1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 #include <linux/pm_runtime.h>
39 
40 #include "e1000.h"
41 
42 enum { NETDEV_STATS, E1000_STATS };
43 
44 struct e1000_stats {
45 	char stat_string[ETH_GSTRING_LEN];
46 	int type;
47 	int sizeof_stat;
48 	int stat_offset;
49 };
50 
51 #define E1000_STAT(str, m) { \
52 		.stat_string = str, \
53 		.type = E1000_STATS, \
54 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
55 		.stat_offset = offsetof(struct e1000_adapter, m) }
56 #define E1000_NETDEV_STAT(str, m) { \
57 		.stat_string = str, \
58 		.type = NETDEV_STATS, \
59 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
60 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
61 
62 static const struct e1000_stats e1000_gstrings_stats[] = {
63 	E1000_STAT("rx_packets", stats.gprc),
64 	E1000_STAT("tx_packets", stats.gptc),
65 	E1000_STAT("rx_bytes", stats.gorc),
66 	E1000_STAT("tx_bytes", stats.gotc),
67 	E1000_STAT("rx_broadcast", stats.bprc),
68 	E1000_STAT("tx_broadcast", stats.bptc),
69 	E1000_STAT("rx_multicast", stats.mprc),
70 	E1000_STAT("tx_multicast", stats.mptc),
71 	E1000_NETDEV_STAT("rx_errors", rx_errors),
72 	E1000_NETDEV_STAT("tx_errors", tx_errors),
73 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
74 	E1000_STAT("multicast", stats.mprc),
75 	E1000_STAT("collisions", stats.colc),
76 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
77 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
78 	E1000_STAT("rx_crc_errors", stats.crcerrs),
79 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
80 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
81 	E1000_STAT("rx_missed_errors", stats.mpc),
82 	E1000_STAT("tx_aborted_errors", stats.ecol),
83 	E1000_STAT("tx_carrier_errors", stats.tncrs),
84 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
85 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
86 	E1000_STAT("tx_window_errors", stats.latecol),
87 	E1000_STAT("tx_abort_late_coll", stats.latecol),
88 	E1000_STAT("tx_deferred_ok", stats.dc),
89 	E1000_STAT("tx_single_coll_ok", stats.scc),
90 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
91 	E1000_STAT("tx_timeout_count", tx_timeout_count),
92 	E1000_STAT("tx_restart_queue", restart_queue),
93 	E1000_STAT("rx_long_length_errors", stats.roc),
94 	E1000_STAT("rx_short_length_errors", stats.ruc),
95 	E1000_STAT("rx_align_errors", stats.algnerrc),
96 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
97 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
98 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
99 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
100 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
101 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
102 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
103 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104 	E1000_STAT("rx_header_split", rx_hdr_split),
105 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106 	E1000_STAT("tx_smbus", stats.mgptc),
107 	E1000_STAT("rx_smbus", stats.mgprc),
108 	E1000_STAT("dropped_smbus", stats.mgpdc),
109 	E1000_STAT("rx_dma_failed", rx_dma_failed),
110 	E1000_STAT("tx_dma_failed", tx_dma_failed),
111 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
112 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
113 	E1000_STAT("corr_ecc_errors", corr_errors),
114 };
115 
116 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
119 	"Register test  (offline)", "Eeprom test    (offline)",
120 	"Interrupt test (offline)", "Loopback test  (offline)",
121 	"Link test   (on/offline)"
122 };
123 
124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
125 
126 static int e1000_get_settings(struct net_device *netdev,
127 			      struct ethtool_cmd *ecmd)
128 {
129 	struct e1000_adapter *adapter = netdev_priv(netdev);
130 	struct e1000_hw *hw = &adapter->hw;
131 	u32 speed;
132 
133 	if (hw->phy.media_type == e1000_media_type_copper) {
134 		ecmd->supported = (SUPPORTED_10baseT_Half |
135 				   SUPPORTED_10baseT_Full |
136 				   SUPPORTED_100baseT_Half |
137 				   SUPPORTED_100baseT_Full |
138 				   SUPPORTED_1000baseT_Full |
139 				   SUPPORTED_Autoneg |
140 				   SUPPORTED_TP);
