1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Unforce SMBus mode in PHY */
226 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229 
230 			/* Unforce SMBus mode in MAC */
231 			mac_reg = er32(CTRL_EXT);
232 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 			ew32(CTRL_EXT, mac_reg);
234 		}
235 	}
236 
237 	return true;
238 }
239 
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 	u32 mac_reg;
250 
251 	/* Set Phy Config Counter to 50msec */
252 	mac_reg = er32(FEXTNVM3);
253 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 	ew32(FEXTNVM3, mac_reg);
256 
257 	/* Toggle LANPHYPC Value bit */
258 	mac_reg = er32(CTRL);
259 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 	ew32(CTRL, mac_reg);
262 	e1e_flush();
263 	usleep_range(10, 20);
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 
268 	if (hw->mac.type < e1000_pch_lpt) {
269 		msleep(50);
270 	} else {
271 		u16 count = 20;
272 
273 		do {
274 			usleep_range(5000, 6000);
275 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276 
277 		msleep(30);
278 	}
279 }
280 
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 	struct e1000_adapter *adapter = hw->adapter;
291 	u32 mac_reg, fwsm = er32(FWSM);
292 	s32 ret_val;
293 
294 	/* Gate automatic PHY configuration by hardware on managed and
295 	 * non-managed 82579 and newer adapters.
296 	 */
297 	e1000_gate_hw_phy_config_ich8lan(hw, true);
298 
299 	/* It is not possible to be certain of the current state of ULP
300 	 * so forcibly disable it.
301 	 */
302 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 	if (ret_val)
305 		e_warn("Failed to disable ULP\n");
306 
307 	ret_val = hw->phy.ops.acquire(hw);
308 	if (ret_val) {
309 		e_dbg("Failed to initialize PHY flow\n");
310 		goto out;
311 	}
312 
313 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314 	 * inaccessible and resetting the PHY is not blocked, toggle the
315 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 	 */
317 	switch (hw->mac.type) {
318 	case e1000_pch_lpt:
319 	case e1000_pch_spt:
320 	case e1000_pch_cnp:
321 	case e1000_pch_tgp:
322 	case e1000_pch_adp:
323 		if (e1000_phy_is_accessible_pchlan(hw))
324 			break;
325 
326 		/* Before toggling LANPHYPC, see if PHY is accessible by
327 		 * forcing MAC to SMBus mode first.
328 		 */
329 		mac_reg = er32(CTRL_EXT);
330 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
331 		ew32(CTRL_EXT, mac_reg);
332 
333 		/* Wait 50 milliseconds for MAC to finish any retries
334 		 * that it might be trying to perform from previous
335 		 * attempts to acknowledge any phy read requests.
336 		 */
337 		msleep(50);
338 
339 		fallthrough;
340 	case e1000_pch2lan:
341 		if (e1000_phy_is_accessible_pchlan(hw))
342 			break;
343 
344 		fallthrough;
345 	case e1000_pchlan:
346 		if ((hw->mac.type == e1000_pchlan) &&
347 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
348 			break;
349 
350 		if (hw->phy.ops.check_reset_block(hw)) {
351 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
352 			ret_val = -E1000_ERR_PHY;
353 			break;
354 		}
355 
356 		/* Toggle LANPHYPC Value bit */
357 		e1000_toggle_lanphypc_pch_lpt(hw);
358 		if (hw->mac.type >= e1000_pch_lpt) {
359 			if (e1000_phy_is_accessible_pchlan(hw))
360 				break;
361 
362 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
363 			 * so ensure that the MAC is also out of SMBus mode
364 			 */
365 			mac_reg = er32(CTRL_EXT);
366 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
367 			ew32(CTRL_EXT, mac_reg);
368 
369 			if (e1000_phy_is_accessible_pchlan(hw))
370 				break;
371 
372 			ret_val = -E1000_ERR_PHY;
373 		}
374 		break;
375 	default:
376 		break;
377 	}
378 
379 	hw->phy.ops.release(hw);
380 	if (!ret_val) {
381 
382 		/* Check to see if able to reset PHY.  Print error if not */
383 		if (hw->phy.ops.check_reset_block(hw)) {
384 			e_err("Reset blocked by ME\n");
385 			goto out;
386 		}
387 
388 		/* Reset the PHY before any access to it.  Doing so, ensures
389 		 * that the PHY is in a known good state before we read/write
390 		 * PHY registers.  The generic reset is sufficient here,
391 		 * because we haven't determined the PHY type yet.
392 		 */
393 		ret_val = e1000e_phy_hw_reset_generic(hw);
394 		if (ret_val)
395 			goto out;
396 
397 		/* On a successful reset, possibly need to wait for the PHY
398 		 * to quiesce to an accessible state before returning control
399 		 * to the calling function.  If the PHY does not quiesce, then
400 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
401 		 *  the PHY is in.
402 		 */
403 		ret_val = hw->phy.ops.check_reset_block(hw);
404 		if (ret_val)
405 			e_err("ME blocked access to PHY after reset\n");
406 	}
407 
408 out:
409 	/* Ungate automatic PHY configuration on non-managed 82579 */
410 	if ((hw->mac.type == e1000_pch2lan) &&
411 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
412 		usleep_range(10000, 11000);
413 		e1000_gate_hw_phy_config_ich8lan(hw, false);
414 	}
415 
416 	return ret_val;
417 }
418 
419 /**
420  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
421  *  @hw: pointer to the HW structure
422  *
423  *  Initialize family-specific PHY parameters and function pointers.
424  **/
425 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
426 {
427 	struct e1000_phy_info *phy = &hw->phy;
428 	s32 ret_val;
429 
430 	phy->addr = 1;
431 	phy->reset_delay_us = 100;
432 
433 	phy->ops.set_page = e1000_set_page_igp;
434 	phy->ops.read_reg = e1000_read_phy_reg_hv;
435 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
436 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
437 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
438 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
439 	phy->ops.write_reg = e1000_write_phy_reg_hv;
440 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
441 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
442 	phy->ops.power_up = e1000_power_up_phy_copper;
443 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
444 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
445 
446 	phy->id = e1000_phy_unknown;
447 
448 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
449 	if (ret_val)
450 		return ret_val;
451 
452 	if (phy->id == e1000_phy_unknown)
453 		switch (hw->mac.type) {
454 		default:
455 			ret_val = e1000e_get_phy_id(hw);
456 			if (ret_val)
457 				return ret_val;
458 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
459 				break;
460 			fallthrough;
461 		case e1000_pch2lan:
462 		case e1000_pch_lpt:
463 		case e1000_pch_spt:
464 		case e1000_pch_cnp:
465 		case e1000_pch_tgp:
466 		case e1000_pch_adp:
467 			/* In case the PHY needs to be in mdio slow mode,
468 			 * set slow mode and try to get the PHY id again.
469 			 */
470 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
471 			if (ret_val)
472 				return ret_val;
473 			ret_val = e1000e_get_phy_id(hw);
474 			if (ret_val)
475 				return ret_val;
476 			break;
477 		}
478 	phy->type = e1000e_get_phy_type_from_id(phy->id);
479 
480 	switch (phy->type) {
481 	case e1000_phy_82577:
482 	case e1000_phy_82579:
483 	case e1000_phy_i217:
484 		phy->ops.check_polarity = e1000_check_polarity_82577;
485 		phy->ops.force_speed_duplex =
486 		    e1000_phy_force_speed_duplex_82577;
487 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
488 		phy->ops.get_info = e1000_get_phy_info_82577;
489 		phy->ops.commit = e1000e_phy_sw_reset;
490 		break;
491 	case e1000_phy_82578:
492 		phy->ops.check_polarity = e1000_check_polarity_m88;
493 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
494 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
495 		phy->ops.get_info = e1000e_get_phy_info_m88;
496 		break;
497 	default:
498 		ret_val = -E1000_ERR_PHY;
499 		break;
500 	}
501 
502 	return ret_val;
503 }
504 
505 /**
506  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
507  *  @hw: pointer to the HW structure
508  *
509  *  Initialize family-specific PHY parameters and function pointers.
510  **/
511 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
512 {
513 	struct e1000_phy_info *phy = &hw->phy;
514 	s32 ret_val;
515 	u16 i = 0;
516 
517 	phy->addr = 1;
518 	phy->reset_delay_us = 100;
519 
520 	phy->ops.power_up = e1000_power_up_phy_copper;
521 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
522 
523 	/* We may need to do this twice - once for IGP and if that fails,
524 	 * we'll set BM func pointers and try again
525 	 */
526 	ret_val = e1000e_determine_phy_address(hw);
527 	if (ret_val) {
528 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
529 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
530 		ret_val = e1000e_determine_phy_address(hw);
531 		if (ret_val) {
532 			e_dbg("Cannot determine PHY addr. Erroring out\n");
533 			return ret_val;
534 		}
535 	}
536 
537 	phy->id = 0;
538 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
539 	       (i++ < 100)) {
540 		usleep_range(1000, 1100);
541 		ret_val = e1000e_get_phy_id(hw);
542 		if (ret_val)
543 			return ret_val;
544 	}
545 
546 	/* Verify phy id */
547 	switch (phy->id) {
548 	case IGP03E1000_E_PHY_ID:
549 		phy->type = e1000_phy_igp_3;
550 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
551 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
552 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
553 		phy->ops.get_info = e1000e_get_phy_info_igp;
554 		phy->ops.check_polarity = e1000_check_polarity_igp;
555 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
556 		break;
557 	case IFE_E_PHY_ID:
558 	case IFE_PLUS_E_PHY_ID:
559 	case IFE_C_E_PHY_ID:
560 		phy->type = e1000_phy_ife;
561 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
562 		phy->ops.get_info = e1000_get_phy_info_ife;
563 		phy->ops.check_polarity = e1000_check_polarity_ife;
564 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
565 		break;
566 	case BME1000_E_PHY_ID:
567 		phy->type = e1000_phy_bm;
568 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
569 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
570 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
571 		phy->ops.commit = e1000e_phy_sw_reset;
572 		phy->ops.get_info = e1000e_get_phy_info_m88;
573 		phy->ops.check_polarity = e1000_check_polarity_m88;
574 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
575 		break;
576 	default:
577 		return -E1000_ERR_PHY;
578 	}
579 
580 	return 0;
581 }
582 
583 /**
584  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
585  *  @hw: pointer to the HW structure
586  *
587  *  Initialize family-specific NVM parameters and function
588  *  pointers.
589  **/
590 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
591 {
592 	struct e1000_nvm_info *nvm = &hw->nvm;
593 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
594 	u32 gfpreg, sector_base_addr, sector_end_addr;
595 	u16 i;
596 	u32 nvm_size;
597 
598 	nvm->type = e1000_nvm_flash_sw;
599 
600 	if (hw->mac.type >= e1000_pch_spt) {
601 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
602 		 * STRAP register. This is because in SPT the GbE Flash region
603 		 * is no longer accessed through the flash registers. Instead,
604 		 * the mechanism has changed, and the Flash region access
605 		 * registers are now implemented in GbE memory space.
606 		 */
607 		nvm->flash_base_addr = 0;
608 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
609 		    * NVM_SIZE_MULTIPLIER;
610 		nvm->flash_bank_size = nvm_size / 2;
611 		/* Adjust to word count */
612 		nvm->flash_bank_size /= sizeof(u16);
613 		/* Set the base address for flash register access */
614 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
615 	} else {
616 		/* Can't read flash registers if register set isn't mapped. */
617 		if (!hw->flash_address) {
618 			e_dbg("ERROR: Flash registers not mapped\n");
619 			return -E1000_ERR_CONFIG;
620 		}
621 
622 		gfpreg = er32flash(ICH_FLASH_GFPREG);
623 
624 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
625 		 * Add 1 to sector_end_addr since this sector is included in
626 		 * the overall size.
627 		 */
628 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
629 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
630 
631 		/* flash_base_addr is byte-aligned */
632 		nvm->flash_base_addr = sector_base_addr
633 		    << FLASH_SECTOR_ADDR_SHIFT;
634 
635 		/* find total size of the NVM, then cut in half since the total
636 		 * size represents two separate NVM banks.
637 		 */
638 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
639 					<< FLASH_SECTOR_ADDR_SHIFT);
640 		nvm->flash_bank_size /= 2;
641 		/* Adjust to word count */
642 		nvm->flash_bank_size /= sizeof(u16);
643 	}
644 
645 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
646 
647 	/* Clear shadow ram */
648 	for (i = 0; i < nvm->word_size; i++) {
649 		dev_spec->shadow_ram[i].modified = false;
650 		dev_spec->shadow_ram[i].value = 0xFFFF;
651 	}
652 
653 	return 0;
654 }
655 
656 /**
657  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
658  *  @hw: pointer to the HW structure
659  *
660  *  Initialize family-specific MAC parameters and function
661  *  pointers.
662  **/
663 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
664 {
665 	struct e1000_mac_info *mac = &hw->mac;
666 
667 	/* Set media type function pointer */
668 	hw->phy.media_type = e1000_media_type_copper;
669 
670 	/* Set mta register count */
671 	mac->mta_reg_count = 32;
672 	/* Set rar entry count */
673 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
674 	if (mac->type == e1000_ich8lan)
675 		mac->rar_entry_count--;
676 	/* FWSM register */
677 	mac->has_fwsm = true;
678 	/* ARC subsystem not supported */
679 	mac->arc_subsystem_valid = false;
680 	/* Adaptive IFS supported */
681 	mac->adaptive_ifs = true;
682 
683 	/* LED and other operations */
684 	switch (mac->type) {
685 	case e1000_ich8lan:
686 	case e1000_ich9lan:
687 	case e1000_ich10lan:
688 		/* check management mode */
689 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
690 		/* ID LED init */
691 		mac->ops.id_led_init = e1000e_id_led_init_generic;
692 		/* blink LED */
693 		mac->ops.blink_led = e1000e_blink_led_generic;
694 		/* setup LED */
695 		mac->ops.setup_led = e1000e_setup_led_generic;
696 		/* cleanup LED */
697 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
698 		/* turn on/off LED */
699 		mac->ops.led_on = e1000_led_on_ich8lan;
700 		mac->ops.led_off = e1000_led_off_ich8lan;
701 		break;
702 	case e1000_pch2lan:
703 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
704 		mac->ops.rar_set = e1000_rar_set_pch2lan;
705 		fallthrough;
706 	case e1000_pch_lpt:
707 	case e1000_pch_spt:
708 	case e1000_pch_cnp:
709 	case e1000_pch_tgp:
710 	case e1000_pch_adp:
711 	case e1000_pchlan:
712 		/* check management mode */
713 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
714 		/* ID LED init */
715 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
716 		/* setup LED */
717 		mac->ops.setup_led = e1000_setup_led_pchlan;
718 		/* cleanup LED */
719 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
720 		/* turn on/off LED */
721 		mac->ops.led_on = e1000_led_on_pchlan;
722 		mac->ops.led_off = e1000_led_off_pchlan;
723 		break;
724 	default:
725 		break;
726 	}
727 
728 	if (mac->type >= e1000_pch_lpt) {
729 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
730 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
731 		mac->ops.setup_physical_interface =
732 		    e1000_setup_copper_link_pch_lpt;
733 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
734 	}
735 
736 	/* Enable PCS Lock-loss workaround for ICH8 */
737 	if (mac->type == e1000_ich8lan)
738 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
739 
740 	return 0;
741 }
742 
743 /**
744  *  __e1000_access_emi_reg_locked - Read/write EMI register
745  *  @hw: pointer to the HW structure
746  *  @addr: EMI address to program
747  *  @data: pointer to value to read/write from/to the EMI address
748  *  @read: boolean flag to indicate read or write
749  *
750  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
751  **/
752 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
753 					 u16 *data, bool read)
754 {
755 	s32 ret_val;
756 
757 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
758 	if (ret_val)
759 		return ret_val;
760 
761 	if (read)
762 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
763 	else
764 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
765 
766 	return ret_val;
767 }
768 
769 /**
770  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
771  *  @hw: pointer to the HW structure
772  *  @addr: EMI address to program
773  *  @data: value to be read from the EMI address
774  *
775  *  Assumes the SW/FW/HW Semaphore is already acquired.
776  **/
777 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
778 {
779 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
780 }
781 
782 /**
783  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
784  *  @hw: pointer to the HW structure
785  *  @addr: EMI address to program
786  *  @data: value to be written to the EMI address
787  *
788  *  Assumes the SW/FW/HW Semaphore is already acquired.
789  **/
790 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
791 {
792 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
793 }
794 
795 /**
796  *  e1000_set_eee_pchlan - Enable/disable EEE support
797  *  @hw: pointer to the HW structure
798  *
799  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
800  *  the link and the EEE capabilities of the link partner.  The LPI Control
801  *  register bits will remain set only if/when link is up.
802  *
803  *  EEE LPI must not be asserted earlier than one second after link is up.
804  *  On 82579, EEE LPI should not be enabled until such time otherwise there
805  *  can be link issues with some switches.  Other devices can have EEE LPI
806  *  enabled immediately upon link up since they have a timer in hardware which
807  *  prevents LPI from being asserted too early.
808  **/
809 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
810 {
811 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
812 	s32 ret_val;
813 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
814 
815 	switch (hw->phy.type) {
816 	case e1000_phy_82579:
817 		lpa = I82579_EEE_LP_ABILITY;
818 		pcs_status = I82579_EEE_PCS_STATUS;
819 		adv_addr = I82579_EEE_ADVERTISEMENT;
820 		break;
821 	case e1000_phy_i217:
822 		lpa = I217_EEE_LP_ABILITY;
823 		pcs_status = I217_EEE_PCS_STATUS;
824 		adv_addr = I217_EEE_ADVERTISEMENT;
825 		break;
826 	default:
827 		return 0;
828 	}
829 
830 	ret_val = hw->phy.ops.acquire(hw);
831 	if (ret_val)
832 		return ret_val;
833 
834 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
835 	if (ret_val)
836 		goto release;
837 
838 	/* Clear bits that enable EEE in various speeds */
839 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
840 
841 	/* Enable EEE if not disabled by user */
842 	if (!dev_spec->eee_disable) {
843 		/* Save off link partner's EEE ability */
844 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
845 						    &dev_spec->eee_lp_ability);
846 		if (ret_val)
847 			goto release;
848 
849 		/* Read EEE advertisement */
850 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
851 		if (ret_val)
852 			goto release;
853 
854 		/* Enable EEE only for speeds in which the link partner is
855 		 * EEE capable and for which we advertise EEE.
856 		 */
857 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
858 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
859 
860 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
861 			e1e_rphy_locked(hw, MII_LPA, &data);
862 			if (data & LPA_100FULL)
863 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
864 			else
865 				/* EEE is not supported in 100Half, so ignore
866 				 * partner's EEE in 100 ability if full-duplex
867 				 * is not advertised.
868 				 */
869 				dev_spec->eee_lp_ability &=
870 				    ~I82579_EEE_100_SUPPORTED;
871 		}
872 	}
873 
874 	if (hw->phy.type == e1000_phy_82579) {
875 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
876 						    &data);
877 		if (ret_val)
878 			goto release;
879 
880 		data &= ~I82579_LPI_100_PLL_SHUT;
881 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
882 						     data);
883 	}
884 
885 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
886 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
887 	if (ret_val)
888 		goto release;
889 
890 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
891 release:
892 	hw->phy.ops.release(hw);
893 
894 	return ret_val;
895 }
896 
897 /**
898  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
899  *  @hw:   pointer to the HW structure
900  *  @link: link up bool flag
901  *
902  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
903  *  preventing further DMA write requests.  Workaround the issue by disabling
904  *  the de-assertion of the clock request when in 1Gpbs mode.
905  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
906  *  speeds in order to avoid Tx hangs.
907  **/
908 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
909 {
910 	u32 fextnvm6 = er32(FEXTNVM6);
911 	u32 status = er32(STATUS);
912 	s32 ret_val = 0;
913 	u16 reg;
914 
915 	if (link && (status & E1000_STATUS_SPEED_1000)) {
916 		ret_val = hw->phy.ops.acquire(hw);
917 		if (ret_val)
918 			return ret_val;
919 
920 		ret_val =
921 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
922 						&reg);
923 		if (ret_val)
924 			goto release;
925 
926 		ret_val =
927 		    e1000e_write_kmrn_reg_locked(hw,
928 						 E1000_KMRNCTRLSTA_K1_CONFIG,
929 						 reg &
930 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
931 		if (ret_val)
932 			goto release;
933 
934 		usleep_range(10, 20);
935 
936 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
937 
938 		ret_val =
939 		    e1000e_write_kmrn_reg_locked(hw,
940 						 E1000_KMRNCTRLSTA_K1_CONFIG,
941 						 reg);
942 release:
943 		hw->phy.ops.release(hw);
944 	} else {
945 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
946 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
947 
948 		if ((hw->phy.revision > 5) || !link ||
949 		    ((status & E1000_STATUS_SPEED_100) &&
950 		     (status & E1000_STATUS_FD)))
951 			goto update_fextnvm6;
952 
953 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
954 		if (ret_val)
955 			return ret_val;
956 
957 		/* Clear link status transmit timeout */
958 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
959 
960 		if (status & E1000_STATUS_SPEED_100) {
961 			/* Set inband Tx timeout to 5x10us for 100Half */
962 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
963 
964 			/* Do not extend the K1 entry latency for 100Half */
965 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
966 		} else {
967 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
968 			reg |= 50 <<
969 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
970 
971 			/* Extend the K1 entry latency for 10 Mbps */
972 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
973 		}
974 
975 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
976 		if (ret_val)
977 			return ret_val;
978 
979 update_fextnvm6:
980 		ew32(FEXTNVM6, fextnvm6);
981 	}
982 
983 	return ret_val;
984 }
985 
986 /**
987  *  e1000_platform_pm_pch_lpt - Set platform power management values
988  *  @hw: pointer to the HW structure
989  *  @link: bool indicating link status
990  *
991  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
992  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
993  *  when link is up (which must not exceed the maximum latency supported
994  *  by the platform), otherwise specify there is no LTR requirement.
