xref: /openbmc/linux/drivers/net/ethernet/intel/e1000e/ethtool.c (revision f29119b301d598f245154edc797c69c712a8b7fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* ethtool support for e1000 */
5 
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14 
15 #include "e1000.h"
16 
17 enum { NETDEV_STATS, E1000_STATS };
18 
19 struct e1000_stats {
20 	char stat_string[ETH_GSTRING_LEN];
21 	int type;
22 	int sizeof_stat;
23 	int stat_offset;
24 };
25 
26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED	BIT(0)
28 	"s0ix-enabled",
29 };
30 
31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
32 
33 #define E1000_STAT(str, m) { \
34 		.stat_string = str, \
35 		.type = E1000_STATS, \
36 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37 		.stat_offset = offsetof(struct e1000_adapter, m) }
38 #define E1000_NETDEV_STAT(str, m) { \
39 		.stat_string = str, \
40 		.type = NETDEV_STATS, \
41 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
43 
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45 	E1000_STAT("rx_packets", stats.gprc),
46 	E1000_STAT("tx_packets", stats.gptc),
47 	E1000_STAT("rx_bytes", stats.gorc),
48 	E1000_STAT("tx_bytes", stats.gotc),
49 	E1000_STAT("rx_broadcast", stats.bprc),
50 	E1000_STAT("tx_broadcast", stats.bptc),
51 	E1000_STAT("rx_multicast", stats.mprc),
52 	E1000_STAT("tx_multicast", stats.mptc),
53 	E1000_NETDEV_STAT("rx_errors", rx_errors),
54 	E1000_NETDEV_STAT("tx_errors", tx_errors),
55 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
56 	E1000_STAT("multicast", stats.mprc),
57 	E1000_STAT("collisions", stats.colc),
58 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
59 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
60 	E1000_STAT("rx_crc_errors", stats.crcerrs),
61 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
62 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
63 	E1000_STAT("rx_missed_errors", stats.mpc),
64 	E1000_STAT("tx_aborted_errors", stats.ecol),
65 	E1000_STAT("tx_carrier_errors", stats.tncrs),
66 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
67 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
68 	E1000_STAT("tx_window_errors", stats.latecol),
69 	E1000_STAT("tx_abort_late_coll", stats.latecol),
70 	E1000_STAT("tx_deferred_ok", stats.dc),
71 	E1000_STAT("tx_single_coll_ok", stats.scc),
72 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
73 	E1000_STAT("tx_timeout_count", tx_timeout_count),
74 	E1000_STAT("tx_restart_queue", restart_queue),
75 	E1000_STAT("rx_long_length_errors", stats.roc),
76 	E1000_STAT("rx_short_length_errors", stats.ruc),
77 	E1000_STAT("rx_align_errors", stats.algnerrc),
78 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
79 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
81 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
83 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
84 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
85 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
86 	E1000_STAT("rx_header_split", rx_hdr_split),
87 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
88 	E1000_STAT("tx_smbus", stats.mgptc),
89 	E1000_STAT("rx_smbus", stats.mgprc),
90 	E1000_STAT("dropped_smbus", stats.mgpdc),
91 	E1000_STAT("rx_dma_failed", rx_dma_failed),
92 	E1000_STAT("tx_dma_failed", tx_dma_failed),
93 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
95 	E1000_STAT("corr_ecc_errors", corr_errors),
96 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
98 };
99 
100 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 	"Register test  (offline)", "Eeprom test    (offline)",
104 	"Interrupt test (offline)", "Loopback test  (offline)",
105 	"Link test   (on/offline)"
106 };
107 
108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 
110 static int e1000_get_link_ksettings(struct net_device *netdev,
111 				    struct ethtool_link_ksettings *cmd)
112 {
113 	u32 speed, supported, advertising, lp_advertising, lpa_t;
114 	struct e1000_adapter *adapter = netdev_priv(netdev);
115 	struct e1000_hw *hw = &adapter->hw;
116 
117 	if (hw->phy.media_type == e1000_media_type_copper) {
118 		supported = (SUPPORTED_10baseT_Half |
119 			     SUPPORTED_10baseT_Full |
120 			     SUPPORTED_100baseT_Half |
121 			     SUPPORTED_100baseT_Full |
122 			     SUPPORTED_1000baseT_Full |
123 			     SUPPORTED_Asym_Pause |
124 			     SUPPORTED_Autoneg |
125 			     SUPPORTED_Pause |
126 			     SUPPORTED_TP);
127 		if (hw->phy.type == e1000_phy_ife)
128 			supported &= ~SUPPORTED_1000baseT_Full;
129 		advertising = ADVERTISED_TP;
130 
131 		if (hw->mac.autoneg == 1) {
132 			advertising |= ADVERTISED_Autoneg;
133 			/* the e1000 autoneg seems to match ethtool nicely */
134 			advertising |= hw->phy.autoneg_advertised;
135 		}
136 
137 		cmd->base.port = PORT_TP;
138 		cmd->base.phy_address = hw->phy.addr;
139 	} else {
140 		supported   = (SUPPORTED_1000baseT_Full |
141 			       SUPPORTED_FIBRE |
142 			       SUPPORTED_Autoneg);
143 
144 		advertising = (ADVERTISED_1000baseT_Full |
145 			       ADVERTISED_FIBRE |
146 			       ADVERTISED_Autoneg);
147 
148 		cmd->base.port = PORT_FIBRE;
149 	}
150 
151 	speed = SPEED_UNKNOWN;
152 	cmd->base.duplex = DUPLEX_UNKNOWN;
153 
154 	if (netif_running(netdev)) {
155 		if (netif_carrier_ok(netdev)) {
156 			speed = adapter->link_speed;
157 			cmd->base.duplex = adapter->link_duplex - 1;
158 		}
159 	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
160 		u32 status = er32(STATUS);
161 
162 		if (status & E1000_STATUS_LU) {
163 			if (status & E1000_STATUS_SPEED_1000)
164 				speed = SPEED_1000;
165 			else if (status & E1000_STATUS_SPEED_100)
166 				speed = SPEED_100;
167 			else
168 				speed = SPEED_10;
169 
170 			if (status & E1000_STATUS_FD)
171 				cmd->base.duplex = DUPLEX_FULL;
172 			else
173 				cmd->base.duplex = DUPLEX_HALF;
174 		}
175 	}
176 
177 	cmd->base.speed = speed;
178 	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
179 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
180 
181 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
182 	if ((hw->phy.media_type == e1000_media_type_copper) &&
183 	    netif_carrier_ok(netdev))
184 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
185 			ETH_TP_MDI_X : ETH_TP_MDI;
186 	else
187 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
188 
189 	if (hw->phy.mdix == AUTO_ALL_MODES)
190 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
191 	else
192 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
193 
194 	if (hw->phy.media_type != e1000_media_type_copper)
195 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
196 
197 	lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
198 	lp_advertising = lpa_t |
199 	mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
200 
201 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
202 						supported);
203 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
204 						advertising);
205 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
206 						lp_advertising);
207 
208 	return 0;
209 }
210 
211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
212 {
213 	struct e1000_mac_info *mac = &adapter->hw.mac;
214 
215 	mac->autoneg = 0;
216 
217 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
218 	 * for the switch() below to work
219 	 */
220 	if ((spd & 1) || (dplx & ~1))
221 		goto err_inval;
222 
223 	/* Fiber NICs only allow 1000 gbps Full duplex */
224 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
225 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
226 		goto err_inval;
227 	}
228 
229 	switch (spd + dplx) {
230 	case SPEED_10 + DUPLEX_HALF:
231 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
232 		break;
233 	case SPEED_10 + DUPLEX_FULL:
234 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
235 		break;
236 	case SPEED_100 + DUPLEX_HALF:
237 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
238 		break;
239 	case SPEED_100 + DUPLEX_FULL:
240 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
241 		break;
242 	case SPEED_1000 + DUPLEX_FULL:
243 		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
244 			mac->autoneg = 1;
245 			adapter->hw.phy.autoneg_advertised =
246 				ADVERTISE_1000_FULL;
247 		} else {
248 			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
249 		}
250 		break;
251 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
252 	default:
253 		goto err_inval;
254 	}
255 
256 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
257 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
258 
259 	return 0;
260 
261 err_inval:
262 	e_err("Unsupported Speed/Duplex configuration\n");
263 	return -EINVAL;
264 }
265 
266 static int e1000_set_link_ksettings(struct net_device *netdev,
267 				    const struct ethtool_link_ksettings *cmd)
268 {
269 	struct e1000_adapter *adapter = netdev_priv(netdev);
270 	struct e1000_hw *hw = &adapter->hw;
271 	int ret_val = 0;
272 	u32 advertising;
273 
274 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
275 						cmd->link_modes.advertising);
276 
277 	pm_runtime_get_sync(netdev->dev.parent);
278 
279 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
280 	 * cannot be changed
281 	 */
282 	if (hw->phy.ops.check_reset_block &&
283 	    hw->phy.ops.check_reset_block(hw)) {
284 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
285 		ret_val = -EINVAL;
286 		goto out;
287 	}
288 
289 	/* MDI setting is only allowed when autoneg enabled because
290 	 * some hardware doesn't allow MDI setting when speed or
291 	 * duplex is forced.
