1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Unforce SMBus mode in PHY */
226 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229 
230 			/* Unforce SMBus mode in MAC */
231 			mac_reg = er32(CTRL_EXT);
232 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 			ew32(CTRL_EXT, mac_reg);
234 		}
235 	}
236 
237 	return true;
238 }
239 
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 	u32 mac_reg;
250 
251 	/* Set Phy Config Counter to 50msec */
252 	mac_reg = er32(FEXTNVM3);
253 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 	ew32(FEXTNVM3, mac_reg);
256 
257 	/* Toggle LANPHYPC Value bit */
258 	mac_reg = er32(CTRL);
259 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 	ew32(CTRL, mac_reg);
262 	e1e_flush();
263 	usleep_range(10, 20);
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 
268 	if (hw->mac.type < e1000_pch_lpt) {
269 		msleep(50);
270 	} else {
271 		u16 count = 20;
272 
273 		do {
274 			usleep_range(5000, 6000);
275 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276 
277 		msleep(30);
278 	}
279 }
280 
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 	struct e1000_adapter *adapter = hw->adapter;
291 	u32 mac_reg, fwsm = er32(FWSM);
292 	s32 ret_val;
293 
294 	/* Gate automatic PHY configuration by hardware on managed and
295 	 * non-managed 82579 and newer adapters.
296 	 */
297 	e1000_gate_hw_phy_config_ich8lan(hw, true);
298 
299 	/* It is not possible to be certain of the current state of ULP
300 	 * so forcibly disable it.
301 	 */
302 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 	if (ret_val)
305 		e_warn("Failed to disable ULP\n");
306 
307 	ret_val = hw->phy.ops.acquire(hw);
308 	if (ret_val) {
309 		e_dbg("Failed to initialize PHY flow\n");
310 		goto out;
311 	}
312 
313 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314 	 * inaccessible and resetting the PHY is not blocked, toggle the
315 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 	 */
317 	switch (hw->mac.type) {
318 	case e1000_pch_lpt:
319 	case e1000_pch_spt:
320 	case e1000_pch_cnp:
321 	case e1000_pch_tgp:
322 	case e1000_pch_adp:
323 	case e1000_pch_mtp:
324 		if (e1000_phy_is_accessible_pchlan(hw))
325 			break;
326 
327 		/* Before toggling LANPHYPC, see if PHY is accessible by
328 		 * forcing MAC to SMBus mode first.
329 		 */
330 		mac_reg = er32(CTRL_EXT);
331 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
332 		ew32(CTRL_EXT, mac_reg);
333 
334 		/* Wait 50 milliseconds for MAC to finish any retries
335 		 * that it might be trying to perform from previous
336 		 * attempts to acknowledge any phy read requests.
337 		 */
338 		msleep(50);
339 
340 		fallthrough;
341 	case e1000_pch2lan:
342 		if (e1000_phy_is_accessible_pchlan(hw))
343 			break;
344 
345 		fallthrough;
346 	case e1000_pchlan:
347 		if ((hw->mac.type == e1000_pchlan) &&
348 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
349 			break;
350 
351 		if (hw->phy.ops.check_reset_block(hw)) {
352 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
353 			ret_val = -E1000_ERR_PHY;
354 			break;
355 		}
356 
357 		/* Toggle LANPHYPC Value bit */
358 		e1000_toggle_lanphypc_pch_lpt(hw);
359 		if (hw->mac.type >= e1000_pch_lpt) {
360 			if (e1000_phy_is_accessible_pchlan(hw))
361 				break;
362 
363 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
364 			 * so ensure that the MAC is also out of SMBus mode
365 			 */
366 			mac_reg = er32(CTRL_EXT);
367 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
368 			ew32(CTRL_EXT, mac_reg);
369 
370 			if (e1000_phy_is_accessible_pchlan(hw))
371 				break;
372 
373 			ret_val = -E1000_ERR_PHY;
374 		}
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	hw->phy.ops.release(hw);
381 	if (!ret_val) {
382 
383 		/* Check to see if able to reset PHY.  Print error if not */
384 		if (hw->phy.ops.check_reset_block(hw)) {
385 			e_err("Reset blocked by ME\n");
386 			goto out;
387 		}
388 
389 		/* Reset the PHY before any access to it.  Doing so, ensures
390 		 * that the PHY is in a known good state before we read/write
391 		 * PHY registers.  The generic reset is sufficient here,
392 		 * because we haven't determined the PHY type yet.
393 		 */
394 		ret_val = e1000e_phy_hw_reset_generic(hw);
395 		if (ret_val)
396 			goto out;
397 
398 		/* On a successful reset, possibly need to wait for the PHY
399 		 * to quiesce to an accessible state before returning control
400 		 * to the calling function.  If the PHY does not quiesce, then
401 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
402 		 *  the PHY is in.
403 		 */
404 		ret_val = hw->phy.ops.check_reset_block(hw);
405 		if (ret_val)
406 			e_err("ME blocked access to PHY after reset\n");
407 	}
408 
409 out:
410 	/* Ungate automatic PHY configuration on non-managed 82579 */
411 	if ((hw->mac.type == e1000_pch2lan) &&
412 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
413 		usleep_range(10000, 11000);
414 		e1000_gate_hw_phy_config_ich8lan(hw, false);
415 	}
416 
417 	return ret_val;
418 }
419 
420 /**
421  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
422  *  @hw: pointer to the HW structure
423  *
424  *  Initialize family-specific PHY parameters and function pointers.
425  **/
426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
427 {
428 	struct e1000_phy_info *phy = &hw->phy;
429 	s32 ret_val;
430 
431 	phy->addr = 1;
432 	phy->reset_delay_us = 100;
433 
434 	phy->ops.set_page = e1000_set_page_igp;
435 	phy->ops.read_reg = e1000_read_phy_reg_hv;
436 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
437 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
438 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
439 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
440 	phy->ops.write_reg = e1000_write_phy_reg_hv;
441 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
442 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
443 	phy->ops.power_up = e1000_power_up_phy_copper;
444 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
445 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
446 
447 	phy->id = e1000_phy_unknown;
448 
449 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
450 	if (ret_val)
451 		return ret_val;
452 
453 	if (phy->id == e1000_phy_unknown)
454 		switch (hw->mac.type) {
455 		default:
456 			ret_val = e1000e_get_phy_id(hw);
457 			if (ret_val)
458 				return ret_val;
459 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
460 				break;
461 			fallthrough;
462 		case e1000_pch2lan:
463 		case e1000_pch_lpt:
464 		case e1000_pch_spt:
465 		case e1000_pch_cnp:
466 		case e1000_pch_tgp:
467 		case e1000_pch_adp:
468 		case e1000_pch_mtp:
469 			/* In case the PHY needs to be in mdio slow mode,
470 			 * set slow mode and try to get the PHY id again.
471 			 */
472 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
473 			if (ret_val)
474 				return ret_val;
475 			ret_val = e1000e_get_phy_id(hw);
476 			if (ret_val)
477 				return ret_val;
478 			break;
479 		}
480 	phy->type = e1000e_get_phy_type_from_id(phy->id);
481 
482 	switch (phy->type) {
483 	case e1000_phy_82577:
484 	case e1000_phy_82579:
485 	case e1000_phy_i217:
486 		phy->ops.check_polarity = e1000_check_polarity_82577;
487 		phy->ops.force_speed_duplex =
488 		    e1000_phy_force_speed_duplex_82577;
489 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
490 		phy->ops.get_info = e1000_get_phy_info_82577;
491 		phy->ops.commit = e1000e_phy_sw_reset;
492 		break;
493 	case e1000_phy_82578:
494 		phy->ops.check_polarity = e1000_check_polarity_m88;
495 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
496 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
497 		phy->ops.get_info = e1000e_get_phy_info_m88;
498 		break;
499 	default:
500 		ret_val = -E1000_ERR_PHY;
501 		break;
502 	}
503 
504 	return ret_val;
505 }
506 
507 /**
508  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
509  *  @hw: pointer to the HW structure
510  *
511  *  Initialize family-specific PHY parameters and function pointers.
512  **/
513 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
514 {
515 	struct e1000_phy_info *phy = &hw->phy;
516 	s32 ret_val;
517 	u16 i = 0;
518 
519 	phy->addr = 1;
520 	phy->reset_delay_us = 100;
521 
522 	phy->ops.power_up = e1000_power_up_phy_copper;
523 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
524 
525 	/* We may need to do this twice - once for IGP and if that fails,
526 	 * we'll set BM func pointers and try again
527 	 */
528 	ret_val = e1000e_determine_phy_address(hw);
529 	if (ret_val) {
530 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
531 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
532 		ret_val = e1000e_determine_phy_address(hw);
533 		if (ret_val) {
534 			e_dbg("Cannot determine PHY addr. Erroring out\n");
535 			return ret_val;
536 		}
537 	}
538 
539 	phy->id = 0;
540 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
541 	       (i++ < 100)) {
542 		usleep_range(1000, 1100);
543 		ret_val = e1000e_get_phy_id(hw);
544 		if (ret_val)
545 			return ret_val;
546 	}
547 
548 	/* Verify phy id */
549 	switch (phy->id) {
550 	case IGP03E1000_E_PHY_ID:
551 		phy->type = e1000_phy_igp_3;
552 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
553 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
554 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
555 		phy->ops.get_info = e1000e_get_phy_info_igp;
556 		phy->ops.check_polarity = e1000_check_polarity_igp;
557 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
558 		break;
559 	case IFE_E_PHY_ID:
560 	case IFE_PLUS_E_PHY_ID:
561 	case IFE_C_E_PHY_ID:
562 		phy->type = e1000_phy_ife;
563 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
564 		phy->ops.get_info = e1000_get_phy_info_ife;
565 		phy->ops.check_polarity = e1000_check_polarity_ife;
566 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
567 		break;
568 	case BME1000_E_PHY_ID:
569 		phy->type = e1000_phy_bm;
570 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
571 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
572 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
573 		phy->ops.commit = e1000e_phy_sw_reset;
574 		phy->ops.get_info = e1000e_get_phy_info_m88;
575 		phy->ops.check_polarity = e1000_check_polarity_m88;
576 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
577 		break;
578 	default:
579 		return -E1000_ERR_PHY;
580 	}
581 
582 	return 0;
583 }
584 
585 /**
586  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
587  *  @hw: pointer to the HW structure
588  *
589  *  Initialize family-specific NVM parameters and function
590  *  pointers.
591  **/
592 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
593 {
594 	struct e1000_nvm_info *nvm = &hw->nvm;
595 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
596 	u32 gfpreg, sector_base_addr, sector_end_addr;
597 	u16 i;
598 	u32 nvm_size;
599 
600 	nvm->type = e1000_nvm_flash_sw;
601 
602 	if (hw->mac.type >= e1000_pch_spt) {
603 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
604 		 * STRAP register. This is because in SPT the GbE Flash region
605 		 * is no longer accessed through the flash registers. Instead,
606 		 * the mechanism has changed, and the Flash region access
607 		 * registers are now implemented in GbE memory space.
608 		 */
609 		nvm->flash_base_addr = 0;
610 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
611 		    * NVM_SIZE_MULTIPLIER;
612 		nvm->flash_bank_size = nvm_size / 2;
613 		/* Adjust to word count */
614 		nvm->flash_bank_size /= sizeof(u16);
615 		/* Set the base address for flash register access */
616 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
617 	} else {
618 		/* Can't read flash registers if register set isn't mapped. */
619 		if (!hw->flash_address) {
620 			e_dbg("ERROR: Flash registers not mapped\n");
621 			return -E1000_ERR_CONFIG;
622 		}
623 
624 		gfpreg = er32flash(ICH_FLASH_GFPREG);
625 
626 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
627 		 * Add 1 to sector_end_addr since this sector is included in
628 		 * the overall size.
629 		 */
630 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
631 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
632 
633 		/* flash_base_addr is byte-aligned */
634 		nvm->flash_base_addr = sector_base_addr
635 		    << FLASH_SECTOR_ADDR_SHIFT;
636 
637 		/* find total size of the NVM, then cut in half since the total
638 		 * size represents two separate NVM banks.
639 		 */
640 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
641 					<< FLASH_SECTOR_ADDR_SHIFT);
642 		nvm->flash_bank_size /= 2;
643 		/* Adjust to word count */
644 		nvm->flash_bank_size /= sizeof(u16);
645 	}
646 
647 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
648 
649 	/* Clear shadow ram */
650 	for (i = 0; i < nvm->word_size; i++) {
651 		dev_spec->shadow_ram[i].modified = false;
652 		dev_spec->shadow_ram[i].value = 0xFFFF;
653 	}
654 
655 	return 0;
656 }
657 
658 /**
659  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
660  *  @hw: pointer to the HW structure
661  *
662  *  Initialize family-specific MAC parameters and function
663  *  pointers.
664  **/
665 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
666 {
667 	struct e1000_mac_info *mac = &hw->mac;
668 
669 	/* Set media type function pointer */
670 	hw->phy.media_type = e1000_media_type_copper;
671 
672 	/* Set mta register count */
673 	mac->mta_reg_count = 32;
674 	/* Set rar entry count */
675 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
676 	if (mac->type == e1000_ich8lan)
677 		mac->rar_entry_count--;
678 	/* FWSM register */
679 	mac->has_fwsm = true;
680 	/* ARC subsystem not supported */
681 	mac->arc_subsystem_valid = false;
682 	/* Adaptive IFS supported */
683 	mac->adaptive_ifs = true;
684 
685 	/* LED and other operations */
686 	switch (mac->type) {
687 	case e1000_ich8lan:
688 	case e1000_ich9lan:
689 	case e1000_ich10lan:
690 		/* check management mode */
691 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
692 		/* ID LED init */
693 		mac->ops.id_led_init = e1000e_id_led_init_generic;
694 		/* blink LED */
695 		mac->ops.blink_led = e1000e_blink_led_generic;
696 		/* setup LED */
697 		mac->ops.setup_led = e1000e_setup_led_generic;
698 		/* cleanup LED */
699 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
700 		/* turn on/off LED */
701 		mac->ops.led_on = e1000_led_on_ich8lan;
702 		mac->ops.led_off = e1000_led_off_ich8lan;
703 		break;
704 	case e1000_pch2lan:
705 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
706 		mac->ops.rar_set = e1000_rar_set_pch2lan;
707 		fallthrough;
708 	case e1000_pch_lpt:
709 	case e1000_pch_spt:
710 	case e1000_pch_cnp:
711 	case e1000_pch_tgp:
712 	case e1000_pch_adp:
713 	case e1000_pch_mtp:
714 	case e1000_pchlan:
715 		/* check management mode */
716 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
717 		/* ID LED init */
718 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
719 		/* setup LED */
720 		mac->ops.setup_led = e1000_setup_led_pchlan;
721 		/* cleanup LED */
722 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
723 		/* turn on/off LED */
724 		mac->ops.led_on = e1000_led_on_pchlan;
725 		mac->ops.led_off = e1000_led_off_pchlan;
726 		break;
727 	default:
728 		break;
729 	}
730 
731 	if (mac->type >= e1000_pch_lpt) {
732 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
733 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
734 		mac->ops.setup_physical_interface =
735 		    e1000_setup_copper_link_pch_lpt;
736 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
737 	}
738 
739 	/* Enable PCS Lock-loss workaround for ICH8 */
740 	if (mac->type == e1000_ich8lan)
741 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
742 
743 	return 0;
744 }
745 
746 /**
747  *  __e1000_access_emi_reg_locked - Read/write EMI register
748  *  @hw: pointer to the HW structure
749  *  @address: EMI address to program
750  *  @data: pointer to value to read/write from/to the EMI address
751  *  @read: boolean flag to indicate read or write
752  *
753  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
754  **/
755 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
756 					 u16 *data, bool read)
757 {
758 	s32 ret_val;
759 
760 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
761 	if (ret_val)
762 		return ret_val;
763 
764 	if (read)
765 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
766 	else
767 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
768 
769 	return ret_val;
770 }
771 
772 /**
773  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
774  *  @hw: pointer to the HW structure
775  *  @addr: EMI address to program
776  *  @data: value to be read from the EMI address
777  *
778  *  Assumes the SW/FW/HW Semaphore is already acquired.
779  **/
780 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
781 {
782 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
783 }
784 
785 /**
786  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
787  *  @hw: pointer to the HW structure
788  *  @addr: EMI address to program
789  *  @data: value to be written to the EMI address
790  *
791  *  Assumes the SW/FW/HW Semaphore is already acquired.
792  **/
793 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
794 {
795 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
796 }
797 
798 /**
799  *  e1000_set_eee_pchlan - Enable/disable EEE support
800  *  @hw: pointer to the HW structure
801  *
802  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
803  *  the link and the EEE capabilities of the link partner.  The LPI Control
804  *  register bits will remain set only if/when link is up.
805  *
806  *  EEE LPI must not be asserted earlier than one second after link is up.
807  *  On 82579, EEE LPI should not be enabled until such time otherwise there
808  *  can be link issues with some switches.  Other devices can have EEE LPI
809  *  enabled immediately upon link up since they have a timer in hardware which
810  *  prevents LPI from being asserted too early.
811  **/
812 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
813 {
814 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
815 	s32 ret_val;
816 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
817 
818 	switch (hw->phy.type) {
819 	case e1000_phy_82579:
820 		lpa = I82579_EEE_LP_ABILITY;
821 		pcs_status = I82579_EEE_PCS_STATUS;
822 		adv_addr = I82579_EEE_ADVERTISEMENT;
823 		break;
824 	case e1000_phy_i217:
825 		lpa = I217_EEE_LP_ABILITY;
826 		pcs_status = I217_EEE_PCS_STATUS;
827 		adv_addr = I217_EEE_ADVERTISEMENT;
828 		break;
829 	default:
830 		return 0;
831 	}
832 
833 	ret_val = hw->phy.ops.acquire(hw);
834 	if (ret_val)
835 		return ret_val;
836 
837 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
838 	if (ret_val)
839 		goto release;
840 
841 	/* Clear bits that enable EEE in various speeds */
842 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
843 
844 	/* Enable EEE if not disabled by user */
845 	if (!dev_spec->eee_disable) {
846 		/* Save off link partner's EEE ability */
847 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
848 						    &dev_spec->eee_lp_ability);
849 		if (ret_val)
850 			goto release;
851 
852 		/* Read EEE advertisement */
853 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
854 		if (ret_val)
855 			goto release;
856 
857 		/* Enable EEE only for speeds in which the link partner is
858 		 * EEE capable and for which we advertise EEE.
859 		 */
860 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
861 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
862 
863 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
864 			e1e_rphy_locked(hw, MII_LPA, &data);
865 			if (data & LPA_100FULL)
866 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
867 			else
868 				/* EEE is not supported in 100Half, so ignore
869 				 * partner's EEE in 100 ability if full-duplex
870 				 * is not advertised.
871 				 */
872 				dev_spec->eee_lp_ability &=
873 				    ~I82579_EEE_100_SUPPORTED;
874 		}
875 	}
876 
877 	if (hw->phy.type == e1000_phy_82579) {
878 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
879 						    &data);
880 		if (ret_val)
881 			goto release;
882 
883 		data &= ~I82579_LPI_100_PLL_SHUT;
884 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
885 						     data);
886 	}
887 
888 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
889 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
890 	if (ret_val)
891 		goto release;
892 
893 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
894 release:
895 	hw->phy.ops.release(hw);
896 
897 	return ret_val;
898 }
899 
900 /**
901  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
902  *  @hw:   pointer to the HW structure
903  *  @link: link up bool flag
904  *
905  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
906  *  preventing further DMA write requests.  Workaround the issue by disabling
907  *  the de-assertion of the clock request when in 1Gpbs mode.
908  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
909  *  speeds in order to avoid Tx hangs.
910  **/
911 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
912 {
913 	u32 fextnvm6 = er32(FEXTNVM6);
914 	u32 status = er32(STATUS);
915 	s32 ret_val = 0;
916 	u16 reg;
917 
918 	if (link && (status & E1000_STATUS_SPEED_1000)) {
919 		ret_val = hw->phy.ops.acquire(hw);
920 		if (ret_val)
921 			return ret_val;
922 
923 		ret_val =
924 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
925 						&reg);
926 		if (ret_val)
927 			goto release;
928 
929 		ret_val =
930 		    e1000e_write_kmrn_reg_locked(hw,
931 						 E1000_KMRNCTRLSTA_K1_CONFIG,
932 						 reg &
933 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
934 		if (ret_val)
935 			goto release;
936 
937 		usleep_range(10, 20);
938 
939 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
940 
941 		ret_val =
942 		    e1000e_write_kmrn_reg_locked(hw,
943 						 E1000_KMRNCTRLSTA_K1_CONFIG,
944 						 reg);
945 release:
946 		hw->phy.ops.release(hw);
947 	} else {
948 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
949 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
950 
951 		if ((hw->phy.revision > 5) || !link ||
952 		    ((status & E1000_STATUS_SPEED_100) &&
953 		     (status & E1000_STATUS_FD)))
954 			goto update_fextnvm6;
955 
956 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
957 		if (ret_val)
958 			return ret_val;
959 
960 		/* Clear link status transmit timeout */
961 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
962 
963 		if (status & E1000_STATUS_SPEED_100) {
964 			/* Set inband Tx timeout to 5x10us for 100Half */
965 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
966 
967 			/* Do not extend the K1 entry latency for 100Half */
968 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
969 		} else {
970 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
971 			reg |= 50 <<
972 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973 
974 			/* Extend the K1 entry latency for 10 Mbps */
975 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976 		}
977 
978 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
979 		if (ret_val)
980 			return ret_val;
981 
982 update_fextnvm6:
983 		ew32(FEXTNVM6, fextnvm6);
984 	}
985 
986 	return ret_val;
987 }
988 
989 /**
990  *  e1000_platform_pm_pch_lpt - Set platform power management values
991  *  @hw: pointer to the HW structure
992  *  @link: bool indicating link status
993  *
994  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
995  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
996  *  when link is up (which must not exceed the maximum latency supported
997  *  by the platform), otherwise specify there is no LTR requirement.