995  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
996  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
997  *  Capability register set, on this device LTR is set by writing the
998  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
999  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1000  *  message to the PMC.
1001  **/
1002 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1003 {
1004 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1005 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1006 	u16 lat_enc = 0;	/* latency encoded */
1007 
1008 	if (link) {
1009 		u16 speed, duplex, scale = 0;
1010 		u16 max_snoop, max_nosnoop;
1011 		u16 max_ltr_enc;	/* max LTR latency encoded */
1012 		u64 value;
1013 		u32 rxa;
1014 
1015 		if (!hw->adapter->max_frame_size) {
1016 			e_dbg("max_frame_size not set.\n");
1017 			return -E1000_ERR_CONFIG;
1018 		}
1019 
1020 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1021 		if (!speed) {
1022 			e_dbg("Speed not set.\n");
1023 			return -E1000_ERR_CONFIG;
1024 		}
1025 
1026 		/* Rx Packet Buffer Allocation size (KB) */
1027 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1028 
1029 		/* Determine the maximum latency tolerated by the device.
1030 		 *
1031 		 * Per the PCIe spec, the tolerated latencies are encoded as
1032 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1033 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1034 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1035 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1036 		 */
1037 		rxa *= 512;
1038 		value = (rxa > hw->adapter->max_frame_size) ?
1039 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1040 			0;
1041 
1042 		while (value > PCI_LTR_VALUE_MASK) {
1043 			scale++;
1044 			value = DIV_ROUND_UP(value, BIT(5));
1045 		}
1046 		if (scale > E1000_LTRV_SCALE_MAX) {
1047 			e_dbg("Invalid LTR latency scale %d\n", scale);
1048 			return -E1000_ERR_CONFIG;
1049 		}
1050 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1051 
1052 		/* Determine the maximum latency tolerated by the platform */
1053 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1054 				     &max_snoop);
1055 		pci_read_config_word(hw->adapter->pdev,
1056 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1057 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1058 
1059 		if (lat_enc > max_ltr_enc)
1060 			lat_enc = max_ltr_enc;
1061 	}
1062 
1063 	/* Set Snoop and No-Snoop latencies the same */
1064 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1065 	ew32(LTRV, reg);
1066 
1067 	return 0;
1068 }
1069 
1070 /**
1071  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1072  *  @hw: pointer to the HW structure
1073  *  @to_sx: boolean indicating a system power state transition to Sx
1074  *
1075  *  When link is down, configure ULP mode to significantly reduce the power
1076  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1077  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1078  *  system, configure the ULP mode by software.
1079  */
1080 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1081 {
1082 	u32 mac_reg;
1083 	s32 ret_val = 0;
1084 	u16 phy_reg;
1085 	u16 oem_reg = 0;
1086 
1087 	if ((hw->mac.type < e1000_pch_lpt) ||
1088 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1089 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1090 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1091 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1092 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1093 		return 0;
1094 
1095 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1096 		/* Request ME configure ULP mode in the PHY */
1097 		mac_reg = er32(H2ME);
1098 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1099 		ew32(H2ME, mac_reg);
1100 
1101 		goto out;
1102 	}
1103 
1104 	if (!to_sx) {
1105 		int i = 0;
1106 
1107 		/* Poll up to 5 seconds for Cable Disconnected indication */
1108 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1109 			/* Bail if link is re-acquired */
1110 			if (er32(STATUS) & E1000_STATUS_LU)
1111 				return -E1000_ERR_PHY;
1112 
1113 			if (i++ == 100)
1114 				break;
1115 
1116 			msleep(50);
1117 		}
1118 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1119 		      (er32(FEXT) &
1120 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1121 	}
1122 
1123 	ret_val = hw->phy.ops.acquire(hw);
1124 	if (ret_val)
1125 		goto out;
1126 
1127 	/* Force SMBus mode in PHY */
1128 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1129 	if (ret_val)
1130 		goto release;
1131 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1132 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1133 
1134 	/* Force SMBus mode in MAC */
1135 	mac_reg = er32(CTRL_EXT);
1136 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1137 	ew32(CTRL_EXT, mac_reg);
1138 
1139 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1140 	 * LPLU and disable Gig speed when entering ULP
1141 	 */
1142 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1143 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1144 						       &oem_reg);
1145 		if (ret_val)
1146 			goto release;
1147 
1148 		phy_reg = oem_reg;
1149 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1150 
1151 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1152 							phy_reg);
1153 
1154 		if (ret_val)
1155 			goto release;
1156 	}
1157 
1158 	/* Set Inband ULP Exit, Reset to SMBus mode and
1159 	 * Disable SMBus Release on PERST# in PHY
1160 	 */
1161 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1162 	if (ret_val)
1163 		goto release;
1164 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1165 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1166 	if (to_sx) {
1167 		if (er32(WUFC) & E1000_WUFC_LNKC)
1168 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1169 		else
1170 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1171 
1172 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1173 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1174 	} else {
1175 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1176 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1177 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1178 	}
1179 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1180 
1181 	/* Set Disable SMBus Release on PERST# in MAC */
1182 	mac_reg = er32(FEXTNVM7);
1183 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1184 	ew32(FEXTNVM7, mac_reg);
1185 
1186 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1187 	phy_reg |= I218_ULP_CONFIG1_START;
1188 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1189 
1190 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1191 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1192 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1193 							oem_reg);
1194 		if (ret_val)
1195 			goto release;
1196 	}
1197 
1198 release:
1199 	hw->phy.ops.release(hw);
1200 out:
1201 	if (ret_val)
1202 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1203 	else
1204 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1205 
1206 	return ret_val;
1207 }
1208 
1209 /**
1210  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1211  *  @hw: pointer to the HW structure
1212  *  @force: boolean indicating whether or not to force disabling ULP
1213  *
1214  *  Un-configure ULP mode when link is up, the system is transitioned from
1215  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1216  *  system, poll for an indication from ME that ULP has been un-configured.
1217  *  If not on an ME enabled system, un-configure the ULP mode by software.
1218  *
1219  *  During nominal operation, this function is called when link is acquired
1220  *  to disable ULP mode (force=false); otherwise, for example when unloading
1221  *  the driver or during Sx->S0 transitions, this is called with force=true
1222  *  to forcibly disable ULP.
1223  */
1224 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1225 {
1226 	s32 ret_val = 0;
1227 	u32 mac_reg;
1228 	u16 phy_reg;
1229 	int i = 0;
1230 
1231 	if ((hw->mac.type < e1000_pch_lpt) ||
1232 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1233 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1234 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1235 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1236 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1237 		return 0;
1238 
1239 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1240 		if (force) {
1241 			/* Request ME un-configure ULP mode in the PHY */
1242 			mac_reg = er32(H2ME);
1243 			mac_reg &= ~E1000_H2ME_ULP;
1244 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1245 			ew32(H2ME, mac_reg);
1246 		}
1247 
1248 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1249 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1250 			if (i++ == 30) {
1251 				ret_val = -E1000_ERR_PHY;
1252 				goto out;
1253 			}
1254 
1255 			usleep_range(10000, 11000);
1256 		}
1257 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1258 
1259 		if (force) {
1260 			mac_reg = er32(H2ME);
1261 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1262 			ew32(H2ME, mac_reg);
1263 		} else {
1264 			/* Clear H2ME.ULP after ME ULP configuration */
1265 			mac_reg = er32(H2ME);
1266 			mac_reg &= ~E1000_H2ME_ULP;
1267 			ew32(H2ME, mac_reg);
1268 		}
1269 
1270 		goto out;
1271 	}
1272 
1273 	ret_val = hw->phy.ops.acquire(hw);
1274 	if (ret_val)
1275 		goto out;
1276 
1277 	if (force)
1278 		/* Toggle LANPHYPC Value bit */
1279 		e1000_toggle_lanphypc_pch_lpt(hw);
1280 
1281 	/* Unforce SMBus mode in PHY */
1282 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1283 	if (ret_val) {
1284 		/* The MAC might be in PCIe mode, so temporarily force to
1285 		 * SMBus mode in order to access the PHY.
1286 		 */
1287 		mac_reg = er32(CTRL_EXT);
1288 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1289 		ew32(CTRL_EXT, mac_reg);
1290 
1291 		msleep(50);
1292 
1293 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1294 						       &phy_reg);
1295 		if (ret_val)
1296 			goto release;
1297 	}
1298 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1299 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1300 
1301 	/* Unforce SMBus mode in MAC */
1302 	mac_reg = er32(CTRL_EXT);
1303 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1304 	ew32(CTRL_EXT, mac_reg);
1305 
1306 	/* When ULP mode was previously entered, K1 was disabled by the
1307 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1308 	 */
1309 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1310 	if (ret_val)
1311 		goto release;
1312 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1313 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1314 
1315 	/* Clear ULP enabled configuration */
1316 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1317 	if (ret_val)
1318 		goto release;
1319 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1320 		     I218_ULP_CONFIG1_STICKY_ULP |
1321 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1322 		     I218_ULP_CONFIG1_WOL_HOST |
1323 		     I218_ULP_CONFIG1_INBAND_EXIT |
1324 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1325 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1326 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1327 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1328 
1329 	/* Commit ULP changes by starting auto ULP configuration */
1330 	phy_reg |= I218_ULP_CONFIG1_START;
1331 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1332 
1333 	/* Clear Disable SMBus Release on PERST# in MAC */
1334 	mac_reg = er32(FEXTNVM7);
1335 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1336 	ew32(FEXTNVM7, mac_reg);
1337 
1338 release:
1339 	hw->phy.ops.release(hw);
1340 	if (force) {
1341 		e1000_phy_hw_reset(hw);
1342 		msleep(50);
1343 	}
1344 out:
1345 	if (ret_val)
1346 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1347 	else
1348 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1349 
1350 	return ret_val;
1351 }
1352 
1353 /**
1354  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1355  *  @hw: pointer to the HW structure
1356  *
1357  *  Checks to see of the link status of the hardware has changed.  If a
1358  *  change in link status has been detected, then we read the PHY registers
1359  *  to get the current speed/duplex if link exists.
1360  **/
1361 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1362 {
1363 	struct e1000_mac_info *mac = &hw->mac;
1364 	s32 ret_val, tipg_reg = 0;
1365 	u16 emi_addr, emi_val = 0;
1366 	bool link;
1367 	u16 phy_reg;
1368 
1369 	/* We only want to go out to the PHY registers to see if Auto-Neg
1370 	 * has completed and/or if our link status has changed.  The
1371 	 * get_link_status flag is set upon receiving a Link Status
1372 	 * Change or Rx Sequence Error interrupt.
1373 	 */
1374 	if (!mac->get_link_status)
1375 		return 0;
1376 	mac->get_link_status = false;
1377 
1378 	/* First we want to see if the MII Status Register reports
1379 	 * link.  If so, then we want to get the current speed/duplex
1380 	 * of the PHY.
1381 	 */
1382 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1383 	if (ret_val)
1384 		goto out;
1385 
1386 	if (hw->mac.type == e1000_pchlan) {
1387 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1388 		if (ret_val)
1389 			goto out;
1390 	}
1391 
1392 	/* When connected at 10Mbps half-duplex, some parts are excessively
1393 	 * aggressive resulting in many collisions. To avoid this, increase
1394 	 * the IPG and reduce Rx latency in the PHY.
1395 	 */
1396 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1397 		u16 speed, duplex;
1398 
1399 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1400 		tipg_reg = er32(TIPG);
1401 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1402 
1403 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1404 			tipg_reg |= 0xFF;
1405 			/* Reduce Rx latency in analog PHY */
1406 			emi_val = 0;
1407 		} else if (hw->mac.type >= e1000_pch_spt &&
1408 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1409 			tipg_reg |= 0xC;
1410 			emi_val = 1;
1411 		} else {
1412 
1413 			/* Roll back the default values */
1414 			tipg_reg |= 0x08;
1415 			emi_val = 1;
1416 		}
1417 
1418 		ew32(TIPG, tipg_reg);
1419 
1420 		ret_val = hw->phy.ops.acquire(hw);
1421 		if (ret_val)
1422 			goto out;
1423 
1424 		if (hw->mac.type == e1000_pch2lan)
1425 			emi_addr = I82579_RX_CONFIG;
1426 		else
1427 			emi_addr = I217_RX_CONFIG;
1428 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1429 
1430 		if (hw->mac.type >= e1000_pch_lpt) {
1431 			u16 phy_reg;
1432 
1433 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1434 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1435 			if (speed == SPEED_100 || speed == SPEED_10)
1436 				phy_reg |= 0x3E8;
1437 			else
1438 				phy_reg |= 0xFA;
1439 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1440 
1441 			if (speed == SPEED_1000) {
1442 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1443 							    &phy_reg);
1444 
1445 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1446 
1447 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1448 							     phy_reg);
1449 			}
1450 		}
1451 		hw->phy.ops.release(hw);
1452 
1453 		if (ret_val)
1454 			goto out;
1455 
1456 		if (hw->mac.type >= e1000_pch_spt) {
1457 			u16 data;
1458 			u16 ptr_gap;
1459 
1460 			if (speed == SPEED_1000) {
1461 				ret_val = hw->phy.ops.acquire(hw);
1462 				if (ret_val)
1463 					goto out;
1464 
1465 				ret_val = e1e_rphy_locked(hw,
1466 							  PHY_REG(776, 20),
1467 							  &data);
1468 				if (ret_val) {
1469 					hw->phy.ops.release(hw);
1470 					goto out;
1471 				}
1472 
1473 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1474 				if (ptr_gap < 0x18) {
1475 					data &= ~(0x3FF << 2);
1476 					data |= (0x18 << 2);
1477 					ret_val =
1478 					    e1e_wphy_locked(hw,
1479 							    PHY_REG(776, 20),
1480 							    data);
1481 				}
1482 				hw->phy.ops.release(hw);
1483 				if (ret_val)
1484 					goto out;
1485 			} else {
1486 				ret_val = hw->phy.ops.acquire(hw);
1487 				if (ret_val)
1488 					goto out;
1489 
1490 				ret_val = e1e_wphy_locked(hw,
1491 							  PHY_REG(776, 20),
1492 							  0xC023);
1493 				hw->phy.ops.release(hw);
1494 				if (ret_val)
1495 					goto out;
1496 
1497 			}
1498 		}
1499 	}
1500 
1501 	/* I217 Packet Loss issue:
1502 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1503 	 * on power up.
1504 	 * Set the Beacon Duration for I217 to 8 usec
1505 	 */
1506 	if (hw->mac.type >= e1000_pch_lpt) {
1507 		u32 mac_reg;
1508 
1509 		mac_reg = er32(FEXTNVM4);
1510 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1511 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1512 		ew32(FEXTNVM4, mac_reg);
1513 	}
1514 
1515 	/* Work-around I218 hang issue */
1516 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1517 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1518 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1519 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1520 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1521 		if (ret_val)
1522 			goto out;
1523 	}
1524 	if (hw->mac.type >= e1000_pch_lpt) {
1525 		/* Set platform power management values for
1526 		 * Latency Tolerance Reporting (LTR)
1527 		 */
1528 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1529 		if (ret_val)
1530 			goto out;
1531 	}
1532 
1533 	/* Clear link partner's EEE ability */
1534 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1535 
1536 	if (hw->mac.type >= e1000_pch_lpt) {
1537 		u32 fextnvm6 = er32(FEXTNVM6);
1538 
1539 		if (hw->mac.type == e1000_pch_spt) {
1540 			/* FEXTNVM6 K1-off workaround - for SPT only */
1541 			u32 pcieanacfg = er32(PCIEANACFG);
1542 
1543 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1544 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1545 			else
1546 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1547 		}
1548 
1549 		ew32(FEXTNVM6, fextnvm6);
1550 	}
1551 
1552 	if (!link)
1553 		goto out;
1554 
1555 	switch (hw->mac.type) {
1556 	case e1000_pch2lan:
1557 		ret_val = e1000_k1_workaround_lv(hw);
1558 		if (ret_val)
1559 			return ret_val;
1560 		fallthrough;
1561 	case e1000_pchlan:
1562 		if (hw->phy.type == e1000_phy_82578) {
1563 			ret_val = e1000_link_stall_workaround_hv(hw);
1564 			if (ret_val)
1565 				return ret_val;
1566 		}
1567 
1568 		/* Workaround for PCHx parts in half-duplex:
1569 		 * Set the number of preambles removed from the packet
1570 		 * when it is passed from the PHY to the MAC to prevent
1571 		 * the MAC from misinterpreting the packet type.
1572 		 */
1573 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1574 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1575 
1576 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1577 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1578 
1579 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1580 		break;
1581 	default:
1582 		break;
1583 	}
1584 
1585 	/* Check if there was DownShift, must be checked
1586 	 * immediately after link-up
1587 	 */
1588 	e1000e_check_downshift(hw);
1589 
1590 	/* Enable/Disable EEE after link up */
1591 	if (hw->phy.type > e1000_phy_82579) {
1592 		ret_val = e1000_set_eee_pchlan(hw);
1593 		if (ret_val)
1594 			return ret_val;
1595 	}
1596 
1597 	/* If we are forcing speed/duplex, then we simply return since
1598 	 * we have already determined whether we have link or not.
1599 	 */
1600 	if (!mac->autoneg)
1601 		return -E1000_ERR_CONFIG;
1602 
1603 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1604 	 * of MAC speed/duplex configuration.  So we only need to
1605 	 * configure Collision Distance in the MAC.
1606 	 */
1607 	mac->ops.config_collision_dist(hw);
1608 
1609 	/* Configure Flow Control now that Auto-Neg has completed.
1610 	 * First, we need to restore the desired flow control
1611 	 * settings because we may have had to re-autoneg with a
1612 	 * different link partner.
1613 	 */
1614 	ret_val = e1000e_config_fc_after_link_up(hw);
1615 	if (ret_val)
1616 		e_dbg("Error configuring flow control\n");
1617 
1618 	return ret_val;
1619 
1620 out:
1621 	mac->get_link_status = true;
1622 	return ret_val;
1623 }
1624 
1625 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1626 {
1627 	struct e1000_hw *hw = &adapter->hw;
1628 	s32 rc;
1629 
1630 	rc = e1000_init_mac_params_ich8lan(hw);
1631 	if (rc)
1632 		return rc;
1633 
1634 	rc = e1000_init_nvm_params_ich8lan(hw);
1635 	if (rc)
1636 		return rc;
1637 
1638 	switch (hw->mac.type) {
1639 	case e1000_ich8lan:
1640 	case e1000_ich9lan:
1641 	case e1000_ich10lan:
1642 		rc = e1000_init_phy_params_ich8lan(hw);
1643 		break;
1644 	case e1000_pchlan:
1645 	case e1000_pch2lan:
1646 	case e1000_pch_lpt:
1647 	case e1000_pch_spt:
1648 	case e1000_pch_cnp:
1649 	case e1000_pch_tgp:
1650 	case e1000_pch_adp:
1651 		rc = e1000_init_phy_params_pchlan(hw);
1652 		break;
1653 	default:
1654 		break;
1655 	}
1656 	if (rc)
1657 		return rc;
1658 
1659 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1660 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1661 	 */
1662 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1663 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1664 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1665 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1666 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1667 
1668 		hw->mac.ops.blink_led = NULL;
1669 	}
1670 
1671 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1672 	    (adapter->hw.phy.type != e1000_phy_ife))
1673 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1674 
1675 	/* Enable workaround for 82579 w/ ME enabled */
1676 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1677 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1678 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1679 
1680 	return 0;
1681 }
1682 
1683 static DEFINE_MUTEX(nvm_mutex);
1684 
1685 /**
1686  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1687  *  @hw: pointer to the HW structure
1688  *
1689  *  Acquires the mutex for performing NVM operations.
1690  **/
1691 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1692 {
1693 	mutex_lock(&nvm_mutex);
1694 
1695 	return 0;
1696 }
1697 
1698 /**
1699  *  e1000_release_nvm_ich8lan - Release NVM mutex
1700  *  @hw: pointer to the HW structure
1701  *
1702  *  Releases the mutex used while performing NVM operations.