292 	 */
293 	if (cmd->base.eth_tp_mdix_ctrl) {
294 		if (hw->phy.media_type != e1000_media_type_copper) {
295 			ret_val = -EOPNOTSUPP;
296 			goto out;
297 		}
298 
299 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
300 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
301 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
302 			ret_val = -EINVAL;
303 			goto out;
304 		}
305 	}
306 
307 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
308 		usleep_range(1000, 2000);
309 
310 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
311 		hw->mac.autoneg = 1;
312 		if (hw->phy.media_type == e1000_media_type_fiber)
313 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
314 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
315 		else
316 			hw->phy.autoneg_advertised = advertising |
317 			    ADVERTISED_TP | ADVERTISED_Autoneg;
318 		advertising = hw->phy.autoneg_advertised;
319 		if (adapter->fc_autoneg)
320 			hw->fc.requested_mode = e1000_fc_default;
321 	} else {
322 		u32 speed = cmd->base.speed;
323 		/* calling this overrides forced MDI setting */
324 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
325 			ret_val = -EINVAL;
326 			goto out;
327 		}
328 	}
329 
330 	/* MDI-X => 2; MDI => 1; Auto => 3 */
331 	if (cmd->base.eth_tp_mdix_ctrl) {
332 		/* fix up the value for auto (3 => 0) as zero is mapped
333 		 * internally to auto
334 		 */
335 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
336 			hw->phy.mdix = AUTO_ALL_MODES;
337 		else
338 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
339 	}
340 
341 	/* reset the link */
342 	if (netif_running(adapter->netdev)) {
343 		e1000e_down(adapter, true);
344 		e1000e_up(adapter);
345 	} else {
346 		e1000e_reset(adapter);
347 	}
348 
349 out:
350 	pm_runtime_put_sync(netdev->dev.parent);
351 	clear_bit(__E1000_RESETTING, &adapter->state);
352 	return ret_val;
353 }
354 
355 static void e1000_get_pauseparam(struct net_device *netdev,
356 				 struct ethtool_pauseparam *pause)
357 {
358 	struct e1000_adapter *adapter = netdev_priv(netdev);
359 	struct e1000_hw *hw = &adapter->hw;
360 
361 	pause->autoneg =
362 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
363 
364 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
365 		pause->rx_pause = 1;
366 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
367 		pause->tx_pause = 1;
368 	} else if (hw->fc.current_mode == e1000_fc_full) {
369 		pause->rx_pause = 1;
370 		pause->tx_pause = 1;
371 	}
372 }
373 
374 static int e1000_set_pauseparam(struct net_device *netdev,
375 				struct ethtool_pauseparam *pause)
376 {
377 	struct e1000_adapter *adapter = netdev_priv(netdev);
378 	struct e1000_hw *hw = &adapter->hw;
379 	int retval = 0;
380 
381 	adapter->fc_autoneg = pause->autoneg;
382 
383 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
384 		usleep_range(1000, 2000);
385 
386 	pm_runtime_get_sync(netdev->dev.parent);
387 
388 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
389 		hw->fc.requested_mode = e1000_fc_default;
390 		if (netif_running(adapter->netdev)) {
391 			e1000e_down(adapter, true);
392 			e1000e_up(adapter);
393 		} else {
394 			e1000e_reset(adapter);
395 		}
396 	} else {
397 		if (pause->rx_pause && pause->tx_pause)
398 			hw->fc.requested_mode = e1000_fc_full;
399 		else if (pause->rx_pause && !pause->tx_pause)
400 			hw->fc.requested_mode = e1000_fc_rx_pause;
401 		else if (!pause->rx_pause && pause->tx_pause)
402 			hw->fc.requested_mode = e1000_fc_tx_pause;
403 		else if (!pause->rx_pause && !pause->tx_pause)
404 			hw->fc.requested_mode = e1000_fc_none;
405 
406 		hw->fc.current_mode = hw->fc.requested_mode;
407 
408 		if (hw->phy.media_type == e1000_media_type_fiber) {
409 			retval = hw->mac.ops.setup_link(hw);
410 			/* implicit goto out */
411 		} else {
412 			retval = e1000e_force_mac_fc(hw);
413 			if (retval)
414 				goto out;
415 			e1000e_set_fc_watermarks(hw);
416 		}
417 	}
418 
419 out:
420 	pm_runtime_put_sync(netdev->dev.parent);
421 	clear_bit(__E1000_RESETTING, &adapter->state);
422 	return retval;
423 }
424 
425 static u32 e1000_get_msglevel(struct net_device *netdev)
426 {
427 	struct e1000_adapter *adapter = netdev_priv(netdev);
428 	return adapter->msg_enable;
429 }
430 
431 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
432 {
433 	struct e1000_adapter *adapter = netdev_priv(netdev);
434 	adapter->msg_enable = data;
435 }
436 
437 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
438 {
439 #define E1000_REGS_LEN 32	/* overestimate */
440 	return E1000_REGS_LEN * sizeof(u32);
441 }
442 
443 static void e1000_get_regs(struct net_device *netdev,
444 			   struct ethtool_regs *regs, void *p)
445 {
446 	struct e1000_adapter *adapter = netdev_priv(netdev);
447 	struct e1000_hw *hw = &adapter->hw;
448 	u32 *regs_buff = p;
449 	u16 phy_data;
450 
451 	pm_runtime_get_sync(netdev->dev.parent);
452 
453 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
454 
455 	regs->version = (1u << 24) |
456 			(adapter->pdev->revision << 16) |
457 			adapter->pdev->device;
458 
459 	regs_buff[0] = er32(CTRL);
460 	regs_buff[1] = er32(STATUS);
461 
462 	regs_buff[2] = er32(RCTL);
463 	regs_buff[3] = er32(RDLEN(0));
464 	regs_buff[4] = er32(RDH(0));
465 	regs_buff[5] = er32(RDT(0));
466 	regs_buff[6] = er32(RDTR);
467 
468 	regs_buff[7] = er32(TCTL);
469 	regs_buff[8] = er32(TDLEN(0));
470 	regs_buff[9] = er32(TDH(0));
471 	regs_buff[10] = er32(TDT(0));
472 	regs_buff[11] = er32(TIDV);
473 
474 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
475 
476 	/* ethtool doesn't use anything past this point, so all this
477 	 * code is likely legacy junk for apps that may or may not exist
478 	 */
479 	if (hw->phy.type == e1000_phy_m88) {
480 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
481 		regs_buff[13] = (u32)phy_data; /* cable length */
482 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
483 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
484 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
485 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
486 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
487 		regs_buff[18] = regs_buff[13]; /* cable polarity */
488 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
489 		regs_buff[20] = regs_buff[17]; /* polarity correction */
490 		/* phy receive errors */
491 		regs_buff[22] = adapter->phy_stats.receive_errors;
492 		regs_buff[23] = regs_buff[13]; /* mdix mode */
493 	}
494 	regs_buff[21] = 0;	/* was idle_errors */
495 	e1e_rphy(hw, MII_STAT1000, &phy_data);
496 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
497 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
498 
499 	pm_runtime_put_sync(netdev->dev.parent);
500 }
501 
502 static int e1000_get_eeprom_len(struct net_device *netdev)
503 {
504 	struct e1000_adapter *adapter = netdev_priv(netdev);
505 	return adapter->hw.nvm.word_size * 2;
506 }
507 
508 static int e1000_get_eeprom(struct net_device *netdev,
509 			    struct ethtool_eeprom *eeprom, u8 *bytes)
510 {
511 	struct e1000_adapter *adapter = netdev_priv(netdev);
512 	struct e1000_hw *hw = &adapter->hw;
513 	u16 *eeprom_buff;
514 	int first_word;
515 	int last_word;
516 	int ret_val = 0;
517 	u16 i;
518 
519 	if (eeprom->len == 0)
520 		return -EINVAL;
521 
522 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
523 
524 	first_word = eeprom->offset >> 1;
525 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
526 
527 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
528 				    GFP_KERNEL);
529 	if (!eeprom_buff)
530 		return -ENOMEM;
531 
532 	pm_runtime_get_sync(netdev->dev.parent);
533 
534 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
535 		ret_val = e1000_read_nvm(hw, first_word,
536 					 last_word - first_word + 1,
537 					 eeprom_buff);
538 	} else {
539 		for (i = 0; i < last_word - first_word + 1; i++) {
540 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
541 						 &eeprom_buff[i]);
542 			if (ret_val)
543 				break;
544 		}
545 	}
546 
547 	pm_runtime_put_sync(netdev->dev.parent);
548 
549 	if (ret_val) {
550 		/* a read error occurred, throw away the result */
551 		memset(eeprom_buff, 0xff, sizeof(u16) *
552 		       (last_word - first_word + 1));
553 	} else {
554 		/* Device's eeprom is always little-endian, word addressable */
555 		for (i = 0; i < last_word - first_word + 1; i++)
556 			le16_to_cpus(&eeprom_buff[i]);
557 	}
558 
559 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
560 	kfree(eeprom_buff);
561 
562 	return ret_val;
563 }
564 
565 static int e1000_set_eeprom(struct net_device *netdev,
566 			    struct ethtool_eeprom *eeprom, u8 *bytes)
567 {
568 	struct e1000_adapter *adapter = netdev_priv(netdev);
569 	struct e1000_hw *hw = &adapter->hw;
570 	u16 *eeprom_buff;
571 	void *ptr;
572 	int max_len;
573 	int first_word;