998  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
999  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1000  *  Capability register set, on this device LTR is set by writing the
1001  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1002  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1003  *  message to the PMC.
1004  **/
1005 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1006 {
1007 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1008 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1009 	u16 lat_enc = 0;	/* latency encoded */
1010 
1011 	if (link) {
1012 		u16 speed, duplex, scale = 0;
1013 		u16 max_snoop, max_nosnoop;
1014 		u16 max_ltr_enc;	/* max LTR latency encoded */
1015 		u64 value;
1016 		u32 rxa;
1017 
1018 		if (!hw->adapter->max_frame_size) {
1019 			e_dbg("max_frame_size not set.\n");
1020 			return -E1000_ERR_CONFIG;
1021 		}
1022 
1023 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1024 		if (!speed) {
1025 			e_dbg("Speed not set.\n");
1026 			return -E1000_ERR_CONFIG;
1027 		}
1028 
1029 		/* Rx Packet Buffer Allocation size (KB) */
1030 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1031 
1032 		/* Determine the maximum latency tolerated by the device.
1033 		 *
1034 		 * Per the PCIe spec, the tolerated latencies are encoded as
1035 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1036 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1037 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1038 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1039 		 */
1040 		rxa *= 512;
1041 		value = (rxa > hw->adapter->max_frame_size) ?
1042 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1043 			0;
1044 
1045 		while (value > PCI_LTR_VALUE_MASK) {
1046 			scale++;
1047 			value = DIV_ROUND_UP(value, BIT(5));
1048 		}
1049 		if (scale > E1000_LTRV_SCALE_MAX) {
1050 			e_dbg("Invalid LTR latency scale %d\n", scale);
1051 			return -E1000_ERR_CONFIG;
1052 		}
1053 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1054 
1055 		/* Determine the maximum latency tolerated by the platform */
1056 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1057 				     &max_snoop);
1058 		pci_read_config_word(hw->adapter->pdev,
1059 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1060 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1061 
1062 		if (lat_enc > max_ltr_enc)
1063 			lat_enc = max_ltr_enc;
1064 	}
1065 
1066 	/* Set Snoop and No-Snoop latencies the same */
1067 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1068 	ew32(LTRV, reg);
1069 
1070 	return 0;
1071 }
1072 
1073 /**
1074  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1075  *  @hw: pointer to the HW structure
1076  *  @to_sx: boolean indicating a system power state transition to Sx
1077  *
1078  *  When link is down, configure ULP mode to significantly reduce the power
1079  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1080  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1081  *  system, configure the ULP mode by software.
1082  */
1083 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1084 {
1085 	u32 mac_reg;
1086 	s32 ret_val = 0;
1087 	u16 phy_reg;
1088 	u16 oem_reg = 0;
1089 
1090 	if ((hw->mac.type < e1000_pch_lpt) ||
1091 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1092 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1093 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1094 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1095 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1096 		return 0;
1097 
1098 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1099 		/* Request ME configure ULP mode in the PHY */
1100 		mac_reg = er32(H2ME);
1101 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1102 		ew32(H2ME, mac_reg);
1103 
1104 		goto out;
1105 	}
1106 
1107 	if (!to_sx) {
1108 		int i = 0;
1109 
1110 		/* Poll up to 5 seconds for Cable Disconnected indication */
1111 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1112 			/* Bail if link is re-acquired */
1113 			if (er32(STATUS) & E1000_STATUS_LU)
1114 				return -E1000_ERR_PHY;
1115 
1116 			if (i++ == 100)
1117 				break;
1118 
1119 			msleep(50);
1120 		}
1121 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1122 		      (er32(FEXT) &
1123 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1124 	}
1125 
1126 	ret_val = hw->phy.ops.acquire(hw);
1127 	if (ret_val)
1128 		goto out;
1129 
1130 	/* Force SMBus mode in PHY */
1131 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1132 	if (ret_val)
1133 		goto release;
1134 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1135 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1136 
1137 	/* Force SMBus mode in MAC */
1138 	mac_reg = er32(CTRL_EXT);
1139 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1140 	ew32(CTRL_EXT, mac_reg);
1141 
1142 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1143 	 * LPLU and disable Gig speed when entering ULP
1144 	 */
1145 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1146 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1147 						       &oem_reg);
1148 		if (ret_val)
1149 			goto release;
1150 
1151 		phy_reg = oem_reg;
1152 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1153 
1154 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1155 							phy_reg);
1156 
1157 		if (ret_val)
1158 			goto release;
1159 	}
1160 
1161 	/* Set Inband ULP Exit, Reset to SMBus mode and
1162 	 * Disable SMBus Release on PERST# in PHY
1163 	 */
1164 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1165 	if (ret_val)
1166 		goto release;
1167 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1168 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1169 	if (to_sx) {
1170 		if (er32(WUFC) & E1000_WUFC_LNKC)
1171 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1172 		else
1173 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1174 
1175 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1176 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1177 	} else {
1178 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1179 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1180 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181 	}
1182 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1183 
1184 	/* Set Disable SMBus Release on PERST# in MAC */
1185 	mac_reg = er32(FEXTNVM7);
1186 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1187 	ew32(FEXTNVM7, mac_reg);
1188 
1189 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1190 	phy_reg |= I218_ULP_CONFIG1_START;
1191 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1192 
1193 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1194 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1195 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1196 							oem_reg);
1197 		if (ret_val)
1198 			goto release;
1199 	}
1200 
1201 release:
1202 	hw->phy.ops.release(hw);
1203 out:
1204 	if (ret_val)
1205 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1206 	else
1207 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1208 
1209 	return ret_val;
1210 }
1211 
1212 /**
1213  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1214  *  @hw: pointer to the HW structure
1215  *  @force: boolean indicating whether or not to force disabling ULP
1216  *
1217  *  Un-configure ULP mode when link is up, the system is transitioned from
1218  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1219  *  system, poll for an indication from ME that ULP has been un-configured.
1220  *  If not on an ME enabled system, un-configure the ULP mode by software.
1221  *
1222  *  During nominal operation, this function is called when link is acquired
1223  *  to disable ULP mode (force=false); otherwise, for example when unloading
1224  *  the driver or during Sx->S0 transitions, this is called with force=true
1225  *  to forcibly disable ULP.
1226  */
1227 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1228 {
1229 	s32 ret_val = 0;
1230 	u32 mac_reg;
1231 	u16 phy_reg;
1232 	int i = 0;
1233 
1234 	if ((hw->mac.type < e1000_pch_lpt) ||
1235 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1236 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1237 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1238 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1239 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1240 		return 0;
1241 
1242 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1243 		if (force) {
1244 			/* Request ME un-configure ULP mode in the PHY */
1245 			mac_reg = er32(H2ME);
1246 			mac_reg &= ~E1000_H2ME_ULP;
1247 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1248 			ew32(H2ME, mac_reg);
1249 		}
1250 
1251 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1252 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1253 			if (i++ == 30) {
1254 				ret_val = -E1000_ERR_PHY;
1255 				goto out;
1256 			}
1257 
1258 			usleep_range(10000, 11000);
1259 		}
1260 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1261 
1262 		if (force) {
1263 			mac_reg = er32(H2ME);
1264 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1265 			ew32(H2ME, mac_reg);
1266 		} else {
1267 			/* Clear H2ME.ULP after ME ULP configuration */
1268 			mac_reg = er32(H2ME);
1269 			mac_reg &= ~E1000_H2ME_ULP;
1270 			ew32(H2ME, mac_reg);
1271 		}
1272 
1273 		goto out;
1274 	}
1275 
1276 	ret_val = hw->phy.ops.acquire(hw);
1277 	if (ret_val)
1278 		goto out;
1279 
1280 	if (force)
1281 		/* Toggle LANPHYPC Value bit */
1282 		e1000_toggle_lanphypc_pch_lpt(hw);
1283 
1284 	/* Unforce SMBus mode in PHY */
1285 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1286 	if (ret_val) {
1287 		/* The MAC might be in PCIe mode, so temporarily force to
1288 		 * SMBus mode in order to access the PHY.
1289 		 */
1290 		mac_reg = er32(CTRL_EXT);
1291 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1292 		ew32(CTRL_EXT, mac_reg);
1293 
1294 		msleep(50);
1295 
1296 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1297 						       &phy_reg);
1298 		if (ret_val)
1299 			goto release;
1300 	}
1301 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1302 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1303 
1304 	/* Unforce SMBus mode in MAC */
1305 	mac_reg = er32(CTRL_EXT);
1306 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1307 	ew32(CTRL_EXT, mac_reg);
1308 
1309 	/* When ULP mode was previously entered, K1 was disabled by the
1310 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1311 	 */
1312 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1313 	if (ret_val)
1314 		goto release;
1315 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1316 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1317 
1318 	/* Clear ULP enabled configuration */
1319 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1320 	if (ret_val)
1321 		goto release;
1322 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1323 		     I218_ULP_CONFIG1_STICKY_ULP |
1324 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1325 		     I218_ULP_CONFIG1_WOL_HOST |
1326 		     I218_ULP_CONFIG1_INBAND_EXIT |
1327 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1328 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1329 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1330 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1331 
1332 	/* Commit ULP changes by starting auto ULP configuration */
1333 	phy_reg |= I218_ULP_CONFIG1_START;
1334 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1335 
1336 	/* Clear Disable SMBus Release on PERST# in MAC */
1337 	mac_reg = er32(FEXTNVM7);
1338 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1339 	ew32(FEXTNVM7, mac_reg);
1340 
1341 release:
1342 	hw->phy.ops.release(hw);
1343 	if (force) {
1344 		e1000_phy_hw_reset(hw);
1345 		msleep(50);
1346 	}
1347 out:
1348 	if (ret_val)
1349 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1350 	else
1351 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1352 
1353 	return ret_val;
1354 }
1355 
1356 /**
1357  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1358  *  @hw: pointer to the HW structure
1359  *
1360  *  Checks to see of the link status of the hardware has changed.  If a
1361  *  change in link status has been detected, then we read the PHY registers
1362  *  to get the current speed/duplex if link exists.
1363  **/
1364 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1365 {
1366 	struct e1000_mac_info *mac = &hw->mac;
1367 	s32 ret_val, tipg_reg = 0;
1368 	u16 emi_addr, emi_val = 0;
1369 	bool link;
1370 	u16 phy_reg;
1371 
1372 	/* We only want to go out to the PHY registers to see if Auto-Neg
1373 	 * has completed and/or if our link status has changed.  The
1374 	 * get_link_status flag is set upon receiving a Link Status
1375 	 * Change or Rx Sequence Error interrupt.
1376 	 */
1377 	if (!mac->get_link_status)
1378 		return 0;
1379 	mac->get_link_status = false;
1380 
1381 	/* First we want to see if the MII Status Register reports
1382 	 * link.  If so, then we want to get the current speed/duplex
1383 	 * of the PHY.
1384 	 */
1385 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1386 	if (ret_val)
1387 		goto out;
1388 
1389 	if (hw->mac.type == e1000_pchlan) {
1390 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1391 		if (ret_val)
1392 			goto out;
1393 	}
1394 
1395 	/* When connected at 10Mbps half-duplex, some parts are excessively
1396 	 * aggressive resulting in many collisions. To avoid this, increase
1397 	 * the IPG and reduce Rx latency in the PHY.
1398 	 */
1399 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1400 		u16 speed, duplex;
1401 
1402 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1403 		tipg_reg = er32(TIPG);
1404 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1405 
1406 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1407 			tipg_reg |= 0xFF;
1408 			/* Reduce Rx latency in analog PHY */
1409 			emi_val = 0;
1410 		} else if (hw->mac.type >= e1000_pch_spt &&
1411 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1412 			tipg_reg |= 0xC;
1413 			emi_val = 1;
1414 		} else {
1415 
1416 			/* Roll back the default values */
1417 			tipg_reg |= 0x08;
1418 			emi_val = 1;
1419 		}
1420 
1421 		ew32(TIPG, tipg_reg);
1422 
1423 		ret_val = hw->phy.ops.acquire(hw);
1424 		if (ret_val)
1425 			goto out;
1426 
1427 		if (hw->mac.type == e1000_pch2lan)
1428 			emi_addr = I82579_RX_CONFIG;
1429 		else
1430 			emi_addr = I217_RX_CONFIG;
1431 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1432 
1433 		if (hw->mac.type >= e1000_pch_lpt) {
1434 			u16 phy_reg;
1435 
1436 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1437 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1438 			if (speed == SPEED_100 || speed == SPEED_10)
1439 				phy_reg |= 0x3E8;
1440 			else
1441 				phy_reg |= 0xFA;
1442 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1443 
1444 			if (speed == SPEED_1000) {
1445 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1446 							    &phy_reg);
1447 
1448 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1449 
1450 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1451 							     phy_reg);
1452 			}
1453 		}
1454 		hw->phy.ops.release(hw);
1455 
1456 		if (ret_val)
1457 			goto out;
1458 
1459 		if (hw->mac.type >= e1000_pch_spt) {
1460 			u16 data;
1461 			u16 ptr_gap;
1462 
1463 			if (speed == SPEED_1000) {
1464 				ret_val = hw->phy.ops.acquire(hw);
1465 				if (ret_val)
1466 					goto out;
1467 
1468 				ret_val = e1e_rphy_locked(hw,
1469 							  PHY_REG(776, 20),
1470 							  &data);
1471 				if (ret_val) {
1472 					hw->phy.ops.release(hw);
1473 					goto out;
1474 				}
1475 
1476 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1477 				if (ptr_gap < 0x18) {
1478 					data &= ~(0x3FF << 2);
1479 					data |= (0x18 << 2);
1480 					ret_val =
1481 					    e1e_wphy_locked(hw,
1482 							    PHY_REG(776, 20),
1483 							    data);
1484 				}
1485 				hw->phy.ops.release(hw);
1486 				if (ret_val)
1487 					goto out;
1488 			} else {
1489 				ret_val = hw->phy.ops.acquire(hw);
1490 				if (ret_val)
1491 					goto out;
1492 
1493 				ret_val = e1e_wphy_locked(hw,
1494 							  PHY_REG(776, 20),
1495 							  0xC023);
1496 				hw->phy.ops.release(hw);
1497 				if (ret_val)
1498 					goto out;
1499 
1500 			}
1501 		}
1502 	}
1503 
1504 	/* I217 Packet Loss issue:
1505 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1506 	 * on power up.
1507 	 * Set the Beacon Duration for I217 to 8 usec
1508 	 */
1509 	if (hw->mac.type >= e1000_pch_lpt) {
1510 		u32 mac_reg;
1511 
1512 		mac_reg = er32(FEXTNVM4);
1513 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1514 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1515 		ew32(FEXTNVM4, mac_reg);
1516 	}
1517 
1518 	/* Work-around I218 hang issue */
1519 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1520 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1521 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1522 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1523 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1524 		if (ret_val)
1525 			goto out;
1526 	}
1527 	if (hw->mac.type >= e1000_pch_lpt) {
1528 		/* Set platform power management values for
1529 		 * Latency Tolerance Reporting (LTR)
1530 		 */
1531 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1532 		if (ret_val)
1533 			goto out;
1534 	}
1535 
1536 	/* Clear link partner's EEE ability */
1537 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1538 
1539 	if (hw->mac.type >= e1000_pch_lpt) {
1540 		u32 fextnvm6 = er32(FEXTNVM6);
1541 
1542 		if (hw->mac.type == e1000_pch_spt) {
1543 			/* FEXTNVM6 K1-off workaround - for SPT only */
1544 			u32 pcieanacfg = er32(PCIEANACFG);
1545 
1546 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1547 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1548 			else
1549 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1550 		}
1551 
1552 		ew32(FEXTNVM6, fextnvm6);
1553 	}
1554 
1555 	if (!link)
1556 		goto out;
1557 
1558 	switch (hw->mac.type) {
1559 	case e1000_pch2lan:
1560 		ret_val = e1000_k1_workaround_lv(hw);
1561 		if (ret_val)
1562 			return ret_val;
1563 		fallthrough;
1564 	case e1000_pchlan:
1565 		if (hw->phy.type == e1000_phy_82578) {
1566 			ret_val = e1000_link_stall_workaround_hv(hw);
1567 			if (ret_val)
1568 				return ret_val;
1569 		}
1570 
1571 		/* Workaround for PCHx parts in half-duplex:
1572 		 * Set the number of preambles removed from the packet
1573 		 * when it is passed from the PHY to the MAC to prevent
1574 		 * the MAC from misinterpreting the packet type.
1575 		 */
1576 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1577 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1578 
1579 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1580 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1581 
1582 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1583 		break;
1584 	default:
1585 		break;
1586 	}
1587 
1588 	/* Check if there was DownShift, must be checked
1589 	 * immediately after link-up
1590 	 */
1591 	e1000e_check_downshift(hw);
1592 
1593 	/* Enable/Disable EEE after link up */
1594 	if (hw->phy.type > e1000_phy_82579) {
1595 		ret_val = e1000_set_eee_pchlan(hw);
1596 		if (ret_val)
1597 			return ret_val;
1598 	}
1599 
1600 	/* If we are forcing speed/duplex, then we simply return since
1601 	 * we have already determined whether we have link or not.
1602 	 */
1603 	if (!mac->autoneg)
1604 		return -E1000_ERR_CONFIG;
1605 
1606 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1607 	 * of MAC speed/duplex configuration.  So we only need to
1608 	 * configure Collision Distance in the MAC.
1609 	 */
1610 	mac->ops.config_collision_dist(hw);
1611 
1612 	/* Configure Flow Control now that Auto-Neg has completed.
1613 	 * First, we need to restore the desired flow control
1614 	 * settings because we may have had to re-autoneg with a
1615 	 * different link partner.
1616 	 */
1617 	ret_val = e1000e_config_fc_after_link_up(hw);
1618 	if (ret_val)
1619 		e_dbg("Error configuring flow control\n");
1620 
1621 	return ret_val;
1622 
1623 out:
1624 	mac->get_link_status = true;
1625 	return ret_val;
1626 }
1627 
1628 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1629 {
1630 	struct e1000_hw *hw = &adapter->hw;
1631 	s32 rc;
1632 
1633 	rc = e1000_init_mac_params_ich8lan(hw);
1634 	if (rc)
1635 		return rc;
1636 
1637 	rc = e1000_init_nvm_params_ich8lan(hw);
1638 	if (rc)
1639 		return rc;
1640 
1641 	switch (hw->mac.type) {
1642 	case e1000_ich8lan:
1643 	case e1000_ich9lan:
1644 	case e1000_ich10lan:
1645 		rc = e1000_init_phy_params_ich8lan(hw);
1646 		break;
1647 	case e1000_pchlan:
1648 	case e1000_pch2lan:
1649 	case e1000_pch_lpt:
1650 	case e1000_pch_spt:
1651 	case e1000_pch_cnp:
1652 	case e1000_pch_tgp:
1653 	case e1000_pch_adp:
1654 	case e1000_pch_mtp:
1655 		rc = e1000_init_phy_params_pchlan(hw);
1656 		break;
1657 	default:
1658 		break;
1659 	}
1660 	if (rc)
1661 		return rc;
1662 
1663 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1664 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1665 	 */
1666 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1667 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1668 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1669 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1670 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1671 
1672 		hw->mac.ops.blink_led = NULL;
1673 	}
1674 
1675 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1676 	    (adapter->hw.phy.type != e1000_phy_ife))
1677 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1678 
1679 	/* Enable workaround for 82579 w/ ME enabled */
1680 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1681 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1682 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1683 
1684 	return 0;
1685 }
1686 
1687 static DEFINE_MUTEX(nvm_mutex);
1688 
1689 /**
1690  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1691  *  @hw: pointer to the HW structure
1692  *
1693  *  Acquires the mutex for performing NVM operations.
1694  **/
1695 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1696 {
1697 	mutex_lock(&nvm_mutex);
1698 
1699 	return 0;
1700 }
1701 
1702 /**
1703  *  e1000_release_nvm_ich8lan - Release NVM mutex
1704  *  @hw: pointer to the HW structure
1705  *
1706  *  Releases the mutex used while performing NVM operations.
