1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Switching PHY interface always returns MDI error
226 			 * so disable retry mechanism to avoid wasting time
227 			 */
228 			e1000e_disable_phy_retry(hw);
229 
230 			/* Unforce SMBus mode in PHY */
231 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
232 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
234 
235 			e1000e_enable_phy_retry(hw);
236 
237 			/* Unforce SMBus mode in MAC */
238 			mac_reg = er32(CTRL_EXT);
239 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
240 			ew32(CTRL_EXT, mac_reg);
241 		}
242 	}
243 
244 	return true;
245 }
246 
247 /**
248  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249  *  @hw: pointer to the HW structure
250  *
251  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252  *  used to reset the PHY to a quiescent state when necessary.
253  **/
254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255 {
256 	u32 mac_reg;
257 
258 	/* Set Phy Config Counter to 50msec */
259 	mac_reg = er32(FEXTNVM3);
260 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262 	ew32(FEXTNVM3, mac_reg);
263 
264 	/* Toggle LANPHYPC Value bit */
265 	mac_reg = er32(CTRL);
266 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268 	ew32(CTRL, mac_reg);
269 	e1e_flush();
270 	usleep_range(10, 20);
271 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272 	ew32(CTRL, mac_reg);
273 	e1e_flush();
274 
275 	if (hw->mac.type < e1000_pch_lpt) {
276 		msleep(50);
277 	} else {
278 		u16 count = 20;
279 
280 		do {
281 			usleep_range(5000, 6000);
282 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283 
284 		msleep(30);
285 	}
286 }
287 
288 /**
289  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
290  *  @hw: pointer to the HW structure
291  *
292  *  Workarounds/flow necessary for PHY initialization during driver load
293  *  and resume paths.
294  **/
295 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
296 {
297 	struct e1000_adapter *adapter = hw->adapter;
298 	u32 mac_reg, fwsm = er32(FWSM);
299 	s32 ret_val;
300 
301 	/* Gate automatic PHY configuration by hardware on managed and
302 	 * non-managed 82579 and newer adapters.
303 	 */
304 	e1000_gate_hw_phy_config_ich8lan(hw, true);
305 
306 	/* It is not possible to be certain of the current state of ULP
307 	 * so forcibly disable it.
308 	 */
309 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
310 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
311 	if (ret_val)
312 		e_warn("Failed to disable ULP\n");
313 
314 	ret_val = hw->phy.ops.acquire(hw);
315 	if (ret_val) {
316 		e_dbg("Failed to initialize PHY flow\n");
317 		goto out;
318 	}
319 
320 	/* There is no guarantee that the PHY is accessible at this time
321 	 * so disable retry mechanism to avoid wasting time
322 	 */
323 	e1000e_disable_phy_retry(hw);
324 
325 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
326 	 * inaccessible and resetting the PHY is not blocked, toggle the
327 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
328 	 */
329 	switch (hw->mac.type) {
330 	case e1000_pch_lpt:
331 	case e1000_pch_spt:
332 	case e1000_pch_cnp:
333 	case e1000_pch_tgp:
334 	case e1000_pch_adp:
335 	case e1000_pch_mtp:
336 	case e1000_pch_lnp:
337 	case e1000_pch_ptp:
338 	case e1000_pch_nvp:
339 		if (e1000_phy_is_accessible_pchlan(hw))
340 			break;
341 
342 		/* Before toggling LANPHYPC, see if PHY is accessible by
343 		 * forcing MAC to SMBus mode first.
344 		 */
345 		mac_reg = er32(CTRL_EXT);
346 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
347 		ew32(CTRL_EXT, mac_reg);
348 
349 		/* Wait 50 milliseconds for MAC to finish any retries
350 		 * that it might be trying to perform from previous
351 		 * attempts to acknowledge any phy read requests.
352 		 */
353 		msleep(50);
354 
355 		fallthrough;
356 	case e1000_pch2lan:
357 		if (e1000_phy_is_accessible_pchlan(hw))
358 			break;
359 
360 		fallthrough;
361 	case e1000_pchlan:
362 		if ((hw->mac.type == e1000_pchlan) &&
363 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
364 			break;
365 
366 		if (hw->phy.ops.check_reset_block(hw)) {
367 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
368 			ret_val = -E1000_ERR_PHY;
369 			break;
370 		}
371 
372 		/* Toggle LANPHYPC Value bit */
373 		e1000_toggle_lanphypc_pch_lpt(hw);
374 		if (hw->mac.type >= e1000_pch_lpt) {
375 			if (e1000_phy_is_accessible_pchlan(hw))
376 				break;
377 
378 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
379 			 * so ensure that the MAC is also out of SMBus mode
380 			 */
381 			mac_reg = er32(CTRL_EXT);
382 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
383 			ew32(CTRL_EXT, mac_reg);
384 
385 			if (e1000_phy_is_accessible_pchlan(hw))
386 				break;
387 
388 			ret_val = -E1000_ERR_PHY;
389 		}
390 		break;
391 	default:
392 		break;
393 	}
394 
395 	e1000e_enable_phy_retry(hw);
396 
397 	hw->phy.ops.release(hw);
398 	if (!ret_val) {
399 
400 		/* Check to see if able to reset PHY.  Print error if not */
401 		if (hw->phy.ops.check_reset_block(hw)) {
402 			e_err("Reset blocked by ME\n");
403 			goto out;
404 		}
405 
406 		/* Reset the PHY before any access to it.  Doing so, ensures
407 		 * that the PHY is in a known good state before we read/write
408 		 * PHY registers.  The generic reset is sufficient here,
409 		 * because we haven't determined the PHY type yet.
410 		 */
411 		ret_val = e1000e_phy_hw_reset_generic(hw);
412 		if (ret_val)
413 			goto out;
414 
415 		/* On a successful reset, possibly need to wait for the PHY
416 		 * to quiesce to an accessible state before returning control
417 		 * to the calling function.  If the PHY does not quiesce, then
418 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
419 		 *  the PHY is in.
420 		 */
421 		ret_val = hw->phy.ops.check_reset_block(hw);
422 		if (ret_val)
423 			e_err("ME blocked access to PHY after reset\n");
424 	}
425 
426 out:
427 	/* Ungate automatic PHY configuration on non-managed 82579 */
428 	if ((hw->mac.type == e1000_pch2lan) &&
429 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
430 		usleep_range(10000, 11000);
431 		e1000_gate_hw_phy_config_ich8lan(hw, false);
432 	}
433 
434 	return ret_val;
435 }
436 
437 /**
438  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
439  *  @hw: pointer to the HW structure
440  *
441  *  Initialize family-specific PHY parameters and function pointers.
442  **/
443 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
444 {
445 	struct e1000_phy_info *phy = &hw->phy;
446 	s32 ret_val;
447 
448 	phy->addr = 1;
449 	phy->reset_delay_us = 100;
450 
451 	phy->ops.set_page = e1000_set_page_igp;
452 	phy->ops.read_reg = e1000_read_phy_reg_hv;
453 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
454 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
455 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
456 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
457 	phy->ops.write_reg = e1000_write_phy_reg_hv;
458 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
459 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
460 	phy->ops.power_up = e1000_power_up_phy_copper;
461 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
462 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
463 
464 	phy->id = e1000_phy_unknown;
465 
466 	if (hw->mac.type == e1000_pch_mtp) {
467 		phy->retry_count = 2;
468 		e1000e_enable_phy_retry(hw);
469 	}
470 
471 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
472 	if (ret_val)
473 		return ret_val;
474 
475 	if (phy->id == e1000_phy_unknown)
476 		switch (hw->mac.type) {
477 		default:
478 			ret_val = e1000e_get_phy_id(hw);
479 			if (ret_val)
480 				return ret_val;
481 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
482 				break;
483 			fallthrough;
484 		case e1000_pch2lan:
485 		case e1000_pch_lpt:
486 		case e1000_pch_spt:
487 		case e1000_pch_cnp:
488 		case e1000_pch_tgp:
489 		case e1000_pch_adp:
490 		case e1000_pch_mtp:
491 		case e1000_pch_lnp:
492 		case e1000_pch_ptp:
493 		case e1000_pch_nvp:
494 			/* In case the PHY needs to be in mdio slow mode,
495 			 * set slow mode and try to get the PHY id again.
496 			 */
497 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
498 			if (ret_val)
499 				return ret_val;
500 			ret_val = e1000e_get_phy_id(hw);
501 			if (ret_val)
502 				return ret_val;
503 			break;
504 		}
505 	phy->type = e1000e_get_phy_type_from_id(phy->id);
506 
507 	switch (phy->type) {
508 	case e1000_phy_82577:
509 	case e1000_phy_82579:
510 	case e1000_phy_i217:
511 		phy->ops.check_polarity = e1000_check_polarity_82577;
512 		phy->ops.force_speed_duplex =
513 		    e1000_phy_force_speed_duplex_82577;
514 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
515 		phy->ops.get_info = e1000_get_phy_info_82577;
516 		phy->ops.commit = e1000e_phy_sw_reset;
517 		break;
518 	case e1000_phy_82578:
519 		phy->ops.check_polarity = e1000_check_polarity_m88;
520 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
521 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
522 		phy->ops.get_info = e1000e_get_phy_info_m88;
523 		break;
524 	default:
525 		ret_val = -E1000_ERR_PHY;
526 		break;
527 	}
528 
529 	return ret_val;
530 }
531 
532 /**
533  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
534  *  @hw: pointer to the HW structure
535  *
536  *  Initialize family-specific PHY parameters and function pointers.
537  **/
538 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
539 {
540 	struct e1000_phy_info *phy = &hw->phy;
541 	s32 ret_val;
542 	u16 i = 0;
543 
544 	phy->addr = 1;
545 	phy->reset_delay_us = 100;
546 
547 	phy->ops.power_up = e1000_power_up_phy_copper;
548 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
549 
550 	/* We may need to do this twice - once for IGP and if that fails,
551 	 * we'll set BM func pointers and try again
552 	 */
553 	ret_val = e1000e_determine_phy_address(hw);
554 	if (ret_val) {
555 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
556 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
557 		ret_val = e1000e_determine_phy_address(hw);
558 		if (ret_val) {
559 			e_dbg("Cannot determine PHY addr. Erroring out\n");
560 			return ret_val;
561 		}
562 	}
563 
564 	phy->id = 0;
565 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
566 	       (i++ < 100)) {
567 		usleep_range(1000, 1100);
568 		ret_val = e1000e_get_phy_id(hw);
569 		if (ret_val)
570 			return ret_val;
571 	}
572 
573 	/* Verify phy id */
574 	switch (phy->id) {
575 	case IGP03E1000_E_PHY_ID:
576 		phy->type = e1000_phy_igp_3;
577 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
578 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
579 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
580 		phy->ops.get_info = e1000e_get_phy_info_igp;
581 		phy->ops.check_polarity = e1000_check_polarity_igp;
582 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
583 		break;
584 	case IFE_E_PHY_ID:
585 	case IFE_PLUS_E_PHY_ID:
586 	case IFE_C_E_PHY_ID:
587 		phy->type = e1000_phy_ife;
588 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
589 		phy->ops.get_info = e1000_get_phy_info_ife;
590 		phy->ops.check_polarity = e1000_check_polarity_ife;
591 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
592 		break;
593 	case BME1000_E_PHY_ID:
594 		phy->type = e1000_phy_bm;
595 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
596 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
597 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
598 		phy->ops.commit = e1000e_phy_sw_reset;
599 		phy->ops.get_info = e1000e_get_phy_info_m88;
600 		phy->ops.check_polarity = e1000_check_polarity_m88;
601 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
602 		break;
603 	default:
604 		return -E1000_ERR_PHY;
605 	}
606 
607 	return 0;
608 }
609 
610 /**
611  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
612  *  @hw: pointer to the HW structure
613  *
614  *  Initialize family-specific NVM parameters and function
615  *  pointers.
616  **/
617 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
618 {
619 	struct e1000_nvm_info *nvm = &hw->nvm;
620 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
621 	u32 gfpreg, sector_base_addr, sector_end_addr;
622 	u16 i;
623 	u32 nvm_size;
624 
625 	nvm->type = e1000_nvm_flash_sw;
626 
627 	if (hw->mac.type >= e1000_pch_spt) {
628 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
629 		 * STRAP register. This is because in SPT the GbE Flash region
630 		 * is no longer accessed through the flash registers. Instead,
631 		 * the mechanism has changed, and the Flash region access
632 		 * registers are now implemented in GbE memory space.
633 		 */
634 		nvm->flash_base_addr = 0;
635 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
636 		    * NVM_SIZE_MULTIPLIER;
637 		nvm->flash_bank_size = nvm_size / 2;
638 		/* Adjust to word count */
639 		nvm->flash_bank_size /= sizeof(u16);
640 		/* Set the base address for flash register access */
641 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
642 	} else {
643 		/* Can't read flash registers if register set isn't mapped. */
644 		if (!hw->flash_address) {
645 			e_dbg("ERROR: Flash registers not mapped\n");
646 			return -E1000_ERR_CONFIG;
647 		}
648 
649 		gfpreg = er32flash(ICH_FLASH_GFPREG);
650 
651 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
652 		 * Add 1 to sector_end_addr since this sector is included in
653 		 * the overall size.
654 		 */
655 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
656 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
657 
658 		/* flash_base_addr is byte-aligned */
659 		nvm->flash_base_addr = sector_base_addr
660 		    << FLASH_SECTOR_ADDR_SHIFT;
661 
662 		/* find total size of the NVM, then cut in half since the total
663 		 * size represents two separate NVM banks.
664 		 */
665 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
666 					<< FLASH_SECTOR_ADDR_SHIFT);
667 		nvm->flash_bank_size /= 2;
668 		/* Adjust to word count */
669 		nvm->flash_bank_size /= sizeof(u16);
670 	}
671 
672 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
673 
674 	/* Clear shadow ram */
675 	for (i = 0; i < nvm->word_size; i++) {
676 		dev_spec->shadow_ram[i].modified = false;
677 		dev_spec->shadow_ram[i].value = 0xFFFF;
678 	}
679 
680 	return 0;
681 }
682 
683 /**
684  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
685  *  @hw: pointer to the HW structure
686  *
687  *  Initialize family-specific MAC parameters and function
688  *  pointers.
689  **/
690 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
691 {
692 	struct e1000_mac_info *mac = &hw->mac;
693 
694 	/* Set media type function pointer */
695 	hw->phy.media_type = e1000_media_type_copper;
696 
697 	/* Set mta register count */
698 	mac->mta_reg_count = 32;
699 	/* Set rar entry count */
700 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
701 	if (mac->type == e1000_ich8lan)
702 		mac->rar_entry_count--;
703 	/* FWSM register */
704 	mac->has_fwsm = true;
705 	/* ARC subsystem not supported */
706 	mac->arc_subsystem_valid = false;
707 	/* Adaptive IFS supported */
708 	mac->adaptive_ifs = true;
709 
710 	/* LED and other operations */
711 	switch (mac->type) {
712 	case e1000_ich8lan:
713 	case e1000_ich9lan:
714 	case e1000_ich10lan:
715 		/* check management mode */
716 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
717 		/* ID LED init */
718 		mac->ops.id_led_init = e1000e_id_led_init_generic;
719 		/* blink LED */
720 		mac->ops.blink_led = e1000e_blink_led_generic;
721 		/* setup LED */
722 		mac->ops.setup_led = e1000e_setup_led_generic;
723 		/* cleanup LED */
724 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
725 		/* turn on/off LED */
726 		mac->ops.led_on = e1000_led_on_ich8lan;
727 		mac->ops.led_off = e1000_led_off_ich8lan;
728 		break;
729 	case e1000_pch2lan:
730 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
731 		mac->ops.rar_set = e1000_rar_set_pch2lan;
732 		fallthrough;
733 	case e1000_pch_lpt:
734 	case e1000_pch_spt:
735 	case e1000_pch_cnp:
736 	case e1000_pch_tgp:
737 	case e1000_pch_adp:
738 	case e1000_pch_mtp:
739 	case e1000_pch_lnp:
740 	case e1000_pch_ptp:
741 	case e1000_pch_nvp:
742 	case e1000_pchlan:
743 		/* check management mode */
744 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
745 		/* ID LED init */
746 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
747 		/* setup LED */
748 		mac->ops.setup_led = e1000_setup_led_pchlan;
749 		/* cleanup LED */
750 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
751 		/* turn on/off LED */
752 		mac->ops.led_on = e1000_led_on_pchlan;
753 		mac->ops.led_off = e1000_led_off_pchlan;
754 		break;
755 	default:
756 		break;
757 	}
758 
759 	if (mac->type >= e1000_pch_lpt) {
760 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
761 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
762 		mac->ops.setup_physical_interface =
763 		    e1000_setup_copper_link_pch_lpt;
764 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
765 	}
766 
767 	/* Enable PCS Lock-loss workaround for ICH8 */
768 	if (mac->type == e1000_ich8lan)
769 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
770 
771 	return 0;
772 }
773 
774 /**
775  *  __e1000_access_emi_reg_locked - Read/write EMI register
776  *  @hw: pointer to the HW structure
777  *  @address: EMI address to program
778  *  @data: pointer to value to read/write from/to the EMI address
779  *  @read: boolean flag to indicate read or write
780  *
781  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
782  **/
783 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
784 					 u16 *data, bool read)
785 {
786 	s32 ret_val;
787 
788 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
789 	if (ret_val)
790 		return ret_val;
791 
792 	if (read)
793 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
794 	else
795 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
796 
797 	return ret_val;
798 }
799 
800 /**
801  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
802  *  @hw: pointer to the HW structure
803  *  @addr: EMI address to program
804  *  @data: value to be read from the EMI address
805  *
806  *  Assumes the SW/FW/HW Semaphore is already acquired.
807  **/
808 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
809 {
810 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
811 }
812 
813 /**
814  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
815  *  @hw: pointer to the HW structure
816  *  @addr: EMI address to program
817  *  @data: value to be written to the EMI address
818  *
819  *  Assumes the SW/FW/HW Semaphore is already acquired.
820  **/
821 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
822 {
823 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
824 }
825 
826 /**
827  *  e1000_set_eee_pchlan - Enable/disable EEE support
828  *  @hw: pointer to the HW structure
829  *
830  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
831  *  the link and the EEE capabilities of the link partner.  The LPI Control
832  *  register bits will remain set only if/when link is up.
833  *
834  *  EEE LPI must not be asserted earlier than one second after link is up.
835  *  On 82579, EEE LPI should not be enabled until such time otherwise there
836  *  can be link issues with some switches.  Other devices can have EEE LPI
837  *  enabled immediately upon link up since they have a timer in hardware which
838  *  prevents LPI from being asserted too early.
839  **/
840 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
841 {
842 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
843 	s32 ret_val;
844 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
845 
846 	switch (hw->phy.type) {
847 	case e1000_phy_82579:
848 		lpa = I82579_EEE_LP_ABILITY;
849 		pcs_status = I82579_EEE_PCS_STATUS;
850 		adv_addr = I82579_EEE_ADVERTISEMENT;
851 		break;
852 	case e1000_phy_i217:
853 		lpa = I217_EEE_LP_ABILITY;
854 		pcs_status = I217_EEE_PCS_STATUS;
855 		adv_addr = I217_EEE_ADVERTISEMENT;
856 		break;
857 	default:
858 		return 0;
859 	}
860 
861 	ret_val = hw->phy.ops.acquire(hw);
862 	if (ret_val)
863 		return ret_val;
864 
865 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
866 	if (ret_val)
867 		goto release;
868 
869 	/* Clear bits that enable EEE in various speeds */
870 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
871 
872 	/* Enable EEE if not disabled by user */
873 	if (!dev_spec->eee_disable) {
874 		/* Save off link partner's EEE ability */
875 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
876 						    &dev_spec->eee_lp_ability);
877 		if (ret_val)
878 			goto release;
879 
880 		/* Read EEE advertisement */
881 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
882 		if (ret_val)
883 			goto release;
884 
885 		/* Enable EEE only for speeds in which the link partner is
886 		 * EEE capable and for which we advertise EEE.
887 		 */
888 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
889 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
890 
891 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
892 			e1e_rphy_locked(hw, MII_LPA, &data);
893 			if (data & LPA_100FULL)
894 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
895 			else
896 				/* EEE is not supported in 100Half, so ignore
897 				 * partner's EEE in 100 ability if full-duplex
898 				 * is not advertised.
899 				 */
900 				dev_spec->eee_lp_ability &=
901 				    ~I82579_EEE_100_SUPPORTED;
902 		}
903 	}
904 
905 	if (hw->phy.type == e1000_phy_82579) {
906 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
907 						    &data);
908 		if (ret_val)
909 			goto release;
910 
911 		data &= ~I82579_LPI_100_PLL_SHUT;
912 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
913 						     data);
914 	}
915 
916 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
917 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
918 	if (ret_val)
919 		goto release;
920 
921 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
922 release:
923 	hw->phy.ops.release(hw);
924 
925 	return ret_val;
926 }
927 
928 /**
929  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
930  *  @hw:   pointer to the HW structure
931  *  @link: link up bool flag
932  *
933  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
934  *  preventing further DMA write requests.  Workaround the issue by disabling
935  *  the de-assertion of the clock request when in 1Gpbs mode.
936  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
937  *  speeds in order to avoid Tx hangs.