1703  **/
1704 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1705 {
1706 	mutex_unlock(&nvm_mutex);
1707 }
1708 
1709 /**
1710  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1711  *  @hw: pointer to the HW structure
1712  *
1713  *  Acquires the software control flag for performing PHY and select
1714  *  MAC CSR accesses.
1715  **/
1716 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1717 {
1718 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1719 	s32 ret_val = 0;
1720 
1721 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1722 			     &hw->adapter->state)) {
1723 		e_dbg("contention for Phy access\n");
1724 		return -E1000_ERR_PHY;
1725 	}
1726 
1727 	while (timeout) {
1728 		extcnf_ctrl = er32(EXTCNF_CTRL);
1729 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1730 			break;
1731 
1732 		mdelay(1);
1733 		timeout--;
1734 	}
1735 
1736 	if (!timeout) {
1737 		e_dbg("SW has already locked the resource.\n");
1738 		ret_val = -E1000_ERR_CONFIG;
1739 		goto out;
1740 	}
1741 
1742 	timeout = SW_FLAG_TIMEOUT;
1743 
1744 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1745 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1746 
1747 	while (timeout) {
1748 		extcnf_ctrl = er32(EXTCNF_CTRL);
1749 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1750 			break;
1751 
1752 		mdelay(1);
1753 		timeout--;
1754 	}
1755 
1756 	if (!timeout) {
1757 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1758 		      er32(FWSM), extcnf_ctrl);
1759 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1760 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1761 		ret_val = -E1000_ERR_CONFIG;
1762 		goto out;
1763 	}
1764 
1765 out:
1766 	if (ret_val)
1767 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1768 
1769 	return ret_val;
1770 }
1771 
1772 /**
1773  *  e1000_release_swflag_ich8lan - Release software control flag
1774  *  @hw: pointer to the HW structure
1775  *
1776  *  Releases the software control flag for performing PHY and select
1777  *  MAC CSR accesses.
1778  **/
1779 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1780 {
1781 	u32 extcnf_ctrl;
1782 
1783 	extcnf_ctrl = er32(EXTCNF_CTRL);
1784 
1785 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1786 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1787 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1788 	} else {
1789 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1790 	}
1791 
1792 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1793 }
1794 
1795 /**
1796  *  e1000_check_mng_mode_ich8lan - Checks management mode
1797  *  @hw: pointer to the HW structure
1798  *
1799  *  This checks if the adapter has any manageability enabled.
1800  *  This is a function pointer entry point only called by read/write
1801  *  routines for the PHY and NVM parts.
1802  **/
1803 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1804 {
1805 	u32 fwsm;
1806 
1807 	fwsm = er32(FWSM);
1808 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1809 		((fwsm & E1000_FWSM_MODE_MASK) ==
1810 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811 }
1812 
1813 /**
1814  *  e1000_check_mng_mode_pchlan - Checks management mode
1815  *  @hw: pointer to the HW structure
1816  *
1817  *  This checks if the adapter has iAMT enabled.
1818  *  This is a function pointer entry point only called by read/write
1819  *  routines for the PHY and NVM parts.
1820  **/
1821 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1822 {
1823 	u32 fwsm;
1824 
1825 	fwsm = er32(FWSM);
1826 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1827 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1828 }
1829 
1830 /**
1831  *  e1000_rar_set_pch2lan - Set receive address register
1832  *  @hw: pointer to the HW structure
1833  *  @addr: pointer to the receive address
1834  *  @index: receive address array register
1835  *
1836  *  Sets the receive address array register at index to the address passed
1837  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1838  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1839  *  Use SHRA[0-3] in place of those reserved for ME.
1840  **/
1841 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1842 {
1843 	u32 rar_low, rar_high;
1844 
1845 	/* HW expects these in little endian so we reverse the byte order
1846 	 * from network order (big endian) to little endian
1847 	 */
1848 	rar_low = ((u32)addr[0] |
1849 		   ((u32)addr[1] << 8) |
1850 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1851 
1852 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1853 
1854 	/* If MAC address zero, no need to set the AV bit */
1855 	if (rar_low || rar_high)
1856 		rar_high |= E1000_RAH_AV;
1857 
1858 	if (index == 0) {
1859 		ew32(RAL(index), rar_low);
1860 		e1e_flush();
1861 		ew32(RAH(index), rar_high);
1862 		e1e_flush();
1863 		return 0;
1864 	}
1865 
1866 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1867 	 * next address into the SHRA register array.
1868 	 */
1869 	if (index < (u32)(hw->mac.rar_entry_count)) {
1870 		s32 ret_val;
1871 
1872 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1873 		if (ret_val)
1874 			goto out;
1875 
1876 		ew32(SHRAL(index - 1), rar_low);
1877 		e1e_flush();
1878 		ew32(SHRAH(index - 1), rar_high);
1879 		e1e_flush();
1880 
1881 		e1000_release_swflag_ich8lan(hw);
1882 
1883 		/* verify the register updates */
1884 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1885 		    (er32(SHRAH(index - 1)) == rar_high))
1886 			return 0;
1887 
1888 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1889 		      (index - 1), er32(FWSM));
1890 	}
1891 
1892 out:
1893 	e_dbg("Failed to write receive address at index %d\n", index);
1894 	return -E1000_ERR_CONFIG;
1895 }
1896 
1897 /**
1898  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1899  *  @hw: pointer to the HW structure
1900  *
1901  *  Get the number of available receive registers that the Host can
1902  *  program. SHRA[0-10] are the shared receive address registers
1903  *  that are shared between the Host and manageability engine (ME).
1904  *  ME can reserve any number of addresses and the host needs to be
1905  *  able to tell how many available registers it has access to.
1906  **/
1907 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1908 {
1909 	u32 wlock_mac;
1910 	u32 num_entries;
1911 
1912 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1913 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1914 
1915 	switch (wlock_mac) {
1916 	case 0:
1917 		/* All SHRA[0..10] and RAR[0] available */
1918 		num_entries = hw->mac.rar_entry_count;
1919 		break;
1920 	case 1:
1921 		/* Only RAR[0] available */
1922 		num_entries = 1;
1923 		break;
1924 	default:
1925 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1926 		num_entries = wlock_mac + 1;
1927 		break;
1928 	}
1929 
1930 	return num_entries;
1931 }
1932 
1933 /**
1934  *  e1000_rar_set_pch_lpt - Set receive address registers
1935  *  @hw: pointer to the HW structure
1936  *  @addr: pointer to the receive address
1937  *  @index: receive address array register
1938  *
1939  *  Sets the receive address register array at index to the address passed
1940  *  in by addr. For LPT, RAR[0] is the base address register that is to
1941  *  contain the MAC address. SHRA[0-10] are the shared receive address
1942  *  registers that are shared between the Host and manageability engine (ME).
1943  **/
1944 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1945 {
1946 	u32 rar_low, rar_high;
1947 	u32 wlock_mac;
1948 
1949 	/* HW expects these in little endian so we reverse the byte order
1950 	 * from network order (big endian) to little endian
1951 	 */
1952 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1953 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1954 
1955 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1956 
1957 	/* If MAC address zero, no need to set the AV bit */
1958 	if (rar_low || rar_high)
1959 		rar_high |= E1000_RAH_AV;
1960 
1961 	if (index == 0) {
1962 		ew32(RAL(index), rar_low);
1963 		e1e_flush();
1964 		ew32(RAH(index), rar_high);
1965 		e1e_flush();
1966 		return 0;
1967 	}
1968 
1969 	/* The manageability engine (ME) can lock certain SHRAR registers that
1970 	 * it is using - those registers are unavailable for use.
1971 	 */
1972 	if (index < hw->mac.rar_entry_count) {
1973 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1974 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1975 
1976 		/* Check if all SHRAR registers are locked */
1977 		if (wlock_mac == 1)
1978 			goto out;
1979 
1980 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1981 			s32 ret_val;
1982 
1983 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1984 
1985 			if (ret_val)
1986 				goto out;
1987 
1988 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1989 			e1e_flush();
1990 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1991 			e1e_flush();
1992 
1993 			e1000_release_swflag_ich8lan(hw);
1994 
1995 			/* verify the register updates */
1996 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1997 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1998 				return 0;
1999 		}
2000 	}
2001 
2002 out:
2003 	e_dbg("Failed to write receive address at index %d\n", index);
2004 	return -E1000_ERR_CONFIG;
2005 }
2006 
2007 /**
2008  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2009  *  @hw: pointer to the HW structure
2010  *
2011  *  Checks if firmware is blocking the reset of the PHY.
2012  *  This is a function pointer entry point only called by
2013  *  reset routines.
2014  **/
2015 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2016 {
2017 	bool blocked = false;
2018 	int i = 0;
2019 
2020 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2021 	       (i++ < 30))
2022 		usleep_range(10000, 11000);
2023 	return blocked ? E1000_BLK_PHY_RESET : 0;
2024 }
2025 
2026 /**
2027  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2028  *  @hw: pointer to the HW structure
2029  *
2030  *  Assumes semaphore already acquired.
2031  *
2032  **/
2033 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2034 {
2035 	u16 phy_data;
2036 	u32 strap = er32(STRAP);
2037 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2038 	    E1000_STRAP_SMT_FREQ_SHIFT;
2039 	s32 ret_val;
2040 
2041 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2042 
2043 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2044 	if (ret_val)
2045 		return ret_val;
2046 
2047 	phy_data &= ~HV_SMB_ADDR_MASK;
2048 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2049 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2050 
2051 	if (hw->phy.type == e1000_phy_i217) {
2052 		/* Restore SMBus frequency */
2053 		if (freq--) {
2054 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2055 			phy_data |= (freq & BIT(0)) <<
2056 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2057 			phy_data |= (freq & BIT(1)) <<
2058 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2059 		} else {
2060 			e_dbg("Unsupported SMB frequency in PHY\n");
2061 		}
2062 	}
2063 
2064 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2065 }
2066 
2067 /**
2068  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2069  *  @hw:   pointer to the HW structure
2070  *
2071  *  SW should configure the LCD from the NVM extended configuration region
2072  *  as a workaround for certain parts.
2073  **/
2074 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2075 {
2076 	struct e1000_phy_info *phy = &hw->phy;
2077 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2078 	s32 ret_val = 0;
2079 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2080 
2081 	/* Initialize the PHY from the NVM on ICH platforms.  This
2082 	 * is needed due to an issue where the NVM configuration is
2083 	 * not properly autoloaded after power transitions.
2084 	 * Therefore, after each PHY reset, we will load the
2085 	 * configuration data out of the NVM manually.
2086 	 */
2087 	switch (hw->mac.type) {
2088 	case e1000_ich8lan:
2089 		if (phy->type != e1000_phy_igp_3)
2090 			return ret_val;
2091 
2092 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2093 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2094 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2095 			break;
2096 		}
2097 		fallthrough;
2098 	case e1000_pchlan:
2099 	case e1000_pch2lan:
2100 	case e1000_pch_lpt:
2101 	case e1000_pch_spt:
2102 	case e1000_pch_cnp:
2103 	case e1000_pch_tgp:
2104 	case e1000_pch_adp:
2105 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2106 		break;
2107 	default:
2108 		return ret_val;
2109 	}
2110 
2111 	ret_val = hw->phy.ops.acquire(hw);
2112 	if (ret_val)
2113 		return ret_val;
2114 
2115 	data = er32(FEXTNVM);
2116 	if (!(data & sw_cfg_mask))
2117 		goto release;
2118 
2119 	/* Make sure HW does not configure LCD from PHY
2120 	 * extended configuration before SW configuration
2121 	 */
2122 	data = er32(EXTCNF_CTRL);
2123 	if ((hw->mac.type < e1000_pch2lan) &&
2124 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2125 		goto release;
2126 
2127 	cnf_size = er32(EXTCNF_SIZE);
2128 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2129 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2130 	if (!cnf_size)
2131 		goto release;
2132 
2133 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2134 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2135 
2136 	if (((hw->mac.type == e1000_pchlan) &&
2137 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2138 	    (hw->mac.type > e1000_pchlan)) {
2139 		/* HW configures the SMBus address and LEDs when the
2140 		 * OEM and LCD Write Enable bits are set in the NVM.
2141 		 * When both NVM bits are cleared, SW will configure
2142 		 * them instead.
2143 		 */
2144 		ret_val = e1000_write_smbus_addr(hw);
2145 		if (ret_val)
2146 			goto release;
2147 
2148 		data = er32(LEDCTL);
2149 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2150 							(u16)data);
2151 		if (ret_val)
2152 			goto release;
2153 	}
2154 
2155 	/* Configure LCD from extended configuration region. */
2156 
2157 	/* cnf_base_addr is in DWORD */
2158 	word_addr = (u16)(cnf_base_addr << 1);
2159 
2160 	for (i = 0; i < cnf_size; i++) {
2161 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2162 		if (ret_val)
2163 			goto release;
2164 
2165 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2166 					 1, &reg_addr);
2167 		if (ret_val)
2168 			goto release;
2169 
2170 		/* Save off the PHY page for future writes. */
2171 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2172 			phy_page = reg_data;
2173 			continue;
2174 		}
2175 
2176 		reg_addr &= PHY_REG_MASK;
2177 		reg_addr |= phy_page;
2178 
2179 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2180 		if (ret_val)
2181 			goto release;
2182 	}
2183 
2184 release:
2185 	hw->phy.ops.release(hw);
2186 	return ret_val;
2187 }
2188 
2189 /**
2190  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2191  *  @hw:   pointer to the HW structure
2192  *  @link: link up bool flag
2193  *
2194  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2195  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2196  *  If link is down, the function will restore the default K1 setting located
2197  *  in the NVM.
2198  **/
2199 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2200 {
2201 	s32 ret_val = 0;
2202 	u16 status_reg = 0;
2203 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2204 
2205 	if (hw->mac.type != e1000_pchlan)
2206 		return 0;
2207 
2208 	/* Wrap the whole flow with the sw flag */
2209 	ret_val = hw->phy.ops.acquire(hw);
2210 	if (ret_val)
2211 		return ret_val;
2212 
2213 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2214 	if (link) {
2215 		if (hw->phy.type == e1000_phy_82578) {
2216 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2217 						  &status_reg);
2218 			if (ret_val)
2219 				goto release;
2220 
2221 			status_reg &= (BM_CS_STATUS_LINK_UP |
2222 				       BM_CS_STATUS_RESOLVED |
2223 				       BM_CS_STATUS_SPEED_MASK);
2224 
2225 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2226 					   BM_CS_STATUS_RESOLVED |
2227 					   BM_CS_STATUS_SPEED_1000))
2228 				k1_enable = false;
2229 		}
2230 
2231 		if (hw->phy.type == e1000_phy_82577) {
2232 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2233 			if (ret_val)
2234 				goto release;
2235 
2236 			status_reg &= (HV_M_STATUS_LINK_UP |
2237 				       HV_M_STATUS_AUTONEG_COMPLETE |
2238 				       HV_M_STATUS_SPEED_MASK);
2239 
2240 			if (status_reg == (HV_M_STATUS_LINK_UP |
2241 					   HV_M_STATUS_AUTONEG_COMPLETE |
2242 					   HV_M_STATUS_SPEED_1000))
2243 				k1_enable = false;
2244 		}
2245 
2246 		/* Link stall fix for link up */
2247 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2248 		if (ret_val)
2249 			goto release;
2250 
2251 	} else {
2252 		/* Link stall fix for link down */
2253 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2254 		if (ret_val)
2255 			goto release;
2256 	}
2257 
2258 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2259 
2260 release:
2261 	hw->phy.ops.release(hw);
2262 
2263 	return ret_val;
2264 }
2265 
2266 /**
2267  *  e1000_configure_k1_ich8lan - Configure K1 power state
2268  *  @hw: pointer to the HW structure
2269  *  @enable: K1 state to configure
2270  *
2271  *  Configure the K1 power state based on the provided parameter.
2272  *  Assumes semaphore already acquired.
2273  *
2274  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2275  **/
2276 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2277 {
2278 	s32 ret_val;
2279 	u32 ctrl_reg = 0;
2280 	u32 ctrl_ext = 0;
2281 	u32 reg = 0;
2282 	u16 kmrn_reg = 0;
2283 
2284 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2285 					      &kmrn_reg);
2286 	if (ret_val)
2287 		return ret_val;
2288 
2289 	if (k1_enable)
2290 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2291 	else
2292 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2293 
2294 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2295 					       kmrn_reg);
2296 	if (ret_val)
2297 		return ret_val;
2298 
2299 	usleep_range(20, 40);
2300 	ctrl_ext = er32(CTRL_EXT);
2301 	ctrl_reg = er32(CTRL);
2302 
2303 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2304 	reg |= E1000_CTRL_FRCSPD;
2305 	ew32(CTRL, reg);
2306 
2307 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2308 	e1e_flush();
2309 	usleep_range(20, 40);
2310 	ew32(CTRL, ctrl_reg);
2311 	ew32(CTRL_EXT, ctrl_ext);
2312 	e1e_flush();
2313 	usleep_range(20, 40);
2314 
2315 	return 0;
2316 }
2317 
2318 /**
2319  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2320  *  @hw:       pointer to the HW structure
2321  *  @d0_state: boolean if entering d0 or d3 device state
2322  *
2323  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2324  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2325  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2326  **/
2327 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2328 {
2329 	s32 ret_val = 0;
2330 	u32 mac_reg;
2331 	u16 oem_reg;
2332 
2333 	if (hw->mac.type < e1000_pchlan)
2334 		return ret_val;
2335 
2336 	ret_val = hw->phy.ops.acquire(hw);
2337 	if (ret_val)
2338 		return ret_val;
2339 
2340 	if (hw->mac.type == e1000_pchlan) {
2341 		mac_reg = er32(EXTCNF_CTRL);
2342 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2343 			goto release;
2344 	}
2345 
2346 	mac_reg = er32(FEXTNVM);
2347 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2348 		goto release;
2349 
2350 	mac_reg = er32(PHY_CTRL);
2351 
2352 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2353 	if (ret_val)
2354 		goto release;
2355 
2356 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2357 
2358 	if (d0_state) {
2359 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2360 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2361 
2362 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2363 			oem_reg |= HV_OEM_BITS_LPLU;
2364 	} else {
2365 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2366 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2367 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2368 
2369 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2370 			       E1000_PHY_CTRL_NOND0A_LPLU))
2371 			oem_reg |= HV_OEM_BITS_LPLU;
2372 	}
2373 
2374 	/* Set Restart auto-neg to activate the bits */
2375 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2376 	    !hw->phy.ops.check_reset_block(hw))
2377 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2378 
2379 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2380 
2381 release:
2382 	hw->phy.ops.release(hw);
2383 
2384 	return ret_val;
2385 }
2386 
2387 /**
2388  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2389  *  @hw:   pointer to the HW structure
2390  **/
2391 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2392 {
2393 	s32 ret_val;
2394 	u16 data;
2395 
2396 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2397 	if (ret_val)
2398 		return ret_val;
2399 
2400 	data |= HV_KMRN_MDIO_SLOW;
2401 
2402 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2403 
2404 	return ret_val;
2405 }
2406 
2407 /**
2408  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2409  *  done after every PHY reset.
2410  **/
2411 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2412 {
2413 	s32 ret_val = 0;
2414 	u16 phy_data;
2415 
2416 	if (hw->mac.type != e1000_pchlan)
2417 		return 0;
2418 
2419 	/* Set MDIO slow mode before any other MDIO access */
2420 	if (hw->phy.type == e1000_phy_82577) {
2421 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2422 		if (ret_val)
2423 			return ret_val;
2424 	}
2425 
2426 	if (((hw->phy.type == e1000_phy_82577) &&
2427 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2428 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2429 		/* Disable generation of early preamble */
2430 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2431 		if (ret_val)
2432 			return ret_val;
2433 
2434 		/* Preamble tuning for SSC */
2435 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2436 		if (ret_val)
2437 			return ret_val;
2438 	}
2439 
2440 	if (hw->phy.type == e1000_phy_82578) {
2441 		/* Return registers to default by doing a soft reset then
2442 		 * writing 0x3140 to the control register.
2443 		 */
2444 		if (hw->phy.revision < 2) {
2445 			e1000e_phy_sw_reset(hw);
2446 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2447 			if (ret_val)
2448 				return ret_val;
2449 		}
2450 	}
2451 
2452 	/* Select page 0 */
2453 	ret_val = hw->phy.ops.acquire(hw);
2454 	if (ret_val)
2455 		return ret_val;
2456 
2457 	hw->phy.addr = 1;
2458 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2459 	hw->phy.ops.release(hw);
2460 	if (ret_val)
2461 		return ret_val;
2462 
2463 	/* Configure the K1 Si workaround during phy reset assuming there is
2464 	 * link so that it disables K1 if link is in 1Gbps.