1707  **/
1708 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1709 {
1710 	mutex_unlock(&nvm_mutex);
1711 }
1712 
1713 /**
1714  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1715  *  @hw: pointer to the HW structure
1716  *
1717  *  Acquires the software control flag for performing PHY and select
1718  *  MAC CSR accesses.
1719  **/
1720 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1721 {
1722 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1723 	s32 ret_val = 0;
1724 
1725 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1726 			     &hw->adapter->state)) {
1727 		e_dbg("contention for Phy access\n");
1728 		return -E1000_ERR_PHY;
1729 	}
1730 
1731 	while (timeout) {
1732 		extcnf_ctrl = er32(EXTCNF_CTRL);
1733 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1734 			break;
1735 
1736 		mdelay(1);
1737 		timeout--;
1738 	}
1739 
1740 	if (!timeout) {
1741 		e_dbg("SW has already locked the resource.\n");
1742 		ret_val = -E1000_ERR_CONFIG;
1743 		goto out;
1744 	}
1745 
1746 	timeout = SW_FLAG_TIMEOUT;
1747 
1748 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1749 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1750 
1751 	while (timeout) {
1752 		extcnf_ctrl = er32(EXTCNF_CTRL);
1753 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1754 			break;
1755 
1756 		mdelay(1);
1757 		timeout--;
1758 	}
1759 
1760 	if (!timeout) {
1761 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1762 		      er32(FWSM), extcnf_ctrl);
1763 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1764 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1765 		ret_val = -E1000_ERR_CONFIG;
1766 		goto out;
1767 	}
1768 
1769 out:
1770 	if (ret_val)
1771 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1772 
1773 	return ret_val;
1774 }
1775 
1776 /**
1777  *  e1000_release_swflag_ich8lan - Release software control flag
1778  *  @hw: pointer to the HW structure
1779  *
1780  *  Releases the software control flag for performing PHY and select
1781  *  MAC CSR accesses.
1782  **/
1783 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1784 {
1785 	u32 extcnf_ctrl;
1786 
1787 	extcnf_ctrl = er32(EXTCNF_CTRL);
1788 
1789 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1790 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1791 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1792 	} else {
1793 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1794 	}
1795 
1796 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1797 }
1798 
1799 /**
1800  *  e1000_check_mng_mode_ich8lan - Checks management mode
1801  *  @hw: pointer to the HW structure
1802  *
1803  *  This checks if the adapter has any manageability enabled.
1804  *  This is a function pointer entry point only called by read/write
1805  *  routines for the PHY and NVM parts.
1806  **/
1807 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1808 {
1809 	u32 fwsm;
1810 
1811 	fwsm = er32(FWSM);
1812 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1813 		((fwsm & E1000_FWSM_MODE_MASK) ==
1814 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1815 }
1816 
1817 /**
1818  *  e1000_check_mng_mode_pchlan - Checks management mode
1819  *  @hw: pointer to the HW structure
1820  *
1821  *  This checks if the adapter has iAMT enabled.
1822  *  This is a function pointer entry point only called by read/write
1823  *  routines for the PHY and NVM parts.
1824  **/
1825 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1826 {
1827 	u32 fwsm;
1828 
1829 	fwsm = er32(FWSM);
1830 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1831 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1832 }
1833 
1834 /**
1835  *  e1000_rar_set_pch2lan - Set receive address register
1836  *  @hw: pointer to the HW structure
1837  *  @addr: pointer to the receive address
1838  *  @index: receive address array register
1839  *
1840  *  Sets the receive address array register at index to the address passed
1841  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1842  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1843  *  Use SHRA[0-3] in place of those reserved for ME.
1844  **/
1845 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1846 {
1847 	u32 rar_low, rar_high;
1848 
1849 	/* HW expects these in little endian so we reverse the byte order
1850 	 * from network order (big endian) to little endian
1851 	 */
1852 	rar_low = ((u32)addr[0] |
1853 		   ((u32)addr[1] << 8) |
1854 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1855 
1856 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1857 
1858 	/* If MAC address zero, no need to set the AV bit */
1859 	if (rar_low || rar_high)
1860 		rar_high |= E1000_RAH_AV;
1861 
1862 	if (index == 0) {
1863 		ew32(RAL(index), rar_low);
1864 		e1e_flush();
1865 		ew32(RAH(index), rar_high);
1866 		e1e_flush();
1867 		return 0;
1868 	}
1869 
1870 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1871 	 * next address into the SHRA register array.
1872 	 */
1873 	if (index < (u32)(hw->mac.rar_entry_count)) {
1874 		s32 ret_val;
1875 
1876 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1877 		if (ret_val)
1878 			goto out;
1879 
1880 		ew32(SHRAL(index - 1), rar_low);
1881 		e1e_flush();
1882 		ew32(SHRAH(index - 1), rar_high);
1883 		e1e_flush();
1884 
1885 		e1000_release_swflag_ich8lan(hw);
1886 
1887 		/* verify the register updates */
1888 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1889 		    (er32(SHRAH(index - 1)) == rar_high))
1890 			return 0;
1891 
1892 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1893 		      (index - 1), er32(FWSM));
1894 	}
1895 
1896 out:
1897 	e_dbg("Failed to write receive address at index %d\n", index);
1898 	return -E1000_ERR_CONFIG;
1899 }
1900 
1901 /**
1902  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1903  *  @hw: pointer to the HW structure
1904  *
1905  *  Get the number of available receive registers that the Host can
1906  *  program. SHRA[0-10] are the shared receive address registers
1907  *  that are shared between the Host and manageability engine (ME).
1908  *  ME can reserve any number of addresses and the host needs to be
1909  *  able to tell how many available registers it has access to.
1910  **/
1911 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1912 {
1913 	u32 wlock_mac;
1914 	u32 num_entries;
1915 
1916 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1917 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1918 
1919 	switch (wlock_mac) {
1920 	case 0:
1921 		/* All SHRA[0..10] and RAR[0] available */
1922 		num_entries = hw->mac.rar_entry_count;
1923 		break;
1924 	case 1:
1925 		/* Only RAR[0] available */
1926 		num_entries = 1;
1927 		break;
1928 	default:
1929 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1930 		num_entries = wlock_mac + 1;
1931 		break;
1932 	}
1933 
1934 	return num_entries;
1935 }
1936 
1937 /**
1938  *  e1000_rar_set_pch_lpt - Set receive address registers
1939  *  @hw: pointer to the HW structure
1940  *  @addr: pointer to the receive address
1941  *  @index: receive address array register
1942  *
1943  *  Sets the receive address register array at index to the address passed
1944  *  in by addr. For LPT, RAR[0] is the base address register that is to
1945  *  contain the MAC address. SHRA[0-10] are the shared receive address
1946  *  registers that are shared between the Host and manageability engine (ME).
1947  **/
1948 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1949 {
1950 	u32 rar_low, rar_high;
1951 	u32 wlock_mac;
1952 
1953 	/* HW expects these in little endian so we reverse the byte order
1954 	 * from network order (big endian) to little endian
1955 	 */
1956 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1957 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1958 
1959 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1960 
1961 	/* If MAC address zero, no need to set the AV bit */
1962 	if (rar_low || rar_high)
1963 		rar_high |= E1000_RAH_AV;
1964 
1965 	if (index == 0) {
1966 		ew32(RAL(index), rar_low);
1967 		e1e_flush();
1968 		ew32(RAH(index), rar_high);
1969 		e1e_flush();
1970 		return 0;
1971 	}
1972 
1973 	/* The manageability engine (ME) can lock certain SHRAR registers that
1974 	 * it is using - those registers are unavailable for use.
1975 	 */
1976 	if (index < hw->mac.rar_entry_count) {
1977 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1978 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1979 
1980 		/* Check if all SHRAR registers are locked */
1981 		if (wlock_mac == 1)
1982 			goto out;
1983 
1984 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1985 			s32 ret_val;
1986 
1987 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1988 
1989 			if (ret_val)
1990 				goto out;
1991 
1992 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1993 			e1e_flush();
1994 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1995 			e1e_flush();
1996 
1997 			e1000_release_swflag_ich8lan(hw);
1998 
1999 			/* verify the register updates */
2000 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2001 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2002 				return 0;
2003 		}
2004 	}
2005 
2006 out:
2007 	e_dbg("Failed to write receive address at index %d\n", index);
2008 	return -E1000_ERR_CONFIG;
2009 }
2010 
2011 /**
2012  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2013  *  @hw: pointer to the HW structure
2014  *
2015  *  Checks if firmware is blocking the reset of the PHY.
2016  *  This is a function pointer entry point only called by
2017  *  reset routines.
2018  **/
2019 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2020 {
2021 	bool blocked = false;
2022 	int i = 0;
2023 
2024 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2025 	       (i++ < 30))
2026 		usleep_range(10000, 11000);
2027 	return blocked ? E1000_BLK_PHY_RESET : 0;
2028 }
2029 
2030 /**
2031  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2032  *  @hw: pointer to the HW structure
2033  *
2034  *  Assumes semaphore already acquired.
2035  *
2036  **/
2037 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2038 {
2039 	u16 phy_data;
2040 	u32 strap = er32(STRAP);
2041 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2042 	    E1000_STRAP_SMT_FREQ_SHIFT;
2043 	s32 ret_val;
2044 
2045 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2046 
2047 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2048 	if (ret_val)
2049 		return ret_val;
2050 
2051 	phy_data &= ~HV_SMB_ADDR_MASK;
2052 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2053 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2054 
2055 	if (hw->phy.type == e1000_phy_i217) {
2056 		/* Restore SMBus frequency */
2057 		if (freq--) {
2058 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2059 			phy_data |= (freq & BIT(0)) <<
2060 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2061 			phy_data |= (freq & BIT(1)) <<
2062 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2063 		} else {
2064 			e_dbg("Unsupported SMB frequency in PHY\n");
2065 		}
2066 	}
2067 
2068 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2069 }
2070 
2071 /**
2072  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2073  *  @hw:   pointer to the HW structure
2074  *
2075  *  SW should configure the LCD from the NVM extended configuration region
2076  *  as a workaround for certain parts.
2077  **/
2078 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2079 {
2080 	struct e1000_phy_info *phy = &hw->phy;
2081 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2082 	s32 ret_val = 0;
2083 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2084 
2085 	/* Initialize the PHY from the NVM on ICH platforms.  This
2086 	 * is needed due to an issue where the NVM configuration is
2087 	 * not properly autoloaded after power transitions.
2088 	 * Therefore, after each PHY reset, we will load the
2089 	 * configuration data out of the NVM manually.
2090 	 */
2091 	switch (hw->mac.type) {
2092 	case e1000_ich8lan:
2093 		if (phy->type != e1000_phy_igp_3)
2094 			return ret_val;
2095 
2096 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2097 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2098 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2099 			break;
2100 		}
2101 		fallthrough;
2102 	case e1000_pchlan:
2103 	case e1000_pch2lan:
2104 	case e1000_pch_lpt:
2105 	case e1000_pch_spt:
2106 	case e1000_pch_cnp:
2107 	case e1000_pch_tgp:
2108 	case e1000_pch_adp:
2109 	case e1000_pch_mtp:
2110 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2111 		break;
2112 	default:
2113 		return ret_val;
2114 	}
2115 
2116 	ret_val = hw->phy.ops.acquire(hw);
2117 	if (ret_val)
2118 		return ret_val;
2119 
2120 	data = er32(FEXTNVM);
2121 	if (!(data & sw_cfg_mask))
2122 		goto release;
2123 
2124 	/* Make sure HW does not configure LCD from PHY
2125 	 * extended configuration before SW configuration
2126 	 */
2127 	data = er32(EXTCNF_CTRL);
2128 	if ((hw->mac.type < e1000_pch2lan) &&
2129 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2130 		goto release;
2131 
2132 	cnf_size = er32(EXTCNF_SIZE);
2133 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2134 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2135 	if (!cnf_size)
2136 		goto release;
2137 
2138 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2139 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2140 
2141 	if (((hw->mac.type == e1000_pchlan) &&
2142 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2143 	    (hw->mac.type > e1000_pchlan)) {
2144 		/* HW configures the SMBus address and LEDs when the
2145 		 * OEM and LCD Write Enable bits are set in the NVM.
2146 		 * When both NVM bits are cleared, SW will configure
2147 		 * them instead.
2148 		 */
2149 		ret_val = e1000_write_smbus_addr(hw);
2150 		if (ret_val)
2151 			goto release;
2152 
2153 		data = er32(LEDCTL);
2154 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2155 							(u16)data);
2156 		if (ret_val)
2157 			goto release;
2158 	}
2159 
2160 	/* Configure LCD from extended configuration region. */
2161 
2162 	/* cnf_base_addr is in DWORD */
2163 	word_addr = (u16)(cnf_base_addr << 1);
2164 
2165 	for (i = 0; i < cnf_size; i++) {
2166 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2167 		if (ret_val)
2168 			goto release;
2169 
2170 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2171 					 1, &reg_addr);
2172 		if (ret_val)
2173 			goto release;
2174 
2175 		/* Save off the PHY page for future writes. */
2176 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2177 			phy_page = reg_data;
2178 			continue;
2179 		}
2180 
2181 		reg_addr &= PHY_REG_MASK;
2182 		reg_addr |= phy_page;
2183 
2184 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2185 		if (ret_val)
2186 			goto release;
2187 	}
2188 
2189 release:
2190 	hw->phy.ops.release(hw);
2191 	return ret_val;
2192 }
2193 
2194 /**
2195  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2196  *  @hw:   pointer to the HW structure
2197  *  @link: link up bool flag
2198  *
2199  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2200  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2201  *  If link is down, the function will restore the default K1 setting located
2202  *  in the NVM.
2203  **/
2204 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2205 {
2206 	s32 ret_val = 0;
2207 	u16 status_reg = 0;
2208 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2209 
2210 	if (hw->mac.type != e1000_pchlan)
2211 		return 0;
2212 
2213 	/* Wrap the whole flow with the sw flag */
2214 	ret_val = hw->phy.ops.acquire(hw);
2215 	if (ret_val)
2216 		return ret_val;
2217 
2218 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2219 	if (link) {
2220 		if (hw->phy.type == e1000_phy_82578) {
2221 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2222 						  &status_reg);
2223 			if (ret_val)
2224 				goto release;
2225 
2226 			status_reg &= (BM_CS_STATUS_LINK_UP |
2227 				       BM_CS_STATUS_RESOLVED |
2228 				       BM_CS_STATUS_SPEED_MASK);
2229 
2230 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2231 					   BM_CS_STATUS_RESOLVED |
2232 					   BM_CS_STATUS_SPEED_1000))
2233 				k1_enable = false;
2234 		}
2235 
2236 		if (hw->phy.type == e1000_phy_82577) {
2237 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2238 			if (ret_val)
2239 				goto release;
2240 
2241 			status_reg &= (HV_M_STATUS_LINK_UP |
2242 				       HV_M_STATUS_AUTONEG_COMPLETE |
2243 				       HV_M_STATUS_SPEED_MASK);
2244 
2245 			if (status_reg == (HV_M_STATUS_LINK_UP |
2246 					   HV_M_STATUS_AUTONEG_COMPLETE |
2247 					   HV_M_STATUS_SPEED_1000))
2248 				k1_enable = false;
2249 		}
2250 
2251 		/* Link stall fix for link up */
2252 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2253 		if (ret_val)
2254 			goto release;
2255 
2256 	} else {
2257 		/* Link stall fix for link down */
2258 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2259 		if (ret_val)
2260 			goto release;
2261 	}
2262 
2263 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2264 
2265 release:
2266 	hw->phy.ops.release(hw);
2267 
2268 	return ret_val;
2269 }
2270 
2271 /**
2272  *  e1000_configure_k1_ich8lan - Configure K1 power state
2273  *  @hw: pointer to the HW structure
2274  *  @k1_enable: K1 state to configure
2275  *
2276  *  Configure the K1 power state based on the provided parameter.
2277  *  Assumes semaphore already acquired.
2278  *
2279  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2280  **/
2281 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2282 {
2283 	s32 ret_val;
2284 	u32 ctrl_reg = 0;
2285 	u32 ctrl_ext = 0;
2286 	u32 reg = 0;
2287 	u16 kmrn_reg = 0;
2288 
2289 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2290 					      &kmrn_reg);
2291 	if (ret_val)
2292 		return ret_val;
2293 
2294 	if (k1_enable)
2295 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2296 	else
2297 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2298 
2299 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2300 					       kmrn_reg);
2301 	if (ret_val)
2302 		return ret_val;
2303 
2304 	usleep_range(20, 40);
2305 	ctrl_ext = er32(CTRL_EXT);
2306 	ctrl_reg = er32(CTRL);
2307 
2308 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2309 	reg |= E1000_CTRL_FRCSPD;
2310 	ew32(CTRL, reg);
2311 
2312 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2313 	e1e_flush();
2314 	usleep_range(20, 40);
2315 	ew32(CTRL, ctrl_reg);
2316 	ew32(CTRL_EXT, ctrl_ext);
2317 	e1e_flush();
2318 	usleep_range(20, 40);
2319 
2320 	return 0;
2321 }
2322 
2323 /**
2324  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2325  *  @hw:       pointer to the HW structure
2326  *  @d0_state: boolean if entering d0 or d3 device state
2327  *
2328  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2329  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2330  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2331  **/
2332 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2333 {
2334 	s32 ret_val = 0;
2335 	u32 mac_reg;
2336 	u16 oem_reg;
2337 
2338 	if (hw->mac.type < e1000_pchlan)
2339 		return ret_val;
2340 
2341 	ret_val = hw->phy.ops.acquire(hw);
2342 	if (ret_val)
2343 		return ret_val;
2344 
2345 	if (hw->mac.type == e1000_pchlan) {
2346 		mac_reg = er32(EXTCNF_CTRL);
2347 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2348 			goto release;
2349 	}
2350 
2351 	mac_reg = er32(FEXTNVM);
2352 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2353 		goto release;
2354 
2355 	mac_reg = er32(PHY_CTRL);
2356 
2357 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2358 	if (ret_val)
2359 		goto release;
2360 
2361 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2362 
2363 	if (d0_state) {
2364 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2365 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2366 
2367 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2368 			oem_reg |= HV_OEM_BITS_LPLU;
2369 	} else {
2370 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2371 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2372 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2373 
2374 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2375 			       E1000_PHY_CTRL_NOND0A_LPLU))
2376 			oem_reg |= HV_OEM_BITS_LPLU;
2377 	}
2378 
2379 	/* Set Restart auto-neg to activate the bits */
2380 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2381 	    !hw->phy.ops.check_reset_block(hw))
2382 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2383 
2384 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2385 
2386 release:
2387 	hw->phy.ops.release(hw);
2388 
2389 	return ret_val;
2390 }
2391 
2392 /**
2393  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2394  *  @hw:   pointer to the HW structure
2395  **/
2396 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2397 {
2398 	s32 ret_val;
2399 	u16 data;
2400 
2401 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2402 	if (ret_val)
2403 		return ret_val;
2404 
2405 	data |= HV_KMRN_MDIO_SLOW;
2406 
2407 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2408 
2409 	return ret_val;
2410 }
2411 
2412 /**
2413  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2414  *  @hw: pointer to the HW structure
2415  *
2416  *  A series of PHY workarounds to be done after every PHY reset.
2417  **/
2418 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2419 {
2420 	s32 ret_val = 0;
2421 	u16 phy_data;
2422 
2423 	if (hw->mac.type != e1000_pchlan)
2424 		return 0;
2425 
2426 	/* Set MDIO slow mode before any other MDIO access */
2427 	if (hw->phy.type == e1000_phy_82577) {
2428 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2429 		if (ret_val)
2430 			return ret_val;
2431 	}
2432 
2433 	if (((hw->phy.type == e1000_phy_82577) &&
2434 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2435 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2436 		/* Disable generation of early preamble */
2437 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2438 		if (ret_val)
2439 			return ret_val;
2440 
2441 		/* Preamble tuning for SSC */
2442 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2443 		if (ret_val)
2444 			return ret_val;
2445 	}
2446 
2447 	if (hw->phy.type == e1000_phy_82578) {
2448 		/* Return registers to default by doing a soft reset then
2449 		 * writing 0x3140 to the control register.
2450 		 */
2451 		if (hw->phy.revision < 2) {
2452 			e1000e_phy_sw_reset(hw);
2453 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2454 			if (ret_val)
2455 				return ret_val;
2456 		}
2457 	}
2458 
2459 	/* Select page 0 */
2460 	ret_val = hw->phy.ops.acquire(hw);
2461 	if (ret_val)
2462 		return ret_val;
2463 
2464 	hw->phy.addr = 1;
2465 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2466 	hw->phy.ops.release(hw);
2467 	if (ret_val)
2468 		return ret_val;
2469 
2470 	/* Configure the K1 Si workaround during phy reset assuming there is
2471 	 * link so that it disables K1 if link is in 1Gbps.