938  **/
939 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
940 {
941 	u32 fextnvm6 = er32(FEXTNVM6);
942 	u32 status = er32(STATUS);
943 	s32 ret_val = 0;
944 	u16 reg;
945 
946 	if (link && (status & E1000_STATUS_SPEED_1000)) {
947 		ret_val = hw->phy.ops.acquire(hw);
948 		if (ret_val)
949 			return ret_val;
950 
951 		ret_val =
952 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
953 						&reg);
954 		if (ret_val)
955 			goto release;
956 
957 		ret_val =
958 		    e1000e_write_kmrn_reg_locked(hw,
959 						 E1000_KMRNCTRLSTA_K1_CONFIG,
960 						 reg &
961 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
962 		if (ret_val)
963 			goto release;
964 
965 		usleep_range(10, 20);
966 
967 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
968 
969 		ret_val =
970 		    e1000e_write_kmrn_reg_locked(hw,
971 						 E1000_KMRNCTRLSTA_K1_CONFIG,
972 						 reg);
973 release:
974 		hw->phy.ops.release(hw);
975 	} else {
976 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
977 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
978 
979 		if ((hw->phy.revision > 5) || !link ||
980 		    ((status & E1000_STATUS_SPEED_100) &&
981 		     (status & E1000_STATUS_FD)))
982 			goto update_fextnvm6;
983 
984 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
985 		if (ret_val)
986 			return ret_val;
987 
988 		/* Clear link status transmit timeout */
989 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
990 
991 		if (status & E1000_STATUS_SPEED_100) {
992 			/* Set inband Tx timeout to 5x10us for 100Half */
993 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
994 
995 			/* Do not extend the K1 entry latency for 100Half */
996 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
997 		} else {
998 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
999 			reg |= 50 <<
1000 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001 
1002 			/* Extend the K1 entry latency for 10 Mbps */
1003 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004 		}
1005 
1006 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007 		if (ret_val)
1008 			return ret_val;
1009 
1010 update_fextnvm6:
1011 		ew32(FEXTNVM6, fextnvm6);
1012 	}
1013 
1014 	return ret_val;
1015 }
1016 
1017 /**
1018  *  e1000_platform_pm_pch_lpt - Set platform power management values
1019  *  @hw: pointer to the HW structure
1020  *  @link: bool indicating link status
1021  *
1022  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024  *  when link is up (which must not exceed the maximum latency supported
1025  *  by the platform), otherwise specify there is no LTR requirement.
1026  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028  *  Capability register set, on this device LTR is set by writing the
1029  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031  *  message to the PMC.
1032  **/
1033 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034 {
1035 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037 	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1038 	u32 lat_enc_d = 0;	/* latency decoded */
1039 	u16 lat_enc = 0;	/* latency encoded */
1040 
1041 	if (link) {
1042 		u16 speed, duplex, scale = 0;
1043 		u16 max_snoop, max_nosnoop;
1044 		u16 max_ltr_enc;	/* max LTR latency encoded */
1045 		u64 value;
1046 		u32 rxa;
1047 
1048 		if (!hw->adapter->max_frame_size) {
1049 			e_dbg("max_frame_size not set.\n");
1050 			return -E1000_ERR_CONFIG;
1051 		}
1052 
1053 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054 		if (!speed) {
1055 			e_dbg("Speed not set.\n");
1056 			return -E1000_ERR_CONFIG;
1057 		}
1058 
1059 		/* Rx Packet Buffer Allocation size (KB) */
1060 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061 
1062 		/* Determine the maximum latency tolerated by the device.
1063 		 *
1064 		 * Per the PCIe spec, the tolerated latencies are encoded as
1065 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069 		 */
1070 		rxa *= 512;
1071 		value = (rxa > hw->adapter->max_frame_size) ?
1072 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073 			0;
1074 
1075 		while (value > PCI_LTR_VALUE_MASK) {
1076 			scale++;
1077 			value = DIV_ROUND_UP(value, BIT(5));
1078 		}
1079 		if (scale > E1000_LTRV_SCALE_MAX) {
1080 			e_dbg("Invalid LTR latency scale %d\n", scale);
1081 			return -E1000_ERR_CONFIG;
1082 		}
1083 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084 
1085 		/* Determine the maximum latency tolerated by the platform */
1086 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087 				     &max_snoop);
1088 		pci_read_config_word(hw->adapter->pdev,
1089 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091 
1092 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093 			     (1U << (E1000_LTRV_SCALE_FACTOR *
1094 			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095 
1096 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097 			(1U << (E1000_LTRV_SCALE_FACTOR *
1098 				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099 
1100 		if (lat_enc_d > max_ltr_enc_d)
1101 			lat_enc = max_ltr_enc;
1102 	}
1103 
1104 	/* Set Snoop and No-Snoop latencies the same */
1105 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106 	ew32(LTRV, reg);
1107 
1108 	return 0;
1109 }
1110 
1111 /**
1112  *  e1000e_force_smbus - Force interfaces to transition to SMBUS mode.
1113  *  @hw: pointer to the HW structure
1114  *
1115  *  Force the MAC and the PHY to SMBUS mode. Assumes semaphore already
1116  *  acquired.
1117  *
1118  * Return: 0 on success, negative errno on failure.
1119  **/
1120 static s32 e1000e_force_smbus(struct e1000_hw *hw)
1121 {
1122 	u16 smb_ctrl = 0;
1123 	u32 ctrl_ext;
1124 	s32 ret_val;
1125 
1126 	/* Switching PHY interface always returns MDI error
1127 	 * so disable retry mechanism to avoid wasting time
1128 	 */
1129 	e1000e_disable_phy_retry(hw);
1130 
1131 	/* Force SMBus mode in the PHY */
1132 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &smb_ctrl);
1133 	if (ret_val) {
1134 		e1000e_enable_phy_retry(hw);
1135 		return ret_val;
1136 	}
1137 
1138 	smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS;
1139 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, smb_ctrl);
1140 
1141 	e1000e_enable_phy_retry(hw);
1142 
1143 	/* Force SMBus mode in the MAC */
1144 	ctrl_ext = er32(CTRL_EXT);
1145 	ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS;
1146 	ew32(CTRL_EXT, ctrl_ext);
1147 
1148 	return 0;
1149 }
1150 
1151 /**
1152  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1153  *  @hw: pointer to the HW structure
1154  *  @to_sx: boolean indicating a system power state transition to Sx
1155  *
1156  *  When link is down, configure ULP mode to significantly reduce the power
1157  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1158  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1159  *  system, configure the ULP mode by software.
1160  */
1161 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1162 {
1163 	u32 mac_reg;
1164 	s32 ret_val = 0;
1165 	u16 phy_reg;
1166 	u16 oem_reg = 0;
1167 
1168 	if ((hw->mac.type < e1000_pch_lpt) ||
1169 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1170 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1171 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1172 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1173 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1174 		return 0;
1175 
1176 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1177 		/* Request ME configure ULP mode in the PHY */
1178 		mac_reg = er32(H2ME);
1179 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1180 		ew32(H2ME, mac_reg);
1181 
1182 		goto out;
1183 	}
1184 
1185 	if (!to_sx) {
1186 		int i = 0;
1187 
1188 		/* Poll up to 5 seconds for Cable Disconnected indication */
1189 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1190 			/* Bail if link is re-acquired */
1191 			if (er32(STATUS) & E1000_STATUS_LU)
1192 				return -E1000_ERR_PHY;
1193 
1194 			if (i++ == 100)
1195 				break;
1196 
1197 			msleep(50);
1198 		}
1199 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1200 		      (er32(FEXT) &
1201 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1202 	}
1203 
1204 	ret_val = hw->phy.ops.acquire(hw);
1205 	if (ret_val)
1206 		goto out;
1207 
1208 	if (hw->mac.type != e1000_pch_mtp) {
1209 		ret_val = e1000e_force_smbus(hw);
1210 		if (ret_val) {
1211 			e_dbg("Failed to force SMBUS: %d\n", ret_val);
1212 			goto release;
1213 		}
1214 	}
1215 
1216 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1217 	 * LPLU and disable Gig speed when entering ULP
1218 	 */
1219 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1220 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1221 						       &oem_reg);
1222 		if (ret_val)
1223 			goto release;
1224 
1225 		phy_reg = oem_reg;
1226 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1227 
1228 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1229 							phy_reg);
1230 
1231 		if (ret_val)
1232 			goto release;
1233 	}
1234 
1235 	/* Set Inband ULP Exit, Reset to SMBus mode and
1236 	 * Disable SMBus Release on PERST# in PHY
1237 	 */
1238 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1239 	if (ret_val)
1240 		goto release;
1241 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1242 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1243 	if (to_sx) {
1244 		if (er32(WUFC) & E1000_WUFC_LNKC)
1245 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1246 		else
1247 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1248 
1249 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1250 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1251 	} else {
1252 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1253 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1254 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1255 	}
1256 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1257 
1258 	/* Set Disable SMBus Release on PERST# in MAC */
1259 	mac_reg = er32(FEXTNVM7);
1260 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1261 	ew32(FEXTNVM7, mac_reg);
1262 
1263 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1264 	phy_reg |= I218_ULP_CONFIG1_START;
1265 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1266 
1267 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1268 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1269 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1270 							oem_reg);
1271 		if (ret_val)
1272 			goto release;
1273 	}
1274 
1275 release:
1276 	if (hw->mac.type == e1000_pch_mtp) {
1277 		ret_val = e1000e_force_smbus(hw);
1278 		if (ret_val)
1279 			e_dbg("Failed to force SMBUS over MTL system: %d\n",
1280 			      ret_val);
1281 	}
1282 
1283 	hw->phy.ops.release(hw);
1284 out:
1285 	if (ret_val)
1286 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1287 	else
1288 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1289 
1290 	return ret_val;
1291 }
1292 
1293 /**
1294  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1295  *  @hw: pointer to the HW structure
1296  *  @force: boolean indicating whether or not to force disabling ULP
1297  *
1298  *  Un-configure ULP mode when link is up, the system is transitioned from
1299  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1300  *  system, poll for an indication from ME that ULP has been un-configured.
1301  *  If not on an ME enabled system, un-configure the ULP mode by software.
1302  *
1303  *  During nominal operation, this function is called when link is acquired
1304  *  to disable ULP mode (force=false); otherwise, for example when unloading
1305  *  the driver or during Sx->S0 transitions, this is called with force=true
1306  *  to forcibly disable ULP.
1307  */
1308 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1309 {
1310 	s32 ret_val = 0;
1311 	u32 mac_reg;
1312 	u16 phy_reg;
1313 	int i = 0;
1314 
1315 	if ((hw->mac.type < e1000_pch_lpt) ||
1316 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1317 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1318 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1319 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1320 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1321 		return 0;
1322 
1323 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1324 		struct e1000_adapter *adapter = hw->adapter;
1325 		bool firmware_bug = false;
1326 
1327 		if (force) {
1328 			/* Request ME un-configure ULP mode in the PHY */
1329 			mac_reg = er32(H2ME);
1330 			mac_reg &= ~E1000_H2ME_ULP;
1331 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1332 			ew32(H2ME, mac_reg);
1333 		}
1334 
1335 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1336 		 * If this takes more than 1 second, show a warning indicating a
1337 		 * firmware bug
1338 		 */
1339 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1340 			if (i++ == 250) {
1341 				ret_val = -E1000_ERR_PHY;
1342 				goto out;
1343 			}
1344 			if (i > 100 && !firmware_bug)
1345 				firmware_bug = true;
1346 
1347 			usleep_range(10000, 11000);
1348 		}
1349 		if (firmware_bug)
1350 			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1351 			       i * 10);
1352 		else
1353 			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1354 			      i * 10);
1355 
1356 		if (force) {
1357 			mac_reg = er32(H2ME);
1358 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1359 			ew32(H2ME, mac_reg);
1360 		} else {
1361 			/* Clear H2ME.ULP after ME ULP configuration */
1362 			mac_reg = er32(H2ME);
1363 			mac_reg &= ~E1000_H2ME_ULP;
1364 			ew32(H2ME, mac_reg);
1365 		}
1366 
1367 		goto out;
1368 	}
1369 
1370 	ret_val = hw->phy.ops.acquire(hw);
1371 	if (ret_val)
1372 		goto out;
1373 
1374 	if (force)
1375 		/* Toggle LANPHYPC Value bit */
1376 		e1000_toggle_lanphypc_pch_lpt(hw);
1377 
1378 	/* Switching PHY interface always returns MDI error
1379 	 * so disable retry mechanism to avoid wasting time
1380 	 */
1381 	e1000e_disable_phy_retry(hw);
1382 
1383 	/* Unforce SMBus mode in PHY */
1384 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1385 	if (ret_val) {
1386 		/* The MAC might be in PCIe mode, so temporarily force to
1387 		 * SMBus mode in order to access the PHY.
1388 		 */
1389 		mac_reg = er32(CTRL_EXT);
1390 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1391 		ew32(CTRL_EXT, mac_reg);
1392 
1393 		msleep(50);
1394 
1395 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1396 						       &phy_reg);
1397 		if (ret_val)
1398 			goto release;
1399 	}
1400 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1401 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1402 
1403 	e1000e_enable_phy_retry(hw);
1404 
1405 	/* Unforce SMBus mode in MAC */
1406 	mac_reg = er32(CTRL_EXT);
1407 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1408 	ew32(CTRL_EXT, mac_reg);
1409 
1410 	/* When ULP mode was previously entered, K1 was disabled by the
1411 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1412 	 */
1413 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1414 	if (ret_val)
1415 		goto release;
1416 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1417 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1418 
1419 	/* Clear ULP enabled configuration */
1420 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1421 	if (ret_val)
1422 		goto release;
1423 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1424 		     I218_ULP_CONFIG1_STICKY_ULP |
1425 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1426 		     I218_ULP_CONFIG1_WOL_HOST |
1427 		     I218_ULP_CONFIG1_INBAND_EXIT |
1428 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1429 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1430 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1431 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1432 
1433 	/* Commit ULP changes by starting auto ULP configuration */
1434 	phy_reg |= I218_ULP_CONFIG1_START;
1435 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1436 
1437 	/* Clear Disable SMBus Release on PERST# in MAC */
1438 	mac_reg = er32(FEXTNVM7);
1439 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1440 	ew32(FEXTNVM7, mac_reg);
1441 
1442 release:
1443 	hw->phy.ops.release(hw);
1444 	if (force) {
1445 		e1000_phy_hw_reset(hw);
1446 		msleep(50);
1447 	}
1448 out:
1449 	if (ret_val)
1450 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1451 	else
1452 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1453 
1454 	return ret_val;
1455 }
1456 
1457 /**
1458  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1459  *  @hw: pointer to the HW structure
1460  *
1461  *  Checks to see of the link status of the hardware has changed.  If a
1462  *  change in link status has been detected, then we read the PHY registers
1463  *  to get the current speed/duplex if link exists.
1464  **/
1465 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1466 {
1467 	struct e1000_mac_info *mac = &hw->mac;
1468 	s32 ret_val, tipg_reg = 0;
1469 	u16 emi_addr, emi_val = 0;
1470 	bool link;
1471 	u16 phy_reg;
1472 
1473 	/* We only want to go out to the PHY registers to see if Auto-Neg
1474 	 * has completed and/or if our link status has changed.  The
1475 	 * get_link_status flag is set upon receiving a Link Status
1476 	 * Change or Rx Sequence Error interrupt.
1477 	 */
1478 	if (!mac->get_link_status)
1479 		return 0;
1480 	mac->get_link_status = false;
1481 
1482 	/* First we want to see if the MII Status Register reports
1483 	 * link.  If so, then we want to get the current speed/duplex
1484 	 * of the PHY.
1485 	 */
1486 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1487 	if (ret_val)
1488 		goto out;
1489 
1490 	if (hw->mac.type == e1000_pchlan) {
1491 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1492 		if (ret_val)
1493 			goto out;
1494 	}
1495 
1496 	/* When connected at 10Mbps half-duplex, some parts are excessively
1497 	 * aggressive resulting in many collisions. To avoid this, increase
1498 	 * the IPG and reduce Rx latency in the PHY.
1499 	 */
1500 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1501 		u16 speed, duplex;
1502 
1503 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1504 		tipg_reg = er32(TIPG);
1505 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1506 
1507 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1508 			tipg_reg |= 0xFF;
1509 			/* Reduce Rx latency in analog PHY */
1510 			emi_val = 0;
1511 		} else if (hw->mac.type >= e1000_pch_spt &&
1512 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1513 			tipg_reg |= 0xC;
1514 			emi_val = 1;
1515 		} else {
1516 
1517 			/* Roll back the default values */
1518 			tipg_reg |= 0x08;
1519 			emi_val = 1;
1520 		}
1521 
1522 		ew32(TIPG, tipg_reg);
1523 
1524 		ret_val = hw->phy.ops.acquire(hw);
1525 		if (ret_val)
1526 			goto out;
1527 
1528 		if (hw->mac.type == e1000_pch2lan)
1529 			emi_addr = I82579_RX_CONFIG;
1530 		else
1531 			emi_addr = I217_RX_CONFIG;
1532 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1533 
1534 		if (hw->mac.type >= e1000_pch_lpt) {
1535 			u16 phy_reg;
1536 
1537 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1538 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1539 			if (speed == SPEED_100 || speed == SPEED_10)
1540 				phy_reg |= 0x3E8;
1541 			else
1542 				phy_reg |= 0xFA;
1543 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1544 
1545 			if (speed == SPEED_1000) {
1546 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1547 							    &phy_reg);
1548 
1549 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1550 
1551 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1552 							     phy_reg);
1553 			}
1554 		}
1555 		hw->phy.ops.release(hw);
1556 
1557 		if (ret_val)
1558 			goto out;
1559 
1560 		if (hw->mac.type >= e1000_pch_spt) {
1561 			u16 data;
1562 			u16 ptr_gap;
1563 
1564 			if (speed == SPEED_1000) {
1565 				ret_val = hw->phy.ops.acquire(hw);
1566 				if (ret_val)
1567 					goto out;
1568 
1569 				ret_val = e1e_rphy_locked(hw,
1570 							  PHY_REG(776, 20),
1571 							  &data);
1572 				if (ret_val) {
1573 					hw->phy.ops.release(hw);
1574 					goto out;
1575 				}
1576 
1577 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1578 				if (ptr_gap < 0x18) {
1579 					data &= ~(0x3FF << 2);
1580 					data |= (0x18 << 2);
1581 					ret_val =
1582 					    e1e_wphy_locked(hw,
1583 							    PHY_REG(776, 20),
1584 							    data);
1585 				}
1586 				hw->phy.ops.release(hw);
1587 				if (ret_val)
1588 					goto out;
1589 			} else {
1590 				ret_val = hw->phy.ops.acquire(hw);
1591 				if (ret_val)
1592 					goto out;
1593 
1594 				ret_val = e1e_wphy_locked(hw,
1595 							  PHY_REG(776, 20),
1596 							  0xC023);
1597 				hw->phy.ops.release(hw);
1598 				if (ret_val)
1599 					goto out;
1600 
1601 			}
1602 		}
1603 	}
1604 
1605 	/* I217 Packet Loss issue:
1606 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1607 	 * on power up.
1608 	 * Set the Beacon Duration for I217 to 8 usec
1609 	 */
1610 	if (hw->mac.type >= e1000_pch_lpt) {
1611 		u32 mac_reg;
1612 
1613 		mac_reg = er32(FEXTNVM4);
1614 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1615 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1616 		ew32(FEXTNVM4, mac_reg);
1617 	}
1618 
1619 	/* Work-around I218 hang issue */
1620 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1621 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1622 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1623 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1624 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1625 		if (ret_val)
1626 			goto out;
1627 	}
1628 	if (hw->mac.type >= e1000_pch_lpt) {
1629 		/* Set platform power management values for
1630 		 * Latency Tolerance Reporting (LTR)
1631 		 */
1632 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1633 		if (ret_val)
1634 			goto out;
1635 	}
1636 
1637 	/* Clear link partner's EEE ability */
1638 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1639 
1640 	if (hw->mac.type >= e1000_pch_lpt) {
1641 		u32 fextnvm6 = er32(FEXTNVM6);
1642 
1643 		if (hw->mac.type == e1000_pch_spt) {
1644 			/* FEXTNVM6 K1-off workaround - for SPT only */
1645 			u32 pcieanacfg = er32(PCIEANACFG);
1646 
1647 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1648 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1649 			else
1650 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1651 		}
1652 
1653 		ew32(FEXTNVM6, fextnvm6);
1654 	}
1655 
1656 	if (!link)
1657 		goto out;
1658 
1659 	switch (hw->mac.type) {
1660 	case e1000_pch2lan:
1661 		ret_val = e1000_k1_workaround_lv(hw);
1662 		if (ret_val)
1663 			return ret_val;
1664 		fallthrough;
1665 	case e1000_pchlan:
1666 		if (hw->phy.type == e1000_phy_82578) {
1667 			ret_val = e1000_link_stall_workaround_hv(hw);
1668 			if (ret_val)
1669 				return ret_val;
1670 		}
1671 
1672 		/* Workaround for PCHx parts in half-duplex:
1673 		 * Set the number of preambles removed from the packet
1674 		 * when it is passed from the PHY to the MAC to prevent
1675 		 * the MAC from misinterpreting the packet type.
1676 		 */
1677 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1678 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1679 
1680 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1681 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1682 
1683 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1684 		break;
1685 	default:
1686 		break;
1687 	}
1688 
1689 	/* Check if there was DownShift, must be checked
1690 	 * immediately after link-up
1691 	 */
1692 	e1000e_check_downshift(hw);
1693 
1694 	/* Enable/Disable EEE after link up */
1695 	if (hw->phy.type > e1000_phy_82579) {
1696 		ret_val = e1000_set_eee_pchlan(hw);
1697 		if (ret_val)
1698 			return ret_val;
1699 	}
1700 
1701 	/* If we are forcing speed/duplex, then we simply return since
1702 	 * we have already determined whether we have link or not.
1703 	 */
1704 	if (!mac->autoneg)
1705 		return -E1000_ERR_CONFIG;
1706 
1707 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1708 	 * of MAC speed/duplex configuration.  So we only need to
1709 	 * configure Collision Distance in the MAC.
1710 	 */
1711 	mac->ops.config_collision_dist(hw);
1712 
1713 	/* Configure Flow Control now that Auto-Neg has completed.
1714 	 * First, we need to restore the desired flow control
1715 	 * settings because we may have had to re-autoneg with a
1716 	 * different link partner.