2465 	 */
2466 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2467 	if (ret_val)
2468 		return ret_val;
2469 
2470 	/* Workaround for link disconnects on a busy hub in half duplex */
2471 	ret_val = hw->phy.ops.acquire(hw);
2472 	if (ret_val)
2473 		return ret_val;
2474 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2475 	if (ret_val)
2476 		goto release;
2477 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2478 	if (ret_val)
2479 		goto release;
2480 
2481 	/* set MSE higher to enable link to stay up when noise is high */
2482 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2483 release:
2484 	hw->phy.ops.release(hw);
2485 
2486 	return ret_val;
2487 }
2488 
2489 /**
2490  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2491  *  @hw:   pointer to the HW structure
2492  **/
2493 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2494 {
2495 	u32 mac_reg;
2496 	u16 i, phy_reg = 0;
2497 	s32 ret_val;
2498 
2499 	ret_val = hw->phy.ops.acquire(hw);
2500 	if (ret_val)
2501 		return;
2502 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2503 	if (ret_val)
2504 		goto release;
2505 
2506 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2507 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2508 		mac_reg = er32(RAL(i));
2509 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2510 					   (u16)(mac_reg & 0xFFFF));
2511 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2512 					   (u16)((mac_reg >> 16) & 0xFFFF));
2513 
2514 		mac_reg = er32(RAH(i));
2515 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2516 					   (u16)(mac_reg & 0xFFFF));
2517 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2518 					   (u16)((mac_reg & E1000_RAH_AV)
2519 						 >> 16));
2520 	}
2521 
2522 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2523 
2524 release:
2525 	hw->phy.ops.release(hw);
2526 }
2527 
2528 /**
2529  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2530  *  with 82579 PHY
2531  *  @hw: pointer to the HW structure
2532  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2533  **/
2534 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2535 {
2536 	s32 ret_val = 0;
2537 	u16 phy_reg, data;
2538 	u32 mac_reg;
2539 	u16 i;
2540 
2541 	if (hw->mac.type < e1000_pch2lan)
2542 		return 0;
2543 
2544 	/* disable Rx path while enabling/disabling workaround */
2545 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2546 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2547 	if (ret_val)
2548 		return ret_val;
2549 
2550 	if (enable) {
2551 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2552 		 * SHRAL/H) and initial CRC values to the MAC
2553 		 */
2554 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2555 			u8 mac_addr[ETH_ALEN] = { 0 };
2556 			u32 addr_high, addr_low;
2557 
2558 			addr_high = er32(RAH(i));
2559 			if (!(addr_high & E1000_RAH_AV))
2560 				continue;
2561 			addr_low = er32(RAL(i));
2562 			mac_addr[0] = (addr_low & 0xFF);
2563 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2564 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2565 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2566 			mac_addr[4] = (addr_high & 0xFF);
2567 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2568 
2569 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2570 		}
2571 
2572 		/* Write Rx addresses to the PHY */
2573 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2574 
2575 		/* Enable jumbo frame workaround in the MAC */
2576 		mac_reg = er32(FFLT_DBG);
2577 		mac_reg &= ~BIT(14);
2578 		mac_reg |= (7 << 15);
2579 		ew32(FFLT_DBG, mac_reg);
2580 
2581 		mac_reg = er32(RCTL);
2582 		mac_reg |= E1000_RCTL_SECRC;
2583 		ew32(RCTL, mac_reg);
2584 
2585 		ret_val = e1000e_read_kmrn_reg(hw,
2586 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2587 					       &data);
2588 		if (ret_val)
2589 			return ret_val;
2590 		ret_val = e1000e_write_kmrn_reg(hw,
2591 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2592 						data | BIT(0));
2593 		if (ret_val)
2594 			return ret_val;
2595 		ret_val = e1000e_read_kmrn_reg(hw,
2596 					       E1000_KMRNCTRLSTA_HD_CTRL,
2597 					       &data);
2598 		if (ret_val)
2599 			return ret_val;
2600 		data &= ~(0xF << 8);
2601 		data |= (0xB << 8);
2602 		ret_val = e1000e_write_kmrn_reg(hw,
2603 						E1000_KMRNCTRLSTA_HD_CTRL,
2604 						data);
2605 		if (ret_val)
2606 			return ret_val;
2607 
2608 		/* Enable jumbo frame workaround in the PHY */
2609 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2610 		data &= ~(0x7F << 5);
2611 		data |= (0x37 << 5);
2612 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2613 		if (ret_val)
2614 			return ret_val;
2615 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2616 		data &= ~BIT(13);
2617 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2618 		if (ret_val)
2619 			return ret_val;
2620 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2621 		data &= ~(0x3FF << 2);
2622 		data |= (E1000_TX_PTR_GAP << 2);
2623 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2624 		if (ret_val)
2625 			return ret_val;
2626 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2627 		if (ret_val)
2628 			return ret_val;
2629 		e1e_rphy(hw, HV_PM_CTRL, &data);
2630 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2631 		if (ret_val)
2632 			return ret_val;
2633 	} else {
2634 		/* Write MAC register values back to h/w defaults */
2635 		mac_reg = er32(FFLT_DBG);
2636 		mac_reg &= ~(0xF << 14);
2637 		ew32(FFLT_DBG, mac_reg);
2638 
2639 		mac_reg = er32(RCTL);
2640 		mac_reg &= ~E1000_RCTL_SECRC;
2641 		ew32(RCTL, mac_reg);
2642 
2643 		ret_val = e1000e_read_kmrn_reg(hw,
2644 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2645 					       &data);
2646 		if (ret_val)
2647 			return ret_val;
2648 		ret_val = e1000e_write_kmrn_reg(hw,
2649 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2650 						data & ~BIT(0));
2651 		if (ret_val)
2652 			return ret_val;
2653 		ret_val = e1000e_read_kmrn_reg(hw,
2654 					       E1000_KMRNCTRLSTA_HD_CTRL,
2655 					       &data);
2656 		if (ret_val)
2657 			return ret_val;
2658 		data &= ~(0xF << 8);
2659 		data |= (0xB << 8);
2660 		ret_val = e1000e_write_kmrn_reg(hw,
2661 						E1000_KMRNCTRLSTA_HD_CTRL,
2662 						data);
2663 		if (ret_val)
2664 			return ret_val;
2665 
2666 		/* Write PHY register values back to h/w defaults */
2667 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2668 		data &= ~(0x7F << 5);
2669 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2670 		if (ret_val)
2671 			return ret_val;
2672 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2673 		data |= BIT(13);
2674 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2675 		if (ret_val)
2676 			return ret_val;
2677 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2678 		data &= ~(0x3FF << 2);
2679 		data |= (0x8 << 2);
2680 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2681 		if (ret_val)
2682 			return ret_val;
2683 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2684 		if (ret_val)
2685 			return ret_val;
2686 		e1e_rphy(hw, HV_PM_CTRL, &data);
2687 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2688 		if (ret_val)
2689 			return ret_val;
2690 	}
2691 
2692 	/* re-enable Rx path after enabling/disabling workaround */
2693 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2694 }
2695 
2696 /**
2697  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2698  *  done after every PHY reset.
2699  **/
2700 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2701 {
2702 	s32 ret_val = 0;
2703 
2704 	if (hw->mac.type != e1000_pch2lan)
2705 		return 0;
2706 
2707 	/* Set MDIO slow mode before any other MDIO access */
2708 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2709 	if (ret_val)
2710 		return ret_val;
2711 
2712 	ret_val = hw->phy.ops.acquire(hw);
2713 	if (ret_val)
2714 		return ret_val;
2715 	/* set MSE higher to enable link to stay up when noise is high */
2716 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2717 	if (ret_val)
2718 		goto release;
2719 	/* drop link after 5 times MSE threshold was reached */
2720 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2721 release:
2722 	hw->phy.ops.release(hw);
2723 
2724 	return ret_val;
2725 }
2726 
2727 /**
2728  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2729  *  @hw:   pointer to the HW structure
2730  *
2731  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2732  *  Disable K1 in 1000Mbps and 100Mbps
2733  **/
2734 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2735 {
2736 	s32 ret_val = 0;
2737 	u16 status_reg = 0;
2738 
2739 	if (hw->mac.type != e1000_pch2lan)
2740 		return 0;
2741 
2742 	/* Set K1 beacon duration based on 10Mbs speed */
2743 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2744 	if (ret_val)
2745 		return ret_val;
2746 
2747 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2748 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2749 		if (status_reg &
2750 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2751 			u16 pm_phy_reg;
2752 
2753 			/* LV 1G/100 Packet drop issue wa  */
2754 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2755 			if (ret_val)
2756 				return ret_val;
2757 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2758 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2759 			if (ret_val)
2760 				return ret_val;
2761 		} else {
2762 			u32 mac_reg;
2763 
2764 			mac_reg = er32(FEXTNVM4);
2765 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2766 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2767 			ew32(FEXTNVM4, mac_reg);
2768 		}
2769 	}
2770 
2771 	return ret_val;
2772 }
2773 
2774 /**
2775  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2776  *  @hw:   pointer to the HW structure
2777  *  @gate: boolean set to true to gate, false to ungate
2778  *
2779  *  Gate/ungate the automatic PHY configuration via hardware; perform
2780  *  the configuration via software instead.
2781  **/
2782 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2783 {
2784 	u32 extcnf_ctrl;
2785 
2786 	if (hw->mac.type < e1000_pch2lan)
2787 		return;
2788 
2789 	extcnf_ctrl = er32(EXTCNF_CTRL);
2790 
2791 	if (gate)
2792 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2793 	else
2794 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2795 
2796 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2797 }
2798 
2799 /**
2800  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2801  *  @hw: pointer to the HW structure
2802  *
2803  *  Check the appropriate indication the MAC has finished configuring the
2804  *  PHY after a software reset.
2805  **/
2806 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2807 {
2808 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2809 
2810 	/* Wait for basic configuration completes before proceeding */
2811 	do {
2812 		data = er32(STATUS);
2813 		data &= E1000_STATUS_LAN_INIT_DONE;
2814 		usleep_range(100, 200);
2815 	} while ((!data) && --loop);
2816 
2817 	/* If basic configuration is incomplete before the above loop
2818 	 * count reaches 0, loading the configuration from NVM will
2819 	 * leave the PHY in a bad state possibly resulting in no link.
2820 	 */
2821 	if (loop == 0)
2822 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2823 
2824 	/* Clear the Init Done bit for the next init event */
2825 	data = er32(STATUS);
2826 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2827 	ew32(STATUS, data);
2828 }
2829 
2830 /**
2831  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2832  *  @hw: pointer to the HW structure
2833  **/
2834 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2835 {
2836 	s32 ret_val = 0;
2837 	u16 reg;
2838 
2839 	if (hw->phy.ops.check_reset_block(hw))
2840 		return 0;
2841 
2842 	/* Allow time for h/w to get to quiescent state after reset */
2843 	usleep_range(10000, 11000);
2844 
2845 	/* Perform any necessary post-reset workarounds */
2846 	switch (hw->mac.type) {
2847 	case e1000_pchlan:
2848 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2849 		if (ret_val)
2850 			return ret_val;
2851 		break;
2852 	case e1000_pch2lan:
2853 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2854 		if (ret_val)
2855 			return ret_val;
2856 		break;
2857 	default:
2858 		break;
2859 	}
2860 
2861 	/* Clear the host wakeup bit after lcd reset */
2862 	if (hw->mac.type >= e1000_pchlan) {
2863 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2864 		reg &= ~BM_WUC_HOST_WU_BIT;
2865 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2866 	}
2867 
2868 	/* Configure the LCD with the extended configuration region in NVM */
2869 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2870 	if (ret_val)
2871 		return ret_val;
2872 
2873 	/* Configure the LCD with the OEM bits in NVM */
2874 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2875 
2876 	if (hw->mac.type == e1000_pch2lan) {
2877 		/* Ungate automatic PHY configuration on non-managed 82579 */
2878 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2879 			usleep_range(10000, 11000);
2880 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2881 		}
2882 
2883 		/* Set EEE LPI Update Timer to 200usec */
2884 		ret_val = hw->phy.ops.acquire(hw);
2885 		if (ret_val)
2886 			return ret_val;
2887 		ret_val = e1000_write_emi_reg_locked(hw,
2888 						     I82579_LPI_UPDATE_TIMER,
2889 						     0x1387);
2890 		hw->phy.ops.release(hw);
2891 	}
2892 
2893 	return ret_val;
2894 }
2895 
2896 /**
2897  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2898  *  @hw: pointer to the HW structure
2899  *
2900  *  Resets the PHY
2901  *  This is a function pointer entry point called by drivers
2902  *  or other shared routines.
2903  **/
2904 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2905 {
2906 	s32 ret_val = 0;
2907 
2908 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2909 	if ((hw->mac.type == e1000_pch2lan) &&
2910 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2911 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2912 
2913 	ret_val = e1000e_phy_hw_reset_generic(hw);
2914 	if (ret_val)
2915 		return ret_val;
2916 
2917 	return e1000_post_phy_reset_ich8lan(hw);
2918 }
2919 
2920 /**
2921  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2922  *  @hw: pointer to the HW structure
2923  *  @active: true to enable LPLU, false to disable
2924  *
2925  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2926  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2927  *  the phy speed. This function will manually set the LPLU bit and restart
2928  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2929  *  since it configures the same bit.
2930  **/
2931 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2932 {
2933 	s32 ret_val;
2934 	u16 oem_reg;
2935 
2936 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2937 	if (ret_val)
2938 		return ret_val;
2939 
2940 	if (active)
2941 		oem_reg |= HV_OEM_BITS_LPLU;
2942 	else
2943 		oem_reg &= ~HV_OEM_BITS_LPLU;
2944 
2945 	if (!hw->phy.ops.check_reset_block(hw))
2946 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2947 
2948 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2949 }
2950 
2951 /**
2952  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2953  *  @hw: pointer to the HW structure
2954  *  @active: true to enable LPLU, false to disable
2955  *
2956  *  Sets the LPLU D0 state according to the active flag.  When
2957  *  activating LPLU this function also disables smart speed
2958  *  and vice versa.  LPLU will not be activated unless the
2959  *  device autonegotiation advertisement meets standards of
2960  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2961  *  This is a function pointer entry point only called by
2962  *  PHY setup routines.
2963  **/
2964 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2965 {
2966 	struct e1000_phy_info *phy = &hw->phy;
2967 	u32 phy_ctrl;
2968 	s32 ret_val = 0;
2969 	u16 data;
2970 
2971 	if (phy->type == e1000_phy_ife)
2972 		return 0;
2973 
2974 	phy_ctrl = er32(PHY_CTRL);
2975 
2976 	if (active) {
2977 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2978 		ew32(PHY_CTRL, phy_ctrl);
2979 
2980 		if (phy->type != e1000_phy_igp_3)
2981 			return 0;
2982 
2983 		/* Call gig speed drop workaround on LPLU before accessing
2984 		 * any PHY registers
2985 		 */
2986 		if (hw->mac.type == e1000_ich8lan)
2987 			e1000e_gig_downshift_workaround_ich8lan(hw);
2988 
2989 		/* When LPLU is enabled, we should disable SmartSpeed */
2990 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2991 		if (ret_val)
2992 			return ret_val;
2993 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2994 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2995 		if (ret_val)
2996 			return ret_val;
2997 	} else {
2998 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2999 		ew32(PHY_CTRL, phy_ctrl);
3000 
3001 		if (phy->type != e1000_phy_igp_3)
3002 			return 0;
3003 
3004 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3005 		 * during Dx states where the power conservation is most
3006 		 * important.  During driver activity we should enable
3007 		 * SmartSpeed, so performance is maintained.
3008 		 */
3009 		if (phy->smart_speed == e1000_smart_speed_on) {
3010 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3011 					   &data);
3012 			if (ret_val)
3013 				return ret_val;
3014 
3015 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3016 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3017 					   data);
3018 			if (ret_val)
3019 				return ret_val;
3020 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3021 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3022 					   &data);
3023 			if (ret_val)
3024 				return ret_val;
3025 
3026 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3027 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3028 					   data);
3029 			if (ret_val)
3030 				return ret_val;
3031 		}
3032 	}
3033 
3034 	return 0;
3035 }
3036 
3037 /**
3038  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3039  *  @hw: pointer to the HW structure
3040  *  @active: true to enable LPLU, false to disable
3041  *
3042  *  Sets the LPLU D3 state according to the active flag.  When
3043  *  activating LPLU this function also disables smart speed
3044  *  and vice versa.  LPLU will not be activated unless the
3045  *  device autonegotiation advertisement meets standards of
3046  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3047  *  This is a function pointer entry point only called by
3048  *  PHY setup routines.
3049  **/
3050 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3051 {
3052 	struct e1000_phy_info *phy = &hw->phy;
3053 	u32 phy_ctrl;
3054 	s32 ret_val = 0;
3055 	u16 data;
3056 
3057 	phy_ctrl = er32(PHY_CTRL);
3058 
3059 	if (!active) {
3060 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3061 		ew32(PHY_CTRL, phy_ctrl);
3062 
3063 		if (phy->type != e1000_phy_igp_3)
3064 			return 0;
3065 
3066 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3067 		 * during Dx states where the power conservation is most
3068 		 * important.  During driver activity we should enable
3069 		 * SmartSpeed, so performance is maintained.
3070 		 */
3071 		if (phy->smart_speed == e1000_smart_speed_on) {
3072 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3073 					   &data);
3074 			if (ret_val)
3075 				return ret_val;
3076 
3077 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3078 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3079 					   data);
3080 			if (ret_val)
3081 				return ret_val;
3082 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3083 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3084 					   &data);
3085 			if (ret_val)
3086 				return ret_val;
3087 
3088 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3089 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3090 					   data);
3091 			if (ret_val)
3092 				return ret_val;
3093 		}
3094 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3095 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3096 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3097 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3098 		ew32(PHY_CTRL, phy_ctrl);
3099 
3100 		if (phy->type != e1000_phy_igp_3)
3101 			return 0;
3102 
3103 		/* Call gig speed drop workaround on LPLU before accessing
3104 		 * any PHY registers
3105 		 */
3106 		if (hw->mac.type == e1000_ich8lan)
3107 			e1000e_gig_downshift_workaround_ich8lan(hw);
3108 
3109 		/* When LPLU is enabled, we should disable SmartSpeed */
3110 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3111 		if (ret_val)
3112 			return ret_val;
3113 
3114 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3115 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3116 	}
3117 
3118 	return ret_val;
3119 }
3120 
3121 /**
3122  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3123  *  @hw: pointer to the HW structure
3124  *  @bank:  pointer to the variable that returns the active bank
3125  *
3126  *  Reads signature byte from the NVM using the flash access registers.
3127  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3128  **/
3129 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3130 {
3131 	u32 eecd;
3132 	struct e1000_nvm_info *nvm = &hw->nvm;
3133 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3134 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3135 	u32 nvm_dword = 0;
3136 	u8 sig_byte = 0;
3137 	s32 ret_val;
3138 
3139 	switch (hw->mac.type) {
3140 	case e1000_pch_spt:
3141 	case e1000_pch_cnp:
3142 	case e1000_pch_tgp:
3143 	case e1000_pch_adp:
3144 		bank1_offset = nvm->flash_bank_size;
3145 		act_offset = E1000_ICH_NVM_SIG_WORD;
3146 
3147 		/* set bank to 0 in case flash read fails */
3148 		*bank = 0;
3149 
3150 		/* Check bank 0 */
3151 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3152 							 &nvm_dword);
3153 		if (ret_val)
3154 			return ret_val;
3155 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3156 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3157 		    E1000_ICH_NVM_SIG_VALUE) {
3158 			*bank = 0;
3159 			return 0;
3160 		}
3161 
3162 		/* Check bank 1 */
3163 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3164 							 bank1_offset,
3165 							 &nvm_dword);
3166 		if (ret_val)
3167 			return ret_val;
3168 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3169 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3170 		    E1000_ICH_NVM_SIG_VALUE) {
3171 			*bank = 1;
3172 			return 0;
3173 		}
3174 
3175 		e_dbg("ERROR: No valid NVM bank present\n");
3176 		return -E1000_ERR_NVM;
3177 	case e1000_ich8lan:
3178 	case e1000_ich9lan:
3179 		eecd = er32(EECD);
3180 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3181 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3182 			if (eecd & E1000_EECD_SEC1VAL)
3183 				*bank = 1;
3184 			else
3185 				*bank = 0;
3186 
3187 			return 0;
3188 		}
3189 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3190 		fallthrough;
3191 	default:
3192 		/* set bank to 0 in case flash read fails */
3193 		*bank = 0;
3194 
3195 		/* Check bank 0 */
3196 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3197 							&sig_byte);
3198 		if (ret_val)
3199 			return ret_val;
3200 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3201 		    E1000_ICH_NVM_SIG_VALUE) {
3202 			*bank = 0;
3203 			return 0;
3204 		}
3205 
3206 		/* Check bank 1 */
3207 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3208 							bank1_offset,
3209 							&sig_byte);
3210 		if (ret_val)
3211 			return ret_val;
3212 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3213 		    E1000_ICH_NVM_SIG_VALUE) {
3214 			*bank = 1;
3215 			return 0;
3216 		}
3217 
3218 		e_dbg("ERROR: No valid NVM bank present\n");
3219 		return -E1000_ERR_NVM;
3220 	}
3221 }
3222 
3223 /**
3224  *  e1000_read_nvm_spt - NVM access for SPT
3225  *  @hw: pointer to the HW structure
3226  *  @offset: The offset (in bytes) of the word(s) to read.
