapid Start Technology.
5489  **/
5490 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5491 {
5492 	s32 ret_val;
5493 
5494 	if (hw->mac.type < e1000_pch2lan)
5495 		return;
5496 
5497 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5498 	if (ret_val) {
5499 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5500 		return;
5501 	}
5502 
5503 	/* For i217 Intel Rapid Start Technology support when the system
5504 	 * is transitioning from Sx and no manageability engine is present
5505 	 * configure SMBus to restore on reset, disable proxy, and enable
5506 	 * the reset on MTA (Multicast table array).
5507 	 */
5508 	if (hw->phy.type == e1000_phy_i217) {
5509 		u16 phy_reg;
5510 
5511 		ret_val = hw->phy.ops.acquire(hw);
5512 		if (ret_val) {
5513 			e_dbg("Failed to setup iRST\n");
5514 			return;
5515 		}
5516 
5517 		/* Clear Auto Enable LPI after link up */
5518 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5519 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5520 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5521 
5522 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5523 			/* Restore clear on SMB if no manageability engine
5524 			 * is present
5525 			 */
5526 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5527 			if (ret_val)
5528 				goto release;
5529 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5530 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5531 
5532 			/* Disable Proxy */
5533 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5534 		}
5535 		/* Enable reset on MTA */
5536 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5537 		if (ret_val)
5538 			goto release;
5539 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5540 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5541 release:
5542 		if (ret_val)
5543 			e_dbg("Error %d in resume workarounds\n", ret_val);
5544 		hw->phy.ops.release(hw);
5545 	}
5546 }
5547 
5548 /**
5549  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5550  *  @hw: pointer to the HW structure
5551  *
5552  *  Return the LED back to the default configuration.
5553  **/
5554 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5555 {
5556 	if (hw->phy.type == e1000_phy_ife)
5557 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5558 
5559 	ew32(LEDCTL, hw->mac.ledctl_default);
5560 	return 0;
5561 }
5562 
5563 /**
5564  *  e1000_led_on_ich8lan - Turn LEDs on
5565  *  @hw: pointer to the HW structure
5566  *
5567  *  Turn on the LEDs.
5568  **/
5569 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5570 {
5571 	if (hw->phy.type == e1000_phy_ife)
5572 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5573 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5574 
5575 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5576 	return 0;
5577 }
5578 
5579 /**
5580  *  e1000_led_off_ich8lan - Turn LEDs off
5581  *  @hw: pointer to the HW structure
5582  *
5583  *  Turn off the LEDs.
5584  **/
5585 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5586 {
5587 	if (hw->phy.type == e1000_phy_ife)
5588 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5589 				(IFE_PSCL_PROBE_MODE |
5590 				 IFE_PSCL_PROBE_LEDS_OFF));
5591 
5592 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5593 	return 0;
5594 }
5595 
5596 /**
5597  *  e1000_setup_led_pchlan - Configures SW controllable LED
5598  *  @hw: pointer to the HW structure
5599  *
5600  *  This prepares the SW controllable LED for use.
5601  **/
5602 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5603 {
5604 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5605 }
5606 
5607 /**
5608  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5609  *  @hw: pointer to the HW structure
5610  *
5611  *  Return the LED back to the default configuration.
5612  **/
5613 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5614 {
5615 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5616 }
5617 
5618 /**
5619  *  e1000_led_on_pchlan - Turn LEDs on
5620  *  @hw: pointer to the HW structure
5621  *
5622  *  Turn on the LEDs.
5623  **/
5624 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5625 {
5626 	u16 data = (u16)hw->mac.ledctl_mode2;
5627 	u32 i, led;
5628 
5629 	/* If no link, then turn LED on by setting the invert bit
5630 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5631 	 */
5632 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5633 		for (i = 0; i < 3; i++) {
5634 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5635 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5636 			    E1000_LEDCTL_MODE_LINK_UP)
5637 				continue;
5638 			if (led & E1000_PHY_LED0_IVRT)
5639 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5640 			else
5641 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5642 		}
5643 	}
5644 
5645 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5646 }
5647 
5648 /**
5649  *  e1000_led_off_pchlan - Turn LEDs off
5650  *  @hw: pointer to the HW structure
5651  *
5652  *  Turn off the LEDs.
