1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
130 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
131 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
134 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
135 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
136 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
137 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
139 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
141 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
142 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
143 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
144 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
145 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
146 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
147 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
148 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
149 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
150 
151 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
152 {
153 	return readw(hw->flash_address + reg);
154 }
155 
156 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
157 {
158 	return readl(hw->flash_address + reg);
159 }
160 
161 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
162 {
163 	writew(val, hw->flash_address + reg);
164 }
165 
166 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
167 {
168 	writel(val, hw->flash_address + reg);
169 }
170 
171 #define er16flash(reg)		__er16flash(hw, (reg))
172 #define er32flash(reg)		__er32flash(hw, (reg))
173 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
174 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
175 
176 /**
177  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
178  *  @hw: pointer to the HW structure
179  *
180  *  Test access to the PHY registers by reading the PHY ID registers.  If
181  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
182  *  otherwise assume the read PHY ID is correct if it is valid.
183  *
184  *  Assumes the sw/fw/hw semaphore is already acquired.
185  **/
186 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
187 {
188 	u16 phy_reg = 0;
189 	u32 phy_id = 0;
190 	s32 ret_val = 0;
191 	u16 retry_count;
192 	u32 mac_reg = 0;
193 
194 	for (retry_count = 0; retry_count < 2; retry_count++) {
195 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
196 		if (ret_val || (phy_reg == 0xFFFF))
197 			continue;
198 		phy_id = (u32)(phy_reg << 16);
199 
200 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
201 		if (ret_val || (phy_reg == 0xFFFF)) {
202 			phy_id = 0;
203 			continue;
204 		}
205 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
206 		break;
207 	}
208 
209 	if (hw->phy.id) {
210 		if (hw->phy.id == phy_id)
211 			goto out;
212 	} else if (phy_id) {
213 		hw->phy.id = phy_id;
214 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
215 		goto out;
216 	}
217 
218 	/* In case the PHY needs to be in mdio slow mode,
219 	 * set slow mode and try to get the PHY id again.
220 	 */
221 	if (hw->mac.type < e1000_pch_lpt) {
222 		hw->phy.ops.release(hw);
223 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
224 		if (!ret_val)
225 			ret_val = e1000e_get_phy_id(hw);
226 		hw->phy.ops.acquire(hw);
227 	}
228 
229 	if (ret_val)
230 		return false;
231 out:
232 	if (hw->mac.type == e1000_pch_lpt) {
233 		/* Unforce SMBus mode in PHY */
234 		e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
235 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
236 		e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
237 
238 		/* Unforce SMBus mode in MAC */
239 		mac_reg = er32(CTRL_EXT);
240 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
241 		ew32(CTRL_EXT, mac_reg);
242 	}
243 
244 	return true;
245 }
246 
247 /**
248  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249  *  @hw: pointer to the HW structure
250  *
251  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252  *  used to reset the PHY to a quiescent state when necessary.
253  **/
254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255 {
256 	u32 mac_reg;
257 
258 	/* Set Phy Config Counter to 50msec */
259 	mac_reg = er32(FEXTNVM3);
260 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262 	ew32(FEXTNVM3, mac_reg);
263 
264 	/* Toggle LANPHYPC Value bit */
265 	mac_reg = er32(CTRL);
266 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268 	ew32(CTRL, mac_reg);
269 	e1e_flush();
270 	usleep_range(10, 20);
271 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272 	ew32(CTRL, mac_reg);
273 	e1e_flush();
274 
275 	if (hw->mac.type < e1000_pch_lpt) {
276 		msleep(50);
277 	} else {
278 		u16 count = 20;
279 
280 		do {
281 			usleep_range(5000, 10000);
282 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283 
284 		msleep(30);
285 	}
286 }
287 
288 /**
289  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
290  *  @hw: pointer to the HW structure
291  *
292  *  Workarounds/flow necessary for PHY initialization during driver load
293  *  and resume paths.
294  **/
295 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
296 {
297 	struct e1000_adapter *adapter = hw->adapter;
298 	u32 mac_reg, fwsm = er32(FWSM);
299 	s32 ret_val;
300 
301 	/* Gate automatic PHY configuration by hardware on managed and
302 	 * non-managed 82579 and newer adapters.
303 	 */
304 	e1000_gate_hw_phy_config_ich8lan(hw, true);
305 
306 	/* It is not possible to be certain of the current state of ULP
307 	 * so forcibly disable it.
308 	 */
309 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
310 	e1000_disable_ulp_lpt_lp(hw, true);
311 
312 	ret_val = hw->phy.ops.acquire(hw);
313 	if (ret_val) {
314 		e_dbg("Failed to initialize PHY flow\n");
315 		goto out;
316 	}
317 
318 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
319 	 * inaccessible and resetting the PHY is not blocked, toggle the
320 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
321 	 */
322 	switch (hw->mac.type) {
323 	case e1000_pch_lpt:
324 		if (e1000_phy_is_accessible_pchlan(hw))
325 			break;
326 
327 		/* Before toggling LANPHYPC, see if PHY is accessible by
328 		 * forcing MAC to SMBus mode first.
329 		 */
330 		mac_reg = er32(CTRL_EXT);
331 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
332 		ew32(CTRL_EXT, mac_reg);
333 
334 		/* Wait 50 milliseconds for MAC to finish any retries
335 		 * that it might be trying to perform from previous
336 		 * attempts to acknowledge any phy read requests.
337 		 */
338 		msleep(50);
339 
340 		/* fall-through */
341 	case e1000_pch2lan:
342 		if (e1000_phy_is_accessible_pchlan(hw))
343 			break;
344 
345 		/* fall-through */
346 	case e1000_pchlan:
347 		if ((hw->mac.type == e1000_pchlan) &&
348 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
349 			break;
350 
351 		if (hw->phy.ops.check_reset_block(hw)) {
352 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
353 			ret_val = -E1000_ERR_PHY;
354 			break;
355 		}
356 
357 		/* Toggle LANPHYPC Value bit */
358 		e1000_toggle_lanphypc_pch_lpt(hw);
359 		if (hw->mac.type >= e1000_pch_lpt) {
360 			if (e1000_phy_is_accessible_pchlan(hw))
361 				break;
362 
363 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
364 			 * so ensure that the MAC is also out of SMBus mode
365 			 */
366 			mac_reg = er32(CTRL_EXT);
367 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
368 			ew32(CTRL_EXT, mac_reg);
369 
370 			if (e1000_phy_is_accessible_pchlan(hw))
371 				break;
372 
373 			ret_val = -E1000_ERR_PHY;
374 		}
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	hw->phy.ops.release(hw);
381 	if (!ret_val) {
382 
383 		/* Check to see if able to reset PHY.  Print error if not */
384 		if (hw->phy.ops.check_reset_block(hw)) {
385 			e_err("Reset blocked by ME\n");
386 			goto out;
387 		}
388 
389 		/* Reset the PHY before any access to it.  Doing so, ensures
390 		 * that the PHY is in a known good state before we read/write
391 		 * PHY registers.  The generic reset is sufficient here,
392 		 * because we haven't determined the PHY type yet.
393 		 */
394 		ret_val = e1000e_phy_hw_reset_generic(hw);
395 		if (ret_val)
396 			goto out;
397 
398 		/* On a successful reset, possibly need to wait for the PHY
399 		 * to quiesce to an accessible state before returning control
400 		 * to the calling function.  If the PHY does not quiesce, then
401 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
402 		 *  the PHY is in.
403 		 */
404 		ret_val = hw->phy.ops.check_reset_block(hw);
405 		if (ret_val)
406 			e_err("ME blocked access to PHY after reset\n");
407 	}
408 
409 out:
410 	/* Ungate automatic PHY configuration on non-managed 82579 */
411 	if ((hw->mac.type == e1000_pch2lan) &&
412 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
413 		usleep_range(10000, 20000);
414 		e1000_gate_hw_phy_config_ich8lan(hw, false);
415 	}
416 
417 	return ret_val;
418 }
419 
420 /**
421  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
422  *  @hw: pointer to the HW structure
423  *
424  *  Initialize family-specific PHY parameters and function pointers.
425  **/
426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
427 {
428 	struct e1000_phy_info *phy = &hw->phy;
429 	s32 ret_val;
430 
431 	phy->addr = 1;
432 	phy->reset_delay_us = 100;
433 
434 	phy->ops.set_page = e1000_set_page_igp;
435 	phy->ops.read_reg = e1000_read_phy_reg_hv;
436 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
437 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
438 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
439 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
440 	phy->ops.write_reg = e1000_write_phy_reg_hv;
441 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
442 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
443 	phy->ops.power_up = e1000_power_up_phy_copper;
444 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
445 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
446 
447 	phy->id = e1000_phy_unknown;
448 
449 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
450 	if (ret_val)
451 		return ret_val;
452 
453 	if (phy->id == e1000_phy_unknown)
454 		switch (hw->mac.type) {
455 		default:
456 			ret_val = e1000e_get_phy_id(hw);
457 			if (ret_val)
458 				return ret_val;
459 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
460 				break;
461 			/* fall-through */
462 		case e1000_pch2lan:
463 		case e1000_pch_lpt:
464 			/* In case the PHY needs to be in mdio slow mode,
465 			 * set slow mode and try to get the PHY id again.
466 			 */
467 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
468 			if (ret_val)
469 				return ret_val;
470 			ret_val = e1000e_get_phy_id(hw);
471 			if (ret_val)
472 				return ret_val;
473 			break;
474 		}
475 	phy->type = e1000e_get_phy_type_from_id(phy->id);
476 
477 	switch (phy->type) {
478 	case e1000_phy_82577:
479 	case e1000_phy_82579:
480 	case e1000_phy_i217:
481 		phy->ops.check_polarity = e1000_check_polarity_82577;
482 		phy->ops.force_speed_duplex =
483 		    e1000_phy_force_speed_duplex_82577;
484 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
485 		phy->ops.get_info = e1000_get_phy_info_82577;
486 		phy->ops.commit = e1000e_phy_sw_reset;
487 		break;
488 	case e1000_phy_82578:
489 		phy->ops.check_polarity = e1000_check_polarity_m88;
490 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
491 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
492 		phy->ops.get_info = e1000e_get_phy_info_m88;
493 		break;
494 	default:
495 		ret_val = -E1000_ERR_PHY;
496 		break;
497 	}
498 
499 	return ret_val;
500 }
501 
502 /**
503  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
504  *  @hw: pointer to the HW structure
505  *
506  *  Initialize family-specific PHY parameters and function pointers.
507  **/
508 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
509 {
510 	struct e1000_phy_info *phy = &hw->phy;
511 	s32 ret_val;
512 	u16 i = 0;
513 
514 	phy->addr = 1;
515 	phy->reset_delay_us = 100;
516 
517 	phy->ops.power_up = e1000_power_up_phy_copper;
518 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
519 
520 	/* We may need to do this twice - once for IGP and if that fails,
521 	 * we'll set BM func pointers and try again
522 	 */
523 	ret_val = e1000e_determine_phy_address(hw);
524 	if (ret_val) {
525 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
526 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
527 		ret_val = e1000e_determine_phy_address(hw);
528 		if (ret_val) {
529 			e_dbg("Cannot determine PHY addr. Erroring out\n");
530 			return ret_val;
531 		}
532 	}
533 
534 	phy->id = 0;
535 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
536 	       (i++ < 100)) {
537 		usleep_range(1000, 2000);
538 		ret_val = e1000e_get_phy_id(hw);
539 		if (ret_val)
540 			return ret_val;
541 	}
542 
543 	/* Verify phy id */
544 	switch (phy->id) {
545 	case IGP03E1000_E_PHY_ID:
546 		phy->type = e1000_phy_igp_3;
547 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
548 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
549 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
550 		phy->ops.get_info = e1000e_get_phy_info_igp;
551 		phy->ops.check_polarity = e1000_check_polarity_igp;
552 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
553 		break;
554 	case IFE_E_PHY_ID:
555 	case IFE_PLUS_E_PHY_ID:
556 	case IFE_C_E_PHY_ID:
557 		phy->type = e1000_phy_ife;
558 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
559 		phy->ops.get_info = e1000_get_phy_info_ife;
560 		phy->ops.check_polarity = e1000_check_polarity_ife;
561 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
562 		break;
563 	case BME1000_E_PHY_ID:
564 		phy->type = e1000_phy_bm;
565 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
566 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
567 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
568 		phy->ops.commit = e1000e_phy_sw_reset;
569 		phy->ops.get_info = e1000e_get_phy_info_m88;
570 		phy->ops.check_polarity = e1000_check_polarity_m88;
571 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
572 		break;
573 	default:
574 		return -E1000_ERR_PHY;
575 		break;
576 	}
577 
578 	return 0;
579 }
580 
581 /**
582  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
583  *  @hw: pointer to the HW structure
584  *
585  *  Initialize family-specific NVM parameters and function
586  *  pointers.
587  **/
588 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
589 {
590 	struct e1000_nvm_info *nvm = &hw->nvm;
591 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
592 	u32 gfpreg, sector_base_addr, sector_end_addr;
593 	u16 i;
594 
595 	/* Can't read flash registers if the register set isn't mapped. */
596 	if (!hw->flash_address) {
597 		e_dbg("ERROR: Flash registers not mapped\n");
598 		return -E1000_ERR_CONFIG;
599 	}
600 
601 	nvm->type = e1000_nvm_flash_sw;
602 
603 	gfpreg = er32flash(ICH_FLASH_GFPREG);
604 
605 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
606 	 * Add 1 to sector_end_addr since this sector is included in
607 	 * the overall size.
608 	 */
609 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
610 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
611 
612 	/* flash_base_addr is byte-aligned */
613 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
614 
615 	/* find total size of the NVM, then cut in half since the total
616 	 * size represents two separate NVM banks.
617 	 */
618 	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
619 				<< FLASH_SECTOR_ADDR_SHIFT);
620 	nvm->flash_bank_size /= 2;
621 	/* Adjust to word count */
622 	nvm->flash_bank_size /= sizeof(u16);
623 
624 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
625 
626 	/* Clear shadow ram */
627 	for (i = 0; i < nvm->word_size; i++) {
628 		dev_spec->shadow_ram[i].modified = false;
629 		dev_spec->shadow_ram[i].value = 0xFFFF;
630 	}
631 
632 	return 0;
633 }
634 
635 /**
636  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
637  *  @hw: pointer to the HW structure
638  *
639  *  Initialize family-specific MAC parameters and function
640  *  pointers.
641  **/
642 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
643 {
644 	struct e1000_mac_info *mac = &hw->mac;
645 
646 	/* Set media type function pointer */
647 	hw->phy.media_type = e1000_media_type_copper;
648 
649 	/* Set mta register count */
650 	mac->mta_reg_count = 32;
651 	/* Set rar entry count */
652 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
653 	if (mac->type == e1000_ich8lan)
654 		mac->rar_entry_count--;
655 	/* FWSM register */
656 	mac->has_fwsm = true;
657 	/* ARC subsystem not supported */
658 	mac->arc_subsystem_valid = false;
659 	/* Adaptive IFS supported */
660 	mac->adaptive_ifs = true;
661 
662 	/* LED and other operations */
663 	switch (mac->type) {
664 	case e1000_ich8lan:
665 	case e1000_ich9lan:
666 	case e1000_ich10lan:
667 		/* check management mode */
668 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
669 		/* ID LED init */
670 		mac->ops.id_led_init = e1000e_id_led_init_generic;
671 		/* blink LED */
672 		mac->ops.blink_led = e1000e_blink_led_generic;
673 		/* setup LED */
674 		mac->ops.setup_led = e1000e_setup_led_generic;
675 		/* cleanup LED */
676 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
677 		/* turn on/off LED */
678 		mac->ops.led_on = e1000_led_on_ich8lan;
679 		mac->ops.led_off = e1000_led_off_ich8lan;
680 		break;
681 	case e1000_pch2lan:
682 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
683 		mac->ops.rar_set = e1000_rar_set_pch2lan;
684 		/* fall-through */
685 	case e1000_pch_lpt:
686 	case e1000_pchlan:
687 		/* check management mode */
688 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
689 		/* ID LED init */
690 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
691 		/* setup LED */
692 		mac->ops.setup_led = e1000_setup_led_pchlan;
693 		/* cleanup LED */
694 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
695 		/* turn on/off LED */
696 		mac->ops.led_on = e1000_led_on_pchlan;
697 		mac->ops.led_off = e1000_led_off_pchlan;
698 		break;
699 	default:
700 		break;
701 	}
702 
703 	if (mac->type == e1000_pch_lpt) {
704 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
705 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
706 		mac->ops.setup_physical_interface =
707 		    e1000_setup_copper_link_pch_lpt;
708 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
709 	}
710 
711 	/* Enable PCS Lock-loss workaround for ICH8 */
712 	if (mac->type == e1000_ich8lan)
713 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
714 
715 	return 0;
716 }
717 
718 /**
719  *  __e1000_access_emi_reg_locked - Read/write EMI register
720  *  @hw: pointer to the HW structure
721  *  @addr: EMI address to program
722  *  @data: pointer to value to read/write from/to the EMI address
723  *  @read: boolean flag to indicate read or write
724  *
725  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
726  **/
727 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
728 					 u16 *data, bool read)
729 {
730 	s32 ret_val;
731 
732 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
733 	if (ret_val)
734 		return ret_val;
735 
736 	if (read)
737 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
738 	else
739 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
740 
741 	return ret_val;
742 }
743 
744 /**
745  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
746  *  @hw: pointer to the HW structure
747  *  @addr: EMI address to program
748  *  @data: value to be read from the EMI address
749  *
750  *  Assumes the SW/FW/HW Semaphore is already acquired.
751  **/
752 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
753 {
754 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
755 }
756 
757 /**
758  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
759  *  @hw: pointer to the HW structure
760  *  @addr: EMI address to program
761  *  @data: value to be written to the EMI address
762  *
763  *  Assumes the SW/FW/HW Semaphore is already acquired.
764  **/
765 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
766 {
767 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
768 }
769 
770 /**
771  *  e1000_set_eee_pchlan - Enable/disable EEE support
772  *  @hw: pointer to the HW structure
773  *
774  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
775  *  the link and the EEE capabilities of the link partner.  The LPI Control
776  *  register bits will remain set only if/when link is up.
777  *
778  *  EEE LPI must not be asserted earlier than one second after link is up.
779  *  On 82579, EEE LPI should not be enabled until such time otherwise there
780  *  can be link issues with some switches.  Other devices can have EEE LPI
781  *  enabled immediately upon link up since they have a timer in hardware which
782  *  prevents LPI from being asserted too early.