3227  *  @words: Size of data to read in words.
3228  *  @data: pointer to the word(s) to read at offset.
3229  *
3230  *  Reads a word(s) from the NVM
3231  **/
3232 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3233 			      u16 *data)
3234 {
3235 	struct e1000_nvm_info *nvm = &hw->nvm;
3236 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3237 	u32 act_offset;
3238 	s32 ret_val = 0;
3239 	u32 bank = 0;
3240 	u32 dword = 0;
3241 	u16 offset_to_read;
3242 	u16 i;
3243 
3244 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3245 	    (words == 0)) {
3246 		e_dbg("nvm parameter(s) out of bounds\n");
3247 		ret_val = -E1000_ERR_NVM;
3248 		goto out;
3249 	}
3250 
3251 	nvm->ops.acquire(hw);
3252 
3253 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3254 	if (ret_val) {
3255 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3256 		bank = 0;
3257 	}
3258 
3259 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3260 	act_offset += offset;
3261 
3262 	ret_val = 0;
3263 
3264 	for (i = 0; i < words; i += 2) {
3265 		if (words - i == 1) {
3266 			if (dev_spec->shadow_ram[offset + i].modified) {
3267 				data[i] =
3268 				    dev_spec->shadow_ram[offset + i].value;
3269 			} else {
3270 				offset_to_read = act_offset + i -
3271 				    ((act_offset + i) % 2);
3272 				ret_val =
3273 				  e1000_read_flash_dword_ich8lan(hw,
3274 								 offset_to_read,
3275 								 &dword);
3276 				if (ret_val)
3277 					break;
3278 				if ((act_offset + i) % 2 == 0)
3279 					data[i] = (u16)(dword & 0xFFFF);
3280 				else
3281 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3282 			}
3283 		} else {
3284 			offset_to_read = act_offset + i;
3285 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3286 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3287 				ret_val =
3288 				  e1000_read_flash_dword_ich8lan(hw,
3289 								 offset_to_read,
3290 								 &dword);
3291 				if (ret_val)
3292 					break;
3293 			}
3294 			if (dev_spec->shadow_ram[offset + i].modified)
3295 				data[i] =
3296 				    dev_spec->shadow_ram[offset + i].value;
3297 			else
3298 				data[i] = (u16)(dword & 0xFFFF);
3299 			if (dev_spec->shadow_ram[offset + i].modified)
3300 				data[i + 1] =
3301 				    dev_spec->shadow_ram[offset + i + 1].value;
3302 			else
3303 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3304 		}
3305 	}
3306 
3307 	nvm->ops.release(hw);
3308 
3309 out:
3310 	if (ret_val)
3311 		e_dbg("NVM read error: %d\n", ret_val);
3312 
3313 	return ret_val;
3314 }
3315 
3316 /**
3317  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3318  *  @hw: pointer to the HW structure
3319  *  @offset: The offset (in bytes) of the word(s) to read.
3320  *  @words: Size of data to read in words
3321  *  @data: Pointer to the word(s) to read at offset.
3322  *
3323  *  Reads a word(s) from the NVM using the flash access registers.
3324  **/
3325 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3326 				  u16 *data)
3327 {
3328 	struct e1000_nvm_info *nvm = &hw->nvm;
3329 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3330 	u32 act_offset;
3331 	s32 ret_val = 0;
3332 	u32 bank = 0;
3333 	u16 i, word;
3334 
3335 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3336 	    (words == 0)) {
3337 		e_dbg("nvm parameter(s) out of bounds\n");
3338 		ret_val = -E1000_ERR_NVM;
3339 		goto out;
3340 	}
3341 
3342 	nvm->ops.acquire(hw);
3343 
3344 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3345 	if (ret_val) {
3346 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3347 		bank = 0;
3348 	}
3349 
3350 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3351 	act_offset += offset;
3352 
3353 	ret_val = 0;
3354 	for (i = 0; i < words; i++) {
3355 		if (dev_spec->shadow_ram[offset + i].modified) {
3356 			data[i] = dev_spec->shadow_ram[offset + i].value;
3357 		} else {
3358 			ret_val = e1000_read_flash_word_ich8lan(hw,
3359 								act_offset + i,
3360 								&word);
3361 			if (ret_val)
3362 				break;
3363 			data[i] = word;
3364 		}
3365 	}
3366 
3367 	nvm->ops.release(hw);
3368 
3369 out:
3370 	if (ret_val)
3371 		e_dbg("NVM read error: %d\n", ret_val);
3372 
3373 	return ret_val;
3374 }
3375 
3376 /**
3377  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3378  *  @hw: pointer to the HW structure
3379  *
3380  *  This function does initial flash setup so that a new read/write/erase cycle
3381  *  can be started.
3382  **/
3383 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3384 {
3385 	union ich8_hws_flash_status hsfsts;
3386 	s32 ret_val = -E1000_ERR_NVM;
3387 
3388 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3389 
3390 	/* Check if the flash descriptor is valid */
3391 	if (!hsfsts.hsf_status.fldesvalid) {
3392 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3393 		return -E1000_ERR_NVM;
3394 	}
3395 
3396 	/* Clear FCERR and DAEL in hw status by writing 1 */
3397 	hsfsts.hsf_status.flcerr = 1;
3398 	hsfsts.hsf_status.dael = 1;
3399 	if (hw->mac.type >= e1000_pch_spt)
3400 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3401 	else
3402 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3403 
3404 	/* Either we should have a hardware SPI cycle in progress
3405 	 * bit to check against, in order to start a new cycle or
3406 	 * FDONE bit should be changed in the hardware so that it
3407 	 * is 1 after hardware reset, which can then be used as an
3408 	 * indication whether a cycle is in progress or has been
3409 	 * completed.
3410 	 */
3411 
3412 	if (!hsfsts.hsf_status.flcinprog) {
3413 		/* There is no cycle running at present,
3414 		 * so we can start a cycle.
3415 		 * Begin by setting Flash Cycle Done.
3416 		 */
3417 		hsfsts.hsf_status.flcdone = 1;
3418 		if (hw->mac.type >= e1000_pch_spt)
3419 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3420 		else
3421 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3422 		ret_val = 0;
3423 	} else {
3424 		s32 i;
3425 
3426 		/* Otherwise poll for sometime so the current
3427 		 * cycle has a chance to end before giving up.
3428 		 */
3429 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3430 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3431 			if (!hsfsts.hsf_status.flcinprog) {
3432 				ret_val = 0;
3433 				break;
3434 			}
3435 			udelay(1);
3436 		}
3437 		if (!ret_val) {
3438 			/* Successful in waiting for previous cycle to timeout,
3439 			 * now set the Flash Cycle Done.
3440 			 */
3441 			hsfsts.hsf_status.flcdone = 1;
3442 			if (hw->mac.type >= e1000_pch_spt)
3443 				ew32flash(ICH_FLASH_HSFSTS,
3444 					  hsfsts.regval & 0xFFFF);
3445 			else
3446 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3447 		} else {
3448 			e_dbg("Flash controller busy, cannot get access\n");
3449 		}
3450 	}
3451 
3452 	return ret_val;
3453 }
3454 
3455 /**
3456  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3457  *  @hw: pointer to the HW structure
3458  *  @timeout: maximum time to wait for completion
3459  *
3460  *  This function starts a flash cycle and waits for its completion.
3461  **/
3462 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3463 {
3464 	union ich8_hws_flash_ctrl hsflctl;
3465 	union ich8_hws_flash_status hsfsts;
3466 	u32 i = 0;
3467 
3468 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3469 	if (hw->mac.type >= e1000_pch_spt)
3470 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3471 	else
3472 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3473 	hsflctl.hsf_ctrl.flcgo = 1;
3474 
3475 	if (hw->mac.type >= e1000_pch_spt)
3476 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3477 	else
3478 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3479 
3480 	/* wait till FDONE bit is set to 1 */
3481 	do {
3482 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3483 		if (hsfsts.hsf_status.flcdone)
3484 			break;
3485 		udelay(1);
3486 	} while (i++ < timeout);
3487 
3488 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3489 		return 0;
3490 
3491 	return -E1000_ERR_NVM;
3492 }
3493 
3494 /**
3495  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3496  *  @hw: pointer to the HW structure
3497  *  @offset: offset to data location
3498  *  @data: pointer to the location for storing the data
3499  *
3500  *  Reads the flash dword at offset into data.  Offset is converted
3501  *  to bytes before read.
3502  **/
3503 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3504 					  u32 *data)
3505 {
3506 	/* Must convert word offset into bytes. */
3507 	offset <<= 1;
3508 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3509 }
3510 
3511 /**
3512  *  e1000_read_flash_word_ich8lan - Read word from flash
3513  *  @hw: pointer to the HW structure
3514  *  @offset: offset to data location
3515  *  @data: pointer to the location for storing the data
3516  *
3517  *  Reads the flash word at offset into data.  Offset is converted
3518  *  to bytes before read.
3519  **/
3520 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3521 					 u16 *data)
3522 {
3523 	/* Must convert offset into bytes. */
3524 	offset <<= 1;
3525 
3526 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3527 }
3528 
3529 /**
3530  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3531  *  @hw: pointer to the HW structure
3532  *  @offset: The offset of the byte to read.
3533  *  @data: Pointer to a byte to store the value read.
3534  *
3535  *  Reads a single byte from the NVM using the flash access registers.
3536  **/
3537 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3538 					 u8 *data)
3539 {
3540 	s32 ret_val;
3541 	u16 word = 0;
3542 
3543 	/* In SPT, only 32 bits access is supported,
3544 	 * so this function should not be called.
3545 	 */
3546 	if (hw->mac.type >= e1000_pch_spt)
3547 		return -E1000_ERR_NVM;
3548 	else
3549 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3550 
3551 	if (ret_val)
3552 		return ret_val;
3553 
3554 	*data = (u8)word;
3555 
3556 	return 0;
3557 }
3558 
3559 /**
3560  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3561  *  @hw: pointer to the HW structure
3562  *  @offset: The offset (in bytes) of the byte or word to read.
3563  *  @size: Size of data to read, 1=byte 2=word
3564  *  @data: Pointer to the word to store the value read.
3565  *
3566  *  Reads a byte or word from the NVM using the flash access registers.
3567  **/
3568 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3569 					 u8 size, u16 *data)
3570 {
3571 	union ich8_hws_flash_status hsfsts;
3572 	union ich8_hws_flash_ctrl hsflctl;
3573 	u32 flash_linear_addr;
3574 	u32 flash_data = 0;
3575 	s32 ret_val = -E1000_ERR_NVM;
3576 	u8 count = 0;
3577 
3578 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3579 		return -E1000_ERR_NVM;
3580 
3581 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3582 			     hw->nvm.flash_base_addr);
3583 
3584 	do {
3585 		udelay(1);
3586 		/* Steps */
3587 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3588 		if (ret_val)
3589 			break;
3590 
3591 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3592 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3593 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3594 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3595 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3596 
3597 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3598 
3599 		ret_val =
3600 		    e1000_flash_cycle_ich8lan(hw,
3601 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3602 
3603 		/* Check if FCERR is set to 1, if set to 1, clear it
3604 		 * and try the whole sequence a few more times, else
3605 		 * read in (shift in) the Flash Data0, the order is
3606 		 * least significant byte first msb to lsb
3607 		 */
3608 		if (!ret_val) {
3609 			flash_data = er32flash(ICH_FLASH_FDATA0);
3610 			if (size == 1)
3611 				*data = (u8)(flash_data & 0x000000FF);
3612 			else if (size == 2)
3613 				*data = (u16)(flash_data & 0x0000FFFF);
3614 			break;
3615 		} else {
3616 			/* If we've gotten here, then things are probably
3617 			 * completely hosed, but if the error condition is
3618 			 * detected, it won't hurt to give it another try...
3619 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3620 			 */
3621 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3622 			if (hsfsts.hsf_status.flcerr) {
3623 				/* Repeat for some time before giving up. */
3624 				continue;
3625 			} else if (!hsfsts.hsf_status.flcdone) {
3626 				e_dbg("Timeout error - flash cycle did not complete.\n");
3627 				break;
3628 			}
3629 		}
3630 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3631 
3632 	return ret_val;
3633 }
3634 
3635 /**
3636  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3637  *  @hw: pointer to the HW structure
3638  *  @offset: The offset (in bytes) of the dword to read.
3639  *  @data: Pointer to the dword to store the value read.
3640  *
3641  *  Reads a byte or word from the NVM using the flash access registers.
3642  **/
3643 
3644 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3645 					   u32 *data)
3646 {
3647 	union ich8_hws_flash_status hsfsts;
3648 	union ich8_hws_flash_ctrl hsflctl;
3649 	u32 flash_linear_addr;
3650 	s32 ret_val = -E1000_ERR_NVM;
3651 	u8 count = 0;
3652 
3653 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3654 		return -E1000_ERR_NVM;
3655 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3656 			     hw->nvm.flash_base_addr);
3657 
3658 	do {
3659 		udelay(1);
3660 		/* Steps */
3661 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3662 		if (ret_val)
3663 			break;
3664 		/* In SPT, This register is in Lan memory space, not flash.
3665 		 * Therefore, only 32 bit access is supported
3666 		 */
3667 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3668 
3669 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3670 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3671 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3672 		/* In SPT, This register is in Lan memory space, not flash.
3673 		 * Therefore, only 32 bit access is supported
3674 		 */
3675 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3676 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3677 
3678 		ret_val =
3679 		   e1000_flash_cycle_ich8lan(hw,
3680 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3681 
3682 		/* Check if FCERR is set to 1, if set to 1, clear it
3683 		 * and try the whole sequence a few more times, else
3684 		 * read in (shift in) the Flash Data0, the order is
3685 		 * least significant byte first msb to lsb
3686 		 */
3687 		if (!ret_val) {
3688 			*data = er32flash(ICH_FLASH_FDATA0);
3689 			break;
3690 		} else {
3691 			/* If we've gotten here, then things are probably
3692 			 * completely hosed, but if the error condition is
3693 			 * detected, it won't hurt to give it another try...
3694 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3695 			 */
3696 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3697 			if (hsfsts.hsf_status.flcerr) {
3698 				/* Repeat for some time before giving up. */
3699 				continue;
3700 			} else if (!hsfsts.hsf_status.flcdone) {
3701 				e_dbg("Timeout error - flash cycle did not complete.\n");
3702 				break;
3703 			}
3704 		}
3705 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3706 
3707 	return ret_val;
3708 }
3709 
3710 /**
3711  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3712  *  @hw: pointer to the HW structure
3713  *  @offset: The offset (in bytes) of the word(s) to write.
3714  *  @words: Size of data to write in words
3715  *  @data: Pointer to the word(s) to write at offset.
3716  *
3717  *  Writes a byte or word to the NVM using the flash access registers.
3718  **/
3719 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3720 				   u16 *data)
3721 {
3722 	struct e1000_nvm_info *nvm = &hw->nvm;
3723 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3724 	u16 i;
3725 
3726 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3727 	    (words == 0)) {
3728 		e_dbg("nvm parameter(s) out of bounds\n");
3729 		return -E1000_ERR_NVM;
3730 	}
3731 
3732 	nvm->ops.acquire(hw);
3733 
3734 	for (i = 0; i < words; i++) {
3735 		dev_spec->shadow_ram[offset + i].modified = true;
3736 		dev_spec->shadow_ram[offset + i].value = data[i];
3737 	}
3738 
3739 	nvm->ops.release(hw);
3740 
3741 	return 0;
3742 }
3743 
3744 /**
3745  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3746  *  @hw: pointer to the HW structure
3747  *
3748  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3749  *  which writes the checksum to the shadow ram.  The changes in the shadow
3750  *  ram are then committed to the EEPROM by processing each bank at a time
3751  *  checking for the modified bit and writing only the pending changes.
3752  *  After a successful commit, the shadow ram is cleared and is ready for
3753  *  future writes.
3754  **/
3755 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3756 {
3757 	struct e1000_nvm_info *nvm = &hw->nvm;
3758 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3759 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3760 	s32 ret_val;
3761 	u32 dword = 0;
3762 
3763 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3764 	if (ret_val)
3765 		goto out;
3766 
3767 	if (nvm->type != e1000_nvm_flash_sw)
3768 		goto out;
3769 
3770 	nvm->ops.acquire(hw);
3771 
3772 	/* We're writing to the opposite bank so if we're on bank 1,
3773 	 * write to bank 0 etc.  We also need to erase the segment that
3774 	 * is going to be written
3775 	 */
3776 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3777 	if (ret_val) {
3778 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3779 		bank = 0;
3780 	}
3781 
3782 	if (bank == 0) {
3783 		new_bank_offset = nvm->flash_bank_size;
3784 		old_bank_offset = 0;
3785 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3786 		if (ret_val)
3787 			goto release;
3788 	} else {
3789 		old_bank_offset = nvm->flash_bank_size;
3790 		new_bank_offset = 0;
3791 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3792 		if (ret_val)
3793 			goto release;
3794 	}
3795 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3796 		/* Determine whether to write the value stored
3797 		 * in the other NVM bank or a modified value stored
3798 		 * in the shadow RAM
3799 		 */
3800 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3801 							 i + old_bank_offset,
3802 							 &dword);
3803 
3804 		if (dev_spec->shadow_ram[i].modified) {
3805 			dword &= 0xffff0000;
3806 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3807 		}
3808 		if (dev_spec->shadow_ram[i + 1].modified) {
3809 			dword &= 0x0000ffff;
3810 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3811 				  << 16);
3812 		}
3813 		if (ret_val)
3814 			break;
3815 
3816 		/* If the word is 0x13, then make sure the signature bits
3817 		 * (15:14) are 11b until the commit has completed.
3818 		 * This will allow us to write 10b which indicates the
3819 		 * signature is valid.  We want to do this after the write
3820 		 * has completed so that we don't mark the segment valid
3821 		 * while the write is still in progress
3822 		 */
3823 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3824 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3825 
3826 		/* Convert offset to bytes. */
3827 		act_offset = (i + new_bank_offset) << 1;
3828 
3829 		usleep_range(100, 200);
3830 
3831 		/* Write the data to the new bank. Offset in words */
3832 		act_offset = i + new_bank_offset;
3833 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3834 								dword);
3835 		if (ret_val)
3836 			break;
3837 	}
3838 
3839 	/* Don't bother writing the segment valid bits if sector
3840 	 * programming failed.
3841 	 */
3842 	if (ret_val) {
3843 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3844 		e_dbg("Flash commit failed.\n");
3845 		goto release;
3846 	}
3847 
3848 	/* Finally validate the new segment by setting bit 15:14
3849 	 * to 10b in word 0x13 , this can be done without an
3850 	 * erase as well since these bits are 11 to start with
3851 	 * and we need to change bit 14 to 0b
3852 	 */
3853 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3854 
3855 	/*offset in words but we read dword */
3856 	--act_offset;
3857 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3858 
3859 	if (ret_val)
3860 		goto release;
3861 
3862 	dword &= 0xBFFFFFFF;
3863 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3864 
3865 	if (ret_val)
3866 		goto release;
3867 
3868 	/* And invalidate the previously valid segment by setting
3869 	 * its signature word (0x13) high_byte to 0b. This can be
3870 	 * done without an erase because flash erase sets all bits
3871 	 * to 1's. We can write 1's to 0's without an erase
3872 	 */
3873 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3874 
3875 	/* offset in words but we read dword */
3876 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3877 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3878 
3879 	if (ret_val)
3880 		goto release;
3881 
3882 	dword &= 0x00FFFFFF;
3883 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3884 
3885 	if (ret_val)
3886 		goto release;
3887 
3888 	/* Great!  Everything worked, we can now clear the cached entries. */
3889 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3890 		dev_spec->shadow_ram[i].modified = false;
3891 		dev_spec->shadow_ram[i].value = 0xFFFF;
3892 	}
3893 
3894 release:
3895 	nvm->ops.release(hw);
3896 
3897 	/* Reload the EEPROM, or else modifications will not appear
3898 	 * until after the next adapter reset.
3899 	 */
3900 	if (!ret_val) {
3901 		nvm->ops.reload(hw);
3902 		usleep_range(10000, 11000);
3903 	}
3904 
3905 out:
3906 	if (ret_val)
3907 		e_dbg("NVM update error: %d\n", ret_val);
3908 
3909 	return ret_val;
3910 }
3911 
3912 /**
3913  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3914  *  @hw: pointer to the HW structure
3915  *
3916  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3917  *  which writes the checksum to the shadow ram.  The changes in the shadow
3918  *  ram are then committed to the EEPROM by processing each bank at a time
3919  *  checking for the modified bit and writing only the pending changes.
3920  *  After a successful commit, the shadow ram is cleared and is ready for
3921  *  future writes.