2472 	 */
2473 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2474 	if (ret_val)
2475 		return ret_val;
2476 
2477 	/* Workaround for link disconnects on a busy hub in half duplex */
2478 	ret_val = hw->phy.ops.acquire(hw);
2479 	if (ret_val)
2480 		return ret_val;
2481 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2482 	if (ret_val)
2483 		goto release;
2484 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2485 	if (ret_val)
2486 		goto release;
2487 
2488 	/* set MSE higher to enable link to stay up when noise is high */
2489 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2490 release:
2491 	hw->phy.ops.release(hw);
2492 
2493 	return ret_val;
2494 }
2495 
2496 /**
2497  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2498  *  @hw:   pointer to the HW structure
2499  **/
2500 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2501 {
2502 	u32 mac_reg;
2503 	u16 i, phy_reg = 0;
2504 	s32 ret_val;
2505 
2506 	ret_val = hw->phy.ops.acquire(hw);
2507 	if (ret_val)
2508 		return;
2509 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2510 	if (ret_val)
2511 		goto release;
2512 
2513 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2514 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2515 		mac_reg = er32(RAL(i));
2516 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2517 					   (u16)(mac_reg & 0xFFFF));
2518 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2519 					   (u16)((mac_reg >> 16) & 0xFFFF));
2520 
2521 		mac_reg = er32(RAH(i));
2522 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2523 					   (u16)(mac_reg & 0xFFFF));
2524 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2525 					   (u16)((mac_reg & E1000_RAH_AV)
2526 						 >> 16));
2527 	}
2528 
2529 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2530 
2531 release:
2532 	hw->phy.ops.release(hw);
2533 }
2534 
2535 /**
2536  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2537  *  with 82579 PHY
2538  *  @hw: pointer to the HW structure
2539  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2540  **/
2541 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2542 {
2543 	s32 ret_val = 0;
2544 	u16 phy_reg, data;
2545 	u32 mac_reg;
2546 	u16 i;
2547 
2548 	if (hw->mac.type < e1000_pch2lan)
2549 		return 0;
2550 
2551 	/* disable Rx path while enabling/disabling workaround */
2552 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2553 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2554 	if (ret_val)
2555 		return ret_val;
2556 
2557 	if (enable) {
2558 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2559 		 * SHRAL/H) and initial CRC values to the MAC
2560 		 */
2561 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2562 			u8 mac_addr[ETH_ALEN] = { 0 };
2563 			u32 addr_high, addr_low;
2564 
2565 			addr_high = er32(RAH(i));
2566 			if (!(addr_high & E1000_RAH_AV))
2567 				continue;
2568 			addr_low = er32(RAL(i));
2569 			mac_addr[0] = (addr_low & 0xFF);
2570 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2571 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2572 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2573 			mac_addr[4] = (addr_high & 0xFF);
2574 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2575 
2576 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2577 		}
2578 
2579 		/* Write Rx addresses to the PHY */
2580 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2581 
2582 		/* Enable jumbo frame workaround in the MAC */
2583 		mac_reg = er32(FFLT_DBG);
2584 		mac_reg &= ~BIT(14);
2585 		mac_reg |= (7 << 15);
2586 		ew32(FFLT_DBG, mac_reg);
2587 
2588 		mac_reg = er32(RCTL);
2589 		mac_reg |= E1000_RCTL_SECRC;
2590 		ew32(RCTL, mac_reg);
2591 
2592 		ret_val = e1000e_read_kmrn_reg(hw,
2593 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2594 					       &data);
2595 		if (ret_val)
2596 			return ret_val;
2597 		ret_val = e1000e_write_kmrn_reg(hw,
2598 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2599 						data | BIT(0));
2600 		if (ret_val)
2601 			return ret_val;
2602 		ret_val = e1000e_read_kmrn_reg(hw,
2603 					       E1000_KMRNCTRLSTA_HD_CTRL,
2604 					       &data);
2605 		if (ret_val)
2606 			return ret_val;
2607 		data &= ~(0xF << 8);
2608 		data |= (0xB << 8);
2609 		ret_val = e1000e_write_kmrn_reg(hw,
2610 						E1000_KMRNCTRLSTA_HD_CTRL,
2611 						data);
2612 		if (ret_val)
2613 			return ret_val;
2614 
2615 		/* Enable jumbo frame workaround in the PHY */
2616 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2617 		data &= ~(0x7F << 5);
2618 		data |= (0x37 << 5);
2619 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2620 		if (ret_val)
2621 			return ret_val;
2622 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2623 		data &= ~BIT(13);
2624 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2625 		if (ret_val)
2626 			return ret_val;
2627 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2628 		data &= ~(0x3FF << 2);
2629 		data |= (E1000_TX_PTR_GAP << 2);
2630 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2631 		if (ret_val)
2632 			return ret_val;
2633 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2634 		if (ret_val)
2635 			return ret_val;
2636 		e1e_rphy(hw, HV_PM_CTRL, &data);
2637 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2638 		if (ret_val)
2639 			return ret_val;
2640 	} else {
2641 		/* Write MAC register values back to h/w defaults */
2642 		mac_reg = er32(FFLT_DBG);
2643 		mac_reg &= ~(0xF << 14);
2644 		ew32(FFLT_DBG, mac_reg);
2645 
2646 		mac_reg = er32(RCTL);
2647 		mac_reg &= ~E1000_RCTL_SECRC;
2648 		ew32(RCTL, mac_reg);
2649 
2650 		ret_val = e1000e_read_kmrn_reg(hw,
2651 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2652 					       &data);
2653 		if (ret_val)
2654 			return ret_val;
2655 		ret_val = e1000e_write_kmrn_reg(hw,
2656 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2657 						data & ~BIT(0));
2658 		if (ret_val)
2659 			return ret_val;
2660 		ret_val = e1000e_read_kmrn_reg(hw,
2661 					       E1000_KMRNCTRLSTA_HD_CTRL,
2662 					       &data);
2663 		if (ret_val)
2664 			return ret_val;
2665 		data &= ~(0xF << 8);
2666 		data |= (0xB << 8);
2667 		ret_val = e1000e_write_kmrn_reg(hw,
2668 						E1000_KMRNCTRLSTA_HD_CTRL,
2669 						data);
2670 		if (ret_val)
2671 			return ret_val;
2672 
2673 		/* Write PHY register values back to h/w defaults */
2674 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2675 		data &= ~(0x7F << 5);
2676 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2677 		if (ret_val)
2678 			return ret_val;
2679 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2680 		data |= BIT(13);
2681 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2682 		if (ret_val)
2683 			return ret_val;
2684 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2685 		data &= ~(0x3FF << 2);
2686 		data |= (0x8 << 2);
2687 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2688 		if (ret_val)
2689 			return ret_val;
2690 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2691 		if (ret_val)
2692 			return ret_val;
2693 		e1e_rphy(hw, HV_PM_CTRL, &data);
2694 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2695 		if (ret_val)
2696 			return ret_val;
2697 	}
2698 
2699 	/* re-enable Rx path after enabling/disabling workaround */
2700 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2701 }
2702 
2703 /**
2704  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2705  *  @hw: pointer to the HW structure
2706  *
2707  *  A series of PHY workarounds to be done after every PHY reset.
2708  **/
2709 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2710 {
2711 	s32 ret_val = 0;
2712 
2713 	if (hw->mac.type != e1000_pch2lan)
2714 		return 0;
2715 
2716 	/* Set MDIO slow mode before any other MDIO access */
2717 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2718 	if (ret_val)
2719 		return ret_val;
2720 
2721 	ret_val = hw->phy.ops.acquire(hw);
2722 	if (ret_val)
2723 		return ret_val;
2724 	/* set MSE higher to enable link to stay up when noise is high */
2725 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2726 	if (ret_val)
2727 		goto release;
2728 	/* drop link after 5 times MSE threshold was reached */
2729 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2730 release:
2731 	hw->phy.ops.release(hw);
2732 
2733 	return ret_val;
2734 }
2735 
2736 /**
2737  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2738  *  @hw:   pointer to the HW structure
2739  *
2740  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2741  *  Disable K1 in 1000Mbps and 100Mbps
2742  **/
2743 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2744 {
2745 	s32 ret_val = 0;
2746 	u16 status_reg = 0;
2747 
2748 	if (hw->mac.type != e1000_pch2lan)
2749 		return 0;
2750 
2751 	/* Set K1 beacon duration based on 10Mbs speed */
2752 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2753 	if (ret_val)
2754 		return ret_val;
2755 
2756 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2757 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2758 		if (status_reg &
2759 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2760 			u16 pm_phy_reg;
2761 
2762 			/* LV 1G/100 Packet drop issue wa  */
2763 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2764 			if (ret_val)
2765 				return ret_val;
2766 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2767 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2768 			if (ret_val)
2769 				return ret_val;
2770 		} else {
2771 			u32 mac_reg;
2772 
2773 			mac_reg = er32(FEXTNVM4);
2774 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2775 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2776 			ew32(FEXTNVM4, mac_reg);
2777 		}
2778 	}
2779 
2780 	return ret_val;
2781 }
2782 
2783 /**
2784  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2785  *  @hw:   pointer to the HW structure
2786  *  @gate: boolean set to true to gate, false to ungate
2787  *
2788  *  Gate/ungate the automatic PHY configuration via hardware; perform
2789  *  the configuration via software instead.
2790  **/
2791 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2792 {
2793 	u32 extcnf_ctrl;
2794 
2795 	if (hw->mac.type < e1000_pch2lan)
2796 		return;
2797 
2798 	extcnf_ctrl = er32(EXTCNF_CTRL);
2799 
2800 	if (gate)
2801 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2802 	else
2803 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2804 
2805 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2806 }
2807 
2808 /**
2809  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2810  *  @hw: pointer to the HW structure
2811  *
2812  *  Check the appropriate indication the MAC has finished configuring the
2813  *  PHY after a software reset.
2814  **/
2815 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2816 {
2817 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2818 
2819 	/* Wait for basic configuration completes before proceeding */
2820 	do {
2821 		data = er32(STATUS);
2822 		data &= E1000_STATUS_LAN_INIT_DONE;
2823 		usleep_range(100, 200);
2824 	} while ((!data) && --loop);
2825 
2826 	/* If basic configuration is incomplete before the above loop
2827 	 * count reaches 0, loading the configuration from NVM will
2828 	 * leave the PHY in a bad state possibly resulting in no link.
2829 	 */
2830 	if (loop == 0)
2831 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2832 
2833 	/* Clear the Init Done bit for the next init event */
2834 	data = er32(STATUS);
2835 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2836 	ew32(STATUS, data);
2837 }
2838 
2839 /**
2840  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2841  *  @hw: pointer to the HW structure
2842  **/
2843 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2844 {
2845 	s32 ret_val = 0;
2846 	u16 reg;
2847 
2848 	if (hw->phy.ops.check_reset_block(hw))
2849 		return 0;
2850 
2851 	/* Allow time for h/w to get to quiescent state after reset */
2852 	usleep_range(10000, 11000);
2853 
2854 	/* Perform any necessary post-reset workarounds */
2855 	switch (hw->mac.type) {
2856 	case e1000_pchlan:
2857 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2858 		if (ret_val)
2859 			return ret_val;
2860 		break;
2861 	case e1000_pch2lan:
2862 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2863 		if (ret_val)
2864 			return ret_val;
2865 		break;
2866 	default:
2867 		break;
2868 	}
2869 
2870 	/* Clear the host wakeup bit after lcd reset */
2871 	if (hw->mac.type >= e1000_pchlan) {
2872 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2873 		reg &= ~BM_WUC_HOST_WU_BIT;
2874 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2875 	}
2876 
2877 	/* Configure the LCD with the extended configuration region in NVM */
2878 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2879 	if (ret_val)
2880 		return ret_val;
2881 
2882 	/* Configure the LCD with the OEM bits in NVM */
2883 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2884 
2885 	if (hw->mac.type == e1000_pch2lan) {
2886 		/* Ungate automatic PHY configuration on non-managed 82579 */
2887 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2888 			usleep_range(10000, 11000);
2889 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2890 		}
2891 
2892 		/* Set EEE LPI Update Timer to 200usec */
2893 		ret_val = hw->phy.ops.acquire(hw);
2894 		if (ret_val)
2895 			return ret_val;
2896 		ret_val = e1000_write_emi_reg_locked(hw,
2897 						     I82579_LPI_UPDATE_TIMER,
2898 						     0x1387);
2899 		hw->phy.ops.release(hw);
2900 	}
2901 
2902 	return ret_val;
2903 }
2904 
2905 /**
2906  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2907  *  @hw: pointer to the HW structure
2908  *
2909  *  Resets the PHY
2910  *  This is a function pointer entry point called by drivers
2911  *  or other shared routines.
2912  **/
2913 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2914 {
2915 	s32 ret_val = 0;
2916 
2917 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2918 	if ((hw->mac.type == e1000_pch2lan) &&
2919 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2920 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2921 
2922 	ret_val = e1000e_phy_hw_reset_generic(hw);
2923 	if (ret_val)
2924 		return ret_val;
2925 
2926 	return e1000_post_phy_reset_ich8lan(hw);
2927 }
2928 
2929 /**
2930  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2931  *  @hw: pointer to the HW structure
2932  *  @active: true to enable LPLU, false to disable
2933  *
2934  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2935  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2936  *  the phy speed. This function will manually set the LPLU bit and restart
2937  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2938  *  since it configures the same bit.
2939  **/
2940 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2941 {
2942 	s32 ret_val;
2943 	u16 oem_reg;
2944 
2945 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2946 	if (ret_val)
2947 		return ret_val;
2948 
2949 	if (active)
2950 		oem_reg |= HV_OEM_BITS_LPLU;
2951 	else
2952 		oem_reg &= ~HV_OEM_BITS_LPLU;
2953 
2954 	if (!hw->phy.ops.check_reset_block(hw))
2955 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2956 
2957 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2958 }
2959 
2960 /**
2961  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2962  *  @hw: pointer to the HW structure
2963  *  @active: true to enable LPLU, false to disable
2964  *
2965  *  Sets the LPLU D0 state according to the active flag.  When
2966  *  activating LPLU this function also disables smart speed
2967  *  and vice versa.  LPLU will not be activated unless the
2968  *  device autonegotiation advertisement meets standards of
2969  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2970  *  This is a function pointer entry point only called by
2971  *  PHY setup routines.
2972  **/
2973 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2974 {
2975 	struct e1000_phy_info *phy = &hw->phy;
2976 	u32 phy_ctrl;
2977 	s32 ret_val = 0;
2978 	u16 data;
2979 
2980 	if (phy->type == e1000_phy_ife)
2981 		return 0;
2982 
2983 	phy_ctrl = er32(PHY_CTRL);
2984 
2985 	if (active) {
2986 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2987 		ew32(PHY_CTRL, phy_ctrl);
2988 
2989 		if (phy->type != e1000_phy_igp_3)
2990 			return 0;
2991 
2992 		/* Call gig speed drop workaround on LPLU before accessing
2993 		 * any PHY registers
2994 		 */
2995 		if (hw->mac.type == e1000_ich8lan)
2996 			e1000e_gig_downshift_workaround_ich8lan(hw);
2997 
2998 		/* When LPLU is enabled, we should disable SmartSpeed */
2999 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3000 		if (ret_val)
3001 			return ret_val;
3002 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3003 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3004 		if (ret_val)
3005 			return ret_val;
3006 	} else {
3007 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3008 		ew32(PHY_CTRL, phy_ctrl);
3009 
3010 		if (phy->type != e1000_phy_igp_3)
3011 			return 0;
3012 
3013 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3014 		 * during Dx states where the power conservation is most
3015 		 * important.  During driver activity we should enable
3016 		 * SmartSpeed, so performance is maintained.
3017 		 */
3018 		if (phy->smart_speed == e1000_smart_speed_on) {
3019 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3020 					   &data);
3021 			if (ret_val)
3022 				return ret_val;
3023 
3024 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3025 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3026 					   data);
3027 			if (ret_val)
3028 				return ret_val;
3029 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3030 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3031 					   &data);
3032 			if (ret_val)
3033 				return ret_val;
3034 
3035 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3036 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3037 					   data);
3038 			if (ret_val)
3039 				return ret_val;
3040 		}
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /**
3047  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3048  *  @hw: pointer to the HW structure
3049  *  @active: true to enable LPLU, false to disable
3050  *
3051  *  Sets the LPLU D3 state according to the active flag.  When
3052  *  activating LPLU this function also disables smart speed
3053  *  and vice versa.  LPLU will not be activated unless the
3054  *  device autonegotiation advertisement meets standards of
3055  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3056  *  This is a function pointer entry point only called by
3057  *  PHY setup routines.
3058  **/
3059 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3060 {
3061 	struct e1000_phy_info *phy = &hw->phy;
3062 	u32 phy_ctrl;
3063 	s32 ret_val = 0;
3064 	u16 data;
3065 
3066 	phy_ctrl = er32(PHY_CTRL);
3067 
3068 	if (!active) {
3069 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3070 		ew32(PHY_CTRL, phy_ctrl);
3071 
3072 		if (phy->type != e1000_phy_igp_3)
3073 			return 0;
3074 
3075 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3076 		 * during Dx states where the power conservation is most
3077 		 * important.  During driver activity we should enable
3078 		 * SmartSpeed, so performance is maintained.
3079 		 */
3080 		if (phy->smart_speed == e1000_smart_speed_on) {
3081 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3082 					   &data);
3083 			if (ret_val)
3084 				return ret_val;
3085 
3086 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3087 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3088 					   data);
3089 			if (ret_val)
3090 				return ret_val;
3091 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3092 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3093 					   &data);
3094 			if (ret_val)
3095 				return ret_val;
3096 
3097 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3098 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3099 					   data);
3100 			if (ret_val)
3101 				return ret_val;
3102 		}
3103 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3104 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3105 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3106 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3107 		ew32(PHY_CTRL, phy_ctrl);
3108 
3109 		if (phy->type != e1000_phy_igp_3)
3110 			return 0;
3111 
3112 		/* Call gig speed drop workaround on LPLU before accessing
3113 		 * any PHY registers
3114 		 */
3115 		if (hw->mac.type == e1000_ich8lan)
3116 			e1000e_gig_downshift_workaround_ich8lan(hw);
3117 
3118 		/* When LPLU is enabled, we should disable SmartSpeed */
3119 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3120 		if (ret_val)
3121 			return ret_val;
3122 
3123 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3124 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3125 	}
3126 
3127 	return ret_val;
3128 }
3129 
3130 /**
3131  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3132  *  @hw: pointer to the HW structure
3133  *  @bank:  pointer to the variable that returns the active bank
3134  *
3135  *  Reads signature byte from the NVM using the flash access registers.
3136  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3137  **/
3138 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3139 {
3140 	u32 eecd;
3141 	struct e1000_nvm_info *nvm = &hw->nvm;
3142 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3143 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3144 	u32 nvm_dword = 0;
3145 	u8 sig_byte = 0;
3146 	s32 ret_val;
3147 
3148 	switch (hw->mac.type) {
3149 	case e1000_pch_spt:
3150 	case e1000_pch_cnp:
3151 	case e1000_pch_tgp:
3152 	case e1000_pch_adp:
3153 	case e1000_pch_mtp:
3154 		bank1_offset = nvm->flash_bank_size;
3155 		act_offset = E1000_ICH_NVM_SIG_WORD;
3156 
3157 		/* set bank to 0 in case flash read fails */
3158 		*bank = 0;
3159 
3160 		/* Check bank 0 */
3161 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3162 							 &nvm_dword);
3163 		if (ret_val)
3164 			return ret_val;
3165 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3166 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3167 		    E1000_ICH_NVM_SIG_VALUE) {
3168 			*bank = 0;
3169 			return 0;
3170 		}
3171 
3172 		/* Check bank 1 */
3173 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3174 							 bank1_offset,
3175 							 &nvm_dword);
3176 		if (ret_val)
3177 			return ret_val;
3178 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3179 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3180 		    E1000_ICH_NVM_SIG_VALUE) {
3181 			*bank = 1;
3182 			return 0;
3183 		}
3184 
3185 		e_dbg("ERROR: No valid NVM bank present\n");
3186 		return -E1000_ERR_NVM;
3187 	case e1000_ich8lan:
3188 	case e1000_ich9lan:
3189 		eecd = er32(EECD);
3190 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3191 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3192 			if (eecd & E1000_EECD_SEC1VAL)
3193 				*bank = 1;
3194 			else
3195 				*bank = 0;
3196 
3197 			return 0;
3198 		}
3199 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3200 		fallthrough;
3201 	default:
3202 		/* set bank to 0 in case flash read fails */
3203 		*bank = 0;
3204 
3205 		/* Check bank 0 */
3206 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3207 							&sig_byte);
3208 		if (ret_val)
3209 			return ret_val;
3210 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3211 		    E1000_ICH_NVM_SIG_VALUE) {
3212 			*bank = 0;
3213 			return 0;
3214 		}
3215 
3216 		/* Check bank 1 */
3217 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3218 							bank1_offset,
3219 							&sig_byte);
3220 		if (ret_val)
3221 			return ret_val;
3222 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3223 		    E1000_ICH_NVM_SIG_VALUE) {
3224 			*bank = 1;
3225 			return 0;
3226 		}
3227 
3228 		e_dbg("ERROR: No valid NVM bank present\n");
3229 		return -E1000_ERR_NVM;
3230 	}
3231 }
3232 
3233 /**
3234  *  e1000_read_nvm_spt - NVM access for SPT
3235  *  @hw: pointer to the HW structure
3236  *  @offset: The offset (in bytes) of the word(s) to read.
