1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* 82562G 10/100 Network Connection 5 * 82562G-2 10/100 Network Connection 6 * 82562GT 10/100 Network Connection 7 * 82562GT-2 10/100 Network Connection 8 * 82562V 10/100 Network Connection 9 * 82562V-2 10/100 Network Connection 10 * 82566DC-2 Gigabit Network Connection 11 * 82566DC Gigabit Network Connection 12 * 82566DM-2 Gigabit Network Connection 13 * 82566DM Gigabit Network Connection 14 * 82566MC Gigabit Network Connection 15 * 82566MM Gigabit Network Connection 16 * 82567LM Gigabit Network Connection 17 * 82567LF Gigabit Network Connection 18 * 82567V Gigabit Network Connection 19 * 82567LM-2 Gigabit Network Connection 20 * 82567LF-2 Gigabit Network Connection 21 * 82567V-2 Gigabit Network Connection 22 * 82567LF-3 Gigabit Network Connection 23 * 82567LM-3 Gigabit Network Connection 24 * 82567LM-4 Gigabit Network Connection 25 * 82577LM Gigabit Network Connection 26 * 82577LC Gigabit Network Connection 27 * 82578DM Gigabit Network Connection 28 * 82578DC Gigabit Network Connection 29 * 82579LM Gigabit Network Connection 30 * 82579V Gigabit Network Connection 31 * Ethernet Connection I217-LM 32 * Ethernet Connection I217-V 33 * Ethernet Connection I218-V 34 * Ethernet Connection I218-LM 35 * Ethernet Connection (2) I218-LM 36 * Ethernet Connection (2) I218-V 37 * Ethernet Connection (3) I218-LM 38 * Ethernet Connection (3) I218-V 39 */ 40 41 #include "e1000.h" 42 43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 44 /* Offset 04h HSFSTS */ 45 union ich8_hws_flash_status { 46 struct ich8_hsfsts { 47 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 48 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 49 u16 dael:1; /* bit 2 Direct Access error Log */ 50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 52 u16 reserved1:2; /* bit 13:6 Reserved */ 53 u16 reserved2:6; /* bit 13:6 Reserved */ 54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 56 } hsf_status; 57 u16 regval; 58 }; 59 60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 61 /* Offset 06h FLCTL */ 62 union ich8_hws_flash_ctrl { 63 struct ich8_hsflctl { 64 u16 flcgo:1; /* 0 Flash Cycle Go */ 65 u16 flcycle:2; /* 2:1 Flash Cycle */ 66 u16 reserved:5; /* 7:3 Reserved */ 67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 68 u16 flockdn:6; /* 15:10 Reserved */ 69 } hsf_ctrl; 70 u16 regval; 71 }; 72 73 /* ICH Flash Region Access Permissions */ 74 union ich8_hws_flash_regacc { 75 struct ich8_flracc { 76 u32 grra:8; /* 0:7 GbE region Read Access */ 77 u32 grwa:8; /* 8:15 GbE region Write Access */ 78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 80 } hsf_flregacc; 81 u16 regval; 82 }; 83 84 /* ICH Flash Protected Region */ 85 union ich8_flash_protected_range { 86 struct ich8_pr { 87 u32 base:13; /* 0:12 Protected Range Base */ 88 u32 reserved1:2; /* 13:14 Reserved */ 89 u32 rpe:1; /* 15 Read Protection Enable */ 90 u32 limit:13; /* 16:28 Protected Range Limit */ 91 u32 reserved2:2; /* 29:30 Reserved */ 92 u32 wpe:1; /* 31 Write Protection Enable */ 93 } range; 94 u32 regval; 95 }; 96 97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 101 u32 offset, u8 byte); 102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 103 u8 *data); 104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 105 u16 *data); 106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 107 u8 size, u16 *data); 108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 109 u32 *data); 110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, 111 u32 offset, u32 *data); 112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, 113 u32 offset, u32 data); 114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 115 u32 offset, u32 dword); 116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); 135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); 138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); 140 141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 142 { 143 return readw(hw->flash_address + reg); 144 } 145 146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 147 { 148 return readl(hw->flash_address + reg); 149 } 150 151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 152 { 153 writew(val, hw->flash_address + reg); 154 } 155 156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 157 { 158 writel(val, hw->flash_address + reg); 159 } 160 161 #define er16flash(reg) __er16flash(hw, (reg)) 162 #define er32flash(reg) __er32flash(hw, (reg)) 163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 165 166 /** 167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 168 * @hw: pointer to the HW structure 169 * 170 * Test access to the PHY registers by reading the PHY ID registers. If 171 * the PHY ID is already known (e.g. resume path) compare it with known ID, 172 * otherwise assume the read PHY ID is correct if it is valid. 173 * 174 * Assumes the sw/fw/hw semaphore is already acquired. 175 **/ 176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 177 { 178 u16 phy_reg = 0; 179 u32 phy_id = 0; 180 s32 ret_val = 0; 181 u16 retry_count; 182 u32 mac_reg = 0; 183 184 for (retry_count = 0; retry_count < 2; retry_count++) { 185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); 186 if (ret_val || (phy_reg == 0xFFFF)) 187 continue; 188 phy_id = (u32)(phy_reg << 16); 189 190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); 191 if (ret_val || (phy_reg == 0xFFFF)) { 192 phy_id = 0; 193 continue; 194 } 195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 196 break; 197 } 198 199 if (hw->phy.id) { 200 if (hw->phy.id == phy_id) 201 goto out; 202 } else if (phy_id) { 203 hw->phy.id = phy_id; 204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 205 goto out; 206 } 207 208 /* In case the PHY needs to be in mdio slow mode, 209 * set slow mode and try to get the PHY id again. 210 */ 211 if (hw->mac.type < e1000_pch_lpt) { 212 hw->phy.ops.release(hw); 213 ret_val = e1000_set_mdio_slow_mode_hv(hw); 214 if (!ret_val) 215 ret_val = e1000e_get_phy_id(hw); 216 hw->phy.ops.acquire(hw); 217 } 218 219 if (ret_val) 220 return false; 221 out: 222 if (hw->mac.type >= e1000_pch_lpt) { 223 /* Only unforce SMBus if ME is not active */ 224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 225 /* Unforce SMBus mode in PHY */ 226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); 227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); 229 230 /* Unforce SMBus mode in MAC */ 231 mac_reg = er32(CTRL_EXT); 232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 233 ew32(CTRL_EXT, mac_reg); 234 } 235 } 236 237 return true; 238 } 239 240 /** 241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 242 * @hw: pointer to the HW structure 243 * 244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 245 * used to reset the PHY to a quiescent state when necessary. 246 **/ 247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 248 { 249 u32 mac_reg; 250 251 /* Set Phy Config Counter to 50msec */ 252 mac_reg = er32(FEXTNVM3); 253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 255 ew32(FEXTNVM3, mac_reg); 256 257 /* Toggle LANPHYPC Value bit */ 258 mac_reg = er32(CTRL); 259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 261 ew32(CTRL, mac_reg); 262 e1e_flush(); 263 usleep_range(10, 20); 264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 265 ew32(CTRL, mac_reg); 266 e1e_flush(); 267 268 if (hw->mac.type < e1000_pch_lpt) { 269 msleep(50); 270 } else { 271 u16 count = 20; 272 273 do { 274 usleep_range(5000, 6000); 275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); 276 277 msleep(30); 278 } 279 } 280 281 /** 282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 283 * @hw: pointer to the HW structure 284 * 285 * Workarounds/flow necessary for PHY initialization during driver load 286 * and resume paths. 287 **/ 288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 289 { 290 struct e1000_adapter *adapter = hw->adapter; 291 u32 mac_reg, fwsm = er32(FWSM); 292 s32 ret_val; 293 294 /* Gate automatic PHY configuration by hardware on managed and 295 * non-managed 82579 and newer adapters. 296 */ 297 e1000_gate_hw_phy_config_ich8lan(hw, true); 298 299 /* It is not possible to be certain of the current state of ULP 300 * so forcibly disable it. 301 */ 302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 303 ret_val = e1000_disable_ulp_lpt_lp(hw, true); 304 if (ret_val) 305 e_warn("Failed to disable ULP\n"); 306 307 ret_val = hw->phy.ops.acquire(hw); 308 if (ret_val) { 309 e_dbg("Failed to initialize PHY flow\n"); 310 goto out; 311 } 312 313 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 314 * inaccessible and resetting the PHY is not blocked, toggle the 315 * LANPHYPC Value bit to force the interconnect to PCIe mode. 316 */ 317 switch (hw->mac.type) { 318 case e1000_pch_lpt: 319 case e1000_pch_spt: 320 case e1000_pch_cnp: 321 case e1000_pch_tgp: 322 case e1000_pch_adp: 323 case e1000_pch_mtp: 324 case e1000_pch_lnp: 325 case e1000_pch_ptp: 326 case e1000_pch_nvp: 327 if (e1000_phy_is_accessible_pchlan(hw)) 328 break; 329 330 /* Before toggling LANPHYPC, see if PHY is accessible by 331 * forcing MAC to SMBus mode first. 332 */ 333 mac_reg = er32(CTRL_EXT); 334 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 335 ew32(CTRL_EXT, mac_reg); 336 337 /* Wait 50 milliseconds for MAC to finish any retries 338 * that it might be trying to perform from previous 339 * attempts to acknowledge any phy read requests. 340 */ 341 msleep(50); 342 343 fallthrough; 344 case e1000_pch2lan: 345 if (e1000_phy_is_accessible_pchlan(hw)) 346 break; 347 348 fallthrough; 349 case e1000_pchlan: 350 if ((hw->mac.type == e1000_pchlan) && 351 (fwsm & E1000_ICH_FWSM_FW_VALID)) 352 break; 353 354 if (hw->phy.ops.check_reset_block(hw)) { 355 e_dbg("Required LANPHYPC toggle blocked by ME\n"); 356 ret_val = -E1000_ERR_PHY; 357 break; 358 } 359 360 /* Toggle LANPHYPC Value bit */ 361 e1000_toggle_lanphypc_pch_lpt(hw); 362 if (hw->mac.type >= e1000_pch_lpt) { 363 if (e1000_phy_is_accessible_pchlan(hw)) 364 break; 365 366 /* Toggling LANPHYPC brings the PHY out of SMBus mode 367 * so ensure that the MAC is also out of SMBus mode 368 */ 369 mac_reg = er32(CTRL_EXT); 370 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 371 ew32(CTRL_EXT, mac_reg); 372 373 if (e1000_phy_is_accessible_pchlan(hw)) 374 break; 375 376 ret_val = -E1000_ERR_PHY; 377 } 378 break; 379 default: 380 break; 381 } 382 383 hw->phy.ops.release(hw); 384 if (!ret_val) { 385 386 /* Check to see if able to reset PHY. Print error if not */ 387 if (hw->phy.ops.check_reset_block(hw)) { 388 e_err("Reset blocked by ME\n"); 389 goto out; 390 } 391 392 /* Reset the PHY before any access to it. Doing so, ensures 393 * that the PHY is in a known good state before we read/write 394 * PHY registers. The generic reset is sufficient here, 395 * because we haven't determined the PHY type yet. 396 */ 397 ret_val = e1000e_phy_hw_reset_generic(hw); 398 if (ret_val) 399 goto out; 400 401 /* On a successful reset, possibly need to wait for the PHY 402 * to quiesce to an accessible state before returning control 403 * to the calling function. If the PHY does not quiesce, then 404 * return E1000E_BLK_PHY_RESET, as this is the condition that 405 * the PHY is in. 406 */ 407 ret_val = hw->phy.ops.check_reset_block(hw); 408 if (ret_val) 409 e_err("ME blocked access to PHY after reset\n"); 410 } 411 412 out: 413 /* Ungate automatic PHY configuration on non-managed 82579 */ 414 if ((hw->mac.type == e1000_pch2lan) && 415 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 416 usleep_range(10000, 11000); 417 e1000_gate_hw_phy_config_ich8lan(hw, false); 418 } 419 420 return ret_val; 421 } 422 423 /** 424 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 425 * @hw: pointer to the HW structure 426 * 427 * Initialize family-specific PHY parameters and function pointers. 428 **/ 429 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 430 { 431 struct e1000_phy_info *phy = &hw->phy; 432 s32 ret_val; 433 434 phy->addr = 1; 435 phy->reset_delay_us = 100; 436 437 phy->ops.set_page = e1000_set_page_igp; 438 phy->ops.read_reg = e1000_read_phy_reg_hv; 439 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 440 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 441 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 442 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 443 phy->ops.write_reg = e1000_write_phy_reg_hv; 444 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 445 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 446 phy->ops.power_up = e1000_power_up_phy_copper; 447 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 448 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 449 450 phy->id = e1000_phy_unknown; 451 452 ret_val = e1000_init_phy_workarounds_pchlan(hw); 453 if (ret_val) 454 return ret_val; 455 456 if (phy->id == e1000_phy_unknown) 457 switch (hw->mac.type) { 458 default: 459 ret_val = e1000e_get_phy_id(hw); 460 if (ret_val) 461 return ret_val; 462 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 463 break; 464 fallthrough; 465 case e1000_pch2lan: 466 case e1000_pch_lpt: 467 case e1000_pch_spt: 468 case e1000_pch_cnp: 469 case e1000_pch_tgp: 470 case e1000_pch_adp: 471 case e1000_pch_mtp: 472 case e1000_pch_lnp: 473 case e1000_pch_ptp: 474 case e1000_pch_nvp: 475 /* In case the PHY needs to be in mdio slow mode, 476 * set slow mode and try to get the PHY id again. 477 */ 478 ret_val = e1000_set_mdio_slow_mode_hv(hw); 479 if (ret_val) 480 return ret_val; 481 ret_val = e1000e_get_phy_id(hw); 482 if (ret_val) 483 return ret_val; 484 break; 485 } 486 phy->type = e1000e_get_phy_type_from_id(phy->id); 487 488 switch (phy->type) { 489 case e1000_phy_82577: 490 case e1000_phy_82579: 491 case e1000_phy_i217: 492 phy->ops.check_polarity = e1000_check_polarity_82577; 493 phy->ops.force_speed_duplex = 494 e1000_phy_force_speed_duplex_82577; 495 phy->ops.get_cable_length = e1000_get_cable_length_82577; 496 phy->ops.get_info = e1000_get_phy_info_82577; 497 phy->ops.commit = e1000e_phy_sw_reset; 498 break; 499 case e1000_phy_82578: 500 phy->ops.check_polarity = e1000_check_polarity_m88; 501 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 502 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 503 phy->ops.get_info = e1000e_get_phy_info_m88; 504 break; 505 default: 506 ret_val = -E1000_ERR_PHY; 507 break; 508 } 509 510 return ret_val; 511 } 512 513 /** 514 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 515 * @hw: pointer to the HW structure 516 * 517 * Initialize family-specific PHY parameters and function pointers. 518 **/ 519 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 520 { 521 struct e1000_phy_info *phy = &hw->phy; 522 s32 ret_val; 523 u16 i = 0; 524 525 phy->addr = 1; 526 phy->reset_delay_us = 100; 527 528 phy->ops.power_up = e1000_power_up_phy_copper; 529 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 530 531 /* We may need to do this twice - once for IGP and if that fails, 532 * we'll set BM func pointers and try again 533 */ 534 ret_val = e1000e_determine_phy_address(hw); 535 if (ret_val) { 536 phy->ops.write_reg = e1000e_write_phy_reg_bm; 537 phy->ops.read_reg = e1000e_read_phy_reg_bm; 538 ret_val = e1000e_determine_phy_address(hw); 539 if (ret_val) { 540 e_dbg("Cannot determine PHY addr. Erroring out\n"); 541 return ret_val; 542 } 543 } 544 545 phy->id = 0; 546 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 547 (i++ < 100)) { 548 usleep_range(1000, 1100); 549 ret_val = e1000e_get_phy_id(hw); 550 if (ret_val) 551 return ret_val; 552 } 553 554 /* Verify phy id */ 555 switch (phy->id) { 556 case IGP03E1000_E_PHY_ID: 557 phy->type = e1000_phy_igp_3; 558 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 559 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 560 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 561 phy->ops.get_info = e1000e_get_phy_info_igp; 562 phy->ops.check_polarity = e1000_check_polarity_igp; 563 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 564 break; 565 case IFE_E_PHY_ID: 566 case IFE_PLUS_E_PHY_ID: 567 case IFE_C_E_PHY_ID: 568 phy->type = e1000_phy_ife; 569 phy->autoneg_mask = E1000_ALL_NOT_GIG; 570 phy->ops.get_info = e1000_get_phy_info_ife; 571 phy->ops.check_polarity = e1000_check_polarity_ife; 572 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 573 break; 574 case BME1000_E_PHY_ID: 575 phy->type = e1000_phy_bm; 576 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 577 phy->ops.read_reg = e1000e_read_phy_reg_bm; 578 phy->ops.write_reg = e1000e_write_phy_reg_bm; 579 phy->ops.commit = e1000e_phy_sw_reset; 580 phy->ops.get_info = e1000e_get_phy_info_m88; 581 phy->ops.check_polarity = e1000_check_polarity_m88; 582 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 583 break; 584 default: 585 return -E1000_ERR_PHY; 586 } 587 588 return 0; 589 } 590 591 /** 592 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 593 * @hw: pointer to the HW structure 594 * 595 * Initialize family-specific NVM parameters and function 596 * pointers. 597 **/ 598 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 599 { 600 struct e1000_nvm_info *nvm = &hw->nvm; 601 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 602 u32 gfpreg, sector_base_addr, sector_end_addr; 603 u16 i; 604 u32 nvm_size; 605 606 nvm->type = e1000_nvm_flash_sw; 607 608 if (hw->mac.type >= e1000_pch_spt) { 609 /* in SPT, gfpreg doesn't exist. NVM size is taken from the 610 * STRAP register. This is because in SPT the GbE Flash region 611 * is no longer accessed through the flash registers. Instead, 612 * the mechanism has changed, and the Flash region access 613 * registers are now implemented in GbE memory space. 614 */ 615 nvm->flash_base_addr = 0; 616 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) 617 * NVM_SIZE_MULTIPLIER; 618 nvm->flash_bank_size = nvm_size / 2; 619 /* Adjust to word count */ 620 nvm->flash_bank_size /= sizeof(u16); 621 /* Set the base address for flash register access */ 622 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; 623 } else { 624 /* Can't read flash registers if register set isn't mapped. */ 625 if (!hw->flash_address) { 626 e_dbg("ERROR: Flash registers not mapped\n"); 627 return -E1000_ERR_CONFIG; 628 } 629 630 gfpreg = er32flash(ICH_FLASH_GFPREG); 631 632 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 633 * Add 1 to sector_end_addr since this sector is included in 634 * the overall size. 635 */ 636 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 637 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 638 639 /* flash_base_addr is byte-aligned */ 640 nvm->flash_base_addr = sector_base_addr 641 << FLASH_SECTOR_ADDR_SHIFT; 642 643 /* find total size of the NVM, then cut in half since the total 644 * size represents two separate NVM banks. 645 */ 646 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 647 << FLASH_SECTOR_ADDR_SHIFT); 648 nvm->flash_bank_size /= 2; 649 /* Adjust to word count */ 650 nvm->flash_bank_size /= sizeof(u16); 651 } 652 653 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 654 655 /* Clear shadow ram */ 656 for (i = 0; i < nvm->word_size; i++) { 657 dev_spec->shadow_ram[i].modified = false; 658 dev_spec->shadow_ram[i].value = 0xFFFF; 659 } 660 661 return 0; 662 } 663 664 /** 665 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 666 * @hw: pointer to the HW structure 667 * 668 * Initialize family-specific MAC parameters and function 669 * pointers. 670 **/ 671 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 672 { 673 struct e1000_mac_info *mac = &hw->mac; 674 675 /* Set media type function pointer */ 676 hw->phy.media_type = e1000_media_type_copper; 677 678 /* Set mta register count */ 679 mac->mta_reg_count = 32; 680 /* Set rar entry count */ 681 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 682 if (mac->type == e1000_ich8lan) 683 mac->rar_entry_count--; 684 /* FWSM register */ 685 mac->has_fwsm = true; 686 /* ARC subsystem not supported */ 687 mac->arc_subsystem_valid = false; 688 /* Adaptive IFS supported */ 689 mac->adaptive_ifs = true; 690 691 /* LED and other operations */ 692 switch (mac->type) { 693 case e1000_ich8lan: 694 case e1000_ich9lan: 695 case e1000_ich10lan: 696 /* check management mode */ 697 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 698 /* ID LED init */ 699 mac->ops.id_led_init = e1000e_id_led_init_generic; 700 /* blink LED */ 701 mac->ops.blink_led = e1000e_blink_led_generic; 702 /* setup LED */ 703 mac->ops.setup_led = e1000e_setup_led_generic; 704 /* cleanup LED */ 705 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 706 /* turn on/off LED */ 707 mac->ops.led_on = e1000_led_on_ich8lan; 708 mac->ops.led_off = e1000_led_off_ich8lan; 709 break; 710 case e1000_pch2lan: 711 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 712 mac->ops.rar_set = e1000_rar_set_pch2lan; 713 fallthrough; 714 case e1000_pch_lpt: 715 case e1000_pch_spt: 716 case e1000_pch_cnp: 717 case e1000_pch_tgp: 718 case e1000_pch_adp: 719 case e1000_pch_mtp: 720 case e1000_pch_lnp: 721 case e1000_pch_ptp: 722 case e1000_pch_nvp: 723 case e1000_pchlan: 724 /* check management mode */ 725 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 726 /* ID LED init */ 727 mac->ops.id_led_init = e1000_id_led_init_pchlan; 728 /* setup LED */ 729 mac->ops.setup_led = e1000_setup_led_pchlan; 730 /* cleanup LED */ 731 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 732 /* turn on/off LED */ 733 mac->ops.led_on = e1000_led_on_pchlan; 734 mac->ops.led_off = e1000_led_off_pchlan; 735 break; 736 default: 737 break; 738 } 739 740 if (mac->type >= e1000_pch_lpt) { 741 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 742 mac->ops.rar_set = e1000_rar_set_pch_lpt; 743 mac->ops.setup_physical_interface = 744 e1000_setup_copper_link_pch_lpt; 745 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; 746 } 747 748 /* Enable PCS Lock-loss workaround for ICH8 */ 749 if (mac->type == e1000_ich8lan) 750 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 751 752 return 0; 753 } 754 755 /** 756 * __e1000_access_emi_reg_locked - Read/write EMI register 757 * @hw: pointer to the HW structure 758 * @address: EMI address to program 759 * @data: pointer to value to read/write from/to the EMI address 760 * @read: boolean flag to indicate read or write 761 * 762 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 763 **/ 764 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 765 u16 *data, bool read) 766 { 767 s32 ret_val; 768 769 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); 770 if (ret_val) 771 return ret_val; 772 773 if (read) 774 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); 775 else 776 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); 777 778 return ret_val; 779 } 780 781 /** 782 * e1000_read_emi_reg_locked - Read Extended Management Interface register 783 * @hw: pointer to the HW structure 784 * @addr: EMI address to program 785 * @data: value to be read from the EMI address 786 * 787 * Assumes the SW/FW/HW Semaphore is already acquired. 