141 		if (hw->phy.type == e1000_phy_ife)
142 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
143 		ecmd->advertising = ADVERTISED_TP;
144 
145 		if (hw->mac.autoneg == 1) {
146 			ecmd->advertising |= ADVERTISED_Autoneg;
147 			/* the e1000 autoneg seems to match ethtool nicely */
148 			ecmd->advertising |= hw->phy.autoneg_advertised;
149 		}
150 
151 		ecmd->port = PORT_TP;
152 		ecmd->phy_address = hw->phy.addr;
153 		ecmd->transceiver = XCVR_INTERNAL;
154 
155 	} else {
156 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
157 				     SUPPORTED_FIBRE |
158 				     SUPPORTED_Autoneg);
159 
160 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
161 				     ADVERTISED_FIBRE |
162 				     ADVERTISED_Autoneg);
163 
164 		ecmd->port = PORT_FIBRE;
165 		ecmd->transceiver = XCVR_EXTERNAL;
166 	}
167 
168 	speed = -1;
169 	ecmd->duplex = -1;
170 
171 	if (netif_running(netdev)) {
172 		if (netif_carrier_ok(netdev)) {
173 			speed = adapter->link_speed;
174 			ecmd->duplex = adapter->link_duplex - 1;
175 		}
176 	} else {
177 		u32 status = er32(STATUS);
178 		if (status & E1000_STATUS_LU) {
179 			if (status & E1000_STATUS_SPEED_1000)
180 				speed = SPEED_1000;
181 			else if (status & E1000_STATUS_SPEED_100)
182 				speed = SPEED_100;
183 			else
184 				speed = SPEED_10;
185 
186 			if (status & E1000_STATUS_FD)
187 				ecmd->duplex = DUPLEX_FULL;
188 			else
189 				ecmd->duplex = DUPLEX_HALF;
190 		}
191 	}
192 
193 	ethtool_cmd_speed_set(ecmd, speed);
194 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
195 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
196 
197 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
198 	if ((hw->phy.media_type == e1000_media_type_copper) &&
199 	    netif_carrier_ok(netdev))
200 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
201 	else
202 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
203 
204 	if (hw->phy.mdix == AUTO_ALL_MODES)
205 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
206 	else
207 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
208 
209 	return 0;
210 }
211 
212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
213 {
214 	struct e1000_mac_info *mac = &adapter->hw.mac;
215 
216 	mac->autoneg = 0;
217 
218 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
219 	 * for the switch() below to work
220 	 */
221 	if ((spd & 1) || (dplx & ~1))
222 		goto err_inval;
223 
224 	/* Fiber NICs only allow 1000 gbps Full duplex */
225 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
226 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
227 		goto err_inval;
228 	}
229 
230 	switch (spd + dplx) {
231 	case SPEED_10 + DUPLEX_HALF:
232 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
233 		break;
234 	case SPEED_10 + DUPLEX_FULL:
235 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
236 		break;
237 	case SPEED_100 + DUPLEX_HALF:
238 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
239 		break;
240 	case SPEED_100 + DUPLEX_FULL:
241 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
242 		break;
243 	case SPEED_1000 + DUPLEX_FULL:
244 		mac->autoneg = 1;
245 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
246 		break;
247 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
248 	default:
249 		goto err_inval;
250 	}
251 
252 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
253 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
254 
255 	return 0;
256 
257 err_inval:
258 	e_err("Unsupported Speed/Duplex configuration\n");
259 	return -EINVAL;
260 }
261 
262 static int e1000_set_settings(struct net_device *netdev,
263 			      struct ethtool_cmd *ecmd)
264 {
265 	struct e1000_adapter *adapter = netdev_priv(netdev);
266 	struct e1000_hw *hw = &adapter->hw;
267 
268 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
269 	 * cannot be changed
270 	 */
271 	if (hw->phy.ops.check_reset_block &&
272 	    hw->phy.ops.check_reset_block(hw)) {
273 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
274 		return -EINVAL;
275 	}
276 
277 	/* MDI setting is only allowed when autoneg enabled because
278 	 * some hardware doesn't allow MDI setting when speed or
279 	 * duplex is forced.