1717 	 */
1718 	ret_val = e1000e_config_fc_after_link_up(hw);
1719 	if (ret_val)
1720 		e_dbg("Error configuring flow control\n");
1721 
1722 	return ret_val;
1723 
1724 out:
1725 	mac->get_link_status = true;
1726 	return ret_val;
1727 }
1728 
1729 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1730 {
1731 	struct e1000_hw *hw = &adapter->hw;
1732 	s32 rc;
1733 
1734 	rc = e1000_init_mac_params_ich8lan(hw);
1735 	if (rc)
1736 		return rc;
1737 
1738 	rc = e1000_init_nvm_params_ich8lan(hw);
1739 	if (rc)
1740 		return rc;
1741 
1742 	switch (hw->mac.type) {
1743 	case e1000_ich8lan:
1744 	case e1000_ich9lan:
1745 	case e1000_ich10lan:
1746 		rc = e1000_init_phy_params_ich8lan(hw);
1747 		break;
1748 	case e1000_pchlan:
1749 	case e1000_pch2lan:
1750 	case e1000_pch_lpt:
1751 	case e1000_pch_spt:
1752 	case e1000_pch_cnp:
1753 	case e1000_pch_tgp:
1754 	case e1000_pch_adp:
1755 	case e1000_pch_mtp:
1756 	case e1000_pch_lnp:
1757 	case e1000_pch_ptp:
1758 	case e1000_pch_nvp:
1759 		rc = e1000_init_phy_params_pchlan(hw);
1760 		break;
1761 	default:
1762 		break;
1763 	}
1764 	if (rc)
1765 		return rc;
1766 
1767 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1768 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1769 	 */
1770 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1771 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1772 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1773 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1774 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1775 
1776 		hw->mac.ops.blink_led = NULL;
1777 	}
1778 
1779 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1780 	    (adapter->hw.phy.type != e1000_phy_ife))
1781 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1782 
1783 	/* Enable workaround for 82579 w/ ME enabled */
1784 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1785 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1786 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1787 
1788 	return 0;
1789 }
1790 
1791 static DEFINE_MUTEX(nvm_mutex);
1792 
1793 /**
1794  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1795  *  @hw: pointer to the HW structure
1796  *
1797  *  Acquires the mutex for performing NVM operations.
1798  **/
1799 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1800 {
1801 	mutex_lock(&nvm_mutex);
1802 
1803 	return 0;
1804 }
1805 
1806 /**
1807  *  e1000_release_nvm_ich8lan - Release NVM mutex
1808  *  @hw: pointer to the HW structure
1809  *
1810  *  Releases the mutex used while performing NVM operations.
1811  **/
1812 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1813 {
1814 	mutex_unlock(&nvm_mutex);
1815 }
1816 
1817 /**
1818  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1819  *  @hw: pointer to the HW structure
1820  *
1821  *  Acquires the software control flag for performing PHY and select
1822  *  MAC CSR accesses.
1823  **/
1824 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1825 {
1826 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1827 	s32 ret_val = 0;
1828 
1829 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1830 			     &hw->adapter->state)) {
1831 		e_dbg("contention for Phy access\n");
1832 		return -E1000_ERR_PHY;
1833 	}
1834 
1835 	while (timeout) {
1836 		extcnf_ctrl = er32(EXTCNF_CTRL);
1837 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1838 			break;
1839 
1840 		mdelay(1);
1841 		timeout--;
1842 	}
1843 
1844 	if (!timeout) {
1845 		e_dbg("SW has already locked the resource.\n");
1846 		ret_val = -E1000_ERR_CONFIG;
1847 		goto out;
1848 	}
1849 
1850 	timeout = SW_FLAG_TIMEOUT;
1851 
1852 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1853 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1854 
1855 	while (timeout) {
1856 		extcnf_ctrl = er32(EXTCNF_CTRL);
1857 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1858 			break;
1859 
1860 		mdelay(1);
1861 		timeout--;
1862 	}
1863 
1864 	if (!timeout) {
1865 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1866 		      er32(FWSM), extcnf_ctrl);
1867 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1868 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1869 		ret_val = -E1000_ERR_CONFIG;
1870 		goto out;
1871 	}
1872 
1873 out:
1874 	if (ret_val)
1875 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1876 
1877 	return ret_val;
1878 }
1879 
1880 /**
1881  *  e1000_release_swflag_ich8lan - Release software control flag
1882  *  @hw: pointer to the HW structure
1883  *
1884  *  Releases the software control flag for performing PHY and select
1885  *  MAC CSR accesses.
1886  **/
1887 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1888 {
1889 	u32 extcnf_ctrl;
1890 
1891 	extcnf_ctrl = er32(EXTCNF_CTRL);
1892 
1893 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1894 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1895 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1896 	} else {
1897 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1898 	}
1899 
1900 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1901 }
1902 
1903 /**
1904  *  e1000_check_mng_mode_ich8lan - Checks management mode
1905  *  @hw: pointer to the HW structure
1906  *
1907  *  This checks if the adapter has any manageability enabled.
1908  *  This is a function pointer entry point only called by read/write
1909  *  routines for the PHY and NVM parts.
1910  **/
1911 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1912 {
1913 	u32 fwsm;
1914 
1915 	fwsm = er32(FWSM);
1916 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1917 		((fwsm & E1000_FWSM_MODE_MASK) ==
1918 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1919 }
1920 
1921 /**
1922  *  e1000_check_mng_mode_pchlan - Checks management mode
1923  *  @hw: pointer to the HW structure
1924  *
1925  *  This checks if the adapter has iAMT enabled.
1926  *  This is a function pointer entry point only called by read/write
1927  *  routines for the PHY and NVM parts.
1928  **/
1929 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1930 {
1931 	u32 fwsm;
1932 
1933 	fwsm = er32(FWSM);
1934 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1935 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1936 }
1937 
1938 /**
1939  *  e1000_rar_set_pch2lan - Set receive address register
1940  *  @hw: pointer to the HW structure
1941  *  @addr: pointer to the receive address
1942  *  @index: receive address array register
1943  *
1944  *  Sets the receive address array register at index to the address passed
1945  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1946  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1947  *  Use SHRA[0-3] in place of those reserved for ME.
1948  **/
1949 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1950 {
1951 	u32 rar_low, rar_high;
1952 
1953 	/* HW expects these in little endian so we reverse the byte order
1954 	 * from network order (big endian) to little endian
1955 	 */
1956 	rar_low = ((u32)addr[0] |
1957 		   ((u32)addr[1] << 8) |
1958 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1959 
1960 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1961 
1962 	/* If MAC address zero, no need to set the AV bit */
1963 	if (rar_low || rar_high)
1964 		rar_high |= E1000_RAH_AV;
1965 
1966 	if (index == 0) {
1967 		ew32(RAL(index), rar_low);
1968 		e1e_flush();
1969 		ew32(RAH(index), rar_high);
1970 		e1e_flush();
1971 		return 0;
1972 	}
1973 
1974 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1975 	 * next address into the SHRA register array.
1976 	 */
1977 	if (index < (u32)(hw->mac.rar_entry_count)) {
1978 		s32 ret_val;
1979 
1980 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1981 		if (ret_val)
1982 			goto out;
1983 
1984 		ew32(SHRAL(index - 1), rar_low);
1985 		e1e_flush();
1986 		ew32(SHRAH(index - 1), rar_high);
1987 		e1e_flush();
1988 
1989 		e1000_release_swflag_ich8lan(hw);
1990 
1991 		/* verify the register updates */
1992 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1993 		    (er32(SHRAH(index - 1)) == rar_high))
1994 			return 0;
1995 
1996 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1997 		      (index - 1), er32(FWSM));
1998 	}
1999 
2000 out:
2001 	e_dbg("Failed to write receive address at index %d\n", index);
2002 	return -E1000_ERR_CONFIG;
2003 }
2004 
2005 /**
2006  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
2007  *  @hw: pointer to the HW structure
2008  *
2009  *  Get the number of available receive registers that the Host can
2010  *  program. SHRA[0-10] are the shared receive address registers
2011  *  that are shared between the Host and manageability engine (ME).
2012  *  ME can reserve any number of addresses and the host needs to be
2013  *  able to tell how many available registers it has access to.
2014  **/
2015 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
2016 {
2017 	u32 wlock_mac;
2018 	u32 num_entries;
2019 
2020 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2021 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2022 
2023 	switch (wlock_mac) {
2024 	case 0:
2025 		/* All SHRA[0..10] and RAR[0] available */
2026 		num_entries = hw->mac.rar_entry_count;
2027 		break;
2028 	case 1:
2029 		/* Only RAR[0] available */
2030 		num_entries = 1;
2031 		break;
2032 	default:
2033 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2034 		num_entries = wlock_mac + 1;
2035 		break;
2036 	}
2037 
2038 	return num_entries;
2039 }
2040 
2041 /**
2042  *  e1000_rar_set_pch_lpt - Set receive address registers
2043  *  @hw: pointer to the HW structure
2044  *  @addr: pointer to the receive address
2045  *  @index: receive address array register
2046  *
2047  *  Sets the receive address register array at index to the address passed
2048  *  in by addr. For LPT, RAR[0] is the base address register that is to
2049  *  contain the MAC address. SHRA[0-10] are the shared receive address
2050  *  registers that are shared between the Host and manageability engine (ME).
2051  **/
2052 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2053 {
2054 	u32 rar_low, rar_high;
2055 	u32 wlock_mac;
2056 
2057 	/* HW expects these in little endian so we reverse the byte order
2058 	 * from network order (big endian) to little endian
2059 	 */
2060 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2061 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2062 
2063 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2064 
2065 	/* If MAC address zero, no need to set the AV bit */
2066 	if (rar_low || rar_high)
2067 		rar_high |= E1000_RAH_AV;
2068 
2069 	if (index == 0) {
2070 		ew32(RAL(index), rar_low);
2071 		e1e_flush();
2072 		ew32(RAH(index), rar_high);
2073 		e1e_flush();
2074 		return 0;
2075 	}
2076 
2077 	/* The manageability engine (ME) can lock certain SHRAR registers that
2078 	 * it is using - those registers are unavailable for use.
2079 	 */
2080 	if (index < hw->mac.rar_entry_count) {
2081 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2082 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2083 
2084 		/* Check if all SHRAR registers are locked */
2085 		if (wlock_mac == 1)
2086 			goto out;
2087 
2088 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2089 			s32 ret_val;
2090 
2091 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2092 
2093 			if (ret_val)
2094 				goto out;
2095 
2096 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2097 			e1e_flush();
2098 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2099 			e1e_flush();
2100 
2101 			e1000_release_swflag_ich8lan(hw);
2102 
2103 			/* verify the register updates */
2104 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2105 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2106 				return 0;
2107 		}
2108 	}
2109 
2110 out:
2111 	e_dbg("Failed to write receive address at index %d\n", index);
2112 	return -E1000_ERR_CONFIG;
2113 }
2114 
2115 /**
2116  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2117  *  @hw: pointer to the HW structure
2118  *
2119  *  Checks if firmware is blocking the reset of the PHY.
2120  *  This is a function pointer entry point only called by
2121  *  reset routines.
2122  **/
2123 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2124 {
2125 	bool blocked = false;
2126 	int i = 0;
2127 
2128 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2129 	       (i++ < 30))
2130 		usleep_range(10000, 11000);
2131 	return blocked ? E1000_BLK_PHY_RESET : 0;
2132 }
2133 
2134 /**
2135  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2136  *  @hw: pointer to the HW structure
2137  *
2138  *  Assumes semaphore already acquired.
2139  *
2140  **/
2141 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2142 {
2143 	u16 phy_data;
2144 	u32 strap = er32(STRAP);
2145 	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2146 	s32 ret_val;
2147 
2148 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2149 
2150 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2151 	if (ret_val)
2152 		return ret_val;
2153 
2154 	phy_data &= ~HV_SMB_ADDR_MASK;
2155 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2156 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2157 
2158 	if (hw->phy.type == e1000_phy_i217) {
2159 		/* Restore SMBus frequency */
2160 		if (freq--) {
2161 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2162 			phy_data |= (freq & BIT(0)) <<
2163 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2164 			phy_data |= (freq & BIT(1)) <<
2165 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2166 		} else {
2167 			e_dbg("Unsupported SMB frequency in PHY\n");
2168 		}
2169 	}
2170 
2171 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2172 }
2173 
2174 /**
2175  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2176  *  @hw:   pointer to the HW structure
2177  *
2178  *  SW should configure the LCD from the NVM extended configuration region
2179  *  as a workaround for certain parts.
2180  **/
2181 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2182 {
2183 	struct e1000_phy_info *phy = &hw->phy;
2184 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2185 	s32 ret_val = 0;
2186 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2187 
2188 	/* Initialize the PHY from the NVM on ICH platforms.  This
2189 	 * is needed due to an issue where the NVM configuration is
2190 	 * not properly autoloaded after power transitions.
2191 	 * Therefore, after each PHY reset, we will load the
2192 	 * configuration data out of the NVM manually.
2193 	 */
2194 	switch (hw->mac.type) {
2195 	case e1000_ich8lan:
2196 		if (phy->type != e1000_phy_igp_3)
2197 			return ret_val;
2198 
2199 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2200 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2201 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2202 			break;
2203 		}
2204 		fallthrough;
2205 	case e1000_pchlan:
2206 	case e1000_pch2lan:
2207 	case e1000_pch_lpt:
2208 	case e1000_pch_spt:
2209 	case e1000_pch_cnp:
2210 	case e1000_pch_tgp:
2211 	case e1000_pch_adp:
2212 	case e1000_pch_mtp:
2213 	case e1000_pch_lnp:
2214 	case e1000_pch_ptp:
2215 	case e1000_pch_nvp:
2216 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2217 		break;
2218 	default:
2219 		return ret_val;
2220 	}
2221 
2222 	ret_val = hw->phy.ops.acquire(hw);
2223 	if (ret_val)
2224 		return ret_val;
2225 
2226 	data = er32(FEXTNVM);
2227 	if (!(data & sw_cfg_mask))
2228 		goto release;
2229 
2230 	/* Make sure HW does not configure LCD from PHY
2231 	 * extended configuration before SW configuration
2232 	 */
2233 	data = er32(EXTCNF_CTRL);
2234 	if ((hw->mac.type < e1000_pch2lan) &&
2235 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2236 		goto release;
2237 
2238 	cnf_size = er32(EXTCNF_SIZE);
2239 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2240 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2241 	if (!cnf_size)
2242 		goto release;
2243 
2244 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2245 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2246 
2247 	if (((hw->mac.type == e1000_pchlan) &&
2248 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2249 	    (hw->mac.type > e1000_pchlan)) {
2250 		/* HW configures the SMBus address and LEDs when the
2251 		 * OEM and LCD Write Enable bits are set in the NVM.
2252 		 * When both NVM bits are cleared, SW will configure
2253 		 * them instead.
2254 		 */
2255 		ret_val = e1000_write_smbus_addr(hw);
2256 		if (ret_val)
2257 			goto release;
2258 
2259 		data = er32(LEDCTL);
2260 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2261 							(u16)data);
2262 		if (ret_val)
2263 			goto release;
2264 	}
2265 
2266 	/* Configure LCD from extended configuration region. */
2267 
2268 	/* cnf_base_addr is in DWORD */
2269 	word_addr = (u16)(cnf_base_addr << 1);
2270 
2271 	for (i = 0; i < cnf_size; i++) {
2272 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2273 		if (ret_val)
2274 			goto release;
2275 
2276 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2277 					 1, &reg_addr);
2278 		if (ret_val)
2279 			goto release;
2280 
2281 		/* Save off the PHY page for future writes. */
2282 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2283 			phy_page = reg_data;
2284 			continue;
2285 		}
2286 
2287 		reg_addr &= PHY_REG_MASK;
2288 		reg_addr |= phy_page;
2289 
2290 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2291 		if (ret_val)
2292 			goto release;
2293 	}
2294 
2295 release:
2296 	hw->phy.ops.release(hw);
2297 	return ret_val;
2298 }
2299 
2300 /**
2301  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2302  *  @hw:   pointer to the HW structure
2303  *  @link: link up bool flag
2304  *
2305  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2306  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2307  *  If link is down, the function will restore the default K1 setting located
2308  *  in the NVM.
2309  **/
2310 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2311 {
2312 	s32 ret_val = 0;
2313 	u16 status_reg = 0;
2314 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2315 
2316 	if (hw->mac.type != e1000_pchlan)
2317 		return 0;
2318 
2319 	/* Wrap the whole flow with the sw flag */
2320 	ret_val = hw->phy.ops.acquire(hw);
2321 	if (ret_val)
2322 		return ret_val;
2323 
2324 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2325 	if (link) {
2326 		if (hw->phy.type == e1000_phy_82578) {
2327 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2328 						  &status_reg);
2329 			if (ret_val)
2330 				goto release;
2331 
2332 			status_reg &= (BM_CS_STATUS_LINK_UP |
2333 				       BM_CS_STATUS_RESOLVED |
2334 				       BM_CS_STATUS_SPEED_MASK);
2335 
2336 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2337 					   BM_CS_STATUS_RESOLVED |
2338 					   BM_CS_STATUS_SPEED_1000))
2339 				k1_enable = false;
2340 		}
2341 
2342 		if (hw->phy.type == e1000_phy_82577) {
2343 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2344 			if (ret_val)
2345 				goto release;
2346 
2347 			status_reg &= (HV_M_STATUS_LINK_UP |
2348 				       HV_M_STATUS_AUTONEG_COMPLETE |
2349 				       HV_M_STATUS_SPEED_MASK);
2350 
2351 			if (status_reg == (HV_M_STATUS_LINK_UP |
2352 					   HV_M_STATUS_AUTONEG_COMPLETE |
2353 					   HV_M_STATUS_SPEED_1000))
2354 				k1_enable = false;
2355 		}
2356 
2357 		/* Link stall fix for link up */
2358 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2359 		if (ret_val)
2360 			goto release;
2361 
2362 	} else {
2363 		/* Link stall fix for link down */
2364 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2365 		if (ret_val)
2366 			goto release;
2367 	}
2368 
2369 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2370 
2371 release:
2372 	hw->phy.ops.release(hw);
2373 
2374 	return ret_val;
2375 }
2376 
2377 /**
2378  *  e1000_configure_k1_ich8lan - Configure K1 power state
2379  *  @hw: pointer to the HW structure
2380  *  @k1_enable: K1 state to configure
2381  *
2382  *  Configure the K1 power state based on the provided parameter.
2383  *  Assumes semaphore already acquired.
2384  *
2385  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2386  **/
2387 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2388 {
2389 	s32 ret_val;
2390 	u32 ctrl_reg = 0;
2391 	u32 ctrl_ext = 0;
2392 	u32 reg = 0;
2393 	u16 kmrn_reg = 0;
2394 
2395 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2396 					      &kmrn_reg);
2397 	if (ret_val)
2398 		return ret_val;
2399 
2400 	if (k1_enable)
2401 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2402 	else
2403 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2404 
2405 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2406 					       kmrn_reg);
2407 	if (ret_val)
2408 		return ret_val;
2409 
2410 	usleep_range(20, 40);
2411 	ctrl_ext = er32(CTRL_EXT);
2412 	ctrl_reg = er32(CTRL);
2413 
2414 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2415 	reg |= E1000_CTRL_FRCSPD;
2416 	ew32(CTRL, reg);
2417 
2418 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2419 	e1e_flush();
2420 	usleep_range(20, 40);
2421 	ew32(CTRL, ctrl_reg);
2422 	ew32(CTRL_EXT, ctrl_ext);
2423 	e1e_flush();
2424 	usleep_range(20, 40);
2425 
2426 	return 0;
2427 }
2428 
2429 /**
2430  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2431  *  @hw:       pointer to the HW structure
2432  *  @d0_state: boolean if entering d0 or d3 device state
2433  *
2434  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2435  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2436  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2437  **/
2438 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2439 {
2440 	s32 ret_val = 0;
2441 	u32 mac_reg;
2442 	u16 oem_reg;
2443 
2444 	if (hw->mac.type < e1000_pchlan)
2445 		return ret_val;
2446 
2447 	ret_val = hw->phy.ops.acquire(hw);
2448 	if (ret_val)
2449 		return ret_val;
2450 
2451 	if (hw->mac.type == e1000_pchlan) {
2452 		mac_reg = er32(EXTCNF_CTRL);
2453 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2454 			goto release;
2455 	}
2456 
2457 	mac_reg = er32(FEXTNVM);
2458 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2459 		goto release;
2460 
2461 	mac_reg = er32(PHY_CTRL);
2462 
2463 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2464 	if (ret_val)
2465 		goto release;
2466 
2467 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2468 
2469 	if (d0_state) {
2470 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2471 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2472 
2473 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2474 			oem_reg |= HV_OEM_BITS_LPLU;
2475 	} else {
2476 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2477 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2478 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2479 
2480 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2481 			       E1000_PHY_CTRL_NOND0A_LPLU))
2482 			oem_reg |= HV_OEM_BITS_LPLU;
2483 	}
2484 
2485 	/* Set Restart auto-neg to activate the bits */
2486 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2487 	    !hw->phy.ops.check_reset_block(hw))
2488 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2489 
2490 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2491 
2492 release:
2493 	hw->phy.ops.release(hw);
2494 
2495 	return ret_val;
2496 }
2497 
2498 /**
2499  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2500  *  @hw:   pointer to the HW structure
2501  **/
2502 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2503 {
2504 	s32 ret_val;
2505 	u16 data;
2506 
2507 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2508 	if (ret_val)
2509 		return ret_val;
2510 
2511 	data |= HV_KMRN_MDIO_SLOW;
2512 
2513 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2514 
2515 	return ret_val;
2516 }
2517 
2518 /**
2519  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2520  *  @hw: pointer to the HW structure
2521  *
2522  *  A series of PHY workarounds to be done after every PHY reset.
2523  **/
2524 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2525 {
2526 	s32 ret_val = 0;
2527 	u16 phy_data;
2528 
2529 	if (hw->mac.type != e1000_pchlan)
2530 		return 0;
2531 
2532 	/* Set MDIO slow mode before any other MDIO access */
2533 	if (hw->phy.type == e1000_phy_82577) {
2534 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2535 		if (ret_val)
2536 			return ret_val;
2537 	}
2538 
2539 	if (((hw->phy.type == e1000_phy_82577) &&
2540 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2541 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2542 		/* Disable generation of early preamble */
2543 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2544 		if (ret_val)
2545 			return ret_val;
2546 
2547 		/* Preamble tuning for SSC */
2548 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2549 		if (ret_val)
2550 			return ret_val;
2551 	}
2552 
2553 	if (hw->phy.type == e1000_phy_82578) {
2554 		/* Return registers to default by doing a soft reset then
2555 		 * writing 0x3140 to the control register.