788 **/ 789 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 790 { 791 return __e1000_access_emi_reg_locked(hw, addr, data, true); 792 } 793 794 /** 795 * e1000_write_emi_reg_locked - Write Extended Management Interface register 796 * @hw: pointer to the HW structure 797 * @addr: EMI address to program 798 * @data: value to be written to the EMI address 799 * 800 * Assumes the SW/FW/HW Semaphore is already acquired. 801 **/ 802 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 803 { 804 return __e1000_access_emi_reg_locked(hw, addr, &data, false); 805 } 806 807 /** 808 * e1000_set_eee_pchlan - Enable/disable EEE support 809 * @hw: pointer to the HW structure 810 * 811 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 812 * the link and the EEE capabilities of the link partner. The LPI Control 813 * register bits will remain set only if/when link is up. 814 * 815 * EEE LPI must not be asserted earlier than one second after link is up. 816 * On 82579, EEE LPI should not be enabled until such time otherwise there 817 * can be link issues with some switches. Other devices can have EEE LPI 818 * enabled immediately upon link up since they have a timer in hardware which 819 * prevents LPI from being asserted too early. 820 **/ 821 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 822 { 823 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 824 s32 ret_val; 825 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 826 827 switch (hw->phy.type) { 828 case e1000_phy_82579: 829 lpa = I82579_EEE_LP_ABILITY; 830 pcs_status = I82579_EEE_PCS_STATUS; 831 adv_addr = I82579_EEE_ADVERTISEMENT; 832 break; 833 case e1000_phy_i217: 834 lpa = I217_EEE_LP_ABILITY; 835 pcs_status = I217_EEE_PCS_STATUS; 836 adv_addr = I217_EEE_ADVERTISEMENT; 837 break; 838 default: 839 return 0; 840 } 841 842 ret_val = hw->phy.ops.acquire(hw); 843 if (ret_val) 844 return ret_val; 845 846 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 847 if (ret_val) 848 goto release; 849 850 /* Clear bits that enable EEE in various speeds */ 851 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 852 853 /* Enable EEE if not disabled by user */ 854 if (!dev_spec->eee_disable) { 855 /* Save off link partner's EEE ability */ 856 ret_val = e1000_read_emi_reg_locked(hw, lpa, 857 &dev_spec->eee_lp_ability); 858 if (ret_val) 859 goto release; 860 861 /* Read EEE advertisement */ 862 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 863 if (ret_val) 864 goto release; 865 866 /* Enable EEE only for speeds in which the link partner is 867 * EEE capable and for which we advertise EEE. 868 */ 869 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 870 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 871 872 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 873 e1e_rphy_locked(hw, MII_LPA, &data); 874 if (data & LPA_100FULL) 875 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 876 else 877 /* EEE is not supported in 100Half, so ignore 878 * partner's EEE in 100 ability if full-duplex 879 * is not advertised. 880 */ 881 dev_spec->eee_lp_ability &= 882 ~I82579_EEE_100_SUPPORTED; 883 } 884 } 885 886 if (hw->phy.type == e1000_phy_82579) { 887 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 888 &data); 889 if (ret_val) 890 goto release; 891 892 data &= ~I82579_LPI_100_PLL_SHUT; 893 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 894 data); 895 } 896 897 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 898 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 899 if (ret_val) 900 goto release; 901 902 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 903 release: 904 hw->phy.ops.release(hw); 905 906 return ret_val; 907 } 908 909 /** 910 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 911 * @hw: pointer to the HW structure 912 * @link: link up bool flag 913 * 914 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 915 * preventing further DMA write requests. Workaround the issue by disabling 916 * the de-assertion of the clock request when in 1Gpbs mode. 917 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 918 * speeds in order to avoid Tx hangs. 919 **/ 920 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 921 { 922 u32 fextnvm6 = er32(FEXTNVM6); 923 u32 status = er32(STATUS); 924 s32 ret_val = 0; 925 u16 reg; 926 927 if (link && (status & E1000_STATUS_SPEED_1000)) { 928 ret_val = hw->phy.ops.acquire(hw); 929 if (ret_val) 930 return ret_val; 931 932 ret_val = 933 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 934 ®); 935 if (ret_val) 936 goto release; 937 938 ret_val = 939 e1000e_write_kmrn_reg_locked(hw, 940 E1000_KMRNCTRLSTA_K1_CONFIG, 941 reg & 942 ~E1000_KMRNCTRLSTA_K1_ENABLE); 943 if (ret_val) 944 goto release; 945 946 usleep_range(10, 20); 947 948 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 949 950 ret_val = 951 e1000e_write_kmrn_reg_locked(hw, 952 E1000_KMRNCTRLSTA_K1_CONFIG, 953 reg); 954 release: 955 hw->phy.ops.release(hw); 956 } else { 957 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 958 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 959 960 if ((hw->phy.revision > 5) || !link || 961 ((status & E1000_STATUS_SPEED_100) && 962 (status & E1000_STATUS_FD))) 963 goto update_fextnvm6; 964 965 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); 966 if (ret_val) 967 return ret_val; 968 969 /* Clear link status transmit timeout */ 970 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 971 972 if (status & E1000_STATUS_SPEED_100) { 973 /* Set inband Tx timeout to 5x10us for 100Half */ 974 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 975 976 /* Do not extend the K1 entry latency for 100Half */ 977 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 978 } else { 979 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 980 reg |= 50 << 981 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 982 983 /* Extend the K1 entry latency for 10 Mbps */ 984 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 985 } 986 987 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); 988 if (ret_val) 989 return ret_val; 990 991 update_fextnvm6: 992 ew32(FEXTNVM6, fextnvm6); 993 } 994 995 return ret_val; 996 } 997 998 /** 999 * e1000_platform_pm_pch_lpt - Set platform power management values 1000 * @hw: pointer to the HW structure 1001 * @link: bool indicating link status 1002 * 1003 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 1004 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 1005 * when link is up (which must not exceed the maximum latency supported 1006 * by the platform), otherwise specify there is no LTR requirement. 1007 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop 1008 * latencies in the LTR Extended Capability Structure in the PCIe Extended 1009 * Capability register set, on this device LTR is set by writing the 1010 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 1011 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 1012 * message to the PMC. 1013 **/ 1014 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 1015 { 1016 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 1017 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 1018 u32 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */ 1019 u32 lat_enc_d = 0; /* latency decoded */ 1020 u16 lat_enc = 0; /* latency encoded */ 1021 1022 if (link) { 1023 u16 speed, duplex, scale = 0; 1024 u16 max_snoop, max_nosnoop; 1025 u16 max_ltr_enc; /* max LTR latency encoded */ 1026 u64 value; 1027 u32 rxa; 1028 1029 if (!hw->adapter->max_frame_size) { 1030 e_dbg("max_frame_size not set.\n"); 1031 return -E1000_ERR_CONFIG; 1032 } 1033 1034 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 1035 if (!speed) { 1036 e_dbg("Speed not set.\n"); 1037 return -E1000_ERR_CONFIG; 1038 } 1039 1040 /* Rx Packet Buffer Allocation size (KB) */ 1041 rxa = er32(PBA) & E1000_PBA_RXA_MASK; 1042 1043 /* Determine the maximum latency tolerated by the device. 1044 * 1045 * Per the PCIe spec, the tolerated latencies are encoded as 1046 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1047 * a 10-bit value (0-1023) to provide a range from 1 ns to 1048 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1049 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1050 */ 1051 rxa *= 512; 1052 value = (rxa > hw->adapter->max_frame_size) ? 1053 (rxa - hw->adapter->max_frame_size) * (16000 / speed) : 1054 0; 1055 1056 while (value > PCI_LTR_VALUE_MASK) { 1057 scale++; 1058 value = DIV_ROUND_UP(value, BIT(5)); 1059 } 1060 if (scale > E1000_LTRV_SCALE_MAX) { 1061 e_dbg("Invalid LTR latency scale %d\n", scale); 1062 return -E1000_ERR_CONFIG; 1063 } 1064 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); 1065 1066 /* Determine the maximum latency tolerated by the platform */ 1067 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, 1068 &max_snoop); 1069 pci_read_config_word(hw->adapter->pdev, 1070 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1071 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); 1072 1073 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) * 1074 (1U << (E1000_LTRV_SCALE_FACTOR * 1075 ((lat_enc & E1000_LTRV_SCALE_MASK) 1076 >> E1000_LTRV_SCALE_SHIFT))); 1077 1078 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) * 1079 (1U << (E1000_LTRV_SCALE_FACTOR * 1080 ((max_ltr_enc & E1000_LTRV_SCALE_MASK) 1081 >> E1000_LTRV_SCALE_SHIFT))); 1082 1083 if (lat_enc_d > max_ltr_enc_d) 1084 lat_enc = max_ltr_enc; 1085 } 1086 1087 /* Set Snoop and No-Snoop latencies the same */ 1088 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1089 ew32(LTRV, reg); 1090 1091 return 0; 1092 } 1093 1094 /** 1095 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1096 * @hw: pointer to the HW structure 1097 * @to_sx: boolean indicating a system power state transition to Sx 1098 * 1099 * When link is down, configure ULP mode to significantly reduce the power 1100 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1101 * ME firmware to start the ULP configuration. If not on an ME enabled 1102 * system, configure the ULP mode by software. 1103 */ 1104 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1105 { 1106 u32 mac_reg; 1107 s32 ret_val = 0; 1108 u16 phy_reg; 1109 u16 oem_reg = 0; 1110 1111 if ((hw->mac.type < e1000_pch_lpt) || 1112 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1113 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1114 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1115 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1116 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1117 return 0; 1118 1119 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1120 /* Request ME configure ULP mode in the PHY */ 1121 mac_reg = er32(H2ME); 1122 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1123 ew32(H2ME, mac_reg); 1124 1125 goto out; 1126 } 1127 1128 if (!to_sx) { 1129 int i = 0; 1130 1131 /* Poll up to 5 seconds for Cable Disconnected indication */ 1132 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1133 /* Bail if link is re-acquired */ 1134 if (er32(STATUS) & E1000_STATUS_LU) 1135 return -E1000_ERR_PHY; 1136 1137 if (i++ == 100) 1138 break; 1139 1140 msleep(50); 1141 } 1142 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", 1143 (er32(FEXT) & 1144 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); 1145 } 1146 1147 ret_val = hw->phy.ops.acquire(hw); 1148 if (ret_val) 1149 goto out; 1150 1151 /* Force SMBus mode in PHY */ 1152 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1153 if (ret_val) 1154 goto release; 1155 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; 1156 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1157 1158 /* Force SMBus mode in MAC */ 1159 mac_reg = er32(CTRL_EXT); 1160 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1161 ew32(CTRL_EXT, mac_reg); 1162 1163 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable 1164 * LPLU and disable Gig speed when entering ULP 1165 */ 1166 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { 1167 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, 1168 &oem_reg); 1169 if (ret_val) 1170 goto release; 1171 1172 phy_reg = oem_reg; 1173 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; 1174 1175 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1176 phy_reg); 1177 1178 if (ret_val) 1179 goto release; 1180 } 1181 1182 /* Set Inband ULP Exit, Reset to SMBus mode and 1183 * Disable SMBus Release on PERST# in PHY 1184 */ 1185 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1186 if (ret_val) 1187 goto release; 1188 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1189 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1190 if (to_sx) { 1191 if (er32(WUFC) & E1000_WUFC_LNKC) 1192 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1193 else 1194 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1195 1196 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1197 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; 1198 } else { 1199 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1200 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; 1201 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1202 } 1203 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1204 1205 /* Set Disable SMBus Release on PERST# in MAC */ 1206 mac_reg = er32(FEXTNVM7); 1207 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1208 ew32(FEXTNVM7, mac_reg); 1209 1210 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1211 phy_reg |= I218_ULP_CONFIG1_START; 1212 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1213 1214 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && 1215 to_sx && (er32(STATUS) & E1000_STATUS_LU)) { 1216 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1217 oem_reg); 1218 if (ret_val) 1219 goto release; 1220 } 1221 1222 release: 1223 hw->phy.ops.release(hw); 1224 out: 1225 if (ret_val) 1226 e_dbg("Error in ULP enable flow: %d\n", ret_val); 1227 else 1228 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1229 1230 return ret_val; 1231 } 1232 1233 /** 1234 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1235 * @hw: pointer to the HW structure 1236 * @force: boolean indicating whether or not to force disabling ULP 1237 * 1238 * Un-configure ULP mode when link is up, the system is transitioned from 1239 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1240 * system, poll for an indication from ME that ULP has been un-configured. 1241 * If not on an ME enabled system, un-configure the ULP mode by software. 1242 * 1243 * During nominal operation, this function is called when link is acquired 1244 * to disable ULP mode (force=false); otherwise, for example when unloading 1245 * the driver or during Sx->S0 transitions, this is called with force=true 1246 * to forcibly disable ULP. 1247 */ 1248 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1249 { 1250 s32 ret_val = 0; 1251 u32 mac_reg; 1252 u16 phy_reg; 1253 int i = 0; 1254 1255 if ((hw->mac.type < e1000_pch_lpt) || 1256 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1257 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1258 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1259 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1260 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1261 return 0; 1262 1263 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1264 struct e1000_adapter *adapter = hw->adapter; 1265 bool firmware_bug = false; 1266 1267 if (force) { 1268 /* Request ME un-configure ULP mode in the PHY */ 1269 mac_reg = er32(H2ME); 1270 mac_reg &= ~E1000_H2ME_ULP; 1271 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1272 ew32(H2ME, mac_reg); 1273 } 1274 1275 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE. 1276 * If this takes more than 1 second, show a warning indicating a 1277 * firmware bug 1278 */ 1279 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { 1280 if (i++ == 250) { 1281 ret_val = -E1000_ERR_PHY; 1282 goto out; 1283 } 1284 if (i > 100 && !firmware_bug) 1285 firmware_bug = true; 1286 1287 usleep_range(10000, 11000); 1288 } 1289 if (firmware_bug) 1290 e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n", 1291 i * 10); 1292 else 1293 e_dbg("ULP_CONFIG_DONE cleared after %d msec\n", 1294 i * 10); 1295 1296 if (force) { 1297 mac_reg = er32(H2ME); 1298 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1299 ew32(H2ME, mac_reg); 1300 } else { 1301 /* Clear H2ME.ULP after ME ULP configuration */ 1302 mac_reg = er32(H2ME); 1303 mac_reg &= ~E1000_H2ME_ULP; 1304 ew32(H2ME, mac_reg); 1305 } 1306 1307 goto out; 1308 } 1309 1310 ret_val = hw->phy.ops.acquire(hw); 1311 if (ret_val) 1312 goto out; 1313 1314 if (force) 1315 /* Toggle LANPHYPC Value bit */ 1316 e1000_toggle_lanphypc_pch_lpt(hw); 1317 1318 /* Unforce SMBus mode in PHY */ 1319 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1320 if (ret_val) { 1321 /* The MAC might be in PCIe mode, so temporarily force to 1322 * SMBus mode in order to access the PHY. 1323 */ 1324 mac_reg = er32(CTRL_EXT); 1325 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1326 ew32(CTRL_EXT, mac_reg); 1327 1328 msleep(50); 1329 1330 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1331 &phy_reg); 1332 if (ret_val) 1333 goto release; 1334 } 1335 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1336 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1337 1338 /* Unforce SMBus mode in MAC */ 1339 mac_reg = er32(CTRL_EXT); 1340 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1341 ew32(CTRL_EXT, mac_reg); 1342 1343 /* When ULP mode was previously entered, K1 was disabled by the 1344 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1345 */ 1346 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1347 if (ret_val) 1348 goto release; 1349 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1350 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1351 1352 /* Clear ULP enabled configuration */ 1353 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1354 if (ret_val) 1355 goto release; 1356 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1357 I218_ULP_CONFIG1_STICKY_ULP | 1358 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1359 I218_ULP_CONFIG1_WOL_HOST | 1360 I218_ULP_CONFIG1_INBAND_EXIT | 1361 I218_ULP_CONFIG1_EN_ULP_LANPHYPC | 1362 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | 1363 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1364 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1365 1366 /* Commit ULP changes by starting auto ULP configuration */ 1367 phy_reg |= I218_ULP_CONFIG1_START; 1368 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1369 1370 /* Clear Disable SMBus Release on PERST# in MAC */ 1371 mac_reg = er32(FEXTNVM7); 1372 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1373 ew32(FEXTNVM7, mac_reg); 1374 1375 release: 1376 hw->phy.ops.release(hw); 1377 if (force) { 1378 e1000_phy_hw_reset(hw); 1379 msleep(50); 1380 } 1381 out: 1382 if (ret_val) 1383 e_dbg("Error in ULP disable flow: %d\n", ret_val); 1384 else 1385 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1386 1387 return ret_val; 1388 } 1389 1390 /** 1391 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1392 * @hw: pointer to the HW structure 1393 * 1394 * Checks to see of the link status of the hardware has changed. If a 1395 * change in link status has been detected, then we read the PHY registers 1396 * to get the current speed/duplex if link exists. 1397 **/ 1398 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1399 { 1400 struct e1000_mac_info *mac = &hw->mac; 1401 s32 ret_val, tipg_reg = 0; 1402 u16 emi_addr, emi_val = 0; 1403 bool link; 1404 u16 phy_reg; 1405 1406 /* We only want to go out to the PHY registers to see if Auto-Neg 1407 * has completed and/or if our link status has changed. The 1408 * get_link_status flag is set upon receiving a Link Status 1409 * Change or Rx Sequence Error interrupt. 