5653  **/
5654 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5655 {
5656 	u16 data = (u16)hw->mac.ledctl_mode1;
5657 	u32 i, led;
5658 
5659 	/* If no link, then turn LED off by clearing the invert bit
5660 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5661 	 */
5662 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5663 		for (i = 0; i < 3; i++) {
5664 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5665 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5666 			    E1000_LEDCTL_MODE_LINK_UP)
5667 				continue;
5668 			if (led & E1000_PHY_LED0_IVRT)
5669 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5670 			else
5671 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5672 		}
5673 	}
5674 
5675 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5676 }
5677 
5678 /**
5679  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5680  *  @hw: pointer to the HW structure
5681  *
5682  *  Read appropriate register for the config done bit for completion status
5683  *  and configure the PHY through s/w for EEPROM-less parts.
5684  *
5685  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5686  *  config done bit, so only an error is logged and continues.  If we were
5687  *  to return with error, EEPROM-less silicon would not be able to be reset
5688  *  or change link.
5689  **/
5690 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5691 {
5692 	s32 ret_val = 0;
5693 	u32 bank = 0;
5694 	u32 status;
5695 
5696 	e1000e_get_cfg_done_generic(hw);
5697 
5698 	/* Wait for indication from h/w that it has completed basic config */
5699 	if (hw->mac.type >= e1000_ich10lan) {
5700 		e1000_lan_init_done_ich8lan(hw);
5701 	} else {
5702 		ret_val = e1000e_get_auto_rd_done(hw);
5703 		if (ret_val) {
5704 			/* When auto config read does not complete, do not
5705 			 * return with an error. This can happen in situations
5706 			 * where there is no eeprom and prevents getting link.
5707 			 */
5708 			e_dbg("Auto Read Done did not complete\n");
5709 			ret_val = 0;
5710 		}
5711 	}
5712 
5713 	/* Clear PHY Reset Asserted bit */
5714 	status = er32(STATUS);
5715 	if (status & E1000_STATUS_PHYRA)
5716 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5717 	else
5718 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5719 
5720 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5721 	if (hw->mac.type <= e1000_ich9lan) {
5722 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5723 		    (hw->phy.type == e1000_phy_igp_3)) {
5724 			e1000e_phy_init_script_igp3(hw);
5725 		}
5726 	} else {
5727 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5728 			/* Maybe we should do a basic PHY config */
5729 			e_dbg("EEPROM not present\n");
5730 			ret_val = -E1000_ERR_CONFIG;
5731 		}
5732 	}
5733 
5734 	return ret_val;
5735 }
5736 
5737 /**
5738  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5739  * @hw: pointer to the HW structure
5740  *
5741  * In the case of a PHY power down to save power, or to turn off link during a
5742  * driver unload, or wake on lan is not enabled, remove the link.
5743  **/
5744 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5745 {
5746 	/* If the management interface is not enabled, then power down */
5747 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5748 	      hw->phy.ops.check_reset_block(hw)))
5749 		e1000_power_down_phy_copper(hw);
5750 }
5751 
5752 /**
5753  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5754  *  @hw: pointer to the HW structure
5755  *
5756  *  Clears hardware counters specific to the silicon family and calls
5757  *  clear_hw_cntrs_generic to clear all general purpose counters.