783  **/
784 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
785 {
786 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
787 	s32 ret_val;
788 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
789 
790 	switch (hw->phy.type) {
791 	case e1000_phy_82579:
792 		lpa = I82579_EEE_LP_ABILITY;
793 		pcs_status = I82579_EEE_PCS_STATUS;
794 		adv_addr = I82579_EEE_ADVERTISEMENT;
795 		break;
796 	case e1000_phy_i217:
797 		lpa = I217_EEE_LP_ABILITY;
798 		pcs_status = I217_EEE_PCS_STATUS;
799 		adv_addr = I217_EEE_ADVERTISEMENT;
800 		break;
801 	default:
802 		return 0;
803 	}
804 
805 	ret_val = hw->phy.ops.acquire(hw);
806 	if (ret_val)
807 		return ret_val;
808 
809 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
810 	if (ret_val)
811 		goto release;
812 
813 	/* Clear bits that enable EEE in various speeds */
814 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
815 
816 	/* Enable EEE if not disabled by user */
817 	if (!dev_spec->eee_disable) {
818 		/* Save off link partner's EEE ability */
819 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
820 						    &dev_spec->eee_lp_ability);
821 		if (ret_val)
822 			goto release;
823 
824 		/* Read EEE advertisement */
825 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
826 		if (ret_val)
827 			goto release;
828 
829 		/* Enable EEE only for speeds in which the link partner is
830 		 * EEE capable and for which we advertise EEE.
831 		 */
832 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
833 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
834 
835 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
836 			e1e_rphy_locked(hw, MII_LPA, &data);
837 			if (data & LPA_100FULL)
838 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
839 			else
840 				/* EEE is not supported in 100Half, so ignore
841 				 * partner's EEE in 100 ability if full-duplex
842 				 * is not advertised.
843 				 */
844 				dev_spec->eee_lp_ability &=
845 				    ~I82579_EEE_100_SUPPORTED;
846 		}
847 	}
848 
849 	if (hw->phy.type == e1000_phy_82579) {
850 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
851 						    &data);
852 		if (ret_val)
853 			goto release;
854 
855 		data &= ~I82579_LPI_100_PLL_SHUT;
856 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
857 						     data);
858 	}
859 
860 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
861 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
862 	if (ret_val)
863 		goto release;
864 
865 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
866 release:
867 	hw->phy.ops.release(hw);
868 
869 	return ret_val;
870 }
871 
872 /**
873  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
874  *  @hw:   pointer to the HW structure
875  *  @link: link up bool flag
876  *
877  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
878  *  preventing further DMA write requests.  Workaround the issue by disabling
879  *  the de-assertion of the clock request when in 1Gpbs mode.
880  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
881  *  speeds in order to avoid Tx hangs.
882  **/
883 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
884 {
885 	u32 fextnvm6 = er32(FEXTNVM6);
886 	u32 status = er32(STATUS);
887 	s32 ret_val = 0;
888 	u16 reg;
889 
890 	if (link && (status & E1000_STATUS_SPEED_1000)) {
891 		ret_val = hw->phy.ops.acquire(hw);
892 		if (ret_val)
893 			return ret_val;
894 
895 		ret_val =
896 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
897 						&reg);
898 		if (ret_val)
899 			goto release;
900 
901 		ret_val =
902 		    e1000e_write_kmrn_reg_locked(hw,
903 						 E1000_KMRNCTRLSTA_K1_CONFIG,
904 						 reg &
905 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
906 		if (ret_val)
907 			goto release;
908 
909 		usleep_range(10, 20);
910 
911 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
912 
913 		ret_val =
914 		    e1000e_write_kmrn_reg_locked(hw,
915 						 E1000_KMRNCTRLSTA_K1_CONFIG,
916 						 reg);
917 release:
918 		hw->phy.ops.release(hw);
919 	} else {
920 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
921 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
922 
923 		if (!link || ((status & E1000_STATUS_SPEED_100) &&
924 			      (status & E1000_STATUS_FD)))
925 			goto update_fextnvm6;
926 
927 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
928 		if (ret_val)
929 			return ret_val;
930 
931 		/* Clear link status transmit timeout */
932 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
933 
934 		if (status & E1000_STATUS_SPEED_100) {
935 			/* Set inband Tx timeout to 5x10us for 100Half */
936 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
937 
938 			/* Do not extend the K1 entry latency for 100Half */
939 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
940 		} else {
941 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
942 			reg |= 50 <<
943 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
944 
945 			/* Extend the K1 entry latency for 10 Mbps */
946 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
947 		}
948 
949 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
950 		if (ret_val)
951 			return ret_val;
952 
953 update_fextnvm6:
954 		ew32(FEXTNVM6, fextnvm6);
955 	}
956 
957 	return ret_val;
958 }
959 
960 /**
961  *  e1000_platform_pm_pch_lpt - Set platform power management values
962  *  @hw: pointer to the HW structure
963  *  @link: bool indicating link status
964  *
965  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
966  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
967  *  when link is up (which must not exceed the maximum latency supported
968  *  by the platform), otherwise specify there is no LTR requirement.
969  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
970  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
971  *  Capability register set, on this device LTR is set by writing the
972  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
973  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
974  *  message to the PMC.
975  **/
976 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
977 {
978 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
979 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
980 	u16 lat_enc = 0;	/* latency encoded */
981 
982 	if (link) {
983 		u16 speed, duplex, scale = 0;
984 		u16 max_snoop, max_nosnoop;
985 		u16 max_ltr_enc;	/* max LTR latency encoded */
986 		s64 lat_ns;	/* latency (ns) */
987 		s64 value;
988 		u32 rxa;
989 
990 		if (!hw->adapter->max_frame_size) {
991 			e_dbg("max_frame_size not set.\n");
992 			return -E1000_ERR_CONFIG;
993 		}
994 
995 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
996 		if (!speed) {
997 			e_dbg("Speed not set.\n");
998 			return -E1000_ERR_CONFIG;
999 		}
1000 
1001 		/* Rx Packet Buffer Allocation size (KB) */
1002 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1003 
1004 		/* Determine the maximum latency tolerated by the device.
1005 		 *
1006 		 * Per the PCIe spec, the tolerated latencies are encoded as
1007 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1008 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1009 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1010 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1011 		 */
1012 		lat_ns = ((s64)rxa * 1024 -
1013 			  (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
1014 		if (lat_ns < 0)
1015 			lat_ns = 0;
1016 		else
1017 			do_div(lat_ns, speed);
1018 
1019 		value = lat_ns;
1020 		while (value > PCI_LTR_VALUE_MASK) {
1021 			scale++;
1022 			value = DIV_ROUND_UP(value, (1 << 5));
1023 		}
1024 		if (scale > E1000_LTRV_SCALE_MAX) {
1025 			e_dbg("Invalid LTR latency scale %d\n", scale);
1026 			return -E1000_ERR_CONFIG;
1027 		}
1028 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1029 
1030 		/* Determine the maximum latency tolerated by the platform */
1031 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1032 				     &max_snoop);
1033 		pci_read_config_word(hw->adapter->pdev,
1034 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1035 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1036 
1037 		if (lat_enc > max_ltr_enc)
1038 			lat_enc = max_ltr_enc;
1039 	}
1040 
1041 	/* Set Snoop and No-Snoop latencies the same */
1042 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1043 	ew32(LTRV, reg);
1044 
1045 	return 0;
1046 }
1047 
1048 /**
1049  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1050  *  @hw: pointer to the HW structure
1051  *  @to_sx: boolean indicating a system power state transition to Sx
1052  *
1053  *  When link is down, configure ULP mode to significantly reduce the power
1054  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1055  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1056  *  system, configure the ULP mode by software.
1057  */
1058 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1059 {
1060 	u32 mac_reg;
1061 	s32 ret_val = 0;
1062 	u16 phy_reg;
1063 
1064 	if ((hw->mac.type < e1000_pch_lpt) ||
1065 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1066 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1067 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1068 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1069 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1070 		return 0;
1071 
1072 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1073 		/* Request ME configure ULP mode in the PHY */
1074 		mac_reg = er32(H2ME);
1075 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1076 		ew32(H2ME, mac_reg);
1077 
1078 		goto out;
1079 	}
1080 
1081 	if (!to_sx) {
1082 		int i = 0;
1083 
1084 		/* Poll up to 5 seconds for Cable Disconnected indication */
1085 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1086 			/* Bail if link is re-acquired */
1087 			if (er32(STATUS) & E1000_STATUS_LU)
1088 				return -E1000_ERR_PHY;
1089 
1090 			if (i++ == 100)
1091 				break;
1092 
1093 			msleep(50);
1094 		}
1095 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1096 		      (er32(FEXT) &
1097 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1098 	}
1099 
1100 	ret_val = hw->phy.ops.acquire(hw);
1101 	if (ret_val)
1102 		goto out;
1103 
1104 	/* Force SMBus mode in PHY */
1105 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1106 	if (ret_val)
1107 		goto release;
1108 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1109 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1110 
1111 	/* Force SMBus mode in MAC */
1112 	mac_reg = er32(CTRL_EXT);
1113 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1114 	ew32(CTRL_EXT, mac_reg);
1115 
1116 	/* Set Inband ULP Exit, Reset to SMBus mode and
1117 	 * Disable SMBus Release on PERST# in PHY
1118 	 */
1119 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1120 	if (ret_val)
1121 		goto release;
1122 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1123 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1124 	if (to_sx) {
1125 		if (er32(WUFC) & E1000_WUFC_LNKC)
1126 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1127 
1128 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1129 	} else {
1130 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1131 	}
1132 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1133 
1134 	/* Set Disable SMBus Release on PERST# in MAC */
1135 	mac_reg = er32(FEXTNVM7);
1136 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1137 	ew32(FEXTNVM7, mac_reg);
1138 
1139 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1140 	phy_reg |= I218_ULP_CONFIG1_START;
1141 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1142 release:
1143 	hw->phy.ops.release(hw);
1144 out:
1145 	if (ret_val)
1146 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1147 	else
1148 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1149 
1150 	return ret_val;
1151 }
1152 
1153 /**
1154  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1155  *  @hw: pointer to the HW structure
1156  *  @force: boolean indicating whether or not to force disabling ULP
1157  *
1158  *  Un-configure ULP mode when link is up, the system is transitioned from
1159  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1160  *  system, poll for an indication from ME that ULP has been un-configured.
1161  *  If not on an ME enabled system, un-configure the ULP mode by software.
1162  *
1163  *  During nominal operation, this function is called when link is acquired
1164  *  to disable ULP mode (force=false); otherwise, for example when unloading
1165  *  the driver or during Sx->S0 transitions, this is called with force=true
1166  *  to forcibly disable ULP.
1167  */
1168 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1169 {
1170 	s32 ret_val = 0;
1171 	u32 mac_reg;
1172 	u16 phy_reg;
1173 	int i = 0;
1174 
1175 	if ((hw->mac.type < e1000_pch_lpt) ||
1176 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1177 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1178 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1179 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1180 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1181 		return 0;
1182 
1183 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1184 		if (force) {
1185 			/* Request ME un-configure ULP mode in the PHY */
1186 			mac_reg = er32(H2ME);
1187 			mac_reg &= ~E1000_H2ME_ULP;
1188 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1189 			ew32(H2ME, mac_reg);
1190 		}
1191 
1192 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1193 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1194 			if (i++ == 10) {
1195 				ret_val = -E1000_ERR_PHY;
1196 				goto out;
1197 			}
1198 
1199 			usleep_range(10000, 20000);
1200 		}
1201 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1202 
1203 		if (force) {
1204 			mac_reg = er32(H2ME);
1205 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1206 			ew32(H2ME, mac_reg);
1207 		} else {
1208 			/* Clear H2ME.ULP after ME ULP configuration */
1209 			mac_reg = er32(H2ME);
1210 			mac_reg &= ~E1000_H2ME_ULP;
1211 			ew32(H2ME, mac_reg);
1212 		}
1213 
1214 		goto out;
1215 	}
1216 
1217 	ret_val = hw->phy.ops.acquire(hw);
1218 	if (ret_val)
1219 		goto out;
1220 
1221 	if (force)
1222 		/* Toggle LANPHYPC Value bit */
1223 		e1000_toggle_lanphypc_pch_lpt(hw);
1224 
1225 	/* Unforce SMBus mode in PHY */
1226 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1227 	if (ret_val) {
1228 		/* The MAC might be in PCIe mode, so temporarily force to
1229 		 * SMBus mode in order to access the PHY.
1230 		 */
1231 		mac_reg = er32(CTRL_EXT);
1232 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1233 		ew32(CTRL_EXT, mac_reg);
1234 
1235 		msleep(50);
1236 
1237 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1238 						       &phy_reg);
1239 		if (ret_val)
1240 			goto release;
1241 	}
1242 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1243 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1244 
1245 	/* Unforce SMBus mode in MAC */
1246 	mac_reg = er32(CTRL_EXT);
1247 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1248 	ew32(CTRL_EXT, mac_reg);
1249 
1250 	/* When ULP mode was previously entered, K1 was disabled by the
1251 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1252 	 */
1253 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1254 	if (ret_val)
1255 		goto release;
1256 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1257 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1258 
1259 	/* Clear ULP enabled configuration */
1260 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1261 	if (ret_val)
1262 		goto release;
1263 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1264 		     I218_ULP_CONFIG1_STICKY_ULP |
1265 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1266 		     I218_ULP_CONFIG1_WOL_HOST |
1267 		     I218_ULP_CONFIG1_INBAND_EXIT |
1268 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1269 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1270 
1271 	/* Commit ULP changes by starting auto ULP configuration */
1272 	phy_reg |= I218_ULP_CONFIG1_START;
1273 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1274 
1275 	/* Clear Disable SMBus Release on PERST# in MAC */
1276 	mac_reg = er32(FEXTNVM7);
1277 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1278 	ew32(FEXTNVM7, mac_reg);
1279 
1280 release:
1281 	hw->phy.ops.release(hw);
1282 	if (force) {
1283 		e1000_phy_hw_reset(hw);
1284 		msleep(50);
1285 	}
1286 out:
1287 	if (ret_val)
1288 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1289 	else
1290 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1291 
1292 	return ret_val;
1293 }
1294 
1295 /**
1296  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1297  *  @hw: pointer to the HW structure
1298  *
1299  *  Checks to see of the link status of the hardware has changed.  If a
1300  *  change in link status has been detected, then we read the PHY registers
1301  *  to get the current speed/duplex if link exists.
1302  **/
1303 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1304 {
1305 	struct e1000_mac_info *mac = &hw->mac;
1306 	s32 ret_val;
1307 	bool link;
1308 	u16 phy_reg;
1309 
1310 	/* We only want to go out to the PHY registers to see if Auto-Neg
1311 	 * has completed and/or if our link status has changed.  The
1312 	 * get_link_status flag is set upon receiving a Link Status
1313 	 * Change or Rx Sequence Error interrupt.
1314 	 */
1315 	if (!mac->get_link_status)
1316 		return 0;
1317 
1318 	/* First we want to see if the MII Status Register reports
1319 	 * link.  If so, then we want to get the current speed/duplex
1320 	 * of the PHY.
1321 	 */
1322 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1323 	if (ret_val)
1324 		return ret_val;
1325 
1326 	if (hw->mac.type == e1000_pchlan) {
1327 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1328 		if (ret_val)
1329 			return ret_val;
1330 	}
1331 
1332 	/* When connected at 10Mbps half-duplex, some parts are excessively
1333 	 * aggressive resulting in many collisions. To avoid this, increase
1334 	 * the IPG and reduce Rx latency in the PHY.
1335 	 */
1336 	if (((hw->mac.type == e1000_pch2lan) ||
1337 	     (hw->mac.type == e1000_pch_lpt)) && link) {
1338 		u32 reg;
1339 
1340 		reg = er32(STATUS);
1341 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1342 			u16 emi_addr;
1343 
1344 			reg = er32(TIPG);
1345 			reg &= ~E1000_TIPG_IPGT_MASK;
1346 			reg |= 0xFF;
1347 			ew32(TIPG, reg);
1348 
1349 			/* Reduce Rx latency in analog PHY */
1350 			ret_val = hw->phy.ops.acquire(hw);
1351 			if (ret_val)
1352 				return ret_val;
1353 
1354 			if (hw->mac.type == e1000_pch2lan)
1355 				emi_addr = I82579_RX_CONFIG;
1356 			else
1357 				emi_addr = I217_RX_CONFIG;
1358 
1359 			ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1360 
1361 			hw->phy.ops.release(hw);
1362 
1363 			if (ret_val)
1364 				return ret_val;
1365 		}
1366 	}
1367 
1368 	/* Work-around I218 hang issue */
1369 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1370 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1371 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1372 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1373 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1374 		if (ret_val)
1375 			return ret_val;
1376 	}
1377 
1378 	if (hw->mac.type == e1000_pch_lpt) {
1379 		/* Set platform power management values for
1380 		 * Latency Tolerance Reporting (LTR)
1381 		 */
1382 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1383 		if (ret_val)
1384 			return ret_val;
1385 	}
1386 
1387 	/* Clear link partner's EEE ability */
1388 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1389 
1390 	if (!link)
1391 		return 0;	/* No link detected */
1392 
1393 	mac->get_link_status = false;
1394 
1395 	switch (hw->mac.type) {
1396 	case e1000_pch2lan:
1397 		ret_val = e1000_k1_workaround_lv(hw);
1398 		if (ret_val)
1399 			return ret_val;
1400 		/* fall-thru */
1401 	case e1000_pchlan:
1402 		if (hw->phy.type == e1000_phy_82578) {
1403 			ret_val = e1000_link_stall_workaround_hv(hw);
1404 			if (ret_val)
1405 				return ret_val;
1406 		}
1407 
1408 		/* Workaround for PCHx parts in half-duplex:
1409 		 * Set the number of preambles removed from the packet
1410 		 * when it is passed from the PHY to the MAC to prevent
1411 		 * the MAC from misinterpreting the packet type.
1412 		 */
1413 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1414 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1415 
1416 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1417 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1418 
1419 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1420 		break;
1421 	default:
1422 		break;
1423 	}
1424 
1425 	/* Check if there was DownShift, must be checked
1426 	 * immediately after link-up
1427 	 */
1428 	e1000e_check_downshift(hw);
1429 
1430 	/* Enable/Disable EEE after link up */
1431 	if (hw->phy.type > e1000_phy_82579) {
1432 		ret_val = e1000_set_eee_pchlan(hw);
1433 		if (ret_val)
1434 			return ret_val;
1435 	}
1436 
1437 	/* If we are forcing speed/duplex, then we simply return since
1438 	 * we have already determined whether we have link or not.