280 	 */
281 	if (ecmd->eth_tp_mdix_ctrl) {
282 		if (hw->phy.media_type != e1000_media_type_copper)
283 			return -EOPNOTSUPP;
284 
285 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
286 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
287 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
288 			return -EINVAL;
289 		}
290 	}
291 
292 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
293 		usleep_range(1000, 2000);
294 
295 	if (ecmd->autoneg == AUTONEG_ENABLE) {
296 		hw->mac.autoneg = 1;
297 		if (hw->phy.media_type == e1000_media_type_fiber)
298 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
299 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
300 		else
301 			hw->phy.autoneg_advertised = ecmd->advertising |
302 			    ADVERTISED_TP | ADVERTISED_Autoneg;
303 		ecmd->advertising = hw->phy.autoneg_advertised;
304 		if (adapter->fc_autoneg)
305 			hw->fc.requested_mode = e1000_fc_default;
306 	} else {
307 		u32 speed = ethtool_cmd_speed(ecmd);
308 		/* calling this overrides forced MDI setting */
309 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
310 			clear_bit(__E1000_RESETTING, &adapter->state);
311 			return -EINVAL;
312 		}
313 	}
314 
315 	/* MDI-X => 2; MDI => 1; Auto => 3 */
316 	if (ecmd->eth_tp_mdix_ctrl) {
317 		/* fix up the value for auto (3 => 0) as zero is mapped
318 		 * internally to auto
319 		 */
320 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
321 			hw->phy.mdix = AUTO_ALL_MODES;
322 		else
323 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
324 	}
325 
326 	/* reset the link */
327 	if (netif_running(adapter->netdev)) {
328 		e1000e_down(adapter);
329 		e1000e_up(adapter);
330 	} else {
331 		e1000e_reset(adapter);
332 	}
333 
334 	clear_bit(__E1000_RESETTING, &adapter->state);
335 	return 0;
336 }
337 
338 static void e1000_get_pauseparam(struct net_device *netdev,
339 				 struct ethtool_pauseparam *pause)
340 {
341 	struct e1000_adapter *adapter = netdev_priv(netdev);
342 	struct e1000_hw *hw = &adapter->hw;
343 
344 	pause->autoneg =
345 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
346 
347 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
348 		pause->rx_pause = 1;
349 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
350 		pause->tx_pause = 1;
351 	} else if (hw->fc.current_mode == e1000_fc_full) {
352 		pause->rx_pause = 1;
353 		pause->tx_pause = 1;
354 	}
355 }
356 
357 static int e1000_set_pauseparam(struct net_device *netdev,
358 				struct ethtool_pauseparam *pause)
359 {
360 	struct e1000_adapter *adapter = netdev_priv(netdev);
361 	struct e1000_hw *hw = &adapter->hw;
362 	int retval = 0;
363 
364 	adapter->fc_autoneg = pause->autoneg;
365 
366 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
367 		usleep_range(1000, 2000);
368 
369 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
370 		hw->fc.requested_mode = e1000_fc_default;
371 		if (netif_running(adapter->netdev)) {
372 			e1000e_down(adapter);
373 			e1000e_up(adapter);
374 		} else {
375 			e1000e_reset(adapter);
376 		}
377 	} else {
378 		if (pause->rx_pause && pause->tx_pause)
379 			hw->fc.requested_mode = e1000_fc_full;
380 		else if (pause->rx_pause && !pause->tx_pause)
381 			hw->fc.requested_mode = e1000_fc_rx_pause;
382 		else if (!pause->rx_pause && pause->tx_pause)
383 			hw->fc.requested_mode = e1000_fc_tx_pause;
384 		else if (!pause->rx_pause && !pause->tx_pause)
385 			hw->fc.requested_mode = e1000_fc_none;
386 
387 		hw->fc.current_mode = hw->fc.requested_mode;
388 
389 		if (hw->phy.media_type == e1000_media_type_fiber) {
390 			retval = hw->mac.ops.setup_link(hw);
391 			/* implicit goto out */
392 		} else {
393 			retval = e1000e_force_mac_fc(hw);
394 			if (retval)
395 				goto out;
396 			e1000e_set_fc_watermarks(hw);
397 		}
398 	}
399 
400 out:
401 	clear_bit(__E1000_RESETTING, &adapter->state);
402 	return retval;
403 }
404 
405 static u32 e1000_get_msglevel(struct net_device *netdev)
406 {
407 	struct e1000_adapter *adapter = netdev_priv(netdev);
408 	return adapter->msg_enable;
409 }
410 
411 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
412 {
413 	struct e1000_adapter *adapter = netdev_priv(netdev);
414 	adapter->msg_enable = data;
415 }
416 
417 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
418 {
419 #define E1000_REGS_LEN 32 /* overestimate */
420 	return E1000_REGS_LEN * sizeof(u32);
421 }
422 
423 static void e1000_get_regs(struct net_device *netdev,
424 			   struct ethtool_regs *regs, void *p)
425 {
426 	struct e1000_adapter *adapter = netdev_priv(netdev);