3922  **/
3923 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3924 {
3925 	struct e1000_nvm_info *nvm = &hw->nvm;
3926 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3927 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3928 	s32 ret_val;
3929 	u16 data = 0;
3930 
3931 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3932 	if (ret_val)
3933 		goto out;
3934 
3935 	if (nvm->type != e1000_nvm_flash_sw)
3936 		goto out;
3937 
3938 	nvm->ops.acquire(hw);
3939 
3940 	/* We're writing to the opposite bank so if we're on bank 1,
3941 	 * write to bank 0 etc.  We also need to erase the segment that
3942 	 * is going to be written
3943 	 */
3944 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3945 	if (ret_val) {
3946 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3947 		bank = 0;
3948 	}
3949 
3950 	if (bank == 0) {
3951 		new_bank_offset = nvm->flash_bank_size;
3952 		old_bank_offset = 0;
3953 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3954 		if (ret_val)
3955 			goto release;
3956 	} else {
3957 		old_bank_offset = nvm->flash_bank_size;
3958 		new_bank_offset = 0;
3959 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3960 		if (ret_val)
3961 			goto release;
3962 	}
3963 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3964 		if (dev_spec->shadow_ram[i].modified) {
3965 			data = dev_spec->shadow_ram[i].value;
3966 		} else {
3967 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3968 								old_bank_offset,
3969 								&data);
3970 			if (ret_val)
3971 				break;
3972 		}
3973 
3974 		/* If the word is 0x13, then make sure the signature bits
3975 		 * (15:14) are 11b until the commit has completed.
3976 		 * This will allow us to write 10b which indicates the
3977 		 * signature is valid.  We want to do this after the write
3978 		 * has completed so that we don't mark the segment valid
3979 		 * while the write is still in progress
3980 		 */
3981 		if (i == E1000_ICH_NVM_SIG_WORD)
3982 			data |= E1000_ICH_NVM_SIG_MASK;
3983 
3984 		/* Convert offset to bytes. */
3985 		act_offset = (i + new_bank_offset) << 1;
3986 
3987 		usleep_range(100, 200);
3988 		/* Write the bytes to the new bank. */
3989 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3990 							       act_offset,
3991 							       (u8)data);
3992 		if (ret_val)
3993 			break;
3994 
3995 		usleep_range(100, 200);
3996 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3997 							       act_offset + 1,
3998 							       (u8)(data >> 8));
3999 		if (ret_val)
4000 			break;
4001 	}
4002 
4003 	/* Don't bother writing the segment valid bits if sector
4004 	 * programming failed.
4005 	 */
4006 	if (ret_val) {
4007 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4008 		e_dbg("Flash commit failed.\n");
4009 		goto release;
4010 	}
4011 
4012 	/* Finally validate the new segment by setting bit 15:14
4013 	 * to 10b in word 0x13 , this can be done without an
4014 	 * erase as well since these bits are 11 to start with
4015 	 * and we need to change bit 14 to 0b
4016 	 */
4017 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4018 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4019 	if (ret_val)
4020 		goto release;
4021 
4022 	data &= 0xBFFF;
4023 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4024 						       act_offset * 2 + 1,
4025 						       (u8)(data >> 8));
4026 	if (ret_val)
4027 		goto release;
4028 
4029 	/* And invalidate the previously valid segment by setting
4030 	 * its signature word (0x13) high_byte to 0b. This can be
4031 	 * done without an erase because flash erase sets all bits
4032 	 * to 1's. We can write 1's to 0's without an erase
4033 	 */
4034 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4035 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4036 	if (ret_val)
4037 		goto release;
4038 
4039 	/* Great!  Everything worked, we can now clear the cached entries. */
4040 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4041 		dev_spec->shadow_ram[i].modified = false;
4042 		dev_spec->shadow_ram[i].value = 0xFFFF;
4043 	}
4044 
4045 release:
4046 	nvm->ops.release(hw);
4047 
4048 	/* Reload the EEPROM, or else modifications will not appear
4049 	 * until after the next adapter reset.
4050 	 */
4051 	if (!ret_val) {
4052 		nvm->ops.reload(hw);
4053 		usleep_range(10000, 11000);
4054 	}
4055 
4056 out:
4057 	if (ret_val)
4058 		e_dbg("NVM update error: %d\n", ret_val);
4059 
4060 	return ret_val;
4061 }
4062 
4063 /**
4064  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4065  *  @hw: pointer to the HW structure
4066  *
4067  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4068  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4069  *  calculated, in which case we need to calculate the checksum and set bit 6.
4070  **/
4071 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4072 {
4073 	s32 ret_val;
4074 	u16 data;
4075 	u16 word;
4076 	u16 valid_csum_mask;
4077 
4078 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4079 	 * the checksum needs to be fixed.  This bit is an indication that
4080 	 * the NVM was prepared by OEM software and did not calculate
4081 	 * the checksum...a likely scenario.
4082 	 */
4083 	switch (hw->mac.type) {
4084 	case e1000_pch_lpt:
4085 	case e1000_pch_spt:
4086 	case e1000_pch_cnp:
4087 	case e1000_pch_tgp:
4088 	case e1000_pch_adp:
4089 		word = NVM_COMPAT;
4090 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4091 		break;
4092 	default:
4093 		word = NVM_FUTURE_INIT_WORD1;
4094 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4095 		break;
4096 	}
4097 
4098 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4099 	if (ret_val)
4100 		return ret_val;
4101 
4102 	if (!(data & valid_csum_mask)) {
4103 		data |= valid_csum_mask;
4104 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4105 		if (ret_val)
4106 			return ret_val;
4107 		ret_val = e1000e_update_nvm_checksum(hw);
4108 		if (ret_val)
4109 			return ret_val;
4110 	}
4111 
4112 	return e1000e_validate_nvm_checksum_generic(hw);
4113 }
4114 
4115 /**
4116  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4117  *  @hw: pointer to the HW structure
4118  *
4119  *  To prevent malicious write/erase of the NVM, set it to be read-only
4120  *  so that the hardware ignores all write/erase cycles of the NVM via
4121  *  the flash control registers.  The shadow-ram copy of the NVM will
4122  *  still be updated, however any updates to this copy will not stick
4123  *  across driver reloads.
4124  **/
4125 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4126 {
4127 	struct e1000_nvm_info *nvm = &hw->nvm;
4128 	union ich8_flash_protected_range pr0;
4129 	union ich8_hws_flash_status hsfsts;
4130 	u32 gfpreg;
4131 
4132 	nvm->ops.acquire(hw);
4133 
4134 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4135 
4136 	/* Write-protect GbE Sector of NVM */
4137 	pr0.regval = er32flash(ICH_FLASH_PR0);
4138 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4139 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4140 	pr0.range.wpe = true;
4141 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4142 
4143 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4144 	 * PR0 to prevent the write-protection from being lifted.
4145 	 * Once FLOCKDN is set, the registers protected by it cannot
4146 	 * be written until FLOCKDN is cleared by a hardware reset.
4147 	 */
4148 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4149 	hsfsts.hsf_status.flockdn = true;
4150 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4151 
4152 	nvm->ops.release(hw);
4153 }
4154 
4155 /**
4156  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4157  *  @hw: pointer to the HW structure
4158  *  @offset: The offset (in bytes) of the byte/word to read.
4159  *  @size: Size of data to read, 1=byte 2=word
4160  *  @data: The byte(s) to write to the NVM.
4161  *
4162  *  Writes one/two bytes to the NVM using the flash access registers.
4163  **/
4164 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4165 					  u8 size, u16 data)
4166 {
4167 	union ich8_hws_flash_status hsfsts;
4168 	union ich8_hws_flash_ctrl hsflctl;
4169 	u32 flash_linear_addr;
4170 	u32 flash_data = 0;
4171 	s32 ret_val;
4172 	u8 count = 0;
4173 
4174 	if (hw->mac.type >= e1000_pch_spt) {
4175 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4176 			return -E1000_ERR_NVM;
4177 	} else {
4178 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4179 			return -E1000_ERR_NVM;
4180 	}
4181 
4182 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4183 			     hw->nvm.flash_base_addr);
4184 
4185 	do {
4186 		udelay(1);
4187 		/* Steps */
4188 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4189 		if (ret_val)
4190 			break;
4191 		/* In SPT, This register is in Lan memory space, not
4192 		 * flash.  Therefore, only 32 bit access is supported
4193 		 */
4194 		if (hw->mac.type >= e1000_pch_spt)
4195 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4196 		else
4197 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4198 
4199 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4200 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4201 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4202 		/* In SPT, This register is in Lan memory space,
4203 		 * not flash.  Therefore, only 32 bit access is
4204 		 * supported
4205 		 */
4206 		if (hw->mac.type >= e1000_pch_spt)
4207 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4208 		else
4209 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4210 
4211 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4212 
4213 		if (size == 1)
4214 			flash_data = (u32)data & 0x00FF;
4215 		else
4216 			flash_data = (u32)data;
4217 
4218 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4219 
4220 		/* check if FCERR is set to 1 , if set to 1, clear it
4221 		 * and try the whole sequence a few more times else done
4222 		 */
4223 		ret_val =
4224 		    e1000_flash_cycle_ich8lan(hw,
4225 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4226 		if (!ret_val)
4227 			break;
4228 
4229 		/* If we're here, then things are most likely
4230 		 * completely hosed, but if the error condition
4231 		 * is detected, it won't hurt to give it another
4232 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4233 		 */
4234 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4235 		if (hsfsts.hsf_status.flcerr)
4236 			/* Repeat for some time before giving up. */
4237 			continue;
4238 		if (!hsfsts.hsf_status.flcdone) {
4239 			e_dbg("Timeout error - flash cycle did not complete.\n");
4240 			break;
4241 		}
4242 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4243 
4244 	return ret_val;
4245 }
4246 
4247 /**
4248 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4249 *  @hw: pointer to the HW structure
4250 *  @offset: The offset (in bytes) of the dwords to read.
4251 *  @data: The 4 bytes to write to the NVM.
4252 *
4253 *  Writes one/two/four bytes to the NVM using the flash access registers.
4254 **/
4255 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4256 					    u32 data)
4257 {
4258 	union ich8_hws_flash_status hsfsts;
4259 	union ich8_hws_flash_ctrl hsflctl;
4260 	u32 flash_linear_addr;
4261 	s32 ret_val;
4262 	u8 count = 0;
4263 
4264 	if (hw->mac.type >= e1000_pch_spt) {
4265 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4266 			return -E1000_ERR_NVM;
4267 	}
4268 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4269 			     hw->nvm.flash_base_addr);
4270 	do {
4271 		udelay(1);
4272 		/* Steps */
4273 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4274 		if (ret_val)
4275 			break;
4276 
4277 		/* In SPT, This register is in Lan memory space, not
4278 		 * flash.  Therefore, only 32 bit access is supported
4279 		 */
4280 		if (hw->mac.type >= e1000_pch_spt)
4281 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4282 			    >> 16;
4283 		else
4284 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4285 
4286 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4287 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4288 
4289 		/* In SPT, This register is in Lan memory space,
4290 		 * not flash.  Therefore, only 32 bit access is
4291 		 * supported
4292 		 */
4293 		if (hw->mac.type >= e1000_pch_spt)
4294 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4295 		else
4296 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4297 
4298 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4299 
4300 		ew32flash(ICH_FLASH_FDATA0, data);
4301 
4302 		/* check if FCERR is set to 1 , if set to 1, clear it
4303 		 * and try the whole sequence a few more times else done
4304 		 */
4305 		ret_val =
4306 		   e1000_flash_cycle_ich8lan(hw,
4307 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4308 
4309 		if (!ret_val)
4310 			break;
4311 
4312 		/* If we're here, then things are most likely
4313 		 * completely hosed, but if the error condition
4314 		 * is detected, it won't hurt to give it another
4315 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4316 		 */
4317 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4318 
4319 		if (hsfsts.hsf_status.flcerr)
4320 			/* Repeat for some time before giving up. */
4321 			continue;
4322 		if (!hsfsts.hsf_status.flcdone) {
4323 			e_dbg("Timeout error - flash cycle did not complete.\n");
4324 			break;
4325 		}
4326 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4327 
4328 	return ret_val;
4329 }
4330 
4331 /**
4332  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4333  *  @hw: pointer to the HW structure
4334  *  @offset: The index of the byte to read.
4335  *  @data: The byte to write to the NVM.
4336  *
4337  *  Writes a single byte to the NVM using the flash access registers.
4338  **/
4339 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4340 					  u8 data)
4341 {
4342 	u16 word = (u16)data;
4343 
4344 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4345 }
4346 
4347 /**
4348 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4349 *  @hw: pointer to the HW structure
4350 *  @offset: The offset of the word to write.
4351 *  @dword: The dword to write to the NVM.
4352 *
4353 *  Writes a single dword to the NVM using the flash access registers.
4354 *  Goes through a retry algorithm before giving up.
4355 **/
4356 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4357 						 u32 offset, u32 dword)
4358 {
4359 	s32 ret_val;
4360 	u16 program_retries;
4361 
4362 	/* Must convert word offset into bytes. */
4363 	offset <<= 1;
4364 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4365 
4366 	if (!ret_val)
4367 		return ret_val;
4368 	for (program_retries = 0; program_retries < 100; program_retries++) {
4369 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4370 		usleep_range(100, 200);
4371 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4372 		if (!ret_val)
4373 			break;
4374 	}
4375 	if (program_retries == 100)
4376 		return -E1000_ERR_NVM;
4377 
4378 	return 0;
4379 }
4380 
4381 /**
4382  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4383  *  @hw: pointer to the HW structure
4384  *  @offset: The offset of the byte to write.
4385  *  @byte: The byte to write to the NVM.
4386  *
4387  *  Writes a single byte to the NVM using the flash access registers.
4388  *  Goes through a retry algorithm before giving up.
4389  **/
4390 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4391 						u32 offset, u8 byte)
4392 {
4393 	s32 ret_val;
4394 	u16 program_retries;
4395 
4396 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4397 	if (!ret_val)
4398 		return ret_val;
4399 
4400 	for (program_retries = 0; program_retries < 100; program_retries++) {
4401 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4402 		usleep_range(100, 200);
4403 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4404 		if (!ret_val)
4405 			break;
4406 	}
4407 	if (program_retries == 100)
4408 		return -E1000_ERR_NVM;
4409 
4410 	return 0;
4411 }
4412 
4413 /**
4414  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4415  *  @hw: pointer to the HW structure
4416  *  @bank: 0 for first bank, 1 for second bank, etc.
4417  *
4418  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4419  *  bank N is 4096 * N + flash_reg_addr.
4420  **/
4421 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4422 {
4423 	struct e1000_nvm_info *nvm = &hw->nvm;
4424 	union ich8_hws_flash_status hsfsts;
4425 	union ich8_hws_flash_ctrl hsflctl;
4426 	u32 flash_linear_addr;
4427 	/* bank size is in 16bit words - adjust to bytes */
4428 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4429 	s32 ret_val;
4430 	s32 count = 0;
4431 	s32 j, iteration, sector_size;
4432 
4433 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4434 
4435 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4436 	 * register
4437 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4438 	 *     consecutive sectors.  The start index for the nth Hw sector
4439 	 *     can be calculated as = bank * 4096 + n * 256
4440 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4441 	 *     The start index for the nth Hw sector can be calculated
4442 	 *     as = bank * 4096
4443 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4444 	 *     (ich9 only, otherwise error condition)
4445 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4446 	 */
4447 	switch (hsfsts.hsf_status.berasesz) {
4448 	case 0:
4449 		/* Hw sector size 256 */
4450 		sector_size = ICH_FLASH_SEG_SIZE_256;
4451 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4452 		break;
4453 	case 1:
4454 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4455 		iteration = 1;
4456 		break;
4457 	case 2:
4458 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4459 		iteration = 1;
4460 		break;
4461 	case 3:
4462 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4463 		iteration = 1;
4464 		break;
4465 	default:
4466 		return -E1000_ERR_NVM;
4467 	}
4468 
4469 	/* Start with the base address, then add the sector offset. */
4470 	flash_linear_addr = hw->nvm.flash_base_addr;
4471 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4472 
4473 	for (j = 0; j < iteration; j++) {
4474 		do {
4475 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4476 
4477 			/* Steps */
4478 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4479 			if (ret_val)
4480 				return ret_val;
4481 
4482 			/* Write a value 11 (block Erase) in Flash
4483 			 * Cycle field in hw flash control
4484 			 */
4485 			if (hw->mac.type >= e1000_pch_spt)
4486 				hsflctl.regval =
4487 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4488 			else
4489 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4490 
4491 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4492 			if (hw->mac.type >= e1000_pch_spt)
4493 				ew32flash(ICH_FLASH_HSFSTS,
4494 					  hsflctl.regval << 16);
4495 			else
4496 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4497 
4498 			/* Write the last 24 bits of an index within the
4499 			 * block into Flash Linear address field in Flash
4500 			 * Address.
4501 			 */
4502 			flash_linear_addr += (j * sector_size);
4503 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4504 
4505 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4506 			if (!ret_val)
4507 				break;
4508 
4509 			/* Check if FCERR is set to 1.  If 1,
4510 			 * clear it and try the whole sequence
4511 			 * a few more times else Done
4512 			 */
4513 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4514 			if (hsfsts.hsf_status.flcerr)
4515 				/* repeat for some time before giving up */
4516 				continue;
4517 			else if (!hsfsts.hsf_status.flcdone)
4518 				return ret_val;
4519 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4520 	}
4521 
4522 	return 0;
4523 }
4524 
4525 /**
4526  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4527  *  @hw: pointer to the HW structure
4528  *  @data: Pointer to the LED settings
4529  *
4530  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4531  *  settings is all 0's or F's, set the LED default to a valid LED default
4532  *  setting.
4533  **/
4534 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4535 {
4536 	s32 ret_val;
4537 
4538 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4539 	if (ret_val) {
4540 		e_dbg("NVM Read Error\n");
4541 		return ret_val;
4542 	}
4543 
4544 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4545 		*data = ID_LED_DEFAULT_ICH8LAN;
4546 
4547 	return 0;
4548 }
4549 
4550 /**
4551  *  e1000_id_led_init_pchlan - store LED configurations
4552  *  @hw: pointer to the HW structure
4553  *
4554  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4555  *  the PHY LED configuration register.
4556  *
4557  *  PCH also does not have an "always on" or "always off" mode which
4558  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4559  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4560  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4561  *  link based on logic in e1000_led_[on|off]_pchlan().
4562  **/
4563 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4564 {
4565 	struct e1000_mac_info *mac = &hw->mac;
4566 	s32 ret_val;
4567 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4568 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4569 	u16 data, i, temp, shift;
4570 
4571 	/* Get default ID LED modes */
4572 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4573 	if (ret_val)
4574 		return ret_val;
4575 
4576 	mac->ledctl_default = er32(LEDCTL);
4577 	mac->ledctl_mode1 = mac->ledctl_default;
4578 	mac->ledctl_mode2 = mac->ledctl_default;
4579 
4580 	for (i = 0; i < 4; i++) {
4581 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4582 		shift = (i * 5);
4583 		switch (temp) {
4584 		case ID_LED_ON1_DEF2:
4585 		case ID_LED_ON1_ON2:
4586 		case ID_LED_ON1_OFF2:
4587 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4588 			mac->ledctl_mode1 |= (ledctl_on << shift);
4589 			break;
4590 		case ID_LED_OFF1_DEF2:
4591 		case ID_LED_OFF1_ON2:
4592 		case ID_LED_OFF1_OFF2:
4593 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4594 			mac->ledctl_mode1 |= (ledctl_off << shift);
4595 			break;
4596 		default:
4597 			/* Do nothing */
4598 			break;
4599 		}
4600 		switch (temp) {
4601 		case ID_LED_DEF1_ON2:
4602 		case ID_LED_ON1_ON2:
4603 		case ID_LED_OFF1_ON2:
4604 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4605 			mac->ledctl_mode2 |= (ledctl_on << shift);
4606 			break;
4607 		case ID_LED_DEF1_OFF2:
4608 		case ID_LED_ON1_OFF2:
4609 		case ID_LED_OFF1_OFF2:
4610 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4611 			mac->ledctl_mode2 |= (ledctl_off << shift);
4612 			break;
4613 		default:
4614 			/* Do nothing */
4615 			break;
4616 		}
4617 	}
4618 
4619 	return 0;
4620 }
4621 
4622 /**
4623  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4624  *  @hw: pointer to the HW structure
4625  *
4626  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4627  *  register, so the the bus width is hard coded.
4628  **/
4629 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4630 {
4631 	struct e1000_bus_info *bus = &hw->bus;
4632 	s32 ret_val;
4633 
4634 	ret_val = e1000e_get_bus_info_pcie(hw);
4635 
4636 	/* ICH devices are "PCI Express"-ish.  They have
4637 	 * a configuration space, but do not contain
4638 	 * PCI Express Capability registers, so bus width
4639 	 * must be hardcoded.
4640 	 */
4641 	if (bus->width == e1000_bus_width_unknown)
4642 		bus->width = e1000_bus_width_pcie_x1;
4643 
4644 	return ret_val;
4645 }
4646 
4647 /**
4648  *  e1000_reset_hw_ich8lan - Reset the hardware
4649  *  @hw: pointer to the HW structure
4650  *
4651  *  Does a full reset of the hardware which includes a reset of the PHY and
4652  *  MAC.