1439 	 */
1440 	if (!mac->autoneg)
1441 		return -E1000_ERR_CONFIG;
1442 
1443 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1444 	 * of MAC speed/duplex configuration.  So we only need to
1445 	 * configure Collision Distance in the MAC.
1446 	 */
1447 	mac->ops.config_collision_dist(hw);
1448 
1449 	/* Configure Flow Control now that Auto-Neg has completed.
1450 	 * First, we need to restore the desired flow control
1451 	 * settings because we may have had to re-autoneg with a
1452 	 * different link partner.
1453 	 */
1454 	ret_val = e1000e_config_fc_after_link_up(hw);
1455 	if (ret_val)
1456 		e_dbg("Error configuring flow control\n");
1457 
1458 	return ret_val;
1459 }
1460 
1461 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1462 {
1463 	struct e1000_hw *hw = &adapter->hw;
1464 	s32 rc;
1465 
1466 	rc = e1000_init_mac_params_ich8lan(hw);
1467 	if (rc)
1468 		return rc;
1469 
1470 	rc = e1000_init_nvm_params_ich8lan(hw);
1471 	if (rc)
1472 		return rc;
1473 
1474 	switch (hw->mac.type) {
1475 	case e1000_ich8lan:
1476 	case e1000_ich9lan:
1477 	case e1000_ich10lan:
1478 		rc = e1000_init_phy_params_ich8lan(hw);
1479 		break;
1480 	case e1000_pchlan:
1481 	case e1000_pch2lan:
1482 	case e1000_pch_lpt:
1483 		rc = e1000_init_phy_params_pchlan(hw);
1484 		break;
1485 	default:
1486 		break;
1487 	}
1488 	if (rc)
1489 		return rc;
1490 
1491 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1492 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1493 	 */
1494 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1495 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1496 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1497 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1498 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1499 
1500 		hw->mac.ops.blink_led = NULL;
1501 	}
1502 
1503 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1504 	    (adapter->hw.phy.type != e1000_phy_ife))
1505 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1506 
1507 	/* Enable workaround for 82579 w/ ME enabled */
1508 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1509 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1510 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1511 
1512 	return 0;
1513 }
1514 
1515 static DEFINE_MUTEX(nvm_mutex);
1516 
1517 /**
1518  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1519  *  @hw: pointer to the HW structure
1520  *
1521  *  Acquires the mutex for performing NVM operations.
1522  **/
1523 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1524 {
1525 	mutex_lock(&nvm_mutex);
1526 
1527 	return 0;
1528 }
1529 
1530 /**
1531  *  e1000_release_nvm_ich8lan - Release NVM mutex
1532  *  @hw: pointer to the HW structure
1533  *
1534  *  Releases the mutex used while performing NVM operations.
1535  **/
1536 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1537 {
1538 	mutex_unlock(&nvm_mutex);
1539 }
1540 
1541 /**
1542  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1543  *  @hw: pointer to the HW structure
1544  *
1545  *  Acquires the software control flag for performing PHY and select
1546  *  MAC CSR accesses.
1547  **/
1548 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1549 {
1550 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1551 	s32 ret_val = 0;
1552 
1553 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1554 			     &hw->adapter->state)) {
1555 		e_dbg("contention for Phy access\n");
1556 		return -E1000_ERR_PHY;
1557 	}
1558 
1559 	while (timeout) {
1560 		extcnf_ctrl = er32(EXTCNF_CTRL);
1561 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1562 			break;
1563 
1564 		mdelay(1);
1565 		timeout--;
1566 	}
1567 
1568 	if (!timeout) {
1569 		e_dbg("SW has already locked the resource.\n");
1570 		ret_val = -E1000_ERR_CONFIG;
1571 		goto out;
1572 	}
1573 
1574 	timeout = SW_FLAG_TIMEOUT;
1575 
1576 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1577 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1578 
1579 	while (timeout) {
1580 		extcnf_ctrl = er32(EXTCNF_CTRL);
1581 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1582 			break;
1583 
1584 		mdelay(1);
1585 		timeout--;
1586 	}
1587 
1588 	if (!timeout) {
1589 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1590 		      er32(FWSM), extcnf_ctrl);
1591 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1592 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1593 		ret_val = -E1000_ERR_CONFIG;
1594 		goto out;
1595 	}
1596 
1597 out:
1598 	if (ret_val)
1599 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1600 
1601 	return ret_val;
1602 }
1603 
1604 /**
1605  *  e1000_release_swflag_ich8lan - Release software control flag
1606  *  @hw: pointer to the HW structure
1607  *
1608  *  Releases the software control flag for performing PHY and select
1609  *  MAC CSR accesses.
1610  **/
1611 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1612 {
1613 	u32 extcnf_ctrl;
1614 
1615 	extcnf_ctrl = er32(EXTCNF_CTRL);
1616 
1617 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1618 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1619 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1620 	} else {
1621 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1622 	}
1623 
1624 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1625 }
1626 
1627 /**
1628  *  e1000_check_mng_mode_ich8lan - Checks management mode
1629  *  @hw: pointer to the HW structure
1630  *
1631  *  This checks if the adapter has any manageability enabled.
1632  *  This is a function pointer entry point only called by read/write
1633  *  routines for the PHY and NVM parts.
1634  **/
1635 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1636 {
1637 	u32 fwsm;
1638 
1639 	fwsm = er32(FWSM);
1640 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1641 		((fwsm & E1000_FWSM_MODE_MASK) ==
1642 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1643 }
1644 
1645 /**
1646  *  e1000_check_mng_mode_pchlan - Checks management mode
1647  *  @hw: pointer to the HW structure
1648  *
1649  *  This checks if the adapter has iAMT enabled.
1650  *  This is a function pointer entry point only called by read/write
1651  *  routines for the PHY and NVM parts.
1652  **/
1653 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1654 {
1655 	u32 fwsm;
1656 
1657 	fwsm = er32(FWSM);
1658 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1659 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1660 }
1661 
1662 /**
1663  *  e1000_rar_set_pch2lan - Set receive address register
1664  *  @hw: pointer to the HW structure
1665  *  @addr: pointer to the receive address
1666  *  @index: receive address array register
1667  *
1668  *  Sets the receive address array register at index to the address passed
1669  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1670  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1671  *  Use SHRA[0-3] in place of those reserved for ME.
1672  **/
1673 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1674 {
1675 	u32 rar_low, rar_high;
1676 
1677 	/* HW expects these in little endian so we reverse the byte order
1678 	 * from network order (big endian) to little endian
1679 	 */
1680 	rar_low = ((u32)addr[0] |
1681 		   ((u32)addr[1] << 8) |
1682 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1683 
1684 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1685 
1686 	/* If MAC address zero, no need to set the AV bit */
1687 	if (rar_low || rar_high)
1688 		rar_high |= E1000_RAH_AV;
1689 
1690 	if (index == 0) {
1691 		ew32(RAL(index), rar_low);
1692 		e1e_flush();
1693 		ew32(RAH(index), rar_high);
1694 		e1e_flush();
1695 		return 0;
1696 	}
1697 
1698 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1699 	 * next address into the SHRA register array.
1700 	 */
1701 	if (index < (u32)(hw->mac.rar_entry_count)) {
1702 		s32 ret_val;
1703 
1704 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1705 		if (ret_val)
1706 			goto out;
1707 
1708 		ew32(SHRAL(index - 1), rar_low);
1709 		e1e_flush();
1710 		ew32(SHRAH(index - 1), rar_high);
1711 		e1e_flush();
1712 
1713 		e1000_release_swflag_ich8lan(hw);
1714 
1715 		/* verify the register updates */
1716 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1717 		    (er32(SHRAH(index - 1)) == rar_high))
1718 			return 0;
1719 
1720 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1721 		      (index - 1), er32(FWSM));
1722 	}
1723 
1724 out:
1725 	e_dbg("Failed to write receive address at index %d\n", index);
1726 	return -E1000_ERR_CONFIG;
1727 }
1728 
1729 /**
1730  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1731  *  @hw: pointer to the HW structure
1732  *
1733  *  Get the number of available receive registers that the Host can
1734  *  program. SHRA[0-10] are the shared receive address registers
1735  *  that are shared between the Host and manageability engine (ME).
1736  *  ME can reserve any number of addresses and the host needs to be
1737  *  able to tell how many available registers it has access to.
1738  **/
1739 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1740 {
1741 	u32 wlock_mac;
1742 	u32 num_entries;
1743 
1744 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1745 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1746 
1747 	switch (wlock_mac) {
1748 	case 0:
1749 		/* All SHRA[0..10] and RAR[0] available */
1750 		num_entries = hw->mac.rar_entry_count;
1751 		break;
1752 	case 1:
1753 		/* Only RAR[0] available */
1754 		num_entries = 1;
1755 		break;
1756 	default:
1757 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1758 		num_entries = wlock_mac + 1;
1759 		break;
1760 	}
1761 
1762 	return num_entries;
1763 }
1764 
1765 /**
1766  *  e1000_rar_set_pch_lpt - Set receive address registers
1767  *  @hw: pointer to the HW structure
1768  *  @addr: pointer to the receive address
1769  *  @index: receive address array register
1770  *
1771  *  Sets the receive address register array at index to the address passed
1772  *  in by addr. For LPT, RAR[0] is the base address register that is to
1773  *  contain the MAC address. SHRA[0-10] are the shared receive address
1774  *  registers that are shared between the Host and manageability engine (ME).
1775  **/
1776 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1777 {
1778 	u32 rar_low, rar_high;
1779 	u32 wlock_mac;
1780 
1781 	/* HW expects these in little endian so we reverse the byte order
1782 	 * from network order (big endian) to little endian
1783 	 */
1784 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1785 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1786 
1787 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1788 
1789 	/* If MAC address zero, no need to set the AV bit */
1790 	if (rar_low || rar_high)
1791 		rar_high |= E1000_RAH_AV;
1792 
1793 	if (index == 0) {
1794 		ew32(RAL(index), rar_low);
1795 		e1e_flush();
1796 		ew32(RAH(index), rar_high);
1797 		e1e_flush();
1798 		return 0;
1799 	}
1800 
1801 	/* The manageability engine (ME) can lock certain SHRAR registers that
1802 	 * it is using - those registers are unavailable for use.
1803 	 */
1804 	if (index < hw->mac.rar_entry_count) {
1805 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1806 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1807 
1808 		/* Check if all SHRAR registers are locked */
1809 		if (wlock_mac == 1)
1810 			goto out;
1811 
1812 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1813 			s32 ret_val;
1814 
1815 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1816 
1817 			if (ret_val)
1818 				goto out;
1819 
1820 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1821 			e1e_flush();
1822 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1823 			e1e_flush();
1824 
1825 			e1000_release_swflag_ich8lan(hw);
1826 
1827 			/* verify the register updates */
1828 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1829 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1830 				return 0;
1831 		}
1832 	}
1833 
1834 out:
1835 	e_dbg("Failed to write receive address at index %d\n", index);
1836 	return -E1000_ERR_CONFIG;
1837 }
1838 
1839 /**
1840  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1841  *  @hw: pointer to the HW structure
1842  *
1843  *  Checks if firmware is blocking the reset of the PHY.
1844  *  This is a function pointer entry point only called by
1845  *  reset routines.
1846  **/
1847 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1848 {
1849 	bool blocked = false;
1850 	int i = 0;
1851 
1852 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1853 	       (i++ < 10))
1854 		usleep_range(10000, 20000);
1855 	return blocked ? E1000_BLK_PHY_RESET : 0;
1856 }
1857 
1858 /**
1859  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1860  *  @hw: pointer to the HW structure
1861  *
1862  *  Assumes semaphore already acquired.
1863  *
1864  **/
1865 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1866 {
1867 	u16 phy_data;
1868 	u32 strap = er32(STRAP);
1869 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1870 	    E1000_STRAP_SMT_FREQ_SHIFT;
1871 	s32 ret_val;
1872 
1873 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1874 
1875 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1876 	if (ret_val)
1877 		return ret_val;
1878 
1879 	phy_data &= ~HV_SMB_ADDR_MASK;
1880 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1881 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1882 
1883 	if (hw->phy.type == e1000_phy_i217) {
1884 		/* Restore SMBus frequency */
1885 		if (freq--) {
1886 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1887 			phy_data |= (freq & (1 << 0)) <<
1888 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1889 			phy_data |= (freq & (1 << 1)) <<
1890 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1891 		} else {
1892 			e_dbg("Unsupported SMB frequency in PHY\n");
1893 		}
1894 	}
1895 
1896 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1897 }
1898 
1899 /**
1900  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1901  *  @hw:   pointer to the HW structure
1902  *
1903  *  SW should configure the LCD from the NVM extended configuration region
1904  *  as a workaround for certain parts.
1905  **/
1906 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1907 {
1908 	struct e1000_phy_info *phy = &hw->phy;
1909 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1910 	s32 ret_val = 0;
1911 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1912 
1913 	/* Initialize the PHY from the NVM on ICH platforms.  This
1914 	 * is needed due to an issue where the NVM configuration is
1915 	 * not properly autoloaded after power transitions.
1916 	 * Therefore, after each PHY reset, we will load the
1917 	 * configuration data out of the NVM manually.
1918 	 */
1919 	switch (hw->mac.type) {
1920 	case e1000_ich8lan:
1921 		if (phy->type != e1000_phy_igp_3)
1922 			return ret_val;
1923 
1924 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1925 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1926 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1927 			break;
1928 		}
1929 		/* Fall-thru */
1930 	case e1000_pchlan:
1931 	case e1000_pch2lan:
1932 	case e1000_pch_lpt:
1933 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1934 		break;
1935 	default:
1936 		return ret_val;
1937 	}
1938 
1939 	ret_val = hw->phy.ops.acquire(hw);
1940 	if (ret_val)
1941 		return ret_val;
1942 
1943 	data = er32(FEXTNVM);
1944 	if (!(data & sw_cfg_mask))
1945 		goto release;
1946 
1947 	/* Make sure HW does not configure LCD from PHY
1948 	 * extended configuration before SW configuration
1949 	 */
1950 	data = er32(EXTCNF_CTRL);
1951 	if ((hw->mac.type < e1000_pch2lan) &&
1952 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1953 		goto release;
1954 
1955 	cnf_size = er32(EXTCNF_SIZE);
1956 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1957 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1958 	if (!cnf_size)
1959 		goto release;
1960 
1961 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1962 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1963 
1964 	if (((hw->mac.type == e1000_pchlan) &&
1965 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1966 	    (hw->mac.type > e1000_pchlan)) {
1967 		/* HW configures the SMBus address and LEDs when the
1968 		 * OEM and LCD Write Enable bits are set in the NVM.
1969 		 * When both NVM bits are cleared, SW will configure
1970 		 * them instead.
1971 		 */
1972 		ret_val = e1000_write_smbus_addr(hw);
1973 		if (ret_val)
1974 			goto release;
1975 
1976 		data = er32(LEDCTL);
1977 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1978 							(u16)data);
1979 		if (ret_val)
1980 			goto release;
1981 	}
1982 
1983 	/* Configure LCD from extended configuration region. */
1984 
1985 	/* cnf_base_addr is in DWORD */
1986 	word_addr = (u16)(cnf_base_addr << 1);
1987 
1988 	for (i = 0; i < cnf_size; i++) {
1989 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
1990 		if (ret_val)
1991 			goto release;
1992 
1993 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1994 					 1, &reg_addr);
1995 		if (ret_val)
1996 			goto release;
1997 
1998 		/* Save off the PHY page for future writes. */
1999 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2000 			phy_page = reg_data;
2001 			continue;
2002 		}
2003 
2004 		reg_addr &= PHY_REG_MASK;
2005 		reg_addr |= phy_page;
2006 
2007 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2008 		if (ret_val)
2009 			goto release;
2010 	}
2011 
2012 release:
2013 	hw->phy.ops.release(hw);
2014 	return ret_val;
2015 }
2016 
2017 /**
2018  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2019  *  @hw:   pointer to the HW structure
2020  *  @link: link up bool flag
2021  *
2022  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2023  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2024  *  If link is down, the function will restore the default K1 setting located
2025  *  in the NVM.
2026  **/
2027 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2028 {
2029 	s32 ret_val = 0;
2030 	u16 status_reg = 0;
2031 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2032 
2033 	if (hw->mac.type != e1000_pchlan)
2034 		return 0;
2035 
2036 	/* Wrap the whole flow with the sw flag */
2037 	ret_val = hw->phy.ops.acquire(hw);
2038 	if (ret_val)
2039 		return ret_val;
2040 
2041 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2042 	if (link) {
2043 		if (hw->phy.type == e1000_phy_82578) {
2044 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2045 						  &status_reg);
2046 			if (ret_val)
2047 				goto release;
2048 
2049 			status_reg &= (BM_CS_STATUS_LINK_UP |
2050 				       BM_CS_STATUS_RESOLVED |
2051 				       BM_CS_STATUS_SPEED_MASK);
2052 
2053 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2054 					   BM_CS_STATUS_RESOLVED |
2055 					   BM_CS_STATUS_SPEED_1000))
2056 				k1_enable = false;
2057 		}
2058 
2059 		if (hw->phy.type == e1000_phy_82577) {
2060 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2061 			if (ret_val)
2062 				goto release;
2063 
2064 			status_reg &= (HV_M_STATUS_LINK_UP |
2065 				       HV_M_STATUS_AUTONEG_COMPLETE |
2066 				       HV_M_STATUS_SPEED_MASK);
2067 
2068 			if (status_reg == (HV_M_STATUS_LINK_UP |
2069 					   HV_M_STATUS_AUTONEG_COMPLETE |
2070 					   HV_M_STATUS_SPEED_1000))
2071 				k1_enable = false;
2072 		}
2073 
2074 		/* Link stall fix for link up */
2075 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2076 		if (ret_val)
2077 			goto release;
2078 
2079 	} else {
2080 		/* Link stall fix for link down */
2081 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2082 		if (ret_val)
2083 			goto release;
2084 	}
2085 
2086 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2087 
2088 release:
2089 	hw->phy.ops.release(hw);
2090 
2091 	return ret_val;
2092 }
2093 
2094 /**
2095  *  e1000_configure_k1_ich8lan - Configure K1 power state
2096  *  @hw: pointer to the HW structure
2097  *  @enable: K1 state to configure
2098  *
2099  *  Configure the K1 power state based on the provided parameter.