2556 		 */
2557 		if (hw->phy.revision < 2) {
2558 			e1000e_phy_sw_reset(hw);
2559 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2560 			if (ret_val)
2561 				return ret_val;
2562 		}
2563 	}
2564 
2565 	/* Select page 0 */
2566 	ret_val = hw->phy.ops.acquire(hw);
2567 	if (ret_val)
2568 		return ret_val;
2569 
2570 	hw->phy.addr = 1;
2571 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2572 	hw->phy.ops.release(hw);
2573 	if (ret_val)
2574 		return ret_val;
2575 
2576 	/* Configure the K1 Si workaround during phy reset assuming there is
2577 	 * link so that it disables K1 if link is in 1Gbps.
2578 	 */
2579 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2580 	if (ret_val)
2581 		return ret_val;
2582 
2583 	/* Workaround for link disconnects on a busy hub in half duplex */
2584 	ret_val = hw->phy.ops.acquire(hw);
2585 	if (ret_val)
2586 		return ret_val;
2587 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2588 	if (ret_val)
2589 		goto release;
2590 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2591 	if (ret_val)
2592 		goto release;
2593 
2594 	/* set MSE higher to enable link to stay up when noise is high */
2595 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2596 release:
2597 	hw->phy.ops.release(hw);
2598 
2599 	return ret_val;
2600 }
2601 
2602 /**
2603  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2604  *  @hw:   pointer to the HW structure
2605  **/
2606 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2607 {
2608 	u32 mac_reg;
2609 	u16 i, phy_reg = 0;
2610 	s32 ret_val;
2611 
2612 	ret_val = hw->phy.ops.acquire(hw);
2613 	if (ret_val)
2614 		return;
2615 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2616 	if (ret_val)
2617 		goto release;
2618 
2619 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2620 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2621 		mac_reg = er32(RAL(i));
2622 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2623 					   (u16)(mac_reg & 0xFFFF));
2624 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2625 					   (u16)((mac_reg >> 16) & 0xFFFF));
2626 
2627 		mac_reg = er32(RAH(i));
2628 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2629 					   (u16)(mac_reg & 0xFFFF));
2630 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2631 					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
2632 	}
2633 
2634 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2635 
2636 release:
2637 	hw->phy.ops.release(hw);
2638 }
2639 
2640 /**
2641  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2642  *  with 82579 PHY
2643  *  @hw: pointer to the HW structure
2644  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2645  **/
2646 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2647 {
2648 	s32 ret_val = 0;
2649 	u16 phy_reg, data;
2650 	u32 mac_reg;
2651 	u16 i;
2652 
2653 	if (hw->mac.type < e1000_pch2lan)
2654 		return 0;
2655 
2656 	/* disable Rx path while enabling/disabling workaround */
2657 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2658 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2659 	if (ret_val)
2660 		return ret_val;
2661 
2662 	if (enable) {
2663 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2664 		 * SHRAL/H) and initial CRC values to the MAC
2665 		 */
2666 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2667 			u8 mac_addr[ETH_ALEN] = { 0 };
2668 			u32 addr_high, addr_low;
2669 
2670 			addr_high = er32(RAH(i));
2671 			if (!(addr_high & E1000_RAH_AV))
2672 				continue;
2673 			addr_low = er32(RAL(i));
2674 			mac_addr[0] = (addr_low & 0xFF);
2675 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2676 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2677 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2678 			mac_addr[4] = (addr_high & 0xFF);
2679 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2680 
2681 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2682 		}
2683 
2684 		/* Write Rx addresses to the PHY */
2685 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2686 
2687 		/* Enable jumbo frame workaround in the MAC */
2688 		mac_reg = er32(FFLT_DBG);
2689 		mac_reg &= ~BIT(14);
2690 		mac_reg |= (7 << 15);
2691 		ew32(FFLT_DBG, mac_reg);
2692 
2693 		mac_reg = er32(RCTL);
2694 		mac_reg |= E1000_RCTL_SECRC;
2695 		ew32(RCTL, mac_reg);
2696 
2697 		ret_val = e1000e_read_kmrn_reg(hw,
2698 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2699 					       &data);
2700 		if (ret_val)
2701 			return ret_val;
2702 		ret_val = e1000e_write_kmrn_reg(hw,
2703 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2704 						data | BIT(0));
2705 		if (ret_val)
2706 			return ret_val;
2707 		ret_val = e1000e_read_kmrn_reg(hw,
2708 					       E1000_KMRNCTRLSTA_HD_CTRL,
2709 					       &data);
2710 		if (ret_val)
2711 			return ret_val;
2712 		data &= ~(0xF << 8);
2713 		data |= (0xB << 8);
2714 		ret_val = e1000e_write_kmrn_reg(hw,
2715 						E1000_KMRNCTRLSTA_HD_CTRL,
2716 						data);
2717 		if (ret_val)
2718 			return ret_val;
2719 
2720 		/* Enable jumbo frame workaround in the PHY */
2721 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2722 		data &= ~(0x7F << 5);
2723 		data |= (0x37 << 5);
2724 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2725 		if (ret_val)
2726 			return ret_val;
2727 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2728 		data &= ~BIT(13);
2729 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2730 		if (ret_val)
2731 			return ret_val;
2732 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2733 		data &= ~(0x3FF << 2);
2734 		data |= (E1000_TX_PTR_GAP << 2);
2735 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2736 		if (ret_val)
2737 			return ret_val;
2738 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2739 		if (ret_val)
2740 			return ret_val;
2741 		e1e_rphy(hw, HV_PM_CTRL, &data);
2742 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2743 		if (ret_val)
2744 			return ret_val;
2745 	} else {
2746 		/* Write MAC register values back to h/w defaults */
2747 		mac_reg = er32(FFLT_DBG);
2748 		mac_reg &= ~(0xF << 14);
2749 		ew32(FFLT_DBG, mac_reg);
2750 
2751 		mac_reg = er32(RCTL);
2752 		mac_reg &= ~E1000_RCTL_SECRC;
2753 		ew32(RCTL, mac_reg);
2754 
2755 		ret_val = e1000e_read_kmrn_reg(hw,
2756 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2757 					       &data);
2758 		if (ret_val)
2759 			return ret_val;
2760 		ret_val = e1000e_write_kmrn_reg(hw,
2761 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2762 						data & ~BIT(0));
2763 		if (ret_val)
2764 			return ret_val;
2765 		ret_val = e1000e_read_kmrn_reg(hw,
2766 					       E1000_KMRNCTRLSTA_HD_CTRL,
2767 					       &data);
2768 		if (ret_val)
2769 			return ret_val;
2770 		data &= ~(0xF << 8);
2771 		data |= (0xB << 8);
2772 		ret_val = e1000e_write_kmrn_reg(hw,
2773 						E1000_KMRNCTRLSTA_HD_CTRL,
2774 						data);
2775 		if (ret_val)
2776 			return ret_val;
2777 
2778 		/* Write PHY register values back to h/w defaults */
2779 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2780 		data &= ~(0x7F << 5);
2781 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2782 		if (ret_val)
2783 			return ret_val;
2784 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2785 		data |= BIT(13);
2786 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2787 		if (ret_val)
2788 			return ret_val;
2789 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2790 		data &= ~(0x3FF << 2);
2791 		data |= (0x8 << 2);
2792 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2793 		if (ret_val)
2794 			return ret_val;
2795 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2796 		if (ret_val)
2797 			return ret_val;
2798 		e1e_rphy(hw, HV_PM_CTRL, &data);
2799 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2800 		if (ret_val)
2801 			return ret_val;
2802 	}
2803 
2804 	/* re-enable Rx path after enabling/disabling workaround */
2805 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2806 }
2807 
2808 /**
2809  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2810  *  @hw: pointer to the HW structure
2811  *
2812  *  A series of PHY workarounds to be done after every PHY reset.
2813  **/
2814 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2815 {
2816 	s32 ret_val = 0;
2817 
2818 	if (hw->mac.type != e1000_pch2lan)
2819 		return 0;
2820 
2821 	/* Set MDIO slow mode before any other MDIO access */
2822 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2823 	if (ret_val)
2824 		return ret_val;
2825 
2826 	ret_val = hw->phy.ops.acquire(hw);
2827 	if (ret_val)
2828 		return ret_val;
2829 	/* set MSE higher to enable link to stay up when noise is high */
2830 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2831 	if (ret_val)
2832 		goto release;
2833 	/* drop link after 5 times MSE threshold was reached */
2834 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2835 release:
2836 	hw->phy.ops.release(hw);
2837 
2838 	return ret_val;
2839 }
2840 
2841 /**
2842  *  e1000_k1_workaround_lv - K1 Si workaround
2843  *  @hw:   pointer to the HW structure
2844  *
2845  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2846  *  Disable K1 in 1000Mbps and 100Mbps
2847  **/
2848 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2849 {
2850 	s32 ret_val = 0;
2851 	u16 status_reg = 0;
2852 
2853 	if (hw->mac.type != e1000_pch2lan)
2854 		return 0;
2855 
2856 	/* Set K1 beacon duration based on 10Mbs speed */
2857 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2858 	if (ret_val)
2859 		return ret_val;
2860 
2861 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2862 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2863 		if (status_reg &
2864 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2865 			u16 pm_phy_reg;
2866 
2867 			/* LV 1G/100 Packet drop issue wa  */
2868 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2869 			if (ret_val)
2870 				return ret_val;
2871 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2872 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2873 			if (ret_val)
2874 				return ret_val;
2875 		} else {
2876 			u32 mac_reg;
2877 
2878 			mac_reg = er32(FEXTNVM4);
2879 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2880 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2881 			ew32(FEXTNVM4, mac_reg);
2882 		}
2883 	}
2884 
2885 	return ret_val;
2886 }
2887 
2888 /**
2889  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2890  *  @hw:   pointer to the HW structure
2891  *  @gate: boolean set to true to gate, false to ungate
2892  *
2893  *  Gate/ungate the automatic PHY configuration via hardware; perform
2894  *  the configuration via software instead.
2895  **/
2896 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2897 {
2898 	u32 extcnf_ctrl;
2899 
2900 	if (hw->mac.type < e1000_pch2lan)
2901 		return;
2902 
2903 	extcnf_ctrl = er32(EXTCNF_CTRL);
2904 
2905 	if (gate)
2906 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2907 	else
2908 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2909 
2910 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2911 }
2912 
2913 /**
2914  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2915  *  @hw: pointer to the HW structure
2916  *
2917  *  Check the appropriate indication the MAC has finished configuring the
2918  *  PHY after a software reset.
2919  **/
2920 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2921 {
2922 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2923 
2924 	/* Wait for basic configuration completes before proceeding */
2925 	do {
2926 		data = er32(STATUS);
2927 		data &= E1000_STATUS_LAN_INIT_DONE;
2928 		usleep_range(100, 200);
2929 	} while ((!data) && --loop);
2930 
2931 	/* If basic configuration is incomplete before the above loop
2932 	 * count reaches 0, loading the configuration from NVM will
2933 	 * leave the PHY in a bad state possibly resulting in no link.
2934 	 */
2935 	if (loop == 0)
2936 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2937 
2938 	/* Clear the Init Done bit for the next init event */
2939 	data = er32(STATUS);
2940 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2941 	ew32(STATUS, data);
2942 }
2943 
2944 /**
2945  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2946  *  @hw: pointer to the HW structure
2947  **/
2948 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2949 {
2950 	s32 ret_val = 0;
2951 	u16 reg;
2952 
2953 	if (hw->phy.ops.check_reset_block(hw))
2954 		return 0;
2955 
2956 	/* Allow time for h/w to get to quiescent state after reset */
2957 	usleep_range(10000, 11000);
2958 
2959 	/* Perform any necessary post-reset workarounds */
2960 	switch (hw->mac.type) {
2961 	case e1000_pchlan:
2962 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2963 		if (ret_val)
2964 			return ret_val;
2965 		break;
2966 	case e1000_pch2lan:
2967 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2968 		if (ret_val)
2969 			return ret_val;
2970 		break;
2971 	default:
2972 		break;
2973 	}
2974 
2975 	/* Clear the host wakeup bit after lcd reset */
2976 	if (hw->mac.type >= e1000_pchlan) {
2977 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2978 		reg &= ~BM_WUC_HOST_WU_BIT;
2979 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2980 	}
2981 
2982 	/* Configure the LCD with the extended configuration region in NVM */
2983 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2984 	if (ret_val)
2985 		return ret_val;
2986 
2987 	/* Configure the LCD with the OEM bits in NVM */
2988 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2989 
2990 	if (hw->mac.type == e1000_pch2lan) {
2991 		/* Ungate automatic PHY configuration on non-managed 82579 */
2992 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2993 			usleep_range(10000, 11000);
2994 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2995 		}
2996 
2997 		/* Set EEE LPI Update Timer to 200usec */
2998 		ret_val = hw->phy.ops.acquire(hw);
2999 		if (ret_val)
3000 			return ret_val;
3001 		ret_val = e1000_write_emi_reg_locked(hw,
3002 						     I82579_LPI_UPDATE_TIMER,
3003 						     0x1387);
3004 		hw->phy.ops.release(hw);
3005 	}
3006 
3007 	return ret_val;
3008 }
3009 
3010 /**
3011  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3012  *  @hw: pointer to the HW structure
3013  *
3014  *  Resets the PHY
3015  *  This is a function pointer entry point called by drivers
3016  *  or other shared routines.
3017  **/
3018 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3019 {
3020 	s32 ret_val = 0;
3021 
3022 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3023 	if ((hw->mac.type == e1000_pch2lan) &&
3024 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3025 		e1000_gate_hw_phy_config_ich8lan(hw, true);
3026 
3027 	ret_val = e1000e_phy_hw_reset_generic(hw);
3028 	if (ret_val)
3029 		return ret_val;
3030 
3031 	return e1000_post_phy_reset_ich8lan(hw);
3032 }
3033 
3034 /**
3035  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3036  *  @hw: pointer to the HW structure
3037  *  @active: true to enable LPLU, false to disable
3038  *
3039  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3040  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3041  *  the phy speed. This function will manually set the LPLU bit and restart
3042  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3043  *  since it configures the same bit.
3044  **/
3045 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3046 {
3047 	s32 ret_val;
3048 	u16 oem_reg;
3049 
3050 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3051 	if (ret_val)
3052 		return ret_val;
3053 
3054 	if (active)
3055 		oem_reg |= HV_OEM_BITS_LPLU;
3056 	else
3057 		oem_reg &= ~HV_OEM_BITS_LPLU;
3058 
3059 	if (!hw->phy.ops.check_reset_block(hw))
3060 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3061 
3062 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3063 }
3064 
3065 /**
3066  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3067  *  @hw: pointer to the HW structure
3068  *  @active: true to enable LPLU, false to disable
3069  *
3070  *  Sets the LPLU D0 state according to the active flag.  When
3071  *  activating LPLU this function also disables smart speed
3072  *  and vice versa.  LPLU will not be activated unless the
3073  *  device autonegotiation advertisement meets standards of
3074  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3075  *  This is a function pointer entry point only called by
3076  *  PHY setup routines.
3077  **/
3078 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3079 {
3080 	struct e1000_phy_info *phy = &hw->phy;
3081 	u32 phy_ctrl;
3082 	s32 ret_val = 0;
3083 	u16 data;
3084 
3085 	if (phy->type == e1000_phy_ife)
3086 		return 0;
3087 
3088 	phy_ctrl = er32(PHY_CTRL);
3089 
3090 	if (active) {
3091 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3092 		ew32(PHY_CTRL, phy_ctrl);
3093 
3094 		if (phy->type != e1000_phy_igp_3)
3095 			return 0;
3096 
3097 		/* Call gig speed drop workaround on LPLU before accessing
3098 		 * any PHY registers
3099 		 */
3100 		if (hw->mac.type == e1000_ich8lan)
3101 			e1000e_gig_downshift_workaround_ich8lan(hw);
3102 
3103 		/* When LPLU is enabled, we should disable SmartSpeed */
3104 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3105 		if (ret_val)
3106 			return ret_val;
3107 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3108 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3109 		if (ret_val)
3110 			return ret_val;
3111 	} else {
3112 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3113 		ew32(PHY_CTRL, phy_ctrl);
3114 
3115 		if (phy->type != e1000_phy_igp_3)
3116 			return 0;
3117 
3118 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3119 		 * during Dx states where the power conservation is most
3120 		 * important.  During driver activity we should enable
3121 		 * SmartSpeed, so performance is maintained.
3122 		 */
3123 		if (phy->smart_speed == e1000_smart_speed_on) {
3124 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3125 					   &data);
3126 			if (ret_val)
3127 				return ret_val;
3128 
3129 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3130 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3131 					   data);
3132 			if (ret_val)
3133 				return ret_val;
3134 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3135 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3136 					   &data);
3137 			if (ret_val)
3138 				return ret_val;
3139 
3140 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3141 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3142 					   data);
3143 			if (ret_val)
3144 				return ret_val;
3145 		}
3146 	}
3147 
3148 	return 0;
3149 }
3150 
3151 /**
3152  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3153  *  @hw: pointer to the HW structure
3154  *  @active: true to enable LPLU, false to disable
3155  *
3156  *  Sets the LPLU D3 state according to the active flag.  When
3157  *  activating LPLU this function also disables smart speed
3158  *  and vice versa.  LPLU will not be activated unless the
3159  *  device autonegotiation advertisement meets standards of
3160  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3161  *  This is a function pointer entry point only called by
3162  *  PHY setup routines.
3163  **/
3164 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3165 {
3166 	struct e1000_phy_info *phy = &hw->phy;
3167 	u32 phy_ctrl;
3168 	s32 ret_val = 0;
3169 	u16 data;
3170 
3171 	phy_ctrl = er32(PHY_CTRL);
3172 
3173 	if (!active) {
3174 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3175 		ew32(PHY_CTRL, phy_ctrl);
3176 
3177 		if (phy->type != e1000_phy_igp_3)
3178 			return 0;
3179 
3180 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3181 		 * during Dx states where the power conservation is most
3182 		 * important.  During driver activity we should enable
3183 		 * SmartSpeed, so performance is maintained.
3184 		 */
3185 		if (phy->smart_speed == e1000_smart_speed_on) {
3186 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3187 					   &data);
3188 			if (ret_val)
3189 				return ret_val;
3190 
3191 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3192 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3193 					   data);
3194 			if (ret_val)
3195 				return ret_val;
3196 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3197 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3198 					   &data);
3199 			if (ret_val)
3200 				return ret_val;
3201 
3202 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3203 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3204 					   data);
3205 			if (ret_val)
3206 				return ret_val;
3207 		}
3208 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3209 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3210 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3211 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3212 		ew32(PHY_CTRL, phy_ctrl);
3213 
3214 		if (phy->type != e1000_phy_igp_3)
3215 			return 0;
3216 
3217 		/* Call gig speed drop workaround on LPLU before accessing
3218 		 * any PHY registers
3219 		 */
3220 		if (hw->mac.type == e1000_ich8lan)
3221 			e1000e_gig_downshift_workaround_ich8lan(hw);
3222 
3223 		/* When LPLU is enabled, we should disable SmartSpeed */
3224 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3225 		if (ret_val)
3226 			return ret_val;
3227 
3228 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3229 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3230 	}
3231 
3232 	return ret_val;
3233 }
3234 
3235 /**
3236  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3237  *  @hw: pointer to the HW structure
3238  *  @bank:  pointer to the variable that returns the active bank
3239  *
3240  *  Reads signature byte from the NVM using the flash access registers.
3241  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3242  **/
3243 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3244 {
3245 	u32 eecd;
3246 	struct e1000_nvm_info *nvm = &hw->nvm;
3247 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3248 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3249 	u32 nvm_dword = 0;
3250 	u8 sig_byte = 0;
3251 	s32 ret_val;
3252 
3253 	switch (hw->mac.type) {
3254 	case e1000_pch_spt:
3255 	case e1000_pch_cnp:
3256 	case e1000_pch_tgp:
3257 	case e1000_pch_adp:
3258 	case e1000_pch_mtp:
3259 	case e1000_pch_lnp:
3260 	case e1000_pch_ptp:
3261 	case e1000_pch_nvp:
3262 		bank1_offset = nvm->flash_bank_size;
3263 		act_offset = E1000_ICH_NVM_SIG_WORD;
3264 
3265 		/* set bank to 0 in case flash read fails */
3266 		*bank = 0;
3267 
3268 		/* Check bank 0 */
3269 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3270 							 &nvm_dword);
3271 		if (ret_val)
3272 			return ret_val;
3273 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3274 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3275 		    E1000_ICH_NVM_SIG_VALUE) {
3276 			*bank = 0;
3277 			return 0;
3278 		}
3279 
3280 		/* Check bank 1 */
3281 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3282 							 bank1_offset,
3283 							 &nvm_dword);
3284 		if (ret_val)
3285 			return ret_val;
3286 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3287 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3288 		    E1000_ICH_NVM_SIG_VALUE) {
3289 			*bank = 1;
3290 			return 0;
3291 		}
3292 
3293 		e_dbg("ERROR: No valid NVM bank present\n");
3294 		return -E1000_ERR_NVM;
3295 	case e1000_ich8lan:
3296 	case e1000_ich9lan:
3297 		eecd = er32(EECD);
3298 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3299 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3300 			if (eecd & E1000_EECD_SEC1VAL)
3301 				*bank = 1;
3302 			else
3303 				*bank = 0;
3304 
3305 			return 0;
3306 		}
3307 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3308 		fallthrough;
3309 	default:
3310 		/* set bank to 0 in case flash read fails */
3311 		*bank = 0;
3312 
3313 		/* Check bank 0 */
3314 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3315 							&sig_byte);
3316 		if (ret_val)
3317 			return ret_val;
3318 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3319 		    E1000_ICH_NVM_SIG_VALUE) {
3320 			*bank = 0;
3321 			return 0;
3322 		}
3323 
3324 		/* Check bank 1 */
3325 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3326 							bank1_offset,
3327 							&sig_byte);
3328 		if (ret_val)
3329 			return ret_val;
3330 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3331 		    E1000_ICH_NVM_SIG_VALUE) {
3332 			*bank = 1;
3333 			return 0;
3334 		}
3335 
3336 		e_dbg("ERROR: No valid NVM bank present\n");
3337 		return -E1000_ERR_NVM;
3338 	}
3339 }
3340 
3341 /**
3342  *  e1000_read_nvm_spt - NVM access for SPT
3343  *  @hw: pointer to the HW structure
3344  *  @offset: The offset (in bytes) of the word(s) to read.