574 	int last_word;
575 	int ret_val = 0;
576 	u16 i;
577 
578 	if (eeprom->len == 0)
579 		return -EOPNOTSUPP;
580 
581 	if (eeprom->magic !=
582 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
583 		return -EFAULT;
584 
585 	if (adapter->flags & FLAG_READ_ONLY_NVM)
586 		return -EINVAL;
587 
588 	max_len = hw->nvm.word_size * 2;
589 
590 	first_word = eeprom->offset >> 1;
591 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
592 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
593 	if (!eeprom_buff)
594 		return -ENOMEM;
595 
596 	ptr = (void *)eeprom_buff;
597 
598 	pm_runtime_get_sync(netdev->dev.parent);
599 
600 	if (eeprom->offset & 1) {
601 		/* need read/modify/write of first changed EEPROM word */
602 		/* only the second byte of the word is being modified */
603 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
604 		ptr++;
605 	}
606 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
607 		/* need read/modify/write of last changed EEPROM word */
608 		/* only the first byte of the word is being modified */
609 		ret_val = e1000_read_nvm(hw, last_word, 1,
610 					 &eeprom_buff[last_word - first_word]);
611 
612 	if (ret_val)
613 		goto out;
614 
615 	/* Device's eeprom is always little-endian, word addressable */
616 	for (i = 0; i < last_word - first_word + 1; i++)
617 		le16_to_cpus(&eeprom_buff[i]);
618 
619 	memcpy(ptr, bytes, eeprom->len);
620 
621 	for (i = 0; i < last_word - first_word + 1; i++)
622 		cpu_to_le16s(&eeprom_buff[i]);
623 
624 	ret_val = e1000_write_nvm(hw, first_word,
625 				  last_word - first_word + 1, eeprom_buff);
626 
627 	if (ret_val)
628 		goto out;
629 
630 	/* Update the checksum over the first part of the EEPROM if needed
631 	 * and flush shadow RAM for applicable controllers
632 	 */
633 	if ((first_word <= NVM_CHECKSUM_REG) ||
634 	    (hw->mac.type == e1000_82583) ||
635 	    (hw->mac.type == e1000_82574) ||
636 	    (hw->mac.type == e1000_82573))
637 		ret_val = e1000e_update_nvm_checksum(hw);
638 
639 out:
640 	pm_runtime_put_sync(netdev->dev.parent);
641 	kfree(eeprom_buff);
642 	return ret_val;
643 }
644 
645 static void e1000_get_drvinfo(struct net_device *netdev,
646 			      struct ethtool_drvinfo *drvinfo)
647 {
648 	struct e1000_adapter *adapter = netdev_priv(netdev);
649 
650 	strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
651 
652 	/* EEPROM image version # is reported as firmware version # for
653 	 * PCI-E controllers
654 	 */
655 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
656 		 "%d.%d-%d",
657 		 FIELD_GET(0xF000, adapter->eeprom_vers),
658 		 FIELD_GET(0x0FF0, adapter->eeprom_vers),
659 		 (adapter->eeprom_vers & 0x000F));
660 
661 	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
662 		sizeof(drvinfo->bus_info));
663 }
664 
665 static void e1000_get_ringparam(struct net_device *netdev,
666 				struct ethtool_ringparam *ring,
667 				struct kernel_ethtool_ringparam *kernel_ring,
668 				struct netlink_ext_ack *extack)
669 {
670 	struct e1000_adapter *adapter = netdev_priv(netdev);
671 
672 	ring->rx_max_pending = E1000_MAX_RXD;
673 	ring->tx_max_pending = E1000_MAX_TXD;
674 	ring->rx_pending = adapter->rx_ring_count;
675 	ring->tx_pending = adapter->tx_ring_count;
676 }
677 
678 static int e1000_set_ringparam(struct net_device *netdev,
679 			       struct ethtool_ringparam *ring,
680 			       struct kernel_ethtool_ringparam *kernel_ring,
681 			       struct netlink_ext_ack *extack)
682 {
683 	struct e1000_adapter *adapter = netdev_priv(netdev);
684 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
685 	int err = 0, size = sizeof(struct e1000_ring);
686 	bool set_tx = false, set_rx = false;
687 	u16 new_rx_count, new_tx_count;
688 
689 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
690 		return -EINVAL;
691 
692 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
693 			       E1000_MAX_RXD);
694 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
695 
696 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
697 			       E1000_MAX_TXD);
698 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
699 
700 	if ((new_tx_count == adapter->tx_ring_count) &&
701 	    (new_rx_count == adapter->rx_ring_count))
702 		/* nothing to do */
703 		return 0;
704 
705 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
706 		usleep_range(1000, 2000);
707 
708 	if (!netif_running(adapter->netdev)) {
709 		/* Set counts now and allocate resources during open() */
710 		adapter->tx_ring->count = new_tx_count;
711 		adapter->rx_ring->count = new_rx_count;
712 		adapter->tx_ring_count = new_tx_count;
713 		adapter->rx_ring_count = new_rx_count;
714 		goto clear_reset;
715 	}
716 
717 	set_tx = (new_tx_count != adapter->tx_ring_count);
718 	set_rx = (new_rx_count != adapter->rx_ring_count);
719 
720 	/* Allocate temporary storage for ring updates */
721 	if (set_tx) {
722 		temp_tx = vmalloc(size);
723 		if (!temp_tx) {
724 			err = -ENOMEM;
725 			goto free_temp;
726 		}
727 	}
728 	if (set_rx) {
729 		temp_rx = vmalloc(size);
730 		if (!temp_rx) {
731 			err = -ENOMEM;
732 			goto free_temp;
733 		}
734 	}
735 
736 	pm_runtime_get_sync(netdev->dev.parent);
737 
738 	e1000e_down(adapter, true);
739 
740 	/* We can't just free everything and then setup again, because the
741 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
742 	 * structs.  First, attempt to allocate new resources...
743 	 */
744 	if (set_tx) {
745 		memcpy(temp_tx, adapter->tx_ring, size);
746 		temp_tx->count = new_tx_count;
747 		err = e1000e_setup_tx_resources(temp_tx);
748 		if (err)
749 			goto err_setup;
750 	}
751 	if (set_rx) {
752 		memcpy(temp_rx, adapter->rx_ring, size);
753 		temp_rx->count = new_rx_count;
754 		err = e1000e_setup_rx_resources(temp_rx);
755 		if (err)
756 			goto err_setup_rx;
757 	}
758 
759 	/* ...then free the old resources and copy back any new ring data */
760 	if (set_tx) {
761 		e1000e_free_tx_resources(adapter->tx_ring);
762 		memcpy(adapter->tx_ring, temp_tx, size);
763 		adapter->tx_ring_count = new_tx_count;
764 	}
765 	if (set_rx) {
766 		e1000e_free_rx_resources(adapter->rx_ring);
767 		memcpy(adapter->rx_ring, temp_rx, size);
768 		adapter->rx_ring_count = new_rx_count;
769 	}
770 
771 err_setup_rx:
772 	if (err && set_tx)
773 		e1000e_free_tx_resources(temp_tx);
774 err_setup:
775 	e1000e_up(adapter);
776 	pm_runtime_put_sync(netdev->dev.parent);
777 free_temp:
778 	vfree(temp_tx);
779 	vfree(temp_rx);
780 clear_reset:
781 	clear_bit(__E1000_RESETTING, &adapter->state);
782 	return err;
783 }
784 
785 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
786 			     int reg, int offset, u32 mask, u32 write)
787 {
788 	u32 pat, val;
789 	static const u32 test[] = {
790 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
791 	};
792 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
793 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
794 				      (test[pat] & write));
795 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
796 		if (val != (test[pat] & write & mask)) {
797 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
798 			      reg + (offset << 2), val,
799 			      (test[pat] & write & mask));
800 			*data = reg;
801 			return true;
802 		}
803 	}
804 	return false;
805 }
806 
807 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
808 			      int reg, u32 mask, u32 write)
809 {
810 	u32 val;
811 
812 	__ew32(&adapter->hw, reg, write & mask);
813 	val = __er32(&adapter->hw, reg);
814 	if ((write & mask) != (val & mask)) {
815 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
816 		      reg, (val & mask), (write & mask));
817 		*data = reg;
818 		return true;
819 	}
820 	return false;
821 }
822 
823 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
824 	do {                                                                   \
825 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
826 			return 1;                                              \
827 	} while (0)
828 #define REG_PATTERN_TEST(reg, mask, write)                                     \
829 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
830 
831 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
832 	do {                                                                   \
833 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
834 			return 1;                                              \
835 	} while (0)
836 
837 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
838 {
839 	struct e1000_hw *hw = &adapter->hw;
840 	struct e1000_mac_info *mac = &adapter->hw.mac;
841 	u32 value;
842 	u32 before;
843 	u32 after;
844 	u32 i;
845 	u32 toggle;
846 	u32 mask;
847 	u32 wlock_mac = 0;
848 
849 	/* The status register is Read Only, so a write should fail.
850 	 * Some bits that get toggled are ignored.  There are several bits
851 	 * on newer hardware that are r/w.