4653  **/
4654 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4655 {
4656 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4657 	u16 kum_cfg;
4658 	u32 ctrl, reg;
4659 	s32 ret_val;
4660 
4661 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4662 	 * on the last TLP read/write transaction when MAC is reset.
4663 	 */
4664 	ret_val = e1000e_disable_pcie_master(hw);
4665 	if (ret_val)
4666 		e_dbg("PCI-E Master disable polling has failed.\n");
4667 
4668 	e_dbg("Masking off all interrupts\n");
4669 	ew32(IMC, 0xffffffff);
4670 
4671 	/* Disable the Transmit and Receive units.  Then delay to allow
4672 	 * any pending transactions to complete before we hit the MAC
4673 	 * with the global reset.
4674 	 */
4675 	ew32(RCTL, 0);
4676 	ew32(TCTL, E1000_TCTL_PSP);
4677 	e1e_flush();
4678 
4679 	usleep_range(10000, 11000);
4680 
4681 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4682 	if (hw->mac.type == e1000_ich8lan) {
4683 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4684 		ew32(PBA, E1000_PBA_8K);
4685 		/* Set Packet Buffer Size to 16k. */
4686 		ew32(PBS, E1000_PBS_16K);
4687 	}
4688 
4689 	if (hw->mac.type == e1000_pchlan) {
4690 		/* Save the NVM K1 bit setting */
4691 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4692 		if (ret_val)
4693 			return ret_val;
4694 
4695 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4696 			dev_spec->nvm_k1_enabled = true;
4697 		else
4698 			dev_spec->nvm_k1_enabled = false;
4699 	}
4700 
4701 	ctrl = er32(CTRL);
4702 
4703 	if (!hw->phy.ops.check_reset_block(hw)) {
4704 		/* Full-chip reset requires MAC and PHY reset at the same
4705 		 * time to make sure the interface between MAC and the
4706 		 * external PHY is reset.
4707 		 */
4708 		ctrl |= E1000_CTRL_PHY_RST;
4709 
4710 		/* Gate automatic PHY configuration by hardware on
4711 		 * non-managed 82579
4712 		 */
4713 		if ((hw->mac.type == e1000_pch2lan) &&
4714 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4715 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4716 	}
4717 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4718 	e_dbg("Issuing a global reset to ich8lan\n");
4719 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4720 	/* cannot issue a flush here because it hangs the hardware */
4721 	msleep(20);
4722 
4723 	/* Set Phy Config Counter to 50msec */
4724 	if (hw->mac.type == e1000_pch2lan) {
4725 		reg = er32(FEXTNVM3);
4726 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4727 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4728 		ew32(FEXTNVM3, reg);
4729 	}
4730 
4731 	if (!ret_val)
4732 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4733 
4734 	if (ctrl & E1000_CTRL_PHY_RST) {
4735 		ret_val = hw->phy.ops.get_cfg_done(hw);
4736 		if (ret_val)
4737 			return ret_val;
4738 
4739 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4740 		if (ret_val)
4741 			return ret_val;
4742 	}
4743 
4744 	/* For PCH, this write will make sure that any noise
4745 	 * will be detected as a CRC error and be dropped rather than show up
4746 	 * as a bad packet to the DMA engine.
4747 	 */
4748 	if (hw->mac.type == e1000_pchlan)
4749 		ew32(CRC_OFFSET, 0x65656565);
4750 
4751 	ew32(IMC, 0xffffffff);
4752 	er32(ICR);
4753 
4754 	reg = er32(KABGTXD);
4755 	reg |= E1000_KABGTXD_BGSQLBIAS;
4756 	ew32(KABGTXD, reg);
4757 
4758 	return 0;
4759 }
4760 
4761 /**
4762  *  e1000_init_hw_ich8lan - Initialize the hardware
4763  *  @hw: pointer to the HW structure
4764  *
4765  *  Prepares the hardware for transmit and receive by doing the following:
4766  *   - initialize hardware bits
4767  *   - initialize LED identification
4768  *   - setup receive address registers
4769  *   - setup flow control
4770  *   - setup transmit descriptors
4771  *   - clear statistics
4772  **/
4773 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4774 {
4775 	struct e1000_mac_info *mac = &hw->mac;
4776 	u32 ctrl_ext, txdctl, snoop;
4777 	s32 ret_val;
4778 	u16 i;
4779 
4780 	e1000_initialize_hw_bits_ich8lan(hw);
4781 
4782 	/* Initialize identification LED */
4783 	ret_val = mac->ops.id_led_init(hw);
4784 	/* An error is not fatal and we should not stop init due to this */
4785 	if (ret_val)
4786 		e_dbg("Error initializing identification LED\n");
4787 
4788 	/* Setup the receive address. */
4789 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4790 
4791 	/* Zero out the Multicast HASH table */
4792 	e_dbg("Zeroing the MTA\n");
4793 	for (i = 0; i < mac->mta_reg_count; i++)
4794 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4795 
4796 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4797 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4798 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4799 	 */
4800 	if (hw->phy.type == e1000_phy_82578) {
4801 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4802 		i &= ~BM_WUC_HOST_WU_BIT;
4803 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4804 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4805 		if (ret_val)
4806 			return ret_val;
4807 	}
4808 
4809 	/* Setup link and flow control */
4810 	ret_val = mac->ops.setup_link(hw);
4811 
4812 	/* Set the transmit descriptor write-back policy for both queues */
4813 	txdctl = er32(TXDCTL(0));
4814 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4815 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4816 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4817 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4818 	ew32(TXDCTL(0), txdctl);
4819 	txdctl = er32(TXDCTL(1));
4820 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4821 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4822 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4823 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4824 	ew32(TXDCTL(1), txdctl);
4825 
4826 	/* ICH8 has opposite polarity of no_snoop bits.
4827 	 * By default, we should use snoop behavior.
4828 	 */
4829 	if (mac->type == e1000_ich8lan)
4830 		snoop = PCIE_ICH8_SNOOP_ALL;
4831 	else
4832 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4833 	e1000e_set_pcie_no_snoop(hw, snoop);
4834 
4835 	ctrl_ext = er32(CTRL_EXT);
4836 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4837 	ew32(CTRL_EXT, ctrl_ext);
4838 
4839 	/* Clear all of the statistics registers (clear on read).  It is
4840 	 * important that we do this after we have tried to establish link
4841 	 * because the symbol error count will increment wildly if there
4842 	 * is no link.
4843 	 */
4844 	e1000_clear_hw_cntrs_ich8lan(hw);
4845 
4846 	return ret_val;
4847 }
4848 
4849 /**
4850  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4851  *  @hw: pointer to the HW structure
4852  *
4853  *  Sets/Clears required hardware bits necessary for correctly setting up the
4854  *  hardware for transmit and receive.
4855  **/
4856 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4857 {
4858 	u32 reg;
4859 
4860 	/* Extended Device Control */
4861 	reg = er32(CTRL_EXT);
4862 	reg |= BIT(22);
4863 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4864 	if (hw->mac.type >= e1000_pchlan)
4865 		reg |= E1000_CTRL_EXT_PHYPDEN;
4866 	ew32(CTRL_EXT, reg);
4867 
4868 	/* Transmit Descriptor Control 0 */
4869 	reg = er32(TXDCTL(0));
4870 	reg |= BIT(22);
4871 	ew32(TXDCTL(0), reg);
4872 
4873 	/* Transmit Descriptor Control 1 */
4874 	reg = er32(TXDCTL(1));
4875 	reg |= BIT(22);
4876 	ew32(TXDCTL(1), reg);
4877 
4878 	/* Transmit Arbitration Control 0 */
4879 	reg = er32(TARC(0));
4880 	if (hw->mac.type == e1000_ich8lan)
4881 		reg |= BIT(28) | BIT(29);
4882 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4883 	ew32(TARC(0), reg);
4884 
4885 	/* Transmit Arbitration Control 1 */
4886 	reg = er32(TARC(1));
4887 	if (er32(TCTL) & E1000_TCTL_MULR)
4888 		reg &= ~BIT(28);
4889 	else
4890 		reg |= BIT(28);
4891 	reg |= BIT(24) | BIT(26) | BIT(30);
4892 	ew32(TARC(1), reg);
4893 
4894 	/* Device Status */
4895 	if (hw->mac.type == e1000_ich8lan) {
4896 		reg = er32(STATUS);
4897 		reg &= ~BIT(31);
4898 		ew32(STATUS, reg);
4899 	}
4900 
4901 	/* work-around descriptor data corruption issue during nfs v2 udp
4902 	 * traffic, just disable the nfs filtering capability
4903 	 */
4904 	reg = er32(RFCTL);
4905 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4906 
4907 	/* Disable IPv6 extension header parsing because some malformed
4908 	 * IPv6 headers can hang the Rx.
4909 	 */
4910 	if (hw->mac.type == e1000_ich8lan)
4911 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4912 	ew32(RFCTL, reg);
4913 
4914 	/* Enable ECC on Lynxpoint */
4915 	if (hw->mac.type >= e1000_pch_lpt) {
4916 		reg = er32(PBECCSTS);
4917 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4918 		ew32(PBECCSTS, reg);
4919 
4920 		reg = er32(CTRL);
4921 		reg |= E1000_CTRL_MEHE;
4922 		ew32(CTRL, reg);
4923 	}
4924 }
4925 
4926 /**
4927  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4928  *  @hw: pointer to the HW structure
4929  *
4930  *  Determines which flow control settings to use, then configures flow
4931  *  control.  Calls the appropriate media-specific link configuration
4932  *  function.  Assuming the adapter has a valid link partner, a valid link
4933  *  should be established.  Assumes the hardware has previously been reset
4934  *  and the transmitter and receiver are not enabled.
4935  **/
4936 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4937 {
4938 	s32 ret_val;
4939 
4940 	if (hw->phy.ops.check_reset_block(hw))
4941 		return 0;
4942 
4943 	/* ICH parts do not have a word in the NVM to determine
4944 	 * the default flow control setting, so we explicitly
4945 	 * set it to full.
4946 	 */
4947 	if (hw->fc.requested_mode == e1000_fc_default) {
4948 		/* Workaround h/w hang when Tx flow control enabled */
4949 		if (hw->mac.type == e1000_pchlan)
4950 			hw->fc.requested_mode = e1000_fc_rx_pause;
4951 		else
4952 			hw->fc.requested_mode = e1000_fc_full;
4953 	}
4954 
4955 	/* Save off the requested flow control mode for use later.  Depending
4956 	 * on the link partner's capabilities, we may or may not use this mode.
4957 	 */
4958 	hw->fc.current_mode = hw->fc.requested_mode;
4959 
4960 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4961 
4962 	/* Continue to configure the copper link. */
4963 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4964 	if (ret_val)
4965 		return ret_val;
4966 
4967 	ew32(FCTTV, hw->fc.pause_time);
4968 	if ((hw->phy.type == e1000_phy_82578) ||
4969 	    (hw->phy.type == e1000_phy_82579) ||
4970 	    (hw->phy.type == e1000_phy_i217) ||
4971 	    (hw->phy.type == e1000_phy_82577)) {
4972 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4973 
4974 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4975 				   hw->fc.pause_time);
4976 		if (ret_val)
4977 			return ret_val;
4978 	}
4979 
4980 	return e1000e_set_fc_watermarks(hw);
4981 }
4982 
4983 /**
4984  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4985  *  @hw: pointer to the HW structure
4986  *
4987  *  Configures the kumeran interface to the PHY to wait the appropriate time
4988  *  when polling the PHY, then call the generic setup_copper_link to finish
4989  *  configuring the copper link.
4990  **/
4991 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4992 {
4993 	u32 ctrl;
4994 	s32 ret_val;
4995 	u16 reg_data;
4996 
4997 	ctrl = er32(CTRL);
4998 	ctrl |= E1000_CTRL_SLU;
4999 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5000 	ew32(CTRL, ctrl);
5001 
5002 	/* Set the mac to wait the maximum time between each iteration
5003 	 * and increase the max iterations when polling the phy;
5004 	 * this fixes erroneous timeouts at 10Mbps.
5005 	 */
5006 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5007 	if (ret_val)
5008 		return ret_val;
5009 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5010 				       &reg_data);
5011 	if (ret_val)
5012 		return ret_val;
5013 	reg_data |= 0x3F;
5014 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5015 					reg_data);
5016 	if (ret_val)
5017 		return ret_val;
5018 
5019 	switch (hw->phy.type) {
5020 	case e1000_phy_igp_3:
5021 		ret_val = e1000e_copper_link_setup_igp(hw);
5022 		if (ret_val)
5023 			return ret_val;
5024 		break;
5025 	case e1000_phy_bm:
5026 	case e1000_phy_82578:
5027 		ret_val = e1000e_copper_link_setup_m88(hw);
5028 		if (ret_val)
5029 			return ret_val;
5030 		break;
5031 	case e1000_phy_82577:
5032 	case e1000_phy_82579:
5033 		ret_val = e1000_copper_link_setup_82577(hw);
5034 		if (ret_val)
5035 			return ret_val;
5036 		break;
5037 	case e1000_phy_ife:
5038 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5039 		if (ret_val)
5040 			return ret_val;
5041 
5042 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5043 
5044 		switch (hw->phy.mdix) {
5045 		case 1:
5046 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5047 			break;
5048 		case 2:
5049 			reg_data |= IFE_PMC_FORCE_MDIX;
5050 			break;
5051 		case 0:
5052 		default:
5053 			reg_data |= IFE_PMC_AUTO_MDIX;
5054 			break;
5055 		}
5056 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5057 		if (ret_val)
5058 			return ret_val;
5059 		break;
5060 	default:
5061 		break;
5062 	}
5063 
5064 	return e1000e_setup_copper_link(hw);
5065 }
5066 
5067 /**
5068  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5069  *  @hw: pointer to the HW structure
5070  *
5071  *  Calls the PHY specific link setup function and then calls the
5072  *  generic setup_copper_link to finish configuring the link for
5073  *  Lynxpoint PCH devices
5074  **/
5075 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5076 {
5077 	u32 ctrl;
5078 	s32 ret_val;
5079 
5080 	ctrl = er32(CTRL);
5081 	ctrl |= E1000_CTRL_SLU;
5082 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5083 	ew32(CTRL, ctrl);
5084 
5085 	ret_val = e1000_copper_link_setup_82577(hw);
5086 	if (ret_val)
5087 		return ret_val;
5088 
5089 	return e1000e_setup_copper_link(hw);
5090 }
5091 
5092 /**
5093  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5094  *  @hw: pointer to the HW structure
5095  *  @speed: pointer to store current link speed
5096  *  @duplex: pointer to store the current link duplex
5097  *
5098  *  Calls the generic get_speed_and_duplex to retrieve the current link
5099  *  information and then calls the Kumeran lock loss workaround for links at
5100  *  gigabit speeds.
5101  **/
5102 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5103 					  u16 *duplex)
5104 {
5105 	s32 ret_val;
5106 
5107 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5108 	if (ret_val)
5109 		return ret_val;
5110 
5111 	if ((hw->mac.type == e1000_ich8lan) &&
5112 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5113 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5114 	}
5115 
5116 	return ret_val;
5117 }
5118 
5119 /**
5120  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5121  *  @hw: pointer to the HW structure
5122  *
5123  *  Work-around for 82566 Kumeran PCS lock loss:
5124  *  On link status change (i.e. PCI reset, speed change) and link is up and
5125  *  speed is gigabit-
5126  *    0) if workaround is optionally disabled do nothing
5127  *    1) wait 1ms for Kumeran link to come up
5128  *    2) check Kumeran Diagnostic register PCS lock loss bit
5129  *    3) if not set the link is locked (all is good), otherwise...
5130  *    4) reset the PHY
5131  *    5) repeat up to 10 times
5132  *  Note: this is only called for IGP3 copper when speed is 1gb.
5133  **/
5134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5135 {
5136 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5137 	u32 phy_ctrl;
5138 	s32 ret_val;
5139 	u16 i, data;
5140 	bool link;
5141 
5142 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5143 		return 0;
5144 
5145 	/* Make sure link is up before proceeding.  If not just return.
5146 	 * Attempting this while link is negotiating fouled up link
5147 	 * stability
5148 	 */
5149 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5150 	if (!link)
5151 		return 0;
5152 
5153 	for (i = 0; i < 10; i++) {
5154 		/* read once to clear */
5155 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5156 		if (ret_val)
5157 			return ret_val;
5158 		/* and again to get new status */
5159 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5160 		if (ret_val)
5161 			return ret_val;
5162 
5163 		/* check for PCS lock */
5164 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5165 			return 0;
5166 
5167 		/* Issue PHY reset */
5168 		e1000_phy_hw_reset(hw);
5169 		mdelay(5);
5170 	}
5171 	/* Disable GigE link negotiation */
5172 	phy_ctrl = er32(PHY_CTRL);
5173 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5174 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5175 	ew32(PHY_CTRL, phy_ctrl);
5176 
5177 	/* Call gig speed drop workaround on Gig disable before accessing
5178 	 * any PHY registers
5179 	 */
5180 	e1000e_gig_downshift_workaround_ich8lan(hw);
5181 
5182 	/* unable to acquire PCS lock */
5183 	return -E1000_ERR_PHY;
5184 }
5185 
5186 /**
5187  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5188  *  @hw: pointer to the HW structure
5189  *  @state: boolean value used to set the current Kumeran workaround state
5190  *
5191  *  If ICH8, set the current Kumeran workaround state (enabled - true
5192  *  /disabled - false).
5193  **/
5194 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5195 						  bool state)
5196 {
5197 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5198 
5199 	if (hw->mac.type != e1000_ich8lan) {
5200 		e_dbg("Workaround applies to ICH8 only.\n");
5201 		return;
5202 	}
5203 
5204 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5205 }
5206 
5207 /**
5208  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5209  *  @hw: pointer to the HW structure
5210  *
5211  *  Workaround for 82566 power-down on D3 entry:
5212  *    1) disable gigabit link
5213  *    2) write VR power-down enable
5214  *    3) read it back
5215  *  Continue if successful, else issue LCD reset and repeat
5216  **/
5217 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5218 {
5219 	u32 reg;
5220 	u16 data;
5221 	u8 retry = 0;
5222 
5223 	if (hw->phy.type != e1000_phy_igp_3)
5224 		return;
5225 
5226 	/* Try the workaround twice (if needed) */
5227 	do {
5228 		/* Disable link */
5229 		reg = er32(PHY_CTRL);
5230 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5231 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5232 		ew32(PHY_CTRL, reg);
5233 
5234 		/* Call gig speed drop workaround on Gig disable before
5235 		 * accessing any PHY registers
5236 		 */
5237 		if (hw->mac.type == e1000_ich8lan)
5238 			e1000e_gig_downshift_workaround_ich8lan(hw);
5239 
5240 		/* Write VR power-down enable */
5241 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5242 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5243 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5244 
5245 		/* Read it back and test */
5246 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5247 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5248 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5249 			break;
5250 
5251 		/* Issue PHY reset and repeat at most one more time */
5252 		reg = er32(CTRL);
5253 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5254 		retry++;
5255 	} while (retry);
5256 }
5257 
5258 /**
5259  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5260  *  @hw: pointer to the HW structure
5261  *
5262  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5263  *  LPLU, Gig disable, MDIC PHY reset):
5264  *    1) Set Kumeran Near-end loopback
5265  *    2) Clear Kumeran Near-end loopback
5266  *  Should only be called for ICH8[m] devices with any 1G Phy.
5267  **/
5268 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5269 {
5270 	s32 ret_val;
5271 	u16 reg_data;
5272 
5273 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5274 		return;
5275 
5276 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5277 				       &reg_data);
5278 	if (ret_val)
5279 		return;
5280 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5281 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5282 					reg_data);
5283 	if (ret_val)
5284 		return;
5285 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5286 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5287 }
5288 
5289 /**
5290  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5291  *  @hw: pointer to the HW structure
5292  *
5293  *  During S0 to Sx transition, it is possible the link remains at gig
5294  *  instead of negotiating to a lower speed.  Before going to Sx, set
5295  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5296  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5297  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5298  *  needs to be written.
5299  *  Parts that support (and are linked to a partner which support) EEE in
5300  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5301  *  than 10Mbps w/o EEE.
5302  **/
5303 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5304 {
5305 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5306 	u32 phy_ctrl;
5307 	s32 ret_val;
5308 
5309 	phy_ctrl = er32(PHY_CTRL);
5310 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5311 
5312 	if (hw->phy.type == e1000_phy_i217) {
5313 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5314 
5315 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5316 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5317 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5318 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5319 		    (hw->mac.type >= e1000_pch_spt)) {
5320 			u32 fextnvm6 = er32(FEXTNVM6);
5321 
5322 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5323 		}
5324 
5325 		ret_val = hw->phy.ops.acquire(hw);
5326 		if (ret_val)
5327 			goto out;
5328 
5329 		if (!dev_spec->eee_disable) {
5330 			u16 eee_advert;
5331 
5332 			ret_val =
5333 			    e1000_read_emi_reg_locked(hw,
5334 						      I217_EEE_ADVERTISEMENT,
5335 						      &eee_advert);
5336 			if (ret_val)
5337 				goto release;
5338 
5339 			/* Disable LPLU if both link partners support 100BaseT
5340 			 * EEE and 100Full is advertised on both ends of the
5341 			 * link, and enable Auto Enable LPI since there will
5342 			 * be no driver to enable LPI while in Sx.