427 	struct e1000_hw *hw = &adapter->hw;
428 	u32 *regs_buff = p;
429 	u16 phy_data;
430 
431 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
432 
433 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
434 	    adapter->pdev->device;
435 
436 	regs_buff[0]  = er32(CTRL);
437 	regs_buff[1]  = er32(STATUS);
438 
439 	regs_buff[2]  = er32(RCTL);
440 	regs_buff[3]  = er32(RDLEN(0));
441 	regs_buff[4]  = er32(RDH(0));
442 	regs_buff[5]  = er32(RDT(0));
443 	regs_buff[6]  = er32(RDTR);
444 
445 	regs_buff[7]  = er32(TCTL);
446 	regs_buff[8]  = er32(TDLEN(0));
447 	regs_buff[9]  = er32(TDH(0));
448 	regs_buff[10] = er32(TDT(0));
449 	regs_buff[11] = er32(TIDV);
450 
451 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
452 
453 	/* ethtool doesn't use anything past this point, so all this
454 	 * code is likely legacy junk for apps that may or may not exist
455 	 */
456 	if (hw->phy.type == e1000_phy_m88) {
457 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
458 		regs_buff[13] = (u32)phy_data; /* cable length */
459 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
460 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
461 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
462 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
463 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
464 		regs_buff[18] = regs_buff[13]; /* cable polarity */
465 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
466 		regs_buff[20] = regs_buff[17]; /* polarity correction */
467 		/* phy receive errors */
468 		regs_buff[22] = adapter->phy_stats.receive_errors;
469 		regs_buff[23] = regs_buff[13]; /* mdix mode */
470 	}
471 	regs_buff[21] = 0;	/* was idle_errors */
472 	e1e_rphy(hw, MII_STAT1000, &phy_data);
473 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
474 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
475 }
476 
477 static int e1000_get_eeprom_len(struct net_device *netdev)
478 {
479 	struct e1000_adapter *adapter = netdev_priv(netdev);
480 	return adapter->hw.nvm.word_size * 2;
481 }
482 
483 static int e1000_get_eeprom(struct net_device *netdev,
484 			    struct ethtool_eeprom *eeprom, u8 *bytes)
485 {
486 	struct e1000_adapter *adapter = netdev_priv(netdev);
487 	struct e1000_hw *hw = &adapter->hw;
488 	u16 *eeprom_buff;
489 	int first_word;
490 	int last_word;
491 	int ret_val = 0;
492 	u16 i;
493 
494 	if (eeprom->len == 0)
495 		return -EINVAL;
496 
497 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
498 
499 	first_word = eeprom->offset >> 1;
500 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
501 
502 	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
503 			      GFP_KERNEL);
504 	if (!eeprom_buff)
505 		return -ENOMEM;
506 
507 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
508 		ret_val = e1000_read_nvm(hw, first_word,
509 					 last_word - first_word + 1,
510 					 eeprom_buff);
511 	} else {
512 		for (i = 0; i < last_word - first_word + 1; i++) {
513 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
514 						 &eeprom_buff[i]);
515 			if (ret_val)
516 				break;
517 		}
518 	}
519 
520 	if (ret_val) {
521 		/* a read error occurred, throw away the result */
522 		memset(eeprom_buff, 0xff, sizeof(u16) *
523 		       (last_word - first_word + 1));
524 	} else {
525 		/* Device's eeprom is always little-endian, word addressable */
526 		for (i = 0; i < last_word - first_word + 1; i++)
527 			le16_to_cpus(&eeprom_buff[i]);
528 	}
529 
530 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
531 	kfree(eeprom_buff);
532 
533 	return ret_val;
534 }
535 
536 static int e1000_set_eeprom(struct net_device *netdev,
537 			    struct ethtool_eeprom *eeprom, u8 *bytes)
538 {
539 	struct e1000_adapter *adapter = netdev_priv(netdev);
540 	struct e1000_hw *hw = &adapter->hw;
541 	u16 *eeprom_buff;
542 	void *ptr;
543 	int max_len;
544 	int first_word;
545 	int last_word;
546 	int ret_val = 0;
547 	u16 i;
548 
549 	if (eeprom->len == 0)
550 		return -EOPNOTSUPP;
551 
552 	if (eeprom->magic !=
553 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
554 		return -EFAULT;
555 
556 	if (adapter->flags & FLAG_READ_ONLY_NVM)
557 		return -EINVAL;
558 
559 	max_len = hw->nvm.word_size * 2;
560 
561 	first_word = eeprom->offset >> 1;
562 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
563 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
564 	if (!eeprom_buff)
565 		return -ENOMEM;
566 
567 	ptr = (void *)eeprom_buff;
568 
569 	if (eeprom->offset & 1) {
570 		/* need read/modify/write of first changed EEPROM word */