3345  *  @words: Size of data to read in words.
3346  *  @data: pointer to the word(s) to read at offset.
3347  *
3348  *  Reads a word(s) from the NVM
3349  **/
3350 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3351 			      u16 *data)
3352 {
3353 	struct e1000_nvm_info *nvm = &hw->nvm;
3354 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3355 	u32 act_offset;
3356 	s32 ret_val = 0;
3357 	u32 bank = 0;
3358 	u32 dword = 0;
3359 	u16 offset_to_read;
3360 	u16 i;
3361 
3362 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3363 	    (words == 0)) {
3364 		e_dbg("nvm parameter(s) out of bounds\n");
3365 		ret_val = -E1000_ERR_NVM;
3366 		goto out;
3367 	}
3368 
3369 	nvm->ops.acquire(hw);
3370 
3371 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3372 	if (ret_val) {
3373 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3374 		bank = 0;
3375 	}
3376 
3377 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3378 	act_offset += offset;
3379 
3380 	ret_val = 0;
3381 
3382 	for (i = 0; i < words; i += 2) {
3383 		if (words - i == 1) {
3384 			if (dev_spec->shadow_ram[offset + i].modified) {
3385 				data[i] =
3386 				    dev_spec->shadow_ram[offset + i].value;
3387 			} else {
3388 				offset_to_read = act_offset + i -
3389 				    ((act_offset + i) % 2);
3390 				ret_val =
3391 				  e1000_read_flash_dword_ich8lan(hw,
3392 								 offset_to_read,
3393 								 &dword);
3394 				if (ret_val)
3395 					break;
3396 				if ((act_offset + i) % 2 == 0)
3397 					data[i] = (u16)(dword & 0xFFFF);
3398 				else
3399 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3400 			}
3401 		} else {
3402 			offset_to_read = act_offset + i;
3403 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3404 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3405 				ret_val =
3406 				  e1000_read_flash_dword_ich8lan(hw,
3407 								 offset_to_read,
3408 								 &dword);
3409 				if (ret_val)
3410 					break;
3411 			}
3412 			if (dev_spec->shadow_ram[offset + i].modified)
3413 				data[i] =
3414 				    dev_spec->shadow_ram[offset + i].value;
3415 			else
3416 				data[i] = (u16)(dword & 0xFFFF);
3417 			if (dev_spec->shadow_ram[offset + i].modified)
3418 				data[i + 1] =
3419 				    dev_spec->shadow_ram[offset + i + 1].value;
3420 			else
3421 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3422 		}
3423 	}
3424 
3425 	nvm->ops.release(hw);
3426 
3427 out:
3428 	if (ret_val)
3429 		e_dbg("NVM read error: %d\n", ret_val);
3430 
3431 	return ret_val;
3432 }
3433 
3434 /**
3435  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3436  *  @hw: pointer to the HW structure
3437  *  @offset: The offset (in bytes) of the word(s) to read.
3438  *  @words: Size of data to read in words
3439  *  @data: Pointer to the word(s) to read at offset.
3440  *
3441  *  Reads a word(s) from the NVM using the flash access registers.
3442  **/
3443 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3444 				  u16 *data)
3445 {
3446 	struct e1000_nvm_info *nvm = &hw->nvm;
3447 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3448 	u32 act_offset;
3449 	s32 ret_val = 0;
3450 	u32 bank = 0;
3451 	u16 i, word;
3452 
3453 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3454 	    (words == 0)) {
3455 		e_dbg("nvm parameter(s) out of bounds\n");
3456 		ret_val = -E1000_ERR_NVM;
3457 		goto out;
3458 	}
3459 
3460 	nvm->ops.acquire(hw);
3461 
3462 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3463 	if (ret_val) {
3464 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3465 		bank = 0;
3466 	}
3467 
3468 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3469 	act_offset += offset;
3470 
3471 	ret_val = 0;
3472 	for (i = 0; i < words; i++) {
3473 		if (dev_spec->shadow_ram[offset + i].modified) {
3474 			data[i] = dev_spec->shadow_ram[offset + i].value;
3475 		} else {
3476 			ret_val = e1000_read_flash_word_ich8lan(hw,
3477 								act_offset + i,
3478 								&word);
3479 			if (ret_val)
3480 				break;
3481 			data[i] = word;
3482 		}
3483 	}
3484 
3485 	nvm->ops.release(hw);
3486 
3487 out:
3488 	if (ret_val)
3489 		e_dbg("NVM read error: %d\n", ret_val);
3490 
3491 	return ret_val;
3492 }
3493 
3494 /**
3495  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3496  *  @hw: pointer to the HW structure
3497  *
3498  *  This function does initial flash setup so that a new read/write/erase cycle
3499  *  can be started.
3500  **/
3501 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3502 {
3503 	union ich8_hws_flash_status hsfsts;
3504 	s32 ret_val = -E1000_ERR_NVM;
3505 
3506 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3507 
3508 	/* Check if the flash descriptor is valid */
3509 	if (!hsfsts.hsf_status.fldesvalid) {
3510 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3511 		return -E1000_ERR_NVM;
3512 	}
3513 
3514 	/* Clear FCERR and DAEL in hw status by writing 1 */
3515 	hsfsts.hsf_status.flcerr = 1;
3516 	hsfsts.hsf_status.dael = 1;
3517 	if (hw->mac.type >= e1000_pch_spt)
3518 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3519 	else
3520 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3521 
3522 	/* Either we should have a hardware SPI cycle in progress
3523 	 * bit to check against, in order to start a new cycle or
3524 	 * FDONE bit should be changed in the hardware so that it
3525 	 * is 1 after hardware reset, which can then be used as an
3526 	 * indication whether a cycle is in progress or has been
3527 	 * completed.
3528 	 */
3529 
3530 	if (!hsfsts.hsf_status.flcinprog) {
3531 		/* There is no cycle running at present,
3532 		 * so we can start a cycle.
3533 		 * Begin by setting Flash Cycle Done.
3534 		 */
3535 		hsfsts.hsf_status.flcdone = 1;
3536 		if (hw->mac.type >= e1000_pch_spt)
3537 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3538 		else
3539 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3540 		ret_val = 0;
3541 	} else {
3542 		s32 i;
3543 
3544 		/* Otherwise poll for sometime so the current
3545 		 * cycle has a chance to end before giving up.
3546 		 */
3547 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3548 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3549 			if (!hsfsts.hsf_status.flcinprog) {
3550 				ret_val = 0;
3551 				break;
3552 			}
3553 			udelay(1);
3554 		}
3555 		if (!ret_val) {
3556 			/* Successful in waiting for previous cycle to timeout,
3557 			 * now set the Flash Cycle Done.
3558 			 */
3559 			hsfsts.hsf_status.flcdone = 1;
3560 			if (hw->mac.type >= e1000_pch_spt)
3561 				ew32flash(ICH_FLASH_HSFSTS,
3562 					  hsfsts.regval & 0xFFFF);
3563 			else
3564 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3565 		} else {
3566 			e_dbg("Flash controller busy, cannot get access\n");
3567 		}
3568 	}
3569 
3570 	return ret_val;
3571 }
3572 
3573 /**
3574  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3575  *  @hw: pointer to the HW structure
3576  *  @timeout: maximum time to wait for completion
3577  *
3578  *  This function starts a flash cycle and waits for its completion.
3579  **/
3580 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3581 {
3582 	union ich8_hws_flash_ctrl hsflctl;
3583 	union ich8_hws_flash_status hsfsts;
3584 	u32 i = 0;
3585 
3586 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3587 	if (hw->mac.type >= e1000_pch_spt)
3588 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3589 	else
3590 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3591 	hsflctl.hsf_ctrl.flcgo = 1;
3592 
3593 	if (hw->mac.type >= e1000_pch_spt)
3594 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3595 	else
3596 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3597 
3598 	/* wait till FDONE bit is set to 1 */
3599 	do {
3600 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3601 		if (hsfsts.hsf_status.flcdone)
3602 			break;
3603 		udelay(1);
3604 	} while (i++ < timeout);
3605 
3606 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3607 		return 0;
3608 
3609 	return -E1000_ERR_NVM;
3610 }
3611 
3612 /**
3613  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3614  *  @hw: pointer to the HW structure
3615  *  @offset: offset to data location
3616  *  @data: pointer to the location for storing the data
3617  *
3618  *  Reads the flash dword at offset into data.  Offset is converted
3619  *  to bytes before read.
3620  **/
3621 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3622 					  u32 *data)
3623 {
3624 	/* Must convert word offset into bytes. */
3625 	offset <<= 1;
3626 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3627 }
3628 
3629 /**
3630  *  e1000_read_flash_word_ich8lan - Read word from flash
3631  *  @hw: pointer to the HW structure
3632  *  @offset: offset to data location
3633  *  @data: pointer to the location for storing the data
3634  *
3635  *  Reads the flash word at offset into data.  Offset is converted
3636  *  to bytes before read.
3637  **/
3638 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3639 					 u16 *data)
3640 {
3641 	/* Must convert offset into bytes. */
3642 	offset <<= 1;
3643 
3644 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3645 }
3646 
3647 /**
3648  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3649  *  @hw: pointer to the HW structure
3650  *  @offset: The offset of the byte to read.
3651  *  @data: Pointer to a byte to store the value read.
3652  *
3653  *  Reads a single byte from the NVM using the flash access registers.
3654  **/
3655 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3656 					 u8 *data)
3657 {
3658 	s32 ret_val;
3659 	u16 word = 0;
3660 
3661 	/* In SPT, only 32 bits access is supported,
3662 	 * so this function should not be called.
3663 	 */
3664 	if (hw->mac.type >= e1000_pch_spt)
3665 		return -E1000_ERR_NVM;
3666 	else
3667 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3668 
3669 	if (ret_val)
3670 		return ret_val;
3671 
3672 	*data = (u8)word;
3673 
3674 	return 0;
3675 }
3676 
3677 /**
3678  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3679  *  @hw: pointer to the HW structure
3680  *  @offset: The offset (in bytes) of the byte or word to read.
3681  *  @size: Size of data to read, 1=byte 2=word
3682  *  @data: Pointer to the word to store the value read.
3683  *
3684  *  Reads a byte or word from the NVM using the flash access registers.
3685  **/
3686 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3687 					 u8 size, u16 *data)
3688 {
3689 	union ich8_hws_flash_status hsfsts;
3690 	union ich8_hws_flash_ctrl hsflctl;
3691 	u32 flash_linear_addr;
3692 	u32 flash_data = 0;
3693 	s32 ret_val = -E1000_ERR_NVM;
3694 	u8 count = 0;
3695 
3696 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3697 		return -E1000_ERR_NVM;
3698 
3699 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3700 			     hw->nvm.flash_base_addr);
3701 
3702 	do {
3703 		udelay(1);
3704 		/* Steps */
3705 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3706 		if (ret_val)
3707 			break;
3708 
3709 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3710 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3711 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3712 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3713 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3714 
3715 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3716 
3717 		ret_val =
3718 		    e1000_flash_cycle_ich8lan(hw,
3719 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3720 
3721 		/* Check if FCERR is set to 1, if set to 1, clear it
3722 		 * and try the whole sequence a few more times, else
3723 		 * read in (shift in) the Flash Data0, the order is
3724 		 * least significant byte first msb to lsb
3725 		 */
3726 		if (!ret_val) {
3727 			flash_data = er32flash(ICH_FLASH_FDATA0);
3728 			if (size == 1)
3729 				*data = (u8)(flash_data & 0x000000FF);
3730 			else if (size == 2)
3731 				*data = (u16)(flash_data & 0x0000FFFF);
3732 			break;
3733 		} else {
3734 			/* If we've gotten here, then things are probably
3735 			 * completely hosed, but if the error condition is
3736 			 * detected, it won't hurt to give it another try...
3737 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3738 			 */
3739 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3740 			if (hsfsts.hsf_status.flcerr) {
3741 				/* Repeat for some time before giving up. */
3742 				continue;
3743 			} else if (!hsfsts.hsf_status.flcdone) {
3744 				e_dbg("Timeout error - flash cycle did not complete.\n");
3745 				break;
3746 			}
3747 		}
3748 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3749 
3750 	return ret_val;
3751 }
3752 
3753 /**
3754  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3755  *  @hw: pointer to the HW structure
3756  *  @offset: The offset (in bytes) of the dword to read.
3757  *  @data: Pointer to the dword to store the value read.
3758  *
3759  *  Reads a byte or word from the NVM using the flash access registers.
3760  **/
3761 
3762 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3763 					   u32 *data)
3764 {
3765 	union ich8_hws_flash_status hsfsts;
3766 	union ich8_hws_flash_ctrl hsflctl;
3767 	u32 flash_linear_addr;
3768 	s32 ret_val = -E1000_ERR_NVM;
3769 	u8 count = 0;
3770 
3771 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3772 		return -E1000_ERR_NVM;
3773 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3774 			     hw->nvm.flash_base_addr);
3775 
3776 	do {
3777 		udelay(1);
3778 		/* Steps */
3779 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3780 		if (ret_val)
3781 			break;
3782 		/* In SPT, This register is in Lan memory space, not flash.
3783 		 * Therefore, only 32 bit access is supported
3784 		 */
3785 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3786 
3787 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3788 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3789 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3790 		/* In SPT, This register is in Lan memory space, not flash.
3791 		 * Therefore, only 32 bit access is supported
3792 		 */
3793 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3794 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3795 
3796 		ret_val =
3797 		   e1000_flash_cycle_ich8lan(hw,
3798 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3799 
3800 		/* Check if FCERR is set to 1, if set to 1, clear it
3801 		 * and try the whole sequence a few more times, else
3802 		 * read in (shift in) the Flash Data0, the order is
3803 		 * least significant byte first msb to lsb
3804 		 */
3805 		if (!ret_val) {
3806 			*data = er32flash(ICH_FLASH_FDATA0);
3807 			break;
3808 		} else {
3809 			/* If we've gotten here, then things are probably
3810 			 * completely hosed, but if the error condition is
3811 			 * detected, it won't hurt to give it another try...
3812 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3813 			 */
3814 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3815 			if (hsfsts.hsf_status.flcerr) {
3816 				/* Repeat for some time before giving up. */
3817 				continue;
3818 			} else if (!hsfsts.hsf_status.flcdone) {
3819 				e_dbg("Timeout error - flash cycle did not complete.\n");
3820 				break;
3821 			}
3822 		}
3823 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3824 
3825 	return ret_val;
3826 }
3827 
3828 /**
3829  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3830  *  @hw: pointer to the HW structure
3831  *  @offset: The offset (in bytes) of the word(s) to write.
3832  *  @words: Size of data to write in words
3833  *  @data: Pointer to the word(s) to write at offset.
3834  *
3835  *  Writes a byte or word to the NVM using the flash access registers.
3836  **/
3837 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3838 				   u16 *data)
3839 {
3840 	struct e1000_nvm_info *nvm = &hw->nvm;
3841 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3842 	u16 i;
3843 
3844 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3845 	    (words == 0)) {
3846 		e_dbg("nvm parameter(s) out of bounds\n");
3847 		return -E1000_ERR_NVM;
3848 	}
3849 
3850 	nvm->ops.acquire(hw);
3851 
3852 	for (i = 0; i < words; i++) {
3853 		dev_spec->shadow_ram[offset + i].modified = true;
3854 		dev_spec->shadow_ram[offset + i].value = data[i];
3855 	}
3856 
3857 	nvm->ops.release(hw);
3858 
3859 	return 0;
3860 }
3861 
3862 /**
3863  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3864  *  @hw: pointer to the HW structure
3865  *
3866  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3867  *  which writes the checksum to the shadow ram.  The changes in the shadow
3868  *  ram are then committed to the EEPROM by processing each bank at a time
3869  *  checking for the modified bit and writing only the pending changes.
3870  *  After a successful commit, the shadow ram is cleared and is ready for
3871  *  future writes.
3872  **/
3873 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3874 {
3875 	struct e1000_nvm_info *nvm = &hw->nvm;
3876 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3877 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3878 	s32 ret_val;
3879 	u32 dword = 0;
3880 
3881 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3882 	if (ret_val)
3883 		goto out;
3884 
3885 	if (nvm->type != e1000_nvm_flash_sw)
3886 		goto out;
3887 
3888 	nvm->ops.acquire(hw);
3889 
3890 	/* We're writing to the opposite bank so if we're on bank 1,
3891 	 * write to bank 0 etc.  We also need to erase the segment that
3892 	 * is going to be written
3893 	 */
3894 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3895 	if (ret_val) {
3896 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3897 		bank = 0;
3898 	}
3899 
3900 	if (bank == 0) {
3901 		new_bank_offset = nvm->flash_bank_size;
3902 		old_bank_offset = 0;
3903 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3904 		if (ret_val)
3905 			goto release;
3906 	} else {
3907 		old_bank_offset = nvm->flash_bank_size;
3908 		new_bank_offset = 0;
3909 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3910 		if (ret_val)
3911 			goto release;
3912 	}
3913 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3914 		/* Determine whether to write the value stored
3915 		 * in the other NVM bank or a modified value stored
3916 		 * in the shadow RAM
3917 		 */
3918 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3919 							 i + old_bank_offset,
3920 							 &dword);
3921 
3922 		if (dev_spec->shadow_ram[i].modified) {
3923 			dword &= 0xffff0000;
3924 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3925 		}
3926 		if (dev_spec->shadow_ram[i + 1].modified) {
3927 			dword &= 0x0000ffff;
3928 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3929 				  << 16);
3930 		}
3931 		if (ret_val)
3932 			break;
3933 
3934 		/* If the word is 0x13, then make sure the signature bits
3935 		 * (15:14) are 11b until the commit has completed.
3936 		 * This will allow us to write 10b which indicates the
3937 		 * signature is valid.  We want to do this after the write
3938 		 * has completed so that we don't mark the segment valid
3939 		 * while the write is still in progress
3940 		 */
3941 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3942 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3943 
3944 		/* Convert offset to bytes. */
3945 		act_offset = (i + new_bank_offset) << 1;
3946 
3947 		usleep_range(100, 200);
3948 
3949 		/* Write the data to the new bank. Offset in words */
3950 		act_offset = i + new_bank_offset;
3951 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3952 								dword);
3953 		if (ret_val)
3954 			break;
3955 	}
3956 
3957 	/* Don't bother writing the segment valid bits if sector
3958 	 * programming failed.
3959 	 */
3960 	if (ret_val) {
3961 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3962 		e_dbg("Flash commit failed.\n");
3963 		goto release;
3964 	}
3965 
3966 	/* Finally validate the new segment by setting bit 15:14
3967 	 * to 10b in word 0x13 , this can be done without an
3968 	 * erase as well since these bits are 11 to start with
3969 	 * and we need to change bit 14 to 0b
3970 	 */
3971 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3972 
3973 	/*offset in words but we read dword */
3974 	--act_offset;
3975 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3976 
3977 	if (ret_val)
3978 		goto release;
3979 
3980 	dword &= 0xBFFFFFFF;
3981 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3982 
3983 	if (ret_val)
3984 		goto release;
3985 
3986 	/* offset in words but we read dword */
3987 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3988 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3989 
3990 	if (ret_val)
3991 		goto release;
3992 
3993 	dword &= 0x00FFFFFF;
3994 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3995 
3996 	if (ret_val)
3997 		goto release;
3998 
3999 	/* Great!  Everything worked, we can now clear the cached entries. */
4000 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4001 		dev_spec->shadow_ram[i].modified = false;
4002 		dev_spec->shadow_ram[i].value = 0xFFFF;
4003 	}
4004 
4005 release:
4006 	nvm->ops.release(hw);
4007 
4008 	/* Reload the EEPROM, or else modifications will not appear
4009 	 * until after the next adapter reset.
4010 	 */
4011 	if (!ret_val) {
4012 		nvm->ops.reload(hw);
4013 		usleep_range(10000, 11000);
4014 	}
4015 
4016 out:
4017 	if (ret_val)
4018 		e_dbg("NVM update error: %d\n", ret_val);
4019 
4020 	return ret_val;
4021 }
4022 
4023 /**
4024  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4025  *  @hw: pointer to the HW structure
4026  *
4027  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4028  *  which writes the checksum to the shadow ram.  The changes in the shadow
4029  *  ram are then committed to the EEPROM by processing each bank at a time
4030  *  checking for the modified bit and writing only the pending changes.
4031  *  After a successful commit, the shadow ram is cleared and is ready for
4032  *  future writes.
4033  **/
4034 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4035 {
4036 	struct e1000_nvm_info *nvm = &hw->nvm;
4037 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4038 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4039 	s32 ret_val;
4040 	u16 data = 0;
4041 
4042 	ret_val = e1000e_update_nvm_checksum_generic(hw);
4043 	if (ret_val)
4044 		goto out;
4045 
4046 	if (nvm->type != e1000_nvm_flash_sw)
4047 		goto out;
4048 
4049 	nvm->ops.acquire(hw);
4050 
4051 	/* We're writing to the opposite bank so if we're on bank 1,
4052 	 * write to bank 0 etc.  We also need to erase the segment that
4053 	 * is going to be written
4054 	 */
4055 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4056 	if (ret_val) {
4057 		e_dbg("Could not detect valid bank, assuming bank 0\n");
4058 		bank = 0;
4059 	}
4060 
4061 	if (bank == 0) {
4062 		new_bank_offset = nvm->flash_bank_size;
4063 		old_bank_offset = 0;
4064 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4065 		if (ret_val)
4066 			goto release;
4067 	} else {
4068 		old_bank_offset = nvm->flash_bank_size;
4069 		new_bank_offset = 0;
4070 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4071 		if (ret_val)
4072 			goto release;
4073 	}
4074 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4075 		if (dev_spec->shadow_ram[i].modified) {
4076 			data = dev_spec->shadow_ram[i].value;
4077 		} else {
4078 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4079 								old_bank_offset,
4080 								&data);
4081 			if (ret_val)
4082 				break;
4083 		}
4084 
4085 		/* If the word is 0x13, then make sure the signature bits
4086 		 * (15:14) are 11b until the commit has completed.