852 	 */
853 	switch (mac->type) {
854 	case e1000_82571:
855 	case e1000_82572:
856 	case e1000_80003es2lan:
857 		toggle = 0x7FFFF3FF;
858 		break;
859 	default:
860 		toggle = 0x7FFFF033;
861 		break;
862 	}
863 
864 	before = er32(STATUS);
865 	value = (er32(STATUS) & toggle);
866 	ew32(STATUS, toggle);
867 	after = er32(STATUS) & toggle;
868 	if (value != after) {
869 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
870 		      after, value);
871 		*data = 1;
872 		return 1;
873 	}
874 	/* restore previous status */
875 	ew32(STATUS, before);
876 
877 	if (!(adapter->flags & FLAG_IS_ICH)) {
878 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
879 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
880 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
881 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
882 	}
883 
884 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
885 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
886 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
887 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
888 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
889 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
890 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
891 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
892 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
893 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
894 
895 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
896 
897 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
898 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
899 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
900 
901 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
902 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
903 	if (!(adapter->flags & FLAG_IS_ICH))
904 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
905 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
906 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
907 	mask = 0x8003FFFF;
908 	switch (mac->type) {
909 	case e1000_ich10lan:
910 	case e1000_pchlan:
911 	case e1000_pch2lan:
912 	case e1000_pch_lpt:
913 	case e1000_pch_spt:
914 	case e1000_pch_cnp:
915 	case e1000_pch_tgp:
916 	case e1000_pch_adp:
917 	case e1000_pch_mtp:
918 	case e1000_pch_lnp:
919 	case e1000_pch_ptp:
920 	case e1000_pch_nvp:
921 		mask |= BIT(18);
922 		break;
923 	default:
924 		break;
925 	}
926 
927 	if (mac->type >= e1000_pch_lpt)
928 		wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM));
929 
930 	for (i = 0; i < mac->rar_entry_count; i++) {
931 		if (mac->type >= e1000_pch_lpt) {
932 			/* Cannot test write-protected SHRAL[n] registers */
933 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
934 				continue;
935 
936 			/* SHRAH[9] different than the others */
937 			if (i == 10)
938 				mask |= BIT(30);
939 			else
940 				mask &= ~BIT(30);
941 		}
942 		if (mac->type == e1000_pch2lan) {
943 			/* SHRAH[0,1,2] different than previous */
944 			if (i == 1)
945 				mask &= 0xFFF4FFFF;
946 			/* SHRAH[3] different than SHRAH[0,1,2] */
947 			if (i == 4)
948 				mask |= BIT(30);
949 			/* RAR[1-6] owned by management engine - skipping */
950 			if (i > 0)
951 				i += 6;
952 		}
953 
954 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
955 				       0xFFFFFFFF);
956 		/* reset index to actual value */
957 		if ((mac->type == e1000_pch2lan) && (i > 6))
958 			i -= 6;
959 	}
960 
961 	for (i = 0; i < mac->mta_reg_count; i++)
962 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
963 
964 	*data = 0;
965 
966 	return 0;
967 }
968 
969 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
970 {
971 	u16 temp;
972 	u16 checksum = 0;
973 	u16 i;
974 
975 	*data = 0;
976 	/* Read and add up the contents of the EEPROM */
977 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
978 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
979 			*data = 1;
980 			return *data;
981 		}
982 		checksum += temp;
983 	}
984 
985 	/* If Checksum is not Correct return error else test passed */
986 	if ((checksum != (u16)NVM_SUM) && !(*data))
987 		*data = 2;
988 
989 	return *data;
990 }
991 
992 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
993 {
994 	struct net_device *netdev = (struct net_device *)data;
995 	struct e1000_adapter *adapter = netdev_priv(netdev);
996 	struct e1000_hw *hw = &adapter->hw;
997 
998 	adapter->test_icr |= er32(ICR);
999 
1000 	return IRQ_HANDLED;
1001 }
1002 
1003 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1004 {
1005 	struct net_device *netdev = adapter->netdev;
1006 	struct e1000_hw *hw = &adapter->hw;
1007 	u32 mask;
1008 	u32 shared_int = 1;
1009 	u32 irq = adapter->pdev->irq;
1010 	int i;
1011 	int ret_val = 0;
1012 	int int_mode = E1000E_INT_MODE_LEGACY;
1013 
1014 	*data = 0;
1015 
1016 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1017 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1018 		int_mode = adapter->int_mode;
1019 		e1000e_reset_interrupt_capability(adapter);
1020 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1021 		e1000e_set_interrupt_capability(adapter);
1022 	}
1023 	/* Hook up test interrupt handler just for this test */
1024 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1025 			 netdev)) {
1026 		shared_int = 0;
1027 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1028 			       netdev)) {
1029 		*data = 1;
1030 		ret_val = -1;
1031 		goto out;
1032 	}
1033 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1034 
1035 	/* Disable all the interrupts */
1036 	ew32(IMC, 0xFFFFFFFF);
1037 	e1e_flush();
1038 	usleep_range(10000, 11000);
1039 
1040 	/* Test each interrupt */
1041 	for (i = 0; i < 10; i++) {
1042 		/* Interrupt to test */
1043 		mask = BIT(i);
1044 
1045 		if (adapter->flags & FLAG_IS_ICH) {
1046 			switch (mask) {
1047 			case E1000_ICR_RXSEQ:
1048 				continue;
1049 			case 0x00000100:
1050 				if (adapter->hw.mac.type == e1000_ich8lan ||
1051 				    adapter->hw.mac.type == e1000_ich9lan)
1052 					continue;
1053 				break;
1054 			default:
1055 				break;
1056 			}
1057 		}
1058 
1059 		if (!shared_int) {
1060 			/* Disable the interrupt to be reported in
1061 			 * the cause register and then force the same
1062 			 * interrupt and see if one gets posted.  If
1063 			 * an interrupt was posted to the bus, the
1064 			 * test failed.
1065 			 */
1066 			adapter->test_icr = 0;
1067 			ew32(IMC, mask);
1068 			ew32(ICS, mask);
1069 			e1e_flush();
1070 			usleep_range(10000, 11000);
1071 
1072 			if (adapter->test_icr & mask) {
1073 				*data = 3;
1074 				break;
1075 			}
1076 		}
1077 
1078 		/* Enable the interrupt to be reported in
1079 		 * the cause register and then force the same
1080 		 * interrupt and see if one gets posted.  If
1081 		 * an interrupt was not posted to the bus, the
1082 		 * test failed.
1083 		 */
1084 		adapter->test_icr = 0;
1085 		ew32(IMS, mask);
1086 		ew32(ICS, mask);
1087 		e1e_flush();
1088 		usleep_range(10000, 11000);
1089 
1090 		if (!(adapter->test_icr & mask)) {
1091 			*data = 4;
1092 			break;
1093 		}
1094 
1095 		if (!shared_int) {
1096 			/* Disable the other interrupts to be reported in
1097 			 * the cause register and then force the other
1098 			 * interrupts and see if any get posted.  If
1099 			 * an interrupt was posted to the bus, the
1100 			 * test failed.
1101 			 */
1102 			adapter->test_icr = 0;
1103 			ew32(IMC, ~mask & 0x00007FFF);
1104 			ew32(ICS, ~mask & 0x00007FFF);
1105 			e1e_flush();
1106 			usleep_range(10000, 11000);
1107 
1108 			if (adapter->test_icr) {
1109 				*data = 5;
1110 				break;
1111 			}
1112 		}
1113 	}
1114 
1115 	/* Disable all the interrupts */
1116 	ew32(IMC, 0xFFFFFFFF);
1117 	e1e_flush();
1118 	usleep_range(10000, 11000);
1119 
1120 	/* Unhook test interrupt handler */
1121 	free_irq(irq, netdev);
1122 
1123 out:
1124 	if (int_mode == E1000E_INT_MODE_MSIX) {
1125 		e1000e_reset_interrupt_capability(adapter);
1126 		adapter->int_mode = int_mode;
1127 		e1000e_set_interrupt_capability(adapter);
1128 	}
1129 
1130 	return ret_val;
1131 }
1132 
1133 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1134 {
1135 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1136 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1137 	struct pci_dev *pdev = adapter->pdev;
1138 	struct e1000_buffer *buffer_info;
1139 	int i;
1140 
1141 	if (tx_ring->desc && tx_ring->buffer_info) {
1142 		for (i = 0; i < tx_ring->count; i++) {
1143 			buffer_info = &tx_ring->buffer_info[i];
1144 
1145 			if (buffer_info->dma)
1146 				dma_unmap_single(&pdev->dev,
1147 						 buffer_info->dma,
1148 						 buffer_info->length,
1149 						 DMA_TO_DEVICE);
1150 			dev_kfree_skb(buffer_info->skb);
1151 		}
1152 	}
1153 
1154 	if (rx_ring->desc && rx_ring->buffer_info) {
1155 		for (i = 0; i < rx_ring->count; i++) {
1156 			buffer_info = &rx_ring->buffer_info[i];
1157 
1158 			if (buffer_info->dma)
1159 				dma_unmap_single(&pdev->dev,
1160 						 buffer_info->dma,
1161 						 2048, DMA_FROM_DEVICE);
1162 			dev_kfree_skb(buffer_info->skb);
1163 		}
1164 	}
1165 
1166 	if (tx_ring->desc) {
1167 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1168 				  tx_ring->dma);
1169 		tx_ring->desc = NULL;
1170 	}
1171 	if (rx_ring->desc) {
1172 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1173 				  rx_ring->dma);
1174 		rx_ring->desc = NULL;
1175 	}
1176 
1177 	kfree(tx_ring->buffer_info);
1178 	tx_ring->buffer_info = NULL;
1179 	kfree(rx_ring->buffer_info);
1180 	rx_ring->buffer_info = NULL;
1181 }
1182 
1183 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1184 {