2100  *  Assumes semaphore already acquired.
2101  *
2102  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2103  **/
2104 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2105 {
2106 	s32 ret_val;
2107 	u32 ctrl_reg = 0;
2108 	u32 ctrl_ext = 0;
2109 	u32 reg = 0;
2110 	u16 kmrn_reg = 0;
2111 
2112 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2113 					      &kmrn_reg);
2114 	if (ret_val)
2115 		return ret_val;
2116 
2117 	if (k1_enable)
2118 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2119 	else
2120 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2121 
2122 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2123 					       kmrn_reg);
2124 	if (ret_val)
2125 		return ret_val;
2126 
2127 	usleep_range(20, 40);
2128 	ctrl_ext = er32(CTRL_EXT);
2129 	ctrl_reg = er32(CTRL);
2130 
2131 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2132 	reg |= E1000_CTRL_FRCSPD;
2133 	ew32(CTRL, reg);
2134 
2135 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2136 	e1e_flush();
2137 	usleep_range(20, 40);
2138 	ew32(CTRL, ctrl_reg);
2139 	ew32(CTRL_EXT, ctrl_ext);
2140 	e1e_flush();
2141 	usleep_range(20, 40);
2142 
2143 	return 0;
2144 }
2145 
2146 /**
2147  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2148  *  @hw:       pointer to the HW structure
2149  *  @d0_state: boolean if entering d0 or d3 device state
2150  *
2151  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2152  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2153  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2154  **/
2155 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2156 {
2157 	s32 ret_val = 0;
2158 	u32 mac_reg;
2159 	u16 oem_reg;
2160 
2161 	if (hw->mac.type < e1000_pchlan)
2162 		return ret_val;
2163 
2164 	ret_val = hw->phy.ops.acquire(hw);
2165 	if (ret_val)
2166 		return ret_val;
2167 
2168 	if (hw->mac.type == e1000_pchlan) {
2169 		mac_reg = er32(EXTCNF_CTRL);
2170 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2171 			goto release;
2172 	}
2173 
2174 	mac_reg = er32(FEXTNVM);
2175 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2176 		goto release;
2177 
2178 	mac_reg = er32(PHY_CTRL);
2179 
2180 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2181 	if (ret_val)
2182 		goto release;
2183 
2184 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2185 
2186 	if (d0_state) {
2187 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2188 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2189 
2190 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2191 			oem_reg |= HV_OEM_BITS_LPLU;
2192 	} else {
2193 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2194 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2195 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2196 
2197 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2198 			       E1000_PHY_CTRL_NOND0A_LPLU))
2199 			oem_reg |= HV_OEM_BITS_LPLU;
2200 	}
2201 
2202 	/* Set Restart auto-neg to activate the bits */
2203 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2204 	    !hw->phy.ops.check_reset_block(hw))
2205 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2206 
2207 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2208 
2209 release:
2210 	hw->phy.ops.release(hw);
2211 
2212 	return ret_val;
2213 }
2214 
2215 /**
2216  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2217  *  @hw:   pointer to the HW structure
2218  **/
2219 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2220 {
2221 	s32 ret_val;
2222 	u16 data;
2223 
2224 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2225 	if (ret_val)
2226 		return ret_val;
2227 
2228 	data |= HV_KMRN_MDIO_SLOW;
2229 
2230 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2231 
2232 	return ret_val;
2233 }
2234 
2235 /**
2236  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2237  *  done after every PHY reset.
2238  **/
2239 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2240 {
2241 	s32 ret_val = 0;
2242 	u16 phy_data;
2243 
2244 	if (hw->mac.type != e1000_pchlan)
2245 		return 0;
2246 
2247 	/* Set MDIO slow mode before any other MDIO access */
2248 	if (hw->phy.type == e1000_phy_82577) {
2249 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2250 		if (ret_val)
2251 			return ret_val;
2252 	}
2253 
2254 	if (((hw->phy.type == e1000_phy_82577) &&
2255 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2256 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2257 		/* Disable generation of early preamble */
2258 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2259 		if (ret_val)
2260 			return ret_val;
2261 
2262 		/* Preamble tuning for SSC */
2263 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2264 		if (ret_val)
2265 			return ret_val;
2266 	}
2267 
2268 	if (hw->phy.type == e1000_phy_82578) {
2269 		/* Return registers to default by doing a soft reset then
2270 		 * writing 0x3140 to the control register.
2271 		 */
2272 		if (hw->phy.revision < 2) {
2273 			e1000e_phy_sw_reset(hw);
2274 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2275 		}
2276 	}
2277 
2278 	/* Select page 0 */
2279 	ret_val = hw->phy.ops.acquire(hw);
2280 	if (ret_val)
2281 		return ret_val;
2282 
2283 	hw->phy.addr = 1;
2284 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2285 	hw->phy.ops.release(hw);
2286 	if (ret_val)
2287 		return ret_val;
2288 
2289 	/* Configure the K1 Si workaround during phy reset assuming there is
2290 	 * link so that it disables K1 if link is in 1Gbps.
2291 	 */
2292 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2293 	if (ret_val)
2294 		return ret_val;
2295 
2296 	/* Workaround for link disconnects on a busy hub in half duplex */
2297 	ret_val = hw->phy.ops.acquire(hw);
2298 	if (ret_val)
2299 		return ret_val;
2300 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2301 	if (ret_val)
2302 		goto release;
2303 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2304 	if (ret_val)
2305 		goto release;
2306 
2307 	/* set MSE higher to enable link to stay up when noise is high */
2308 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2309 release:
2310 	hw->phy.ops.release(hw);
2311 
2312 	return ret_val;
2313 }
2314 
2315 /**
2316  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2317  *  @hw:   pointer to the HW structure
2318  **/
2319 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2320 {
2321 	u32 mac_reg;
2322 	u16 i, phy_reg = 0;
2323 	s32 ret_val;
2324 
2325 	ret_val = hw->phy.ops.acquire(hw);
2326 	if (ret_val)
2327 		return;
2328 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2329 	if (ret_val)
2330 		goto release;
2331 
2332 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2333 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2334 		mac_reg = er32(RAL(i));
2335 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2336 					   (u16)(mac_reg & 0xFFFF));
2337 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2338 					   (u16)((mac_reg >> 16) & 0xFFFF));
2339 
2340 		mac_reg = er32(RAH(i));
2341 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2342 					   (u16)(mac_reg & 0xFFFF));
2343 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2344 					   (u16)((mac_reg & E1000_RAH_AV)
2345 						 >> 16));
2346 	}
2347 
2348 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2349 
2350 release:
2351 	hw->phy.ops.release(hw);
2352 }
2353 
2354 /**
2355  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2356  *  with 82579 PHY
2357  *  @hw: pointer to the HW structure
2358  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2359  **/
2360 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2361 {
2362 	s32 ret_val = 0;
2363 	u16 phy_reg, data;
2364 	u32 mac_reg;
2365 	u16 i;
2366 
2367 	if (hw->mac.type < e1000_pch2lan)
2368 		return 0;
2369 
2370 	/* disable Rx path while enabling/disabling workaround */
2371 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2372 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2373 	if (ret_val)
2374 		return ret_val;
2375 
2376 	if (enable) {
2377 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2378 		 * SHRAL/H) and initial CRC values to the MAC
2379 		 */
2380 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2381 			u8 mac_addr[ETH_ALEN] = { 0 };
2382 			u32 addr_high, addr_low;
2383 
2384 			addr_high = er32(RAH(i));
2385 			if (!(addr_high & E1000_RAH_AV))
2386 				continue;
2387 			addr_low = er32(RAL(i));
2388 			mac_addr[0] = (addr_low & 0xFF);
2389 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2390 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2391 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2392 			mac_addr[4] = (addr_high & 0xFF);
2393 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2394 
2395 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2396 		}
2397 
2398 		/* Write Rx addresses to the PHY */
2399 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2400 
2401 		/* Enable jumbo frame workaround in the MAC */
2402 		mac_reg = er32(FFLT_DBG);
2403 		mac_reg &= ~(1 << 14);
2404 		mac_reg |= (7 << 15);
2405 		ew32(FFLT_DBG, mac_reg);
2406 
2407 		mac_reg = er32(RCTL);
2408 		mac_reg |= E1000_RCTL_SECRC;
2409 		ew32(RCTL, mac_reg);
2410 
2411 		ret_val = e1000e_read_kmrn_reg(hw,
2412 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2413 					       &data);
2414 		if (ret_val)
2415 			return ret_val;
2416 		ret_val = e1000e_write_kmrn_reg(hw,
2417 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2418 						data | (1 << 0));
2419 		if (ret_val)
2420 			return ret_val;
2421 		ret_val = e1000e_read_kmrn_reg(hw,
2422 					       E1000_KMRNCTRLSTA_HD_CTRL,
2423 					       &data);
2424 		if (ret_val)
2425 			return ret_val;
2426 		data &= ~(0xF << 8);
2427 		data |= (0xB << 8);
2428 		ret_val = e1000e_write_kmrn_reg(hw,
2429 						E1000_KMRNCTRLSTA_HD_CTRL,
2430 						data);
2431 		if (ret_val)
2432 			return ret_val;
2433 
2434 		/* Enable jumbo frame workaround in the PHY */
2435 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2436 		data &= ~(0x7F << 5);
2437 		data |= (0x37 << 5);
2438 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2439 		if (ret_val)
2440 			return ret_val;
2441 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2442 		data &= ~(1 << 13);
2443 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2444 		if (ret_val)
2445 			return ret_val;
2446 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2447 		data &= ~(0x3FF << 2);
2448 		data |= (0x1A << 2);
2449 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2450 		if (ret_val)
2451 			return ret_val;
2452 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2453 		if (ret_val)
2454 			return ret_val;
2455 		e1e_rphy(hw, HV_PM_CTRL, &data);
2456 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2457 		if (ret_val)
2458 			return ret_val;
2459 	} else {
2460 		/* Write MAC register values back to h/w defaults */
2461 		mac_reg = er32(FFLT_DBG);
2462 		mac_reg &= ~(0xF << 14);
2463 		ew32(FFLT_DBG, mac_reg);
2464 
2465 		mac_reg = er32(RCTL);
2466 		mac_reg &= ~E1000_RCTL_SECRC;
2467 		ew32(RCTL, mac_reg);
2468 
2469 		ret_val = e1000e_read_kmrn_reg(hw,
2470 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2471 					       &data);
2472 		if (ret_val)
2473 			return ret_val;
2474 		ret_val = e1000e_write_kmrn_reg(hw,
2475 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2476 						data & ~(1 << 0));
2477 		if (ret_val)
2478 			return ret_val;
2479 		ret_val = e1000e_read_kmrn_reg(hw,
2480 					       E1000_KMRNCTRLSTA_HD_CTRL,
2481 					       &data);
2482 		if (ret_val)
2483 			return ret_val;
2484 		data &= ~(0xF << 8);
2485 		data |= (0xB << 8);
2486 		ret_val = e1000e_write_kmrn_reg(hw,
2487 						E1000_KMRNCTRLSTA_HD_CTRL,
2488 						data);
2489 		if (ret_val)
2490 			return ret_val;
2491 
2492 		/* Write PHY register values back to h/w defaults */
2493 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2494 		data &= ~(0x7F << 5);
2495 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2496 		if (ret_val)
2497 			return ret_val;
2498 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2499 		data |= (1 << 13);
2500 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2501 		if (ret_val)
2502 			return ret_val;
2503 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2504 		data &= ~(0x3FF << 2);
2505 		data |= (0x8 << 2);
2506 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2507 		if (ret_val)
2508 			return ret_val;
2509 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2510 		if (ret_val)
2511 			return ret_val;
2512 		e1e_rphy(hw, HV_PM_CTRL, &data);
2513 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2514 		if (ret_val)
2515 			return ret_val;
2516 	}
2517 
2518 	/* re-enable Rx path after enabling/disabling workaround */
2519 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2520 }
2521 
2522 /**
2523  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2524  *  done after every PHY reset.
2525  **/
2526 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2527 {
2528 	s32 ret_val = 0;
2529 
2530 	if (hw->mac.type != e1000_pch2lan)
2531 		return 0;
2532 
2533 	/* Set MDIO slow mode before any other MDIO access */
2534 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2535 	if (ret_val)
2536 		return ret_val;
2537 
2538 	ret_val = hw->phy.ops.acquire(hw);
2539 	if (ret_val)
2540 		return ret_val;
2541 	/* set MSE higher to enable link to stay up when noise is high */
2542 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2543 	if (ret_val)
2544 		goto release;
2545 	/* drop link after 5 times MSE threshold was reached */
2546 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2547 release:
2548 	hw->phy.ops.release(hw);
2549 
2550 	return ret_val;
2551 }
2552 
2553 /**
2554  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2555  *  @hw:   pointer to the HW structure
2556  *
2557  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2558  *  Disable K1 in 1000Mbps and 100Mbps
2559  **/
2560 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2561 {
2562 	s32 ret_val = 0;
2563 	u16 status_reg = 0;
2564 
2565 	if (hw->mac.type != e1000_pch2lan)
2566 		return 0;
2567 
2568 	/* Set K1 beacon duration based on 10Mbs speed */
2569 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2570 	if (ret_val)
2571 		return ret_val;
2572 
2573 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2574 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2575 		if (status_reg &
2576 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2577 			u16 pm_phy_reg;
2578 
2579 			/* LV 1G/100 Packet drop issue wa  */
2580 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2581 			if (ret_val)
2582 				return ret_val;
2583 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2584 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2585 			if (ret_val)
2586 				return ret_val;
2587 		} else {
2588 			u32 mac_reg;
2589 
2590 			mac_reg = er32(FEXTNVM4);
2591 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2592 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2593 			ew32(FEXTNVM4, mac_reg);
2594 		}
2595 	}
2596 
2597 	return ret_val;
2598 }
2599 
2600 /**
2601  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2602  *  @hw:   pointer to the HW structure
2603  *  @gate: boolean set to true to gate, false to ungate
2604  *
2605  *  Gate/ungate the automatic PHY configuration via hardware; perform
2606  *  the configuration via software instead.
2607  **/
2608 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2609 {
2610 	u32 extcnf_ctrl;
2611 
2612 	if (hw->mac.type < e1000_pch2lan)
2613 		return;
2614 
2615 	extcnf_ctrl = er32(EXTCNF_CTRL);
2616 
2617 	if (gate)
2618 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2619 	else
2620 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2621 
2622 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2623 }
2624 
2625 /**
2626  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2627  *  @hw: pointer to the HW structure
2628  *
2629  *  Check the appropriate indication the MAC has finished configuring the
2630  *  PHY after a software reset.
2631  **/
2632 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2633 {
2634 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2635 
2636 	/* Wait for basic configuration completes before proceeding */
2637 	do {
2638 		data = er32(STATUS);
2639 		data &= E1000_STATUS_LAN_INIT_DONE;
2640 		usleep_range(100, 200);
2641 	} while ((!data) && --loop);
2642 
2643 	/* If basic configuration is incomplete before the above loop
2644 	 * count reaches 0, loading the configuration from NVM will
2645 	 * leave the PHY in a bad state possibly resulting in no link.
2646 	 */
2647 	if (loop == 0)
2648 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2649 
2650 	/* Clear the Init Done bit for the next init event */
2651 	data = er32(STATUS);
2652 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2653 	ew32(STATUS, data);
2654 }
2655 
2656 /**
2657  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2658  *  @hw: pointer to the HW structure
2659  **/
2660 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2661 {
2662 	s32 ret_val = 0;
2663 	u16 reg;
2664 
2665 	if (hw->phy.ops.check_reset_block(hw))
2666 		return 0;
2667 
2668 	/* Allow time for h/w to get to quiescent state after reset */
2669 	usleep_range(10000, 20000);
2670 
2671 	/* Perform any necessary post-reset workarounds */
2672 	switch (hw->mac.type) {
2673 	case e1000_pchlan:
2674 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2675 		if (ret_val)
2676 			return ret_val;
2677 		break;
2678 	case e1000_pch2lan:
2679 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2680 		if (ret_val)
2681 			return ret_val;
2682 		break;
2683 	default:
2684 		break;
2685 	}
2686 
2687 	/* Clear the host wakeup bit after lcd reset */
2688 	if (hw->mac.type >= e1000_pchlan) {
2689 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2690 		reg &= ~BM_WUC_HOST_WU_BIT;
2691 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2692 	}
2693 
2694 	/* Configure the LCD with the extended configuration region in NVM */
2695 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2696 	if (ret_val)
2697 		return ret_val;
2698 
2699 	/* Configure the LCD with the OEM bits in NVM */
2700 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2701 
2702 	if (hw->mac.type == e1000_pch2lan) {
2703 		/* Ungate automatic PHY configuration on non-managed 82579 */
2704 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2705 			usleep_range(10000, 20000);
2706 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2707 		}
2708 
2709 		/* Set EEE LPI Update Timer to 200usec */
2710 		ret_val = hw->phy.ops.acquire(hw);
2711 		if (ret_val)
2712 			return ret_val;
2713 		ret_val = e1000_write_emi_reg_locked(hw,
2714 						     I82579_LPI_UPDATE_TIMER,
2715 						     0x1387);
2716 		hw->phy.ops.release(hw);
2717 	}
2718 
2719 	return ret_val;
2720 }
2721 
2722 /**
2723  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2724  *  @hw: pointer to the HW structure
2725  *
2726  *  Resets the PHY
2727  *  This is a function pointer entry point called by drivers
2728  *  or other shared routines.
2729  **/
2730 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2731 {
2732 	s32 ret_val = 0;
2733 
2734 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2735 	if ((hw->mac.type == e1000_pch2lan) &&
2736 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2737 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2738 
2739 	ret_val = e1000e_phy_hw_reset_generic(hw);
2740 	if (ret_val)
2741 		return ret_val;
2742 
2743 	return e1000_post_phy_reset_ich8lan(hw);
2744 }
2745 
2746 /**
2747  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2748  *  @hw: pointer to the HW structure
2749  *  @active: true to enable LPLU, false to disable
2750  *
2751  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2752  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2753  *  the phy speed. This function will manually set the LPLU bit and restart
2754  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2755  *  since it configures the same bit.