1410 */ 1411 if (!mac->get_link_status) 1412 return 0; 1413 mac->get_link_status = false; 1414 1415 /* First we want to see if the MII Status Register reports 1416 * link. If so, then we want to get the current speed/duplex 1417 * of the PHY. 1418 */ 1419 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1420 if (ret_val) 1421 goto out; 1422 1423 if (hw->mac.type == e1000_pchlan) { 1424 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1425 if (ret_val) 1426 goto out; 1427 } 1428 1429 /* When connected at 10Mbps half-duplex, some parts are excessively 1430 * aggressive resulting in many collisions. To avoid this, increase 1431 * the IPG and reduce Rx latency in the PHY. 1432 */ 1433 if ((hw->mac.type >= e1000_pch2lan) && link) { 1434 u16 speed, duplex; 1435 1436 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); 1437 tipg_reg = er32(TIPG); 1438 tipg_reg &= ~E1000_TIPG_IPGT_MASK; 1439 1440 if (duplex == HALF_DUPLEX && speed == SPEED_10) { 1441 tipg_reg |= 0xFF; 1442 /* Reduce Rx latency in analog PHY */ 1443 emi_val = 0; 1444 } else if (hw->mac.type >= e1000_pch_spt && 1445 duplex == FULL_DUPLEX && speed != SPEED_1000) { 1446 tipg_reg |= 0xC; 1447 emi_val = 1; 1448 } else { 1449 1450 /* Roll back the default values */ 1451 tipg_reg |= 0x08; 1452 emi_val = 1; 1453 } 1454 1455 ew32(TIPG, tipg_reg); 1456 1457 ret_val = hw->phy.ops.acquire(hw); 1458 if (ret_val) 1459 goto out; 1460 1461 if (hw->mac.type == e1000_pch2lan) 1462 emi_addr = I82579_RX_CONFIG; 1463 else 1464 emi_addr = I217_RX_CONFIG; 1465 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); 1466 1467 if (hw->mac.type >= e1000_pch_lpt) { 1468 u16 phy_reg; 1469 1470 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); 1471 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; 1472 if (speed == SPEED_100 || speed == SPEED_10) 1473 phy_reg |= 0x3E8; 1474 else 1475 phy_reg |= 0xFA; 1476 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); 1477 1478 if (speed == SPEED_1000) { 1479 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, 1480 &phy_reg); 1481 1482 phy_reg |= HV_PM_CTRL_K1_CLK_REQ; 1483 1484 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, 1485 phy_reg); 1486 } 1487 } 1488 hw->phy.ops.release(hw); 1489 1490 if (ret_val) 1491 goto out; 1492 1493 if (hw->mac.type >= e1000_pch_spt) { 1494 u16 data; 1495 u16 ptr_gap; 1496 1497 if (speed == SPEED_1000) { 1498 ret_val = hw->phy.ops.acquire(hw); 1499 if (ret_val) 1500 goto out; 1501 1502 ret_val = e1e_rphy_locked(hw, 1503 PHY_REG(776, 20), 1504 &data); 1505 if (ret_val) { 1506 hw->phy.ops.release(hw); 1507 goto out; 1508 } 1509 1510 ptr_gap = (data & (0x3FF << 2)) >> 2; 1511 if (ptr_gap < 0x18) { 1512 data &= ~(0x3FF << 2); 1513 data |= (0x18 << 2); 1514 ret_val = 1515 e1e_wphy_locked(hw, 1516 PHY_REG(776, 20), 1517 data); 1518 } 1519 hw->phy.ops.release(hw); 1520 if (ret_val) 1521 goto out; 1522 } else { 1523 ret_val = hw->phy.ops.acquire(hw); 1524 if (ret_val) 1525 goto out; 1526 1527 ret_val = e1e_wphy_locked(hw, 1528 PHY_REG(776, 20), 1529 0xC023); 1530 hw->phy.ops.release(hw); 1531 if (ret_val) 1532 goto out; 1533 1534 } 1535 } 1536 } 1537 1538 /* I217 Packet Loss issue: 1539 * ensure that FEXTNVM4 Beacon Duration is set correctly 1540 * on power up. 1541 * Set the Beacon Duration for I217 to 8 usec 1542 */ 1543 if (hw->mac.type >= e1000_pch_lpt) { 1544 u32 mac_reg; 1545 1546 mac_reg = er32(FEXTNVM4); 1547 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1548 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1549 ew32(FEXTNVM4, mac_reg); 1550 } 1551 1552 /* Work-around I218 hang issue */ 1553 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1554 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1555 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || 1556 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { 1557 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1558 if (ret_val) 1559 goto out; 1560 } 1561 if (hw->mac.type >= e1000_pch_lpt) { 1562 /* Set platform power management values for 1563 * Latency Tolerance Reporting (LTR) 1564 */ 1565 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1566 if (ret_val) 1567 goto out; 1568 } 1569 1570 /* Clear link partner's EEE ability */ 1571 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1572 1573 if (hw->mac.type >= e1000_pch_lpt) { 1574 u32 fextnvm6 = er32(FEXTNVM6); 1575 1576 if (hw->mac.type == e1000_pch_spt) { 1577 /* FEXTNVM6 K1-off workaround - for SPT only */ 1578 u32 pcieanacfg = er32(PCIEANACFG); 1579 1580 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) 1581 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; 1582 else 1583 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1584 } 1585 1586 ew32(FEXTNVM6, fextnvm6); 1587 } 1588 1589 if (!link) 1590 goto out; 1591 1592 switch (hw->mac.type) { 1593 case e1000_pch2lan: 1594 ret_val = e1000_k1_workaround_lv(hw); 1595 if (ret_val) 1596 return ret_val; 1597 fallthrough; 1598 case e1000_pchlan: 1599 if (hw->phy.type == e1000_phy_82578) { 1600 ret_val = e1000_link_stall_workaround_hv(hw); 1601 if (ret_val) 1602 return ret_val; 1603 } 1604 1605 /* Workaround for PCHx parts in half-duplex: 1606 * Set the number of preambles removed from the packet 1607 * when it is passed from the PHY to the MAC to prevent 1608 * the MAC from misinterpreting the packet type. 1609 */ 1610 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1611 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1612 1613 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 1614 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1615 1616 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1617 break; 1618 default: 1619 break; 1620 } 1621 1622 /* Check if there was DownShift, must be checked 1623 * immediately after link-up 1624 */ 1625 e1000e_check_downshift(hw); 1626 1627 /* Enable/Disable EEE after link up */ 1628 if (hw->phy.type > e1000_phy_82579) { 1629 ret_val = e1000_set_eee_pchlan(hw); 1630 if (ret_val) 1631 return ret_val; 1632 } 1633 1634 /* If we are forcing speed/duplex, then we simply return since 1635 * we have already determined whether we have link or not. 1636 */ 1637 if (!mac->autoneg) 1638 return -E1000_ERR_CONFIG; 1639 1640 /* Auto-Neg is enabled. Auto Speed Detection takes care 1641 * of MAC speed/duplex configuration. So we only need to 1642 * configure Collision Distance in the MAC. 1643 */ 1644 mac->ops.config_collision_dist(hw); 1645 1646 /* Configure Flow Control now that Auto-Neg has completed. 1647 * First, we need to restore the desired flow control 1648 * settings because we may have had to re-autoneg with a 1649 * different link partner. 1650 */ 1651 ret_val = e1000e_config_fc_after_link_up(hw); 1652 if (ret_val) 1653 e_dbg("Error configuring flow control\n"); 1654 1655 return ret_val; 1656 1657 out: 1658 mac->get_link_status = true; 1659 return ret_val; 1660 } 1661 1662 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 1663 { 1664 struct e1000_hw *hw = &adapter->hw; 1665 s32 rc; 1666 1667 rc = e1000_init_mac_params_ich8lan(hw); 1668 if (rc) 1669 return rc; 1670 1671 rc = e1000_init_nvm_params_ich8lan(hw); 1672 if (rc) 1673 return rc; 1674 1675 switch (hw->mac.type) { 1676 case e1000_ich8lan: 1677 case e1000_ich9lan: 1678 case e1000_ich10lan: 1679 rc = e1000_init_phy_params_ich8lan(hw); 1680 break; 1681 case e1000_pchlan: 1682 case e1000_pch2lan: 1683 case e1000_pch_lpt: 1684 case e1000_pch_spt: 1685 case e1000_pch_cnp: 1686 case e1000_pch_tgp: 1687 case e1000_pch_adp: 1688 case e1000_pch_mtp: 1689 case e1000_pch_lnp: 1690 case e1000_pch_ptp: 1691 case e1000_pch_nvp: 1692 rc = e1000_init_phy_params_pchlan(hw); 1693 break; 1694 default: 1695 break; 1696 } 1697 if (rc) 1698 return rc; 1699 1700 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or 1701 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 1702 */ 1703 if ((adapter->hw.phy.type == e1000_phy_ife) || 1704 ((adapter->hw.mac.type >= e1000_pch2lan) && 1705 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 1706 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 1707 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 1708 1709 hw->mac.ops.blink_led = NULL; 1710 } 1711 1712 if ((adapter->hw.mac.type == e1000_ich8lan) && 1713 (adapter->hw.phy.type != e1000_phy_ife)) 1714 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 1715 1716 /* Enable workaround for 82579 w/ ME enabled */ 1717 if ((adapter->hw.mac.type == e1000_pch2lan) && 1718 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1719 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 1720 1721 return 0; 1722 } 1723 1724 static DEFINE_MUTEX(nvm_mutex); 1725 1726 /** 1727 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1728 * @hw: pointer to the HW structure 1729 * 1730 * Acquires the mutex for performing NVM operations. 1731 **/ 1732 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1733 { 1734 mutex_lock(&nvm_mutex); 1735 1736 return 0; 1737 } 1738 1739 /** 1740 * e1000_release_nvm_ich8lan - Release NVM mutex 1741 * @hw: pointer to the HW structure 1742 * 1743 * Releases the mutex used while performing NVM operations. 1744 **/ 1745 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1746 { 1747 mutex_unlock(&nvm_mutex); 1748 } 1749 1750 /** 1751 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1752 * @hw: pointer to the HW structure 1753 * 1754 * Acquires the software control flag for performing PHY and select 1755 * MAC CSR accesses. 1756 **/ 1757 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1758 { 1759 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1760 s32 ret_val = 0; 1761 1762 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 1763 &hw->adapter->state)) { 1764 e_dbg("contention for Phy access\n"); 1765 return -E1000_ERR_PHY; 1766 } 1767 1768 while (timeout) { 1769 extcnf_ctrl = er32(EXTCNF_CTRL); 1770 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1771 break; 1772 1773 mdelay(1); 1774 timeout--; 1775 } 1776 1777 if (!timeout) { 1778 e_dbg("SW has already locked the resource.\n"); 1779 ret_val = -E1000_ERR_CONFIG; 1780 goto out; 1781 } 1782 1783 timeout = SW_FLAG_TIMEOUT; 1784 1785 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1786 ew32(EXTCNF_CTRL, extcnf_ctrl); 1787 1788 while (timeout) { 1789 extcnf_ctrl = er32(EXTCNF_CTRL); 1790 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1791 break; 1792 1793 mdelay(1); 1794 timeout--; 1795 } 1796 1797 if (!timeout) { 1798 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1799 er32(FWSM), extcnf_ctrl); 1800 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1801 ew32(EXTCNF_CTRL, extcnf_ctrl); 1802 ret_val = -E1000_ERR_CONFIG; 1803 goto out; 1804 } 1805 1806 out: 1807 if (ret_val) 1808 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1809 1810 return ret_val; 1811 } 1812 1813 /** 1814 * e1000_release_swflag_ich8lan - Release software control flag 1815 * @hw: pointer to the HW structure 1816 * 1817 * Releases the software control flag for performing PHY and select 1818 * MAC CSR accesses. 1819 **/ 1820 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1821 { 1822 u32 extcnf_ctrl; 1823 1824 extcnf_ctrl = er32(EXTCNF_CTRL); 1825 1826 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1827 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1828 ew32(EXTCNF_CTRL, extcnf_ctrl); 1829 } else { 1830 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 1831 } 1832 1833 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1834 } 1835 1836 /** 1837 * e1000_check_mng_mode_ich8lan - Checks management mode 1838 * @hw: pointer to the HW structure 1839 * 1840 * This checks if the adapter has any manageability enabled. 1841 * This is a function pointer entry point only called by read/write 1842 * routines for the PHY and NVM parts. 1843 **/ 1844 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1845 { 1846 u32 fwsm; 1847 1848 fwsm = er32(FWSM); 1849 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1850 ((fwsm & E1000_FWSM_MODE_MASK) == 1851 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1852 } 1853 1854 /** 1855 * e1000_check_mng_mode_pchlan - Checks management mode 1856 * @hw: pointer to the HW structure 1857 * 1858 * This checks if the adapter has iAMT enabled. 1859 * This is a function pointer entry point only called by read/write 1860 * routines for the PHY and NVM parts. 1861 **/ 1862 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1863 { 1864 u32 fwsm; 1865 1866 fwsm = er32(FWSM); 1867 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1868 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1869 } 1870 1871 /** 1872 * e1000_rar_set_pch2lan - Set receive address register 1873 * @hw: pointer to the HW structure 1874 * @addr: pointer to the receive address 1875 * @index: receive address array register 1876 * 1877 * Sets the receive address array register at index to the address passed 1878 * in by addr. For 82579, RAR[0] is the base address register that is to 1879 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 1880 * Use SHRA[0-3] in place of those reserved for ME. 1881 **/ 1882 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 1883 { 1884 u32 rar_low, rar_high; 1885 1886 /* HW expects these in little endian so we reverse the byte order 1887 * from network order (big endian) to little endian 1888 */ 1889 rar_low = ((u32)addr[0] | 1890 ((u32)addr[1] << 8) | 1891 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1892 1893 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1894 1895 /* If MAC address zero, no need to set the AV bit */ 1896 if (rar_low || rar_high) 1897 rar_high |= E1000_RAH_AV; 1898 1899 if (index == 0) { 1900 ew32(RAL(index), rar_low); 1901 e1e_flush(); 1902 ew32(RAH(index), rar_high); 1903 e1e_flush(); 1904 return 0; 1905 } 1906 1907 /* RAR[1-6] are owned by manageability. Skip those and program the 1908 * next address into the SHRA register array. 1909 */ 1910 if (index < (u32)(hw->mac.rar_entry_count)) { 1911 s32 ret_val; 1912 1913 ret_val = e1000_acquire_swflag_ich8lan(hw); 1914 if (ret_val) 1915 goto out; 1916 1917 ew32(SHRAL(index - 1), rar_low); 1918 e1e_flush(); 1919 ew32(SHRAH(index - 1), rar_high); 1920 e1e_flush(); 1921 1922 e1000_release_swflag_ich8lan(hw); 1923 1924 /* verify the register updates */ 1925 if ((er32(SHRAL(index - 1)) == rar_low) && 1926 (er32(SHRAH(index - 1)) == rar_high)) 1927 return 0; 1928 1929 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 1930 (index - 1), er32(FWSM)); 1931 } 1932 1933 out: 1934 e_dbg("Failed to write receive address at index %d\n", index); 1935 return -E1000_ERR_CONFIG; 1936 } 1937 1938 /** 1939 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA 1940 * @hw: pointer to the HW structure 1941 * 1942 * Get the number of available receive registers that the Host can 1943 * program. SHRA[0-10] are the shared receive address registers 1944 * that are shared between the Host and manageability engine (ME). 1945 * ME can reserve any number of addresses and the host needs to be 1946 * able to tell how many available registers it has access to. 1947 **/ 1948 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) 1949 { 1950 u32 wlock_mac; 1951 u32 num_entries; 1952 1953 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1954 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1955 1956 switch (wlock_mac) { 1957 case 0: 1958 /* All SHRA[0..10] and RAR[0] available */ 1959 num_entries = hw->mac.rar_entry_count; 1960 break; 1961 case 1: 1962 /* Only RAR[0] available */ 1963 num_entries = 1; 1964 break; 1965 default: 1966 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ 1967 num_entries = wlock_mac + 1; 1968 break; 1969 } 1970 1971 return num_entries; 1972 } 1973 1974 /** 1975 * e1000_rar_set_pch_lpt - Set receive address registers 1976 * @hw: pointer to the HW structure 1977 * @addr: pointer to the receive address 1978 * @index: receive address array register 1979 * 1980 * Sets the receive address register array at index to the address passed 1981 * in by addr. For LPT, RAR[0] is the base address register that is to 1982 * contain the MAC address. SHRA[0-10] are the shared receive address 1983 * registers that are shared between the Host and manageability engine (ME). 1984 **/ 1985 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 1986 { 1987 u32 rar_low, rar_high; 1988 u32 wlock_mac; 1989 1990 /* HW expects these in little endian so we reverse the byte order 1991 * from network order (big endian) to little endian 1992 */ 1993 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 1994 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1995 1996 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1997 1998 /* If MAC address zero, no need to set the AV bit */ 1999 if (rar_low || rar_high) 2000 rar_high |= E1000_RAH_AV; 2001 2002 if (index == 0) { 2003 ew32(RAL(index), rar_low); 2004 e1e_flush(); 2005 ew32(RAH(index), rar_high); 2006 e1e_flush(); 2007 return 0; 2008 } 2009 2010 /* The manageability engine (ME) can lock certain SHRAR registers that 2011 * it is using - those registers are unavailable for use. 2012 */ 2013 if (index < hw->mac.rar_entry_count) { 2014 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 2015 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 2016 2017 /* Check if all SHRAR registers are locked */ 2018 if (wlock_mac == 1) 2019 goto out; 2020 2021 if ((wlock_mac == 0) || (index <= wlock_mac)) { 2022 s32 ret_val; 2023 2024 ret_val = e1000_acquire_swflag_ich8lan(hw); 2025 2026 if (ret_val) 2027 goto out; 2028 2029 ew32(SHRAL_PCH_LPT(index - 1), rar_low); 2030 e1e_flush(); 2031 ew32(SHRAH_PCH_LPT(index - 1), rar_high); 2032 e1e_flush(); 2033 2034 e1000_release_swflag_ich8lan(hw); 2035 2036 /* verify the register updates */ 2037 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && 2038 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) 2039 return 0; 2040 } 2041 } 2042 2043 out: 2044 e_dbg("Failed to write receive address at index %d\n", index); 2045 return -E1000_ERR_CONFIG; 2046 } 2047 2048 /** 2049 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 2050 * @hw: pointer to the HW structure 2051 * 2052 * Checks if firmware is blocking the reset of the PHY. 2053 * This is a function pointer entry point only called by 2054 * reset routines. 2055 **/ 2056 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 2057 { 2058 bool blocked = false; 2059 int i = 0; 2060 2061 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && 2062 (i++ < 30)) 2063 usleep_range(10000, 11000); 2064 return blocked ? E1000_BLK_PHY_RESET : 0; 2065 } 2066 2067 /** 2068 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 2069 * @hw: pointer to the HW structure 2070 * 2071 * Assumes semaphore already acquired. 2072 * 2073 **/ 2074 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 2075 { 2076 u16 phy_data; 2077 u32 strap = er32(STRAP); 2078 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> 2079 E1000_STRAP_SMT_FREQ_SHIFT; 2080 s32 ret_val; 2081 2082 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 2083 2084 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 2085 if (ret_val) 2086 return ret_val; 2087 2088 phy_data &= ~HV_SMB_ADDR_MASK; 2089 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 2090 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 2091 2092 if (hw->phy.type == e1000_phy_i217) { 2093 /* Restore SMBus frequency */ 2094 if (freq--) { 2095 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 2096 phy_data |= (freq & BIT(0)) << 2097 HV_SMB_ADDR_FREQ_LOW_SHIFT; 2098 phy_data |= (freq & BIT(1)) << 2099 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 2100 } else { 2101 e_dbg("Unsupported SMB frequency in PHY\n"); 2102 } 2103 } 2104 2105 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 2106 } 2107 2108 /** 2109 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 2110 * @hw: pointer to the HW structure 2111 * 2112 * SW should configure the LCD from the NVM extended configuration region 2113 * as a workaround for certain parts. 2114 **/ 2115 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 2116 { 2117 struct e1000_phy_info *phy = &hw->phy; 2118 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 2119 s32 ret_val = 0; 2120 u16 word_addr, reg_data, reg_addr, phy_page = 0; 2121 2122 /* Initialize the PHY from the NVM on ICH platforms. This 2123 * is needed due to an issue where the NVM configuration is 2124 * not properly autoloaded after power transitions. 2125 * Therefore, after each PHY reset, we will load the 2126 * configuration data out of the NVM manually. 2127 */ 2128 switch (hw->mac.type) { 2129 case e1000_ich8lan: 2130 if (phy->type != e1000_phy_igp_3) 2131 return ret_val; 2132 2133 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 2134 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 2135 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 2136 break; 2137 } 2138 fallthrough; 2139 case e1000_pchlan: 2140 case e1000_pch2lan: 2141 case e1000_pch_lpt: 2142 case e1000_pch_spt: 2143 case e1000_pch_cnp: 2144 case e1000_pch_tgp: 2145 case e1000_pch_adp: 2146 case e1000_pch_mtp: 2147 case e1000_pch_lnp: 2148 case e1000_pch_ptp: 2149 case e1000_pch_nvp: 2150 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 2151 break; 2152 default: 2153 return ret_val; 2154 } 2155 2156 ret_val = hw->phy.ops.acquire(hw); 2157 if (ret_val) 2158 return ret_val; 2159 2160 data = er32(FEXTNVM); 2161 if (!(data & sw_cfg_mask)) 2162 goto release; 2163 2164 /* Make sure HW does not configure LCD from PHY 2165 * extended configuration before SW configuration 2166 */ 2167 data = er32(EXTCNF_CTRL); 2168 if ((hw->mac.type < e1000_pch2lan) && 2169 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 2170 goto release; 2171 2172 cnf_size = er32(EXTCNF_SIZE); 2173 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 2174 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 2175 if (!cnf_size) 2176 goto release; 2177 2178 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 2179 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 2180 2181 if (((hw->mac.type == e1000_pchlan) && 2182 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 2183 (hw->mac.type > e1000_pchlan)) { 2184 /* HW configures the SMBus address and LEDs when the 2185 * OEM and LCD Write Enable bits are set in the NVM. 2186 * When both NVM bits are cleared, SW will configure 2187 * them instead. 2188 */ 2189 ret_val = e1000_write_smbus_addr(hw); 2190 if (ret_val) 2191 goto release; 2192 2193 data = er32(LEDCTL); 2194 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 2195 (u16)data); 2196 if (ret_val) 2197 goto release; 2198 } 2199 2200 /* Configure LCD from extended configuration region. */ 2201 2202 /* cnf_base_addr is in DWORD */ 2203 word_addr = (u16)(cnf_base_addr << 1); 2204 2205 for (i = 0; i < cnf_size; i++) { 2206 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); 2207 if (ret_val) 2208 goto release; 2209 2210 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 2211 1, ®_addr); 2212 if (ret_val) 2213 goto release; 2214 2215 /* Save off the PHY page for future writes. */ 2216 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 2217 phy_page = reg_data; 2218 continue; 2219 } 2220 2221 reg_addr &= PHY_REG_MASK; 2222 reg_addr |= phy_page; 2223 2224 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); 2225 if (ret_val) 2226 goto release; 2227 } 2228 2229 release: 2230 hw->phy.ops.release(hw); 2231 return ret_val; 2232 } 2233 2234 /** 2235 * e1000_k1_gig_workaround_hv - K1 Si workaround 2236 * @hw: pointer to the HW structure 2237 * @link: link up bool flag 2238 * 2239 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2240 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2241 * If link is down, the function will restore the default K1 setting located 2242 * in the NVM. 2243 **/ 2244 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2245 { 2246 s32 ret_val = 0; 2247 u16 status_reg = 0; 2248 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2249 2250 if (hw->mac.type != e1000_pchlan) 2251 return 0; 2252 2253 /* Wrap the whole flow with the sw flag */ 2254 ret_val = hw->phy.ops.acquire(hw); 2255 if (ret_val) 2256 return ret_val; 2257 2258 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2259 if (link) { 2260 if (hw->phy.type == e1000_phy_82578) { 2261 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, 2262 &status_reg); 2263 if (ret_val) 2264 goto release; 2265 2266 status_reg &= (BM_CS_STATUS_LINK_UP | 2267 BM_CS_STATUS_RESOLVED | 2268 BM_CS_STATUS_SPEED_MASK); 2269 2270 if (status_reg == (BM_CS_STATUS_LINK_UP | 2271 BM_CS_STATUS_RESOLVED | 2272 BM_CS_STATUS_SPEED_1000)) 2273 k1_enable = false; 2274 } 2275 2276 if (hw->phy.type == e1000_phy_82577) { 2277 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); 2278 if (ret_val) 2279 goto release; 2280 2281 status_reg &= (HV_M_STATUS_LINK_UP | 2282 HV_M_STATUS_AUTONEG_COMPLETE | 2283 HV_M_STATUS_SPEED_MASK); 2284 2285 if (status_reg == (HV_M_STATUS_LINK_UP | 2286 HV_M_STATUS_AUTONEG_COMPLETE | 2287 HV_M_STATUS_SPEED_1000)) 2288 k1_enable = false; 2289 } 2290 2291 /* Link stall fix for link up */ 2292 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); 2293 if (ret_val) 2294 goto release; 2295 2296 } else { 2297 /* Link stall fix for link down */ 2298 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); 2299 if (ret_val) 2300 goto release; 2301 } 2302 2303 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2304 2305 release: 2306 hw->phy.ops.release(hw); 2307 2308 return ret_val; 2309 } 2310 2311 /** 2312 * e1000_configure_k1_ich8lan - Configure K1 power state 2313 * @hw: pointer to the HW structure 2314 * @k1_enable: K1 state to configure 2315 * 2316 * Configure the K1 power state based on the provided parameter. 