1185 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1186 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1187 	struct pci_dev *pdev = adapter->pdev;
1188 	struct e1000_hw *hw = &adapter->hw;
1189 	u32 rctl;
1190 	int i;
1191 	int ret_val;
1192 
1193 	/* Setup Tx descriptor ring and Tx buffers */
1194 
1195 	if (!tx_ring->count)
1196 		tx_ring->count = E1000_DEFAULT_TXD;
1197 
1198 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1199 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1200 	if (!tx_ring->buffer_info) {
1201 		ret_val = 1;
1202 		goto err_nomem;
1203 	}
1204 
1205 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1206 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1207 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1208 					   &tx_ring->dma, GFP_KERNEL);
1209 	if (!tx_ring->desc) {
1210 		ret_val = 2;
1211 		goto err_nomem;
1212 	}
1213 	tx_ring->next_to_use = 0;
1214 	tx_ring->next_to_clean = 0;
1215 
1216 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1217 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1218 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1219 	ew32(TDH(0), 0);
1220 	ew32(TDT(0), 0);
1221 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1222 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1223 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1224 
1225 	for (i = 0; i < tx_ring->count; i++) {
1226 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1227 		struct sk_buff *skb;
1228 		unsigned int skb_size = 1024;
1229 
1230 		skb = alloc_skb(skb_size, GFP_KERNEL);
1231 		if (!skb) {
1232 			ret_val = 3;
1233 			goto err_nomem;
1234 		}
1235 		skb_put(skb, skb_size);
1236 		tx_ring->buffer_info[i].skb = skb;
1237 		tx_ring->buffer_info[i].length = skb->len;
1238 		tx_ring->buffer_info[i].dma =
1239 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1240 				   DMA_TO_DEVICE);
1241 		if (dma_mapping_error(&pdev->dev,
1242 				      tx_ring->buffer_info[i].dma)) {
1243 			ret_val = 4;
1244 			goto err_nomem;
1245 		}
1246 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1247 		tx_desc->lower.data = cpu_to_le32(skb->len);
1248 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1249 						   E1000_TXD_CMD_IFCS |
1250 						   E1000_TXD_CMD_RS);
1251 		tx_desc->upper.data = 0;
1252 	}
1253 
1254 	/* Setup Rx descriptor ring and Rx buffers */
1255 
1256 	if (!rx_ring->count)
1257 		rx_ring->count = E1000_DEFAULT_RXD;
1258 
1259 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1260 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1261 	if (!rx_ring->buffer_info) {
1262 		ret_val = 5;
1263 		goto err_nomem;
1264 	}
1265 
1266 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1267 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1268 					   &rx_ring->dma, GFP_KERNEL);
1269 	if (!rx_ring->desc) {
1270 		ret_val = 6;
1271 		goto err_nomem;
1272 	}
1273 	rx_ring->next_to_use = 0;
1274 	rx_ring->next_to_clean = 0;
1275 
1276 	rctl = er32(RCTL);
1277 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1278 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1279 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1280 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1281 	ew32(RDLEN(0), rx_ring->size);
1282 	ew32(RDH(0), 0);
1283 	ew32(RDT(0), 0);
1284 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1285 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1286 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1287 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1288 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1289 	ew32(RCTL, rctl);
1290 
1291 	for (i = 0; i < rx_ring->count; i++) {
1292 		union e1000_rx_desc_extended *rx_desc;
1293 		struct sk_buff *skb;
1294 
1295 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1296 		if (!skb) {
1297 			ret_val = 7;
1298 			goto err_nomem;
1299 		}
1300 		skb_reserve(skb, NET_IP_ALIGN);
1301 		rx_ring->buffer_info[i].skb = skb;
1302 		rx_ring->buffer_info[i].dma =
1303 		    dma_map_single(&pdev->dev, skb->data, 2048,
1304 				   DMA_FROM_DEVICE);
1305 		if (dma_mapping_error(&pdev->dev,
1306 				      rx_ring->buffer_info[i].dma)) {
1307 			ret_val = 8;
1308 			goto err_nomem;
1309 		}
1310 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1311 		rx_desc->read.buffer_addr =
1312 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1313 		memset(skb->data, 0x00, skb->len);
1314 	}
1315 
1316 	return 0;
1317 
1318 err_nomem:
1319 	e1000_free_desc_rings(adapter);
1320 	return ret_val;
1321 }
1322 
1323 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1324 {
1325 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1326 	e1e_wphy(&adapter->hw, 29, 0x001F);
1327 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1328 	e1e_wphy(&adapter->hw, 29, 0x001A);
1329 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1330 }
1331 
1332 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1333 {
1334 	struct e1000_hw *hw = &adapter->hw;
1335 	u32 ctrl_reg = 0;
1336 	u16 phy_reg = 0;
1337 	s32 ret_val = 0;
1338 
1339 	hw->mac.autoneg = 0;
1340 
1341 	if (hw->phy.type == e1000_phy_ife) {
1342 		/* force 100, set loopback */
1343 		e1e_wphy(hw, MII_BMCR, 0x6100);
1344 
1345 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1346 		ctrl_reg = er32(CTRL);
1347 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1348 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1349 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1350 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1351 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1352 
1353 		ew32(CTRL, ctrl_reg);
1354 		e1e_flush();
1355 		usleep_range(500, 1000);
1356 
1357 		return 0;
1358 	}
1359 
1360 	/* Specific PHY configuration for loopback */
1361 	switch (hw->phy.type) {
1362 	case e1000_phy_m88:
1363 		/* Auto-MDI/MDIX Off */
1364 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1365 		/* reset to update Auto-MDI/MDIX */
1366 		e1e_wphy(hw, MII_BMCR, 0x9140);
1367 		/* autoneg off */
1368 		e1e_wphy(hw, MII_BMCR, 0x8140);
1369 		break;
1370 	case e1000_phy_gg82563:
1371 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1372 		break;
1373 	case e1000_phy_bm:
1374 		/* Set Default MAC Interface speed to 1GB */
1375 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1376 		phy_reg &= ~0x0007;
1377 		phy_reg |= 0x006;
1378 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1379 		/* Assert SW reset for above settings to take effect */
1380 		hw->phy.ops.commit(hw);
1381 		usleep_range(1000, 2000);
1382 		/* Force Full Duplex */
1383 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1384 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1385 		/* Set Link Up (in force link) */
1386 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1387 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1388 		/* Force Link */
1389 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1390 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1391 		/* Set Early Link Enable */
1392 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1393 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1394 		break;
1395 	case e1000_phy_82577:
1396 	case e1000_phy_82578:
1397 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1398 		ret_val = hw->phy.ops.acquire(hw);
1399 		if (ret_val) {
1400 			e_err("Cannot setup 1Gbps loopback.\n");
1401 			return ret_val;
1402 		}
1403 		e1000_configure_k1_ich8lan(hw, false);
1404 		hw->phy.ops.release(hw);
1405 		break;
1406 	case e1000_phy_82579:
1407 		/* Disable PHY energy detect power down */
1408 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1409 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1410 		/* Disable full chip energy detect */
1411 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1412 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1413 		/* Enable loopback on the PHY */
1414 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1415 		break;
1416 	default:
1417 		break;
1418 	}
1419 
1420 	/* force 1000, set loopback */
1421 	e1e_wphy(hw, MII_BMCR, 0x4140);
1422 	msleep(250);
1423 
1424 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1425 	ctrl_reg = er32(CTRL);
1426 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1427 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1428 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1429 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1430 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1431 
1432 	if (adapter->flags & FLAG_IS_ICH)
1433 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1434 
1435 	if (hw->phy.media_type == e1000_media_type_copper &&
1436 	    hw->phy.type == e1000_phy_m88) {
1437 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1438 	} else {
1439 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1440 		 * detected.
1441 		 */
1442 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1443 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1444 	}
1445 
1446 	ew32(CTRL, ctrl_reg);
1447 
1448 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1449 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1450 	 */
1451 	if (hw->phy.type == e1000_phy_m88)
1452 		e1000_phy_disable_receiver(adapter);
1453 
1454 	usleep_range(500, 1000);
1455 
1456 	return 0;
1457 }
1458 
1459 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1460 {
1461 	struct e1000_hw *hw = &adapter->hw;
1462 	u32 ctrl = er32(CTRL);
1463 	int link;
1464 
1465 	/* special requirements for 82571/82572 fiber adapters */
1466 