5758  **/
5759 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5760 {
5761 	u16 phy_data;
5762 	s32 ret_val;
5763 
5764 	e1000e_clear_hw_cntrs_base(hw);
5765 
5766 	er32(ALGNERRC);
5767 	er32(RXERRC);
5768 	er32(TNCRS);
5769 	er32(CEXTERR);
5770 	er32(TSCTC);
5771 	er32(TSCTFC);
5772 
5773 	er32(MGTPRC);
5774 	er32(MGTPDC);
5775 	er32(MGTPTC);
5776 
5777 	er32(IAC);
5778 	er32(ICRXOC);
5779 
5780 	/* Clear PHY statistics registers */
5781 	if ((hw->phy.type == e1000_phy_82578) ||
5782 	    (hw->phy.type == e1000_phy_82579) ||
5783 	    (hw->phy.type == e1000_phy_i217) ||
5784 	    (hw->phy.type == e1000_phy_82577)) {
5785 		ret_val = hw->phy.ops.acquire(hw);
5786 		if (ret_val)
5787 			return;
5788 		ret_val = hw->phy.ops.set_page(hw,
5789 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5790 		if (ret_val)
5791 			goto release;
5792 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5793 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5794 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5795 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5796 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5797 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5798 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5799 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5800 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5801 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5802 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5803 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5804 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5805 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5806 release:
5807 		hw->phy.ops.release(hw);
5808 	}
5809 }
5810 
5811 static const struct e1000_mac_operations ich8_mac_ops = {
5812 	/* check_mng_mode dependent on mac type */
5813 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5814 	/* cleanup_led dependent on mac type */
5815 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5816 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5817 	.set_lan_id		= e1000_set_lan_id_single_port,
5818 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5819 	/* led_on dependent on mac type */
5820 	/* led_off dependent on mac type */
5821 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5822 	.reset_hw		= e1000_reset_hw_ich8lan,
5823 	.init_hw		= e1000_init_hw_ich8lan,
5824 	.setup_link		= e1000_setup_link_ich8lan,
5825 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5826 	/* id_led_init dependent on mac type */
5827 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5828 	.rar_set		= e1000e_rar_set_generic,
5829 	.rar_get_count		= e1000e_rar_get_count_generic,
5830 };
5831 
5832 static const struct e1000_phy_operations ich8_phy_ops = {
5833 	.acquire		= e1000_acquire_swflag_ich8lan,
5834 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5835 	.commit			= NULL,
5836 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5837 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5838 	.read_reg		= e1000e_read_phy_reg_igp,
5839 	.release		= e1000_release_swflag_ich8lan,
5840 	.reset			= e1000_phy_hw_reset_ich8lan,
5841 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5842 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5843 	.write_reg		= e1000e_write_phy_reg_igp,
5844 };
5845 
5846 static const struct e1000_nvm_operations ich8_nvm_ops = {
5847 	.acquire		= e1000_acquire_nvm_ich8lan,
5848 	.read			= e1000_read_nvm_ich8lan,
5849 	.release		= e1000_release_nvm_ich8lan,
5850 	.reload			= e1000e_reload_nvm_generic,
5851 	.update			= e1000_update_nvm_checksum_ich8lan,