571 		/* only the second byte of the word is being modified */
572 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
573 		ptr++;
574 	}
575 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
576 		/* need read/modify/write of last changed EEPROM word */
577 		/* only the first byte of the word is being modified */
578 		ret_val = e1000_read_nvm(hw, last_word, 1,
579 					 &eeprom_buff[last_word - first_word]);
580 
581 	if (ret_val)
582 		goto out;
583 
584 	/* Device's eeprom is always little-endian, word addressable */
585 	for (i = 0; i < last_word - first_word + 1; i++)
586 		le16_to_cpus(&eeprom_buff[i]);
587 
588 	memcpy(ptr, bytes, eeprom->len);
589 
590 	for (i = 0; i < last_word - first_word + 1; i++)
591 		cpu_to_le16s(&eeprom_buff[i]);
592 
593 	ret_val = e1000_write_nvm(hw, first_word,
594 				  last_word - first_word + 1, eeprom_buff);
595 
596 	if (ret_val)
597 		goto out;
598 
599 	/* Update the checksum over the first part of the EEPROM if needed
600 	 * and flush shadow RAM for applicable controllers
601 	 */
602 	if ((first_word <= NVM_CHECKSUM_REG) ||
603 	    (hw->mac.type == e1000_82583) ||
604 	    (hw->mac.type == e1000_82574) ||
605 	    (hw->mac.type == e1000_82573))
606 		ret_val = e1000e_update_nvm_checksum(hw);
607 
608 out:
609 	kfree(eeprom_buff);
610 	return ret_val;
611 }
612 
613 static void e1000_get_drvinfo(struct net_device *netdev,
614 			      struct ethtool_drvinfo *drvinfo)
615 {
616 	struct e1000_adapter *adapter = netdev_priv(netdev);
617 
618 	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
619 	strlcpy(drvinfo->version, e1000e_driver_version,
620 		sizeof(drvinfo->version));
621 
622 	/* EEPROM image version # is reported as firmware version # for
623 	 * PCI-E controllers
624 	 */
625 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
626 		 "%d.%d-%d",
627 		 (adapter->eeprom_vers & 0xF000) >> 12,
628 		 (adapter->eeprom_vers & 0x0FF0) >> 4,
629 		 (adapter->eeprom_vers & 0x000F));
630 
631 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
632 		sizeof(drvinfo->bus_info));
633 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
634 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
635 }
636 
637 static void e1000_get_ringparam(struct net_device *netdev,
638 				struct ethtool_ringparam *ring)
639 {
640 	struct e1000_adapter *adapter = netdev_priv(netdev);
641 
642 	ring->rx_max_pending = E1000_MAX_RXD;
643 	ring->tx_max_pending = E1000_MAX_TXD;
644 	ring->rx_pending = adapter->rx_ring_count;
645 	ring->tx_pending = adapter->tx_ring_count;
646 }
647 
648 static int e1000_set_ringparam(struct net_device *netdev,
649 			       struct ethtool_ringparam *ring)
650 {
651 	struct e1000_adapter *adapter = netdev_priv(netdev);
652 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
653 	int err = 0, size = sizeof(struct e1000_ring);
654 	bool set_tx = false, set_rx = false;
655 	u16 new_rx_count, new_tx_count;
656 
657 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
658 		return -EINVAL;
659 
660 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
661 			       E1000_MAX_RXD);
662 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
663 
664 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
665 			       E1000_MAX_TXD);
666 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
667 
668 	if ((new_tx_count == adapter->tx_ring_count) &&
669 	    (new_rx_count == adapter->rx_ring_count))
670 		/* nothing to do */
671 		return 0;
672 
673 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
674 		usleep_range(1000, 2000);
675 
676 	if (!netif_running(adapter->netdev)) {
677 		/* Set counts now and allocate resources during open() */
678 		adapter->tx_ring->count = new_tx_count;
679 		adapter->rx_ring->count = new_rx_count;
680 		adapter->tx_ring_count = new_tx_count;
681 		adapter->rx_ring_count = new_rx_count;
682 		goto clear_reset;
683 	}
684 
685 	set_tx = (new_tx_count != adapter->tx_ring_count);
686 	set_rx = (new_rx_count != adapter->rx_ring_count);
687 
688 	/* Allocate temporary storage for ring updates */
689 	if (set_tx) {
690 		temp_tx = vmalloc(size);
691 		if (!temp_tx) {
692 			err = -ENOMEM;
693 			goto free_temp;
694 		}
695 	}
696 	if (set_rx) {
697 		temp_rx = vmalloc(size);
698 		if (!temp_rx) {
699 			err = -ENOMEM;
700 			goto free_temp;
701 		}
702 	}
703 
704 	e1000e_down(adapter);
705 
706 	/* We can't just free everything and then setup again, because the
707 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
708 	 * structs.  First, attempt to allocate new resources...