1467 	/* jump through hoops to make sure link is up because serdes
1468 	 * link is hardwired up
1469 	 */
1470 	ctrl |= E1000_CTRL_SLU;
1471 	ew32(CTRL, ctrl);
1472 
1473 	/* disable autoneg */
1474 	ctrl = er32(TXCW);
1475 	ctrl &= ~BIT(31);
1476 	ew32(TXCW, ctrl);
1477 
1478 	link = (er32(STATUS) & E1000_STATUS_LU);
1479 
1480 	if (!link) {
1481 		/* set invert loss of signal */
1482 		ctrl = er32(CTRL);
1483 		ctrl |= E1000_CTRL_ILOS;
1484 		ew32(CTRL, ctrl);
1485 	}
1486 
1487 	/* special write to serdes control register to enable SerDes analog
1488 	 * loopback
1489 	 */
1490 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1491 	e1e_flush();
1492 	usleep_range(10000, 11000);
1493 
1494 	return 0;
1495 }
1496 
1497 /* only call this for fiber/serdes connections to es2lan */
1498 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1499 {
1500 	struct e1000_hw *hw = &adapter->hw;
1501 	u32 ctrlext = er32(CTRL_EXT);
1502 	u32 ctrl = er32(CTRL);
1503 
1504 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1505 	 * on mac_type 80003es2lan)
1506 	 */
1507 	adapter->tx_fifo_head = ctrlext;
1508 
1509 	/* clear the serdes mode bits, putting the device into mac loopback */
1510 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1511 	ew32(CTRL_EXT, ctrlext);
1512 
1513 	/* force speed to 1000/FD, link up */
1514 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1515 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1516 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1517 	ew32(CTRL, ctrl);
1518 
1519 	/* set mac loopback */
1520 	ctrl = er32(RCTL);
1521 	ctrl |= E1000_RCTL_LBM_MAC;
1522 	ew32(RCTL, ctrl);
1523 
1524 	/* set testing mode parameters (no need to reset later) */
1525 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1526 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1527 	ew32(KMRNCTRLSTA,
1528 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1529 
1530 	return 0;
1531 }
1532 
1533 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1534 {
1535 	struct e1000_hw *hw = &adapter->hw;
1536 	u32 rctl, fext_nvm11, tarc0;
1537 
1538 	if (hw->mac.type >= e1000_pch_spt) {
1539 		fext_nvm11 = er32(FEXTNVM11);
1540 		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1541 		ew32(FEXTNVM11, fext_nvm11);
1542 		tarc0 = er32(TARC(0));
1543 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1544 		tarc0 &= 0xcfffffff;
1545 		/* set bit 29 (value of MULR requests is now 2) */
1546 		tarc0 |= 0x20000000;
1547 		ew32(TARC(0), tarc0);
1548 	}
1549 	if (hw->phy.media_type == e1000_media_type_fiber ||
1550 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1551 		switch (hw->mac.type) {
1552 		case e1000_80003es2lan:
1553 			return e1000_set_es2lan_mac_loopback(adapter);
1554 		case e1000_82571:
1555 		case e1000_82572:
1556 			return e1000_set_82571_fiber_loopback(adapter);
1557 		default:
1558 			rctl = er32(RCTL);
1559 			rctl |= E1000_RCTL_LBM_TCVR;
1560 			ew32(RCTL, rctl);
1561 			return 0;
1562 		}
1563 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1564 		return e1000_integrated_phy_loopback(adapter);
1565 	}
1566 
1567 	return 7;
1568 }
1569 
1570 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1571 {
1572 	struct e1000_hw *hw = &adapter->hw;
1573 	u32 rctl, fext_nvm11, tarc0;
1574 	u16 phy_reg;
1575 
1576 	rctl = er32(RCTL);
1577 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1578 	ew32(RCTL, rctl);
1579 
1580 	switch (hw->mac.type) {
1581 	case e1000_pch_spt:
1582 	case e1000_pch_cnp:
1583 	case e1000_pch_tgp:
1584 	case e1000_pch_adp:
1585 	case e1000_pch_mtp:
1586 	case e1000_pch_lnp:
1587 	case e1000_pch_ptp:
1588 	case e1000_pch_nvp:
1589 		fext_nvm11 = er32(FEXTNVM11);
1590 		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1591 		ew32(FEXTNVM11, fext_nvm11);
1592 		tarc0 = er32(TARC(0));
1593 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1594 		/* set bit 29 (value of MULR requests is now 0) */
1595 		tarc0 &= 0xcfffffff;
1596 		ew32(TARC(0), tarc0);
1597 		fallthrough;
1598 	case e1000_80003es2lan:
1599 		if (hw->phy.media_type == e1000_media_type_fiber ||
1600 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1601 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1602 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1603 			adapter->tx_fifo_head = 0;
1604 		}
1605 		fallthrough;
1606 	case e1000_82571:
1607 	case e1000_82572:
1608 		if (hw->phy.media_type == e1000_media_type_fiber ||
1609 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1610 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1611 			e1e_flush();
1612 			usleep_range(10000, 11000);
1613 			break;
1614 		}
1615 		fallthrough;
1616 	default:
1617 		hw->mac.autoneg = 1;
1618 		if (hw->phy.type == e1000_phy_gg82563)
1619 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1620 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1621 		if (phy_reg & BMCR_LOOPBACK) {
1622 			phy_reg &= ~BMCR_LOOPBACK;
1623 			e1e_wphy(hw, MII_BMCR, phy_reg);
1624 			if (hw->phy.ops.commit)
1625 				hw->phy.ops.commit(hw);
1626 		}
1627 		break;
1628 	}
1629 }
1630 
1631 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1632 				      unsigned int frame_size)
1633 {
1634 	memset(skb->data, 0xFF, frame_size);
1635 	frame_size &= ~1;
1636 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1637 	skb->data[frame_size / 2 + 10] = 0xBE;
1638 	skb->data[frame_size / 2 + 12] = 0xAF;
1639 }
1640 
1641 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1642 				    unsigned int frame_size)
1643 {
1644 	frame_size &= ~1;
1645 	if (*(skb->data + 3) == 0xFF)
1646 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1647 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1648 			return 0;
1649 	return 13;
1650 }
1651 
1652 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1653 {
1654 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1655 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1656 	struct pci_dev *pdev = adapter->pdev;
1657 	struct e1000_hw *hw = &adapter->hw;
1658 	struct e1000_buffer *buffer_info;
1659 	int i, j, k, l;
1660 	int lc;
1661 	int good_cnt;
1662 	int ret_val = 0;
1663 	unsigned long time;
1664 
1665 	ew32(RDT(0), rx_ring->count - 1);
1666 
1667 	/* Calculate the loop count based on the largest descriptor ring
1668 	 * The idea is to wrap the largest ring a number of times using 64
1669 	 * send/receive pairs during each loop
1670 	 */
1671 
1672 	if (rx_ring->count <= tx_ring->count)
1673 		lc = ((tx_ring->count / 64) * 2) + 1;
1674 	else
1675 		lc = ((rx_ring->count / 64) * 2) + 1;
1676 
1677 	k = 0;
1678 	l = 0;
1679 	/* loop count loop */
1680 	for (j = 0; j <= lc; j++) {
1681 		/* send the packets */
1682 		for (i = 0; i < 64; i++) {
1683 			buffer_info = &tx_ring->buffer_info[k];
1684 
1685 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1686 			dma_sync_single_for_device(&pdev->dev,
1687 						   buffer_info->dma,
1688 						   buffer_info->length,
1689 						   DMA_TO_DEVICE);
1690 			k++;
1691 			if (k == tx_ring->count)
1692 				k = 0;
1693 		}
1694 		ew32(TDT(0), k);
1695 		e1e_flush();
1696 		msleep(200);
1697 		time = jiffies;	/* set the start time for the receive */
1698 		good_cnt = 0;
1699 		/* receive the sent packets */
1700 		do {
1701 			buffer_info = &rx_ring->buffer_info[l];
1702 
1703 			dma_sync_single_for_cpu(&pdev->dev,
1704 						buffer_info->dma, 2048,
1705 						DMA_FROM_DEVICE);
1706 
1707 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1708 							   1024);
1709 			if (!ret_val)
1710 				good_cnt++;
1711 			l++;
1712 			if (l == rx_ring->count)
1713 				l = 0;
1714 			/* time + 20 msecs (200 msecs on 2.4) is more than
1715 			 * enough time to complete the receives, if it's
1716 			 * exceeded, break and error off
1717 			 */
1718 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1719 		if (good_cnt != 64) {
1720 			ret_val = 13;	/* ret_val is the same as mis-compare */
1721 			break;
1722 		}
1723 		if (time_after(jiffies, time + 20)) {
1724 			ret_val = 14;	/* error code for time out error */
1725 			break;
1726 		}
1727 	}
1728 	return ret_val;
1729 }
1730 
1731 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1732 {
1733 	struct e1000_hw *hw = &adapter->hw;
1734 
1735 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1736 	if (hw->phy.ops.check_reset_block &&
1737 	    hw->phy.ops.check_reset_block(hw)) {
1738 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1739 		*data = 0;
1740 		goto out;
1741 	}
1742 
1743 	*data = e1000_setup_desc_rings(adapter);
1744 	if (*data)
1745 		goto out;
1746 
1747 	*data = e1000_setup_loopback_test(adapter);
1748 	if (*data)
1749 		goto err_loopback;
1750 
1751 	*data = e1000_run_loopback_test(adapter);
1752 	e1000_loopback_cleanup(adapter);
1753 
1754 err_loopback:
1755 	e1000_free_desc_rings(adapter);
1756 out:
1757 	return *data;
1758 }
1759 
1760 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1761 {
1762 	struct e1000_hw *hw = &adapter->hw;
1763 
1764 	*data = 0;
1765 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1766 		int i = 0;
1767 
1768 		hw->mac.serdes_has_link = false;
1769 
1770 		/* On some blade server designs, link establishment
1771 		 * could take as long as 2-3 minutes
1772 		 */
1773 		do {
1774 			hw->mac.ops.check_for_link(hw);
1775 			if (hw->mac.serdes_has_link)
1776 				return *data;
1777 			msleep(20);
1778 		} while (i++ < 3750);
1779 
1780 		*data = 1;
1781 	} else {
1782 		hw->mac.ops.check_for_link(hw);
1783 		if (hw->mac.autoneg)
1784 			/* On some Phy/switch combinations, link establishment
1785 			 * can take a few seconds more than expected.