2756  **/
2757 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2758 {
2759 	s32 ret_val;
2760 	u16 oem_reg;
2761 
2762 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2763 	if (ret_val)
2764 		return ret_val;
2765 
2766 	if (active)
2767 		oem_reg |= HV_OEM_BITS_LPLU;
2768 	else
2769 		oem_reg &= ~HV_OEM_BITS_LPLU;
2770 
2771 	if (!hw->phy.ops.check_reset_block(hw))
2772 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2773 
2774 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2775 }
2776 
2777 /**
2778  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2779  *  @hw: pointer to the HW structure
2780  *  @active: true to enable LPLU, false to disable
2781  *
2782  *  Sets the LPLU D0 state according to the active flag.  When
2783  *  activating LPLU this function also disables smart speed
2784  *  and vice versa.  LPLU will not be activated unless the
2785  *  device autonegotiation advertisement meets standards of
2786  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2787  *  This is a function pointer entry point only called by
2788  *  PHY setup routines.
2789  **/
2790 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2791 {
2792 	struct e1000_phy_info *phy = &hw->phy;
2793 	u32 phy_ctrl;
2794 	s32 ret_val = 0;
2795 	u16 data;
2796 
2797 	if (phy->type == e1000_phy_ife)
2798 		return 0;
2799 
2800 	phy_ctrl = er32(PHY_CTRL);
2801 
2802 	if (active) {
2803 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2804 		ew32(PHY_CTRL, phy_ctrl);
2805 
2806 		if (phy->type != e1000_phy_igp_3)
2807 			return 0;
2808 
2809 		/* Call gig speed drop workaround on LPLU before accessing
2810 		 * any PHY registers
2811 		 */
2812 		if (hw->mac.type == e1000_ich8lan)
2813 			e1000e_gig_downshift_workaround_ich8lan(hw);
2814 
2815 		/* When LPLU is enabled, we should disable SmartSpeed */
2816 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2817 		if (ret_val)
2818 			return ret_val;
2819 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2820 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2821 		if (ret_val)
2822 			return ret_val;
2823 	} else {
2824 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2825 		ew32(PHY_CTRL, phy_ctrl);
2826 
2827 		if (phy->type != e1000_phy_igp_3)
2828 			return 0;
2829 
2830 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2831 		 * during Dx states where the power conservation is most
2832 		 * important.  During driver activity we should enable
2833 		 * SmartSpeed, so performance is maintained.
2834 		 */
2835 		if (phy->smart_speed == e1000_smart_speed_on) {
2836 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2837 					   &data);
2838 			if (ret_val)
2839 				return ret_val;
2840 
2841 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2842 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2843 					   data);
2844 			if (ret_val)
2845 				return ret_val;
2846 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2847 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2848 					   &data);
2849 			if (ret_val)
2850 				return ret_val;
2851 
2852 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2853 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2854 					   data);
2855 			if (ret_val)
2856 				return ret_val;
2857 		}
2858 	}
2859 
2860 	return 0;
2861 }
2862 
2863 /**
2864  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2865  *  @hw: pointer to the HW structure
2866  *  @active: true to enable LPLU, false to disable
2867  *
2868  *  Sets the LPLU D3 state according to the active flag.  When
2869  *  activating LPLU this function also disables smart speed
2870  *  and vice versa.  LPLU will not be activated unless the
2871  *  device autonegotiation advertisement meets standards of
2872  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2873  *  This is a function pointer entry point only called by
2874  *  PHY setup routines.
2875  **/
2876 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2877 {
2878 	struct e1000_phy_info *phy = &hw->phy;
2879 	u32 phy_ctrl;
2880 	s32 ret_val = 0;
2881 	u16 data;
2882 
2883 	phy_ctrl = er32(PHY_CTRL);
2884 
2885 	if (!active) {
2886 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2887 		ew32(PHY_CTRL, phy_ctrl);
2888 
2889 		if (phy->type != e1000_phy_igp_3)
2890 			return 0;
2891 
2892 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2893 		 * during Dx states where the power conservation is most
2894 		 * important.  During driver activity we should enable
2895 		 * SmartSpeed, so performance is maintained.
2896 		 */
2897 		if (phy->smart_speed == e1000_smart_speed_on) {
2898 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2899 					   &data);
2900 			if (ret_val)
2901 				return ret_val;
2902 
2903 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2904 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2905 					   data);
2906 			if (ret_val)
2907 				return ret_val;
2908 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2909 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2910 					   &data);
2911 			if (ret_val)
2912 				return ret_val;
2913 
2914 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2915 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2916 					   data);
2917 			if (ret_val)
2918 				return ret_val;
2919 		}
2920 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2921 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2922 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2923 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2924 		ew32(PHY_CTRL, phy_ctrl);
2925 
2926 		if (phy->type != e1000_phy_igp_3)
2927 			return 0;
2928 
2929 		/* Call gig speed drop workaround on LPLU before accessing
2930 		 * any PHY registers
2931 		 */
2932 		if (hw->mac.type == e1000_ich8lan)
2933 			e1000e_gig_downshift_workaround_ich8lan(hw);
2934 
2935 		/* When LPLU is enabled, we should disable SmartSpeed */
2936 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2937 		if (ret_val)
2938 			return ret_val;
2939 
2940 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2941 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2942 	}
2943 
2944 	return ret_val;
2945 }
2946 
2947 /**
2948  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2949  *  @hw: pointer to the HW structure
2950  *  @bank:  pointer to the variable that returns the active bank
2951  *
2952  *  Reads signature byte from the NVM using the flash access registers.
2953  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2954  **/
2955 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2956 {
2957 	u32 eecd;
2958 	struct e1000_nvm_info *nvm = &hw->nvm;
2959 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2960 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2961 	u8 sig_byte = 0;
2962 	s32 ret_val;
2963 
2964 	switch (hw->mac.type) {
2965 	case e1000_ich8lan:
2966 	case e1000_ich9lan:
2967 		eecd = er32(EECD);
2968 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2969 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2970 			if (eecd & E1000_EECD_SEC1VAL)
2971 				*bank = 1;
2972 			else
2973 				*bank = 0;
2974 
2975 			return 0;
2976 		}
2977 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2978 		/* fall-thru */
2979 	default:
2980 		/* set bank to 0 in case flash read fails */
2981 		*bank = 0;
2982 
2983 		/* Check bank 0 */
2984 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2985 							&sig_byte);
2986 		if (ret_val)
2987 			return ret_val;
2988 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2989 		    E1000_ICH_NVM_SIG_VALUE) {
2990 			*bank = 0;
2991 			return 0;
2992 		}
2993 
2994 		/* Check bank 1 */
2995 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2996 							bank1_offset,
2997 							&sig_byte);
2998 		if (ret_val)
2999 			return ret_val;
3000 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3001 		    E1000_ICH_NVM_SIG_VALUE) {
3002 			*bank = 1;
3003 			return 0;
3004 		}
3005 
3006 		e_dbg("ERROR: No valid NVM bank present\n");
3007 		return -E1000_ERR_NVM;
3008 	}
3009 }
3010 
3011 /**
3012  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3013  *  @hw: pointer to the HW structure
3014  *  @offset: The offset (in bytes) of the word(s) to read.
3015  *  @words: Size of data to read in words
3016  *  @data: Pointer to the word(s) to read at offset.
3017  *
3018  *  Reads a word(s) from the NVM using the flash access registers.
3019  **/
3020 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3021 				  u16 *data)
3022 {
3023 	struct e1000_nvm_info *nvm = &hw->nvm;
3024 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3025 	u32 act_offset;
3026 	s32 ret_val = 0;
3027 	u32 bank = 0;
3028 	u16 i, word;
3029 
3030 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3031 	    (words == 0)) {
3032 		e_dbg("nvm parameter(s) out of bounds\n");
3033 		ret_val = -E1000_ERR_NVM;
3034 		goto out;
3035 	}
3036 
3037 	nvm->ops.acquire(hw);
3038 
3039 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3040 	if (ret_val) {
3041 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3042 		bank = 0;
3043 	}
3044 
3045 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3046 	act_offset += offset;
3047 
3048 	ret_val = 0;
3049 	for (i = 0; i < words; i++) {
3050 		if (dev_spec->shadow_ram[offset + i].modified) {
3051 			data[i] = dev_spec->shadow_ram[offset + i].value;
3052 		} else {
3053 			ret_val = e1000_read_flash_word_ich8lan(hw,
3054 								act_offset + i,
3055 								&word);
3056 			if (ret_val)
3057 				break;
3058 			data[i] = word;
3059 		}
3060 	}
3061 
3062 	nvm->ops.release(hw);
3063 
3064 out:
3065 	if (ret_val)
3066 		e_dbg("NVM read error: %d\n", ret_val);
3067 
3068 	return ret_val;
3069 }
3070 
3071 /**
3072  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3073  *  @hw: pointer to the HW structure
3074  *
3075  *  This function does initial flash setup so that a new read/write/erase cycle
3076  *  can be started.
3077  **/
3078 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3079 {
3080 	union ich8_hws_flash_status hsfsts;
3081 	s32 ret_val = -E1000_ERR_NVM;
3082 
3083 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3084 
3085 	/* Check if the flash descriptor is valid */
3086 	if (!hsfsts.hsf_status.fldesvalid) {
3087 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3088 		return -E1000_ERR_NVM;
3089 	}
3090 
3091 	/* Clear FCERR and DAEL in hw status by writing 1 */
3092 	hsfsts.hsf_status.flcerr = 1;
3093 	hsfsts.hsf_status.dael = 1;
3094 
3095 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3096 
3097 	/* Either we should have a hardware SPI cycle in progress
3098 	 * bit to check against, in order to start a new cycle or
3099 	 * FDONE bit should be changed in the hardware so that it
3100 	 * is 1 after hardware reset, which can then be used as an
3101 	 * indication whether a cycle is in progress or has been
3102 	 * completed.
3103 	 */
3104 
3105 	if (!hsfsts.hsf_status.flcinprog) {
3106 		/* There is no cycle running at present,
3107 		 * so we can start a cycle.
3108 		 * Begin by setting Flash Cycle Done.
3109 		 */
3110 		hsfsts.hsf_status.flcdone = 1;
3111 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3112 		ret_val = 0;
3113 	} else {
3114 		s32 i;
3115 
3116 		/* Otherwise poll for sometime so the current
3117 		 * cycle has a chance to end before giving up.
3118 		 */
3119 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3120 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3121 			if (!hsfsts.hsf_status.flcinprog) {
3122 				ret_val = 0;
3123 				break;
3124 			}
3125 			udelay(1);
3126 		}
3127 		if (!ret_val) {
3128 			/* Successful in waiting for previous cycle to timeout,
3129 			 * now set the Flash Cycle Done.
3130 			 */
3131 			hsfsts.hsf_status.flcdone = 1;
3132 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3133 		} else {
3134 			e_dbg("Flash controller busy, cannot get access\n");
3135 		}
3136 	}
3137 
3138 	return ret_val;
3139 }
3140 
3141 /**
3142  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3143  *  @hw: pointer to the HW structure
3144  *  @timeout: maximum time to wait for completion
3145  *
3146  *  This function starts a flash cycle and waits for its completion.
3147  **/
3148 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3149 {
3150 	union ich8_hws_flash_ctrl hsflctl;
3151 	union ich8_hws_flash_status hsfsts;
3152 	u32 i = 0;
3153 
3154 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3155 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3156 	hsflctl.hsf_ctrl.flcgo = 1;
3157 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3158 
3159 	/* wait till FDONE bit is set to 1 */
3160 	do {
3161 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3162 		if (hsfsts.hsf_status.flcdone)
3163 			break;
3164 		udelay(1);
3165 	} while (i++ < timeout);
3166 
3167 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3168 		return 0;
3169 
3170 	return -E1000_ERR_NVM;
3171 }
3172 
3173 /**
3174  *  e1000_read_flash_word_ich8lan - Read word from flash
3175  *  @hw: pointer to the HW structure
3176  *  @offset: offset to data location
3177  *  @data: pointer to the location for storing the data
3178  *
3179  *  Reads the flash word at offset into data.  Offset is converted
3180  *  to bytes before read.
3181  **/
3182 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3183 					 u16 *data)
3184 {
3185 	/* Must convert offset into bytes. */
3186 	offset <<= 1;
3187 
3188 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3189 }
3190 
3191 /**
3192  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3193  *  @hw: pointer to the HW structure
3194  *  @offset: The offset of the byte to read.
3195  *  @data: Pointer to a byte to store the value read.
3196  *
3197  *  Reads a single byte from the NVM using the flash access registers.
3198  **/
3199 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3200 					 u8 *data)
3201 {
3202 	s32 ret_val;
3203 	u16 word = 0;
3204 
3205 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3206 	if (ret_val)
3207 		return ret_val;
3208 
3209 	*data = (u8)word;
3210 
3211 	return 0;
3212 }
3213 
3214 /**
3215  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3216  *  @hw: pointer to the HW structure
3217  *  @offset: The offset (in bytes) of the byte or word to read.
3218  *  @size: Size of data to read, 1=byte 2=word
3219  *  @data: Pointer to the word to store the value read.
3220  *
3221  *  Reads a byte or word from the NVM using the flash access registers.
3222  **/
3223 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3224 					 u8 size, u16 *data)
3225 {
3226 	union ich8_hws_flash_status hsfsts;
3227 	union ich8_hws_flash_ctrl hsflctl;
3228 	u32 flash_linear_addr;
3229 	u32 flash_data = 0;
3230 	s32 ret_val = -E1000_ERR_NVM;
3231 	u8 count = 0;
3232 
3233 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3234 		return -E1000_ERR_NVM;
3235 
3236 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3237 			     hw->nvm.flash_base_addr);
3238 
3239 	do {
3240 		udelay(1);
3241 		/* Steps */
3242 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3243 		if (ret_val)
3244 			break;
3245 
3246 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3247 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3248 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3249 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3250 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3251 
3252 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3253 
3254 		ret_val =
3255 		    e1000_flash_cycle_ich8lan(hw,
3256 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3257 
3258 		/* Check if FCERR is set to 1, if set to 1, clear it
3259 		 * and try the whole sequence a few more times, else
3260 		 * read in (shift in) the Flash Data0, the order is
3261 		 * least significant byte first msb to lsb
3262 		 */
3263 		if (!ret_val) {
3264 			flash_data = er32flash(ICH_FLASH_FDATA0);
3265 			if (size == 1)
3266 				*data = (u8)(flash_data & 0x000000FF);
3267 			else if (size == 2)
3268 				*data = (u16)(flash_data & 0x0000FFFF);
3269 			break;
3270 		} else {
3271 			/* If we've gotten here, then things are probably
3272 			 * completely hosed, but if the error condition is
3273 			 * detected, it won't hurt to give it another try...
3274 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3275 			 */
3276 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3277 			if (hsfsts.hsf_status.flcerr) {
3278 				/* Repeat for some time before giving up. */
3279 				continue;
3280 			} else if (!hsfsts.hsf_status.flcdone) {
3281 				e_dbg("Timeout error - flash cycle did not complete.\n");
3282 				break;
3283 			}
3284 		}
3285 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3286 
3287 	return ret_val;
3288 }
3289 
3290 /**
3291  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3292  *  @hw: pointer to the HW structure
3293  *  @offset: The offset (in bytes) of the word(s) to write.
3294  *  @words: Size of data to write in words
3295  *  @data: Pointer to the word(s) to write at offset.
3296  *
3297  *  Writes a byte or word to the NVM using the flash access registers.
3298  **/
3299 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3300 				   u16 *data)
3301 {
3302 	struct e1000_nvm_info *nvm = &hw->nvm;
3303 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3304 	u16 i;
3305 
3306 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3307 	    (words == 0)) {
3308 		e_dbg("nvm parameter(s) out of bounds\n");
3309 		return -E1000_ERR_NVM;
3310 	}
3311 
3312 	nvm->ops.acquire(hw);
3313 
3314 	for (i = 0; i < words; i++) {
3315 		dev_spec->shadow_ram[offset + i].modified = true;
3316 		dev_spec->shadow_ram[offset + i].value = data[i];
3317 	}
3318 
3319 	nvm->ops.release(hw);
3320 
3321 	return 0;
3322 }
3323 
3324 /**
3325  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3326  *  @hw: pointer to the HW structure
3327  *
3328  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3329  *  which writes the checksum to the shadow ram.  The changes in the shadow
3330  *  ram are then committed to the EEPROM by processing each bank at a time
3331  *  checking for the modified bit and writing only the pending changes.
3332  *  After a successful commit, the shadow ram is cleared and is ready for
3333  *  future writes.
3334  **/
3335 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3336 {
3337 	struct e1000_nvm_info *nvm = &hw->nvm;
3338 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3339 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3340 	s32 ret_val;
3341 	u16 data;
3342 
3343 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3344 	if (ret_val)
3345 		goto out;
3346 
3347 	if (nvm->type != e1000_nvm_flash_sw)
3348 		goto out;
3349 
3350 	nvm->ops.acquire(hw);
3351 
3352 	/* We're writing to the opposite bank so if we're on bank 1,
3353 	 * write to bank 0 etc.  We also need to erase the segment that
3354 	 * is going to be written
3355 	 */
3356 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3357 	if (ret_val) {
3358 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3359 		bank = 0;
3360 	}
3361 
3362 	if (bank == 0) {
3363 		new_bank_offset = nvm->flash_bank_size;
3364 		old_bank_offset = 0;
3365 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3366 		if (ret_val)
3367 			goto release;
3368 	} else {
3369 		old_bank_offset = nvm->flash_bank_size;
3370 		new_bank_offset = 0;
3371 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3372 		if (ret_val)
3373 			goto release;
3374 	}
3375 
3376 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3377 		/* Determine whether to write the value stored
3378 		 * in the other NVM bank or a modified value stored
3379 		 * in the shadow RAM
3380 		 */
3381 		if (dev_spec->shadow_ram[i].modified) {
3382 			data = dev_spec->shadow_ram[i].value;
3383 		} else {
3384 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3385 								old_bank_offset,
3386 								&data);
3387 			if (ret_val)
3388 				break;
3389 		}
3390 
3391 		/* If the word is 0x13, then make sure the signature bits
3392 		 * (15:14) are 11b until the commit has completed.