709 	 */
710 	if (set_tx) {
711 		memcpy(temp_tx, adapter->tx_ring, size);
712 		temp_tx->count = new_tx_count;
713 		err = e1000e_setup_tx_resources(temp_tx);
714 		if (err)
715 			goto err_setup;
716 	}
717 	if (set_rx) {
718 		memcpy(temp_rx, adapter->rx_ring, size);
719 		temp_rx->count = new_rx_count;
720 		err = e1000e_setup_rx_resources(temp_rx);
721 		if (err)
722 			goto err_setup_rx;
723 	}
724 
725 	/* ...then free the old resources and copy back any new ring data */
726 	if (set_tx) {
727 		e1000e_free_tx_resources(adapter->tx_ring);
728 		memcpy(adapter->tx_ring, temp_tx, size);
729 		adapter->tx_ring_count = new_tx_count;
730 	}
731 	if (set_rx) {
732 		e1000e_free_rx_resources(adapter->rx_ring);
733 		memcpy(adapter->rx_ring, temp_rx, size);
734 		adapter->rx_ring_count = new_rx_count;
735 	}
736 
737 err_setup_rx:
738 	if (err && set_tx)
739 		e1000e_free_tx_resources(temp_tx);
740 err_setup:
741 	e1000e_up(adapter);
742 free_temp:
743 	vfree(temp_tx);
744 	vfree(temp_rx);
745 clear_reset:
746 	clear_bit(__E1000_RESETTING, &adapter->state);
747 	return err;
748 }
749 
750 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
751 			     int reg, int offset, u32 mask, u32 write)
752 {
753 	u32 pat, val;
754 	static const u32 test[] = {
755 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
756 	};
757 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
758 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
759 				      (test[pat] & write));
760 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
761 		if (val != (test[pat] & write & mask)) {
762 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
763 			      reg + (offset << 2), val,
764 			      (test[pat] & write & mask));
765 			*data = reg;
766 			return 1;
767 		}
768 	}
769 	return 0;
770 }
771 
772 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
773 			      int reg, u32 mask, u32 write)
774 {
775 	u32 val;
776 	__ew32(&adapter->hw, reg, write & mask);
777 	val = __er32(&adapter->hw, reg);
778 	if ((write & mask) != (val & mask)) {
779 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
780 		      reg, (val & mask), (write & mask));
781 		*data = reg;
782 		return 1;
783 	}
784 	return 0;
785 }
786 
787 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
788 	do {                                                                   \
789 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
790 			return 1;                                              \
791 	} while (0)
792 #define REG_PATTERN_TEST(reg, mask, write)                                     \
793 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
794 
795 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
796 	do {                                                                   \
797 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
798 			return 1;                                              \
799 	} while (0)
800 
801 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
802 {
803 	struct e1000_hw *hw = &adapter->hw;
804 	struct e1000_mac_info *mac = &adapter->hw.mac;
805 	u32 value;
806 	u32 before;
807 	u32 after;
808 	u32 i;
809 	u32 toggle;
810 	u32 mask;
811 	u32 wlock_mac = 0;
812 
813 	/* The status register is Read Only, so a write should fail.
814 	 * Some bits that get toggled are ignored.  There are several bits
815 	 * on newer hardware that are r/w.
816 	 */
817 	switch (mac->type) {
818 	case e1000_82571:
819 	case e1000_82572:
820 	case e1000_80003es2lan:
821 		toggle = 0x7FFFF3FF;
822 		break;
823 	default:
824 		toggle = 0x7FFFF033;
825 		break;
826 	}
827 
828 	before = er32(STATUS);
829 	value = (er32(STATUS) & toggle);
830 	ew32(STATUS, toggle);
831 	after = er32(STATUS) & toggle;
832 	if (value != after) {
833 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
834 		      after, value);
835 		*data = 1;
836 		return 1;
837 	}
838 	/* restore previous status */
839 	ew32(STATUS, before);
840 
841 	if (!(adapter->flags & FLAG_IS_ICH)) {
842 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
843 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
844 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
845 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
846 	}
847 
848 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
849 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
850 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
851 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
852 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
853 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
854 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
855 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
856 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
857 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
858 
859 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
860 
861 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
862 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
863 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