5343 			 */
5344 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5345 			    (dev_spec->eee_lp_ability &
5346 			     I82579_EEE_100_SUPPORTED) &&
5347 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5348 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5349 					      E1000_PHY_CTRL_NOND0A_LPLU);
5350 
5351 				/* Set Auto Enable LPI after link up */
5352 				e1e_rphy_locked(hw,
5353 						I217_LPI_GPIO_CTRL, &phy_reg);
5354 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5355 				e1e_wphy_locked(hw,
5356 						I217_LPI_GPIO_CTRL, phy_reg);
5357 			}
5358 		}
5359 
5360 		/* For i217 Intel Rapid Start Technology support,
5361 		 * when the system is going into Sx and no manageability engine
5362 		 * is present, the driver must configure proxy to reset only on
5363 		 * power good.  LPI (Low Power Idle) state must also reset only
5364 		 * on power good, as well as the MTA (Multicast table array).
5365 		 * The SMBus release must also be disabled on LCD reset.
5366 		 */
5367 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5368 			/* Enable proxy to reset only on power good. */
5369 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5370 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5371 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5372 
5373 			/* Set bit enable LPI (EEE) to reset only on
5374 			 * power good.
5375 			 */
5376 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5377 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5378 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5379 
5380 			/* Disable the SMB release on LCD reset. */
5381 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5382 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5383 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5384 		}
5385 
5386 		/* Enable MTA to reset for Intel Rapid Start Technology
5387 		 * Support
5388 		 */
5389 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5390 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5391 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5392 
5393 release:
5394 		hw->phy.ops.release(hw);
5395 	}
5396 out:
5397 	ew32(PHY_CTRL, phy_ctrl);
5398 
5399 	if (hw->mac.type == e1000_ich8lan)
5400 		e1000e_gig_downshift_workaround_ich8lan(hw);
5401 
5402 	if (hw->mac.type >= e1000_pchlan) {
5403 		e1000_oem_bits_config_ich8lan(hw, false);
5404 
5405 		/* Reset PHY to activate OEM bits on 82577/8 */
5406 		if (hw->mac.type == e1000_pchlan)
5407 			e1000e_phy_hw_reset_generic(hw);
5408 
5409 		ret_val = hw->phy.ops.acquire(hw);
5410 		if (ret_val)
5411 			return;
5412 		e1000_write_smbus_addr(hw);
5413 		hw->phy.ops.release(hw);
5414 	}
5415 }
5416 
5417 /**
5418  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5419  *  @hw: pointer to the HW structure
5420  *
5421  *  During Sx to S0 transitions on non-managed devices or managed devices
5422  *  on which PHY resets are not blocked, if the PHY registers cannot be
5423  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5424  *  the PHY.
5425  *  On i217, setup Intel Rapid Start Technology.
5426  **/
5427 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5428 {
5429 	s32 ret_val;
5430 
5431 	if (hw->mac.type < e1000_pch2lan)
5432 		return;
5433 
5434 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5435 	if (ret_val) {
5436 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5437 		return;
5438 	}
5439 
5440 	/* For i217 Intel Rapid Start Technology support when the system
5441 	 * is transitioning from Sx and no manageability engine is present
5442 	 * configure SMBus to restore on reset, disable proxy, and enable
5443 	 * the reset on MTA (Multicast table array).
5444 	 */
5445 	if (hw->phy.type == e1000_phy_i217) {
5446 		u16 phy_reg;
5447 
5448 		ret_val = hw->phy.ops.acquire(hw);
5449 		if (ret_val) {
5450 			e_dbg("Failed to setup iRST\n");
5451 			return;
5452 		}
5453 
5454 		/* Clear Auto Enable LPI after link up */
5455 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5456 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5457 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5458 
5459 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5460 			/* Restore clear on SMB if no manageability engine
5461 			 * is present
5462 			 */
5463 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5464 			if (ret_val)
5465 				goto release;
5466 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5467 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5468 
5469 			/* Disable Proxy */
5470 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5471 		}
5472 		/* Enable reset on MTA */
5473 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5474 		if (ret_val)
5475 			goto release;
5476 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5477 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5478 release:
5479 		if (ret_val)
5480 			e_dbg("Error %d in resume workarounds\n", ret_val);
5481 		hw->phy.ops.release(hw);
5482 	}
5483 }
5484 
5485 /**
5486  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5487  *  @hw: pointer to the HW structure
5488  *
5489  *  Return the LED back to the default configuration.
5490  **/
5491 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5492 {
5493 	if (hw->phy.type == e1000_phy_ife)
5494 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5495 
5496 	ew32(LEDCTL, hw->mac.ledctl_default);
5497 	return 0;
5498 }
5499 
5500 /**
5501  *  e1000_led_on_ich8lan - Turn LEDs on
5502  *  @hw: pointer to the HW structure
5503  *
5504  *  Turn on the LEDs.
5505  **/
5506 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5507 {
5508 	if (hw->phy.type == e1000_phy_ife)
5509 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5510 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5511 
5512 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5513 	return 0;
5514 }
5515 
5516 /**
5517  *  e1000_led_off_ich8lan - Turn LEDs off
5518  *  @hw: pointer to the HW structure
5519  *
5520  *  Turn off the LEDs.
5521  **/
5522 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5523 {
5524 	if (hw->phy.type == e1000_phy_ife)
5525 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5526 				(IFE_PSCL_PROBE_MODE |
5527 				 IFE_PSCL_PROBE_LEDS_OFF));
5528 
5529 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5530 	return 0;
5531 }
5532 
5533 /**
5534  *  e1000_setup_led_pchlan - Configures SW controllable LED
5535  *  @hw: pointer to the HW structure
5536  *
5537  *  This prepares the SW controllable LED for use.
5538  **/
5539 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5540 {
5541 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5542 }
5543 
5544 /**
5545  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5546  *  @hw: pointer to the HW structure
5547  *
5548  *  Return the LED back to the default configuration.
5549  **/
5550 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5551 {
5552 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5553 }
5554 
5555 /**
5556  *  e1000_led_on_pchlan - Turn LEDs on
5557  *  @hw: pointer to the HW structure
5558  *
5559  *  Turn on the LEDs.
5560  **/
5561 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5562 {
5563 	u16 data = (u16)hw->mac.ledctl_mode2;
5564 	u32 i, led;
5565 
5566 	/* If no link, then turn LED on by setting the invert bit
5567 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5568 	 */
5569 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5570 		for (i = 0; i < 3; i++) {
5571 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5572 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5573 			    E1000_LEDCTL_MODE_LINK_UP)
5574 				continue;
5575 			if (led & E1000_PHY_LED0_IVRT)
5576 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5577 			else
5578 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5579 		}
5580 	}
5581 
5582 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5583 }
5584 
5585 /**
5586  *  e1000_led_off_pchlan - Turn LEDs off
5587  *  @hw: pointer to the HW structure
5588  *
5589  *  Turn off the LEDs.
5590  **/
5591 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5592 {
5593 	u16 data = (u16)hw->mac.ledctl_mode1;
5594 	u32 i, led;
5595 
5596 	/* If no link, then turn LED off by clearing the invert bit
5597 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5598 	 */
5599 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5600 		for (i = 0; i < 3; i++) {
5601 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5602 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5603 			    E1000_LEDCTL_MODE_LINK_UP)
5604 				continue;
5605 			if (led & E1000_PHY_LED0_IVRT)
5606 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5607 			else
5608 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5609 		}
5610 	}
5611 
5612 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5613 }
5614 
5615 /**
5616  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5617  *  @hw: pointer to the HW structure
5618  *
5619  *  Read appropriate register for the config done bit for completion status
5620  *  and configure the PHY through s/w for EEPROM-less parts.
5621  *
5622  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5623  *  config done bit, so only an error is logged and continues.  If we were
5624  *  to return with error, EEPROM-less silicon would not be able to be reset
5625  *  or change link.
5626  **/
5627 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5628 {
5629 	s32 ret_val = 0;
5630 	u32 bank = 0;
5631 	u32 status;
5632 
5633 	e1000e_get_cfg_done_generic(hw);
5634 
5635 	/* Wait for indication from h/w that it has completed basic config */
5636 	if (hw->mac.type >= e1000_ich10lan) {
5637 		e1000_lan_init_done_ich8lan(hw);
5638 	} else {
5639 		ret_val = e1000e_get_auto_rd_done(hw);
5640 		if (ret_val) {
5641 			/* When auto config read does not complete, do not
5642 			 * return with an error. This can happen in situations
5643 			 * where there is no eeprom and prevents getting link.
5644 			 */
5645 			e_dbg("Auto Read Done did not complete\n");
5646 			ret_val = 0;
5647 		}
5648 	}
5649 
5650 	/* Clear PHY Reset Asserted bit */
5651 	status = er32(STATUS);
5652 	if (status & E1000_STATUS_PHYRA)
5653 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5654 	else
5655 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5656 
5657 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5658 	if (hw->mac.type <= e1000_ich9lan) {
5659 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5660 		    (hw->phy.type == e1000_phy_igp_3)) {
5661 			e1000e_phy_init_script_igp3(hw);
5662 		}
5663 	} else {
5664 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5665 			/* Maybe we should do a basic PHY config */
5666 			e_dbg("EEPROM not present\n");
5667 			ret_val = -E1000_ERR_CONFIG;
5668 		}
5669 	}
5670 
5671 	return ret_val;
5672 }
5673 
5674 /**
5675  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5676  * @hw: pointer to the HW structure
5677  *
5678  * In the case of a PHY power down to save power, or to turn off link during a
5679  * driver unload, or wake on lan is not enabled, remove the link.
5680  **/
5681 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5682 {
5683 	/* If the management interface is not enabled, then power down */
5684 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5685 	      hw->phy.ops.check_reset_block(hw)))
5686 		e1000_power_down_phy_copper(hw);
5687 }
5688 
5689 /**
5690  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5691  *  @hw: pointer to the HW structure
5692  *
5693  *  Clears hardware counters specific to the silicon family and calls
5694  *  clear_hw_cntrs_generic to clear all general purpose counters.
5695  **/
5696 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5697 {
5698 	u16 phy_data;
5699 	s32 ret_val;
5700 
5701 	e1000e_clear_hw_cntrs_base(hw);
5702 
5703 	er32(ALGNERRC);
5704 	er32(RXERRC);
5705 	er32(TNCRS);
5706 	er32(CEXTERR);
5707 	er32(TSCTC);
5708 	er32(TSCTFC);
5709 
5710 	er32(MGTPRC);
5711 	er32(MGTPDC);
5712 	er32(MGTPTC);
5713 
5714 	er32(IAC);
5715 	er32(ICRXOC);
5716 
5717 	/* Clear PHY statistics registers */
5718 	if ((hw->phy.type == e1000_phy_82578) ||
5719 	    (hw->phy.type == e1000_phy_82579) ||
5720 	    (hw->phy.type == e1000_phy_i217) ||
5721 	    (hw->phy.type == e1000_phy_82577)) {
5722 		ret_val = hw->phy.ops.acquire(hw);
5723 		if (ret_val)
5724 			return;
5725 		ret_val = hw->phy.ops.set_page(hw,
5726 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5727 		if (ret_val)
5728 			goto release;
5729 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5730 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5731 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5732 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5733 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5734 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5735 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5736 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5737 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5738 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5739 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5740 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5741 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5742 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5743 release:
5744 		hw->phy.ops.release(hw);
5745 	}
5746 }
5747 
5748 static const struct e1000_mac_operations ich8_mac_ops = {
5749 	/* check_mng_mode dependent on mac type */
5750 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5751 	/* cleanup_led dependent on mac type */
5752 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5753 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5754 	.set_lan_id		= e1000_set_lan_id_single_port,
5755 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5756 	/* led_on dependent on mac type */
5757 	/* led_off dependent on mac type */
5758 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5759 	.reset_hw		= e1000_reset_hw_ich8lan,
5760 	.init_hw		= e1000_init_hw_ich8lan,
5761 	.setup_link		= e1000_setup_link_ich8lan,
5762 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5763 	/* id_led_init dependent on mac type */
5764 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5765 	.rar_set		= e1000e_rar_set_generic,
5766 	.rar_get_count		= e1000e_rar_get_count_generic,
5767 };
5768 
5769 static const struct e1000_phy_operations ich8_phy_ops = {
5770 	.acquire		= e1000_acquire_swflag_ich8lan,
5771 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5772 	.commit			= NULL,
5773 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5774 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5775 	.read_reg		= e1000e_read_phy_reg_igp,
5776 	.release		= e1000_release_swflag_ich8lan,
5777 	.reset			= e1000_phy_hw_reset_ich8lan,
5778 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5779 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5780 	.write_reg		= e1000e_write_phy_reg_igp,
5781 };
5782 
5783 static const struct e1000_nvm_operations ich8_nvm_ops = {
5784 	.acquire		= e1000_acquire_nvm_ich8lan,
5785 	.read			= e1000_read_nvm_ich8lan,
5786 	.release		= e1000_release_nvm_ich8lan,
5787 	.reload			= e1000e_reload_nvm_generic,
5788 	.update			= e1000_update_nvm_checksum_ich8lan,
5789 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5790 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5791 	.write			= e1000_write_nvm_ich8lan,
5792 };
5793 
5794 static const struct e1000_nvm_operations spt_nvm_ops = {
5795 	.acquire		= e1000_acquire_nvm_ich8lan,
5796 	.release		= e1000_release_nvm_ich8lan,
5797 	.read			= e1000_read_nvm_spt,
5798 	.update			= e1000_update_nvm_checksum_spt,
5799 	.reload			= e1000e_reload_nvm_generic,
5800 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5801 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5802 	.write			= e1000_write_nvm_ich8lan,
5803 };
5804 
5805 const struct e1000_info e1000_ich8_info = {
5806 	.mac			= e1000_ich8lan,
5807 	.flags			= FLAG_HAS_WOL
5808 				  | FLAG_IS_ICH
5809 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5810 				  | FLAG_HAS_AMT
5811 				  | FLAG_HAS_FLASH
5812 				  | FLAG_APME_IN_WUC,
5813 	.pba			= 8,
5814 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5815 	.get_variants		= e1000_get_variants_ich8lan,
5816 	.mac_ops		= &ich8_mac_ops,
5817 	.phy_ops		= &ich8_phy_ops,
5818 	.nvm_ops		= &ich8_nvm_ops,
5819 };
5820 
5821 const struct e1000_info e1000_ich9_info = {
5822 	.mac			= e1000_ich9lan,
5823 	.flags			= FLAG_HAS_JUMBO_FRAMES
5824 				  | FLAG_IS_ICH
5825 				  | FLAG_HAS_WOL
5826 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5827 				  | FLAG_HAS_AMT
5828 				  | FLAG_HAS_FLASH
5829 				  | FLAG_APME_IN_WUC,
5830 	.pba			= 18,
5831 	.max_hw_frame_size	= DEFAULT_JUMBO,
5832 	.get_variants		= e1000_get_variants_ich8lan,
5833 	.mac_ops		= &ich8_mac_ops,
5834 	.phy_ops		= &ich8_phy_ops,
5835 	.nvm_ops		= &ich8_nvm_ops,
5836 };
5837 
5838 const struct e1000_info e1000_ich10_info = {
5839 	.mac			= e1000_ich10lan,
5840 	.flags			= FLAG_HAS_JUMBO_FRAMES
5841 				  | FLAG_IS_ICH
5842 				  | FLAG_HAS_WOL
5843 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5844 				  | FLAG_HAS_AMT
5845 				  | FLAG_HAS_FLASH
5846 				  | FLAG_APME_IN_WUC,
5847 	.pba			= 18,
5848 	.max_hw_frame_size	= DEFAULT_JUMBO,
5849 	.get_variants		= e1000_get_variants_ich8lan,
5850 	.mac_ops		= &ich8_mac_ops,
5851 	.phy_ops		= &ich8_phy_ops,
5852 	.nvm_ops		= &ich8_nvm_ops,
5853 };
5854 
5855 const struct e1000_info e1000_pch_info = {
5856 	.mac			= e1000_pchlan,
5857 	.flags			= FLAG_IS_ICH
5858 				  | FLAG_HAS_WOL
5859 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5860 				  | FLAG_HAS_AMT
5861 				  | FLAG_HAS_FLASH
5862 				  | FLAG_HAS_JUMBO_FRAMES
5863 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5864 				  | FLAG_APME_IN_WUC,
5865 	.flags2			= FLAG2_HAS_PHY_STATS,
5866 	.pba			= 26,
5867 	.max_hw_frame_size	= 4096,
5868 	.get_variants		= e1000_get_variants_ich8lan,
5869 	.mac_ops		= &ich8_mac_ops,
5870 	.phy_ops		= &ich8_phy_ops,
5871 	.nvm_ops		= &ich8_nvm_ops,
5872 };
5873 
5874 const struct e1000_info e1000_pch2_info = {
5875 	.mac			= e1000_pch2lan,
5876 	.flags			= FLAG_IS_ICH
5877 				  | FLAG_HAS_WOL
5878 				  | FLAG_HAS_HW_TIMESTAMP
5879 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5880 				  | FLAG_HAS_AMT
5881 				  | FLAG_HAS_FLASH
5882 				  | FLAG_HAS_JUMBO_FRAMES
5883 				  | FLAG_APME_IN_WUC,
5884 	.flags2			= FLAG2_HAS_PHY_STATS
5885 				  | FLAG2_HAS_EEE
5886 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5887 	.pba			= 26,
5888 	.max_hw_frame_size	= 9022,
5889 	.get_variants		= e1000_get_variants_ich8lan,
5890 	.mac_ops		= &ich8_mac_ops,
5891 	.phy_ops		= &ich8_phy_ops,
5892 	.nvm_ops		= &ich8_nvm_ops,
5893 };
5894 
5895 const struct e1000_info e1000_pch_lpt_info = {
5896 	.mac			= e1000_pch_lpt,
5897 	.flags			= FLAG_IS_ICH
5898 				  | FLAG_HAS_WOL
5899 				  | FLAG_HAS_HW_TIMESTAMP
5900 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5901 				  | FLAG_HAS_AMT
5902 				  | FLAG_HAS_FLASH
5903 				  | FLAG_HAS_JUMBO_FRAMES
5904 				  | FLAG_APME_IN_WUC,
5905 	.flags2			= FLAG2_HAS_PHY_STATS
5906 				  | FLAG2_HAS_EEE
5907 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5908 	.pba			= 26,
5909 	.max_hw_frame_size	= 9022,
5910 	.get_variants		= e1000_get_variants_ich8lan,
5911 	.mac_ops		= &ich8_mac_ops,
5912 	.phy_ops		= &ich8_phy_ops,
5913 	.nvm_ops		= &ich8_nvm_ops,
5914 };
5915 
5916 const struct e1000_info e1000_pch_spt_info = {
5917 	.mac			= e1000_pch_spt,
5918 	.flags			= FLAG_IS_ICH
5919 				  | FLAG_HAS_WOL
5920 				  | FLAG_HAS_HW_TIMESTAMP
5921 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5922 				  | FLAG_HAS_AMT
5923 				  | FLAG_HAS_FLASH
5924 				  | FLAG_HAS_JUMBO_FRAMES
5925 				  | FLAG_APME_IN_WUC,
5926 	.flags2			= FLAG2_HAS_PHY_STATS
5927 				  | FLAG2_HAS_EEE,
5928 	.pba			= 26,
5929 	.max_hw_frame_size	= 9022,
5930 	.get_variants		= e1000_get_variants_ich8lan,
5931 	.mac_ops		= &ich8_mac_ops,
5932 	.phy_ops		= &ich8_phy_ops,
5933 	.nvm_ops		= &spt_nvm_ops,
5934 };
5935 
5936 const struct e1000_info e1000_pch_cnp_info = {
5937 	.mac			= e1000_pch_cnp,
5938 	.flags			= FLAG_IS_ICH
5939 				  | FLAG_HAS_WOL
5940 				  | FLAG_HAS_HW_TIMESTAMP
5941 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5942 				  | FLAG_HAS_AMT
5943 				  | FLAG_HAS_FLASH
5944 				  | FLAG_HAS_JUMBO_FRAMES
5945 				  | FLAG_APME_IN_WUC,
5946 	.flags2			= FLAG2_HAS_PHY_STATS
5947 				  | FLAG2_HAS_EEE,
5948 	.pba			= 26,
5949 	.max_hw_frame_size	= 9022,
5950 	.get_variants		= e1000_get_variants_ich8lan,
5951 	.mac_ops		= &ich8_mac_ops,
5952 	.phy_ops		= &ich8_phy_ops,
5953 	.nvm_ops		= &spt_nvm_ops,
5954 };
5955