3393 		 * This will allow us to write 10b which indicates the
3394 		 * signature is valid.  We want to do this after the write
3395 		 * has completed so that we don't mark the segment valid
3396 		 * while the write is still in progress
3397 		 */
3398 		if (i == E1000_ICH_NVM_SIG_WORD)
3399 			data |= E1000_ICH_NVM_SIG_MASK;
3400 
3401 		/* Convert offset to bytes. */
3402 		act_offset = (i + new_bank_offset) << 1;
3403 
3404 		usleep_range(100, 200);
3405 		/* Write the bytes to the new bank. */
3406 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3407 							       act_offset,
3408 							       (u8)data);
3409 		if (ret_val)
3410 			break;
3411 
3412 		usleep_range(100, 200);
3413 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3414 							       act_offset + 1,
3415 							       (u8)(data >> 8));
3416 		if (ret_val)
3417 			break;
3418 	}
3419 
3420 	/* Don't bother writing the segment valid bits if sector
3421 	 * programming failed.
3422 	 */
3423 	if (ret_val) {
3424 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3425 		e_dbg("Flash commit failed.\n");
3426 		goto release;
3427 	}
3428 
3429 	/* Finally validate the new segment by setting bit 15:14
3430 	 * to 10b in word 0x13 , this can be done without an
3431 	 * erase as well since these bits are 11 to start with
3432 	 * and we need to change bit 14 to 0b
3433 	 */
3434 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3435 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3436 	if (ret_val)
3437 		goto release;
3438 
3439 	data &= 0xBFFF;
3440 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3441 						       act_offset * 2 + 1,
3442 						       (u8)(data >> 8));
3443 	if (ret_val)
3444 		goto release;
3445 
3446 	/* And invalidate the previously valid segment by setting
3447 	 * its signature word (0x13) high_byte to 0b. This can be
3448 	 * done without an erase because flash erase sets all bits
3449 	 * to 1's. We can write 1's to 0's without an erase
3450 	 */
3451 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3452 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3453 	if (ret_val)
3454 		goto release;
3455 
3456 	/* Great!  Everything worked, we can now clear the cached entries. */
3457 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3458 		dev_spec->shadow_ram[i].modified = false;
3459 		dev_spec->shadow_ram[i].value = 0xFFFF;
3460 	}
3461 
3462 release:
3463 	nvm->ops.release(hw);
3464 
3465 	/* Reload the EEPROM, or else modifications will not appear
3466 	 * until after the next adapter reset.
3467 	 */
3468 	if (!ret_val) {
3469 		nvm->ops.reload(hw);
3470 		usleep_range(10000, 20000);
3471 	}
3472 
3473 out:
3474 	if (ret_val)
3475 		e_dbg("NVM update error: %d\n", ret_val);
3476 
3477 	return ret_val;
3478 }
3479 
3480 /**
3481  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3482  *  @hw: pointer to the HW structure
3483  *
3484  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3485  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3486  *  calculated, in which case we need to calculate the checksum and set bit 6.
3487  **/
3488 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3489 {
3490 	s32 ret_val;
3491 	u16 data;
3492 	u16 word;
3493 	u16 valid_csum_mask;
3494 
3495 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3496 	 * the checksum needs to be fixed.  This bit is an indication that
3497 	 * the NVM was prepared by OEM software and did not calculate
3498 	 * the checksum...a likely scenario.
3499 	 */
3500 	switch (hw->mac.type) {
3501 	case e1000_pch_lpt:
3502 		word = NVM_COMPAT;
3503 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3504 		break;
3505 	default:
3506 		word = NVM_FUTURE_INIT_WORD1;
3507 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3508 		break;
3509 	}
3510 
3511 	ret_val = e1000_read_nvm(hw, word, 1, &data);
3512 	if (ret_val)
3513 		return ret_val;
3514 
3515 	if (!(data & valid_csum_mask)) {
3516 		data |= valid_csum_mask;
3517 		ret_val = e1000_write_nvm(hw, word, 1, &data);
3518 		if (ret_val)
3519 			return ret_val;
3520 		ret_val = e1000e_update_nvm_checksum(hw);
3521 		if (ret_val)
3522 			return ret_val;
3523 	}
3524 
3525 	return e1000e_validate_nvm_checksum_generic(hw);
3526 }
3527 
3528 /**
3529  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3530  *  @hw: pointer to the HW structure
3531  *
3532  *  To prevent malicious write/erase of the NVM, set it to be read-only
3533  *  so that the hardware ignores all write/erase cycles of the NVM via
3534  *  the flash control registers.  The shadow-ram copy of the NVM will
3535  *  still be updated, however any updates to this copy will not stick
3536  *  across driver reloads.
3537  **/
3538 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3539 {
3540 	struct e1000_nvm_info *nvm = &hw->nvm;
3541 	union ich8_flash_protected_range pr0;
3542 	union ich8_hws_flash_status hsfsts;
3543 	u32 gfpreg;
3544 
3545 	nvm->ops.acquire(hw);
3546 
3547 	gfpreg = er32flash(ICH_FLASH_GFPREG);
3548 
3549 	/* Write-protect GbE Sector of NVM */
3550 	pr0.regval = er32flash(ICH_FLASH_PR0);
3551 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3552 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3553 	pr0.range.wpe = true;
3554 	ew32flash(ICH_FLASH_PR0, pr0.regval);
3555 
3556 	/* Lock down a subset of GbE Flash Control Registers, e.g.
3557 	 * PR0 to prevent the write-protection from being lifted.
3558 	 * Once FLOCKDN is set, the registers protected by it cannot
3559 	 * be written until FLOCKDN is cleared by a hardware reset.
3560 	 */
3561 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3562 	hsfsts.hsf_status.flockdn = true;
3563 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3564 
3565 	nvm->ops.release(hw);
3566 }
3567 
3568 /**
3569  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3570  *  @hw: pointer to the HW structure
3571  *  @offset: The offset (in bytes) of the byte/word to read.
3572  *  @size: Size of data to read, 1=byte 2=word
3573  *  @data: The byte(s) to write to the NVM.
3574  *
3575  *  Writes one/two bytes to the NVM using the flash access registers.
3576  **/
3577 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3578 					  u8 size, u16 data)
3579 {
3580 	union ich8_hws_flash_status hsfsts;
3581 	union ich8_hws_flash_ctrl hsflctl;
3582 	u32 flash_linear_addr;
3583 	u32 flash_data = 0;
3584 	s32 ret_val;
3585 	u8 count = 0;
3586 
3587 	if (size < 1 || size > 2 || data > size * 0xff ||
3588 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3589 		return -E1000_ERR_NVM;
3590 
3591 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3592 			     hw->nvm.flash_base_addr);
3593 
3594 	do {
3595 		udelay(1);
3596 		/* Steps */
3597 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3598 		if (ret_val)
3599 			break;
3600 
3601 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3602 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3603 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3604 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3605 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3606 
3607 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3608 
3609 		if (size == 1)
3610 			flash_data = (u32)data & 0x00FF;
3611 		else
3612 			flash_data = (u32)data;
3613 
3614 		ew32flash(ICH_FLASH_FDATA0, flash_data);
3615 
3616 		/* check if FCERR is set to 1 , if set to 1, clear it
3617 		 * and try the whole sequence a few more times else done
3618 		 */
3619 		ret_val =
3620 		    e1000_flash_cycle_ich8lan(hw,
3621 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3622 		if (!ret_val)
3623 			break;
3624 
3625 		/* If we're here, then things are most likely
3626 		 * completely hosed, but if the error condition
3627 		 * is detected, it won't hurt to give it another
3628 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3629 		 */
3630 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3631 		if (hsfsts.hsf_status.flcerr)
3632 			/* Repeat for some time before giving up. */
3633 			continue;
3634 		if (!hsfsts.hsf_status.flcdone) {
3635 			e_dbg("Timeout error - flash cycle did not complete.\n");
3636 			break;
3637 		}
3638 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3639 
3640 	return ret_val;
3641 }
3642 
3643 /**
3644  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3645  *  @hw: pointer to the HW structure
3646  *  @offset: The index of the byte to read.
3647  *  @data: The byte to write to the NVM.
3648  *
3649  *  Writes a single byte to the NVM using the flash access registers.
3650  **/
3651 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3652 					  u8 data)
3653 {
3654 	u16 word = (u16)data;
3655 
3656 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3657 }
3658 
3659 /**
3660  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3661  *  @hw: pointer to the HW structure
3662  *  @offset: The offset of the byte to write.
3663  *  @byte: The byte to write to the NVM.
3664  *
3665  *  Writes a single byte to the NVM using the flash access registers.
3666  *  Goes through a retry algorithm before giving up.
3667  **/
3668 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3669 						u32 offset, u8 byte)
3670 {
3671 	s32 ret_val;
3672 	u16 program_retries;
3673 
3674 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3675 	if (!ret_val)
3676 		return ret_val;
3677 
3678 	for (program_retries = 0; program_retries < 100; program_retries++) {
3679 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3680 		usleep_range(100, 200);
3681 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3682 		if (!ret_val)
3683 			break;
3684 	}
3685 	if (program_retries == 100)
3686 		return -E1000_ERR_NVM;
3687 
3688 	return 0;
3689 }
3690 
3691 /**
3692  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3693  *  @hw: pointer to the HW structure
3694  *  @bank: 0 for first bank, 1 for second bank, etc.
3695  *
3696  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3697  *  bank N is 4096 * N + flash_reg_addr.
3698  **/
3699 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3700 {
3701 	struct e1000_nvm_info *nvm = &hw->nvm;
3702 	union ich8_hws_flash_status hsfsts;
3703 	union ich8_hws_flash_ctrl hsflctl;
3704 	u32 flash_linear_addr;
3705 	/* bank size is in 16bit words - adjust to bytes */
3706 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3707 	s32 ret_val;
3708 	s32 count = 0;
3709 	s32 j, iteration, sector_size;
3710 
3711 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3712 
3713 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3714 	 * register
3715 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3716 	 *     consecutive sectors.  The start index for the nth Hw sector
3717 	 *     can be calculated as = bank * 4096 + n * 256
3718 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3719 	 *     The start index for the nth Hw sector can be calculated
3720 	 *     as = bank * 4096
3721 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3722 	 *     (ich9 only, otherwise error condition)
3723 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3724 	 */
3725 	switch (hsfsts.hsf_status.berasesz) {
3726 	case 0:
3727 		/* Hw sector size 256 */
3728 		sector_size = ICH_FLASH_SEG_SIZE_256;
3729 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3730 		break;
3731 	case 1:
3732 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3733 		iteration = 1;
3734 		break;
3735 	case 2:
3736 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3737 		iteration = 1;
3738 		break;
3739 	case 3:
3740 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3741 		iteration = 1;
3742 		break;
3743 	default:
3744 		return -E1000_ERR_NVM;
3745 	}
3746 
3747 	/* Start with the base address, then add the sector offset. */
3748 	flash_linear_addr = hw->nvm.flash_base_addr;
3749 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3750 
3751 	for (j = 0; j < iteration; j++) {
3752 		do {
3753 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3754 
3755 			/* Steps */
3756 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3757 			if (ret_val)
3758 				return ret_val;
3759 
3760 			/* Write a value 11 (block Erase) in Flash
3761 			 * Cycle field in hw flash control
3762 			 */
3763 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3764 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3765 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3766 
3767 			/* Write the last 24 bits of an index within the
3768 			 * block into Flash Linear address field in Flash
3769 			 * Address.
3770 			 */
3771 			flash_linear_addr += (j * sector_size);
3772 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3773 
3774 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3775 			if (!ret_val)
3776 				break;
3777 
3778 			/* Check if FCERR is set to 1.  If 1,
3779 			 * clear it and try the whole sequence
3780 			 * a few more times else Done
3781 			 */
3782 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3783 			if (hsfsts.hsf_status.flcerr)
3784 				/* repeat for some time before giving up */
3785 				continue;
3786 			else if (!hsfsts.hsf_status.flcdone)
3787 				return ret_val;
3788 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3789 	}
3790 
3791 	return 0;
3792 }
3793 
3794 /**
3795  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3796  *  @hw: pointer to the HW structure
3797  *  @data: Pointer to the LED settings
3798  *
3799  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3800  *  settings is all 0's or F's, set the LED default to a valid LED default
3801  *  setting.
3802  **/
3803 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3804 {
3805 	s32 ret_val;
3806 
3807 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3808 	if (ret_val) {
3809 		e_dbg("NVM Read Error\n");
3810 		return ret_val;
3811 	}
3812 
3813 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
3814 		*data = ID_LED_DEFAULT_ICH8LAN;
3815 
3816 	return 0;
3817 }
3818 
3819 /**
3820  *  e1000_id_led_init_pchlan - store LED configurations
3821  *  @hw: pointer to the HW structure
3822  *
3823  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3824  *  the PHY LED configuration register.
3825  *
3826  *  PCH also does not have an "always on" or "always off" mode which
3827  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3828  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3829  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3830  *  link based on logic in e1000_led_[on|off]_pchlan().
3831  **/
3832 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3833 {
3834 	struct e1000_mac_info *mac = &hw->mac;
3835 	s32 ret_val;
3836 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3837 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3838 	u16 data, i, temp, shift;
3839 
3840 	/* Get default ID LED modes */
3841 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3842 	if (ret_val)
3843 		return ret_val;
3844 
3845 	mac->ledctl_default = er32(LEDCTL);
3846 	mac->ledctl_mode1 = mac->ledctl_default;
3847 	mac->ledctl_mode2 = mac->ledctl_default;
3848 
3849 	for (i = 0; i < 4; i++) {
3850 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3851 		shift = (i * 5);
3852 		switch (temp) {
3853 		case ID_LED_ON1_DEF2:
3854 		case ID_LED_ON1_ON2:
3855 		case ID_LED_ON1_OFF2:
3856 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3857 			mac->ledctl_mode1 |= (ledctl_on << shift);
3858 			break;
3859 		case ID_LED_OFF1_DEF2:
3860 		case ID_LED_OFF1_ON2:
3861 		case ID_LED_OFF1_OFF2:
3862 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3863 			mac->ledctl_mode1 |= (ledctl_off << shift);
3864 			break;
3865 		default:
3866 			/* Do nothing */
3867 			break;
3868 		}
3869 		switch (temp) {
3870 		case ID_LED_DEF1_ON2:
3871 		case ID_LED_ON1_ON2:
3872 		case ID_LED_OFF1_ON2:
3873 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3874 			mac->ledctl_mode2 |= (ledctl_on << shift);
3875 			break;
3876 		case ID_LED_DEF1_OFF2:
3877 		case ID_LED_ON1_OFF2:
3878 		case ID_LED_OFF1_OFF2:
3879 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3880 			mac->ledctl_mode2 |= (ledctl_off << shift);
3881 			break;
3882 		default:
3883 			/* Do nothing */
3884 			break;
3885 		}
3886 	}
3887 
3888 	return 0;
3889 }
3890 
3891 /**
3892  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3893  *  @hw: pointer to the HW structure
3894  *
3895  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3896  *  register, so the the bus width is hard coded.
3897  **/
3898 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3899 {
3900 	struct e1000_bus_info *bus = &hw->bus;
3901 	s32 ret_val;
3902 
3903 	ret_val = e1000e_get_bus_info_pcie(hw);
3904 
3905 	/* ICH devices are "PCI Express"-ish.  They have
3906 	 * a configuration space, but do not contain
3907 	 * PCI Express Capability registers, so bus width
3908 	 * must be hardcoded.
3909 	 */
3910 	if (bus->width == e1000_bus_width_unknown)
3911 		bus->width = e1000_bus_width_pcie_x1;
3912 
3913 	return ret_val;
3914 }
3915 
3916 /**
3917  *  e1000_reset_hw_ich8lan - Reset the hardware
3918  *  @hw: pointer to the HW structure
3919  *
3920  *  Does a full reset of the hardware which includes a reset of the PHY and
3921  *  MAC.
3922  **/
3923 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3924 {
3925 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3926 	u16 kum_cfg;
3927 	u32 ctrl, reg;
3928 	s32 ret_val;
3929 
3930 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
3931 	 * on the last TLP read/write transaction when MAC is reset.
3932 	 */
3933 	ret_val = e1000e_disable_pcie_master(hw);
3934 	if (ret_val)
3935 		e_dbg("PCI-E Master disable polling has failed.\n");
3936 
3937 	e_dbg("Masking off all interrupts\n");
3938 	ew32(IMC, 0xffffffff);
3939 
3940 	/* Disable the Transmit and Receive units.  Then delay to allow
3941 	 * any pending transactions to complete before we hit the MAC
3942 	 * with the global reset.
3943 	 */
3944 	ew32(RCTL, 0);
3945 	ew32(TCTL, E1000_TCTL_PSP);
3946 	e1e_flush();
3947 
3948 	usleep_range(10000, 20000);
3949 
3950 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3951 	if (hw->mac.type == e1000_ich8lan) {
3952 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3953 		ew32(PBA, E1000_PBA_8K);
3954 		/* Set Packet Buffer Size to 16k. */
3955 		ew32(PBS, E1000_PBS_16K);
3956 	}
3957 
3958 	if (hw->mac.type == e1000_pchlan) {
3959 		/* Save the NVM K1 bit setting */
3960 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3961 		if (ret_val)
3962 			return ret_val;
3963 
3964 		if (kum_cfg & E1000_NVM_K1_ENABLE)
3965 			dev_spec->nvm_k1_enabled = true;
3966 		else
3967 			dev_spec->nvm_k1_enabled = false;
3968 	}
3969 
3970 	ctrl = er32(CTRL);
3971 
3972 	if (!hw->phy.ops.check_reset_block(hw)) {
3973 		/* Full-chip reset requires MAC and PHY reset at the same
3974 		 * time to make sure the interface between MAC and the
3975 		 * external PHY is reset.
3976 		 */
3977 		ctrl |= E1000_CTRL_PHY_RST;
3978 
3979 		/* Gate automatic PHY configuration by hardware on
3980 		 * non-managed 82579
3981 		 */
3982 		if ((hw->mac.type == e1000_pch2lan) &&
3983 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3984 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3985 	}
3986 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3987 	e_dbg("Issuing a global reset to ich8lan\n");
3988 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3989 	/* cannot issue a flush here because it hangs the hardware */
3990 	msleep(20);
3991 
3992 	/* Set Phy Config Counter to 50msec */
3993 	if (hw->mac.type == e1000_pch2lan) {
3994 		reg = er32(FEXTNVM3);
3995 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3996 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3997 		ew32(FEXTNVM3, reg);
3998 	}
3999 
4000 	if (!ret_val)
4001 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4002 
4003 	if (ctrl & E1000_CTRL_PHY_RST) {
4004 		ret_val = hw->phy.ops.get_cfg_done(hw);
4005 		if (ret_val)
4006 			return ret_val;
4007 
4008 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4009 		if (ret_val)
4010 			return ret_val;
4011 	}
4012 
4013 	/* For PCH, this write will make sure that any noise
4014 	 * will be detected as a CRC error and be dropped rather than show up
4015 	 * as a bad packet to the DMA engine.