5852 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5853 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5854 	.write			= e1000_write_nvm_ich8lan,
5855 };
5856 
5857 static const struct e1000_nvm_operations spt_nvm_ops = {
5858 	.acquire		= e1000_acquire_nvm_ich8lan,
5859 	.release		= e1000_release_nvm_ich8lan,
5860 	.read			= e1000_read_nvm_spt,
5861 	.update			= e1000_update_nvm_checksum_spt,
5862 	.reload			= e1000e_reload_nvm_generic,
5863 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5864 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5865 	.write			= e1000_write_nvm_ich8lan,
5866 };
5867 
5868 const struct e1000_info e1000_ich8_info = {
5869 	.mac			= e1000_ich8lan,
5870 	.flags			= FLAG_HAS_WOL
5871 				  | FLAG_IS_ICH
5872 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5873 				  | FLAG_HAS_AMT
5874 				  | FLAG_HAS_FLASH
5875 				  | FLAG_APME_IN_WUC,
5876 	.pba			= 8,
5877 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5878 	.get_variants		= e1000_get_variants_ich8lan,
5879 	.mac_ops		= &ich8_mac_ops,
5880 	.phy_ops		= &ich8_phy_ops,
5881 	.nvm_ops		= &ich8_nvm_ops,
5882 };
5883 
5884 const struct e1000_info e1000_ich9_info = {
5885 	.mac			= e1000_ich9lan,
5886 	.flags			= FLAG_HAS_JUMBO_FRAMES
5887 				  | FLAG_IS_ICH
5888 				  | FLAG_HAS_WOL
5889 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5890 				  | FLAG_HAS_AMT
5891 				  | FLAG_HAS_FLASH
5892 				  | FLAG_APME_IN_WUC,
5893 	.pba			= 18,
5894 	.max_hw_frame_size	= DEFAULT_JUMBO,
5895 	.get_variants		= e1000_get_variants_ich8lan,
5896 	.mac_ops		= &ich8_mac_ops,
5897 	.phy_ops		= &ich8_phy_ops,
5898 	.nvm_ops		= &ich8_nvm_ops,
5899 };
5900 
5901 const struct e1000_info e1000_ich10_info = {
5902 	.mac			= e1000_ich10lan,
5903 	.flags			= FLAG_HAS_JUMBO_FRAMES
5904 				  | FLAG_IS_ICH
5905 				  | FLAG_HAS_WOL
5906 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5907 				  | FLAG_HAS_AMT
5908 				  | FLAG_HAS_FLASH
5909 				  | FLAG_APME_IN_WUC,
5910 	.pba			= 18,
5911 	.max_hw_frame_size	= DEFAULT_JUMBO,
5912 	.get_variants		= e1000_get_variants_ich8lan,
5913 	.mac_ops		= &ich8_mac_ops,
5914 	.phy_ops		= &ich8_phy_ops,
5915 	.nvm_ops		= &ich8_nvm_ops,
5916 };
5917 
5918 const struct e1000_info e1000_pch_info = {
5919 	.mac			= e1000_pchlan,
5920 	.flags			= FLAG_IS_ICH
5921 				  | FLAG_HAS_WOL
5922 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5923 				  | FLAG_HAS_AMT
5924 				  | FLAG_HAS_FLASH
5925 				  | FLAG_HAS_JUMBO_FRAMES
5926 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5927 				  | FLAG_APME_IN_WUC,
5928 	.flags2			= FLAG2_HAS_PHY_STATS,
5929 	.pba			= 26,
5930 	.max_hw_frame_size	= 4096,
5931 	.get_variants		= e1000_get_variants_ich8lan,
5932 	.mac_ops		= &ich8_mac_ops,
5933 	.phy_ops		= &ich8_phy_ops,
5934 	.nvm_ops		= &ich8_nvm_ops,
5935 };
5936 
5937 const struct e1000_info e1000_pch2_info = {
5938 	.mac			= e1000_pch2lan,
5939 	.flags			= FLAG_IS_ICH
5940 				  | FLAG_HAS_WOL
5941 				  | FLAG_HAS_HW_TIMESTAMP
5942 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5943 				  | FLAG_HAS_AMT
5944 				  | FLAG_HAS_FLASH
5945 				  | FLAG_HAS_JUMBO_FRAMES
5946 				  | FLAG_APME_IN_WUC,
5947 	.flags2			= FLAG2_HAS_PHY_STATS
5948 				  | FLAG2_HAS_EEE
5949 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5950 	.pba			= 26,
5951 	.max_hw_frame_size	= 9022,
5952 	.get_variants		= e1000_get_variants_ich8lan,
5953 	.mac_ops		= &ich8_mac_ops,
5954 	.phy_ops		= &ich8_phy_ops,
5955 	.nvm_ops		= &ich8_nvm_ops,
5956 };
5957 
5958 const struct e1000_info e1000_pch_lpt_info = {
5959 	.mac			= e1000_pch_lpt,
5960 	.flags			= FLAG_IS_ICH
5961 				  | FLAG_HAS_WOL
5962 				  | FLAG_HAS_HW_TIMESTAMP