2317 * Assumes semaphore already acquired. 2318 * 2319 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2320 **/ 2321 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2322 { 2323 s32 ret_val; 2324 u32 ctrl_reg = 0; 2325 u32 ctrl_ext = 0; 2326 u32 reg = 0; 2327 u16 kmrn_reg = 0; 2328 2329 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2330 &kmrn_reg); 2331 if (ret_val) 2332 return ret_val; 2333 2334 if (k1_enable) 2335 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2336 else 2337 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2338 2339 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2340 kmrn_reg); 2341 if (ret_val) 2342 return ret_val; 2343 2344 usleep_range(20, 40); 2345 ctrl_ext = er32(CTRL_EXT); 2346 ctrl_reg = er32(CTRL); 2347 2348 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2349 reg |= E1000_CTRL_FRCSPD; 2350 ew32(CTRL, reg); 2351 2352 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2353 e1e_flush(); 2354 usleep_range(20, 40); 2355 ew32(CTRL, ctrl_reg); 2356 ew32(CTRL_EXT, ctrl_ext); 2357 e1e_flush(); 2358 usleep_range(20, 40); 2359 2360 return 0; 2361 } 2362 2363 /** 2364 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2365 * @hw: pointer to the HW structure 2366 * @d0_state: boolean if entering d0 or d3 device state 2367 * 2368 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2369 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2370 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2371 **/ 2372 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2373 { 2374 s32 ret_val = 0; 2375 u32 mac_reg; 2376 u16 oem_reg; 2377 2378 if (hw->mac.type < e1000_pchlan) 2379 return ret_val; 2380 2381 ret_val = hw->phy.ops.acquire(hw); 2382 if (ret_val) 2383 return ret_val; 2384 2385 if (hw->mac.type == e1000_pchlan) { 2386 mac_reg = er32(EXTCNF_CTRL); 2387 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2388 goto release; 2389 } 2390 2391 mac_reg = er32(FEXTNVM); 2392 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2393 goto release; 2394 2395 mac_reg = er32(PHY_CTRL); 2396 2397 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); 2398 if (ret_val) 2399 goto release; 2400 2401 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2402 2403 if (d0_state) { 2404 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2405 oem_reg |= HV_OEM_BITS_GBE_DIS; 2406 2407 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2408 oem_reg |= HV_OEM_BITS_LPLU; 2409 } else { 2410 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2411 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2412 oem_reg |= HV_OEM_BITS_GBE_DIS; 2413 2414 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2415 E1000_PHY_CTRL_NOND0A_LPLU)) 2416 oem_reg |= HV_OEM_BITS_LPLU; 2417 } 2418 2419 /* Set Restart auto-neg to activate the bits */ 2420 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2421 !hw->phy.ops.check_reset_block(hw)) 2422 oem_reg |= HV_OEM_BITS_RESTART_AN; 2423 2424 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); 2425 2426 release: 2427 hw->phy.ops.release(hw); 2428 2429 return ret_val; 2430 } 2431 2432 /** 2433 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2434 * @hw: pointer to the HW structure 2435 **/ 2436 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2437 { 2438 s32 ret_val; 2439 u16 data; 2440 2441 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 2442 if (ret_val) 2443 return ret_val; 2444 2445 data |= HV_KMRN_MDIO_SLOW; 2446 2447 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 2448 2449 return ret_val; 2450 } 2451 2452 /** 2453 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds 2454 * @hw: pointer to the HW structure 2455 * 2456 * A series of PHY workarounds to be done after every PHY reset. 2457 **/ 2458 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2459 { 2460 s32 ret_val = 0; 2461 u16 phy_data; 2462 2463 if (hw->mac.type != e1000_pchlan) 2464 return 0; 2465 2466 /* Set MDIO slow mode before any other MDIO access */ 2467 if (hw->phy.type == e1000_phy_82577) { 2468 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2469 if (ret_val) 2470 return ret_val; 2471 } 2472 2473 if (((hw->phy.type == e1000_phy_82577) && 2474 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2475 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2476 /* Disable generation of early preamble */ 2477 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 2478 if (ret_val) 2479 return ret_val; 2480 2481 /* Preamble tuning for SSC */ 2482 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 2483 if (ret_val) 2484 return ret_val; 2485 } 2486 2487 if (hw->phy.type == e1000_phy_82578) { 2488 /* Return registers to default by doing a soft reset then 2489 * writing 0x3140 to the control register. 2490 */ 2491 if (hw->phy.revision < 2) { 2492 e1000e_phy_sw_reset(hw); 2493 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); 2494 if (ret_val) 2495 return ret_val; 2496 } 2497 } 2498 2499 /* Select page 0 */ 2500 ret_val = hw->phy.ops.acquire(hw); 2501 if (ret_val) 2502 return ret_val; 2503 2504 hw->phy.addr = 1; 2505 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2506 hw->phy.ops.release(hw); 2507 if (ret_val) 2508 return ret_val; 2509 2510 /* Configure the K1 Si workaround during phy reset assuming there is 2511 * link so that it disables K1 if link is in 1Gbps. 2512 */ 2513 ret_val = e1000_k1_gig_workaround_hv(hw, true); 2514 if (ret_val) 2515 return ret_val; 2516 2517 /* Workaround for link disconnects on a busy hub in half duplex */ 2518 ret_val = hw->phy.ops.acquire(hw); 2519 if (ret_val) 2520 return ret_val; 2521 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2522 if (ret_val) 2523 goto release; 2524 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); 2525 if (ret_val) 2526 goto release; 2527 2528 /* set MSE higher to enable link to stay up when noise is high */ 2529 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2530 release: 2531 hw->phy.ops.release(hw); 2532 2533 return ret_val; 2534 } 2535 2536 /** 2537 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2538 * @hw: pointer to the HW structure 2539 **/ 2540 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2541 { 2542 u32 mac_reg; 2543 u16 i, phy_reg = 0; 2544 s32 ret_val; 2545 2546 ret_val = hw->phy.ops.acquire(hw); 2547 if (ret_val) 2548 return; 2549 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2550 if (ret_val) 2551 goto release; 2552 2553 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2554 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2555 mac_reg = er32(RAL(i)); 2556 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2557 (u16)(mac_reg & 0xFFFF)); 2558 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2559 (u16)((mac_reg >> 16) & 0xFFFF)); 2560 2561 mac_reg = er32(RAH(i)); 2562 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2563 (u16)(mac_reg & 0xFFFF)); 2564 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2565 (u16)((mac_reg & E1000_RAH_AV) 2566 >> 16)); 2567 } 2568 2569 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2570 2571 release: 2572 hw->phy.ops.release(hw); 2573 } 2574 2575 /** 2576 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2577 * with 82579 PHY 2578 * @hw: pointer to the HW structure 2579 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2580 **/ 2581 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2582 { 2583 s32 ret_val = 0; 2584 u16 phy_reg, data; 2585 u32 mac_reg; 2586 u16 i; 2587 2588 if (hw->mac.type < e1000_pch2lan) 2589 return 0; 2590 2591 /* disable Rx path while enabling/disabling workaround */ 2592 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 2593 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14)); 2594 if (ret_val) 2595 return ret_val; 2596 2597 if (enable) { 2598 /* Write Rx addresses (rar_entry_count for RAL/H, and 2599 * SHRAL/H) and initial CRC values to the MAC 2600 */ 2601 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2602 u8 mac_addr[ETH_ALEN] = { 0 }; 2603 u32 addr_high, addr_low; 2604 2605 addr_high = er32(RAH(i)); 2606 if (!(addr_high & E1000_RAH_AV)) 2607 continue; 2608 addr_low = er32(RAL(i)); 2609 mac_addr[0] = (addr_low & 0xFF); 2610 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2611 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2612 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2613 mac_addr[4] = (addr_high & 0xFF); 2614 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2615 2616 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 2617 } 2618 2619 /* Write Rx addresses to the PHY */ 2620 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2621 2622 /* Enable jumbo frame workaround in the MAC */ 2623 mac_reg = er32(FFLT_DBG); 2624 mac_reg &= ~BIT(14); 2625 mac_reg |= (7 << 15); 2626 ew32(FFLT_DBG, mac_reg); 2627 2628 mac_reg = er32(RCTL); 2629 mac_reg |= E1000_RCTL_SECRC; 2630 ew32(RCTL, mac_reg); 2631 2632 ret_val = e1000e_read_kmrn_reg(hw, 2633 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2634 &data); 2635 if (ret_val) 2636 return ret_val; 2637 ret_val = e1000e_write_kmrn_reg(hw, 2638 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2639 data | BIT(0)); 2640 if (ret_val) 2641 return ret_val; 2642 ret_val = e1000e_read_kmrn_reg(hw, 2643 E1000_KMRNCTRLSTA_HD_CTRL, 2644 &data); 2645 if (ret_val) 2646 return ret_val; 2647 data &= ~(0xF << 8); 2648 data |= (0xB << 8); 2649 ret_val = e1000e_write_kmrn_reg(hw, 2650 E1000_KMRNCTRLSTA_HD_CTRL, 2651 data); 2652 if (ret_val) 2653 return ret_val; 2654 2655 /* Enable jumbo frame workaround in the PHY */ 2656 e1e_rphy(hw, PHY_REG(769, 23), &data); 2657 data &= ~(0x7F << 5); 2658 data |= (0x37 << 5); 2659 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2660 if (ret_val) 2661 return ret_val; 2662 e1e_rphy(hw, PHY_REG(769, 16), &data); 2663 data &= ~BIT(13); 2664 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2665 if (ret_val) 2666 return ret_val; 2667 e1e_rphy(hw, PHY_REG(776, 20), &data); 2668 data &= ~(0x3FF << 2); 2669 data |= (E1000_TX_PTR_GAP << 2); 2670 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2671 if (ret_val) 2672 return ret_val; 2673 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 2674 if (ret_val) 2675 return ret_val; 2676 e1e_rphy(hw, HV_PM_CTRL, &data); 2677 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10)); 2678 if (ret_val) 2679 return ret_val; 2680 } else { 2681 /* Write MAC register values back to h/w defaults */ 2682 mac_reg = er32(FFLT_DBG); 2683 mac_reg &= ~(0xF << 14); 2684 ew32(FFLT_DBG, mac_reg); 2685 2686 mac_reg = er32(RCTL); 2687 mac_reg &= ~E1000_RCTL_SECRC; 2688 ew32(RCTL, mac_reg); 2689 2690 ret_val = e1000e_read_kmrn_reg(hw, 2691 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2692 &data); 2693 if (ret_val) 2694 return ret_val; 2695 ret_val = e1000e_write_kmrn_reg(hw, 2696 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2697 data & ~BIT(0)); 2698 if (ret_val) 2699 return ret_val; 2700 ret_val = e1000e_read_kmrn_reg(hw, 2701 E1000_KMRNCTRLSTA_HD_CTRL, 2702 &data); 2703 if (ret_val) 2704 return ret_val; 2705 data &= ~(0xF << 8); 2706 data |= (0xB << 8); 2707 ret_val = e1000e_write_kmrn_reg(hw, 2708 E1000_KMRNCTRLSTA_HD_CTRL, 2709 data); 2710 if (ret_val) 2711 return ret_val; 2712 2713 /* Write PHY register values back to h/w defaults */ 2714 e1e_rphy(hw, PHY_REG(769, 23), &data); 2715 data &= ~(0x7F << 5); 2716 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2717 if (ret_val) 2718 return ret_val; 2719 e1e_rphy(hw, PHY_REG(769, 16), &data); 2720 data |= BIT(13); 2721 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2722 if (ret_val) 2723 return ret_val; 2724 e1e_rphy(hw, PHY_REG(776, 20), &data); 2725 data &= ~(0x3FF << 2); 2726 data |= (0x8 << 2); 2727 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2728 if (ret_val) 2729 return ret_val; 2730 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 2731 if (ret_val) 2732 return ret_val; 2733 e1e_rphy(hw, HV_PM_CTRL, &data); 2734 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10)); 2735 if (ret_val) 2736 return ret_val; 2737 } 2738 2739 /* re-enable Rx path after enabling/disabling workaround */ 2740 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14)); 2741 } 2742 2743 /** 2744 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds 2745 * @hw: pointer to the HW structure 2746 * 2747 * A series of PHY workarounds to be done after every PHY reset. 2748 **/ 2749 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2750 { 2751 s32 ret_val = 0; 2752 2753 if (hw->mac.type != e1000_pch2lan) 2754 return 0; 2755 2756 /* Set MDIO slow mode before any other MDIO access */ 2757 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2758 if (ret_val) 2759 return ret_val; 2760 2761 ret_val = hw->phy.ops.acquire(hw); 2762 if (ret_val) 2763 return ret_val; 2764 /* set MSE higher to enable link to stay up when noise is high */ 2765 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2766 if (ret_val) 2767 goto release; 2768 /* drop link after 5 times MSE threshold was reached */ 2769 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2770 release: 2771 hw->phy.ops.release(hw); 2772 2773 return ret_val; 2774 } 2775 2776 /** 2777 * e1000_k1_workaround_lv - K1 Si workaround 2778 * @hw: pointer to the HW structure 2779 * 2780 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2781 * Disable K1 in 1000Mbps and 100Mbps 2782 **/ 2783 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2784 { 2785 s32 ret_val = 0; 2786 u16 status_reg = 0; 2787 2788 if (hw->mac.type != e1000_pch2lan) 2789 return 0; 2790 2791 /* Set K1 beacon duration based on 10Mbs speed */ 2792 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 2793 if (ret_val) 2794 return ret_val; 2795 2796 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2797 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2798 if (status_reg & 2799 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 2800 u16 pm_phy_reg; 2801 2802 /* LV 1G/100 Packet drop issue wa */ 2803 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); 2804 if (ret_val) 2805 return ret_val; 2806 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 2807 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); 2808 if (ret_val) 2809 return ret_val; 2810 } else { 2811 u32 mac_reg; 2812 2813 mac_reg = er32(FEXTNVM4); 2814 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 2815 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 2816 ew32(FEXTNVM4, mac_reg); 2817 } 2818 } 2819 2820 return ret_val; 2821 } 2822 2823 /** 2824 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 2825 * @hw: pointer to the HW structure 2826 * @gate: boolean set to true to gate, false to ungate 2827 * 2828 * Gate/ungate the automatic PHY configuration via hardware; perform 2829 * the configuration via software instead. 2830 **/ 2831 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 2832 { 2833 u32 extcnf_ctrl; 2834 2835 if (hw->mac.type < e1000_pch2lan) 2836 return; 2837 2838 extcnf_ctrl = er32(EXTCNF_CTRL); 2839 2840 if (gate) 2841 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2842 else 2843 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2844 2845 ew32(EXTCNF_CTRL, extcnf_ctrl); 2846 } 2847 2848 /** 2849 * e1000_lan_init_done_ich8lan - Check for PHY config completion 2850 * @hw: pointer to the HW structure 2851 * 2852 * Check the appropriate indication the MAC has finished configuring the 2853 * PHY after a software reset. 2854 **/ 2855 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 2856 { 2857 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 2858 2859 /* Wait for basic configuration completes before proceeding */ 2860 do { 2861 data = er32(STATUS); 2862 data &= E1000_STATUS_LAN_INIT_DONE; 2863 usleep_range(100, 200); 2864 } while ((!data) && --loop); 2865 2866 /* If basic configuration is incomplete before the above loop 2867 * count reaches 0, loading the configuration from NVM will 2868 * leave the PHY in a bad state possibly resulting in no link. 2869 */ 2870 if (loop == 0) 2871 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 2872 2873 /* Clear the Init Done bit for the next init event */ 2874 data = er32(STATUS); 2875 data &= ~E1000_STATUS_LAN_INIT_DONE; 2876 ew32(STATUS, data); 2877 } 2878 2879 /** 2880 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 2881 * @hw: pointer to the HW structure 2882 **/ 2883 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 2884 { 2885 s32 ret_val = 0; 2886 u16 reg; 2887 2888 if (hw->phy.ops.check_reset_block(hw)) 2889 return 0; 2890 2891 /* Allow time for h/w to get to quiescent state after reset */ 2892 usleep_range(10000, 11000); 2893 2894 /* Perform any necessary post-reset workarounds */ 2895 switch (hw->mac.type) { 2896 case e1000_pchlan: 2897 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 2898 if (ret_val) 2899 return ret_val; 2900 break; 2901 case e1000_pch2lan: 2902 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 2903 if (ret_val) 2904 return ret_val; 2905 break; 2906 default: 2907 break; 2908 } 2909 2910 /* Clear the host wakeup bit after lcd reset */ 2911 if (hw->mac.type >= e1000_pchlan) { 2912 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 2913 reg &= ~BM_WUC_HOST_WU_BIT; 2914 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 2915 } 2916 2917 /* Configure the LCD with the extended configuration region in NVM */ 2918 ret_val = e1000_sw_lcd_config_ich8lan(hw); 2919 if (ret_val) 2920 return ret_val; 2921 2922 /* Configure the LCD with the OEM bits in NVM */ 2923 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 2924 2925 if (hw->mac.type == e1000_pch2lan) { 2926 /* Ungate automatic PHY configuration on non-managed 82579 */ 2927 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 2928 usleep_range(10000, 11000); 2929 e1000_gate_hw_phy_config_ich8lan(hw, false); 2930 } 2931 2932 /* Set EEE LPI Update Timer to 200usec */ 2933 ret_val = hw->phy.ops.acquire(hw); 2934 if (ret_val) 2935 return ret_val; 2936 ret_val = e1000_write_emi_reg_locked(hw, 2937 I82579_LPI_UPDATE_TIMER, 2938 0x1387); 2939 hw->phy.ops.release(hw); 2940 } 2941 2942 return ret_val; 2943 } 2944 2945 /** 2946 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 2947 * @hw: pointer to the HW structure 2948 * 2949 * Resets the PHY 2950 * This is a function pointer entry point called by drivers 2951 * or other shared routines. 2952 **/ 2953 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 2954 { 2955 s32 ret_val = 0; 2956 2957 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 2958 if ((hw->mac.type == e1000_pch2lan) && 2959 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 2960 e1000_gate_hw_phy_config_ich8lan(hw, true); 2961 2962 ret_val = e1000e_phy_hw_reset_generic(hw); 2963 if (ret_val) 2964 return ret_val; 2965 2966 return e1000_post_phy_reset_ich8lan(hw); 2967 } 2968 2969 /** 2970 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 2971 * @hw: pointer to the HW structure 2972 * @active: true to enable LPLU, false to disable 2973 * 2974 * Sets the LPLU state according to the active flag. For PCH, if OEM write 2975 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 2976 * the phy speed. This function will manually set the LPLU bit and restart 2977 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 2978 * since it configures the same bit. 2979 **/ 2980 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 2981 { 2982 s32 ret_val; 2983 u16 oem_reg; 2984 2985 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 2986 if (ret_val) 2987 return ret_val; 2988 2989 if (active) 2990 oem_reg |= HV_OEM_BITS_LPLU; 2991 else 2992 oem_reg &= ~HV_OEM_BITS_LPLU; 2993 2994 if (!hw->phy.ops.check_reset_block(hw)) 2995 oem_reg |= HV_OEM_BITS_RESTART_AN; 2996 2997 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 2998 } 2999 3000 /** 3001 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 3002 * @hw: pointer to the HW structure 3003 * @active: true to enable LPLU, false to disable 3004 * 3005 * Sets the LPLU D0 state according to the active flag. When 3006 * activating LPLU this function also disables smart speed 3007 * and vice versa. LPLU will not be activated unless the 3008 * device autonegotiation advertisement meets standards of 3009 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3010 * This is a function pointer entry point only called by 3011 * PHY setup routines. 3012 **/ 3013 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3014 { 3015 struct e1000_phy_info *phy = &hw->phy; 3016 u32 phy_ctrl; 3017 s32 ret_val = 0; 3018 u16 data; 3019 3020 if (phy->type == e1000_phy_ife) 3021 return 0; 3022 3023 phy_ctrl = er32(PHY_CTRL); 3024 3025 if (active) { 3026 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 3027 ew32(PHY_CTRL, phy_ctrl); 3028 3029 if (phy->type != e1000_phy_igp_3) 3030 return 0; 3031 3032 /* Call gig speed drop workaround on LPLU before accessing 3033 * any PHY registers 3034 */ 3035 if (hw->mac.type == e1000_ich8lan) 3036 e1000e_gig_downshift_workaround_ich8lan(hw); 3037 3038 /* When LPLU is enabled, we should disable SmartSpeed */ 3039 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3040 if (ret_val) 3041 return ret_val; 3042 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3043 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3044 if (ret_val) 3045 return ret_val; 3046 } else { 3047 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 3048 ew32(PHY_CTRL, phy_ctrl); 3049 3050 if (phy->type != e1000_phy_igp_3) 3051 return 0; 3052 3053 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3054 * during Dx states where the power conservation is most 3055 * important. During driver activity we should enable 3056 * SmartSpeed, so performance is maintained. 3057 */ 3058 if (phy->smart_speed == e1000_smart_speed_on) { 3059 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3060 &data); 3061 if (ret_val) 3062 return ret_val; 3063 3064 data |= IGP01E1000_PSCFR_SMART_SPEED; 3065 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3066 data); 3067 if (ret_val) 3068 return ret_val; 3069 } else if (phy->smart_speed == e1000_smart_speed_off) { 3070 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3071 &data); 3072 if (ret_val) 3073 return ret_val; 3074 3075 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3076 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3077 data); 3078 if (ret_val) 3079 return ret_val; 3080 } 3081 } 3082 3083 return 0; 3084 } 3085 3086 /** 3087 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 3088 * @hw: pointer to the HW structure 3089 * @active: true to enable LPLU, false to disable 3090 * 3091 * Sets the LPLU D3 state according to the active flag. When 3092 * activating LPLU this function also disables smart speed 3093 * and vice versa. LPLU will not be activated unless the 3094 * device autonegotiation advertisement meets standards of 3095 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3096 * This is a function pointer entry point only called by 3097 * PHY setup routines. 