864 
865 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
866 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
867 	if (!(adapter->flags & FLAG_IS_ICH))
868 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
869 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
870 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
871 	mask = 0x8003FFFF;
872 	switch (mac->type) {
873 	case e1000_ich10lan:
874 	case e1000_pchlan:
875 	case e1000_pch2lan:
876 	case e1000_pch_lpt:
877 		mask |= (1 << 18);
878 		break;
879 	default:
880 		break;
881 	}
882 
883 	if (mac->type == e1000_pch_lpt)
884 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
885 		    E1000_FWSM_WLOCK_MAC_SHIFT;
886 
887 	for (i = 0; i < mac->rar_entry_count; i++) {
888 		if (mac->type == e1000_pch_lpt) {
889 			/* Cannot test write-protected SHRAL[n] registers */
890 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
891 				continue;
892 
893 			/* SHRAH[9] different than the others */
894 			if (i == 10)
895 				mask |= (1 << 30);
896 			else
897 				mask &= ~(1 << 30);
898 		}
899 
900 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
901 				       0xFFFFFFFF);
902 	}
903 
904 	for (i = 0; i < mac->mta_reg_count; i++)
905 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
906 
907 	*data = 0;
908 
909 	return 0;
910 }
911 
912 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
913 {
914 	u16 temp;
915 	u16 checksum = 0;
916 	u16 i;
917 
918 	*data = 0;
919 	/* Read and add up the contents of the EEPROM */
920 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
921 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
922 			*data = 1;
923 			return *data;
924 		}
925 		checksum += temp;
926 	}
927 
928 	/* If Checksum is not Correct return error else test passed */
929 	if ((checksum != (u16)NVM_SUM) && !(*data))
930 		*data = 2;
931 
932 	return *data;
933 }
934 
935 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
936 {
937 	struct net_device *netdev = (struct net_device *)data;
938 	struct e1000_adapter *adapter = netdev_priv(netdev);
939 	struct e1000_hw *hw = &adapter->hw;
940 
941 	adapter->test_icr |= er32(ICR);
942 
943 	return IRQ_HANDLED;
944 }
945 
946 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
947 {
948 	struct net_device *netdev = adapter->netdev;
949 	struct e1000_hw *hw = &adapter->hw;
950 	u32 mask;
951 	u32 shared_int = 1;
952 	u32 irq = adapter->pdev->irq;
953 	int i;
954 	int ret_val = 0;
955 	int int_mode = E1000E_INT_MODE_LEGACY;
956 
957 	*data = 0;
958 
959 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
960 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
961 		int_mode = adapter->int_mode;
962 		e1000e_reset_interrupt_capability(adapter);
963 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
964 		e1000e_set_interrupt_capability(adapter);
965 	}
966 	/* Hook up test interrupt handler just for this test */
967 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
968 			 netdev)) {
969 		shared_int = 0;
970 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
971 			       netdev)) {
972 		*data = 1;
973 		ret_val = -1;
974 		goto out;
975 	}
976 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
977 
978 	/* Disable all the interrupts */
979 	ew32(IMC, 0xFFFFFFFF);
980 	e1e_flush();
981 	usleep_range(10000, 20000);
982 
983 	/* Test each interrupt */
984 	for (i = 0; i < 10; i++) {
985 		/* Interrupt to test */
986 		mask = 1 << i;
987 
988 		if (adapter->flags & FLAG_IS_ICH) {
989 			switch (mask) {
990 			case E1000_ICR_RXSEQ:
991 				continue;
992 			case 0x00000100:
993 				if (adapter->hw.mac.type == e1000_ich8lan ||
994 				    adapter->hw.mac.type == e1000_ich9lan)
995 					continue;
996 				break;
997 			default:
998 				break;
999 			}
1000 		}
1001 
1002 		if (!shared_int) {
1003 			/* Disable the interrupt to be reported in
1004 			 * the cause register and then force the same
1005 			 * interrupt and see if one gets posted.  If
1006 			 * an interrupt was posted to the bus, the
1007 			 * test failed.
1008 			 */
1009 			adapter->test_icr = 0;
1010 			ew32(IMC, mask);
1011 			ew32(ICS, mask);
1012 			e1e_flush();
1013 			usleep_range(10000, 20000);
1014 
1015 			if (adapter->test_icr & mask) {
1016 				*data = 3;
1017 				break;
1018 			}
1019 		}
1020 
1021 		/* Enable the interrupt to be reported in
1022 		 * the cause register and then force the same
1023 		 * interrupt and see if one gets posted.  If
1024 		 * an interrupt was not posted to the bus, the
1025 		 * test failed.
1026 		 */
1027 		adapter->test_icr = 0;
1028 		ew32(IMS, mask);
1029 		ew32(ICS, mask);
1030 		e1e_flush();
1031 		usleep_range(10000, 20000);
1032 
1033 		if (!(adapter->test_icr & mask)) {
1034 			*data = 4;
1035 			break;
1036 		}
1037 
1038 		if (!shared_int) {
1039 			/* Disable the other interrupts to be reported in
1040 			 * the cause register and then force the other
1041 			 * interrupts and see if any get posted.  If
1042 			 * an interrupt was posted to the bus, the
1043 			 * test failed.