4016 	 */
4017 	if (hw->mac.type == e1000_pchlan)
4018 		ew32(CRC_OFFSET, 0x65656565);
4019 
4020 	ew32(IMC, 0xffffffff);
4021 	er32(ICR);
4022 
4023 	reg = er32(KABGTXD);
4024 	reg |= E1000_KABGTXD_BGSQLBIAS;
4025 	ew32(KABGTXD, reg);
4026 
4027 	return 0;
4028 }
4029 
4030 /**
4031  *  e1000_init_hw_ich8lan - Initialize the hardware
4032  *  @hw: pointer to the HW structure
4033  *
4034  *  Prepares the hardware for transmit and receive by doing the following:
4035  *   - initialize hardware bits
4036  *   - initialize LED identification
4037  *   - setup receive address registers
4038  *   - setup flow control
4039  *   - setup transmit descriptors
4040  *   - clear statistics
4041  **/
4042 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4043 {
4044 	struct e1000_mac_info *mac = &hw->mac;
4045 	u32 ctrl_ext, txdctl, snoop;
4046 	s32 ret_val;
4047 	u16 i;
4048 
4049 	e1000_initialize_hw_bits_ich8lan(hw);
4050 
4051 	/* Initialize identification LED */
4052 	ret_val = mac->ops.id_led_init(hw);
4053 	/* An error is not fatal and we should not stop init due to this */
4054 	if (ret_val)
4055 		e_dbg("Error initializing identification LED\n");
4056 
4057 	/* Setup the receive address. */
4058 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4059 
4060 	/* Zero out the Multicast HASH table */
4061 	e_dbg("Zeroing the MTA\n");
4062 	for (i = 0; i < mac->mta_reg_count; i++)
4063 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4064 
4065 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4066 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4067 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4068 	 */
4069 	if (hw->phy.type == e1000_phy_82578) {
4070 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4071 		i &= ~BM_WUC_HOST_WU_BIT;
4072 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4073 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4074 		if (ret_val)
4075 			return ret_val;
4076 	}
4077 
4078 	/* Setup link and flow control */
4079 	ret_val = mac->ops.setup_link(hw);
4080 
4081 	/* Set the transmit descriptor write-back policy for both queues */
4082 	txdctl = er32(TXDCTL(0));
4083 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4084 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4085 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4086 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4087 	ew32(TXDCTL(0), txdctl);
4088 	txdctl = er32(TXDCTL(1));
4089 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4090 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4091 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4092 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4093 	ew32(TXDCTL(1), txdctl);
4094 
4095 	/* ICH8 has opposite polarity of no_snoop bits.
4096 	 * By default, we should use snoop behavior.
4097 	 */
4098 	if (mac->type == e1000_ich8lan)
4099 		snoop = PCIE_ICH8_SNOOP_ALL;
4100 	else
4101 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4102 	e1000e_set_pcie_no_snoop(hw, snoop);
4103 
4104 	ctrl_ext = er32(CTRL_EXT);
4105 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4106 	ew32(CTRL_EXT, ctrl_ext);
4107 
4108 	/* Clear all of the statistics registers (clear on read).  It is
4109 	 * important that we do this after we have tried to establish link
4110 	 * because the symbol error count will increment wildly if there
4111 	 * is no link.
4112 	 */
4113 	e1000_clear_hw_cntrs_ich8lan(hw);
4114 
4115 	return ret_val;
4116 }
4117 
4118 /**
4119  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4120  *  @hw: pointer to the HW structure
4121  *
4122  *  Sets/Clears required hardware bits necessary for correctly setting up the
4123  *  hardware for transmit and receive.
4124  **/
4125 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4126 {
4127 	u32 reg;
4128 
4129 	/* Extended Device Control */
4130 	reg = er32(CTRL_EXT);
4131 	reg |= (1 << 22);
4132 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4133 	if (hw->mac.type >= e1000_pchlan)
4134 		reg |= E1000_CTRL_EXT_PHYPDEN;
4135 	ew32(CTRL_EXT, reg);
4136 
4137 	/* Transmit Descriptor Control 0 */
4138 	reg = er32(TXDCTL(0));
4139 	reg |= (1 << 22);
4140 	ew32(TXDCTL(0), reg);
4141 
4142 	/* Transmit Descriptor Control 1 */
4143 	reg = er32(TXDCTL(1));
4144 	reg |= (1 << 22);
4145 	ew32(TXDCTL(1), reg);
4146 
4147 	/* Transmit Arbitration Control 0 */
4148 	reg = er32(TARC(0));
4149 	if (hw->mac.type == e1000_ich8lan)
4150 		reg |= (1 << 28) | (1 << 29);
4151 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4152 	ew32(TARC(0), reg);
4153 
4154 	/* Transmit Arbitration Control 1 */
4155 	reg = er32(TARC(1));
4156 	if (er32(TCTL) & E1000_TCTL_MULR)
4157 		reg &= ~(1 << 28);
4158 	else
4159 		reg |= (1 << 28);
4160 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4161 	ew32(TARC(1), reg);
4162 
4163 	/* Device Status */
4164 	if (hw->mac.type == e1000_ich8lan) {
4165 		reg = er32(STATUS);
4166 		reg &= ~(1 << 31);
4167 		ew32(STATUS, reg);
4168 	}
4169 
4170 	/* work-around descriptor data corruption issue during nfs v2 udp
4171 	 * traffic, just disable the nfs filtering capability
4172 	 */
4173 	reg = er32(RFCTL);
4174 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4175 
4176 	/* Disable IPv6 extension header parsing because some malformed
4177 	 * IPv6 headers can hang the Rx.
4178 	 */
4179 	if (hw->mac.type == e1000_ich8lan)
4180 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4181 	ew32(RFCTL, reg);
4182 
4183 	/* Enable ECC on Lynxpoint */
4184 	if (hw->mac.type == e1000_pch_lpt) {
4185 		reg = er32(PBECCSTS);
4186 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4187 		ew32(PBECCSTS, reg);
4188 
4189 		reg = er32(CTRL);
4190 		reg |= E1000_CTRL_MEHE;
4191 		ew32(CTRL, reg);
4192 	}
4193 }
4194 
4195 /**
4196  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4197  *  @hw: pointer to the HW structure
4198  *
4199  *  Determines which flow control settings to use, then configures flow
4200  *  control.  Calls the appropriate media-specific link configuration
4201  *  function.  Assuming the adapter has a valid link partner, a valid link
4202  *  should be established.  Assumes the hardware has previously been reset
4203  *  and the transmitter and receiver are not enabled.
4204  **/
4205 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4206 {
4207 	s32 ret_val;
4208 
4209 	if (hw->phy.ops.check_reset_block(hw))
4210 		return 0;
4211 
4212 	/* ICH parts do not have a word in the NVM to determine
4213 	 * the default flow control setting, so we explicitly
4214 	 * set it to full.
4215 	 */
4216 	if (hw->fc.requested_mode == e1000_fc_default) {
4217 		/* Workaround h/w hang when Tx flow control enabled */
4218 		if (hw->mac.type == e1000_pchlan)
4219 			hw->fc.requested_mode = e1000_fc_rx_pause;
4220 		else
4221 			hw->fc.requested_mode = e1000_fc_full;
4222 	}
4223 
4224 	/* Save off the requested flow control mode for use later.  Depending
4225 	 * on the link partner's capabilities, we may or may not use this mode.
4226 	 */
4227 	hw->fc.current_mode = hw->fc.requested_mode;
4228 
4229 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4230 
4231 	/* Continue to configure the copper link. */
4232 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4233 	if (ret_val)
4234 		return ret_val;
4235 
4236 	ew32(FCTTV, hw->fc.pause_time);
4237 	if ((hw->phy.type == e1000_phy_82578) ||
4238 	    (hw->phy.type == e1000_phy_82579) ||
4239 	    (hw->phy.type == e1000_phy_i217) ||
4240 	    (hw->phy.type == e1000_phy_82577)) {
4241 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4242 
4243 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4244 				   hw->fc.pause_time);
4245 		if (ret_val)
4246 			return ret_val;
4247 	}
4248 
4249 	return e1000e_set_fc_watermarks(hw);
4250 }
4251 
4252 /**
4253  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4254  *  @hw: pointer to the HW structure
4255  *
4256  *  Configures the kumeran interface to the PHY to wait the appropriate time
4257  *  when polling the PHY, then call the generic setup_copper_link to finish
4258  *  configuring the copper link.
4259  **/
4260 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4261 {
4262 	u32 ctrl;
4263 	s32 ret_val;
4264 	u16 reg_data;
4265 
4266 	ctrl = er32(CTRL);
4267 	ctrl |= E1000_CTRL_SLU;
4268 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4269 	ew32(CTRL, ctrl);
4270 
4271 	/* Set the mac to wait the maximum time between each iteration
4272 	 * and increase the max iterations when polling the phy;
4273 	 * this fixes erroneous timeouts at 10Mbps.
4274 	 */
4275 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4276 	if (ret_val)
4277 		return ret_val;
4278 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4279 				       &reg_data);
4280 	if (ret_val)
4281 		return ret_val;
4282 	reg_data |= 0x3F;
4283 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4284 					reg_data);
4285 	if (ret_val)
4286 		return ret_val;
4287 
4288 	switch (hw->phy.type) {
4289 	case e1000_phy_igp_3:
4290 		ret_val = e1000e_copper_link_setup_igp(hw);
4291 		if (ret_val)
4292 			return ret_val;
4293 		break;
4294 	case e1000_phy_bm:
4295 	case e1000_phy_82578:
4296 		ret_val = e1000e_copper_link_setup_m88(hw);
4297 		if (ret_val)
4298 			return ret_val;
4299 		break;
4300 	case e1000_phy_82577:
4301 	case e1000_phy_82579:
4302 		ret_val = e1000_copper_link_setup_82577(hw);
4303 		if (ret_val)
4304 			return ret_val;
4305 		break;
4306 	case e1000_phy_ife:
4307 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4308 		if (ret_val)
4309 			return ret_val;
4310 
4311 		reg_data &= ~IFE_PMC_AUTO_MDIX;
4312 
4313 		switch (hw->phy.mdix) {
4314 		case 1:
4315 			reg_data &= ~IFE_PMC_FORCE_MDIX;
4316 			break;
4317 		case 2:
4318 			reg_data |= IFE_PMC_FORCE_MDIX;
4319 			break;
4320 		case 0:
4321 		default:
4322 			reg_data |= IFE_PMC_AUTO_MDIX;
4323 			break;
4324 		}
4325 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4326 		if (ret_val)
4327 			return ret_val;
4328 		break;
4329 	default:
4330 		break;
4331 	}
4332 
4333 	return e1000e_setup_copper_link(hw);
4334 }
4335 
4336 /**
4337  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4338  *  @hw: pointer to the HW structure
4339  *
4340  *  Calls the PHY specific link setup function and then calls the
4341  *  generic setup_copper_link to finish configuring the link for
4342  *  Lynxpoint PCH devices
4343  **/
4344 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4345 {
4346 	u32 ctrl;
4347 	s32 ret_val;
4348 
4349 	ctrl = er32(CTRL);
4350 	ctrl |= E1000_CTRL_SLU;
4351 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4352 	ew32(CTRL, ctrl);
4353 
4354 	ret_val = e1000_copper_link_setup_82577(hw);
4355 	if (ret_val)
4356 		return ret_val;
4357 
4358 	return e1000e_setup_copper_link(hw);
4359 }
4360 
4361 /**
4362  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4363  *  @hw: pointer to the HW structure
4364  *  @speed: pointer to store current link speed
4365  *  @duplex: pointer to store the current link duplex
4366  *
4367  *  Calls the generic get_speed_and_duplex to retrieve the current link
4368  *  information and then calls the Kumeran lock loss workaround for links at
4369  *  gigabit speeds.
4370  **/
4371 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4372 					  u16 *duplex)
4373 {
4374 	s32 ret_val;
4375 
4376 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4377 	if (ret_val)
4378 		return ret_val;
4379 
4380 	if ((hw->mac.type == e1000_ich8lan) &&
4381 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4382 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4383 	}
4384 
4385 	return ret_val;
4386 }
4387 
4388 /**
4389  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4390  *  @hw: pointer to the HW structure
4391  *
4392  *  Work-around for 82566 Kumeran PCS lock loss:
4393  *  On link status change (i.e. PCI reset, speed change) and link is up and
4394  *  speed is gigabit-
4395  *    0) if workaround is optionally disabled do nothing
4396  *    1) wait 1ms for Kumeran link to come up
4397  *    2) check Kumeran Diagnostic register PCS lock loss bit
4398  *    3) if not set the link is locked (all is good), otherwise...
4399  *    4) reset the PHY
4400  *    5) repeat up to 10 times
4401  *  Note: this is only called for IGP3 copper when speed is 1gb.
4402  **/
4403 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4404 {
4405 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4406 	u32 phy_ctrl;
4407 	s32 ret_val;
4408 	u16 i, data;
4409 	bool link;
4410 
4411 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4412 		return 0;
4413 
4414 	/* Make sure link is up before proceeding.  If not just return.
4415 	 * Attempting this while link is negotiating fouled up link
4416 	 * stability
4417 	 */
4418 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4419 	if (!link)
4420 		return 0;
4421 
4422 	for (i = 0; i < 10; i++) {
4423 		/* read once to clear */
4424 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4425 		if (ret_val)
4426 			return ret_val;
4427 		/* and again to get new status */
4428 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4429 		if (ret_val)
4430 			return ret_val;
4431 
4432 		/* check for PCS lock */
4433 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4434 			return 0;
4435 
4436 		/* Issue PHY reset */
4437 		e1000_phy_hw_reset(hw);
4438 		mdelay(5);
4439 	}
4440 	/* Disable GigE link negotiation */
4441 	phy_ctrl = er32(PHY_CTRL);
4442 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4443 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4444 	ew32(PHY_CTRL, phy_ctrl);
4445 
4446 	/* Call gig speed drop workaround on Gig disable before accessing
4447 	 * any PHY registers
4448 	 */
4449 	e1000e_gig_downshift_workaround_ich8lan(hw);
4450 
4451 	/* unable to acquire PCS lock */
4452 	return -E1000_ERR_PHY;
4453 }
4454 
4455 /**
4456  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4457  *  @hw: pointer to the HW structure
4458  *  @state: boolean value used to set the current Kumeran workaround state
4459  *
4460  *  If ICH8, set the current Kumeran workaround state (enabled - true
4461  *  /disabled - false).
4462  **/
4463 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4464 						  bool state)
4465 {
4466 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4467 
4468 	if (hw->mac.type != e1000_ich8lan) {
4469 		e_dbg("Workaround applies to ICH8 only.\n");
4470 		return;
4471 	}
4472 
4473 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
4474 }
4475 
4476 /**
4477  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4478  *  @hw: pointer to the HW structure
4479  *
4480  *  Workaround for 82566 power-down on D3 entry:
4481  *    1) disable gigabit link
4482  *    2) write VR power-down enable
4483  *    3) read it back
4484  *  Continue if successful, else issue LCD reset and repeat
4485  **/
4486 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4487 {
4488 	u32 reg;
4489 	u16 data;
4490 	u8 retry = 0;
4491 
4492 	if (hw->phy.type != e1000_phy_igp_3)
4493 		return;
4494 
4495 	/* Try the workaround twice (if needed) */
4496 	do {
4497 		/* Disable link */
4498 		reg = er32(PHY_CTRL);
4499 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4500 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4501 		ew32(PHY_CTRL, reg);
4502 
4503 		/* Call gig speed drop workaround on Gig disable before
4504 		 * accessing any PHY registers
4505 		 */
4506 		if (hw->mac.type == e1000_ich8lan)
4507 			e1000e_gig_downshift_workaround_ich8lan(hw);
4508 
4509 		/* Write VR power-down enable */
4510 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4511 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4512 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4513 
4514 		/* Read it back and test */
4515 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4516 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4517 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4518 			break;
4519 
4520 		/* Issue PHY reset and repeat at most one more time */
4521 		reg = er32(CTRL);
4522 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4523 		retry++;
4524 	} while (retry);
4525 }
4526 
4527 /**
4528  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4529  *  @hw: pointer to the HW structure
4530  *
4531  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4532  *  LPLU, Gig disable, MDIC PHY reset):
4533  *    1) Set Kumeran Near-end loopback
4534  *    2) Clear Kumeran Near-end loopback
4535  *  Should only be called for ICH8[m] devices with any 1G Phy.
4536  **/
4537 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4538 {
4539 	s32 ret_val;
4540 	u16 reg_data;
4541 
4542 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4543 		return;
4544 
4545 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4546 				       &reg_data);
4547 	if (ret_val)
4548 		return;
4549 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4550 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4551 					reg_data);
4552 	if (ret_val)
4553 		return;
4554 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4555 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
4556 }
4557 
4558 /**
4559  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4560  *  @hw: pointer to the HW structure
4561  *
4562  *  During S0 to Sx transition, it is possible the link remains at gig
4563  *  instead of negotiating to a lower speed.  Before going to Sx, set
4564  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4565  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4566  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4567  *  needs to be written.
4568  *  Parts that support (and are linked to a partner which support) EEE in
4569  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4570  *  than 10Mbps w/o EEE.
4571  **/
4572 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4573 {
4574 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4575 	u32 phy_ctrl;
4576 	s32 ret_val;
4577 
4578 	phy_ctrl = er32(PHY_CTRL);
4579 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4580 
4581 	if (hw->phy.type == e1000_phy_i217) {
4582 		u16 phy_reg, device_id = hw->adapter->pdev->device;
4583 
4584 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4585 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4586 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4587 		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4588 			u32 fextnvm6 = er32(FEXTNVM6);
4589 
4590 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4591 		}
4592 
4593 		ret_val = hw->phy.ops.acquire(hw);
4594 		if (ret_val)
4595 			goto out;
4596 
4597 		if (!dev_spec->eee_disable) {
4598 			u16 eee_advert;
4599 
4600 			ret_val =
4601 			    e1000_read_emi_reg_locked(hw,
4602 						      I217_EEE_ADVERTISEMENT,
4603 						      &eee_advert);
4604 			if (ret_val)
4605 				goto release;
4606 
4607 			/* Disable LPLU if both link partners support 100BaseT
4608 			 * EEE and 100Full is advertised on both ends of the
4609 			 * link.