1786 			 */
1787 			msleep_interruptible(5000);
1788 
1789 		if (!(er32(STATUS) & E1000_STATUS_LU))
1790 			*data = 1;
1791 	}
1792 	return *data;
1793 }
1794 
1795 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1796 				 int sset)
1797 {
1798 	switch (sset) {
1799 	case ETH_SS_TEST:
1800 		return E1000_TEST_LEN;
1801 	case ETH_SS_STATS:
1802 		return E1000_STATS_LEN;
1803 	case ETH_SS_PRIV_FLAGS:
1804 		return E1000E_PRIV_FLAGS_STR_LEN;
1805 	default:
1806 		return -EOPNOTSUPP;
1807 	}
1808 }
1809 
1810 static void e1000_diag_test(struct net_device *netdev,
1811 			    struct ethtool_test *eth_test, u64 *data)
1812 {
1813 	struct e1000_adapter *adapter = netdev_priv(netdev);
1814 	u16 autoneg_advertised;
1815 	u8 forced_speed_duplex;
1816 	u8 autoneg;
1817 	bool if_running = netif_running(netdev);
1818 
1819 	pm_runtime_get_sync(netdev->dev.parent);
1820 
1821 	set_bit(__E1000_TESTING, &adapter->state);
1822 
1823 	if (!if_running) {
1824 		/* Get control of and reset hardware */
1825 		if (adapter->flags & FLAG_HAS_AMT)
1826 			e1000e_get_hw_control(adapter);
1827 
1828 		e1000e_power_up_phy(adapter);
1829 
1830 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1831 		e1000e_reset(adapter);
1832 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1833 	}
1834 
1835 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1836 		/* Offline tests */
1837 
1838 		/* save speed, duplex, autoneg settings */
1839 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1840 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1841 		autoneg = adapter->hw.mac.autoneg;
1842 
1843 		e_info("offline testing starting\n");
1844 
1845 		if (if_running)
1846 			/* indicate we're in test mode */
1847 			e1000e_close(netdev);
1848 
1849 		if (e1000_reg_test(adapter, &data[0]))
1850 			eth_test->flags |= ETH_TEST_FL_FAILED;
1851 
1852 		e1000e_reset(adapter);
1853 		if (e1000_eeprom_test(adapter, &data[1]))
1854 			eth_test->flags |= ETH_TEST_FL_FAILED;
1855 
1856 		e1000e_reset(adapter);
1857 		if (e1000_intr_test(adapter, &data[2]))
1858 			eth_test->flags |= ETH_TEST_FL_FAILED;
1859 
1860 		e1000e_reset(adapter);
1861 		if (e1000_loopback_test(adapter, &data[3]))
1862 			eth_test->flags |= ETH_TEST_FL_FAILED;
1863 
1864 		/* force this routine to wait until autoneg complete/timeout */
1865 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1866 		e1000e_reset(adapter);
1867 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1868 
1869 		if (e1000_link_test(adapter, &data[4]))
1870 			eth_test->flags |= ETH_TEST_FL_FAILED;
1871 
1872 		/* restore speed, duplex, autoneg settings */
1873 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1874 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1875 		adapter->hw.mac.autoneg = autoneg;
1876 		e1000e_reset(adapter);
1877 
1878 		clear_bit(__E1000_TESTING, &adapter->state);
1879 		if (if_running)
1880 			e1000e_open(netdev);
1881 	} else {
1882 		/* Online tests */
1883 
1884 		e_info("online testing starting\n");
1885 
1886 		/* register, eeprom, intr and loopback tests not run online */
1887 		data[0] = 0;
1888 		data[1] = 0;
1889 		data[2] = 0;
1890 		data[3] = 0;
1891 
1892 		if (e1000_link_test(adapter, &data[4]))
1893 			eth_test->flags |= ETH_TEST_FL_FAILED;
1894 
1895 		clear_bit(__E1000_TESTING, &adapter->state);
1896 	}
1897 
1898 	if (!if_running) {
1899 		e1000e_reset(adapter);
1900 
1901 		if (adapter->flags & FLAG_HAS_AMT)
1902 			e1000e_release_hw_control(adapter);
1903 	}
1904 
1905 	msleep_interruptible(4 * 1000);
1906 
1907 	pm_runtime_put_sync(netdev->dev.parent);
1908 }
1909 
1910 static void e1000_get_wol(struct net_device *netdev,
1911 			  struct ethtool_wolinfo *wol)
1912 {
1913 	struct e1000_adapter *adapter = netdev_priv(netdev);
1914 
1915 	wol->supported = 0;
1916 	wol->wolopts = 0;
1917 
1918 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1919 	    !device_can_wakeup(&adapter->pdev->dev))
1920 		return;
1921 
1922 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1923 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1924 
1925 	/* apply any specific unsupported masks here */
1926 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1927 		wol->supported &= ~WAKE_UCAST;
1928 
1929 		if (adapter->wol & E1000_WUFC_EX)
1930 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1931 	}
1932 
1933 	if (adapter->wol & E1000_WUFC_EX)
1934 		wol->wolopts |= WAKE_UCAST;
1935 	if (adapter->wol & E1000_WUFC_MC)
1936 		wol->wolopts |= WAKE_MCAST;
1937 	if (adapter->wol & E1000_WUFC_BC)
1938 		wol->wolopts |= WAKE_BCAST;
1939 	if (adapter->wol & E1000_WUFC_MAG)
1940 		wol->wolopts |= WAKE_MAGIC;
1941 	if (adapter->wol & E1000_WUFC_LNKC)
1942 		wol->wolopts |= WAKE_PHY;
1943 }
1944 
1945 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1946 {
1947 	struct e1000_adapter *adapter = netdev_priv(netdev);
1948 
1949 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1950 	    !device_can_wakeup(&adapter->pdev->dev) ||
1951 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1952 			      WAKE_MAGIC | WAKE_PHY)))
1953 		return -EOPNOTSUPP;
1954 
1955 	/* these settings will always override what we currently have */
1956 	adapter->wol = 0;
1957 
1958 	if (wol->wolopts & WAKE_UCAST)
1959 		adapter->wol |= E1000_WUFC_EX;
1960 	if (wol->wolopts & WAKE_MCAST)
1961 		adapter->wol |= E1000_WUFC_MC;
1962 	if (wol->wolopts & WAKE_BCAST)
1963 		adapter->wol |= E1000_WUFC_BC;
1964 	if (wol->wolopts & WAKE_MAGIC)
1965 		adapter->wol |= E1000_WUFC_MAG;
1966 	if (wol->wolopts & WAKE_PHY)
1967 		adapter->wol |= E1000_WUFC_LNKC;
1968 
1969 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1970 
1971 	return 0;
1972 }
1973 
1974 static int e1000_set_phys_id(struct net_device *netdev,
1975 			     enum ethtool_phys_id_state state)
1976 {
1977 	struct e1000_adapter *adapter = netdev_priv(netdev);
1978 	struct e1000_hw *hw = &adapter->hw;
1979 
1980 	switch (state) {
1981 	case ETHTOOL_ID_ACTIVE:
1982 		pm_runtime_get_sync(netdev->dev.parent);
1983 
1984 		if (!hw->mac.ops.blink_led)
1985 			return 2;	/* cycle on/off twice per second */
1986 
1987 		hw->mac.ops.blink_led(hw);
1988 		break;
1989 
1990 	case ETHTOOL_ID_INACTIVE:
1991 		if (hw->phy.type == e1000_phy_ife)
1992 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1993 		hw->mac.ops.led_off(hw);
1994 		hw->mac.ops.cleanup_led(hw);
1995 		pm_runtime_put_sync(netdev->dev.parent);
1996 		break;
1997 
1998 	case ETHTOOL_ID_ON:
1999 		hw->mac.ops.led_on(hw);
2000 		break;
2001 
2002 	case ETHTOOL_ID_OFF:
2003 		hw->mac.ops.led_off(hw);
2004 		break;
2005 	}
2006 
2007 	return 0;
2008 }
2009 
2010 static int e1000_get_coalesce(struct net_device *netdev,
2011 			      struct ethtool_coalesce *ec,
2012 			      struct kernel_ethtool_coalesce *kernel_coal,
2013 			      struct netlink_ext_ack *extack)
2014 {
2015 	struct e1000_adapter *adapter = netdev_priv(netdev);
2016 
2017 	if (adapter->itr_setting <= 4)
2018 		ec->rx_coalesce_usecs = adapter->itr_setting;
2019 	else
2020 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2021 
2022 	return 0;
2023 }
2024 
2025 static int e1000_set_coalesce(struct net_device *netdev,
2026 			      struct ethtool_coalesce *ec,
2027 			      struct kernel_ethtool_coalesce *kernel_coal,
2028 			      struct netlink_ext_ack *extack)
2029 {
2030 	struct e1000_adapter *adapter = netdev_priv(netdev);
2031 
2032 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2033 	    ((ec->rx_coalesce_usecs > 4) &&
2034 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2035 	    (ec->rx_coalesce_usecs == 2))
2036 		return -EINVAL;
2037 
2038 	if (ec->rx_coalesce_usecs == 4) {
2039 		adapter->itr_setting = 4;
2040 		adapter->itr = adapter->itr_setting;
2041 	} else if (ec->rx_coalesce_usecs <= 3) {
2042 		adapter->itr = 20000;
2043 		adapter->itr_setting = ec->rx_coalesce_usecs;
2044 	} else {
2045 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2046 		adapter->itr_setting = adapter->itr & ~3;
2047 	}
2048 
2049 	pm_runtime_get_sync(netdev->dev.parent);
2050 
2051 	if (adapter->itr_setting != 0)
2052 		e1000e_write_itr(adapter, adapter->itr);
2053 	else
2054 		e1000e_write_itr(adapter, 0);
2055 
2056 	pm_runtime_put_sync(netdev->dev.parent);
2057 
2058 	return 0;
2059 }
2060 
2061 static int e1000_nway_reset(struct net_device *netdev)
2062 {
2063 	struct e1000_adapter *adapter = netdev_priv(netdev);
2064 
2065 	if (!netif_running(netdev))
2066 		return -EAGAIN;
2067 
2068 	if (!adapter->hw.mac.autoneg)
2069 		return -EINVAL;
2070 
2071 	pm_runtime_get_sync(netdev->dev.parent);
2072 	e1000e_reinit_locked(adapter);
2073 	pm_runtime_put_sync(netdev->dev.parent);
2074 
2075 	return 0;
2076 }
2077 
2078 static void e1000_get_ethtool_stats(struct net_device *netdev,
2079 				    struct ethtool_stats __always_unused *stats,
2080 				    u64 *data)
2081 {
2082 	struct e1000_adapter *adapter = netdev_priv(netdev);
2083 	struct rtnl_link_stats64 net_stats;
2084 	int i;
2085 	char *p = NULL;
2086 
2087 	pm_runtime_get_sync(netdev->dev.parent);
2088 
2089 	dev_get_stats(netdev, &net_stats);
2090 
2091 	pm_runtime_put_sync(netdev->dev.parent);
2092 
2093 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2094 		switch (e1000_gstrings_stats[i].type) {
2095 		case NETDEV_STATS:
2096 			p = (char *)&net_stats +
2097 			    e1000_gstrings_stats[i].stat_offset;
2098 			break;
2099 		case E1000_STATS:
2100 			p = (char *)adapter +
2101 			    e1000_gstrings_stats[i].stat_offset;
2102 			break;
2103 		default:
2104 			data[i] = 0;
2105 			continue;
2106 		}
2107 