3098 **/ 3099 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3100 { 3101 struct e1000_phy_info *phy = &hw->phy; 3102 u32 phy_ctrl; 3103 s32 ret_val = 0; 3104 u16 data; 3105 3106 phy_ctrl = er32(PHY_CTRL); 3107 3108 if (!active) { 3109 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 3110 ew32(PHY_CTRL, phy_ctrl); 3111 3112 if (phy->type != e1000_phy_igp_3) 3113 return 0; 3114 3115 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3116 * during Dx states where the power conservation is most 3117 * important. During driver activity we should enable 3118 * SmartSpeed, so performance is maintained. 3119 */ 3120 if (phy->smart_speed == e1000_smart_speed_on) { 3121 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3122 &data); 3123 if (ret_val) 3124 return ret_val; 3125 3126 data |= IGP01E1000_PSCFR_SMART_SPEED; 3127 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3128 data); 3129 if (ret_val) 3130 return ret_val; 3131 } else if (phy->smart_speed == e1000_smart_speed_off) { 3132 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3133 &data); 3134 if (ret_val) 3135 return ret_val; 3136 3137 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3138 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3139 data); 3140 if (ret_val) 3141 return ret_val; 3142 } 3143 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 3144 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 3145 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 3146 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 3147 ew32(PHY_CTRL, phy_ctrl); 3148 3149 if (phy->type != e1000_phy_igp_3) 3150 return 0; 3151 3152 /* Call gig speed drop workaround on LPLU before accessing 3153 * any PHY registers 3154 */ 3155 if (hw->mac.type == e1000_ich8lan) 3156 e1000e_gig_downshift_workaround_ich8lan(hw); 3157 3158 /* When LPLU is enabled, we should disable SmartSpeed */ 3159 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3160 if (ret_val) 3161 return ret_val; 3162 3163 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3164 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3165 } 3166 3167 return ret_val; 3168 } 3169 3170 /** 3171 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 3172 * @hw: pointer to the HW structure 3173 * @bank: pointer to the variable that returns the active bank 3174 * 3175 * Reads signature byte from the NVM using the flash access registers. 3176 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 3177 **/ 3178 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 3179 { 3180 u32 eecd; 3181 struct e1000_nvm_info *nvm = &hw->nvm; 3182 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 3183 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 3184 u32 nvm_dword = 0; 3185 u8 sig_byte = 0; 3186 s32 ret_val; 3187 3188 switch (hw->mac.type) { 3189 case e1000_pch_spt: 3190 case e1000_pch_cnp: 3191 case e1000_pch_tgp: 3192 case e1000_pch_adp: 3193 case e1000_pch_mtp: 3194 case e1000_pch_lnp: 3195 case e1000_pch_ptp: 3196 case e1000_pch_nvp: 3197 bank1_offset = nvm->flash_bank_size; 3198 act_offset = E1000_ICH_NVM_SIG_WORD; 3199 3200 /* set bank to 0 in case flash read fails */ 3201 *bank = 0; 3202 3203 /* Check bank 0 */ 3204 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, 3205 &nvm_dword); 3206 if (ret_val) 3207 return ret_val; 3208 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3209 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3210 E1000_ICH_NVM_SIG_VALUE) { 3211 *bank = 0; 3212 return 0; 3213 } 3214 3215 /* Check bank 1 */ 3216 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + 3217 bank1_offset, 3218 &nvm_dword); 3219 if (ret_val) 3220 return ret_val; 3221 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3222 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3223 E1000_ICH_NVM_SIG_VALUE) { 3224 *bank = 1; 3225 return 0; 3226 } 3227 3228 e_dbg("ERROR: No valid NVM bank present\n"); 3229 return -E1000_ERR_NVM; 3230 case e1000_ich8lan: 3231 case e1000_ich9lan: 3232 eecd = er32(EECD); 3233 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 3234 E1000_EECD_SEC1VAL_VALID_MASK) { 3235 if (eecd & E1000_EECD_SEC1VAL) 3236 *bank = 1; 3237 else 3238 *bank = 0; 3239 3240 return 0; 3241 } 3242 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 3243 fallthrough; 3244 default: 3245 /* set bank to 0 in case flash read fails */ 3246 *bank = 0; 3247 3248 /* Check bank 0 */ 3249 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 3250 &sig_byte); 3251 if (ret_val) 3252 return ret_val; 3253 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3254 E1000_ICH_NVM_SIG_VALUE) { 3255 *bank = 0; 3256 return 0; 3257 } 3258 3259 /* Check bank 1 */ 3260 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 3261 bank1_offset, 3262 &sig_byte); 3263 if (ret_val) 3264 return ret_val; 3265 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3266 E1000_ICH_NVM_SIG_VALUE) { 3267 *bank = 1; 3268 return 0; 3269 } 3270 3271 e_dbg("ERROR: No valid NVM bank present\n"); 3272 return -E1000_ERR_NVM; 3273 } 3274 } 3275 3276 /** 3277 * e1000_read_nvm_spt - NVM access for SPT 3278 * @hw: pointer to the HW structure 3279 * @offset: The offset (in bytes) of the word(s) to read. 3280 * @words: Size of data to read in words. 3281 * @data: pointer to the word(s) to read at offset. 3282 * 3283 * Reads a word(s) from the NVM 3284 **/ 3285 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 3286 u16 *data) 3287 { 3288 struct e1000_nvm_info *nvm = &hw->nvm; 3289 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3290 u32 act_offset; 3291 s32 ret_val = 0; 3292 u32 bank = 0; 3293 u32 dword = 0; 3294 u16 offset_to_read; 3295 u16 i; 3296 3297 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3298 (words == 0)) { 3299 e_dbg("nvm parameter(s) out of bounds\n"); 3300 ret_val = -E1000_ERR_NVM; 3301 goto out; 3302 } 3303 3304 nvm->ops.acquire(hw); 3305 3306 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3307 if (ret_val) { 3308 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3309 bank = 0; 3310 } 3311 3312 act_offset = (bank) ? nvm->flash_bank_size : 0; 3313 act_offset += offset; 3314 3315 ret_val = 0; 3316 3317 for (i = 0; i < words; i += 2) { 3318 if (words - i == 1) { 3319 if (dev_spec->shadow_ram[offset + i].modified) { 3320 data[i] = 3321 dev_spec->shadow_ram[offset + i].value; 3322 } else { 3323 offset_to_read = act_offset + i - 3324 ((act_offset + i) % 2); 3325 ret_val = 3326 e1000_read_flash_dword_ich8lan(hw, 3327 offset_to_read, 3328 &dword); 3329 if (ret_val) 3330 break; 3331 if ((act_offset + i) % 2 == 0) 3332 data[i] = (u16)(dword & 0xFFFF); 3333 else 3334 data[i] = (u16)((dword >> 16) & 0xFFFF); 3335 } 3336 } else { 3337 offset_to_read = act_offset + i; 3338 if (!(dev_spec->shadow_ram[offset + i].modified) || 3339 !(dev_spec->shadow_ram[offset + i + 1].modified)) { 3340 ret_val = 3341 e1000_read_flash_dword_ich8lan(hw, 3342 offset_to_read, 3343 &dword); 3344 if (ret_val) 3345 break; 3346 } 3347 if (dev_spec->shadow_ram[offset + i].modified) 3348 data[i] = 3349 dev_spec->shadow_ram[offset + i].value; 3350 else 3351 data[i] = (u16)(dword & 0xFFFF); 3352 if (dev_spec->shadow_ram[offset + i].modified) 3353 data[i + 1] = 3354 dev_spec->shadow_ram[offset + i + 1].value; 3355 else 3356 data[i + 1] = (u16)(dword >> 16 & 0xFFFF); 3357 } 3358 } 3359 3360 nvm->ops.release(hw); 3361 3362 out: 3363 if (ret_val) 3364 e_dbg("NVM read error: %d\n", ret_val); 3365 3366 return ret_val; 3367 } 3368 3369 /** 3370 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3371 * @hw: pointer to the HW structure 3372 * @offset: The offset (in bytes) of the word(s) to read. 3373 * @words: Size of data to read in words 3374 * @data: Pointer to the word(s) to read at offset. 3375 * 3376 * Reads a word(s) from the NVM using the flash access registers. 3377 **/ 3378 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3379 u16 *data) 3380 { 3381 struct e1000_nvm_info *nvm = &hw->nvm; 3382 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3383 u32 act_offset; 3384 s32 ret_val = 0; 3385 u32 bank = 0; 3386 u16 i, word; 3387 3388 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3389 (words == 0)) { 3390 e_dbg("nvm parameter(s) out of bounds\n"); 3391 ret_val = -E1000_ERR_NVM; 3392 goto out; 3393 } 3394 3395 nvm->ops.acquire(hw); 3396 3397 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3398 if (ret_val) { 3399 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3400 bank = 0; 3401 } 3402 3403 act_offset = (bank) ? nvm->flash_bank_size : 0; 3404 act_offset += offset; 3405 3406 ret_val = 0; 3407 for (i = 0; i < words; i++) { 3408 if (dev_spec->shadow_ram[offset + i].modified) { 3409 data[i] = dev_spec->shadow_ram[offset + i].value; 3410 } else { 3411 ret_val = e1000_read_flash_word_ich8lan(hw, 3412 act_offset + i, 3413 &word); 3414 if (ret_val) 3415 break; 3416 data[i] = word; 3417 } 3418 } 3419 3420 nvm->ops.release(hw); 3421 3422 out: 3423 if (ret_val) 3424 e_dbg("NVM read error: %d\n", ret_val); 3425 3426 return ret_val; 3427 } 3428 3429 /** 3430 * e1000_flash_cycle_init_ich8lan - Initialize flash 3431 * @hw: pointer to the HW structure 3432 * 3433 * This function does initial flash setup so that a new read/write/erase cycle 3434 * can be started. 3435 **/ 3436 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3437 { 3438 union ich8_hws_flash_status hsfsts; 3439 s32 ret_val = -E1000_ERR_NVM; 3440 3441 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3442 3443 /* Check if the flash descriptor is valid */ 3444 if (!hsfsts.hsf_status.fldesvalid) { 3445 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 3446 return -E1000_ERR_NVM; 3447 } 3448 3449 /* Clear FCERR and DAEL in hw status by writing 1 */ 3450 hsfsts.hsf_status.flcerr = 1; 3451 hsfsts.hsf_status.dael = 1; 3452 if (hw->mac.type >= e1000_pch_spt) 3453 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3454 else 3455 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3456 3457 /* Either we should have a hardware SPI cycle in progress 3458 * bit to check against, in order to start a new cycle or 3459 * FDONE bit should be changed in the hardware so that it 3460 * is 1 after hardware reset, which can then be used as an 3461 * indication whether a cycle is in progress or has been 3462 * completed. 3463 */ 3464 3465 if (!hsfsts.hsf_status.flcinprog) { 3466 /* There is no cycle running at present, 3467 * so we can start a cycle. 3468 * Begin by setting Flash Cycle Done. 3469 */ 3470 hsfsts.hsf_status.flcdone = 1; 3471 if (hw->mac.type >= e1000_pch_spt) 3472 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3473 else 3474 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3475 ret_val = 0; 3476 } else { 3477 s32 i; 3478 3479 /* Otherwise poll for sometime so the current 3480 * cycle has a chance to end before giving up. 3481 */ 3482 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3483 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3484 if (!hsfsts.hsf_status.flcinprog) { 3485 ret_val = 0; 3486 break; 3487 } 3488 udelay(1); 3489 } 3490 if (!ret_val) { 3491 /* Successful in waiting for previous cycle to timeout, 3492 * now set the Flash Cycle Done. 3493 */ 3494 hsfsts.hsf_status.flcdone = 1; 3495 if (hw->mac.type >= e1000_pch_spt) 3496 ew32flash(ICH_FLASH_HSFSTS, 3497 hsfsts.regval & 0xFFFF); 3498 else 3499 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3500 } else { 3501 e_dbg("Flash controller busy, cannot get access\n"); 3502 } 3503 } 3504 3505 return ret_val; 3506 } 3507 3508 /** 3509 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3510 * @hw: pointer to the HW structure 3511 * @timeout: maximum time to wait for completion 3512 * 3513 * This function starts a flash cycle and waits for its completion. 3514 **/ 3515 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3516 { 3517 union ich8_hws_flash_ctrl hsflctl; 3518 union ich8_hws_flash_status hsfsts; 3519 u32 i = 0; 3520 3521 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3522 if (hw->mac.type >= e1000_pch_spt) 3523 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3524 else 3525 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3526 hsflctl.hsf_ctrl.flcgo = 1; 3527 3528 if (hw->mac.type >= e1000_pch_spt) 3529 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 3530 else 3531 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3532 3533 /* wait till FDONE bit is set to 1 */ 3534 do { 3535 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3536 if (hsfsts.hsf_status.flcdone) 3537 break; 3538 udelay(1); 3539 } while (i++ < timeout); 3540 3541 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3542 return 0; 3543 3544 return -E1000_ERR_NVM; 3545 } 3546 3547 /** 3548 * e1000_read_flash_dword_ich8lan - Read dword from flash 3549 * @hw: pointer to the HW structure 3550 * @offset: offset to data location 3551 * @data: pointer to the location for storing the data 3552 * 3553 * Reads the flash dword at offset into data. Offset is converted 3554 * to bytes before read. 3555 **/ 3556 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, 3557 u32 *data) 3558 { 3559 /* Must convert word offset into bytes. */ 3560 offset <<= 1; 3561 return e1000_read_flash_data32_ich8lan(hw, offset, data); 3562 } 3563 3564 /** 3565 * e1000_read_flash_word_ich8lan - Read word from flash 3566 * @hw: pointer to the HW structure 3567 * @offset: offset to data location 3568 * @data: pointer to the location for storing the data 3569 * 3570 * Reads the flash word at offset into data. Offset is converted 3571 * to bytes before read. 3572 **/ 3573 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3574 u16 *data) 3575 { 3576 /* Must convert offset into bytes. */ 3577 offset <<= 1; 3578 3579 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3580 } 3581 3582 /** 3583 * e1000_read_flash_byte_ich8lan - Read byte from flash 3584 * @hw: pointer to the HW structure 3585 * @offset: The offset of the byte to read. 3586 * @data: Pointer to a byte to store the value read. 3587 * 3588 * Reads a single byte from the NVM using the flash access registers. 3589 **/ 3590 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3591 u8 *data) 3592 { 3593 s32 ret_val; 3594 u16 word = 0; 3595 3596 /* In SPT, only 32 bits access is supported, 3597 * so this function should not be called. 3598 */ 3599 if (hw->mac.type >= e1000_pch_spt) 3600 return -E1000_ERR_NVM; 3601 else 3602 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3603 3604 if (ret_val) 3605 return ret_val; 3606 3607 *data = (u8)word; 3608 3609 return 0; 3610 } 3611 3612 /** 3613 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3614 * @hw: pointer to the HW structure 3615 * @offset: The offset (in bytes) of the byte or word to read. 3616 * @size: Size of data to read, 1=byte 2=word 3617 * @data: Pointer to the word to store the value read. 3618 * 3619 * Reads a byte or word from the NVM using the flash access registers. 3620 **/ 3621 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3622 u8 size, u16 *data) 3623 { 3624 union ich8_hws_flash_status hsfsts; 3625 union ich8_hws_flash_ctrl hsflctl; 3626 u32 flash_linear_addr; 3627 u32 flash_data = 0; 3628 s32 ret_val = -E1000_ERR_NVM; 3629 u8 count = 0; 3630 3631 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3632 return -E1000_ERR_NVM; 3633 3634 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3635 hw->nvm.flash_base_addr); 3636 3637 do { 3638 udelay(1); 3639 /* Steps */ 3640 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3641 if (ret_val) 3642 break; 3643 3644 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3645 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3646 hsflctl.hsf_ctrl.fldbcount = size - 1; 3647 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3648 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3649 3650 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3651 3652 ret_val = 3653 e1000_flash_cycle_ich8lan(hw, 3654 ICH_FLASH_READ_COMMAND_TIMEOUT); 3655 3656 /* Check if FCERR is set to 1, if set to 1, clear it 3657 * and try the whole sequence a few more times, else 3658 * read in (shift in) the Flash Data0, the order is 3659 * least significant byte first msb to lsb 3660 */ 3661 if (!ret_val) { 3662 flash_data = er32flash(ICH_FLASH_FDATA0); 3663 if (size == 1) 3664 *data = (u8)(flash_data & 0x000000FF); 3665 else if (size == 2) 3666 *data = (u16)(flash_data & 0x0000FFFF); 3667 break; 3668 } else { 3669 /* If we've gotten here, then things are probably 3670 * completely hosed, but if the error condition is 3671 * detected, it won't hurt to give it another try... 3672 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3673 */ 3674 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3675 if (hsfsts.hsf_status.flcerr) { 3676 /* Repeat for some time before giving up. */ 3677 continue; 3678 } else if (!hsfsts.hsf_status.flcdone) { 3679 e_dbg("Timeout error - flash cycle did not complete.\n"); 3680 break; 3681 } 3682 } 3683 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3684 3685 return ret_val; 3686 } 3687 3688 /** 3689 * e1000_read_flash_data32_ich8lan - Read dword from NVM 3690 * @hw: pointer to the HW structure 3691 * @offset: The offset (in bytes) of the dword to read. 3692 * @data: Pointer to the dword to store the value read. 3693 * 3694 * Reads a byte or word from the NVM using the flash access registers. 3695 **/ 3696 3697 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 3698 u32 *data) 3699 { 3700 union ich8_hws_flash_status hsfsts; 3701 union ich8_hws_flash_ctrl hsflctl; 3702 u32 flash_linear_addr; 3703 s32 ret_val = -E1000_ERR_NVM; 3704 u8 count = 0; 3705 3706 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) 3707 return -E1000_ERR_NVM; 3708 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3709 hw->nvm.flash_base_addr); 3710 3711 do { 3712 udelay(1); 3713 /* Steps */ 3714 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3715 if (ret_val) 3716 break; 3717 /* In SPT, This register is in Lan memory space, not flash. 3718 * Therefore, only 32 bit access is supported 3719 */ 3720 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3721 3722 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3723 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 3724 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3725 /* In SPT, This register is in Lan memory space, not flash. 3726 * Therefore, only 32 bit access is supported 3727 */ 3728 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); 3729 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3730 3731 ret_val = 3732 e1000_flash_cycle_ich8lan(hw, 3733 ICH_FLASH_READ_COMMAND_TIMEOUT); 3734 3735 /* Check if FCERR is set to 1, if set to 1, clear it 3736 * and try the whole sequence a few more times, else 3737 * read in (shift in) the Flash Data0, the order is 3738 * least significant byte first msb to lsb 3739 */ 3740 if (!ret_val) { 3741 *data = er32flash(ICH_FLASH_FDATA0); 3742 break; 3743 } else { 3744 /* If we've gotten here, then things are probably 3745 * completely hosed, but if the error condition is 3746 * detected, it won't hurt to give it another try... 3747 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3748 */ 3749 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3750 if (hsfsts.hsf_status.flcerr) { 3751 /* Repeat for some time before giving up. */ 3752 continue; 3753 } else if (!hsfsts.hsf_status.flcdone) { 3754 e_dbg("Timeout error - flash cycle did not complete.\n"); 3755 break; 3756 } 3757 } 3758 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3759 3760 return ret_val; 3761 } 3762 3763 /** 3764 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 3765 * @hw: pointer to the HW structure 3766 * @offset: The offset (in bytes) of the word(s) to write. 3767 * @words: Size of data to write in words 3768 * @data: Pointer to the word(s) to write at offset. 3769 * 3770 * Writes a byte or word to the NVM using the flash access registers. 3771 **/ 3772 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3773 u16 *data) 3774 { 3775 struct e1000_nvm_info *nvm = &hw->nvm; 3776 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3777 u16 i; 3778 3779 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3780 (words == 0)) { 3781 e_dbg("nvm parameter(s) out of bounds\n"); 3782 return -E1000_ERR_NVM; 3783 } 3784 3785 nvm->ops.acquire(hw); 3786 3787 for (i = 0; i < words; i++) { 3788 dev_spec->shadow_ram[offset + i].modified = true; 3789 dev_spec->shadow_ram[offset + i].value = data[i]; 3790 } 3791 3792 nvm->ops.release(hw); 3793 3794 return 0; 3795 } 3796 3797 /** 3798 * e1000_update_nvm_checksum_spt - Update the checksum for NVM 3799 * @hw: pointer to the HW structure 3800 * 3801 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3802 * which writes the checksum to the shadow ram. The changes in the shadow 3803 * ram are then committed to the EEPROM by processing each bank at a time 3804 * checking for the modified bit and writing only the pending changes. 3805 * After a successful commit, the shadow ram is cleared and is ready for 3806 * future writes. 3807 **/ 3808 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) 3809 { 3810 struct e1000_nvm_info *nvm = &hw->nvm; 3811 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3812 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3813 s32 ret_val; 3814 u32 dword = 0; 3815 3816 ret_val = e1000e_update_nvm_checksum_generic(hw); 3817 if (ret_val) 3818 goto out; 3819 3820 if (nvm->type != e1000_nvm_flash_sw) 3821 goto out; 3822 3823 nvm->ops.acquire(hw); 3824 3825 /* We're writing to the opposite bank so if we're on bank 1, 3826 * write to bank 0 etc. We also need to erase the segment that 3827 * is going to be written 3828 */ 3829 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3830 if (ret_val) { 3831 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3832 bank = 0; 3833 } 3834 3835 if (bank == 0) { 3836 new_bank_offset = nvm->flash_bank_size; 3837 old_bank_offset = 0; 3838 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3839 if (ret_val) 3840 goto release; 3841 } else { 3842 old_bank_offset = nvm->flash_bank_size; 3843 new_bank_offset = 0; 3844 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3845 if (ret_val) 3846 goto release; 3847 } 3848 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { 3849 /* Determine whether to write the value stored 3850 * in the other NVM bank or a modified value stored 3851 * in the shadow RAM 3852 */ 3853 ret_val = e1000_read_flash_dword_ich8lan(hw, 3854 i + old_bank_offset, 3855 &dword); 3856 3857 if (dev_spec->shadow_ram[i].modified) { 3858 dword &= 0xffff0000; 3859 dword |= (dev_spec->shadow_ram[i].value & 0xffff); 3860 } 3861 if (dev_spec->shadow_ram[i + 1].modified) { 3862 dword &= 0x0000ffff; 3863 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) 3864 << 16); 3865 } 3866 if (ret_val) 3867 break; 3868 3869 /* If the word is 0x13, then make sure the signature bits 3870 * (15:14) are 11b until the commit has completed. 