4087 		 * This will allow us to write 10b which indicates the
4088 		 * signature is valid.  We want to do this after the write
4089 		 * has completed so that we don't mark the segment valid
4090 		 * while the write is still in progress
4091 		 */
4092 		if (i == E1000_ICH_NVM_SIG_WORD)
4093 			data |= E1000_ICH_NVM_SIG_MASK;
4094 
4095 		/* Convert offset to bytes. */
4096 		act_offset = (i + new_bank_offset) << 1;
4097 
4098 		usleep_range(100, 200);
4099 		/* Write the bytes to the new bank. */
4100 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4101 							       act_offset,
4102 							       (u8)data);
4103 		if (ret_val)
4104 			break;
4105 
4106 		usleep_range(100, 200);
4107 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4108 							       act_offset + 1,
4109 							       (u8)(data >> 8));
4110 		if (ret_val)
4111 			break;
4112 	}
4113 
4114 	/* Don't bother writing the segment valid bits if sector
4115 	 * programming failed.
4116 	 */
4117 	if (ret_val) {
4118 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4119 		e_dbg("Flash commit failed.\n");
4120 		goto release;
4121 	}
4122 
4123 	/* Finally validate the new segment by setting bit 15:14
4124 	 * to 10b in word 0x13 , this can be done without an
4125 	 * erase as well since these bits are 11 to start with
4126 	 * and we need to change bit 14 to 0b
4127 	 */
4128 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4129 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4130 	if (ret_val)
4131 		goto release;
4132 
4133 	data &= 0xBFFF;
4134 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4135 						       act_offset * 2 + 1,
4136 						       (u8)(data >> 8));
4137 	if (ret_val)
4138 		goto release;
4139 
4140 	/* And invalidate the previously valid segment by setting
4141 	 * its signature word (0x13) high_byte to 0b. This can be
4142 	 * done without an erase because flash erase sets all bits
4143 	 * to 1's. We can write 1's to 0's without an erase
4144 	 */
4145 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4146 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4147 	if (ret_val)
4148 		goto release;
4149 
4150 	/* Great!  Everything worked, we can now clear the cached entries. */
4151 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4152 		dev_spec->shadow_ram[i].modified = false;
4153 		dev_spec->shadow_ram[i].value = 0xFFFF;
4154 	}
4155 
4156 release:
4157 	nvm->ops.release(hw);
4158 
4159 	/* Reload the EEPROM, or else modifications will not appear
4160 	 * until after the next adapter reset.
4161 	 */
4162 	if (!ret_val) {
4163 		nvm->ops.reload(hw);
4164 		usleep_range(10000, 11000);
4165 	}
4166 
4167 out:
4168 	if (ret_val)
4169 		e_dbg("NVM update error: %d\n", ret_val);
4170 
4171 	return ret_val;
4172 }
4173 
4174 /**
4175  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4176  *  @hw: pointer to the HW structure
4177  *
4178  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4179  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4180  *  calculated, in which case we need to calculate the checksum and set bit 6.
4181  **/
4182 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4183 {
4184 	s32 ret_val;
4185 	u16 data;
4186 	u16 word;
4187 	u16 valid_csum_mask;
4188 
4189 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4190 	 * the checksum needs to be fixed.  This bit is an indication that
4191 	 * the NVM was prepared by OEM software and did not calculate
4192 	 * the checksum...a likely scenario.
4193 	 */
4194 	switch (hw->mac.type) {
4195 	case e1000_pch_lpt:
4196 	case e1000_pch_spt:
4197 	case e1000_pch_cnp:
4198 	case e1000_pch_tgp:
4199 	case e1000_pch_adp:
4200 	case e1000_pch_mtp:
4201 	case e1000_pch_lnp:
4202 	case e1000_pch_ptp:
4203 	case e1000_pch_nvp:
4204 		word = NVM_COMPAT;
4205 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4206 		break;
4207 	default:
4208 		word = NVM_FUTURE_INIT_WORD1;
4209 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4210 		break;
4211 	}
4212 
4213 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4214 	if (ret_val)
4215 		return ret_val;
4216 
4217 	if (!(data & valid_csum_mask)) {
4218 		e_dbg("NVM Checksum valid bit not set\n");
4219 
4220 		if (hw->mac.type < e1000_pch_tgp) {
4221 			data |= valid_csum_mask;
4222 			ret_val = e1000_write_nvm(hw, word, 1, &data);
4223 			if (ret_val)
4224 				return ret_val;
4225 			ret_val = e1000e_update_nvm_checksum(hw);
4226 			if (ret_val)
4227 				return ret_val;
4228 		}
4229 	}
4230 
4231 	return e1000e_validate_nvm_checksum_generic(hw);
4232 }
4233 
4234 /**
4235  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4236  *  @hw: pointer to the HW structure
4237  *
4238  *  To prevent malicious write/erase of the NVM, set it to be read-only
4239  *  so that the hardware ignores all write/erase cycles of the NVM via
4240  *  the flash control registers.  The shadow-ram copy of the NVM will
4241  *  still be updated, however any updates to this copy will not stick
4242  *  across driver reloads.
4243  **/
4244 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4245 {
4246 	struct e1000_nvm_info *nvm = &hw->nvm;
4247 	union ich8_flash_protected_range pr0;
4248 	union ich8_hws_flash_status hsfsts;
4249 	u32 gfpreg;
4250 
4251 	nvm->ops.acquire(hw);
4252 
4253 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4254 
4255 	/* Write-protect GbE Sector of NVM */
4256 	pr0.regval = er32flash(ICH_FLASH_PR0);
4257 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4258 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4259 	pr0.range.wpe = true;
4260 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4261 
4262 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4263 	 * PR0 to prevent the write-protection from being lifted.
4264 	 * Once FLOCKDN is set, the registers protected by it cannot
4265 	 * be written until FLOCKDN is cleared by a hardware reset.
4266 	 */
4267 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4268 	hsfsts.hsf_status.flockdn = true;
4269 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4270 
4271 	nvm->ops.release(hw);
4272 }
4273 
4274 /**
4275  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4276  *  @hw: pointer to the HW structure
4277  *  @offset: The offset (in bytes) of the byte/word to read.
4278  *  @size: Size of data to read, 1=byte 2=word
4279  *  @data: The byte(s) to write to the NVM.
4280  *
4281  *  Writes one/two bytes to the NVM using the flash access registers.
4282  **/
4283 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4284 					  u8 size, u16 data)
4285 {
4286 	union ich8_hws_flash_status hsfsts;
4287 	union ich8_hws_flash_ctrl hsflctl;
4288 	u32 flash_linear_addr;
4289 	u32 flash_data = 0;
4290 	s32 ret_val;
4291 	u8 count = 0;
4292 
4293 	if (hw->mac.type >= e1000_pch_spt) {
4294 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4295 			return -E1000_ERR_NVM;
4296 	} else {
4297 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4298 			return -E1000_ERR_NVM;
4299 	}
4300 
4301 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4302 			     hw->nvm.flash_base_addr);
4303 
4304 	do {
4305 		udelay(1);
4306 		/* Steps */
4307 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4308 		if (ret_val)
4309 			break;
4310 		/* In SPT, This register is in Lan memory space, not
4311 		 * flash.  Therefore, only 32 bit access is supported
4312 		 */
4313 		if (hw->mac.type >= e1000_pch_spt)
4314 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4315 		else
4316 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4317 
4318 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4319 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4320 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4321 		/* In SPT, This register is in Lan memory space,
4322 		 * not flash.  Therefore, only 32 bit access is
4323 		 * supported
4324 		 */
4325 		if (hw->mac.type >= e1000_pch_spt)
4326 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4327 		else
4328 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4329 
4330 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4331 
4332 		if (size == 1)
4333 			flash_data = (u32)data & 0x00FF;
4334 		else
4335 			flash_data = (u32)data;
4336 
4337 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4338 
4339 		/* check if FCERR is set to 1 , if set to 1, clear it
4340 		 * and try the whole sequence a few more times else done
4341 		 */
4342 		ret_val =
4343 		    e1000_flash_cycle_ich8lan(hw,
4344 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4345 		if (!ret_val)
4346 			break;
4347 
4348 		/* If we're here, then things are most likely
4349 		 * completely hosed, but if the error condition
4350 		 * is detected, it won't hurt to give it another
4351 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4352 		 */
4353 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4354 		if (hsfsts.hsf_status.flcerr)
4355 			/* Repeat for some time before giving up. */
4356 			continue;
4357 		if (!hsfsts.hsf_status.flcdone) {
4358 			e_dbg("Timeout error - flash cycle did not complete.\n");
4359 			break;
4360 		}
4361 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4362 
4363 	return ret_val;
4364 }
4365 
4366 /**
4367 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4368 *  @hw: pointer to the HW structure
4369 *  @offset: The offset (in bytes) of the dwords to read.
4370 *  @data: The 4 bytes to write to the NVM.
4371 *
4372 *  Writes one/two/four bytes to the NVM using the flash access registers.
4373 **/
4374 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4375 					    u32 data)
4376 {
4377 	union ich8_hws_flash_status hsfsts;
4378 	union ich8_hws_flash_ctrl hsflctl;
4379 	u32 flash_linear_addr;
4380 	s32 ret_val;
4381 	u8 count = 0;
4382 
4383 	if (hw->mac.type >= e1000_pch_spt) {
4384 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4385 			return -E1000_ERR_NVM;
4386 	}
4387 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4388 			     hw->nvm.flash_base_addr);
4389 	do {
4390 		udelay(1);
4391 		/* Steps */
4392 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4393 		if (ret_val)
4394 			break;
4395 
4396 		/* In SPT, This register is in Lan memory space, not
4397 		 * flash.  Therefore, only 32 bit access is supported
4398 		 */
4399 		if (hw->mac.type >= e1000_pch_spt)
4400 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4401 			    >> 16;
4402 		else
4403 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4404 
4405 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4406 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4407 
4408 		/* In SPT, This register is in Lan memory space,
4409 		 * not flash.  Therefore, only 32 bit access is
4410 		 * supported
4411 		 */
4412 		if (hw->mac.type >= e1000_pch_spt)
4413 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4414 		else
4415 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4416 
4417 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4418 
4419 		ew32flash(ICH_FLASH_FDATA0, data);
4420 
4421 		/* check if FCERR is set to 1 , if set to 1, clear it
4422 		 * and try the whole sequence a few more times else done
4423 		 */
4424 		ret_val =
4425 		   e1000_flash_cycle_ich8lan(hw,
4426 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4427 
4428 		if (!ret_val)
4429 			break;
4430 
4431 		/* If we're here, then things are most likely
4432 		 * completely hosed, but if the error condition
4433 		 * is detected, it won't hurt to give it another
4434 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4435 		 */
4436 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4437 
4438 		if (hsfsts.hsf_status.flcerr)
4439 			/* Repeat for some time before giving up. */
4440 			continue;
4441 		if (!hsfsts.hsf_status.flcdone) {
4442 			e_dbg("Timeout error - flash cycle did not complete.\n");
4443 			break;
4444 		}
4445 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4446 
4447 	return ret_val;
4448 }
4449 
4450 /**
4451  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4452  *  @hw: pointer to the HW structure
4453  *  @offset: The index of the byte to read.
4454  *  @data: The byte to write to the NVM.
4455  *
4456  *  Writes a single byte to the NVM using the flash access registers.
4457  **/
4458 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4459 					  u8 data)
4460 {
4461 	u16 word = (u16)data;
4462 
4463 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4464 }
4465 
4466 /**
4467 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4468 *  @hw: pointer to the HW structure
4469 *  @offset: The offset of the word to write.
4470 *  @dword: The dword to write to the NVM.
4471 *
4472 *  Writes a single dword to the NVM using the flash access registers.
4473 *  Goes through a retry algorithm before giving up.
4474 **/
4475 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4476 						 u32 offset, u32 dword)
4477 {
4478 	s32 ret_val;
4479 	u16 program_retries;
4480 
4481 	/* Must convert word offset into bytes. */
4482 	offset <<= 1;
4483 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4484 
4485 	if (!ret_val)
4486 		return ret_val;
4487 	for (program_retries = 0; program_retries < 100; program_retries++) {
4488 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4489 		usleep_range(100, 200);
4490 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4491 		if (!ret_val)
4492 			break;
4493 	}
4494 	if (program_retries == 100)
4495 		return -E1000_ERR_NVM;
4496 
4497 	return 0;
4498 }
4499 
4500 /**
4501  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4502  *  @hw: pointer to the HW structure
4503  *  @offset: The offset of the byte to write.
4504  *  @byte: The byte to write to the NVM.
4505  *
4506  *  Writes a single byte to the NVM using the flash access registers.
4507  *  Goes through a retry algorithm before giving up.
4508  **/
4509 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4510 						u32 offset, u8 byte)
4511 {
4512 	s32 ret_val;
4513 	u16 program_retries;
4514 
4515 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4516 	if (!ret_val)
4517 		return ret_val;
4518 
4519 	for (program_retries = 0; program_retries < 100; program_retries++) {
4520 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4521 		usleep_range(100, 200);
4522 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4523 		if (!ret_val)
4524 			break;
4525 	}
4526 	if (program_retries == 100)
4527 		return -E1000_ERR_NVM;
4528 
4529 	return 0;
4530 }
4531 
4532 /**
4533  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4534  *  @hw: pointer to the HW structure
4535  *  @bank: 0 for first bank, 1 for second bank, etc.
4536  *
4537  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4538  *  bank N is 4096 * N + flash_reg_addr.
4539  **/
4540 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4541 {
4542 	struct e1000_nvm_info *nvm = &hw->nvm;
4543 	union ich8_hws_flash_status hsfsts;
4544 	union ich8_hws_flash_ctrl hsflctl;
4545 	u32 flash_linear_addr;
4546 	/* bank size is in 16bit words - adjust to bytes */
4547 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4548 	s32 ret_val;
4549 	s32 count = 0;
4550 	s32 j, iteration, sector_size;
4551 
4552 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4553 
4554 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4555 	 * register
4556 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4557 	 *     consecutive sectors.  The start index for the nth Hw sector
4558 	 *     can be calculated as = bank * 4096 + n * 256
4559 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4560 	 *     The start index for the nth Hw sector can be calculated
4561 	 *     as = bank * 4096
4562 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4563 	 *     (ich9 only, otherwise error condition)
4564 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4565 	 */
4566 	switch (hsfsts.hsf_status.berasesz) {
4567 	case 0:
4568 		/* Hw sector size 256 */
4569 		sector_size = ICH_FLASH_SEG_SIZE_256;
4570 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4571 		break;
4572 	case 1:
4573 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4574 		iteration = 1;
4575 		break;
4576 	case 2:
4577 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4578 		iteration = 1;
4579 		break;
4580 	case 3:
4581 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4582 		iteration = 1;
4583 		break;
4584 	default:
4585 		return -E1000_ERR_NVM;
4586 	}
4587 
4588 	/* Start with the base address, then add the sector offset. */
4589 	flash_linear_addr = hw->nvm.flash_base_addr;
4590 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4591 
4592 	for (j = 0; j < iteration; j++) {
4593 		do {
4594 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4595 
4596 			/* Steps */
4597 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4598 			if (ret_val)
4599 				return ret_val;
4600 
4601 			/* Write a value 11 (block Erase) in Flash
4602 			 * Cycle field in hw flash control
4603 			 */
4604 			if (hw->mac.type >= e1000_pch_spt)
4605 				hsflctl.regval =
4606 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4607 			else
4608 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4609 
4610 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4611 			if (hw->mac.type >= e1000_pch_spt)
4612 				ew32flash(ICH_FLASH_HSFSTS,
4613 					  hsflctl.regval << 16);
4614 			else
4615 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4616 
4617 			/* Write the last 24 bits of an index within the
4618 			 * block into Flash Linear address field in Flash
4619 			 * Address.
4620 			 */
4621 			flash_linear_addr += (j * sector_size);
4622 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4623 
4624 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4625 			if (!ret_val)
4626 				break;
4627 
4628 			/* Check if FCERR is set to 1.  If 1,
4629 			 * clear it and try the whole sequence
4630 			 * a few more times else Done
4631 			 */
4632 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4633 			if (hsfsts.hsf_status.flcerr)
4634 				/* repeat for some time before giving up */
4635 				continue;
4636 			else if (!hsfsts.hsf_status.flcdone)
4637 				return ret_val;
4638 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4639 	}
4640 
4641 	return 0;
4642 }
4643 
4644 /**
4645  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4646  *  @hw: pointer to the HW structure
4647  *  @data: Pointer to the LED settings
4648  *
4649  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4650  *  settings is all 0's or F's, set the LED default to a valid LED default
4651  *  setting.
4652  **/
4653 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4654 {
4655 	s32 ret_val;
4656 
4657 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4658 	if (ret_val) {
4659 		e_dbg("NVM Read Error\n");
4660 		return ret_val;
4661 	}
4662 
4663 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4664 		*data = ID_LED_DEFAULT_ICH8LAN;
4665 
4666 	return 0;
4667 }
4668 
4669 /**
4670  *  e1000_id_led_init_pchlan - store LED configurations
4671  *  @hw: pointer to the HW structure
4672  *
4673  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4674  *  the PHY LED configuration register.
4675  *
4676  *  PCH also does not have an "always on" or "always off" mode which
4677  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4678  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4679  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4680  *  link based on logic in e1000_led_[on|off]_pchlan().
4681  **/
4682 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4683 {
4684 	struct e1000_mac_info *mac = &hw->mac;
4685 	s32 ret_val;
4686 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4687 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4688 	u16 data, i, temp, shift;
4689 
4690 	/* Get default ID LED modes */
4691 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4692 	if (ret_val)
4693 		return ret_val;
4694 
4695 	mac->ledctl_default = er32(LEDCTL);
4696 	mac->ledctl_mode1 = mac->ledctl_default;
4697 	mac->ledctl_mode2 = mac->ledctl_default;
4698 
4699 	for (i = 0; i < 4; i++) {
4700 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4701 		shift = (i * 5);
4702 		switch (temp) {
4703 		case ID_LED_ON1_DEF2:
4704 		case ID_LED_ON1_ON2:
4705 		case ID_LED_ON1_OFF2:
4706 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4707 			mac->ledctl_mode1 |= (ledctl_on << shift);
4708 			break;
4709 		case ID_LED_OFF1_DEF2:
4710 		case ID_LED_OFF1_ON2:
4711 		case ID_LED_OFF1_OFF2:
4712 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4713 			mac->ledctl_mode1 |= (ledctl_off << shift);
4714 			break;
4715 		default:
4716 			/* Do nothing */
4717 			break;
4718 		}
4719 		switch (temp) {
4720 		case ID_LED_DEF1_ON2:
4721 		case ID_LED_ON1_ON2:
4722 		case ID_LED_OFF1_ON2:
4723 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4724 			mac->ledctl_mode2 |= (ledctl_on << shift);
4725 			break;
4726 		case ID_LED_DEF1_OFF2:
4727 		case ID_LED_ON1_OFF2:
4728 		case ID_LED_OFF1_OFF2:
4729 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4730 			mac->ledctl_mode2 |= (ledctl_off << shift);
4731 			break;
4732 		default:
4733 			/* Do nothing */
4734 			break;
4735 		}
4736 	}
4737 
4738 	return 0;
4739 }
4740 
4741 /**
4742  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4743  *  @hw: pointer to the HW structure
4744  *
4745  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4746  *  register, so the bus width is hard coded.
4747  **/
4748 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4749 {
4750 	struct e1000_bus_info *bus = &hw->bus;
4751 	s32 ret_val;
4752 
4753 	ret_val = e1000e_get_bus_info_pcie(hw);
4754 
4755 	/* ICH devices are "PCI Express"-ish.  They have
4756 	 * a configuration space, but do not contain
4757 	 * PCI Express Capability registers, so bus width
4758 	 * must be hardcoded.
4759 	 */
4760 	if (bus->width == e1000_bus_width_unknown)
4761 		bus->width = e1000_bus_width_pcie_x1;
4762 
4763 	return ret_val;
4764 }
4765 
4766 /**
4767  *  e1000_reset_hw_ich8lan - Reset the hardware
4768  *  @hw: pointer to the HW structure
4769  *
4770  *  Does a full reset of the hardware which includes a reset of the PHY and
4771  *  MAC.
4772  **/
4773 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4774 {
4775 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4776 	u16 kum_cfg;
4777 	u32 ctrl, reg;
4778 	s32 ret_val;
4779 
4780 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4781 	 * on the last TLP read/write transaction when MAC is reset.
4782 	 */
4783 	ret_val = e1000e_disable_pcie_master(hw);
4784 	if (ret_val)
4785 		e_dbg("PCI-E Master disable polling has failed.\n");
4786 
4787 	e_dbg("Masking off all interrupts\n");
4788 	ew32(IMC, 0xffffffff);
4789 
4790 	/* Disable the Transmit and Receive units.  Then delay to allow
4791 	 * any pending transactions to complete before we hit the MAC
4792 	 * with the global reset.