3237  *  @words: Size of data to read in words.
3238  *  @data: pointer to the word(s) to read at offset.
3239  *
3240  *  Reads a word(s) from the NVM
3241  **/
3242 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3243 			      u16 *data)
3244 {
3245 	struct e1000_nvm_info *nvm = &hw->nvm;
3246 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3247 	u32 act_offset;
3248 	s32 ret_val = 0;
3249 	u32 bank = 0;
3250 	u32 dword = 0;
3251 	u16 offset_to_read;
3252 	u16 i;
3253 
3254 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3255 	    (words == 0)) {
3256 		e_dbg("nvm parameter(s) out of bounds\n");
3257 		ret_val = -E1000_ERR_NVM;
3258 		goto out;
3259 	}
3260 
3261 	nvm->ops.acquire(hw);
3262 
3263 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3264 	if (ret_val) {
3265 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3266 		bank = 0;
3267 	}
3268 
3269 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3270 	act_offset += offset;
3271 
3272 	ret_val = 0;
3273 
3274 	for (i = 0; i < words; i += 2) {
3275 		if (words - i == 1) {
3276 			if (dev_spec->shadow_ram[offset + i].modified) {
3277 				data[i] =
3278 				    dev_spec->shadow_ram[offset + i].value;
3279 			} else {
3280 				offset_to_read = act_offset + i -
3281 				    ((act_offset + i) % 2);
3282 				ret_val =
3283 				  e1000_read_flash_dword_ich8lan(hw,
3284 								 offset_to_read,
3285 								 &dword);
3286 				if (ret_val)
3287 					break;
3288 				if ((act_offset + i) % 2 == 0)
3289 					data[i] = (u16)(dword & 0xFFFF);
3290 				else
3291 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3292 			}
3293 		} else {
3294 			offset_to_read = act_offset + i;
3295 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3296 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3297 				ret_val =
3298 				  e1000_read_flash_dword_ich8lan(hw,
3299 								 offset_to_read,
3300 								 &dword);
3301 				if (ret_val)
3302 					break;
3303 			}
3304 			if (dev_spec->shadow_ram[offset + i].modified)
3305 				data[i] =
3306 				    dev_spec->shadow_ram[offset + i].value;
3307 			else
3308 				data[i] = (u16)(dword & 0xFFFF);
3309 			if (dev_spec->shadow_ram[offset + i].modified)
3310 				data[i + 1] =
3311 				    dev_spec->shadow_ram[offset + i + 1].value;
3312 			else
3313 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3314 		}
3315 	}
3316 
3317 	nvm->ops.release(hw);
3318 
3319 out:
3320 	if (ret_val)
3321 		e_dbg("NVM read error: %d\n", ret_val);
3322 
3323 	return ret_val;
3324 }
3325 
3326 /**
3327  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3328  *  @hw: pointer to the HW structure
3329  *  @offset: The offset (in bytes) of the word(s) to read.
3330  *  @words: Size of data to read in words
3331  *  @data: Pointer to the word(s) to read at offset.
3332  *
3333  *  Reads a word(s) from the NVM using the flash access registers.
3334  **/
3335 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3336 				  u16 *data)
3337 {
3338 	struct e1000_nvm_info *nvm = &hw->nvm;
3339 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3340 	u32 act_offset;
3341 	s32 ret_val = 0;
3342 	u32 bank = 0;
3343 	u16 i, word;
3344 
3345 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3346 	    (words == 0)) {
3347 		e_dbg("nvm parameter(s) out of bounds\n");
3348 		ret_val = -E1000_ERR_NVM;
3349 		goto out;
3350 	}
3351 
3352 	nvm->ops.acquire(hw);
3353 
3354 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3355 	if (ret_val) {
3356 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3357 		bank = 0;
3358 	}
3359 
3360 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3361 	act_offset += offset;
3362 
3363 	ret_val = 0;
3364 	for (i = 0; i < words; i++) {
3365 		if (dev_spec->shadow_ram[offset + i].modified) {
3366 			data[i] = dev_spec->shadow_ram[offset + i].value;
3367 		} else {
3368 			ret_val = e1000_read_flash_word_ich8lan(hw,
3369 								act_offset + i,
3370 								&word);
3371 			if (ret_val)
3372 				break;
3373 			data[i] = word;
3374 		}
3375 	}
3376 
3377 	nvm->ops.release(hw);
3378 
3379 out:
3380 	if (ret_val)
3381 		e_dbg("NVM read error: %d\n", ret_val);
3382 
3383 	return ret_val;
3384 }
3385 
3386 /**
3387  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3388  *  @hw: pointer to the HW structure
3389  *
3390  *  This function does initial flash setup so that a new read/write/erase cycle
3391  *  can be started.
3392  **/
3393 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3394 {
3395 	union ich8_hws_flash_status hsfsts;
3396 	s32 ret_val = -E1000_ERR_NVM;
3397 
3398 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3399 
3400 	/* Check if the flash descriptor is valid */
3401 	if (!hsfsts.hsf_status.fldesvalid) {
3402 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3403 		return -E1000_ERR_NVM;
3404 	}
3405 
3406 	/* Clear FCERR and DAEL in hw status by writing 1 */
3407 	hsfsts.hsf_status.flcerr = 1;
3408 	hsfsts.hsf_status.dael = 1;
3409 	if (hw->mac.type >= e1000_pch_spt)
3410 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3411 	else
3412 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3413 
3414 	/* Either we should have a hardware SPI cycle in progress
3415 	 * bit to check against, in order to start a new cycle or
3416 	 * FDONE bit should be changed in the hardware so that it
3417 	 * is 1 after hardware reset, which can then be used as an
3418 	 * indication whether a cycle is in progress or has been
3419 	 * completed.
3420 	 */
3421 
3422 	if (!hsfsts.hsf_status.flcinprog) {
3423 		/* There is no cycle running at present,
3424 		 * so we can start a cycle.
3425 		 * Begin by setting Flash Cycle Done.
3426 		 */
3427 		hsfsts.hsf_status.flcdone = 1;
3428 		if (hw->mac.type >= e1000_pch_spt)
3429 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3430 		else
3431 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3432 		ret_val = 0;
3433 	} else {
3434 		s32 i;
3435 
3436 		/* Otherwise poll for sometime so the current
3437 		 * cycle has a chance to end before giving up.
3438 		 */
3439 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3440 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3441 			if (!hsfsts.hsf_status.flcinprog) {
3442 				ret_val = 0;
3443 				break;
3444 			}
3445 			udelay(1);
3446 		}
3447 		if (!ret_val) {
3448 			/* Successful in waiting for previous cycle to timeout,
3449 			 * now set the Flash Cycle Done.
3450 			 */
3451 			hsfsts.hsf_status.flcdone = 1;
3452 			if (hw->mac.type >= e1000_pch_spt)
3453 				ew32flash(ICH_FLASH_HSFSTS,
3454 					  hsfsts.regval & 0xFFFF);
3455 			else
3456 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3457 		} else {
3458 			e_dbg("Flash controller busy, cannot get access\n");
3459 		}
3460 	}
3461 
3462 	return ret_val;
3463 }
3464 
3465 /**
3466  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3467  *  @hw: pointer to the HW structure
3468  *  @timeout: maximum time to wait for completion
3469  *
3470  *  This function starts a flash cycle and waits for its completion.
3471  **/
3472 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3473 {
3474 	union ich8_hws_flash_ctrl hsflctl;
3475 	union ich8_hws_flash_status hsfsts;
3476 	u32 i = 0;
3477 
3478 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3479 	if (hw->mac.type >= e1000_pch_spt)
3480 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3481 	else
3482 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3483 	hsflctl.hsf_ctrl.flcgo = 1;
3484 
3485 	if (hw->mac.type >= e1000_pch_spt)
3486 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3487 	else
3488 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3489 
3490 	/* wait till FDONE bit is set to 1 */
3491 	do {
3492 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3493 		if (hsfsts.hsf_status.flcdone)
3494 			break;
3495 		udelay(1);
3496 	} while (i++ < timeout);
3497 
3498 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3499 		return 0;
3500 
3501 	return -E1000_ERR_NVM;
3502 }
3503 
3504 /**
3505  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3506  *  @hw: pointer to the HW structure
3507  *  @offset: offset to data location
3508  *  @data: pointer to the location for storing the data
3509  *
3510  *  Reads the flash dword at offset into data.  Offset is converted
3511  *  to bytes before read.
3512  **/
3513 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3514 					  u32 *data)
3515 {
3516 	/* Must convert word offset into bytes. */
3517 	offset <<= 1;
3518 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3519 }
3520 
3521 /**
3522  *  e1000_read_flash_word_ich8lan - Read word from flash
3523  *  @hw: pointer to the HW structure
3524  *  @offset: offset to data location
3525  *  @data: pointer to the location for storing the data
3526  *
3527  *  Reads the flash word at offset into data.  Offset is converted
3528  *  to bytes before read.
3529  **/
3530 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3531 					 u16 *data)
3532 {
3533 	/* Must convert offset into bytes. */
3534 	offset <<= 1;
3535 
3536 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3537 }
3538 
3539 /**
3540  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3541  *  @hw: pointer to the HW structure
3542  *  @offset: The offset of the byte to read.
3543  *  @data: Pointer to a byte to store the value read.
3544  *
3545  *  Reads a single byte from the NVM using the flash access registers.
3546  **/
3547 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3548 					 u8 *data)
3549 {
3550 	s32 ret_val;
3551 	u16 word = 0;
3552 
3553 	/* In SPT, only 32 bits access is supported,
3554 	 * so this function should not be called.
3555 	 */
3556 	if (hw->mac.type >= e1000_pch_spt)
3557 		return -E1000_ERR_NVM;
3558 	else
3559 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3560 
3561 	if (ret_val)
3562 		return ret_val;
3563 
3564 	*data = (u8)word;
3565 
3566 	return 0;
3567 }
3568 
3569 /**
3570  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3571  *  @hw: pointer to the HW structure
3572  *  @offset: The offset (in bytes) of the byte or word to read.
3573  *  @size: Size of data to read, 1=byte 2=word
3574  *  @data: Pointer to the word to store the value read.
3575  *
3576  *  Reads a byte or word from the NVM using the flash access registers.
3577  **/
3578 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3579 					 u8 size, u16 *data)
3580 {
3581 	union ich8_hws_flash_status hsfsts;
3582 	union ich8_hws_flash_ctrl hsflctl;
3583 	u32 flash_linear_addr;
3584 	u32 flash_data = 0;
3585 	s32 ret_val = -E1000_ERR_NVM;
3586 	u8 count = 0;
3587 
3588 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3589 		return -E1000_ERR_NVM;
3590 
3591 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3592 			     hw->nvm.flash_base_addr);
3593 
3594 	do {
3595 		udelay(1);
3596 		/* Steps */
3597 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3598 		if (ret_val)
3599 			break;
3600 
3601 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3602 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3603 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3604 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3605 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3606 
3607 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3608 
3609 		ret_val =
3610 		    e1000_flash_cycle_ich8lan(hw,
3611 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3612 
3613 		/* Check if FCERR is set to 1, if set to 1, clear it
3614 		 * and try the whole sequence a few more times, else
3615 		 * read in (shift in) the Flash Data0, the order is
3616 		 * least significant byte first msb to lsb
3617 		 */
3618 		if (!ret_val) {
3619 			flash_data = er32flash(ICH_FLASH_FDATA0);
3620 			if (size == 1)
3621 				*data = (u8)(flash_data & 0x000000FF);
3622 			else if (size == 2)
3623 				*data = (u16)(flash_data & 0x0000FFFF);
3624 			break;
3625 		} else {
3626 			/* If we've gotten here, then things are probably
3627 			 * completely hosed, but if the error condition is
3628 			 * detected, it won't hurt to give it another try...
3629 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3630 			 */
3631 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3632 			if (hsfsts.hsf_status.flcerr) {
3633 				/* Repeat for some time before giving up. */
3634 				continue;
3635 			} else if (!hsfsts.hsf_status.flcdone) {
3636 				e_dbg("Timeout error - flash cycle did not complete.\n");
3637 				break;
3638 			}
3639 		}
3640 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3641 
3642 	return ret_val;
3643 }
3644 
3645 /**
3646  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3647  *  @hw: pointer to the HW structure
3648  *  @offset: The offset (in bytes) of the dword to read.
3649  *  @data: Pointer to the dword to store the value read.
3650  *
3651  *  Reads a byte or word from the NVM using the flash access registers.
3652  **/
3653 
3654 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3655 					   u32 *data)
3656 {
3657 	union ich8_hws_flash_status hsfsts;
3658 	union ich8_hws_flash_ctrl hsflctl;
3659 	u32 flash_linear_addr;
3660 	s32 ret_val = -E1000_ERR_NVM;
3661 	u8 count = 0;
3662 
3663 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3664 		return -E1000_ERR_NVM;
3665 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3666 			     hw->nvm.flash_base_addr);
3667 
3668 	do {
3669 		udelay(1);
3670 		/* Steps */
3671 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3672 		if (ret_val)
3673 			break;
3674 		/* In SPT, This register is in Lan memory space, not flash.
3675 		 * Therefore, only 32 bit access is supported
3676 		 */
3677 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3678 
3679 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3680 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3681 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3682 		/* In SPT, This register is in Lan memory space, not flash.
3683 		 * Therefore, only 32 bit access is supported
3684 		 */
3685 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3686 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3687 
3688 		ret_val =
3689 		   e1000_flash_cycle_ich8lan(hw,
3690 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3691 
3692 		/* Check if FCERR is set to 1, if set to 1, clear it
3693 		 * and try the whole sequence a few more times, else
3694 		 * read in (shift in) the Flash Data0, the order is
3695 		 * least significant byte first msb to lsb
3696 		 */
3697 		if (!ret_val) {
3698 			*data = er32flash(ICH_FLASH_FDATA0);
3699 			break;
3700 		} else {
3701 			/* If we've gotten here, then things are probably
3702 			 * completely hosed, but if the error condition is
3703 			 * detected, it won't hurt to give it another try...
3704 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3705 			 */
3706 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3707 			if (hsfsts.hsf_status.flcerr) {
3708 				/* Repeat for some time before giving up. */
3709 				continue;
3710 			} else if (!hsfsts.hsf_status.flcdone) {
3711 				e_dbg("Timeout error - flash cycle did not complete.\n");
3712 				break;
3713 			}
3714 		}
3715 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3716 
3717 	return ret_val;
3718 }
3719 
3720 /**
3721  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3722  *  @hw: pointer to the HW structure
3723  *  @offset: The offset (in bytes) of the word(s) to write.
3724  *  @words: Size of data to write in words
3725  *  @data: Pointer to the word(s) to write at offset.
3726  *
3727  *  Writes a byte or word to the NVM using the flash access registers.
3728  **/
3729 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3730 				   u16 *data)
3731 {
3732 	struct e1000_nvm_info *nvm = &hw->nvm;
3733 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3734 	u16 i;
3735 
3736 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3737 	    (words == 0)) {
3738 		e_dbg("nvm parameter(s) out of bounds\n");
3739 		return -E1000_ERR_NVM;
3740 	}
3741 
3742 	nvm->ops.acquire(hw);
3743 
3744 	for (i = 0; i < words; i++) {
3745 		dev_spec->shadow_ram[offset + i].modified = true;
3746 		dev_spec->shadow_ram[offset + i].value = data[i];
3747 	}
3748 
3749 	nvm->ops.release(hw);
3750 
3751 	return 0;
3752 }
3753 
3754 /**
3755  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3756  *  @hw: pointer to the HW structure
3757  *
3758  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3759  *  which writes the checksum to the shadow ram.  The changes in the shadow
3760  *  ram are then committed to the EEPROM by processing each bank at a time
3761  *  checking for the modified bit and writing only the pending changes.
3762  *  After a successful commit, the shadow ram is cleared and is ready for
3763  *  future writes.
3764  **/
3765 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3766 {
3767 	struct e1000_nvm_info *nvm = &hw->nvm;
3768 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3769 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3770 	s32 ret_val;
3771 	u32 dword = 0;
3772 
3773 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3774 	if (ret_val)
3775 		goto out;
3776 
3777 	if (nvm->type != e1000_nvm_flash_sw)
3778 		goto out;
3779 
3780 	nvm->ops.acquire(hw);
3781 
3782 	/* We're writing to the opposite bank so if we're on bank 1,
3783 	 * write to bank 0 etc.  We also need to erase the segment that
3784 	 * is going to be written
3785 	 */
3786 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3787 	if (ret_val) {
3788 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3789 		bank = 0;
3790 	}
3791 
3792 	if (bank == 0) {
3793 		new_bank_offset = nvm->flash_bank_size;
3794 		old_bank_offset = 0;
3795 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3796 		if (ret_val)
3797 			goto release;
3798 	} else {
3799 		old_bank_offset = nvm->flash_bank_size;
3800 		new_bank_offset = 0;
3801 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3802 		if (ret_val)
3803 			goto release;
3804 	}
3805 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3806 		/* Determine whether to write the value stored
3807 		 * in the other NVM bank or a modified value stored
3808 		 * in the shadow RAM
3809 		 */
3810 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3811 							 i + old_bank_offset,
3812 							 &dword);
3813 
3814 		if (dev_spec->shadow_ram[i].modified) {
3815 			dword &= 0xffff0000;
3816 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3817 		}
3818 		if (dev_spec->shadow_ram[i + 1].modified) {
3819 			dword &= 0x0000ffff;
3820 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3821 				  << 16);
3822 		}
3823 		if (ret_val)
3824 			break;
3825 
3826 		/* If the word is 0x13, then make sure the signature bits
3827 		 * (15:14) are 11b until the commit has completed.
3828 		 * This will allow us to write 10b which indicates the
3829 		 * signature is valid.  We want to do this after the write
3830 		 * has completed so that we don't mark the segment valid
3831 		 * while the write is still in progress
3832 		 */
3833 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3834 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3835 
3836 		/* Convert offset to bytes. */
3837 		act_offset = (i + new_bank_offset) << 1;
3838 
3839 		usleep_range(100, 200);
3840 
3841 		/* Write the data to the new bank. Offset in words */
3842 		act_offset = i + new_bank_offset;
3843 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3844 								dword);
3845 		if (ret_val)
3846 			break;
3847 	}
3848 
3849 	/* Don't bother writing the segment valid bits if sector
3850 	 * programming failed.
3851 	 */
3852 	if (ret_val) {
3853 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3854 		e_dbg("Flash commit failed.\n");
3855 		goto release;
3856 	}
3857 
3858 	/* Finally validate the new segment by setting bit 15:14
3859 	 * to 10b in word 0x13 , this can be done without an
3860 	 * erase as well since these bits are 11 to start with
3861 	 * and we need to change bit 14 to 0b
3862 	 */
3863 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3864 
3865 	/*offset in words but we read dword */
3866 	--act_offset;
3867 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3868 
3869 	if (ret_val)
3870 		goto release;
3871 
3872 	dword &= 0xBFFFFFFF;
3873 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3874 
3875 	if (ret_val)
3876 		goto release;
3877 
3878 	/* And invalidate the previously valid segment by setting
3879 	 * its signature word (0x13) high_byte to 0b. This can be
3880 	 * done without an erase because flash erase sets all bits
3881 	 * to 1's. We can write 1's to 0's without an erase
3882 	 */
3883 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3884 
3885 	/* offset in words but we read dword */
3886 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3887 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3888 
3889 	if (ret_val)
3890 		goto release;
3891 
3892 	dword &= 0x00FFFFFF;
3893 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3894 
3895 	if (ret_val)
3896 		goto release;
3897 
3898 	/* Great!  Everything worked, we can now clear the cached entries. */
3899 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3900 		dev_spec->shadow_ram[i].modified = false;
3901 		dev_spec->shadow_ram[i].value = 0xFFFF;
3902 	}
3903 
3904 release:
3905 	nvm->ops.release(hw);
3906 
3907 	/* Reload the EEPROM, or else modifications will not appear
3908 	 * until after the next adapter reset.
3909 	 */
3910 	if (!ret_val) {
3911 		nvm->ops.reload(hw);
3912 		usleep_range(10000, 11000);
3913 	}
3914 
3915 out:
3916 	if (ret_val)
3917 		e_dbg("NVM update error: %d\n", ret_val);
3918 
3919 	return ret_val;
3920 }
3921 
3922 /**
3923  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3924  *  @hw: pointer to the HW structure
3925  *
3926  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3927  *  which writes the checksum to the shadow ram.  The changes in the shadow
3928  *  ram are then committed to the EEPROM by processing each bank at a time
3929  *  checking for the modified bit and writing only the pending changes.
3930  *  After a successful commit, the shadow ram is cleared and is ready for
3931  *  future writes.