4610 			 */
4611 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4612 			    (dev_spec->eee_lp_ability &
4613 			     I82579_EEE_100_SUPPORTED) &&
4614 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4615 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4616 					      E1000_PHY_CTRL_NOND0A_LPLU);
4617 		}
4618 
4619 		/* For i217 Intel Rapid Start Technology support,
4620 		 * when the system is going into Sx and no manageability engine
4621 		 * is present, the driver must configure proxy to reset only on
4622 		 * power good.  LPI (Low Power Idle) state must also reset only
4623 		 * on power good, as well as the MTA (Multicast table array).
4624 		 * The SMBus release must also be disabled on LCD reset.
4625 		 */
4626 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4627 			/* Enable proxy to reset only on power good. */
4628 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4629 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4630 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4631 
4632 			/* Set bit enable LPI (EEE) to reset only on
4633 			 * power good.
4634 			 */
4635 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4636 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4637 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4638 
4639 			/* Disable the SMB release on LCD reset. */
4640 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4641 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4642 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4643 		}
4644 
4645 		/* Enable MTA to reset for Intel Rapid Start Technology
4646 		 * Support
4647 		 */
4648 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4649 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4650 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4651 
4652 release:
4653 		hw->phy.ops.release(hw);
4654 	}
4655 out:
4656 	ew32(PHY_CTRL, phy_ctrl);
4657 
4658 	if (hw->mac.type == e1000_ich8lan)
4659 		e1000e_gig_downshift_workaround_ich8lan(hw);
4660 
4661 	if (hw->mac.type >= e1000_pchlan) {
4662 		e1000_oem_bits_config_ich8lan(hw, false);
4663 
4664 		/* Reset PHY to activate OEM bits on 82577/8 */
4665 		if (hw->mac.type == e1000_pchlan)
4666 			e1000e_phy_hw_reset_generic(hw);
4667 
4668 		ret_val = hw->phy.ops.acquire(hw);
4669 		if (ret_val)
4670 			return;
4671 		e1000_write_smbus_addr(hw);
4672 		hw->phy.ops.release(hw);
4673 	}
4674 }
4675 
4676 /**
4677  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4678  *  @hw: pointer to the HW structure
4679  *
4680  *  During Sx to S0 transitions on non-managed devices or managed devices
4681  *  on which PHY resets are not blocked, if the PHY registers cannot be
4682  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4683  *  the PHY.
4684  *  On i217, setup Intel Rapid Start Technology.
4685  **/
4686 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4687 {
4688 	s32 ret_val;
4689 
4690 	if (hw->mac.type < e1000_pch2lan)
4691 		return;
4692 
4693 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4694 	if (ret_val) {
4695 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4696 		return;
4697 	}
4698 
4699 	/* For i217 Intel Rapid Start Technology support when the system
4700 	 * is transitioning from Sx and no manageability engine is present
4701 	 * configure SMBus to restore on reset, disable proxy, and enable
4702 	 * the reset on MTA (Multicast table array).
4703 	 */
4704 	if (hw->phy.type == e1000_phy_i217) {
4705 		u16 phy_reg;
4706 
4707 		ret_val = hw->phy.ops.acquire(hw);
4708 		if (ret_val) {
4709 			e_dbg("Failed to setup iRST\n");
4710 			return;
4711 		}
4712 
4713 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4714 			/* Restore clear on SMB if no manageability engine
4715 			 * is present
4716 			 */
4717 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4718 			if (ret_val)
4719 				goto release;
4720 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4721 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4722 
4723 			/* Disable Proxy */
4724 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4725 		}
4726 		/* Enable reset on MTA */
4727 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4728 		if (ret_val)
4729 			goto release;
4730 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4731 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4732 release:
4733 		if (ret_val)
4734 			e_dbg("Error %d in resume workarounds\n", ret_val);
4735 		hw->phy.ops.release(hw);
4736 	}
4737 }
4738 
4739 /**
4740  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4741  *  @hw: pointer to the HW structure
4742  *
4743  *  Return the LED back to the default configuration.
4744  **/
4745 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4746 {
4747 	if (hw->phy.type == e1000_phy_ife)
4748 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4749 
4750 	ew32(LEDCTL, hw->mac.ledctl_default);
4751 	return 0;
4752 }
4753 
4754 /**
4755  *  e1000_led_on_ich8lan - Turn LEDs on
4756  *  @hw: pointer to the HW structure
4757  *
4758  *  Turn on the LEDs.
4759  **/
4760 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4761 {
4762 	if (hw->phy.type == e1000_phy_ife)
4763 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4764 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4765 
4766 	ew32(LEDCTL, hw->mac.ledctl_mode2);
4767 	return 0;
4768 }
4769 
4770 /**
4771  *  e1000_led_off_ich8lan - Turn LEDs off
4772  *  @hw: pointer to the HW structure
4773  *
4774  *  Turn off the LEDs.
4775  **/
4776 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4777 {
4778 	if (hw->phy.type == e1000_phy_ife)
4779 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4780 				(IFE_PSCL_PROBE_MODE |
4781 				 IFE_PSCL_PROBE_LEDS_OFF));
4782 
4783 	ew32(LEDCTL, hw->mac.ledctl_mode1);
4784 	return 0;
4785 }
4786 
4787 /**
4788  *  e1000_setup_led_pchlan - Configures SW controllable LED
4789  *  @hw: pointer to the HW structure
4790  *
4791  *  This prepares the SW controllable LED for use.
4792  **/
4793 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4794 {
4795 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4796 }
4797 
4798 /**
4799  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4800  *  @hw: pointer to the HW structure
4801  *
4802  *  Return the LED back to the default configuration.
4803  **/
4804 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4805 {
4806 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4807 }
4808 
4809 /**
4810  *  e1000_led_on_pchlan - Turn LEDs on
4811  *  @hw: pointer to the HW structure
4812  *
4813  *  Turn on the LEDs.
4814  **/
4815 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4816 {
4817 	u16 data = (u16)hw->mac.ledctl_mode2;
4818 	u32 i, led;
4819 
4820 	/* If no link, then turn LED on by setting the invert bit
4821 	 * for each LED that's mode is "link_up" in ledctl_mode2.
4822 	 */
4823 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4824 		for (i = 0; i < 3; i++) {
4825 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4826 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4827 			    E1000_LEDCTL_MODE_LINK_UP)
4828 				continue;
4829 			if (led & E1000_PHY_LED0_IVRT)
4830 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4831 			else
4832 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4833 		}
4834 	}
4835 
4836 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4837 }
4838 
4839 /**
4840  *  e1000_led_off_pchlan - Turn LEDs off
4841  *  @hw: pointer to the HW structure
4842  *
4843  *  Turn off the LEDs.
4844  **/
4845 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4846 {
4847 	u16 data = (u16)hw->mac.ledctl_mode1;
4848 	u32 i, led;
4849 
4850 	/* If no link, then turn LED off by clearing the invert bit
4851 	 * for each LED that's mode is "link_up" in ledctl_mode1.
4852 	 */
4853 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4854 		for (i = 0; i < 3; i++) {
4855 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4856 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4857 			    E1000_LEDCTL_MODE_LINK_UP)
4858 				continue;
4859 			if (led & E1000_PHY_LED0_IVRT)
4860 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4861 			else
4862 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4863 		}
4864 	}
4865 
4866 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4867 }
4868 
4869 /**
4870  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4871  *  @hw: pointer to the HW structure
4872  *
4873  *  Read appropriate register for the config done bit for completion status
4874  *  and configure the PHY through s/w for EEPROM-less parts.
4875  *
4876  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4877  *  config done bit, so only an error is logged and continues.  If we were
4878  *  to return with error, EEPROM-less silicon would not be able to be reset
4879  *  or change link.
4880  **/
4881 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4882 {
4883 	s32 ret_val = 0;
4884 	u32 bank = 0;
4885 	u32 status;
4886 
4887 	e1000e_get_cfg_done_generic(hw);
4888 
4889 	/* Wait for indication from h/w that it has completed basic config */
4890 	if (hw->mac.type >= e1000_ich10lan) {
4891 		e1000_lan_init_done_ich8lan(hw);
4892 	} else {
4893 		ret_val = e1000e_get_auto_rd_done(hw);
4894 		if (ret_val) {
4895 			/* When auto config read does not complete, do not
4896 			 * return with an error. This can happen in situations
4897 			 * where there is no eeprom and prevents getting link.
4898 			 */
4899 			e_dbg("Auto Read Done did not complete\n");
4900 			ret_val = 0;
4901 		}
4902 	}
4903 
4904 	/* Clear PHY Reset Asserted bit */
4905 	status = er32(STATUS);
4906 	if (status & E1000_STATUS_PHYRA)
4907 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4908 	else
4909 		e_dbg("PHY Reset Asserted not set - needs delay\n");
4910 
4911 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4912 	if (hw->mac.type <= e1000_ich9lan) {
4913 		if (!(er32(EECD) & E1000_EECD_PRES) &&
4914 		    (hw->phy.type == e1000_phy_igp_3)) {
4915 			e1000e_phy_init_script_igp3(hw);
4916 		}
4917 	} else {
4918 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4919 			/* Maybe we should do a basic PHY config */
4920 			e_dbg("EEPROM not present\n");
4921 			ret_val = -E1000_ERR_CONFIG;
4922 		}
4923 	}
4924 
4925 	return ret_val;
4926 }
4927 
4928 /**
4929  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4930  * @hw: pointer to the HW structure
4931  *
4932  * In the case of a PHY power down to save power, or to turn off link during a
4933  * driver unload, or wake on lan is not enabled, remove the link.
4934  **/
4935 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4936 {
4937 	/* If the management interface is not enabled, then power down */
4938 	if (!(hw->mac.ops.check_mng_mode(hw) ||
4939 	      hw->phy.ops.check_reset_block(hw)))
4940 		e1000_power_down_phy_copper(hw);
4941 }
4942 
4943 /**
4944  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4945  *  @hw: pointer to the HW structure
4946  *
4947  *  Clears hardware counters specific to the silicon family and calls
4948  *  clear_hw_cntrs_generic to clear all general purpose counters.
4949  **/
4950 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4951 {
4952 	u16 phy_data;
4953 	s32 ret_val;
4954 
4955 	e1000e_clear_hw_cntrs_base(hw);
4956 
4957 	er32(ALGNERRC);
4958 	er32(RXERRC);
4959 	er32(TNCRS);
4960 	er32(CEXTERR);
4961 	er32(TSCTC);
4962 	er32(TSCTFC);
4963 
4964 	er32(MGTPRC);
4965 	er32(MGTPDC);
4966 	er32(MGTPTC);
4967 
4968 	er32(IAC);
4969 	er32(ICRXOC);
4970 
4971 	/* Clear PHY statistics registers */
4972 	if ((hw->phy.type == e1000_phy_82578) ||
4973 	    (hw->phy.type == e1000_phy_82579) ||
4974 	    (hw->phy.type == e1000_phy_i217) ||
4975 	    (hw->phy.type == e1000_phy_82577)) {
4976 		ret_val = hw->phy.ops.acquire(hw);
4977 		if (ret_val)
4978 			return;
4979 		ret_val = hw->phy.ops.set_page(hw,
4980 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4981 		if (ret_val)
4982 			goto release;
4983 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4984 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4985 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4986 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4987 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4988 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4989 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4990 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4991 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4992 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4993 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4994 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4995 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4996 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4997 release:
4998 		hw->phy.ops.release(hw);
4999 	}
5000 }
5001 
5002 static const struct e1000_mac_operations ich8_mac_ops = {
5003 	/* check_mng_mode dependent on mac type */
5004 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5005 	/* cleanup_led dependent on mac type */
5006 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5007 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5008 	.set_lan_id		= e1000_set_lan_id_single_port,
5009 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5010 	/* led_on dependent on mac type */
5011 	/* led_off dependent on mac type */
5012 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5013 	.reset_hw		= e1000_reset_hw_ich8lan,
5014 	.init_hw		= e1000_init_hw_ich8lan,
5015 	.setup_link		= e1000_setup_link_ich8lan,
5016 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5017 	/* id_led_init dependent on mac type */
5018 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5019 	.rar_set		= e1000e_rar_set_generic,
5020 	.rar_get_count		= e1000e_rar_get_count_generic,
5021 };
5022 
5023 static const struct e1000_phy_operations ich8_phy_ops = {
5024 	.acquire		= e1000_acquire_swflag_ich8lan,
5025 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5026 	.commit			= NULL,
5027 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5028 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5029 	.read_reg		= e1000e_read_phy_reg_igp,
5030 	.release		= e1000_release_swflag_ich8lan,
5031 	.reset			= e1000_phy_hw_reset_ich8lan,
5032 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5033 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5034 	.write_reg		= e1000e_write_phy_reg_igp,
5035 };
5036 
5037 static const struct e1000_nvm_operations ich8_nvm_ops = {
5038 	.acquire		= e1000_acquire_nvm_ich8lan,
5039 	.read			= e1000_read_nvm_ich8lan,
5040 	.release		= e1000_release_nvm_ich8lan,
5041 	.reload			= e1000e_reload_nvm_generic,
5042 	.update			= e1000_update_nvm_checksum_ich8lan,
5043 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5044 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5045 	.write			= e1000_write_nvm_ich8lan,
5046 };
5047 
5048 const struct e1000_info e1000_ich8_info = {
5049 	.mac			= e1000_ich8lan,
5050 	.flags			= FLAG_HAS_WOL
5051 				  | FLAG_IS_ICH
5052 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5053 				  | FLAG_HAS_AMT
5054 				  | FLAG_HAS_FLASH
5055 				  | FLAG_APME_IN_WUC,
5056 	.pba			= 8,
5057 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
5058 	.get_variants		= e1000_get_variants_ich8lan,
5059 	.mac_ops		= &ich8_mac_ops,
5060 	.phy_ops		= &ich8_phy_ops,
5061 	.nvm_ops		= &ich8_nvm_ops,
5062 };
5063 
5064 const struct e1000_info e1000_ich9_info = {
5065 	.mac			= e1000_ich9lan,
5066 	.flags			= FLAG_HAS_JUMBO_FRAMES
5067 				  | FLAG_IS_ICH
5068 				  | FLAG_HAS_WOL
5069 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5070 				  | FLAG_HAS_AMT
5071 				  | FLAG_HAS_FLASH
5072 				  | FLAG_APME_IN_WUC,
5073 	.pba			= 18,
5074 	.max_hw_frame_size	= DEFAULT_JUMBO,
5075 	.get_variants		= e1000_get_variants_ich8lan,
5076 	.mac_ops		= &ich8_mac_ops,
5077 	.phy_ops		= &ich8_phy_ops,
5078 	.nvm_ops		= &ich8_nvm_ops,
5079 };
5080 
5081 const struct e1000_info e1000_ich10_info = {
5082 	.mac			= e1000_ich10lan,
5083 	.flags			= FLAG_HAS_JUMBO_FRAMES
5084 				  | FLAG_IS_ICH
5085 				  | FLAG_HAS_WOL
5086 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5087 				  | FLAG_HAS_AMT
5088 				  | FLAG_HAS_FLASH
5089 				  | FLAG_APME_IN_WUC,
5090 	.pba			= 18,
5091 	.max_hw_frame_size	= DEFAULT_JUMBO,
5092 	.get_variants		= e1000_get_variants_ich8lan,
5093 	.mac_ops		= &ich8_mac_ops,
5094 	.phy_ops		= &ich8_phy_ops,
5095 	.nvm_ops		= &ich8_nvm_ops,
5096 };
5097 
5098 const struct e1000_info e1000_pch_info = {
5099 	.mac			= e1000_pchlan,
5100 	.flags			= FLAG_IS_ICH
5101 				  | FLAG_HAS_WOL
5102 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5103 				  | FLAG_HAS_AMT
5104 				  | FLAG_HAS_FLASH
5105 				  | FLAG_HAS_JUMBO_FRAMES
5106 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5107 				  | FLAG_APME_IN_WUC,
5108 	.flags2			= FLAG2_HAS_PHY_STATS,
5109 	.pba			= 26,
5110 	.max_hw_frame_size	= 4096,
5111 	.get_variants		= e1000_get_variants_ich8lan,
5112 	.mac_ops		= &ich8_mac_ops,
5113 	.phy_ops		= &ich8_phy_ops,
5114 	.nvm_ops		= &ich8_nvm_ops,
5115 };
5116 
5117 const struct e1000_info e1000_pch2_info = {
5118 	.mac			= e1000_pch2lan,
5119 	.flags			= FLAG_IS_ICH
5120 				  | FLAG_HAS_WOL
5121 				  | FLAG_HAS_HW_TIMESTAMP
5122 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5123 				  | FLAG_HAS_AMT
5124 				  | FLAG_HAS_FLASH
5125 				  | FLAG_HAS_JUMBO_FRAMES
5126 				  | FLAG_APME_IN_WUC,
5127 	.flags2			= FLAG2_HAS_PHY_STATS
5128 				  | FLAG2_HAS_EEE,
5129 	.pba			= 26,
5130 	.max_hw_frame_size	= 9018,
5131 	.get_variants		= e1000_get_variants_ich8lan,
5132 	.mac_ops		= &ich8_mac_ops,
5133 	.phy_ops		= &ich8_phy_ops,
5134 	.nvm_ops		= &ich8_nvm_ops,
5135 };
5136 
5137 const struct e1000_info e1000_pch_lpt_info = {
5138 	.mac			= e1000_pch_lpt,
5139 	.flags			= FLAG_IS_ICH
5140 				  | FLAG_HAS_WOL
5141 				  | FLAG_HAS_HW_TIMESTAMP
5142 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5143 				  | FLAG_HAS_AMT
5144 				  | FLAG_HAS_FLASH
5145 				  | FLAG_HAS_JUMBO_FRAMES
5146 				  | FLAG_APME_IN_WUC,
5147 	.flags2			= FLAG2_HAS_PHY_STATS
5148 				  | FLAG2_HAS_EEE,
5149 	.pba			= 26,
5150 	.max_hw_frame_size	= 9018,
5151 	.get_variants		= e1000_get_variants_ich8lan,
5152 	.mac_ops		= &ich8_mac_ops,
5153 	.phy_ops		= &ich8_phy_ops,
5154 	.nvm_ops		= &ich8_nvm_ops,
5155 };
5156