5963 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5964 				  | FLAG_HAS_AMT
5965 				  | FLAG_HAS_FLASH
5966 				  | FLAG_HAS_JUMBO_FRAMES
5967 				  | FLAG_APME_IN_WUC,
5968 	.flags2			= FLAG2_HAS_PHY_STATS
5969 				  | FLAG2_HAS_EEE
5970 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5971 	.pba			= 26,
5972 	.max_hw_frame_size	= 9022,
5973 	.get_variants		= e1000_get_variants_ich8lan,
5974 	.mac_ops		= &ich8_mac_ops,
5975 	.phy_ops		= &ich8_phy_ops,
5976 	.nvm_ops		= &ich8_nvm_ops,
5977 };
5978 
5979 const struct e1000_info e1000_pch_spt_info = {
5980 	.mac			= e1000_pch_spt,
5981 	.flags			= FLAG_IS_ICH
5982 				  | FLAG_HAS_WOL
5983 				  | FLAG_HAS_HW_TIMESTAMP
5984 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5985 				  | FLAG_HAS_AMT
5986 				  | FLAG_HAS_FLASH
5987 				  | FLAG_HAS_JUMBO_FRAMES
5988 				  | FLAG_APME_IN_WUC,
5989 	.flags2			= FLAG2_HAS_PHY_STATS
5990 				  | FLAG2_HAS_EEE,
5991 	.pba			= 26,
5992 	.max_hw_frame_size	= 9022,
5993 	.get_variants		= e1000_get_variants_ich8lan,
5994 	.mac_ops		= &ich8_mac_ops,
5995 	.phy_ops		= &ich8_phy_ops,
5996 	.nvm_ops		= &spt_nvm_ops,
5997 };
5998 
5999 const struct e1000_info e1000_pch_cnp_info = {
6000 	.mac			= e1000_pch_cnp,
6001 	.flags			= FLAG_IS_ICH
6002 				  | FLAG_HAS_WOL
6003 				  | FLAG_HAS_HW_TIMESTAMP
6004 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6005 				  | FLAG_HAS_AMT
6006 				  | FLAG_HAS_FLASH
6007 				  | FLAG_HAS_JUMBO_FRAMES
6008 				  | FLAG_APME_IN_WUC,
6009 	.flags2			= FLAG2_HAS_PHY_STATS
6010 				  | FLAG2_HAS_EEE,
6011 	.pba			= 26,
6012 	.max_hw_frame_size	= 9022,
6013 	.get_variants		= e1000_get_variants_ich8lan,
6014 	.mac_ops		= &ich8_mac_ops,
6015 	.phy_ops		= &ich8_phy_ops,
6016 	.nvm_ops		= &spt_nvm_ops,
6017 };
6018 
6019 const struct e1000_info e1000_pch_tgp_info = {
6020 	.mac			= e1000_pch_tgp,
6021 	.flags			= FLAG_IS_ICH
6022 				  | FLAG_HAS_WOL
6023 				  | FLAG_HAS_HW_TIMESTAMP
6024 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6025 				  | FLAG_HAS_AMT
6026 				  | FLAG_HAS_FLASH
6027 				  | FLAG_HAS_JUMBO_FRAMES
6028 				  | FLAG_APME_IN_WUC,
6029 	.flags2			= FLAG2_HAS_PHY_STATS
6030 				  | FLAG2_HAS_EEE,
6031 	.pba			= 26,
6032 	.max_hw_frame_size	= 9022,
6033 	.get_variants		= e1000_get_variants_ich8lan,
6034 	.mac_ops		= &ich8_mac_ops,
6035 	.phy_ops		= &ich8_phy_ops,
6036 	.nvm_ops		= &spt_nvm_ops,
6037 };
6038 
6039 const struct e1000_info e1000_pch_adp_info = {
6040 	.mac			= e1000_pch_adp,
6041 	.flags			= FLAG_IS_ICH
6042 				  | FLAG_HAS_WOL
6043 				  | FLAG_HAS_HW_TIMESTAMP
6044 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6045 				  | FLAG_HAS_AMT
6046 				  | FLAG_HAS_FLASH
6047 				  | FLAG_HAS_JUMBO_FRAMES
6048 				  | FLAG_APME_IN_WUC,
6049 	.flags2			= FLAG2_HAS_PHY_STATS
6050 				  | FLAG2_HAS_EEE,
6051 	.pba			= 26,
6052 	.max_hw_frame_size	= 9022,
6053 	.get_variants		= e1000_get_variants_ich8lan,
6054 	.mac_ops		= &ich8_mac_ops,
6055 	.phy_ops		= &ich8_phy_ops,
6056 	.nvm_ops		= &spt_nvm_ops,
6057 };
6058 
6059 const struct e1000_info e1000_pch_mtp_info = {
6060 	.mac			= e1000_pch_mtp,
6061 	.flags			= FLAG_IS_ICH
6062 				  | FLAG_HAS_WOL
6063 				  | FLAG_HAS_HW_TIMESTAMP
6064 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6065 				  | FLAG_HAS_AMT
6066 				  | FLAG_HAS_FLASH
6067 				  | FLAG_HAS_JUMBO_FRAMES
6068 				  | FLAG_APME_IN_WUC,
6069 	.flags2			= FLAG2_HAS_PHY_STATS
6070 				  | FLAG2_HAS_EEE,
6071 	.pba			= 26,
6072 	.max_hw_frame_size	= 9022,
6073 	.get_variants		= e1000_get_variants_ich8lan,
6074 	.mac_ops		= &ich8_mac_ops,
6075 	.phy_ops		= &ich8_phy_ops,
6076 	.nvm_ops		= &spt_nvm_ops,
6077 };
6078