3932  **/
3933 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3934 {
3935 	struct e1000_nvm_info *nvm = &hw->nvm;
3936 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3937 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3938 	s32 ret_val;
3939 	u16 data = 0;
3940 
3941 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3942 	if (ret_val)
3943 		goto out;
3944 
3945 	if (nvm->type != e1000_nvm_flash_sw)
3946 		goto out;
3947 
3948 	nvm->ops.acquire(hw);
3949 
3950 	/* We're writing to the opposite bank so if we're on bank 1,
3951 	 * write to bank 0 etc.  We also need to erase the segment that
3952 	 * is going to be written
3953 	 */
3954 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3955 	if (ret_val) {
3956 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3957 		bank = 0;
3958 	}
3959 
3960 	if (bank == 0) {
3961 		new_bank_offset = nvm->flash_bank_size;
3962 		old_bank_offset = 0;
3963 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3964 		if (ret_val)
3965 			goto release;
3966 	} else {
3967 		old_bank_offset = nvm->flash_bank_size;
3968 		new_bank_offset = 0;
3969 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3970 		if (ret_val)
3971 			goto release;
3972 	}
3973 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3974 		if (dev_spec->shadow_ram[i].modified) {
3975 			data = dev_spec->shadow_ram[i].value;
3976 		} else {
3977 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3978 								old_bank_offset,
3979 								&data);
3980 			if (ret_val)
3981 				break;
3982 		}
3983 
3984 		/* If the word is 0x13, then make sure the signature bits
3985 		 * (15:14) are 11b until the commit has completed.
3986 		 * This will allow us to write 10b which indicates the
3987 		 * signature is valid.  We want to do this after the write
3988 		 * has completed so that we don't mark the segment valid
3989 		 * while the write is still in progress
3990 		 */
3991 		if (i == E1000_ICH_NVM_SIG_WORD)
3992 			data |= E1000_ICH_NVM_SIG_MASK;
3993 
3994 		/* Convert offset to bytes. */
3995 		act_offset = (i + new_bank_offset) << 1;
3996 
3997 		usleep_range(100, 200);
3998 		/* Write the bytes to the new bank. */
3999 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4000 							       act_offset,
4001 							       (u8)data);
4002 		if (ret_val)
4003 			break;
4004 
4005 		usleep_range(100, 200);
4006 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4007 							       act_offset + 1,
4008 							       (u8)(data >> 8));
4009 		if (ret_val)
4010 			break;
4011 	}
4012 
4013 	/* Don't bother writing the segment valid bits if sector
4014 	 * programming failed.
4015 	 */
4016 	if (ret_val) {
4017 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4018 		e_dbg("Flash commit failed.\n");
4019 		goto release;
4020 	}
4021 
4022 	/* Finally validate the new segment by setting bit 15:14
4023 	 * to 10b in word 0x13 , this can be done without an
4024 	 * erase as well since these bits are 11 to start with
4025 	 * and we need to change bit 14 to 0b
4026 	 */
4027 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4028 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4029 	if (ret_val)
4030 		goto release;
4031 
4032 	data &= 0xBFFF;
4033 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4034 						       act_offset * 2 + 1,
4035 						       (u8)(data >> 8));
4036 	if (ret_val)
4037 		goto release;
4038 
4039 	/* And invalidate the previously valid segment by setting
4040 	 * its signature word (0x13) high_byte to 0b. This can be
4041 	 * done without an erase because flash erase sets all bits
4042 	 * to 1's. We can write 1's to 0's without an erase
4043 	 */
4044 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4045 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4046 	if (ret_val)
4047 		goto release;
4048 
4049 	/* Great!  Everything worked, we can now clear the cached entries. */
4050 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4051 		dev_spec->shadow_ram[i].modified = false;
4052 		dev_spec->shadow_ram[i].value = 0xFFFF;
4053 	}
4054 
4055 release:
4056 	nvm->ops.release(hw);
4057 
4058 	/* Reload the EEPROM, or else modifications will not appear
4059 	 * until after the next adapter reset.
4060 	 */
4061 	if (!ret_val) {
4062 		nvm->ops.reload(hw);
4063 		usleep_range(10000, 11000);
4064 	}
4065 
4066 out:
4067 	if (ret_val)
4068 		e_dbg("NVM update error: %d\n", ret_val);
4069 
4070 	return ret_val;
4071 }
4072 
4073 /**
4074  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4075  *  @hw: pointer to the HW structure
4076  *
4077  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4078  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4079  *  calculated, in which case we need to calculate the checksum and set bit 6.
4080  **/
4081 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4082 {
4083 	s32 ret_val;
4084 	u16 data;
4085 	u16 word;
4086 	u16 valid_csum_mask;
4087 
4088 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4089 	 * the checksum needs to be fixed.  This bit is an indication that
4090 	 * the NVM was prepared by OEM software and did not calculate
4091 	 * the checksum...a likely scenario.
4092 	 */
4093 	switch (hw->mac.type) {
4094 	case e1000_pch_lpt:
4095 	case e1000_pch_spt:
4096 	case e1000_pch_cnp:
4097 	case e1000_pch_tgp:
4098 	case e1000_pch_adp:
4099 	case e1000_pch_mtp:
4100 		word = NVM_COMPAT;
4101 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4102 		break;
4103 	default:
4104 		word = NVM_FUTURE_INIT_WORD1;
4105 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4106 		break;
4107 	}
4108 
4109 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4110 	if (ret_val)
4111 		return ret_val;
4112 
4113 	if (!(data & valid_csum_mask)) {
4114 		data |= valid_csum_mask;
4115 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4116 		if (ret_val)
4117 			return ret_val;
4118 		ret_val = e1000e_update_nvm_checksum(hw);
4119 		if (ret_val)
4120 			return ret_val;
4121 	}
4122 
4123 	return e1000e_validate_nvm_checksum_generic(hw);
4124 }
4125 
4126 /**
4127  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4128  *  @hw: pointer to the HW structure
4129  *
4130  *  To prevent malicious write/erase of the NVM, set it to be read-only
4131  *  so that the hardware ignores all write/erase cycles of the NVM via
4132  *  the flash control registers.  The shadow-ram copy of the NVM will
4133  *  still be updated, however any updates to this copy will not stick
4134  *  across driver reloads.
4135  **/
4136 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4137 {
4138 	struct e1000_nvm_info *nvm = &hw->nvm;
4139 	union ich8_flash_protected_range pr0;
4140 	union ich8_hws_flash_status hsfsts;
4141 	u32 gfpreg;
4142 
4143 	nvm->ops.acquire(hw);
4144 
4145 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4146 
4147 	/* Write-protect GbE Sector of NVM */
4148 	pr0.regval = er32flash(ICH_FLASH_PR0);
4149 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4150 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4151 	pr0.range.wpe = true;
4152 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4153 
4154 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4155 	 * PR0 to prevent the write-protection from being lifted.
4156 	 * Once FLOCKDN is set, the registers protected by it cannot
4157 	 * be written until FLOCKDN is cleared by a hardware reset.
4158 	 */
4159 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4160 	hsfsts.hsf_status.flockdn = true;
4161 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4162 
4163 	nvm->ops.release(hw);
4164 }
4165 
4166 /**
4167  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4168  *  @hw: pointer to the HW structure
4169  *  @offset: The offset (in bytes) of the byte/word to read.
4170  *  @size: Size of data to read, 1=byte 2=word
4171  *  @data: The byte(s) to write to the NVM.
4172  *
4173  *  Writes one/two bytes to the NVM using the flash access registers.
4174  **/
4175 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4176 					  u8 size, u16 data)
4177 {
4178 	union ich8_hws_flash_status hsfsts;
4179 	union ich8_hws_flash_ctrl hsflctl;
4180 	u32 flash_linear_addr;
4181 	u32 flash_data = 0;
4182 	s32 ret_val;
4183 	u8 count = 0;
4184 
4185 	if (hw->mac.type >= e1000_pch_spt) {
4186 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4187 			return -E1000_ERR_NVM;
4188 	} else {
4189 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4190 			return -E1000_ERR_NVM;
4191 	}
4192 
4193 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4194 			     hw->nvm.flash_base_addr);
4195 
4196 	do {
4197 		udelay(1);
4198 		/* Steps */
4199 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4200 		if (ret_val)
4201 			break;
4202 		/* In SPT, This register is in Lan memory space, not
4203 		 * flash.  Therefore, only 32 bit access is supported
4204 		 */
4205 		if (hw->mac.type >= e1000_pch_spt)
4206 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4207 		else
4208 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4209 
4210 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4211 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4212 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4213 		/* In SPT, This register is in Lan memory space,
4214 		 * not flash.  Therefore, only 32 bit access is
4215 		 * supported
4216 		 */
4217 		if (hw->mac.type >= e1000_pch_spt)
4218 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4219 		else
4220 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4221 
4222 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4223 
4224 		if (size == 1)
4225 			flash_data = (u32)data & 0x00FF;
4226 		else
4227 			flash_data = (u32)data;
4228 
4229 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4230 
4231 		/* check if FCERR is set to 1 , if set to 1, clear it
4232 		 * and try the whole sequence a few more times else done
4233 		 */
4234 		ret_val =
4235 		    e1000_flash_cycle_ich8lan(hw,
4236 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4237 		if (!ret_val)
4238 			break;
4239 
4240 		/* If we're here, then things are most likely
4241 		 * completely hosed, but if the error condition
4242 		 * is detected, it won't hurt to give it another
4243 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4244 		 */
4245 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4246 		if (hsfsts.hsf_status.flcerr)
4247 			/* Repeat for some time before giving up. */
4248 			continue;
4249 		if (!hsfsts.hsf_status.flcdone) {
4250 			e_dbg("Timeout error - flash cycle did not complete.\n");
4251 			break;
4252 		}
4253 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4254 
4255 	return ret_val;
4256 }
4257 
4258 /**
4259 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4260 *  @hw: pointer to the HW structure
4261 *  @offset: The offset (in bytes) of the dwords to read.
4262 *  @data: The 4 bytes to write to the NVM.
4263 *
4264 *  Writes one/two/four bytes to the NVM using the flash access registers.
4265 **/
4266 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4267 					    u32 data)
4268 {
4269 	union ich8_hws_flash_status hsfsts;
4270 	union ich8_hws_flash_ctrl hsflctl;
4271 	u32 flash_linear_addr;
4272 	s32 ret_val;
4273 	u8 count = 0;
4274 
4275 	if (hw->mac.type >= e1000_pch_spt) {
4276 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4277 			return -E1000_ERR_NVM;
4278 	}
4279 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4280 			     hw->nvm.flash_base_addr);
4281 	do {
4282 		udelay(1);
4283 		/* Steps */
4284 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4285 		if (ret_val)
4286 			break;
4287 
4288 		/* In SPT, This register is in Lan memory space, not
4289 		 * flash.  Therefore, only 32 bit access is supported
4290 		 */
4291 		if (hw->mac.type >= e1000_pch_spt)
4292 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4293 			    >> 16;
4294 		else
4295 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4296 
4297 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4298 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4299 
4300 		/* In SPT, This register is in Lan memory space,
4301 		 * not flash.  Therefore, only 32 bit access is
4302 		 * supported
4303 		 */
4304 		if (hw->mac.type >= e1000_pch_spt)
4305 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4306 		else
4307 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4308 
4309 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4310 
4311 		ew32flash(ICH_FLASH_FDATA0, data);
4312 
4313 		/* check if FCERR is set to 1 , if set to 1, clear it
4314 		 * and try the whole sequence a few more times else done
4315 		 */
4316 		ret_val =
4317 		   e1000_flash_cycle_ich8lan(hw,
4318 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4319 
4320 		if (!ret_val)
4321 			break;
4322 
4323 		/* If we're here, then things are most likely
4324 		 * completely hosed, but if the error condition
4325 		 * is detected, it won't hurt to give it another
4326 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4327 		 */
4328 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4329 
4330 		if (hsfsts.hsf_status.flcerr)
4331 			/* Repeat for some time before giving up. */
4332 			continue;
4333 		if (!hsfsts.hsf_status.flcdone) {
4334 			e_dbg("Timeout error - flash cycle did not complete.\n");
4335 			break;
4336 		}
4337 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4338 
4339 	return ret_val;
4340 }
4341 
4342 /**
4343  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4344  *  @hw: pointer to the HW structure
4345  *  @offset: The index of the byte to read.
4346  *  @data: The byte to write to the NVM.
4347  *
4348  *  Writes a single byte to the NVM using the flash access registers.
4349  **/
4350 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4351 					  u8 data)
4352 {
4353 	u16 word = (u16)data;
4354 
4355 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4356 }
4357 
4358 /**
4359 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4360 *  @hw: pointer to the HW structure
4361 *  @offset: The offset of the word to write.
4362 *  @dword: The dword to write to the NVM.
4363 *
4364 *  Writes a single dword to the NVM using the flash access registers.
4365 *  Goes through a retry algorithm before giving up.
4366 **/
4367 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4368 						 u32 offset, u32 dword)
4369 {
4370 	s32 ret_val;
4371 	u16 program_retries;
4372 
4373 	/* Must convert word offset into bytes. */
4374 	offset <<= 1;
4375 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4376 
4377 	if (!ret_val)
4378 		return ret_val;
4379 	for (program_retries = 0; program_retries < 100; program_retries++) {
4380 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4381 		usleep_range(100, 200);
4382 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4383 		if (!ret_val)
4384 			break;
4385 	}
4386 	if (program_retries == 100)
4387 		return -E1000_ERR_NVM;
4388 
4389 	return 0;
4390 }
4391 
4392 /**
4393  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4394  *  @hw: pointer to the HW structure
4395  *  @offset: The offset of the byte to write.
4396  *  @byte: The byte to write to the NVM.
4397  *
4398  *  Writes a single byte to the NVM using the flash access registers.
4399  *  Goes through a retry algorithm before giving up.
4400  **/
4401 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4402 						u32 offset, u8 byte)
4403 {
4404 	s32 ret_val;
4405 	u16 program_retries;
4406 
4407 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4408 	if (!ret_val)
4409 		return ret_val;
4410 
4411 	for (program_retries = 0; program_retries < 100; program_retries++) {
4412 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4413 		usleep_range(100, 200);
4414 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4415 		if (!ret_val)
4416 			break;
4417 	}
4418 	if (program_retries == 100)
4419 		return -E1000_ERR_NVM;
4420 
4421 	return 0;
4422 }
4423 
4424 /**
4425  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4426  *  @hw: pointer to the HW structure
4427  *  @bank: 0 for first bank, 1 for second bank, etc.
4428  *
4429  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4430  *  bank N is 4096 * N + flash_reg_addr.
4431  **/
4432 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4433 {
4434 	struct e1000_nvm_info *nvm = &hw->nvm;
4435 	union ich8_hws_flash_status hsfsts;
4436 	union ich8_hws_flash_ctrl hsflctl;
4437 	u32 flash_linear_addr;
4438 	/* bank size is in 16bit words - adjust to bytes */
4439 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4440 	s32 ret_val;
4441 	s32 count = 0;
4442 	s32 j, iteration, sector_size;
4443 
4444 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4445 
4446 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4447 	 * register
4448 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4449 	 *     consecutive sectors.  The start index for the nth Hw sector
4450 	 *     can be calculated as = bank * 4096 + n * 256
4451 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4452 	 *     The start index for the nth Hw sector can be calculated
4453 	 *     as = bank * 4096
4454 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4455 	 *     (ich9 only, otherwise error condition)
4456 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4457 	 */
4458 	switch (hsfsts.hsf_status.berasesz) {
4459 	case 0:
4460 		/* Hw sector size 256 */
4461 		sector_size = ICH_FLASH_SEG_SIZE_256;
4462 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4463 		break;
4464 	case 1:
4465 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4466 		iteration = 1;
4467 		break;
4468 	case 2:
4469 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4470 		iteration = 1;
4471 		break;
4472 	case 3:
4473 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4474 		iteration = 1;
4475 		break;
4476 	default:
4477 		return -E1000_ERR_NVM;
4478 	}
4479 
4480 	/* Start with the base address, then add the sector offset. */
4481 	flash_linear_addr = hw->nvm.flash_base_addr;
4482 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4483 
4484 	for (j = 0; j < iteration; j++) {
4485 		do {
4486 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4487 
4488 			/* Steps */
4489 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4490 			if (ret_val)
4491 				return ret_val;
4492 
4493 			/* Write a value 11 (block Erase) in Flash
4494 			 * Cycle field in hw flash control
4495 			 */
4496 			if (hw->mac.type >= e1000_pch_spt)
4497 				hsflctl.regval =
4498 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4499 			else
4500 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4501 
4502 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4503 			if (hw->mac.type >= e1000_pch_spt)
4504 				ew32flash(ICH_FLASH_HSFSTS,
4505 					  hsflctl.regval << 16);
4506 			else
4507 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4508 
4509 			/* Write the last 24 bits of an index within the
4510 			 * block into Flash Linear address field in Flash
4511 			 * Address.
4512 			 */
4513 			flash_linear_addr += (j * sector_size);
4514 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4515 
4516 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4517 			if (!ret_val)
4518 				break;
4519 
4520 			/* Check if FCERR is set to 1.  If 1,
4521 			 * clear it and try the whole sequence
4522 			 * a few more times else Done
4523 			 */
4524 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4525 			if (hsfsts.hsf_status.flcerr)
4526 				/* repeat for some time before giving up */
4527 				continue;
4528 			else if (!hsfsts.hsf_status.flcdone)
4529 				return ret_val;
4530 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4531 	}
4532 
4533 	return 0;
4534 }
4535 
4536 /**
4537  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4538  *  @hw: pointer to the HW structure
4539  *  @data: Pointer to the LED settings
4540  *
4541  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4542  *  settings is all 0's or F's, set the LED default to a valid LED default
4543  *  setting.
4544  **/
4545 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4546 {
4547 	s32 ret_val;
4548 
4549 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4550 	if (ret_val) {
4551 		e_dbg("NVM Read Error\n");
4552 		return ret_val;
4553 	}
4554 
4555 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4556 		*data = ID_LED_DEFAULT_ICH8LAN;
4557 
4558 	return 0;
4559 }
4560 
4561 /**
4562  *  e1000_id_led_init_pchlan - store LED configurations
4563  *  @hw: pointer to the HW structure
4564  *
4565  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4566  *  the PHY LED configuration register.
4567  *
4568  *  PCH also does not have an "always on" or "always off" mode which
4569  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4570  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4571  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4572  *  link based on logic in e1000_led_[on|off]_pchlan().
4573  **/
4574 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4575 {
4576 	struct e1000_mac_info *mac = &hw->mac;
4577 	s32 ret_val;
4578 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4579 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4580 	u16 data, i, temp, shift;
4581 
4582 	/* Get default ID LED modes */
4583 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4584 	if (ret_val)
4585 		return ret_val;
4586 
4587 	mac->ledctl_default = er32(LEDCTL);
4588 	mac->ledctl_mode1 = mac->ledctl_default;
4589 	mac->ledctl_mode2 = mac->ledctl_default;
4590 
4591 	for (i = 0; i < 4; i++) {
4592 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4593 		shift = (i * 5);
4594 		switch (temp) {
4595 		case ID_LED_ON1_DEF2:
4596 		case ID_LED_ON1_ON2:
4597 		case ID_LED_ON1_OFF2:
4598 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4599 			mac->ledctl_mode1 |= (ledctl_on << shift);
4600 			break;
4601 		case ID_LED_OFF1_DEF2:
4602 		case ID_LED_OFF1_ON2:
4603 		case ID_LED_OFF1_OFF2:
4604 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4605 			mac->ledctl_mode1 |= (ledctl_off << shift);
4606 			break;
4607 		default:
4608 			/* Do nothing */
4609 			break;
4610 		}
4611 		switch (temp) {
4612 		case ID_LED_DEF1_ON2:
4613 		case ID_LED_ON1_ON2:
4614 		case ID_LED_OFF1_ON2:
4615 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4616 			mac->ledctl_mode2 |= (ledctl_on << shift);
4617 			break;
4618 		case ID_LED_DEF1_OFF2:
4619 		case ID_LED_ON1_OFF2:
4620 		case ID_LED_OFF1_OFF2:
4621 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4622 			mac->ledctl_mode2 |= (ledctl_off << shift);
4623 			break;
4624 		default:
4625 			/* Do nothing */
4626 			break;
4627 		}
4628 	}
4629 
4630 	return 0;
4631 }
4632 
4633 /**
4634  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4635  *  @hw: pointer to the HW structure
4636  *
4637  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4638  *  register, so the the bus width is hard coded.
4639  **/
4640 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4641 {
4642 	struct e1000_bus_info *bus = &hw->bus;
4643 	s32 ret_val;
4644 
4645 	ret_val = e1000e_get_bus_info_pcie(hw);
4646 
4647 	/* ICH devices are "PCI Express"-ish.  They have
4648 	 * a configuration space, but do not contain
4649 	 * PCI Express Capability registers, so bus width
4650 	 * must be hardcoded.
4651 	 */
4652 	if (bus->width == e1000_bus_width_unknown)
4653 		bus->width = e1000_bus_width_pcie_x1;
4654 
4655 	return ret_val;
4656 }
4657 
4658 /**
4659  *  e1000_reset_hw_ich8lan - Reset the hardware
4660  *  @hw: pointer to the HW structure
4661  *
4662  *  Does a full reset of the hardware which includes a reset of the PHY and
4663  *  MAC.