3871 * This will allow us to write 10b which indicates the 3872 * signature is valid. We want to do this after the write 3873 * has completed so that we don't mark the segment valid 3874 * while the write is still in progress 3875 */ 3876 if (i == E1000_ICH_NVM_SIG_WORD - 1) 3877 dword |= E1000_ICH_NVM_SIG_MASK << 16; 3878 3879 /* Convert offset to bytes. */ 3880 act_offset = (i + new_bank_offset) << 1; 3881 3882 usleep_range(100, 200); 3883 3884 /* Write the data to the new bank. Offset in words */ 3885 act_offset = i + new_bank_offset; 3886 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, 3887 dword); 3888 if (ret_val) 3889 break; 3890 } 3891 3892 /* Don't bother writing the segment valid bits if sector 3893 * programming failed. 3894 */ 3895 if (ret_val) { 3896 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3897 e_dbg("Flash commit failed.\n"); 3898 goto release; 3899 } 3900 3901 /* Finally validate the new segment by setting bit 15:14 3902 * to 10b in word 0x13 , this can be done without an 3903 * erase as well since these bits are 11 to start with 3904 * and we need to change bit 14 to 0b 3905 */ 3906 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3907 3908 /*offset in words but we read dword */ 3909 --act_offset; 3910 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3911 3912 if (ret_val) 3913 goto release; 3914 3915 dword &= 0xBFFFFFFF; 3916 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3917 3918 if (ret_val) 3919 goto release; 3920 3921 /* offset in words but we read dword */ 3922 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; 3923 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3924 3925 if (ret_val) 3926 goto release; 3927 3928 dword &= 0x00FFFFFF; 3929 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3930 3931 if (ret_val) 3932 goto release; 3933 3934 /* Great! Everything worked, we can now clear the cached entries. */ 3935 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3936 dev_spec->shadow_ram[i].modified = false; 3937 dev_spec->shadow_ram[i].value = 0xFFFF; 3938 } 3939 3940 release: 3941 nvm->ops.release(hw); 3942 3943 /* Reload the EEPROM, or else modifications will not appear 3944 * until after the next adapter reset. 3945 */ 3946 if (!ret_val) { 3947 nvm->ops.reload(hw); 3948 usleep_range(10000, 11000); 3949 } 3950 3951 out: 3952 if (ret_val) 3953 e_dbg("NVM update error: %d\n", ret_val); 3954 3955 return ret_val; 3956 } 3957 3958 /** 3959 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 3960 * @hw: pointer to the HW structure 3961 * 3962 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3963 * which writes the checksum to the shadow ram. The changes in the shadow 3964 * ram are then committed to the EEPROM by processing each bank at a time 3965 * checking for the modified bit and writing only the pending changes. 3966 * After a successful commit, the shadow ram is cleared and is ready for 3967 * future writes. 3968 **/ 3969 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 3970 { 3971 struct e1000_nvm_info *nvm = &hw->nvm; 3972 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3973 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3974 s32 ret_val; 3975 u16 data = 0; 3976 3977 ret_val = e1000e_update_nvm_checksum_generic(hw); 3978 if (ret_val) 3979 goto out; 3980 3981 if (nvm->type != e1000_nvm_flash_sw) 3982 goto out; 3983 3984 nvm->ops.acquire(hw); 3985 3986 /* We're writing to the opposite bank so if we're on bank 1, 3987 * write to bank 0 etc. We also need to erase the segment that 3988 * is going to be written 3989 */ 3990 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3991 if (ret_val) { 3992 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3993 bank = 0; 3994 } 3995 3996 if (bank == 0) { 3997 new_bank_offset = nvm->flash_bank_size; 3998 old_bank_offset = 0; 3999 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 4000 if (ret_val) 4001 goto release; 4002 } else { 4003 old_bank_offset = nvm->flash_bank_size; 4004 new_bank_offset = 0; 4005 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 4006 if (ret_val) 4007 goto release; 4008 } 4009 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 4010 if (dev_spec->shadow_ram[i].modified) { 4011 data = dev_spec->shadow_ram[i].value; 4012 } else { 4013 ret_val = e1000_read_flash_word_ich8lan(hw, i + 4014 old_bank_offset, 4015 &data); 4016 if (ret_val) 4017 break; 4018 } 4019 4020 /* If the word is 0x13, then make sure the signature bits 4021 * (15:14) are 11b until the commit has completed. 4022 * This will allow us to write 10b which indicates the 4023 * signature is valid. We want to do this after the write 4024 * has completed so that we don't mark the segment valid 4025 * while the write is still in progress 4026 */ 4027 if (i == E1000_ICH_NVM_SIG_WORD) 4028 data |= E1000_ICH_NVM_SIG_MASK; 4029 4030 /* Convert offset to bytes. */ 4031 act_offset = (i + new_bank_offset) << 1; 4032 4033 usleep_range(100, 200); 4034 /* Write the bytes to the new bank. */ 4035 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4036 act_offset, 4037 (u8)data); 4038 if (ret_val) 4039 break; 4040 4041 usleep_range(100, 200); 4042 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4043 act_offset + 1, 4044 (u8)(data >> 8)); 4045 if (ret_val) 4046 break; 4047 } 4048 4049 /* Don't bother writing the segment valid bits if sector 4050 * programming failed. 4051 */ 4052 if (ret_val) { 4053 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 4054 e_dbg("Flash commit failed.\n"); 4055 goto release; 4056 } 4057 4058 /* Finally validate the new segment by setting bit 15:14 4059 * to 10b in word 0x13 , this can be done without an 4060 * erase as well since these bits are 11 to start with 4061 * and we need to change bit 14 to 0b 4062 */ 4063 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 4064 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 4065 if (ret_val) 4066 goto release; 4067 4068 data &= 0xBFFF; 4069 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4070 act_offset * 2 + 1, 4071 (u8)(data >> 8)); 4072 if (ret_val) 4073 goto release; 4074 4075 /* And invalidate the previously valid segment by setting 4076 * its signature word (0x13) high_byte to 0b. This can be 4077 * done without an erase because flash erase sets all bits 4078 * to 1's. We can write 1's to 0's without an erase 4079 */ 4080 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 4081 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 4082 if (ret_val) 4083 goto release; 4084 4085 /* Great! Everything worked, we can now clear the cached entries. */ 4086 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 4087 dev_spec->shadow_ram[i].modified = false; 4088 dev_spec->shadow_ram[i].value = 0xFFFF; 4089 } 4090 4091 release: 4092 nvm->ops.release(hw); 4093 4094 /* Reload the EEPROM, or else modifications will not appear 4095 * until after the next adapter reset. 4096 */ 4097 if (!ret_val) { 4098 nvm->ops.reload(hw); 4099 usleep_range(10000, 11000); 4100 } 4101 4102 out: 4103 if (ret_val) 4104 e_dbg("NVM update error: %d\n", ret_val); 4105 4106 return ret_val; 4107 } 4108 4109 /** 4110 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 4111 * @hw: pointer to the HW structure 4112 * 4113 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 4114 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 4115 * calculated, in which case we need to calculate the checksum and set bit 6. 4116 **/ 4117 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 4118 { 4119 s32 ret_val; 4120 u16 data; 4121 u16 word; 4122 u16 valid_csum_mask; 4123 4124 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 4125 * the checksum needs to be fixed. This bit is an indication that 4126 * the NVM was prepared by OEM software and did not calculate 4127 * the checksum...a likely scenario. 4128 */ 4129 switch (hw->mac.type) { 4130 case e1000_pch_lpt: 4131 case e1000_pch_spt: 4132 case e1000_pch_cnp: 4133 case e1000_pch_tgp: 4134 case e1000_pch_adp: 4135 case e1000_pch_mtp: 4136 case e1000_pch_lnp: 4137 case e1000_pch_ptp: 4138 case e1000_pch_nvp: 4139 word = NVM_COMPAT; 4140 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 4141 break; 4142 default: 4143 word = NVM_FUTURE_INIT_WORD1; 4144 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 4145 break; 4146 } 4147 4148 ret_val = e1000_read_nvm(hw, word, 1, &data); 4149 if (ret_val) 4150 return ret_val; 4151 4152 if (!(data & valid_csum_mask)) { 4153 e_dbg("NVM Checksum valid bit not set\n"); 4154 4155 if (hw->mac.type < e1000_pch_tgp) { 4156 data |= valid_csum_mask; 4157 ret_val = e1000_write_nvm(hw, word, 1, &data); 4158 if (ret_val) 4159 return ret_val; 4160 ret_val = e1000e_update_nvm_checksum(hw); 4161 if (ret_val) 4162 return ret_val; 4163 } 4164 } 4165 4166 return e1000e_validate_nvm_checksum_generic(hw); 4167 } 4168 4169 /** 4170 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 4171 * @hw: pointer to the HW structure 4172 * 4173 * To prevent malicious write/erase of the NVM, set it to be read-only 4174 * so that the hardware ignores all write/erase cycles of the NVM via 4175 * the flash control registers. The shadow-ram copy of the NVM will 4176 * still be updated, however any updates to this copy will not stick 4177 * across driver reloads. 4178 **/ 4179 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 4180 { 4181 struct e1000_nvm_info *nvm = &hw->nvm; 4182 union ich8_flash_protected_range pr0; 4183 union ich8_hws_flash_status hsfsts; 4184 u32 gfpreg; 4185 4186 nvm->ops.acquire(hw); 4187 4188 gfpreg = er32flash(ICH_FLASH_GFPREG); 4189 4190 /* Write-protect GbE Sector of NVM */ 4191 pr0.regval = er32flash(ICH_FLASH_PR0); 4192 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 4193 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 4194 pr0.range.wpe = true; 4195 ew32flash(ICH_FLASH_PR0, pr0.regval); 4196 4197 /* Lock down a subset of GbE Flash Control Registers, e.g. 4198 * PR0 to prevent the write-protection from being lifted. 4199 * Once FLOCKDN is set, the registers protected by it cannot 4200 * be written until FLOCKDN is cleared by a hardware reset. 4201 */ 4202 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4203 hsfsts.hsf_status.flockdn = true; 4204 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 4205 4206 nvm->ops.release(hw); 4207 } 4208 4209 /** 4210 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 4211 * @hw: pointer to the HW structure 4212 * @offset: The offset (in bytes) of the byte/word to read. 4213 * @size: Size of data to read, 1=byte 2=word 4214 * @data: The byte(s) to write to the NVM. 4215 * 4216 * Writes one/two bytes to the NVM using the flash access registers. 4217 **/ 4218 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 4219 u8 size, u16 data) 4220 { 4221 union ich8_hws_flash_status hsfsts; 4222 union ich8_hws_flash_ctrl hsflctl; 4223 u32 flash_linear_addr; 4224 u32 flash_data = 0; 4225 s32 ret_val; 4226 u8 count = 0; 4227 4228 if (hw->mac.type >= e1000_pch_spt) { 4229 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4230 return -E1000_ERR_NVM; 4231 } else { 4232 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4233 return -E1000_ERR_NVM; 4234 } 4235 4236 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4237 hw->nvm.flash_base_addr); 4238 4239 do { 4240 udelay(1); 4241 /* Steps */ 4242 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4243 if (ret_val) 4244 break; 4245 /* In SPT, This register is in Lan memory space, not 4246 * flash. Therefore, only 32 bit access is supported 4247 */ 4248 if (hw->mac.type >= e1000_pch_spt) 4249 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 4250 else 4251 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4252 4253 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 4254 hsflctl.hsf_ctrl.fldbcount = size - 1; 4255 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4256 /* In SPT, This register is in Lan memory space, 4257 * not flash. Therefore, only 32 bit access is 4258 * supported 4259 */ 4260 if (hw->mac.type >= e1000_pch_spt) 4261 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4262 else 4263 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4264 4265 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4266 4267 if (size == 1) 4268 flash_data = (u32)data & 0x00FF; 4269 else 4270 flash_data = (u32)data; 4271 4272 ew32flash(ICH_FLASH_FDATA0, flash_data); 4273 4274 /* check if FCERR is set to 1 , if set to 1, clear it 4275 * and try the whole sequence a few more times else done 4276 */ 4277 ret_val = 4278 e1000_flash_cycle_ich8lan(hw, 4279 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4280 if (!ret_val) 4281 break; 4282 4283 /* If we're here, then things are most likely 4284 * completely hosed, but if the error condition 4285 * is detected, it won't hurt to give it another 4286 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4287 */ 4288 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4289 if (hsfsts.hsf_status.flcerr) 4290 /* Repeat for some time before giving up. */ 4291 continue; 4292 if (!hsfsts.hsf_status.flcdone) { 4293 e_dbg("Timeout error - flash cycle did not complete.\n"); 4294 break; 4295 } 4296 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4297 4298 return ret_val; 4299 } 4300 4301 /** 4302 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM 4303 * @hw: pointer to the HW structure 4304 * @offset: The offset (in bytes) of the dwords to read. 4305 * @data: The 4 bytes to write to the NVM. 4306 * 4307 * Writes one/two/four bytes to the NVM using the flash access registers. 4308 **/ 4309 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 4310 u32 data) 4311 { 4312 union ich8_hws_flash_status hsfsts; 4313 union ich8_hws_flash_ctrl hsflctl; 4314 u32 flash_linear_addr; 4315 s32 ret_val; 4316 u8 count = 0; 4317 4318 if (hw->mac.type >= e1000_pch_spt) { 4319 if (offset > ICH_FLASH_LINEAR_ADDR_MASK) 4320 return -E1000_ERR_NVM; 4321 } 4322 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4323 hw->nvm.flash_base_addr); 4324 do { 4325 udelay(1); 4326 /* Steps */ 4327 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4328 if (ret_val) 4329 break; 4330 4331 /* In SPT, This register is in Lan memory space, not 4332 * flash. Therefore, only 32 bit access is supported 4333 */ 4334 if (hw->mac.type >= e1000_pch_spt) 4335 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) 4336 >> 16; 4337 else 4338 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4339 4340 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 4341 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4342 4343 /* In SPT, This register is in Lan memory space, 4344 * not flash. Therefore, only 32 bit access is 4345 * supported 4346 */ 4347 if (hw->mac.type >= e1000_pch_spt) 4348 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4349 else 4350 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4351 4352 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4353 4354 ew32flash(ICH_FLASH_FDATA0, data); 4355 4356 /* check if FCERR is set to 1 , if set to 1, clear it 4357 * and try the whole sequence a few more times else done 4358 */ 4359 ret_val = 4360 e1000_flash_cycle_ich8lan(hw, 4361 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4362 4363 if (!ret_val) 4364 break; 4365 4366 /* If we're here, then things are most likely 4367 * completely hosed, but if the error condition 4368 * is detected, it won't hurt to give it another 4369 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4370 */ 4371 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4372 4373 if (hsfsts.hsf_status.flcerr) 4374 /* Repeat for some time before giving up. */ 4375 continue; 4376 if (!hsfsts.hsf_status.flcdone) { 4377 e_dbg("Timeout error - flash cycle did not complete.\n"); 4378 break; 4379 } 4380 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4381 4382 return ret_val; 4383 } 4384 4385 /** 4386 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 4387 * @hw: pointer to the HW structure 4388 * @offset: The index of the byte to read. 4389 * @data: The byte to write to the NVM. 4390 * 4391 * Writes a single byte to the NVM using the flash access registers. 4392 **/ 4393 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 4394 u8 data) 4395 { 4396 u16 word = (u16)data; 4397 4398 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 4399 } 4400 4401 /** 4402 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM 4403 * @hw: pointer to the HW structure 4404 * @offset: The offset of the word to write. 4405 * @dword: The dword to write to the NVM. 4406 * 4407 * Writes a single dword to the NVM using the flash access registers. 4408 * Goes through a retry algorithm before giving up. 4409 **/ 4410 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 4411 u32 offset, u32 dword) 4412 { 4413 s32 ret_val; 4414 u16 program_retries; 4415 4416 /* Must convert word offset into bytes. */ 4417 offset <<= 1; 4418 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4419 4420 if (!ret_val) 4421 return ret_val; 4422 for (program_retries = 0; program_retries < 100; program_retries++) { 4423 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); 4424 usleep_range(100, 200); 4425 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4426 if (!ret_val) 4427 break; 4428 } 4429 if (program_retries == 100) 4430 return -E1000_ERR_NVM; 4431 4432 return 0; 4433 } 4434 4435 /** 4436 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 4437 * @hw: pointer to the HW structure 4438 * @offset: The offset of the byte to write. 4439 * @byte: The byte to write to the NVM. 4440 * 4441 * Writes a single byte to the NVM using the flash access registers. 4442 * Goes through a retry algorithm before giving up. 4443 **/ 4444 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 4445 u32 offset, u8 byte) 4446 { 4447 s32 ret_val; 4448 u16 program_retries; 4449 4450 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4451 if (!ret_val) 4452 return ret_val; 4453 4454 for (program_retries = 0; program_retries < 100; program_retries++) { 4455 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 4456 usleep_range(100, 200); 4457 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4458 if (!ret_val) 4459 break; 4460 } 4461 if (program_retries == 100) 4462 return -E1000_ERR_NVM; 4463 4464 return 0; 4465 } 4466 4467 /** 4468 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 4469 * @hw: pointer to the HW structure 4470 * @bank: 0 for first bank, 1 for second bank, etc. 4471 * 4472 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 4473 * bank N is 4096 * N + flash_reg_addr. 4474 **/ 4475 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 4476 { 4477 struct e1000_nvm_info *nvm = &hw->nvm; 4478 union ich8_hws_flash_status hsfsts; 4479 union ich8_hws_flash_ctrl hsflctl; 4480 u32 flash_linear_addr; 4481 /* bank size is in 16bit words - adjust to bytes */ 4482 u32 flash_bank_size = nvm->flash_bank_size * 2; 4483 s32 ret_val; 4484 s32 count = 0; 4485 s32 j, iteration, sector_size; 4486 4487 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4488 4489 /* Determine HW Sector size: Read BERASE bits of hw flash status 4490 * register 4491 * 00: The Hw sector is 256 bytes, hence we need to erase 16 4492 * consecutive sectors. The start index for the nth Hw sector 4493 * can be calculated as = bank * 4096 + n * 256 4494 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 4495 * The start index for the nth Hw sector can be calculated 4496 * as = bank * 4096 4497 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 4498 * (ich9 only, otherwise error condition) 4499 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 4500 */ 4501 switch (hsfsts.hsf_status.berasesz) { 4502 case 0: 4503 /* Hw sector size 256 */ 4504 sector_size = ICH_FLASH_SEG_SIZE_256; 4505 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 4506 break; 4507 case 1: 4508 sector_size = ICH_FLASH_SEG_SIZE_4K; 4509 iteration = 1; 4510 break; 4511 case 2: 4512 sector_size = ICH_FLASH_SEG_SIZE_8K; 4513 iteration = 1; 4514 break; 4515 case 3: 4516 sector_size = ICH_FLASH_SEG_SIZE_64K; 4517 iteration = 1; 4518 break; 4519 default: 4520 return -E1000_ERR_NVM; 4521 } 4522 4523 /* Start with the base address, then add the sector offset. */ 4524 flash_linear_addr = hw->nvm.flash_base_addr; 4525 flash_linear_addr += (bank) ? flash_bank_size : 0; 4526 4527 for (j = 0; j < iteration; j++) { 4528 do { 4529 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 4530 4531 /* Steps */ 4532 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4533 if (ret_val) 4534 return ret_val; 4535 4536 /* Write a value 11 (block Erase) in Flash 4537 * Cycle field in hw flash control 4538 */ 4539 if (hw->mac.type >= e1000_pch_spt) 4540 hsflctl.regval = 4541 er32flash(ICH_FLASH_HSFSTS) >> 16; 4542 else 4543 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4544 4545 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 4546 if (hw->mac.type >= e1000_pch_spt) 4547 ew32flash(ICH_FLASH_HSFSTS, 4548 hsflctl.regval << 16); 4549 else 4550 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4551 4552 /* Write the last 24 bits of an index within the 4553 * block into Flash Linear address field in Flash 4554 * Address. 4555 */ 4556 flash_linear_addr += (j * sector_size); 4557 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4558 4559 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 4560 if (!ret_val) 4561 break; 4562 4563 /* Check if FCERR is set to 1. If 1, 4564 * clear it and try the whole sequence 4565 * a few more times else Done 4566 */ 4567 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4568 if (hsfsts.hsf_status.flcerr) 4569 /* repeat for some time before giving up */ 4570 continue; 4571 else if (!hsfsts.hsf_status.flcdone) 4572 return ret_val; 4573 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 4574 } 4575 4576 return 0; 4577 } 4578 4579 /** 4580 * e1000_valid_led_default_ich8lan - Set the default LED settings 4581 * @hw: pointer to the HW structure 4582 * @data: Pointer to the LED settings 4583 * 4584 * Reads the LED default settings from the NVM to data. If the NVM LED 4585 * settings is all 0's or F's, set the LED default to a valid LED default 4586 * setting. 4587 **/ 4588 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 4589 { 4590 s32 ret_val; 4591 4592 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 4593 if (ret_val) { 4594 e_dbg("NVM Read Error\n"); 4595 return ret_val; 4596 } 4597 4598 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 4599 *data = ID_LED_DEFAULT_ICH8LAN; 4600 4601 return 0; 4602 } 4603 4604 /** 4605 * e1000_id_led_init_pchlan - store LED configurations 4606 * @hw: pointer to the HW structure 4607 * 4608 * PCH does not control LEDs via the LEDCTL register, rather it uses 4609 * the PHY LED configuration register. 