4793 	 */
4794 	ew32(RCTL, 0);
4795 	ew32(TCTL, E1000_TCTL_PSP);
4796 	e1e_flush();
4797 
4798 	usleep_range(10000, 11000);
4799 
4800 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4801 	if (hw->mac.type == e1000_ich8lan) {
4802 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4803 		ew32(PBA, E1000_PBA_8K);
4804 		/* Set Packet Buffer Size to 16k. */
4805 		ew32(PBS, E1000_PBS_16K);
4806 	}
4807 
4808 	if (hw->mac.type == e1000_pchlan) {
4809 		/* Save the NVM K1 bit setting */
4810 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4811 		if (ret_val)
4812 			return ret_val;
4813 
4814 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4815 			dev_spec->nvm_k1_enabled = true;
4816 		else
4817 			dev_spec->nvm_k1_enabled = false;
4818 	}
4819 
4820 	ctrl = er32(CTRL);
4821 
4822 	if (!hw->phy.ops.check_reset_block(hw)) {
4823 		/* Full-chip reset requires MAC and PHY reset at the same
4824 		 * time to make sure the interface between MAC and the
4825 		 * external PHY is reset.
4826 		 */
4827 		ctrl |= E1000_CTRL_PHY_RST;
4828 
4829 		/* Gate automatic PHY configuration by hardware on
4830 		 * non-managed 82579
4831 		 */
4832 		if ((hw->mac.type == e1000_pch2lan) &&
4833 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4834 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4835 	}
4836 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4837 	e_dbg("Issuing a global reset to ich8lan\n");
4838 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4839 	/* cannot issue a flush here because it hangs the hardware */
4840 	msleep(20);
4841 
4842 	/* Set Phy Config Counter to 50msec */
4843 	if (hw->mac.type == e1000_pch2lan) {
4844 		reg = er32(FEXTNVM3);
4845 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4846 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4847 		ew32(FEXTNVM3, reg);
4848 	}
4849 
4850 	if (!ret_val)
4851 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4852 
4853 	if (ctrl & E1000_CTRL_PHY_RST) {
4854 		ret_val = hw->phy.ops.get_cfg_done(hw);
4855 		if (ret_val)
4856 			return ret_val;
4857 
4858 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4859 		if (ret_val)
4860 			return ret_val;
4861 	}
4862 
4863 	/* For PCH, this write will make sure that any noise
4864 	 * will be detected as a CRC error and be dropped rather than show up
4865 	 * as a bad packet to the DMA engine.
4866 	 */
4867 	if (hw->mac.type == e1000_pchlan)
4868 		ew32(CRC_OFFSET, 0x65656565);
4869 
4870 	ew32(IMC, 0xffffffff);
4871 	er32(ICR);
4872 
4873 	reg = er32(KABGTXD);
4874 	reg |= E1000_KABGTXD_BGSQLBIAS;
4875 	ew32(KABGTXD, reg);
4876 
4877 	return 0;
4878 }
4879 
4880 /**
4881  *  e1000_init_hw_ich8lan - Initialize the hardware
4882  *  @hw: pointer to the HW structure
4883  *
4884  *  Prepares the hardware for transmit and receive by doing the following:
4885  *   - initialize hardware bits
4886  *   - initialize LED identification
4887  *   - setup receive address registers
4888  *   - setup flow control
4889  *   - setup transmit descriptors
4890  *   - clear statistics
4891  **/
4892 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4893 {
4894 	struct e1000_mac_info *mac = &hw->mac;
4895 	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4896 	s32 ret_val;
4897 	u16 i;
4898 
4899 	e1000_initialize_hw_bits_ich8lan(hw);
4900 
4901 	/* Initialize identification LED */
4902 	ret_val = mac->ops.id_led_init(hw);
4903 	/* An error is not fatal and we should not stop init due to this */
4904 	if (ret_val)
4905 		e_dbg("Error initializing identification LED\n");
4906 
4907 	/* Setup the receive address. */
4908 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4909 
4910 	/* Zero out the Multicast HASH table */
4911 	e_dbg("Zeroing the MTA\n");
4912 	for (i = 0; i < mac->mta_reg_count; i++)
4913 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4914 
4915 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4916 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4917 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4918 	 */
4919 	if (hw->phy.type == e1000_phy_82578) {
4920 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4921 		i &= ~BM_WUC_HOST_WU_BIT;
4922 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4923 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4924 		if (ret_val)
4925 			return ret_val;
4926 	}
4927 
4928 	/* Setup link and flow control */
4929 	ret_val = mac->ops.setup_link(hw);
4930 
4931 	/* Set the transmit descriptor write-back policy for both queues */
4932 	txdctl = er32(TXDCTL(0));
4933 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4934 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4935 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4936 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4937 	ew32(TXDCTL(0), txdctl);
4938 	txdctl = er32(TXDCTL(1));
4939 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4940 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4941 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4942 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4943 	ew32(TXDCTL(1), txdctl);
4944 
4945 	/* ICH8 has opposite polarity of no_snoop bits.
4946 	 * By default, we should use snoop behavior.
4947 	 */
4948 	if (mac->type == e1000_ich8lan)
4949 		snoop = PCIE_ICH8_SNOOP_ALL;
4950 	else
4951 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4952 	e1000e_set_pcie_no_snoop(hw, snoop);
4953 
4954 	/* Enable workaround for packet loss issue on TGP PCH
4955 	 * Do not gate DMA clock from the modPHY block
4956 	 */
4957 	if (mac->type >= e1000_pch_tgp) {
4958 		fflt_dbg = er32(FFLT_DBG);
4959 		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4960 		ew32(FFLT_DBG, fflt_dbg);
4961 	}
4962 
4963 	ctrl_ext = er32(CTRL_EXT);
4964 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4965 	ew32(CTRL_EXT, ctrl_ext);
4966 
4967 	/* Clear all of the statistics registers (clear on read).  It is
4968 	 * important that we do this after we have tried to establish link
4969 	 * because the symbol error count will increment wildly if there
4970 	 * is no link.
4971 	 */
4972 	e1000_clear_hw_cntrs_ich8lan(hw);
4973 
4974 	return ret_val;
4975 }
4976 
4977 /**
4978  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4979  *  @hw: pointer to the HW structure
4980  *
4981  *  Sets/Clears required hardware bits necessary for correctly setting up the
4982  *  hardware for transmit and receive.
4983  **/
4984 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4985 {
4986 	u32 reg;
4987 
4988 	/* Extended Device Control */
4989 	reg = er32(CTRL_EXT);
4990 	reg |= BIT(22);
4991 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4992 	if (hw->mac.type >= e1000_pchlan)
4993 		reg |= E1000_CTRL_EXT_PHYPDEN;
4994 	ew32(CTRL_EXT, reg);
4995 
4996 	/* Transmit Descriptor Control 0 */
4997 	reg = er32(TXDCTL(0));
4998 	reg |= BIT(22);
4999 	ew32(TXDCTL(0), reg);
5000 
5001 	/* Transmit Descriptor Control 1 */
5002 	reg = er32(TXDCTL(1));
5003 	reg |= BIT(22);
5004 	ew32(TXDCTL(1), reg);
5005 
5006 	/* Transmit Arbitration Control 0 */
5007 	reg = er32(TARC(0));
5008 	if (hw->mac.type == e1000_ich8lan)
5009 		reg |= BIT(28) | BIT(29);
5010 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
5011 	ew32(TARC(0), reg);
5012 
5013 	/* Transmit Arbitration Control 1 */
5014 	reg = er32(TARC(1));
5015 	if (er32(TCTL) & E1000_TCTL_MULR)
5016 		reg &= ~BIT(28);
5017 	else
5018 		reg |= BIT(28);
5019 	reg |= BIT(24) | BIT(26) | BIT(30);
5020 	ew32(TARC(1), reg);
5021 
5022 	/* Device Status */
5023 	if (hw->mac.type == e1000_ich8lan) {
5024 		reg = er32(STATUS);
5025 		reg &= ~BIT(31);
5026 		ew32(STATUS, reg);
5027 	}
5028 
5029 	/* work-around descriptor data corruption issue during nfs v2 udp
5030 	 * traffic, just disable the nfs filtering capability
5031 	 */
5032 	reg = er32(RFCTL);
5033 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5034 
5035 	/* Disable IPv6 extension header parsing because some malformed
5036 	 * IPv6 headers can hang the Rx.
5037 	 */
5038 	if (hw->mac.type == e1000_ich8lan)
5039 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5040 	ew32(RFCTL, reg);
5041 
5042 	/* Enable ECC on Lynxpoint */
5043 	if (hw->mac.type >= e1000_pch_lpt) {
5044 		reg = er32(PBECCSTS);
5045 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5046 		ew32(PBECCSTS, reg);
5047 
5048 		reg = er32(CTRL);
5049 		reg |= E1000_CTRL_MEHE;
5050 		ew32(CTRL, reg);
5051 	}
5052 }
5053 
5054 /**
5055  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5056  *  @hw: pointer to the HW structure
5057  *
5058  *  Determines which flow control settings to use, then configures flow
5059  *  control.  Calls the appropriate media-specific link configuration
5060  *  function.  Assuming the adapter has a valid link partner, a valid link
5061  *  should be established.  Assumes the hardware has previously been reset
5062  *  and the transmitter and receiver are not enabled.
5063  **/
5064 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5065 {
5066 	s32 ret_val;
5067 
5068 	if (hw->phy.ops.check_reset_block(hw))
5069 		return 0;
5070 
5071 	/* ICH parts do not have a word in the NVM to determine
5072 	 * the default flow control setting, so we explicitly
5073 	 * set it to full.
5074 	 */
5075 	if (hw->fc.requested_mode == e1000_fc_default) {
5076 		/* Workaround h/w hang when Tx flow control enabled */
5077 		if (hw->mac.type == e1000_pchlan)
5078 			hw->fc.requested_mode = e1000_fc_rx_pause;
5079 		else
5080 			hw->fc.requested_mode = e1000_fc_full;
5081 	}
5082 
5083 	/* Save off the requested flow control mode for use later.  Depending
5084 	 * on the link partner's capabilities, we may or may not use this mode.
5085 	 */
5086 	hw->fc.current_mode = hw->fc.requested_mode;
5087 
5088 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5089 
5090 	/* Continue to configure the copper link. */
5091 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5092 	if (ret_val)
5093 		return ret_val;
5094 
5095 	ew32(FCTTV, hw->fc.pause_time);
5096 	if ((hw->phy.type == e1000_phy_82578) ||
5097 	    (hw->phy.type == e1000_phy_82579) ||
5098 	    (hw->phy.type == e1000_phy_i217) ||
5099 	    (hw->phy.type == e1000_phy_82577)) {
5100 		ew32(FCRTV_PCH, hw->fc.refresh_time);
5101 
5102 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5103 				   hw->fc.pause_time);
5104 		if (ret_val)
5105 			return ret_val;
5106 	}
5107 
5108 	return e1000e_set_fc_watermarks(hw);
5109 }
5110 
5111 /**
5112  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5113  *  @hw: pointer to the HW structure
5114  *
5115  *  Configures the kumeran interface to the PHY to wait the appropriate time
5116  *  when polling the PHY, then call the generic setup_copper_link to finish
5117  *  configuring the copper link.
5118  **/
5119 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5120 {
5121 	u32 ctrl;
5122 	s32 ret_val;
5123 	u16 reg_data;
5124 
5125 	ctrl = er32(CTRL);
5126 	ctrl |= E1000_CTRL_SLU;
5127 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5128 	ew32(CTRL, ctrl);
5129 
5130 	/* Set the mac to wait the maximum time between each iteration
5131 	 * and increase the max iterations when polling the phy;
5132 	 * this fixes erroneous timeouts at 10Mbps.
5133 	 */
5134 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5135 	if (ret_val)
5136 		return ret_val;
5137 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5138 				       &reg_data);
5139 	if (ret_val)
5140 		return ret_val;
5141 	reg_data |= 0x3F;
5142 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5143 					reg_data);
5144 	if (ret_val)
5145 		return ret_val;
5146 
5147 	switch (hw->phy.type) {
5148 	case e1000_phy_igp_3:
5149 		ret_val = e1000e_copper_link_setup_igp(hw);
5150 		if (ret_val)
5151 			return ret_val;
5152 		break;
5153 	case e1000_phy_bm:
5154 	case e1000_phy_82578:
5155 		ret_val = e1000e_copper_link_setup_m88(hw);
5156 		if (ret_val)
5157 			return ret_val;
5158 		break;
5159 	case e1000_phy_82577:
5160 	case e1000_phy_82579:
5161 		ret_val = e1000_copper_link_setup_82577(hw);
5162 		if (ret_val)
5163 			return ret_val;
5164 		break;
5165 	case e1000_phy_ife:
5166 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5167 		if (ret_val)
5168 			return ret_val;
5169 
5170 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5171 
5172 		switch (hw->phy.mdix) {
5173 		case 1:
5174 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5175 			break;
5176 		case 2:
5177 			reg_data |= IFE_PMC_FORCE_MDIX;
5178 			break;
5179 		case 0:
5180 		default:
5181 			reg_data |= IFE_PMC_AUTO_MDIX;
5182 			break;
5183 		}
5184 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5185 		if (ret_val)
5186 			return ret_val;
5187 		break;
5188 	default:
5189 		break;
5190 	}
5191 
5192 	return e1000e_setup_copper_link(hw);
5193 }
5194 
5195 /**
5196  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5197  *  @hw: pointer to the HW structure
5198  *
5199  *  Calls the PHY specific link setup function and then calls the
5200  *  generic setup_copper_link to finish configuring the link for
5201  *  Lynxpoint PCH devices
5202  **/
5203 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5204 {
5205 	u32 ctrl;
5206 	s32 ret_val;
5207 
5208 	ctrl = er32(CTRL);
5209 	ctrl |= E1000_CTRL_SLU;
5210 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5211 	ew32(CTRL, ctrl);
5212 
5213 	ret_val = e1000_copper_link_setup_82577(hw);
5214 	if (ret_val)
5215 		return ret_val;
5216 
5217 	return e1000e_setup_copper_link(hw);
5218 }
5219 
5220 /**
5221  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5222  *  @hw: pointer to the HW structure
5223  *  @speed: pointer to store current link speed
5224  *  @duplex: pointer to store the current link duplex
5225  *
5226  *  Calls the generic get_speed_and_duplex to retrieve the current link
5227  *  information and then calls the Kumeran lock loss workaround for links at
5228  *  gigabit speeds.
5229  **/
5230 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5231 					  u16 *duplex)
5232 {
5233 	s32 ret_val;
5234 
5235 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5236 	if (ret_val)
5237 		return ret_val;
5238 
5239 	if ((hw->mac.type == e1000_ich8lan) &&
5240 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5241 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5242 	}
5243 
5244 	return ret_val;
5245 }
5246 
5247 /**
5248  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5249  *  @hw: pointer to the HW structure
5250  *
5251  *  Work-around for 82566 Kumeran PCS lock loss:
5252  *  On link status change (i.e. PCI reset, speed change) and link is up and
5253  *  speed is gigabit-
5254  *    0) if workaround is optionally disabled do nothing
5255  *    1) wait 1ms for Kumeran link to come up
5256  *    2) check Kumeran Diagnostic register PCS lock loss bit
5257  *    3) if not set the link is locked (all is good), otherwise...
5258  *    4) reset the PHY
5259  *    5) repeat up to 10 times
5260  *  Note: this is only called for IGP3 copper when speed is 1gb.
5261  **/
5262 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5263 {
5264 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5265 	u32 phy_ctrl;
5266 	s32 ret_val;
5267 	u16 i, data;
5268 	bool link;
5269 
5270 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5271 		return 0;
5272 
5273 	/* Make sure link is up before proceeding.  If not just return.
5274 	 * Attempting this while link is negotiating fouled up link
5275 	 * stability
5276 	 */
5277 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5278 	if (!link)
5279 		return 0;
5280 
5281 	for (i = 0; i < 10; i++) {
5282 		/* read once to clear */
5283 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5284 		if (ret_val)
5285 			return ret_val;
5286 		/* and again to get new status */
5287 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5288 		if (ret_val)
5289 			return ret_val;
5290 
5291 		/* check for PCS lock */
5292 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5293 			return 0;
5294 
5295 		/* Issue PHY reset */
5296 		e1000_phy_hw_reset(hw);
5297 		mdelay(5);
5298 	}
5299 	/* Disable GigE link negotiation */
5300 	phy_ctrl = er32(PHY_CTRL);
5301 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5302 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5303 	ew32(PHY_CTRL, phy_ctrl);
5304 
5305 	/* Call gig speed drop workaround on Gig disable before accessing
5306 	 * any PHY registers
5307 	 */
5308 	e1000e_gig_downshift_workaround_ich8lan(hw);
5309 
5310 	/* unable to acquire PCS lock */
5311 	return -E1000_ERR_PHY;
5312 }
5313 
5314 /**
5315  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5316  *  @hw: pointer to the HW structure
5317  *  @state: boolean value used to set the current Kumeran workaround state
5318  *
5319  *  If ICH8, set the current Kumeran workaround state (enabled - true
5320  *  /disabled - false).
5321  **/
5322 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5323 						  bool state)
5324 {
5325 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5326 
5327 	if (hw->mac.type != e1000_ich8lan) {
5328 		e_dbg("Workaround applies to ICH8 only.\n");
5329 		return;
5330 	}
5331 
5332 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5333 }
5334 
5335 /**
5336  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5337  *  @hw: pointer to the HW structure
5338  *
5339  *  Workaround for 82566 power-down on D3 entry:
5340  *    1) disable gigabit link
5341  *    2) write VR power-down enable
5342  *    3) read it back
5343  *  Continue if successful, else issue LCD reset and repeat
5344  **/
5345 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5346 {
5347 	u32 reg;
5348 	u16 data;
5349 	u8 retry = 0;
5350 
5351 	if (hw->phy.type != e1000_phy_igp_3)
5352 		return;
5353 
5354 	/* Try the workaround twice (if needed) */
5355 	do {
5356 		/* Disable link */
5357 		reg = er32(PHY_CTRL);
5358 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5359 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5360 		ew32(PHY_CTRL, reg);
5361 
5362 		/* Call gig speed drop workaround on Gig disable before
5363 		 * accessing any PHY registers
5364 		 */
5365 		if (hw->mac.type == e1000_ich8lan)
5366 			e1000e_gig_downshift_workaround_ich8lan(hw);
5367 
5368 		/* Write VR power-down enable */
5369 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5370 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5371 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5372 
5373 		/* Read it back and test */
5374 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5375 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5376 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5377 			break;
5378 
5379 		/* Issue PHY reset and repeat at most one more time */
5380 		reg = er32(CTRL);
5381 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5382 		retry++;
5383 	} while (retry);
5384 }
5385 
5386 /**
5387  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5388  *  @hw: pointer to the HW structure
5389  *
5390  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5391  *  LPLU, Gig disable, MDIC PHY reset):
5392  *    1) Set Kumeran Near-end loopback
5393  *    2) Clear Kumeran Near-end loopback
5394  *  Should only be called for ICH8[m] devices with any 1G Phy.
5395  **/
5396 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5397 {
5398 	s32 ret_val;
5399 	u16 reg_data;
5400 
5401 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5402 		return;
5403 
5404 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5405 				       &reg_data);
5406 	if (ret_val)
5407 		return;
5408 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5409 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5410 					reg_data);
5411 	if (ret_val)
5412 		return;
5413 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5414 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5415 }
5416 
5417 /**
5418  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5419  *  @hw: pointer to the HW structure
5420  *
5421  *  During S0 to Sx transition, it is possible the link remains at gig
5422  *  instead of negotiating to a lower speed.  Before going to Sx, set
5423  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5424  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5425  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5426  *  needs to be written.
5427  *  Parts that support (and are linked to a partner which support) EEE in
5428  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5429  *  than 10Mbps w/o EEE.
5430  **/
5431 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5432 {
5433 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5434 	u32 phy_ctrl;
5435 	s32 ret_val;
5436 
5437 	phy_ctrl = er32(PHY_CTRL);
5438 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5439 
5440 	if (hw->phy.type == e1000_phy_i217) {
5441 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5442 
5443 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5444 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5445 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5446 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5447 		    (hw->mac.type >= e1000_pch_spt)) {
5448 			u32 fextnvm6 = er32(FEXTNVM6);
5449 
5450 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5451 		}
5452 
5453 		ret_val = hw->phy.ops.acquire(hw);
5454 		if (ret_val)
5455 			goto out;
5456 
5457 		if (!dev_spec->eee_disable) {
5458 			u16 eee_advert;
5459 
5460 			ret_val =
5461 			    e1000_read_emi_reg_locked(hw,
5462 						      I217_EEE_ADVERTISEMENT,
5463 						      &eee_advert);
5464 			if (ret_val)
5465 				goto release;
5466 
5467 			/* Disable LPLU if both link partners support 100BaseT
5468 			 * EEE and 100Full is advertised on both ends of the
5469 			 * link, and enable Auto Enable LPI since there will
5470 			 * be no driver to enable LPI while in Sx.
5471 			 */
5472 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5473 			    (dev_spec->eee_lp_ability &
5474 			     I82579_EEE_100_SUPPORTED) &&
5475 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5476 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5477 					      E1000_PHY_CTRL_NOND0A_LPLU);
5478 
5479 				/* Set Auto Enable LPI after link up */
5480 				e1e_rphy_locked(hw,
5481 						I217_LPI_GPIO_CTRL, &phy_reg);
5482 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5483 				e1e_wphy_locked(hw,
5484 						I217_LPI_GPIO_CTRL, phy_reg);
5485 			}
5486 		}
5487 
5488 		/* For i217 Intel Rapid Start Technology support,
5489 		 * when the system is going into Sx and no manageability engine
5490 		 * is present, the driver must configure proxy to reset only on
5491 		 * power good.  LPI (Low Power Idle) state must also reset only
5492 		 * on power good, as well as the MTA (Multicast table array).
5493 		 * The SMBus release must also be disabled on LCD reset.
5494 		 */
5495 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5496 			/* Enable proxy to reset only on power good. */
5497 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5498 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5499 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5500 
5501 			/* Set bit enable LPI (EEE) to reset only on
5502 			 * power good.