4664  **/
4665 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4666 {
4667 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4668 	u16 kum_cfg;
4669 	u32 ctrl, reg;
4670 	s32 ret_val;
4671 
4672 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4673 	 * on the last TLP read/write transaction when MAC is reset.
4674 	 */
4675 	ret_val = e1000e_disable_pcie_master(hw);
4676 	if (ret_val)
4677 		e_dbg("PCI-E Master disable polling has failed.\n");
4678 
4679 	e_dbg("Masking off all interrupts\n");
4680 	ew32(IMC, 0xffffffff);
4681 
4682 	/* Disable the Transmit and Receive units.  Then delay to allow
4683 	 * any pending transactions to complete before we hit the MAC
4684 	 * with the global reset.
4685 	 */
4686 	ew32(RCTL, 0);
4687 	ew32(TCTL, E1000_TCTL_PSP);
4688 	e1e_flush();
4689 
4690 	usleep_range(10000, 11000);
4691 
4692 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4693 	if (hw->mac.type == e1000_ich8lan) {
4694 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4695 		ew32(PBA, E1000_PBA_8K);
4696 		/* Set Packet Buffer Size to 16k. */
4697 		ew32(PBS, E1000_PBS_16K);
4698 	}
4699 
4700 	if (hw->mac.type == e1000_pchlan) {
4701 		/* Save the NVM K1 bit setting */
4702 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4703 		if (ret_val)
4704 			return ret_val;
4705 
4706 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4707 			dev_spec->nvm_k1_enabled = true;
4708 		else
4709 			dev_spec->nvm_k1_enabled = false;
4710 	}
4711 
4712 	ctrl = er32(CTRL);
4713 
4714 	if (!hw->phy.ops.check_reset_block(hw)) {
4715 		/* Full-chip reset requires MAC and PHY reset at the same
4716 		 * time to make sure the interface between MAC and the
4717 		 * external PHY is reset.
4718 		 */
4719 		ctrl |= E1000_CTRL_PHY_RST;
4720 
4721 		/* Gate automatic PHY configuration by hardware on
4722 		 * non-managed 82579
4723 		 */
4724 		if ((hw->mac.type == e1000_pch2lan) &&
4725 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4726 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4727 	}
4728 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4729 	e_dbg("Issuing a global reset to ich8lan\n");
4730 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4731 	/* cannot issue a flush here because it hangs the hardware */
4732 	msleep(20);
4733 
4734 	/* Set Phy Config Counter to 50msec */
4735 	if (hw->mac.type == e1000_pch2lan) {
4736 		reg = er32(FEXTNVM3);
4737 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4738 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4739 		ew32(FEXTNVM3, reg);
4740 	}
4741 
4742 	if (!ret_val)
4743 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4744 
4745 	if (ctrl & E1000_CTRL_PHY_RST) {
4746 		ret_val = hw->phy.ops.get_cfg_done(hw);
4747 		if (ret_val)
4748 			return ret_val;
4749 
4750 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4751 		if (ret_val)
4752 			return ret_val;
4753 	}
4754 
4755 	/* For PCH, this write will make sure that any noise
4756 	 * will be detected as a CRC error and be dropped rather than show up
4757 	 * as a bad packet to the DMA engine.
4758 	 */
4759 	if (hw->mac.type == e1000_pchlan)
4760 		ew32(CRC_OFFSET, 0x65656565);
4761 
4762 	ew32(IMC, 0xffffffff);
4763 	er32(ICR);
4764 
4765 	reg = er32(KABGTXD);
4766 	reg |= E1000_KABGTXD_BGSQLBIAS;
4767 	ew32(KABGTXD, reg);
4768 
4769 	return 0;
4770 }
4771 
4772 /**
4773  *  e1000_init_hw_ich8lan - Initialize the hardware
4774  *  @hw: pointer to the HW structure
4775  *
4776  *  Prepares the hardware for transmit and receive by doing the following:
4777  *   - initialize hardware bits
4778  *   - initialize LED identification
4779  *   - setup receive address registers
4780  *   - setup flow control
4781  *   - setup transmit descriptors
4782  *   - clear statistics
4783  **/
4784 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4785 {
4786 	struct e1000_mac_info *mac = &hw->mac;
4787 	u32 ctrl_ext, txdctl, snoop;
4788 	s32 ret_val;
4789 	u16 i;
4790 
4791 	e1000_initialize_hw_bits_ich8lan(hw);
4792 
4793 	/* Initialize identification LED */
4794 	ret_val = mac->ops.id_led_init(hw);
4795 	/* An error is not fatal and we should not stop init due to this */
4796 	if (ret_val)
4797 		e_dbg("Error initializing identification LED\n");
4798 
4799 	/* Setup the receive address. */
4800 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4801 
4802 	/* Zero out the Multicast HASH table */
4803 	e_dbg("Zeroing the MTA\n");
4804 	for (i = 0; i < mac->mta_reg_count; i++)
4805 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4806 
4807 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4808 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4809 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4810 	 */
4811 	if (hw->phy.type == e1000_phy_82578) {
4812 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4813 		i &= ~BM_WUC_HOST_WU_BIT;
4814 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4815 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4816 		if (ret_val)
4817 			return ret_val;
4818 	}
4819 
4820 	/* Setup link and flow control */
4821 	ret_val = mac->ops.setup_link(hw);
4822 
4823 	/* Set the transmit descriptor write-back policy for both queues */
4824 	txdctl = er32(TXDCTL(0));
4825 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4826 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4827 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4828 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4829 	ew32(TXDCTL(0), txdctl);
4830 	txdctl = er32(TXDCTL(1));
4831 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4832 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4833 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4834 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4835 	ew32(TXDCTL(1), txdctl);
4836 
4837 	/* ICH8 has opposite polarity of no_snoop bits.
4838 	 * By default, we should use snoop behavior.
4839 	 */
4840 	if (mac->type == e1000_ich8lan)
4841 		snoop = PCIE_ICH8_SNOOP_ALL;
4842 	else
4843 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4844 	e1000e_set_pcie_no_snoop(hw, snoop);
4845 
4846 	ctrl_ext = er32(CTRL_EXT);
4847 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4848 	ew32(CTRL_EXT, ctrl_ext);
4849 
4850 	/* Clear all of the statistics registers (clear on read).  It is
4851 	 * important that we do this after we have tried to establish link
4852 	 * because the symbol error count will increment wildly if there
4853 	 * is no link.
4854 	 */
4855 	e1000_clear_hw_cntrs_ich8lan(hw);
4856 
4857 	return ret_val;
4858 }
4859 
4860 /**
4861  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4862  *  @hw: pointer to the HW structure
4863  *
4864  *  Sets/Clears required hardware bits necessary for correctly setting up the
4865  *  hardware for transmit and receive.
4866  **/
4867 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4868 {
4869 	u32 reg;
4870 
4871 	/* Extended Device Control */
4872 	reg = er32(CTRL_EXT);
4873 	reg |= BIT(22);
4874 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4875 	if (hw->mac.type >= e1000_pchlan)
4876 		reg |= E1000_CTRL_EXT_PHYPDEN;
4877 	ew32(CTRL_EXT, reg);
4878 
4879 	/* Transmit Descriptor Control 0 */
4880 	reg = er32(TXDCTL(0));
4881 	reg |= BIT(22);
4882 	ew32(TXDCTL(0), reg);
4883 
4884 	/* Transmit Descriptor Control 1 */
4885 	reg = er32(TXDCTL(1));
4886 	reg |= BIT(22);
4887 	ew32(TXDCTL(1), reg);
4888 
4889 	/* Transmit Arbitration Control 0 */
4890 	reg = er32(TARC(0));
4891 	if (hw->mac.type == e1000_ich8lan)
4892 		reg |= BIT(28) | BIT(29);
4893 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4894 	ew32(TARC(0), reg);
4895 
4896 	/* Transmit Arbitration Control 1 */
4897 	reg = er32(TARC(1));
4898 	if (er32(TCTL) & E1000_TCTL_MULR)
4899 		reg &= ~BIT(28);
4900 	else
4901 		reg |= BIT(28);
4902 	reg |= BIT(24) | BIT(26) | BIT(30);
4903 	ew32(TARC(1), reg);
4904 
4905 	/* Device Status */
4906 	if (hw->mac.type == e1000_ich8lan) {
4907 		reg = er32(STATUS);
4908 		reg &= ~BIT(31);
4909 		ew32(STATUS, reg);
4910 	}
4911 
4912 	/* work-around descriptor data corruption issue during nfs v2 udp
4913 	 * traffic, just disable the nfs filtering capability
4914 	 */
4915 	reg = er32(RFCTL);
4916 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4917 
4918 	/* Disable IPv6 extension header parsing because some malformed
4919 	 * IPv6 headers can hang the Rx.
4920 	 */
4921 	if (hw->mac.type == e1000_ich8lan)
4922 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4923 	ew32(RFCTL, reg);
4924 
4925 	/* Enable ECC on Lynxpoint */
4926 	if (hw->mac.type >= e1000_pch_lpt) {
4927 		reg = er32(PBECCSTS);
4928 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4929 		ew32(PBECCSTS, reg);
4930 
4931 		reg = er32(CTRL);
4932 		reg |= E1000_CTRL_MEHE;
4933 		ew32(CTRL, reg);
4934 	}
4935 }
4936 
4937 /**
4938  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4939  *  @hw: pointer to the HW structure
4940  *
4941  *  Determines which flow control settings to use, then configures flow
4942  *  control.  Calls the appropriate media-specific link configuration
4943  *  function.  Assuming the adapter has a valid link partner, a valid link
4944  *  should be established.  Assumes the hardware has previously been reset
4945  *  and the transmitter and receiver are not enabled.
4946  **/
4947 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4948 {
4949 	s32 ret_val;
4950 
4951 	if (hw->phy.ops.check_reset_block(hw))
4952 		return 0;
4953 
4954 	/* ICH parts do not have a word in the NVM to determine
4955 	 * the default flow control setting, so we explicitly
4956 	 * set it to full.
4957 	 */
4958 	if (hw->fc.requested_mode == e1000_fc_default) {
4959 		/* Workaround h/w hang when Tx flow control enabled */
4960 		if (hw->mac.type == e1000_pchlan)
4961 			hw->fc.requested_mode = e1000_fc_rx_pause;
4962 		else
4963 			hw->fc.requested_mode = e1000_fc_full;
4964 	}
4965 
4966 	/* Save off the requested flow control mode for use later.  Depending
4967 	 * on the link partner's capabilities, we may or may not use this mode.
4968 	 */
4969 	hw->fc.current_mode = hw->fc.requested_mode;
4970 
4971 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4972 
4973 	/* Continue to configure the copper link. */
4974 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4975 	if (ret_val)
4976 		return ret_val;
4977 
4978 	ew32(FCTTV, hw->fc.pause_time);
4979 	if ((hw->phy.type == e1000_phy_82578) ||
4980 	    (hw->phy.type == e1000_phy_82579) ||
4981 	    (hw->phy.type == e1000_phy_i217) ||
4982 	    (hw->phy.type == e1000_phy_82577)) {
4983 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4984 
4985 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4986 				   hw->fc.pause_time);
4987 		if (ret_val)
4988 			return ret_val;
4989 	}
4990 
4991 	return e1000e_set_fc_watermarks(hw);
4992 }
4993 
4994 /**
4995  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4996  *  @hw: pointer to the HW structure
4997  *
4998  *  Configures the kumeran interface to the PHY to wait the appropriate time
4999  *  when polling the PHY, then call the generic setup_copper_link to finish
5000  *  configuring the copper link.
5001  **/
5002 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5003 {
5004 	u32 ctrl;
5005 	s32 ret_val;
5006 	u16 reg_data;
5007 
5008 	ctrl = er32(CTRL);
5009 	ctrl |= E1000_CTRL_SLU;
5010 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5011 	ew32(CTRL, ctrl);
5012 
5013 	/* Set the mac to wait the maximum time between each iteration
5014 	 * and increase the max iterations when polling the phy;
5015 	 * this fixes erroneous timeouts at 10Mbps.
5016 	 */
5017 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5018 	if (ret_val)
5019 		return ret_val;
5020 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5021 				       &reg_data);
5022 	if (ret_val)
5023 		return ret_val;
5024 	reg_data |= 0x3F;
5025 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5026 					reg_data);
5027 	if (ret_val)
5028 		return ret_val;
5029 
5030 	switch (hw->phy.type) {
5031 	case e1000_phy_igp_3:
5032 		ret_val = e1000e_copper_link_setup_igp(hw);
5033 		if (ret_val)
5034 			return ret_val;
5035 		break;
5036 	case e1000_phy_bm:
5037 	case e1000_phy_82578:
5038 		ret_val = e1000e_copper_link_setup_m88(hw);
5039 		if (ret_val)
5040 			return ret_val;
5041 		break;
5042 	case e1000_phy_82577:
5043 	case e1000_phy_82579:
5044 		ret_val = e1000_copper_link_setup_82577(hw);
5045 		if (ret_val)
5046 			return ret_val;
5047 		break;
5048 	case e1000_phy_ife:
5049 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5050 		if (ret_val)
5051 			return ret_val;
5052 
5053 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5054 
5055 		switch (hw->phy.mdix) {
5056 		case 1:
5057 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5058 			break;
5059 		case 2:
5060 			reg_data |= IFE_PMC_FORCE_MDIX;
5061 			break;
5062 		case 0:
5063 		default:
5064 			reg_data |= IFE_PMC_AUTO_MDIX;
5065 			break;
5066 		}
5067 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5068 		if (ret_val)
5069 			return ret_val;
5070 		break;
5071 	default:
5072 		break;
5073 	}
5074 
5075 	return e1000e_setup_copper_link(hw);
5076 }
5077 
5078 /**
5079  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5080  *  @hw: pointer to the HW structure
5081  *
5082  *  Calls the PHY specific link setup function and then calls the
5083  *  generic setup_copper_link to finish configuring the link for
5084  *  Lynxpoint PCH devices
5085  **/
5086 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5087 {
5088 	u32 ctrl;
5089 	s32 ret_val;
5090 
5091 	ctrl = er32(CTRL);
5092 	ctrl |= E1000_CTRL_SLU;
5093 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5094 	ew32(CTRL, ctrl);
5095 
5096 	ret_val = e1000_copper_link_setup_82577(hw);
5097 	if (ret_val)
5098 		return ret_val;
5099 
5100 	return e1000e_setup_copper_link(hw);
5101 }
5102 
5103 /**
5104  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5105  *  @hw: pointer to the HW structure
5106  *  @speed: pointer to store current link speed
5107  *  @duplex: pointer to store the current link duplex
5108  *
5109  *  Calls the generic get_speed_and_duplex to retrieve the current link
5110  *  information and then calls the Kumeran lock loss workaround for links at
5111  *  gigabit speeds.
5112  **/
5113 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5114 					  u16 *duplex)
5115 {
5116 	s32 ret_val;
5117 
5118 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5119 	if (ret_val)
5120 		return ret_val;
5121 
5122 	if ((hw->mac.type == e1000_ich8lan) &&
5123 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5124 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5125 	}
5126 
5127 	return ret_val;
5128 }
5129 
5130 /**
5131  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5132  *  @hw: pointer to the HW structure
5133  *
5134  *  Work-around for 82566 Kumeran PCS lock loss:
5135  *  On link status change (i.e. PCI reset, speed change) and link is up and
5136  *  speed is gigabit-
5137  *    0) if workaround is optionally disabled do nothing
5138  *    1) wait 1ms for Kumeran link to come up
5139  *    2) check Kumeran Diagnostic register PCS lock loss bit
5140  *    3) if not set the link is locked (all is good), otherwise...
5141  *    4) reset the PHY
5142  *    5) repeat up to 10 times
5143  *  Note: this is only called for IGP3 copper when speed is 1gb.
5144  **/
5145 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5146 {
5147 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5148 	u32 phy_ctrl;
5149 	s32 ret_val;
5150 	u16 i, data;
5151 	bool link;
5152 
5153 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5154 		return 0;
5155 
5156 	/* Make sure link is up before proceeding.  If not just return.
5157 	 * Attempting this while link is negotiating fouled up link
5158 	 * stability
5159 	 */
5160 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5161 	if (!link)
5162 		return 0;
5163 
5164 	for (i = 0; i < 10; i++) {
5165 		/* read once to clear */
5166 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5167 		if (ret_val)
5168 			return ret_val;
5169 		/* and again to get new status */
5170 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5171 		if (ret_val)
5172 			return ret_val;
5173 
5174 		/* check for PCS lock */
5175 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5176 			return 0;
5177 
5178 		/* Issue PHY reset */
5179 		e1000_phy_hw_reset(hw);
5180 		mdelay(5);
5181 	}
5182 	/* Disable GigE link negotiation */
5183 	phy_ctrl = er32(PHY_CTRL);
5184 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5185 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5186 	ew32(PHY_CTRL, phy_ctrl);
5187 
5188 	/* Call gig speed drop workaround on Gig disable before accessing
5189 	 * any PHY registers
5190 	 */
5191 	e1000e_gig_downshift_workaround_ich8lan(hw);
5192 
5193 	/* unable to acquire PCS lock */
5194 	return -E1000_ERR_PHY;
5195 }
5196 
5197 /**
5198  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5199  *  @hw: pointer to the HW structure
5200  *  @state: boolean value used to set the current Kumeran workaround state
5201  *
5202  *  If ICH8, set the current Kumeran workaround state (enabled - true
5203  *  /disabled - false).
5204  **/
5205 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5206 						  bool state)
5207 {
5208 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5209 
5210 	if (hw->mac.type != e1000_ich8lan) {
5211 		e_dbg("Workaround applies to ICH8 only.\n");
5212 		return;
5213 	}
5214 
5215 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5216 }
5217 
5218 /**
5219  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5220  *  @hw: pointer to the HW structure
5221  *
5222  *  Workaround for 82566 power-down on D3 entry:
5223  *    1) disable gigabit link
5224  *    2) write VR power-down enable
5225  *    3) read it back
5226  *  Continue if successful, else issue LCD reset and repeat
5227  **/
5228 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5229 {
5230 	u32 reg;
5231 	u16 data;
5232 	u8 retry = 0;
5233 
5234 	if (hw->phy.type != e1000_phy_igp_3)
5235 		return;
5236 
5237 	/* Try the workaround twice (if needed) */
5238 	do {
5239 		/* Disable link */
5240 		reg = er32(PHY_CTRL);
5241 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5242 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5243 		ew32(PHY_CTRL, reg);
5244 
5245 		/* Call gig speed drop workaround on Gig disable before
5246 		 * accessing any PHY registers
5247 		 */
5248 		if (hw->mac.type == e1000_ich8lan)
5249 			e1000e_gig_downshift_workaround_ich8lan(hw);
5250 
5251 		/* Write VR power-down enable */
5252 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5253 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5254 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5255 
5256 		/* Read it back and test */
5257 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5258 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5259 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5260 			break;
5261 
5262 		/* Issue PHY reset and repeat at most one more time */
5263 		reg = er32(CTRL);
5264 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5265 		retry++;
5266 	} while (retry);
5267 }
5268 
5269 /**
5270  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5271  *  @hw: pointer to the HW structure
5272  *
5273  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5274  *  LPLU, Gig disable, MDIC PHY reset):
5275  *    1) Set Kumeran Near-end loopback
5276  *    2) Clear Kumeran Near-end loopback
5277  *  Should only be called for ICH8[m] devices with any 1G Phy.
5278  **/
5279 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5280 {
5281 	s32 ret_val;
5282 	u16 reg_data;
5283 
5284 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5285 		return;
5286 
5287 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5288 				       &reg_data);
5289 	if (ret_val)
5290 		return;
5291 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5292 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5293 					reg_data);
5294 	if (ret_val)
5295 		return;
5296 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5297 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5298 }
5299 
5300 /**
5301  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5302  *  @hw: pointer to the HW structure
5303  *
5304  *  During S0 to Sx transition, it is possible the link remains at gig
5305  *  instead of negotiating to a lower speed.  Before going to Sx, set
5306  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5307  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5308  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5309  *  needs to be written.
5310  *  Parts that support (and are linked to a partner which support) EEE in
5311  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5312  *  than 10Mbps w/o EEE.
5313  **/
5314 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5315 {
5316 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5317 	u32 phy_ctrl;
5318 	s32 ret_val;
5319 
5320 	phy_ctrl = er32(PHY_CTRL);
5321 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5322 
5323 	if (hw->phy.type == e1000_phy_i217) {
5324 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5325 
5326 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5327 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5328 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5329 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5330 		    (hw->mac.type >= e1000_pch_spt)) {
5331 			u32 fextnvm6 = er32(FEXTNVM6);
5332 
5333 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5334 		}
5335 
5336 		ret_val = hw->phy.ops.acquire(hw);
5337 		if (ret_val)
5338 			goto out;
5339 
5340 		if (!dev_spec->eee_disable) {
5341 			u16 eee_advert;
5342 
5343 			ret_val =
5344 			    e1000_read_emi_reg_locked(hw,
5345 						      I217_EEE_ADVERTISEMENT,
5346 						      &eee_advert);
5347 			if (ret_val)
5348 				goto release;
5349 
5350 			/* Disable LPLU if both link partners support 100BaseT
5351 			 * EEE and 100Full is advertised on both ends of the
5352 			 * link, and enable Auto Enable LPI since there will
5353 			 * be no driver to enable LPI while in Sx.