4610 * 4611 * PCH also does not have an "always on" or "always off" mode which 4612 * complicates the ID feature. Instead of using the "on" mode to indicate 4613 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 4614 * use "link_up" mode. The LEDs will still ID on request if there is no 4615 * link based on logic in e1000_led_[on|off]_pchlan(). 4616 **/ 4617 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 4618 { 4619 struct e1000_mac_info *mac = &hw->mac; 4620 s32 ret_val; 4621 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 4622 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 4623 u16 data, i, temp, shift; 4624 4625 /* Get default ID LED modes */ 4626 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 4627 if (ret_val) 4628 return ret_val; 4629 4630 mac->ledctl_default = er32(LEDCTL); 4631 mac->ledctl_mode1 = mac->ledctl_default; 4632 mac->ledctl_mode2 = mac->ledctl_default; 4633 4634 for (i = 0; i < 4; i++) { 4635 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 4636 shift = (i * 5); 4637 switch (temp) { 4638 case ID_LED_ON1_DEF2: 4639 case ID_LED_ON1_ON2: 4640 case ID_LED_ON1_OFF2: 4641 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4642 mac->ledctl_mode1 |= (ledctl_on << shift); 4643 break; 4644 case ID_LED_OFF1_DEF2: 4645 case ID_LED_OFF1_ON2: 4646 case ID_LED_OFF1_OFF2: 4647 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4648 mac->ledctl_mode1 |= (ledctl_off << shift); 4649 break; 4650 default: 4651 /* Do nothing */ 4652 break; 4653 } 4654 switch (temp) { 4655 case ID_LED_DEF1_ON2: 4656 case ID_LED_ON1_ON2: 4657 case ID_LED_OFF1_ON2: 4658 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4659 mac->ledctl_mode2 |= (ledctl_on << shift); 4660 break; 4661 case ID_LED_DEF1_OFF2: 4662 case ID_LED_ON1_OFF2: 4663 case ID_LED_OFF1_OFF2: 4664 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4665 mac->ledctl_mode2 |= (ledctl_off << shift); 4666 break; 4667 default: 4668 /* Do nothing */ 4669 break; 4670 } 4671 } 4672 4673 return 0; 4674 } 4675 4676 /** 4677 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 4678 * @hw: pointer to the HW structure 4679 * 4680 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 4681 * register, so the bus width is hard coded. 4682 **/ 4683 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 4684 { 4685 struct e1000_bus_info *bus = &hw->bus; 4686 s32 ret_val; 4687 4688 ret_val = e1000e_get_bus_info_pcie(hw); 4689 4690 /* ICH devices are "PCI Express"-ish. They have 4691 * a configuration space, but do not contain 4692 * PCI Express Capability registers, so bus width 4693 * must be hardcoded. 4694 */ 4695 if (bus->width == e1000_bus_width_unknown) 4696 bus->width = e1000_bus_width_pcie_x1; 4697 4698 return ret_val; 4699 } 4700 4701 /** 4702 * e1000_reset_hw_ich8lan - Reset the hardware 4703 * @hw: pointer to the HW structure 4704 * 4705 * Does a full reset of the hardware which includes a reset of the PHY and 4706 * MAC. 4707 **/ 4708 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 4709 { 4710 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4711 u16 kum_cfg; 4712 u32 ctrl, reg; 4713 s32 ret_val; 4714 4715 /* Prevent the PCI-E bus from sticking if there is no TLP connection 4716 * on the last TLP read/write transaction when MAC is reset. 4717 */ 4718 ret_val = e1000e_disable_pcie_master(hw); 4719 if (ret_val) 4720 e_dbg("PCI-E Master disable polling has failed.\n"); 4721 4722 e_dbg("Masking off all interrupts\n"); 4723 ew32(IMC, 0xffffffff); 4724 4725 /* Disable the Transmit and Receive units. Then delay to allow 4726 * any pending transactions to complete before we hit the MAC 4727 * with the global reset. 4728 */ 4729 ew32(RCTL, 0); 4730 ew32(TCTL, E1000_TCTL_PSP); 4731 e1e_flush(); 4732 4733 usleep_range(10000, 11000); 4734 4735 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 4736 if (hw->mac.type == e1000_ich8lan) { 4737 /* Set Tx and Rx buffer allocation to 8k apiece. */ 4738 ew32(PBA, E1000_PBA_8K); 4739 /* Set Packet Buffer Size to 16k. */ 4740 ew32(PBS, E1000_PBS_16K); 4741 } 4742 4743 if (hw->mac.type == e1000_pchlan) { 4744 /* Save the NVM K1 bit setting */ 4745 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 4746 if (ret_val) 4747 return ret_val; 4748 4749 if (kum_cfg & E1000_NVM_K1_ENABLE) 4750 dev_spec->nvm_k1_enabled = true; 4751 else 4752 dev_spec->nvm_k1_enabled = false; 4753 } 4754 4755 ctrl = er32(CTRL); 4756 4757 if (!hw->phy.ops.check_reset_block(hw)) { 4758 /* Full-chip reset requires MAC and PHY reset at the same 4759 * time to make sure the interface between MAC and the 4760 * external PHY is reset. 4761 */ 4762 ctrl |= E1000_CTRL_PHY_RST; 4763 4764 /* Gate automatic PHY configuration by hardware on 4765 * non-managed 82579 4766 */ 4767 if ((hw->mac.type == e1000_pch2lan) && 4768 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 4769 e1000_gate_hw_phy_config_ich8lan(hw, true); 4770 } 4771 ret_val = e1000_acquire_swflag_ich8lan(hw); 4772 e_dbg("Issuing a global reset to ich8lan\n"); 4773 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 4774 /* cannot issue a flush here because it hangs the hardware */ 4775 msleep(20); 4776 4777 /* Set Phy Config Counter to 50msec */ 4778 if (hw->mac.type == e1000_pch2lan) { 4779 reg = er32(FEXTNVM3); 4780 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 4781 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 4782 ew32(FEXTNVM3, reg); 4783 } 4784 4785 if (!ret_val) 4786 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 4787 4788 if (ctrl & E1000_CTRL_PHY_RST) { 4789 ret_val = hw->phy.ops.get_cfg_done(hw); 4790 if (ret_val) 4791 return ret_val; 4792 4793 ret_val = e1000_post_phy_reset_ich8lan(hw); 4794 if (ret_val) 4795 return ret_val; 4796 } 4797 4798 /* For PCH, this write will make sure that any noise 4799 * will be detected as a CRC error and be dropped rather than show up 4800 * as a bad packet to the DMA engine. 4801 */ 4802 if (hw->mac.type == e1000_pchlan) 4803 ew32(CRC_OFFSET, 0x65656565); 4804 4805 ew32(IMC, 0xffffffff); 4806 er32(ICR); 4807 4808 reg = er32(KABGTXD); 4809 reg |= E1000_KABGTXD_BGSQLBIAS; 4810 ew32(KABGTXD, reg); 4811 4812 return 0; 4813 } 4814 4815 /** 4816 * e1000_init_hw_ich8lan - Initialize the hardware 4817 * @hw: pointer to the HW structure 4818 * 4819 * Prepares the hardware for transmit and receive by doing the following: 4820 * - initialize hardware bits 4821 * - initialize LED identification 4822 * - setup receive address registers 4823 * - setup flow control 4824 * - setup transmit descriptors 4825 * - clear statistics 4826 **/ 4827 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 4828 { 4829 struct e1000_mac_info *mac = &hw->mac; 4830 u32 ctrl_ext, txdctl, snoop, fflt_dbg; 4831 s32 ret_val; 4832 u16 i; 4833 4834 e1000_initialize_hw_bits_ich8lan(hw); 4835 4836 /* Initialize identification LED */ 4837 ret_val = mac->ops.id_led_init(hw); 4838 /* An error is not fatal and we should not stop init due to this */ 4839 if (ret_val) 4840 e_dbg("Error initializing identification LED\n"); 4841 4842 /* Setup the receive address. */ 4843 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 4844 4845 /* Zero out the Multicast HASH table */ 4846 e_dbg("Zeroing the MTA\n"); 4847 for (i = 0; i < mac->mta_reg_count; i++) 4848 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 4849 4850 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 4851 * the ME. Disable wakeup by clearing the host wakeup bit. 4852 * Reset the phy after disabling host wakeup to reset the Rx buffer. 4853 */ 4854 if (hw->phy.type == e1000_phy_82578) { 4855 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 4856 i &= ~BM_WUC_HOST_WU_BIT; 4857 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 4858 ret_val = e1000_phy_hw_reset_ich8lan(hw); 4859 if (ret_val) 4860 return ret_val; 4861 } 4862 4863 /* Setup link and flow control */ 4864 ret_val = mac->ops.setup_link(hw); 4865 4866 /* Set the transmit descriptor write-back policy for both queues */ 4867 txdctl = er32(TXDCTL(0)); 4868 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4869 E1000_TXDCTL_FULL_TX_DESC_WB); 4870 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4871 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4872 ew32(TXDCTL(0), txdctl); 4873 txdctl = er32(TXDCTL(1)); 4874 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4875 E1000_TXDCTL_FULL_TX_DESC_WB); 4876 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4877 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4878 ew32(TXDCTL(1), txdctl); 4879 4880 /* ICH8 has opposite polarity of no_snoop bits. 4881 * By default, we should use snoop behavior. 4882 */ 4883 if (mac->type == e1000_ich8lan) 4884 snoop = PCIE_ICH8_SNOOP_ALL; 4885 else 4886 snoop = (u32)~(PCIE_NO_SNOOP_ALL); 4887 e1000e_set_pcie_no_snoop(hw, snoop); 4888 4889 /* Enable workaround for packet loss issue on TGP PCH 4890 * Do not gate DMA clock from the modPHY block 4891 */ 4892 if (mac->type >= e1000_pch_tgp) { 4893 fflt_dbg = er32(FFLT_DBG); 4894 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK; 4895 ew32(FFLT_DBG, fflt_dbg); 4896 } 4897 4898 ctrl_ext = er32(CTRL_EXT); 4899 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 4900 ew32(CTRL_EXT, ctrl_ext); 4901 4902 /* Clear all of the statistics registers (clear on read). It is 4903 * important that we do this after we have tried to establish link 4904 * because the symbol error count will increment wildly if there 4905 * is no link. 4906 */ 4907 e1000_clear_hw_cntrs_ich8lan(hw); 4908 4909 return ret_val; 4910 } 4911 4912 /** 4913 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 4914 * @hw: pointer to the HW structure 4915 * 4916 * Sets/Clears required hardware bits necessary for correctly setting up the 4917 * hardware for transmit and receive. 4918 **/ 4919 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 4920 { 4921 u32 reg; 4922 4923 /* Extended Device Control */ 4924 reg = er32(CTRL_EXT); 4925 reg |= BIT(22); 4926 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 4927 if (hw->mac.type >= e1000_pchlan) 4928 reg |= E1000_CTRL_EXT_PHYPDEN; 4929 ew32(CTRL_EXT, reg); 4930 4931 /* Transmit Descriptor Control 0 */ 4932 reg = er32(TXDCTL(0)); 4933 reg |= BIT(22); 4934 ew32(TXDCTL(0), reg); 4935 4936 /* Transmit Descriptor Control 1 */ 4937 reg = er32(TXDCTL(1)); 4938 reg |= BIT(22); 4939 ew32(TXDCTL(1), reg); 4940 4941 /* Transmit Arbitration Control 0 */ 4942 reg = er32(TARC(0)); 4943 if (hw->mac.type == e1000_ich8lan) 4944 reg |= BIT(28) | BIT(29); 4945 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27); 4946 ew32(TARC(0), reg); 4947 4948 /* Transmit Arbitration Control 1 */ 4949 reg = er32(TARC(1)); 4950 if (er32(TCTL) & E1000_TCTL_MULR) 4951 reg &= ~BIT(28); 4952 else 4953 reg |= BIT(28); 4954 reg |= BIT(24) | BIT(26) | BIT(30); 4955 ew32(TARC(1), reg); 4956 4957 /* Device Status */ 4958 if (hw->mac.type == e1000_ich8lan) { 4959 reg = er32(STATUS); 4960 reg &= ~BIT(31); 4961 ew32(STATUS, reg); 4962 } 4963 4964 /* work-around descriptor data corruption issue during nfs v2 udp 4965 * traffic, just disable the nfs filtering capability 4966 */ 4967 reg = er32(RFCTL); 4968 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 4969 4970 /* Disable IPv6 extension header parsing because some malformed 4971 * IPv6 headers can hang the Rx. 4972 */ 4973 if (hw->mac.type == e1000_ich8lan) 4974 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 4975 ew32(RFCTL, reg); 4976 4977 /* Enable ECC on Lynxpoint */ 4978 if (hw->mac.type >= e1000_pch_lpt) { 4979 reg = er32(PBECCSTS); 4980 reg |= E1000_PBECCSTS_ECC_ENABLE; 4981 ew32(PBECCSTS, reg); 4982 4983 reg = er32(CTRL); 4984 reg |= E1000_CTRL_MEHE; 4985 ew32(CTRL, reg); 4986 } 4987 } 4988 4989 /** 4990 * e1000_setup_link_ich8lan - Setup flow control and link settings 4991 * @hw: pointer to the HW structure 4992 * 4993 * Determines which flow control settings to use, then configures flow 4994 * control. Calls the appropriate media-specific link configuration 4995 * function. Assuming the adapter has a valid link partner, a valid link 4996 * should be established. Assumes the hardware has previously been reset 4997 * and the transmitter and receiver are not enabled. 4998 **/ 4999 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 5000 { 5001 s32 ret_val; 5002 5003 if (hw->phy.ops.check_reset_block(hw)) 5004 return 0; 5005 5006 /* ICH parts do not have a word in the NVM to determine 5007 * the default flow control setting, so we explicitly 5008 * set it to full. 5009 */ 5010 if (hw->fc.requested_mode == e1000_fc_default) { 5011 /* Workaround h/w hang when Tx flow control enabled */ 5012 if (hw->mac.type == e1000_pchlan) 5013 hw->fc.requested_mode = e1000_fc_rx_pause; 5014 else 5015 hw->fc.requested_mode = e1000_fc_full; 5016 } 5017 5018 /* Save off the requested flow control mode for use later. Depending 5019 * on the link partner's capabilities, we may or may not use this mode. 5020 */ 5021 hw->fc.current_mode = hw->fc.requested_mode; 5022 5023 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 5024 5025 /* Continue to configure the copper link. */ 5026 ret_val = hw->mac.ops.setup_physical_interface(hw); 5027 if (ret_val) 5028 return ret_val; 5029 5030 ew32(FCTTV, hw->fc.pause_time); 5031 if ((hw->phy.type == e1000_phy_82578) || 5032 (hw->phy.type == e1000_phy_82579) || 5033 (hw->phy.type == e1000_phy_i217) || 5034 (hw->phy.type == e1000_phy_82577)) { 5035 ew32(FCRTV_PCH, hw->fc.refresh_time); 5036 5037 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 5038 hw->fc.pause_time); 5039 if (ret_val) 5040 return ret_val; 5041 } 5042 5043 return e1000e_set_fc_watermarks(hw); 5044 } 5045 5046 /** 5047 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 5048 * @hw: pointer to the HW structure 5049 * 5050 * Configures the kumeran interface to the PHY to wait the appropriate time 5051 * when polling the PHY, then call the generic setup_copper_link to finish 5052 * configuring the copper link. 5053 **/ 5054 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 5055 { 5056 u32 ctrl; 5057 s32 ret_val; 5058 u16 reg_data; 5059 5060 ctrl = er32(CTRL); 5061 ctrl |= E1000_CTRL_SLU; 5062 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5063 ew32(CTRL, ctrl); 5064 5065 /* Set the mac to wait the maximum time between each iteration 5066 * and increase the max iterations when polling the phy; 5067 * this fixes erroneous timeouts at 10Mbps. 5068 */ 5069 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 5070 if (ret_val) 5071 return ret_val; 5072 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5073 ®_data); 5074 if (ret_val) 5075 return ret_val; 5076 reg_data |= 0x3F; 5077 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5078 reg_data); 5079 if (ret_val) 5080 return ret_val; 5081 5082 switch (hw->phy.type) { 5083 case e1000_phy_igp_3: 5084 ret_val = e1000e_copper_link_setup_igp(hw); 5085 if (ret_val) 5086 return ret_val; 5087 break; 5088 case e1000_phy_bm: 5089 case e1000_phy_82578: 5090 ret_val = e1000e_copper_link_setup_m88(hw); 5091 if (ret_val) 5092 return ret_val; 5093 break; 5094 case e1000_phy_82577: 5095 case e1000_phy_82579: 5096 ret_val = e1000_copper_link_setup_82577(hw); 5097 if (ret_val) 5098 return ret_val; 5099 break; 5100 case e1000_phy_ife: 5101 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 5102 if (ret_val) 5103 return ret_val; 5104 5105 reg_data &= ~IFE_PMC_AUTO_MDIX; 5106 5107 switch (hw->phy.mdix) { 5108 case 1: 5109 reg_data &= ~IFE_PMC_FORCE_MDIX; 5110 break; 5111 case 2: 5112 reg_data |= IFE_PMC_FORCE_MDIX; 5113 break; 5114 case 0: 5115 default: 5116 reg_data |= IFE_PMC_AUTO_MDIX; 5117 break; 5118 } 5119 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 5120 if (ret_val) 5121 return ret_val; 5122 break; 5123 default: 5124 break; 5125 } 5126 5127 return e1000e_setup_copper_link(hw); 5128 } 5129 5130 /** 5131 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 5132 * @hw: pointer to the HW structure 5133 * 5134 * Calls the PHY specific link setup function and then calls the 5135 * generic setup_copper_link to finish configuring the link for 5136 * Lynxpoint PCH devices 5137 **/ 5138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 5139 { 5140 u32 ctrl; 5141 s32 ret_val; 5142 5143 ctrl = er32(CTRL); 5144 ctrl |= E1000_CTRL_SLU; 5145 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5146 ew32(CTRL, ctrl); 5147 5148 ret_val = e1000_copper_link_setup_82577(hw); 5149 if (ret_val) 5150 return ret_val; 5151 5152 return e1000e_setup_copper_link(hw); 5153 } 5154 5155 /** 5156 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 5157 * @hw: pointer to the HW structure 5158 * @speed: pointer to store current link speed 5159 * @duplex: pointer to store the current link duplex 5160 * 5161 * Calls the generic get_speed_and_duplex to retrieve the current link 5162 * information and then calls the Kumeran lock loss workaround for links at 5163 * gigabit speeds. 5164 **/ 5165 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 5166 u16 *duplex) 5167 { 5168 s32 ret_val; 5169 5170 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 5171 if (ret_val) 5172 return ret_val; 5173 5174 if ((hw->mac.type == e1000_ich8lan) && 5175 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { 5176 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 5177 } 5178 5179 return ret_val; 5180 } 5181 5182 /** 5183 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 5184 * @hw: pointer to the HW structure 5185 * 5186 * Work-around for 82566 Kumeran PCS lock loss: 5187 * On link status change (i.e. PCI reset, speed change) and link is up and 5188 * speed is gigabit- 5189 * 0) if workaround is optionally disabled do nothing 5190 * 1) wait 1ms for Kumeran link to come up 5191 * 2) check Kumeran Diagnostic register PCS lock loss bit 5192 * 3) if not set the link is locked (all is good), otherwise... 5193 * 4) reset the PHY 5194 * 5) repeat up to 10 times 5195 * Note: this is only called for IGP3 copper when speed is 1gb. 5196 **/ 5197 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 5198 { 5199 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5200 u32 phy_ctrl; 5201 s32 ret_val; 5202 u16 i, data; 5203 bool link; 5204 5205 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 5206 return 0; 5207 5208 /* Make sure link is up before proceeding. If not just return. 5209 * Attempting this while link is negotiating fouled up link 5210 * stability 5211 */ 5212 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 5213 if (!link) 5214 return 0; 5215 5216 for (i = 0; i < 10; i++) { 5217 /* read once to clear */ 5218 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5219 if (ret_val) 5220 return ret_val; 5221 /* and again to get new status */ 5222 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5223 if (ret_val) 5224 return ret_val; 5225 5226 /* check for PCS lock */ 5227 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 5228 return 0; 5229 5230 /* Issue PHY reset */ 5231 e1000_phy_hw_reset(hw); 5232 mdelay(5); 5233 } 5234 /* Disable GigE link negotiation */ 5235 phy_ctrl = er32(PHY_CTRL); 5236 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 5237 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5238 ew32(PHY_CTRL, phy_ctrl); 5239 5240 /* Call gig speed drop workaround on Gig disable before accessing 5241 * any PHY registers 5242 */ 5243 e1000e_gig_downshift_workaround_ich8lan(hw); 5244 5245 /* unable to acquire PCS lock */ 5246 return -E1000_ERR_PHY; 5247 } 5248 5249 /** 5250 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 5251 * @hw: pointer to the HW structure 5252 * @state: boolean value used to set the current Kumeran workaround state 5253 * 5254 * If ICH8, set the current Kumeran workaround state (enabled - true 5255 * /disabled - false). 5256 **/ 5257 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 5258 bool state) 5259 { 5260 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5261 5262 if (hw->mac.type != e1000_ich8lan) { 5263 e_dbg("Workaround applies to ICH8 only.\n"); 5264 return; 5265 } 5266 5267 dev_spec->kmrn_lock_loss_workaround_enabled = state; 5268 } 5269 5270 /** 5271 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 5272 * @hw: pointer to the HW structure 5273 * 5274 * Workaround for 82566 power-down on D3 entry: 5275 * 1) disable gigabit link 5276 * 2) write VR power-down enable 5277 * 3) read it back 5278 * Continue if successful, else issue LCD reset and repeat 5279 **/ 5280 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 5281 { 5282 u32 reg; 5283 u16 data; 5284 u8 retry = 0; 5285 5286 if (hw->phy.type != e1000_phy_igp_3) 5287 return; 5288 5289 /* Try the workaround twice (if needed) */ 5290 do { 5291 /* Disable link */ 5292 reg = er32(PHY_CTRL); 5293 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 5294 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5295 ew32(PHY_CTRL, reg); 5296 5297 /* Call gig speed drop workaround on Gig disable before 5298 * accessing any PHY registers 5299 */ 5300 if (hw->mac.type == e1000_ich8lan) 5301 e1000e_gig_downshift_workaround_ich8lan(hw); 5302 5303 /* Write VR power-down enable */ 5304 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5305 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5306 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 5307 5308 /* Read it back and test */ 5309 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5310 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5311 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 5312 break; 5313 5314 /* Issue PHY reset and repeat at most one more time */ 5315 reg = er32(CTRL); 5316 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 5317 retry++; 5318 } while (retry); 5319 } 5320 5321 /** 5322 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 5323 * @hw: pointer to the HW structure 5324 * 5325 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 5326 * LPLU, Gig disable, MDIC PHY reset): 5327 * 1) Set Kumeran Near-end loopback 5328 * 2) Clear Kumeran Near-end loopback 5329 * Should only be called for ICH8[m] devices with any 1G Phy. 5330 **/ 5331 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 5332 { 5333 s32 ret_val; 5334 u16 reg_data; 5335 5336 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 5337 return; 5338 5339 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5340 ®_data); 5341 if (ret_val) 5342 return; 5343 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 5344 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5345 reg_data); 5346 if (ret_val) 5347 return; 5348 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 5349 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); 5350 } 5351 5352 /** 5353 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 5354 * @hw: pointer to the HW structure 5355 * 5356 * During S0 to Sx transition, it is possible the link remains at gig 5357 * instead of negotiating to a lower speed. Before going to Sx, set 5358 * 'Gig Disable' to force link speed negotiation to a lower speed based on 5359 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 5360 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 5361 * needs to be written. 