5503 			 */
5504 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5505 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5506 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5507 
5508 			/* Disable the SMB release on LCD reset. */
5509 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5510 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5511 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5512 		}
5513 
5514 		/* Enable MTA to reset for Intel Rapid Start Technology
5515 		 * Support
5516 		 */
5517 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5518 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5519 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5520 
5521 release:
5522 		hw->phy.ops.release(hw);
5523 	}
5524 out:
5525 	ew32(PHY_CTRL, phy_ctrl);
5526 
5527 	if (hw->mac.type == e1000_ich8lan)
5528 		e1000e_gig_downshift_workaround_ich8lan(hw);
5529 
5530 	if (hw->mac.type >= e1000_pchlan) {
5531 		e1000_oem_bits_config_ich8lan(hw, false);
5532 
5533 		/* Reset PHY to activate OEM bits on 82577/8 */
5534 		if (hw->mac.type == e1000_pchlan)
5535 			e1000e_phy_hw_reset_generic(hw);
5536 
5537 		ret_val = hw->phy.ops.acquire(hw);
5538 		if (ret_val)
5539 			return;
5540 		e1000_write_smbus_addr(hw);
5541 		hw->phy.ops.release(hw);
5542 	}
5543 }
5544 
5545 /**
5546  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5547  *  @hw: pointer to the HW structure
5548  *
5549  *  During Sx to S0 transitions on non-managed devices or managed devices
5550  *  on which PHY resets are not blocked, if the PHY registers cannot be
5551  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5552  *  the PHY.
5553  *  On i217, setup Intel Rapid Start Technology.
5554  **/
5555 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5556 {
5557 	s32 ret_val;
5558 
5559 	if (hw->mac.type < e1000_pch2lan)
5560 		return;
5561 
5562 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5563 	if (ret_val) {
5564 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5565 		return;
5566 	}
5567 
5568 	/* For i217 Intel Rapid Start Technology support when the system
5569 	 * is transitioning from Sx and no manageability engine is present
5570 	 * configure SMBus to restore on reset, disable proxy, and enable
5571 	 * the reset on MTA (Multicast table array).
5572 	 */
5573 	if (hw->phy.type == e1000_phy_i217) {
5574 		u16 phy_reg;
5575 
5576 		ret_val = hw->phy.ops.acquire(hw);
5577 		if (ret_val) {
5578 			e_dbg("Failed to setup iRST\n");
5579 			return;
5580 		}
5581 
5582 		/* Clear Auto Enable LPI after link up */
5583 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5584 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5585 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5586 
5587 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5588 			/* Restore clear on SMB if no manageability engine
5589 			 * is present
5590 			 */
5591 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5592 			if (ret_val)
5593 				goto release;
5594 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5595 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5596 
5597 			/* Disable Proxy */
5598 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5599 		}
5600 		/* Enable reset on MTA */
5601 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5602 		if (ret_val)
5603 			goto release;
5604 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5605 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5606 release:
5607 		if (ret_val)
5608 			e_dbg("Error %d in resume workarounds\n", ret_val);
5609 		hw->phy.ops.release(hw);
5610 	}
5611 }
5612 
5613 /**
5614  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5615  *  @hw: pointer to the HW structure
5616  *
5617  *  Return the LED back to the default configuration.
5618  **/
5619 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5620 {
5621 	if (hw->phy.type == e1000_phy_ife)
5622 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5623 
5624 	ew32(LEDCTL, hw->mac.ledctl_default);
5625 	return 0;
5626 }
5627 
5628 /**
5629  *  e1000_led_on_ich8lan - Turn LEDs on
5630  *  @hw: pointer to the HW structure
5631  *
5632  *  Turn on the LEDs.
5633  **/
5634 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5635 {
5636 	if (hw->phy.type == e1000_phy_ife)
5637 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5638 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5639 
5640 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5641 	return 0;
5642 }
5643 
5644 /**
5645  *  e1000_led_off_ich8lan - Turn LEDs off
5646  *  @hw: pointer to the HW structure
5647  *
5648  *  Turn off the LEDs.
5649  **/
5650 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5651 {
5652 	if (hw->phy.type == e1000_phy_ife)
5653 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5654 				(IFE_PSCL_PROBE_MODE |
5655 				 IFE_PSCL_PROBE_LEDS_OFF));
5656 
5657 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5658 	return 0;
5659 }
5660 
5661 /**
5662  *  e1000_setup_led_pchlan - Configures SW controllable LED
5663  *  @hw: pointer to the HW structure
5664  *
5665  *  This prepares the SW controllable LED for use.
5666  **/
5667 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5668 {
5669 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5670 }
5671 
5672 /**
5673  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5674  *  @hw: pointer to the HW structure
5675  *
5676  *  Return the LED back to the default configuration.
5677  **/
5678 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5679 {
5680 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5681 }
5682 
5683 /**
5684  *  e1000_led_on_pchlan - Turn LEDs on
5685  *  @hw: pointer to the HW structure
5686  *
5687  *  Turn on the LEDs.
5688  **/
5689 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5690 {
5691 	u16 data = (u16)hw->mac.ledctl_mode2;
5692 	u32 i, led;
5693 
5694 	/* If no link, then turn LED on by setting the invert bit
5695 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5696 	 */
5697 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5698 		for (i = 0; i < 3; i++) {
5699 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5700 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5701 			    E1000_LEDCTL_MODE_LINK_UP)
5702 				continue;
5703 			if (led & E1000_PHY_LED0_IVRT)
5704 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5705 			else
5706 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5707 		}
5708 	}
5709 
5710 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5711 }
5712 
5713 /**
5714  *  e1000_led_off_pchlan - Turn LEDs off
5715  *  @hw: pointer to the HW structure
5716  *
5717  *  Turn off the LEDs.
5718  **/
5719 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5720 {
5721 	u16 data = (u16)hw->mac.ledctl_mode1;
5722 	u32 i, led;
5723 
5724 	/* If no link, then turn LED off by clearing the invert bit
5725 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5726 	 */
5727 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5728 		for (i = 0; i < 3; i++) {
5729 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5730 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5731 			    E1000_LEDCTL_MODE_LINK_UP)
5732 				continue;
5733 			if (led & E1000_PHY_LED0_IVRT)
5734 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5735 			else
5736 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5737 		}
5738 	}
5739 
5740 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5741 }
5742 
5743 /**
5744  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5745  *  @hw: pointer to the HW structure
5746  *
5747  *  Read appropriate register for the config done bit for completion status
5748  *  and configure the PHY through s/w for EEPROM-less parts.
5749  *
5750  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5751  *  config done bit, so only an error is logged and continues.  If we were
5752  *  to return with error, EEPROM-less silicon would not be able to be reset
5753  *  or change link.
5754  **/
5755 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5756 {
5757 	s32 ret_val = 0;
5758 	u32 bank = 0;
5759 	u32 status;
5760 
5761 	e1000e_get_cfg_done_generic(hw);
5762 
5763 	/* Wait for indication from h/w that it has completed basic config */
5764 	if (hw->mac.type >= e1000_ich10lan) {
5765 		e1000_lan_init_done_ich8lan(hw);
5766 	} else {
5767 		ret_val = e1000e_get_auto_rd_done(hw);
5768 		if (ret_val) {
5769 			/* When auto config read does not complete, do not
5770 			 * return with an error. This can happen in situations
5771 			 * where there is no eeprom and prevents getting link.
5772 			 */
5773 			e_dbg("Auto Read Done did not complete\n");
5774 			ret_val = 0;
5775 		}
5776 	}
5777 
5778 	/* Clear PHY Reset Asserted bit */
5779 	status = er32(STATUS);
5780 	if (status & E1000_STATUS_PHYRA)
5781 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5782 	else
5783 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5784 
5785 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5786 	if (hw->mac.type <= e1000_ich9lan) {
5787 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5788 		    (hw->phy.type == e1000_phy_igp_3)) {
5789 			e1000e_phy_init_script_igp3(hw);
5790 		}
5791 	} else {
5792 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5793 			/* Maybe we should do a basic PHY config */
5794 			e_dbg("EEPROM not present\n");
5795 			ret_val = -E1000_ERR_CONFIG;
5796 		}
5797 	}
5798 
5799 	return ret_val;
5800 }
5801 
5802 /**
5803  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5804  * @hw: pointer to the HW structure
5805  *
5806  * In the case of a PHY power down to save power, or to turn off link during a
5807  * driver unload, or wake on lan is not enabled, remove the link.
5808  **/
5809 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5810 {
5811 	/* If the management interface is not enabled, then power down */
5812 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5813 	      hw->phy.ops.check_reset_block(hw)))
5814 		e1000_power_down_phy_copper(hw);
5815 }
5816 
5817 /**
5818  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5819  *  @hw: pointer to the HW structure
5820  *
5821  *  Clears hardware counters specific to the silicon family and calls
5822  *  clear_hw_cntrs_generic to clear all general purpose counters.
5823  **/
5824 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5825 {
5826 	u16 phy_data;
5827 	s32 ret_val;
5828 
5829 	e1000e_clear_hw_cntrs_base(hw);
5830 
5831 	er32(ALGNERRC);
5832 	er32(RXERRC);
5833 	er32(TNCRS);
5834 	er32(CEXTERR);
5835 	er32(TSCTC);
5836 	er32(TSCTFC);
5837 
5838 	er32(MGTPRC);
5839 	er32(MGTPDC);
5840 	er32(MGTPTC);
5841 
5842 	er32(IAC);
5843 	er32(ICRXOC);
5844 
5845 	/* Clear PHY statistics registers */
5846 	if ((hw->phy.type == e1000_phy_82578) ||
5847 	    (hw->phy.type == e1000_phy_82579) ||
5848 	    (hw->phy.type == e1000_phy_i217) ||
5849 	    (hw->phy.type == e1000_phy_82577)) {
5850 		ret_val = hw->phy.ops.acquire(hw);
5851 		if (ret_val)
5852 			return;
5853 		ret_val = hw->phy.ops.set_page(hw,
5854 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5855 		if (ret_val)
5856 			goto release;
5857 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5858 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5859 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5860 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5861 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5862 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5863 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5864 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5865 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5866 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5867 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5868 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5869 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5870 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5871 release:
5872 		hw->phy.ops.release(hw);
5873 	}
5874 }
5875 
5876 static const struct e1000_mac_operations ich8_mac_ops = {
5877 	/* check_mng_mode dependent on mac type */
5878 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5879 	/* cleanup_led dependent on mac type */
5880 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5881 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5882 	.set_lan_id		= e1000_set_lan_id_single_port,
5883 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5884 	/* led_on dependent on mac type */
5885 	/* led_off dependent on mac type */
5886 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5887 	.reset_hw		= e1000_reset_hw_ich8lan,
5888 	.init_hw		= e1000_init_hw_ich8lan,
5889 	.setup_link		= e1000_setup_link_ich8lan,
5890 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5891 	/* id_led_init dependent on mac type */
5892 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5893 	.rar_set		= e1000e_rar_set_generic,
5894 	.rar_get_count		= e1000e_rar_get_count_generic,
5895 };
5896 
5897 static const struct e1000_phy_operations ich8_phy_ops = {
5898 	.acquire		= e1000_acquire_swflag_ich8lan,
5899 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5900 	.commit			= NULL,
5901 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5902 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5903 	.read_reg		= e1000e_read_phy_reg_igp,
5904 	.release		= e1000_release_swflag_ich8lan,
5905 	.reset			= e1000_phy_hw_reset_ich8lan,
5906 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5907 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5908 	.write_reg		= e1000e_write_phy_reg_igp,
5909 };
5910 
5911 static const struct e1000_nvm_operations ich8_nvm_ops = {
5912 	.acquire		= e1000_acquire_nvm_ich8lan,
5913 	.read			= e1000_read_nvm_ich8lan,
5914 	.release		= e1000_release_nvm_ich8lan,
5915 	.reload			= e1000e_reload_nvm_generic,
5916 	.update			= e1000_update_nvm_checksum_ich8lan,
5917 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5918 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5919 	.write			= e1000_write_nvm_ich8lan,
5920 };
5921 
5922 static const struct e1000_nvm_operations spt_nvm_ops = {
5923 	.acquire		= e1000_acquire_nvm_ich8lan,
5924 	.release		= e1000_release_nvm_ich8lan,
5925 	.read			= e1000_read_nvm_spt,
5926 	.update			= e1000_update_nvm_checksum_spt,
5927 	.reload			= e1000e_reload_nvm_generic,
5928 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5929 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5930 	.write			= e1000_write_nvm_ich8lan,
5931 };
5932 
5933 const struct e1000_info e1000_ich8_info = {
5934 	.mac			= e1000_ich8lan,
5935 	.flags			= FLAG_HAS_WOL
5936 				  | FLAG_IS_ICH
5937 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5938 				  | FLAG_HAS_AMT
5939 				  | FLAG_HAS_FLASH
5940 				  | FLAG_APME_IN_WUC,
5941 	.pba			= 8,
5942 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5943 	.get_variants		= e1000_get_variants_ich8lan,
5944 	.mac_ops		= &ich8_mac_ops,
5945 	.phy_ops		= &ich8_phy_ops,
5946 	.nvm_ops		= &ich8_nvm_ops,
5947 };
5948 
5949 const struct e1000_info e1000_ich9_info = {
5950 	.mac			= e1000_ich9lan,
5951 	.flags			= FLAG_HAS_JUMBO_FRAMES
5952 				  | FLAG_IS_ICH
5953 				  | FLAG_HAS_WOL
5954 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5955 				  | FLAG_HAS_AMT
5956 				  | FLAG_HAS_FLASH
5957 				  | FLAG_APME_IN_WUC,
5958 	.pba			= 18,
5959 	.max_hw_frame_size	= DEFAULT_JUMBO,
5960 	.get_variants		= e1000_get_variants_ich8lan,
5961 	.mac_ops		= &ich8_mac_ops,
5962 	.phy_ops		= &ich8_phy_ops,
5963 	.nvm_ops		= &ich8_nvm_ops,
5964 };
5965 
5966 const struct e1000_info e1000_ich10_info = {
5967 	.mac			= e1000_ich10lan,
5968 	.flags			= FLAG_HAS_JUMBO_FRAMES
5969 				  | FLAG_IS_ICH
5970 				  | FLAG_HAS_WOL
5971 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5972 				  | FLAG_HAS_AMT
5973 				  | FLAG_HAS_FLASH
5974 				  | FLAG_APME_IN_WUC,
5975 	.pba			= 18,
5976 	.max_hw_frame_size	= DEFAULT_JUMBO,
5977 	.get_variants		= e1000_get_variants_ich8lan,
5978 	.mac_ops		= &ich8_mac_ops,
5979 	.phy_ops		= &ich8_phy_ops,
5980 	.nvm_ops		= &ich8_nvm_ops,
5981 };
5982 
5983 const struct e1000_info e1000_pch_info = {
5984 	.mac			= e1000_pchlan,
5985 	.flags			= FLAG_IS_ICH
5986 				  | FLAG_HAS_WOL
5987 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5988 				  | FLAG_HAS_AMT
5989 				  | FLAG_HAS_FLASH
5990 				  | FLAG_HAS_JUMBO_FRAMES
5991 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5992 				  | FLAG_APME_IN_WUC,
5993 	.flags2			= FLAG2_HAS_PHY_STATS,
5994 	.pba			= 26,
5995 	.max_hw_frame_size	= 4096,
5996 	.get_variants		= e1000_get_variants_ich8lan,
5997 	.mac_ops		= &ich8_mac_ops,
5998 	.phy_ops		= &ich8_phy_ops,
5999 	.nvm_ops		= &ich8_nvm_ops,
6000 };
6001 
6002 const struct e1000_info e1000_pch2_info = {
6003 	.mac			= e1000_pch2lan,
6004 	.flags			= FLAG_IS_ICH
6005 				  | FLAG_HAS_WOL
6006 				  | FLAG_HAS_HW_TIMESTAMP
6007 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6008 				  | FLAG_HAS_AMT
6009 				  | FLAG_HAS_FLASH
6010 				  | FLAG_HAS_JUMBO_FRAMES
6011 				  | FLAG_APME_IN_WUC,
6012 	.flags2			= FLAG2_HAS_PHY_STATS
6013 				  | FLAG2_HAS_EEE
6014 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6015 	.pba			= 26,
6016 	.max_hw_frame_size	= 9022,
6017 	.get_variants		= e1000_get_variants_ich8lan,
6018 	.mac_ops		= &ich8_mac_ops,
6019 	.phy_ops		= &ich8_phy_ops,
6020 	.nvm_ops		= &ich8_nvm_ops,
6021 };
6022 
6023 const struct e1000_info e1000_pch_lpt_info = {
6024 	.mac			= e1000_pch_lpt,
6025 	.flags			= FLAG_IS_ICH
6026 				  | FLAG_HAS_WOL
6027 				  | FLAG_HAS_HW_TIMESTAMP
6028 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6029 				  | FLAG_HAS_AMT
6030 				  | FLAG_HAS_FLASH
6031 				  | FLAG_HAS_JUMBO_FRAMES
6032 				  | FLAG_APME_IN_WUC,
6033 	.flags2			= FLAG2_HAS_PHY_STATS
6034 				  | FLAG2_HAS_EEE
6035 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6036 	.pba			= 26,
6037 	.max_hw_frame_size	= 9022,
6038 	.get_variants		= e1000_get_variants_ich8lan,
6039 	.mac_ops		= &ich8_mac_ops,
6040 	.phy_ops		= &ich8_phy_ops,
6041 	.nvm_ops		= &ich8_nvm_ops,
6042 };
6043 
6044 const struct e1000_info e1000_pch_spt_info = {
6045 	.mac			= e1000_pch_spt,
6046 	.flags			= FLAG_IS_ICH
6047 				  | FLAG_HAS_WOL
6048 				  | FLAG_HAS_HW_TIMESTAMP
6049 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6050 				  | FLAG_HAS_AMT
6051 				  | FLAG_HAS_FLASH
6052 				  | FLAG_HAS_JUMBO_FRAMES
6053 				  | FLAG_APME_IN_WUC,
6054 	.flags2			= FLAG2_HAS_PHY_STATS
6055 				  | FLAG2_HAS_EEE,
6056 	.pba			= 26,
6057 	.max_hw_frame_size	= 9022,
6058 	.get_variants		= e1000_get_variants_ich8lan,
6059 	.mac_ops		= &ich8_mac_ops,
6060 	.phy_ops		= &ich8_phy_ops,
6061 	.nvm_ops		= &spt_nvm_ops,
6062 };
6063 
6064 const struct e1000_info e1000_pch_cnp_info = {
6065 	.mac			= e1000_pch_cnp,
6066 	.flags			= FLAG_IS_ICH
6067 				  | FLAG_HAS_WOL
6068 				  | FLAG_HAS_HW_TIMESTAMP
6069 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6070 				  | FLAG_HAS_AMT
6071 				  | FLAG_HAS_FLASH
6072 				  | FLAG_HAS_JUMBO_FRAMES
6073 				  | FLAG_APME_IN_WUC,
6074 	.flags2			= FLAG2_HAS_PHY_STATS
6075 				  | FLAG2_HAS_EEE,
6076 	.pba			= 26,
6077 	.max_hw_frame_size	= 9022,
6078 	.get_variants		= e1000_get_variants_ich8lan,
6079 	.mac_ops		= &ich8_mac_ops,
6080 	.phy_ops		= &ich8_phy_ops,
6081 	.nvm_ops		= &spt_nvm_ops,
6082 };
6083 
6084 const struct e1000_info e1000_pch_tgp_info = {
6085 	.mac			= e1000_pch_tgp,
6086 	.flags			= FLAG_IS_ICH
6087 				  | FLAG_HAS_WOL
6088 				  | FLAG_HAS_HW_TIMESTAMP
6089 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6090 				  | FLAG_HAS_AMT
6091 				  | FLAG_HAS_FLASH
6092 				  | FLAG_HAS_JUMBO_FRAMES
6093 				  | FLAG_APME_IN_WUC,
6094 	.flags2			= FLAG2_HAS_PHY_STATS
6095 				  | FLAG2_HAS_EEE,
6096 	.pba			= 26,
6097 	.max_hw_frame_size	= 9022,
6098 	.get_variants		= e1000_get_variants_ich8lan,
6099 	.mac_ops		= &ich8_mac_ops,
6100 	.phy_ops		= &ich8_phy_ops,
6101 	.nvm_ops		= &spt_nvm_ops,
6102 };
6103 
6104 const struct e1000_info e1000_pch_adp_info = {
6105 	.mac			= e1000_pch_adp,
6106 	.flags			= FLAG_IS_ICH
6107 				  | FLAG_HAS_WOL
6108 				  | FLAG_HAS_HW_TIMESTAMP
6109 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6110 				  | FLAG_HAS_AMT
6111 				  | FLAG_HAS_FLASH
6112 				  | FLAG_HAS_JUMBO_FRAMES
6113 				  | FLAG_APME_IN_WUC,
6114 	.flags2			= FLAG2_HAS_PHY_STATS
6115 				  | FLAG2_HAS_EEE,
6116 	.pba			= 26,
6117 	.max_hw_frame_size	= 9022,
6118 	.get_variants		= e1000_get_variants_ich8lan,
6119 	.mac_ops		= &ich8_mac_ops,
6120 	.phy_ops		= &ich8_phy_ops,
6121 	.nvm_ops		= &spt_nvm_ops,
6122 };
6123 
6124 const struct e1000_info e1000_pch_mtp_info = {
6125 	.mac			= e1000_pch_mtp,
6126 	.flags			= FLAG_IS_ICH
6127 				  | FLAG_HAS_WOL
6128 				  | FLAG_HAS_HW_TIMESTAMP
6129 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6130 				  | FLAG_HAS_AMT
6131 				  | FLAG_HAS_FLASH
6132 				  | FLAG_HAS_JUMBO_FRAMES
6133 				  | FLAG_APME_IN_WUC,
6134 	.flags2			= FLAG2_HAS_PHY_STATS
6135 				  | FLAG2_HAS_EEE,
6136 	.pba			= 26,
6137 	.max_hw_frame_size	= 9022,
6138 	.get_variants		= e1000_get_variants_ich8lan,
6139 	.mac_ops		= &ich8_mac_ops,
6140 	.phy_ops		= &ich8_phy_ops,
6141 	.nvm_ops		= &spt_nvm_ops,
6142 };
6143