5354 			 */
5355 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5356 			    (dev_spec->eee_lp_ability &
5357 			     I82579_EEE_100_SUPPORTED) &&
5358 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5359 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5360 					      E1000_PHY_CTRL_NOND0A_LPLU);
5361 
5362 				/* Set Auto Enable LPI after link up */
5363 				e1e_rphy_locked(hw,
5364 						I217_LPI_GPIO_CTRL, &phy_reg);
5365 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5366 				e1e_wphy_locked(hw,
5367 						I217_LPI_GPIO_CTRL, phy_reg);
5368 			}
5369 		}
5370 
5371 		/* For i217 Intel Rapid Start Technology support,
5372 		 * when the system is going into Sx and no manageability engine
5373 		 * is present, the driver must configure proxy to reset only on
5374 		 * power good.  LPI (Low Power Idle) state must also reset only
5375 		 * on power good, as well as the MTA (Multicast table array).
5376 		 * The SMBus release must also be disabled on LCD reset.
5377 		 */
5378 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5379 			/* Enable proxy to reset only on power good. */
5380 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5381 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5382 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5383 
5384 			/* Set bit enable LPI (EEE) to reset only on
5385 			 * power good.
5386 			 */
5387 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5388 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5389 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5390 
5391 			/* Disable the SMB release on LCD reset. */
5392 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5393 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5394 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5395 		}
5396 
5397 		/* Enable MTA to reset for Intel Rapid Start Technology
5398 		 * Support
5399 		 */
5400 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5401 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5402 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5403 
5404 release:
5405 		hw->phy.ops.release(hw);
5406 	}
5407 out:
5408 	ew32(PHY_CTRL, phy_ctrl);
5409 
5410 	if (hw->mac.type == e1000_ich8lan)
5411 		e1000e_gig_downshift_workaround_ich8lan(hw);
5412 
5413 	if (hw->mac.type >= e1000_pchlan) {
5414 		e1000_oem_bits_config_ich8lan(hw, false);
5415 
5416 		/* Reset PHY to activate OEM bits on 82577/8 */
5417 		if (hw->mac.type == e1000_pchlan)
5418 			e1000e_phy_hw_reset_generic(hw);
5419 
5420 		ret_val = hw->phy.ops.acquire(hw);
5421 		if (ret_val)
5422 			return;
5423 		e1000_write_smbus_addr(hw);
5424 		hw->phy.ops.release(hw);
5425 	}
5426 }
5427 
5428 /**
5429  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5430  *  @hw: pointer to the HW structure
5431  *
5432  *  During Sx to S0 transitions on non-managed devices or managed devices
5433  *  on which PHY resets are not blocked, if the PHY registers cannot be
5434  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5435  *  the PHY.
5436  *  On i217, setup Intel Rapid Start Technology.
5437  **/
5438 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5439 {
5440 	s32 ret_val;
5441 
5442 	if (hw->mac.type < e1000_pch2lan)
5443 		return;
5444 
5445 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5446 	if (ret_val) {
5447 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5448 		return;
5449 	}
5450 
5451 	/* For i217 Intel Rapid Start Technology support when the system
5452 	 * is transitioning from Sx and no manageability engine is present
5453 	 * configure SMBus to restore on reset, disable proxy, and enable
5454 	 * the reset on MTA (Multicast table array).
5455 	 */
5456 	if (hw->phy.type == e1000_phy_i217) {
5457 		u16 phy_reg;
5458 
5459 		ret_val = hw->phy.ops.acquire(hw);
5460 		if (ret_val) {
5461 			e_dbg("Failed to setup iRST\n");
5462 			return;
5463 		}
5464 
5465 		/* Clear Auto Enable LPI after link up */
5466 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5467 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5468 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5469 
5470 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5471 			/* Restore clear on SMB if no manageability engine
5472 			 * is present
5473 			 */
5474 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5475 			if (ret_val)
5476 				goto release;
5477 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5478 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5479 
5480 			/* Disable Proxy */
5481 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5482 		}
5483 		/* Enable reset on MTA */
5484 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5485 		if (ret_val)
5486 			goto release;
5487 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5488 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5489 release:
5490 		if (ret_val)
5491 			e_dbg("Error %d in resume workarounds\n", ret_val);
5492 		hw->phy.ops.release(hw);
5493 	}
5494 }
5495 
5496 /**
5497  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5498  *  @hw: pointer to the HW structure
5499  *
5500  *  Return the LED back to the default configuration.
5501  **/
5502 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5503 {
5504 	if (hw->phy.type == e1000_phy_ife)
5505 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5506 
5507 	ew32(LEDCTL, hw->mac.ledctl_default);
5508 	return 0;
5509 }
5510 
5511 /**
5512  *  e1000_led_on_ich8lan - Turn LEDs on
5513  *  @hw: pointer to the HW structure
5514  *
5515  *  Turn on the LEDs.
5516  **/
5517 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5518 {
5519 	if (hw->phy.type == e1000_phy_ife)
5520 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5521 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5522 
5523 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5524 	return 0;
5525 }
5526 
5527 /**
5528  *  e1000_led_off_ich8lan - Turn LEDs off
5529  *  @hw: pointer to the HW structure
5530  *
5531  *  Turn off the LEDs.
5532  **/
5533 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5534 {
5535 	if (hw->phy.type == e1000_phy_ife)
5536 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5537 				(IFE_PSCL_PROBE_MODE |
5538 				 IFE_PSCL_PROBE_LEDS_OFF));
5539 
5540 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5541 	return 0;
5542 }
5543 
5544 /**
5545  *  e1000_setup_led_pchlan - Configures SW controllable LED
5546  *  @hw: pointer to the HW structure
5547  *
5548  *  This prepares the SW controllable LED for use.
5549  **/
5550 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5551 {
5552 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5553 }
5554 
5555 /**
5556  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5557  *  @hw: pointer to the HW structure
5558  *
5559  *  Return the LED back to the default configuration.
5560  **/
5561 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5562 {
5563 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5564 }
5565 
5566 /**
5567  *  e1000_led_on_pchlan - Turn LEDs on
5568  *  @hw: pointer to the HW structure
5569  *
5570  *  Turn on the LEDs.
5571  **/
5572 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5573 {
5574 	u16 data = (u16)hw->mac.ledctl_mode2;
5575 	u32 i, led;
5576 
5577 	/* If no link, then turn LED on by setting the invert bit
5578 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5579 	 */
5580 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5581 		for (i = 0; i < 3; i++) {
5582 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5583 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5584 			    E1000_LEDCTL_MODE_LINK_UP)
5585 				continue;
5586 			if (led & E1000_PHY_LED0_IVRT)
5587 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5588 			else
5589 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5590 		}
5591 	}
5592 
5593 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5594 }
5595 
5596 /**
5597  *  e1000_led_off_pchlan - Turn LEDs off
5598  *  @hw: pointer to the HW structure
5599  *
5600  *  Turn off the LEDs.
5601  **/
5602 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5603 {
5604 	u16 data = (u16)hw->mac.ledctl_mode1;
5605 	u32 i, led;
5606 
5607 	/* If no link, then turn LED off by clearing the invert bit
5608 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5609 	 */
5610 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5611 		for (i = 0; i < 3; i++) {
5612 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5613 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5614 			    E1000_LEDCTL_MODE_LINK_UP)
5615 				continue;
5616 			if (led & E1000_PHY_LED0_IVRT)
5617 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5618 			else
5619 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5620 		}
5621 	}
5622 
5623 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5624 }
5625 
5626 /**
5627  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5628  *  @hw: pointer to the HW structure
5629  *
5630  *  Read appropriate register for the config done bit for completion status
5631  *  and configure the PHY through s/w for EEPROM-less parts.
5632  *
5633  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5634  *  config done bit, so only an error is logged and continues.  If we were
5635  *  to return with error, EEPROM-less silicon would not be able to be reset
5636  *  or change link.
5637  **/
5638 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5639 {
5640 	s32 ret_val = 0;
5641 	u32 bank = 0;
5642 	u32 status;
5643 
5644 	e1000e_get_cfg_done_generic(hw);
5645 
5646 	/* Wait for indication from h/w that it has completed basic config */
5647 	if (hw->mac.type >= e1000_ich10lan) {
5648 		e1000_lan_init_done_ich8lan(hw);
5649 	} else {
5650 		ret_val = e1000e_get_auto_rd_done(hw);
5651 		if (ret_val) {
5652 			/* When auto config read does not complete, do not
5653 			 * return with an error. This can happen in situations
5654 			 * where there is no eeprom and prevents getting link.
5655 			 */
5656 			e_dbg("Auto Read Done did not complete\n");
5657 			ret_val = 0;
5658 		}
5659 	}
5660 
5661 	/* Clear PHY Reset Asserted bit */
5662 	status = er32(STATUS);
5663 	if (status & E1000_STATUS_PHYRA)
5664 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5665 	else
5666 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5667 
5668 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5669 	if (hw->mac.type <= e1000_ich9lan) {
5670 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5671 		    (hw->phy.type == e1000_phy_igp_3)) {
5672 			e1000e_phy_init_script_igp3(hw);
5673 		}
5674 	} else {
5675 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5676 			/* Maybe we should do a basic PHY config */
5677 			e_dbg("EEPROM not present\n");
5678 			ret_val = -E1000_ERR_CONFIG;
5679 		}
5680 	}
5681 
5682 	return ret_val;
5683 }
5684 
5685 /**
5686  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5687  * @hw: pointer to the HW structure
5688  *
5689  * In the case of a PHY power down to save power, or to turn off link during a
5690  * driver unload, or wake on lan is not enabled, remove the link.
5691  **/
5692 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5693 {
5694 	/* If the management interface is not enabled, then power down */
5695 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5696 	      hw->phy.ops.check_reset_block(hw)))
5697 		e1000_power_down_phy_copper(hw);
5698 }
5699 
5700 /**
5701  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5702  *  @hw: pointer to the HW structure
5703  *
5704  *  Clears hardware counters specific to the silicon family and calls
5705  *  clear_hw_cntrs_generic to clear all general purpose counters.
5706  **/
5707 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5708 {
5709 	u16 phy_data;
5710 	s32 ret_val;
5711 
5712 	e1000e_clear_hw_cntrs_base(hw);
5713 
5714 	er32(ALGNERRC);
5715 	er32(RXERRC);
5716 	er32(TNCRS);
5717 	er32(CEXTERR);
5718 	er32(TSCTC);
5719 	er32(TSCTFC);
5720 
5721 	er32(MGTPRC);
5722 	er32(MGTPDC);
5723 	er32(MGTPTC);
5724 
5725 	er32(IAC);
5726 	er32(ICRXOC);
5727 
5728 	/* Clear PHY statistics registers */
5729 	if ((hw->phy.type == e1000_phy_82578) ||
5730 	    (hw->phy.type == e1000_phy_82579) ||
5731 	    (hw->phy.type == e1000_phy_i217) ||
5732 	    (hw->phy.type == e1000_phy_82577)) {
5733 		ret_val = hw->phy.ops.acquire(hw);
5734 		if (ret_val)
5735 			return;
5736 		ret_val = hw->phy.ops.set_page(hw,
5737 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5738 		if (ret_val)
5739 			goto release;
5740 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5741 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5742 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5743 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5744 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5745 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5746 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5747 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5748 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5749 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5750 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5751 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5752 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5753 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5754 release:
5755 		hw->phy.ops.release(hw);
5756 	}
5757 }
5758 
5759 static const struct e1000_mac_operations ich8_mac_ops = {
5760 	/* check_mng_mode dependent on mac type */
5761 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5762 	/* cleanup_led dependent on mac type */
5763 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5764 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5765 	.set_lan_id		= e1000_set_lan_id_single_port,
5766 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5767 	/* led_on dependent on mac type */
5768 	/* led_off dependent on mac type */
5769 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5770 	.reset_hw		= e1000_reset_hw_ich8lan,
5771 	.init_hw		= e1000_init_hw_ich8lan,
5772 	.setup_link		= e1000_setup_link_ich8lan,
5773 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5774 	/* id_led_init dependent on mac type */
5775 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5776 	.rar_set		= e1000e_rar_set_generic,
5777 	.rar_get_count		= e1000e_rar_get_count_generic,
5778 };
5779 
5780 static const struct e1000_phy_operations ich8_phy_ops = {
5781 	.acquire		= e1000_acquire_swflag_ich8lan,
5782 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5783 	.commit			= NULL,
5784 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5785 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5786 	.read_reg		= e1000e_read_phy_reg_igp,
5787 	.release		= e1000_release_swflag_ich8lan,
5788 	.reset			= e1000_phy_hw_reset_ich8lan,
5789 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5790 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5791 	.write_reg		= e1000e_write_phy_reg_igp,
5792 };
5793 
5794 static const struct e1000_nvm_operations ich8_nvm_ops = {
5795 	.acquire		= e1000_acquire_nvm_ich8lan,
5796 	.read			= e1000_read_nvm_ich8lan,
5797 	.release		= e1000_release_nvm_ich8lan,
5798 	.reload			= e1000e_reload_nvm_generic,
5799 	.update			= e1000_update_nvm_checksum_ich8lan,
5800 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5801 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5802 	.write			= e1000_write_nvm_ich8lan,
5803 };
5804 
5805 static const struct e1000_nvm_operations spt_nvm_ops = {
5806 	.acquire		= e1000_acquire_nvm_ich8lan,
5807 	.release		= e1000_release_nvm_ich8lan,
5808 	.read			= e1000_read_nvm_spt,
5809 	.update			= e1000_update_nvm_checksum_spt,
5810 	.reload			= e1000e_reload_nvm_generic,
5811 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5812 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5813 	.write			= e1000_write_nvm_ich8lan,
5814 };
5815 
5816 const struct e1000_info e1000_ich8_info = {
5817 	.mac			= e1000_ich8lan,
5818 	.flags			= FLAG_HAS_WOL
5819 				  | FLAG_IS_ICH
5820 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5821 				  | FLAG_HAS_AMT
5822 				  | FLAG_HAS_FLASH
5823 				  | FLAG_APME_IN_WUC,
5824 	.pba			= 8,
5825 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5826 	.get_variants		= e1000_get_variants_ich8lan,
5827 	.mac_ops		= &ich8_mac_ops,
5828 	.phy_ops		= &ich8_phy_ops,
5829 	.nvm_ops		= &ich8_nvm_ops,
5830 };
5831 
5832 const struct e1000_info e1000_ich9_info = {
5833 	.mac			= e1000_ich9lan,
5834 	.flags			= FLAG_HAS_JUMBO_FRAMES
5835 				  | FLAG_IS_ICH
5836 				  | FLAG_HAS_WOL
5837 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5838 				  | FLAG_HAS_AMT
5839 				  | FLAG_HAS_FLASH
5840 				  | FLAG_APME_IN_WUC,
5841 	.pba			= 18,
5842 	.max_hw_frame_size	= DEFAULT_JUMBO,
5843 	.get_variants		= e1000_get_variants_ich8lan,
5844 	.mac_ops		= &ich8_mac_ops,
5845 	.phy_ops		= &ich8_phy_ops,
5846 	.nvm_ops		= &ich8_nvm_ops,
5847 };
5848 
5849 const struct e1000_info e1000_ich10_info = {
5850 	.mac			= e1000_ich10lan,
5851 	.flags			= FLAG_HAS_JUMBO_FRAMES
5852 				  | FLAG_IS_ICH
5853 				  | FLAG_HAS_WOL
5854 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5855 				  | FLAG_HAS_AMT
5856 				  | FLAG_HAS_FLASH
5857 				  | FLAG_APME_IN_WUC,
5858 	.pba			= 18,
5859 	.max_hw_frame_size	= DEFAULT_JUMBO,
5860 	.get_variants		= e1000_get_variants_ich8lan,
5861 	.mac_ops		= &ich8_mac_ops,
5862 	.phy_ops		= &ich8_phy_ops,
5863 	.nvm_ops		= &ich8_nvm_ops,
5864 };
5865 
5866 const struct e1000_info e1000_pch_info = {
5867 	.mac			= e1000_pchlan,
5868 	.flags			= FLAG_IS_ICH
5869 				  | FLAG_HAS_WOL
5870 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5871 				  | FLAG_HAS_AMT
5872 				  | FLAG_HAS_FLASH
5873 				  | FLAG_HAS_JUMBO_FRAMES
5874 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5875 				  | FLAG_APME_IN_WUC,
5876 	.flags2			= FLAG2_HAS_PHY_STATS,
5877 	.pba			= 26,
5878 	.max_hw_frame_size	= 4096,
5879 	.get_variants		= e1000_get_variants_ich8lan,
5880 	.mac_ops		= &ich8_mac_ops,
5881 	.phy_ops		= &ich8_phy_ops,
5882 	.nvm_ops		= &ich8_nvm_ops,
5883 };
5884 
5885 const struct e1000_info e1000_pch2_info = {
5886 	.mac			= e1000_pch2lan,
5887 	.flags			= FLAG_IS_ICH
5888 				  | FLAG_HAS_WOL
5889 				  | FLAG_HAS_HW_TIMESTAMP
5890 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5891 				  | FLAG_HAS_AMT
5892 				  | FLAG_HAS_FLASH
5893 				  | FLAG_HAS_JUMBO_FRAMES
5894 				  | FLAG_APME_IN_WUC,
5895 	.flags2			= FLAG2_HAS_PHY_STATS
5896 				  | FLAG2_HAS_EEE
5897 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5898 	.pba			= 26,
5899 	.max_hw_frame_size	= 9022,
5900 	.get_variants		= e1000_get_variants_ich8lan,
5901 	.mac_ops		= &ich8_mac_ops,
5902 	.phy_ops		= &ich8_phy_ops,
5903 	.nvm_ops		= &ich8_nvm_ops,
5904 };
5905 
5906 const struct e1000_info e1000_pch_lpt_info = {
5907 	.mac			= e1000_pch_lpt,
5908 	.flags			= FLAG_IS_ICH
5909 				  | FLAG_HAS_WOL
5910 				  | FLAG_HAS_HW_TIMESTAMP
5911 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5912 				  | FLAG_HAS_AMT
5913 				  | FLAG_HAS_FLASH
5914 				  | FLAG_HAS_JUMBO_FRAMES
5915 				  | FLAG_APME_IN_WUC,
5916 	.flags2			= FLAG2_HAS_PHY_STATS
5917 				  | FLAG2_HAS_EEE
5918 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5919 	.pba			= 26,
5920 	.max_hw_frame_size	= 9022,
5921 	.get_variants		= e1000_get_variants_ich8lan,
5922 	.mac_ops		= &ich8_mac_ops,
5923 	.phy_ops		= &ich8_phy_ops,
5924 	.nvm_ops		= &ich8_nvm_ops,
5925 };
5926 
5927 const struct e1000_info e1000_pch_spt_info = {
5928 	.mac			= e1000_pch_spt,
5929 	.flags			= FLAG_IS_ICH
5930 				  | FLAG_HAS_WOL
5931 				  | FLAG_HAS_HW_TIMESTAMP
5932 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5933 				  | FLAG_HAS_AMT
5934 				  | FLAG_HAS_FLASH
5935 				  | FLAG_HAS_JUMBO_FRAMES
5936 				  | FLAG_APME_IN_WUC,
5937 	.flags2			= FLAG2_HAS_PHY_STATS
5938 				  | FLAG2_HAS_EEE,
5939 	.pba			= 26,
5940 	.max_hw_frame_size	= 9022,
5941 	.get_variants		= e1000_get_variants_ich8lan,
5942 	.mac_ops		= &ich8_mac_ops,
5943 	.phy_ops		= &ich8_phy_ops,
5944 	.nvm_ops		= &spt_nvm_ops,
5945 };
5946 
5947 const struct e1000_info e1000_pch_cnp_info = {
5948 	.mac			= e1000_pch_cnp,
5949 	.flags			= FLAG_IS_ICH
5950 				  | FLAG_HAS_WOL
5951 				  | FLAG_HAS_HW_TIMESTAMP
5952 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5953 				  | FLAG_HAS_AMT
5954 				  | FLAG_HAS_FLASH
5955 				  | FLAG_HAS_JUMBO_FRAMES
5956 				  | FLAG_APME_IN_WUC,
5957 	.flags2			= FLAG2_HAS_PHY_STATS
5958 				  | FLAG2_HAS_EEE,
5959 	.pba			= 26,
5960 	.max_hw_frame_size	= 9022,
5961 	.get_variants		= e1000_get_variants_ich8lan,
5962 	.mac_ops		= &ich8_mac_ops,
5963 	.phy_ops		= &ich8_phy_ops,
5964 	.nvm_ops		= &spt_nvm_ops,
5965 };
5966