2108 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2109 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2110 	}
2111 }
2112 
2113 static void e1000_get_strings(struct net_device __always_unused *netdev,
2114 			      u32 stringset, u8 *data)
2115 {
2116 	u8 *p = data;
2117 	int i;
2118 
2119 	switch (stringset) {
2120 	case ETH_SS_TEST:
2121 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2122 		break;
2123 	case ETH_SS_STATS:
2124 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2125 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2126 			       ETH_GSTRING_LEN);
2127 			p += ETH_GSTRING_LEN;
2128 		}
2129 		break;
2130 	case ETH_SS_PRIV_FLAGS:
2131 		memcpy(data, e1000e_priv_flags_strings,
2132 		       E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2133 		break;
2134 	}
2135 }
2136 
2137 static int e1000_get_rxnfc(struct net_device *netdev,
2138 			   struct ethtool_rxnfc *info,
2139 			   u32 __always_unused *rule_locs)
2140 {
2141 	info->data = 0;
2142 
2143 	switch (info->cmd) {
2144 	case ETHTOOL_GRXFH: {
2145 		struct e1000_adapter *adapter = netdev_priv(netdev);
2146 		struct e1000_hw *hw = &adapter->hw;
2147 		u32 mrqc;
2148 
2149 		pm_runtime_get_sync(netdev->dev.parent);
2150 		mrqc = er32(MRQC);
2151 		pm_runtime_put_sync(netdev->dev.parent);
2152 
2153 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2154 			return 0;
2155 
2156 		switch (info->flow_type) {
2157 		case TCP_V4_FLOW:
2158 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2159 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2160 			fallthrough;
2161 		case UDP_V4_FLOW:
2162 		case SCTP_V4_FLOW:
2163 		case AH_ESP_V4_FLOW:
2164 		case IPV4_FLOW:
2165 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2166 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2167 			break;
2168 		case TCP_V6_FLOW:
2169 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2170 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2171 			fallthrough;
2172 		case UDP_V6_FLOW:
2173 		case SCTP_V6_FLOW:
2174 		case AH_ESP_V6_FLOW:
2175 		case IPV6_FLOW:
2176 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2177 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2178 			break;
2179 		default:
2180 			break;
2181 		}
2182 		return 0;
2183 	}
2184 	default:
2185 		return -EOPNOTSUPP;
2186 	}
2187 }
2188 
2189 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2190 {
2191 	struct e1000_adapter *adapter = netdev_priv(netdev);
2192 	struct e1000_hw *hw = &adapter->hw;
2193 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2194 	u32 ret_val;
2195 
2196 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2197 		return -EOPNOTSUPP;
2198 
2199 	switch (hw->phy.type) {
2200 	case e1000_phy_82579:
2201 		cap_addr = I82579_EEE_CAPABILITY;
2202 		lpa_addr = I82579_EEE_LP_ABILITY;
2203 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2204 		break;
2205 	case e1000_phy_i217:
2206 		cap_addr = I217_EEE_CAPABILITY;
2207 		lpa_addr = I217_EEE_LP_ABILITY;
2208 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2209 		break;
2210 	default:
2211 		return -EOPNOTSUPP;
2212 	}
2213 
2214 	pm_runtime_get_sync(netdev->dev.parent);
2215 
2216 	ret_val = hw->phy.ops.acquire(hw);
2217 	if (ret_val) {
2218 		pm_runtime_put_sync(netdev->dev.parent);
2219 		return -EBUSY;
2220 	}
2221 
2222 	/* EEE Capability */
2223 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2224 	if (ret_val)
2225 		goto release;
2226 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2227 
2228 	/* EEE Advertised */
2229 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2230 
2231 	/* EEE Link Partner Advertised */
2232 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2233 	if (ret_val)
2234 		goto release;
2235 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2236 
2237 	/* EEE PCS Status */
2238 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2239 	if (ret_val)
2240 		goto release;
2241 	if (hw->phy.type == e1000_phy_82579)
2242 		phy_data <<= 8;
2243 
2244 	/* Result of the EEE auto negotiation - there is no register that
2245 	 * has the status of the EEE negotiation so do a best-guess based
2246 	 * on whether Tx or Rx LPI indications have been received.
2247 	 */
2248 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2249 		edata->eee_active = true;
2250 
2251 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2252 	edata->tx_lpi_enabled = true;
2253 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2254 
2255 release:
2256 	hw->phy.ops.release(hw);
2257 	if (ret_val)
2258 		ret_val = -ENODATA;
2259 
2260 	pm_runtime_put_sync(netdev->dev.parent);
2261 
2262 	return ret_val;
2263 }
2264 
2265 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2266 {
2267 	struct e1000_adapter *adapter = netdev_priv(netdev);
2268 	struct e1000_hw *hw = &adapter->hw;
2269 	struct ethtool_eee eee_curr;
2270 	s32 ret_val;
2271 
2272 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2273 	if (ret_val)
2274 		return ret_val;
2275 
2276 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2277 		e_err("Setting EEE tx-lpi is not supported\n");
2278 		return -EINVAL;
2279 	}
2280 
2281 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2282 		e_err("Setting EEE Tx LPI timer is not supported\n");
2283 		return -EINVAL;
2284 	}
2285 
2286 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2287 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2288 		return -EINVAL;
2289 	}
2290 
2291 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2292 
2293 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2294 
2295 	pm_runtime_get_sync(netdev->dev.parent);
2296 
2297 	/* reset the link */
2298 	if (netif_running(netdev))
2299 		e1000e_reinit_locked(adapter);
2300 	else
2301 		e1000e_reset(adapter);
2302 
2303 	pm_runtime_put_sync(netdev->dev.parent);
2304 
2305 	return 0;
2306 }
2307 
2308 static int e1000e_get_ts_info(struct net_device *netdev,
2309 			      struct ethtool_ts_info *info)
2310 {
2311 	struct e1000_adapter *adapter = netdev_priv(netdev);
2312 
2313 	ethtool_op_get_ts_info(netdev, info);
2314 
2315 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2316 		return 0;
2317 
2318 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2319 				  SOF_TIMESTAMPING_RX_HARDWARE |
2320 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2321 
2322 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2323 
2324 	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2325 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2326 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2327 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2328 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2329 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2330 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2331 			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2332 			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2333 			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2334 			    BIT(HWTSTAMP_FILTER_ALL));
2335 
2336 	if (adapter->ptp_clock)
2337 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2338 
2339 	return 0;
2340 }
2341 
2342 static u32 e1000e_get_priv_flags(struct net_device *netdev)
2343 {
2344 	struct e1000_adapter *adapter = netdev_priv(netdev);
2345 	u32 priv_flags = 0;
2346 
2347 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2348 		priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2349 
2350 	return priv_flags;
2351 }
2352 
2353 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2354 {
2355 	struct e1000_adapter *adapter = netdev_priv(netdev);
2356 	unsigned int flags2 = adapter->flags2;
2357 
2358 	flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2359 	if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2360 		struct e1000_hw *hw = &adapter->hw;
2361 
2362 		if (hw->mac.type < e1000_pch_cnp)
2363 			return -EINVAL;
2364 		flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2365 	}
2366 
2367 	if (flags2 != adapter->flags2)
2368 		adapter->flags2 = flags2;
2369 
2370 	return 0;
2371 }
2372 
2373 static const struct ethtool_ops e1000_ethtool_ops = {
2374 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2375 	.get_drvinfo		= e1000_get_drvinfo,
2376 	.get_regs_len		= e1000_get_regs_len,
2377 	.get_regs		= e1000_get_regs,
2378 	.get_wol		= e1000_get_wol,
2379 	.set_wol		= e1000_set_wol,
2380 	.get_msglevel		= e1000_get_msglevel,
2381 	.set_msglevel		= e1000_set_msglevel,
2382 	.nway_reset		= e1000_nway_reset,
2383 	.get_link		= ethtool_op_get_link,
2384 	.get_eeprom_len		= e1000_get_eeprom_len,
2385 	.get_eeprom		= e1000_get_eeprom,
2386 	.set_eeprom		= e1000_set_eeprom,
2387 	.get_ringparam		= e1000_get_ringparam,
2388 	.set_ringparam		= e1000_set_ringparam,
2389 	.get_pauseparam		= e1000_get_pauseparam,
2390 	.set_pauseparam		= e1000_set_pauseparam,
2391 	.self_test		= e1000_diag_test,
2392 	.get_strings		= e1000_get_strings,
2393 	.set_phys_id		= e1000_set_phys_id,
2394 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2395 	.get_sset_count		= e1000e_get_sset_count,
2396 	.get_coalesce		= e1000_get_coalesce,
2397 	.set_coalesce		= e1000_set_coalesce,
2398 	.get_rxnfc		= e1000_get_rxnfc,
2399 	.get_ts_info		= e1000e_get_ts_info,
2400 	.get_eee		= e1000e_get_eee,
2401 	.set_eee		= e1000e_set_eee,
2402 	.get_link_ksettings	= e1000_get_link_ksettings,
2403 	.set_link_ksettings	= e1000_set_link_ksettings,
2404 	.get_priv_flags		= e1000e_get_priv_flags,
2405 	.set_priv_flags		= e1000e_set_priv_flags,
2406 };
2407 
2408 void e1000e_set_ethtool_ops(struct net_device *netdev)
2409 {
2410 	netdev->ethtool_ops = &e1000_ethtool_ops;
2411 }
2412