5362 * Parts that support (and are linked to a partner which support) EEE in 5363 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 5364 * than 10Mbps w/o EEE. 5365 **/ 5366 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 5367 { 5368 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5369 u32 phy_ctrl; 5370 s32 ret_val; 5371 5372 phy_ctrl = er32(PHY_CTRL); 5373 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 5374 5375 if (hw->phy.type == e1000_phy_i217) { 5376 u16 phy_reg, device_id = hw->adapter->pdev->device; 5377 5378 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 5379 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 5380 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 5381 (device_id == E1000_DEV_ID_PCH_I218_V3) || 5382 (hw->mac.type >= e1000_pch_spt)) { 5383 u32 fextnvm6 = er32(FEXTNVM6); 5384 5385 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 5386 } 5387 5388 ret_val = hw->phy.ops.acquire(hw); 5389 if (ret_val) 5390 goto out; 5391 5392 if (!dev_spec->eee_disable) { 5393 u16 eee_advert; 5394 5395 ret_val = 5396 e1000_read_emi_reg_locked(hw, 5397 I217_EEE_ADVERTISEMENT, 5398 &eee_advert); 5399 if (ret_val) 5400 goto release; 5401 5402 /* Disable LPLU if both link partners support 100BaseT 5403 * EEE and 100Full is advertised on both ends of the 5404 * link, and enable Auto Enable LPI since there will 5405 * be no driver to enable LPI while in Sx. 5406 */ 5407 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 5408 (dev_spec->eee_lp_ability & 5409 I82579_EEE_100_SUPPORTED) && 5410 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 5411 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 5412 E1000_PHY_CTRL_NOND0A_LPLU); 5413 5414 /* Set Auto Enable LPI after link up */ 5415 e1e_rphy_locked(hw, 5416 I217_LPI_GPIO_CTRL, &phy_reg); 5417 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5418 e1e_wphy_locked(hw, 5419 I217_LPI_GPIO_CTRL, phy_reg); 5420 } 5421 } 5422 5423 /* For i217 Intel Rapid Start Technology support, 5424 * when the system is going into Sx and no manageability engine 5425 * is present, the driver must configure proxy to reset only on 5426 * power good. LPI (Low Power Idle) state must also reset only 5427 * on power good, as well as the MTA (Multicast table array). 5428 * The SMBus release must also be disabled on LCD reset. 5429 */ 5430 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5431 /* Enable proxy to reset only on power good. */ 5432 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); 5433 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 5434 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); 5435 5436 /* Set bit enable LPI (EEE) to reset only on 5437 * power good. 5438 */ 5439 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); 5440 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 5441 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); 5442 5443 /* Disable the SMB release on LCD reset. */ 5444 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5445 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 5446 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5447 } 5448 5449 /* Enable MTA to reset for Intel Rapid Start Technology 5450 * Support 5451 */ 5452 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5453 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 5454 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5455 5456 release: 5457 hw->phy.ops.release(hw); 5458 } 5459 out: 5460 ew32(PHY_CTRL, phy_ctrl); 5461 5462 if (hw->mac.type == e1000_ich8lan) 5463 e1000e_gig_downshift_workaround_ich8lan(hw); 5464 5465 if (hw->mac.type >= e1000_pchlan) { 5466 e1000_oem_bits_config_ich8lan(hw, false); 5467 5468 /* Reset PHY to activate OEM bits on 82577/8 */ 5469 if (hw->mac.type == e1000_pchlan) 5470 e1000e_phy_hw_reset_generic(hw); 5471 5472 ret_val = hw->phy.ops.acquire(hw); 5473 if (ret_val) 5474 return; 5475 e1000_write_smbus_addr(hw); 5476 hw->phy.ops.release(hw); 5477 } 5478 } 5479 5480 /** 5481 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 5482 * @hw: pointer to the HW structure 5483 * 5484 * During Sx to S0 transitions on non-managed devices or managed devices 5485 * on which PHY resets are not blocked, if the PHY registers cannot be 5486 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 5487 * the PHY. 5488 * On i217, setup Intel Rapid Start Technology. 5489 **/ 5490 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 5491 { 5492 s32 ret_val; 5493 5494 if (hw->mac.type < e1000_pch2lan) 5495 return; 5496 5497 ret_val = e1000_init_phy_workarounds_pchlan(hw); 5498 if (ret_val) { 5499 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); 5500 return; 5501 } 5502 5503 /* For i217 Intel Rapid Start Technology support when the system 5504 * is transitioning from Sx and no manageability engine is present 5505 * configure SMBus to restore on reset, disable proxy, and enable 5506 * the reset on MTA (Multicast table array). 5507 */ 5508 if (hw->phy.type == e1000_phy_i217) { 5509 u16 phy_reg; 5510 5511 ret_val = hw->phy.ops.acquire(hw); 5512 if (ret_val) { 5513 e_dbg("Failed to setup iRST\n"); 5514 return; 5515 } 5516 5517 /* Clear Auto Enable LPI after link up */ 5518 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 5519 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5520 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 5521 5522 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5523 /* Restore clear on SMB if no manageability engine 5524 * is present 5525 */ 5526 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5527 if (ret_val) 5528 goto release; 5529 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 5530 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5531 5532 /* Disable Proxy */ 5533 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); 5534 } 5535 /* Enable reset on MTA */ 5536 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5537 if (ret_val) 5538 goto release; 5539 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 5540 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5541 release: 5542 if (ret_val) 5543 e_dbg("Error %d in resume workarounds\n", ret_val); 5544 hw->phy.ops.release(hw); 5545 } 5546 } 5547 5548 /** 5549 * e1000_cleanup_led_ich8lan - Restore the default LED operation 5550 * @hw: pointer to the HW structure 5551 * 5552 * Return the LED back to the default configuration. 5553 **/ 5554 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 5555 { 5556 if (hw->phy.type == e1000_phy_ife) 5557 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 5558 5559 ew32(LEDCTL, hw->mac.ledctl_default); 5560 return 0; 5561 } 5562 5563 /** 5564 * e1000_led_on_ich8lan - Turn LEDs on 5565 * @hw: pointer to the HW structure 5566 * 5567 * Turn on the LEDs. 5568 **/ 5569 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 5570 { 5571 if (hw->phy.type == e1000_phy_ife) 5572 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5573 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 5574 5575 ew32(LEDCTL, hw->mac.ledctl_mode2); 5576 return 0; 5577 } 5578 5579 /** 5580 * e1000_led_off_ich8lan - Turn LEDs off 5581 * @hw: pointer to the HW structure 5582 * 5583 * Turn off the LEDs. 5584 **/ 5585 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 5586 { 5587 if (hw->phy.type == e1000_phy_ife) 5588 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5589 (IFE_PSCL_PROBE_MODE | 5590 IFE_PSCL_PROBE_LEDS_OFF)); 5591 5592 ew32(LEDCTL, hw->mac.ledctl_mode1); 5593 return 0; 5594 } 5595 5596 /** 5597 * e1000_setup_led_pchlan - Configures SW controllable LED 5598 * @hw: pointer to the HW structure 5599 * 5600 * This prepares the SW controllable LED for use. 5601 **/ 5602 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 5603 { 5604 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 5605 } 5606 5607 /** 5608 * e1000_cleanup_led_pchlan - Restore the default LED operation 5609 * @hw: pointer to the HW structure 5610 * 5611 * Return the LED back to the default configuration. 5612 **/ 5613 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 5614 { 5615 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 5616 } 5617 5618 /** 5619 * e1000_led_on_pchlan - Turn LEDs on 5620 * @hw: pointer to the HW structure 5621 * 5622 * Turn on the LEDs. 5623 **/ 5624 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 5625 { 5626 u16 data = (u16)hw->mac.ledctl_mode2; 5627 u32 i, led; 5628 5629 /* If no link, then turn LED on by setting the invert bit 5630 * for each LED that's mode is "link_up" in ledctl_mode2. 5631 */ 5632 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5633 for (i = 0; i < 3; i++) { 5634 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5635 if ((led & E1000_PHY_LED0_MODE_MASK) != 5636 E1000_LEDCTL_MODE_LINK_UP) 5637 continue; 5638 if (led & E1000_PHY_LED0_IVRT) 5639 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5640 else 5641 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5642 } 5643 } 5644 5645 return e1e_wphy(hw, HV_LED_CONFIG, data); 5646 } 5647 5648 /** 5649 * e1000_led_off_pchlan - Turn LEDs off 5650 * @hw: pointer to the HW structure 5651 * 5652 * Turn off the LEDs. 5653 **/ 5654 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 5655 { 5656 u16 data = (u16)hw->mac.ledctl_mode1; 5657 u32 i, led; 5658 5659 /* If no link, then turn LED off by clearing the invert bit 5660 * for each LED that's mode is "link_up" in ledctl_mode1. 5661 */ 5662 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5663 for (i = 0; i < 3; i++) { 5664 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5665 if ((led & E1000_PHY_LED0_MODE_MASK) != 5666 E1000_LEDCTL_MODE_LINK_UP) 5667 continue; 5668 if (led & E1000_PHY_LED0_IVRT) 5669 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5670 else 5671 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5672 } 5673 } 5674 5675 return e1e_wphy(hw, HV_LED_CONFIG, data); 5676 } 5677 5678 /** 5679 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 5680 * @hw: pointer to the HW structure 5681 * 5682 * Read appropriate register for the config done bit for completion status 5683 * and configure the PHY through s/w for EEPROM-less parts. 5684 * 5685 * NOTE: some silicon which is EEPROM-less will fail trying to read the 5686 * config done bit, so only an error is logged and continues. If we were 5687 * to return with error, EEPROM-less silicon would not be able to be reset 5688 * or change link. 5689 **/ 5690 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 5691 { 5692 s32 ret_val = 0; 5693 u32 bank = 0; 5694 u32 status; 5695 5696 e1000e_get_cfg_done_generic(hw); 5697 5698 /* Wait for indication from h/w that it has completed basic config */ 5699 if (hw->mac.type >= e1000_ich10lan) { 5700 e1000_lan_init_done_ich8lan(hw); 5701 } else { 5702 ret_val = e1000e_get_auto_rd_done(hw); 5703 if (ret_val) { 5704 /* When auto config read does not complete, do not 5705 * return with an error. This can happen in situations 5706 * where there is no eeprom and prevents getting link. 5707 */ 5708 e_dbg("Auto Read Done did not complete\n"); 5709 ret_val = 0; 5710 } 5711 } 5712 5713 /* Clear PHY Reset Asserted bit */ 5714 status = er32(STATUS); 5715 if (status & E1000_STATUS_PHYRA) 5716 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 5717 else 5718 e_dbg("PHY Reset Asserted not set - needs delay\n"); 5719 5720 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 5721 if (hw->mac.type <= e1000_ich9lan) { 5722 if (!(er32(EECD) & E1000_EECD_PRES) && 5723 (hw->phy.type == e1000_phy_igp_3)) { 5724 e1000e_phy_init_script_igp3(hw); 5725 } 5726 } else { 5727 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 5728 /* Maybe we should do a basic PHY config */ 5729 e_dbg("EEPROM not present\n"); 5730 ret_val = -E1000_ERR_CONFIG; 5731 } 5732 } 5733 5734 return ret_val; 5735 } 5736 5737 /** 5738 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 5739 * @hw: pointer to the HW structure 5740 * 5741 * In the case of a PHY power down to save power, or to turn off link during a 5742 * driver unload, or wake on lan is not enabled, remove the link. 5743 **/ 5744 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 5745 { 5746 /* If the management interface is not enabled, then power down */ 5747 if (!(hw->mac.ops.check_mng_mode(hw) || 5748 hw->phy.ops.check_reset_block(hw))) 5749 e1000_power_down_phy_copper(hw); 5750 } 5751 5752 /** 5753 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 5754 * @hw: pointer to the HW structure 5755 * 5756 * Clears hardware counters specific to the silicon family and calls 5757 * clear_hw_cntrs_generic to clear all general purpose counters. 5758 **/ 5759 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 5760 { 5761 u16 phy_data; 5762 s32 ret_val; 5763 5764 e1000e_clear_hw_cntrs_base(hw); 5765 5766 er32(ALGNERRC); 5767 er32(RXERRC); 5768 er32(TNCRS); 5769 er32(CEXTERR); 5770 er32(TSCTC); 5771 er32(TSCTFC); 5772 5773 er32(MGTPRC); 5774 er32(MGTPDC); 5775 er32(MGTPTC); 5776 5777 er32(IAC); 5778 er32(ICRXOC); 5779 5780 /* Clear PHY statistics registers */ 5781 if ((hw->phy.type == e1000_phy_82578) || 5782 (hw->phy.type == e1000_phy_82579) || 5783 (hw->phy.type == e1000_phy_i217) || 5784 (hw->phy.type == e1000_phy_82577)) { 5785 ret_val = hw->phy.ops.acquire(hw); 5786 if (ret_val) 5787 return; 5788 ret_val = hw->phy.ops.set_page(hw, 5789 HV_STATS_PAGE << IGP_PAGE_SHIFT); 5790 if (ret_val) 5791 goto release; 5792 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 5793 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 5794 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 5795 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 5796 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 5797 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 5798 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 5799 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 5800 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 5801 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 5802 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 5803 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 5804 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 5805 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 5806 release: 5807 hw->phy.ops.release(hw); 5808 } 5809 } 5810 5811 static const struct e1000_mac_operations ich8_mac_ops = { 5812 /* check_mng_mode dependent on mac type */ 5813 .check_for_link = e1000_check_for_copper_link_ich8lan, 5814 /* cleanup_led dependent on mac type */ 5815 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 5816 .get_bus_info = e1000_get_bus_info_ich8lan, 5817 .set_lan_id = e1000_set_lan_id_single_port, 5818 .get_link_up_info = e1000_get_link_up_info_ich8lan, 5819 /* led_on dependent on mac type */ 5820 /* led_off dependent on mac type */ 5821 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 5822 .reset_hw = e1000_reset_hw_ich8lan, 5823 .init_hw = e1000_init_hw_ich8lan, 5824 .setup_link = e1000_setup_link_ich8lan, 5825 .setup_physical_interface = e1000_setup_copper_link_ich8lan, 5826 /* id_led_init dependent on mac type */ 5827 .config_collision_dist = e1000e_config_collision_dist_generic, 5828 .rar_set = e1000e_rar_set_generic, 5829 .rar_get_count = e1000e_rar_get_count_generic, 5830 }; 5831 5832 static const struct e1000_phy_operations ich8_phy_ops = { 5833 .acquire = e1000_acquire_swflag_ich8lan, 5834 .check_reset_block = e1000_check_reset_block_ich8lan, 5835 .commit = NULL, 5836 .get_cfg_done = e1000_get_cfg_done_ich8lan, 5837 .get_cable_length = e1000e_get_cable_length_igp_2, 5838 .read_reg = e1000e_read_phy_reg_igp, 5839 .release = e1000_release_swflag_ich8lan, 5840 .reset = e1000_phy_hw_reset_ich8lan, 5841 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 5842 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 5843 .write_reg = e1000e_write_phy_reg_igp, 5844 }; 5845 5846 static const struct e1000_nvm_operations ich8_nvm_ops = { 5847 .acquire = e1000_acquire_nvm_ich8lan, 5848 .read = e1000_read_nvm_ich8lan, 5849 .release = e1000_release_nvm_ich8lan, 5850 .reload = e1000e_reload_nvm_generic, 5851 .update = e1000_update_nvm_checksum_ich8lan, 5852 .valid_led_default = e1000_valid_led_default_ich8lan, 5853 .validate = e1000_validate_nvm_checksum_ich8lan, 5854 .write = e1000_write_nvm_ich8lan, 5855 }; 5856 5857 static const struct e1000_nvm_operations spt_nvm_ops = { 5858 .acquire = e1000_acquire_nvm_ich8lan, 5859 .release = e1000_release_nvm_ich8lan, 5860 .read = e1000_read_nvm_spt, 5861 .update = e1000_update_nvm_checksum_spt, 5862 .reload = e1000e_reload_nvm_generic, 5863 .valid_led_default = e1000_valid_led_default_ich8lan, 5864 .validate = e1000_validate_nvm_checksum_ich8lan, 5865 .write = e1000_write_nvm_ich8lan, 5866 }; 5867 5868 const struct e1000_info e1000_ich8_info = { 5869 .mac = e1000_ich8lan, 5870 .flags = FLAG_HAS_WOL 5871 | FLAG_IS_ICH 5872 | FLAG_HAS_CTRLEXT_ON_LOAD 5873 | FLAG_HAS_AMT 5874 | FLAG_HAS_FLASH 5875 | FLAG_APME_IN_WUC, 5876 .pba = 8, 5877 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, 5878 .get_variants = e1000_get_variants_ich8lan, 5879 .mac_ops = &ich8_mac_ops, 5880 .phy_ops = &ich8_phy_ops, 5881 .nvm_ops = &ich8_nvm_ops, 5882 }; 5883 5884 const struct e1000_info e1000_ich9_info = { 5885 .mac = e1000_ich9lan, 5886 .flags = FLAG_HAS_JUMBO_FRAMES 5887 | FLAG_IS_ICH 5888 | FLAG_HAS_WOL 5889 | FLAG_HAS_CTRLEXT_ON_LOAD 5890 | FLAG_HAS_AMT 5891 | FLAG_HAS_FLASH 5892 | FLAG_APME_IN_WUC, 5893 .pba = 18, 5894 .max_hw_frame_size = DEFAULT_JUMBO, 5895 .get_variants = e1000_get_variants_ich8lan, 5896 .mac_ops = &ich8_mac_ops, 5897 .phy_ops = &ich8_phy_ops, 5898 .nvm_ops = &ich8_nvm_ops, 5899 }; 5900 5901 const struct e1000_info e1000_ich10_info = { 5902 .mac = e1000_ich10lan, 5903 .flags = FLAG_HAS_JUMBO_FRAMES 5904 | FLAG_IS_ICH 5905 | FLAG_HAS_WOL 5906 | FLAG_HAS_CTRLEXT_ON_LOAD 5907 | FLAG_HAS_AMT 5908 | FLAG_HAS_FLASH 5909 | FLAG_APME_IN_WUC, 5910 .pba = 18, 5911 .max_hw_frame_size = DEFAULT_JUMBO, 5912 .get_variants = e1000_get_variants_ich8lan, 5913 .mac_ops = &ich8_mac_ops, 5914 .phy_ops = &ich8_phy_ops, 5915 .nvm_ops = &ich8_nvm_ops, 5916 }; 5917 5918 const struct e1000_info e1000_pch_info = { 5919 .mac = e1000_pchlan, 5920 .flags = FLAG_IS_ICH 5921 | FLAG_HAS_WOL 5922 | FLAG_HAS_CTRLEXT_ON_LOAD 5923 | FLAG_HAS_AMT 5924 | FLAG_HAS_FLASH 5925 | FLAG_HAS_JUMBO_FRAMES 5926 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 5927 | FLAG_APME_IN_WUC, 5928 .flags2 = FLAG2_HAS_PHY_STATS, 5929 .pba = 26, 5930 .max_hw_frame_size = 4096, 5931 .get_variants = e1000_get_variants_ich8lan, 5932 .mac_ops = &ich8_mac_ops, 5933 .phy_ops = &ich8_phy_ops, 5934 .nvm_ops = &ich8_nvm_ops, 5935 }; 5936 5937 const struct e1000_info e1000_pch2_info = { 5938 .mac = e1000_pch2lan, 5939 .flags = FLAG_IS_ICH 5940 | FLAG_HAS_WOL 5941 | FLAG_HAS_HW_TIMESTAMP 5942 | FLAG_HAS_CTRLEXT_ON_LOAD 5943 | FLAG_HAS_AMT 5944 | FLAG_HAS_FLASH 5945 | FLAG_HAS_JUMBO_FRAMES 5946 | FLAG_APME_IN_WUC, 5947 .flags2 = FLAG2_HAS_PHY_STATS 5948 | FLAG2_HAS_EEE 5949 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5950 .pba = 26, 5951 .max_hw_frame_size = 9022, 5952 .get_variants = e1000_get_variants_ich8lan, 5953 .mac_ops = &ich8_mac_ops, 5954 .phy_ops = &ich8_phy_ops, 5955 .nvm_ops = &ich8_nvm_ops, 5956 }; 5957 5958 const struct e1000_info e1000_pch_lpt_info = { 5959 .mac = e1000_pch_lpt, 5960 .flags = FLAG_IS_ICH 5961 | FLAG_HAS_WOL 5962 | FLAG_HAS_HW_TIMESTAMP 5963 | FLAG_HAS_CTRLEXT_ON_LOAD 5964 | FLAG_HAS_AMT 5965 | FLAG_HAS_FLASH 5966 | FLAG_HAS_JUMBO_FRAMES 5967 | FLAG_APME_IN_WUC, 5968 .flags2 = FLAG2_HAS_PHY_STATS 5969 | FLAG2_HAS_EEE 5970 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5971 .pba = 26, 5972 .max_hw_frame_size = 9022, 5973 .get_variants = e1000_get_variants_ich8lan, 5974 .mac_ops = &ich8_mac_ops, 5975 .phy_ops = &ich8_phy_ops, 5976 .nvm_ops = &ich8_nvm_ops, 5977 }; 5978 5979 const struct e1000_info e1000_pch_spt_info = { 5980 .mac = e1000_pch_spt, 5981 .flags = FLAG_IS_ICH 5982 | FLAG_HAS_WOL 5983 | FLAG_HAS_HW_TIMESTAMP 5984 | FLAG_HAS_CTRLEXT_ON_LOAD 5985 | FLAG_HAS_AMT 5986 | FLAG_HAS_FLASH 5987 | FLAG_HAS_JUMBO_FRAMES 5988 | FLAG_APME_IN_WUC, 5989 .flags2 = FLAG2_HAS_PHY_STATS 5990 | FLAG2_HAS_EEE, 5991 .pba = 26, 5992 .max_hw_frame_size = 9022, 5993 .get_variants = e1000_get_variants_ich8lan, 5994 .mac_ops = &ich8_mac_ops, 5995 .phy_ops = &ich8_phy_ops, 5996 .nvm_ops = &spt_nvm_ops, 5997 }; 5998 5999 const struct e1000_info e1000_pch_cnp_info = { 6000 .mac = e1000_pch_cnp, 6001 .flags = FLAG_IS_ICH 6002 | FLAG_HAS_WOL 6003 | FLAG_HAS_HW_TIMESTAMP 6004 | FLAG_HAS_CTRLEXT_ON_LOAD 6005 | FLAG_HAS_AMT 6006 | FLAG_HAS_FLASH 6007 | FLAG_HAS_JUMBO_FRAMES 6008 | FLAG_APME_IN_WUC, 6009 .flags2 = FLAG2_HAS_PHY_STATS 6010 | FLAG2_HAS_EEE, 6011 .pba = 26, 6012 .max_hw_frame_size = 9022, 6013 .get_variants = e1000_get_variants_ich8lan, 6014 .mac_ops = &ich8_mac_ops, 6015 .phy_ops = &ich8_phy_ops, 6016 .nvm_ops = &spt_nvm_ops, 6017 }; 6018 6019 const struct e1000_info e1000_pch_tgp_info = { 6020 .mac = e1000_pch_tgp, 6021 .flags = FLAG_IS_ICH 6022 | FLAG_HAS_WOL 6023 | FLAG_HAS_HW_TIMESTAMP 6024 | FLAG_HAS_CTRLEXT_ON_LOAD 6025 | FLAG_HAS_AMT 6026 | FLAG_HAS_FLASH 6027 | FLAG_HAS_JUMBO_FRAMES 6028 | FLAG_APME_IN_WUC, 6029 .flags2 = FLAG2_HAS_PHY_STATS 6030 | FLAG2_HAS_EEE, 6031 .pba = 26, 6032 .max_hw_frame_size = 9022, 6033 .get_variants = e1000_get_variants_ich8lan, 6034 .mac_ops = &ich8_mac_ops, 6035 .phy_ops = &ich8_phy_ops, 6036 .nvm_ops = &spt_nvm_ops, 6037 }; 6038 6039 const struct e1000_info e1000_pch_adp_info = { 6040 .mac = e1000_pch_adp, 6041 .flags = FLAG_IS_ICH 6042 | FLAG_HAS_WOL 6043 | FLAG_HAS_HW_TIMESTAMP 6044 | FLAG_HAS_CTRLEXT_ON_LOAD 6045 | FLAG_HAS_AMT 6046 | FLAG_HAS_FLASH 6047 | FLAG_HAS_JUMBO_FRAMES 6048 | FLAG_APME_IN_WUC, 6049 .flags2 = FLAG2_HAS_PHY_STATS 6050 | FLAG2_HAS_EEE, 6051 .pba = 26, 6052 .max_hw_frame_size = 9022, 6053 .get_variants = e1000_get_variants_ich8lan, 6054 .mac_ops = &ich8_mac_ops, 6055 .phy_ops = &ich8_phy_ops, 6056 .nvm_ops = &spt_nvm_ops, 6057 }; 6058 6059 const struct e1000_info e1000_pch_mtp_info = { 6060 .mac = e1000_pch_mtp, 6061 .flags = FLAG_IS_ICH 6062 | FLAG_HAS_WOL 6063 | FLAG_HAS_HW_TIMESTAMP 6064 | FLAG_HAS_CTRLEXT_ON_LOAD 6065 | FLAG_HAS_AMT 6066 | FLAG_HAS_FLASH 6067 | FLAG_HAS_JUMBO_FRAMES 6068 | FLAG_APME_IN_WUC, 6069 .flags2 = FLAG2_HAS_PHY_STATS 6070 | FLAG2_HAS_EEE, 6071 .pba = 26, 6072 .max_hw_frame_size = 9022, 6073 .get_variants = e1000_get_variants_ich8lan, 6074 .mac_ops = &ich8_mac_ops, 6075 .phy_ops = &ich8_phy_ops, 6076 .nvm_ops = &spt_nvm_ops, 6077 }; 6078