1044 			 */
1045 			adapter->test_icr = 0;
1046 			ew32(IMC, ~mask & 0x00007FFF);
1047 			ew32(ICS, ~mask & 0x00007FFF);
1048 			e1e_flush();
1049 			usleep_range(10000, 20000);
1050 
1051 			if (adapter->test_icr) {
1052 				*data = 5;
1053 				break;
1054 			}
1055 		}
1056 	}
1057 
1058 	/* Disable all the interrupts */
1059 	ew32(IMC, 0xFFFFFFFF);
1060 	e1e_flush();
1061 	usleep_range(10000, 20000);
1062 
1063 	/* Unhook test interrupt handler */
1064 	free_irq(irq, netdev);
1065 
1066 out:
1067 	if (int_mode == E1000E_INT_MODE_MSIX) {
1068 		e1000e_reset_interrupt_capability(adapter);
1069 		adapter->int_mode = int_mode;
1070 		e1000e_set_interrupt_capability(adapter);
1071 	}
1072 
1073 	return ret_val;
1074 }
1075 
1076 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1077 {
1078 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1079 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1080 	struct pci_dev *pdev = adapter->pdev;
1081 	struct e1000_buffer *buffer_info;
1082 	int i;
1083 
1084 	if (tx_ring->desc && tx_ring->buffer_info) {
1085 		for (i = 0; i < tx_ring->count; i++) {
1086 			buffer_info = &tx_ring->buffer_info[i];
1087 
1088 			if (buffer_info->dma)
1089 				dma_unmap_single(&pdev->dev,
1090 						 buffer_info->dma,
1091 						 buffer_info->length,
1092 						 DMA_TO_DEVICE);
1093 			if (buffer_info->skb)
1094 				dev_kfree_skb(buffer_info->skb);
1095 		}
1096 	}
1097 
1098 	if (rx_ring->desc && rx_ring->buffer_info) {
1099 		for (i = 0; i < rx_ring->count; i++) {
1100 			buffer_info = &rx_ring->buffer_info[i];
1101 
1102 			if (buffer_info->dma)
1103 				dma_unmap_single(&pdev->dev,
1104 						 buffer_info->dma,
1105 						 2048, DMA_FROM_DEVICE);
1106 			if (buffer_info->skb)
1107 				dev_kfree_skb(buffer_info->skb);
1108 		}
1109 	}
1110 
1111 	if (tx_ring->desc) {
1112 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1113 				  tx_ring->dma);
1114 		tx_ring->desc = NULL;
1115 	}
1116 	if (rx_ring->desc) {
1117 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1118 				  rx_ring->dma);
1119 		rx_ring->desc = NULL;
1120 	}
1121 
1122 	kfree(tx_ring->buffer_info);
1123 	tx_ring->buffer_info = NULL;
1124 	kfree(rx_ring->buffer_info);
1125 	rx_ring->buffer_info = NULL;
1126 }
1127 
1128 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1129 {
1130 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1131 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1132 	struct pci_dev *pdev = adapter->pdev;
1133 	struct e1000_hw *hw = &adapter->hw;
1134 	u32 rctl;
1135 	int i;
1136 	int ret_val;
1137 
1138 	/* Setup Tx descriptor ring and Tx buffers */
1139 
1140 	if (!tx_ring->count)
1141 		tx_ring->count = E1000_DEFAULT_TXD;
1142 
1143 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1144 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1145 	if (!tx_ring->buffer_info) {
1146 		ret_val = 1;
1147 		goto err_nomem;
1148 	}
1149 
1150 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1151 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1152 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1153 					   &tx_ring->dma, GFP_KERNEL);
1154 	if (!tx_ring->desc) {
1155 		ret_val = 2;
1156 		goto err_nomem;
1157 	}
1158 	tx_ring->next_to_use = 0;
1159 	tx_ring->next_to_clean = 0;
1160 
1161 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1162 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1163 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1164 	ew32(TDH(0), 0);
1165 	ew32(TDT(0), 0);
1166 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1167 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1168 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1169 
1170 	for (i = 0; i < tx_ring->count; i++) {
1171 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1172 		struct sk_buff *skb;
1173 		unsigned int skb_size = 1024;
1174 
1175 		skb = alloc_skb(skb_size, GFP_KERNEL);
1176 		if (!skb) {
1177 			ret_val = 3;
1178 			goto err_nomem;
1179 		}
1180 		skb_put(skb, skb_size);
1181 		tx_ring->buffer_info[i].skb = skb;
1182 		tx_ring->buffer_info[i].length = skb->len;
1183 		tx_ring->buffer_info[i].dma =
1184 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1185 				   DMA_TO_DEVICE);
1186 		if (dma_mapping_error(&pdev->dev,
1187 				      tx_ring->buffer_info[i].dma)) {
1188 			ret_val = 4;
1189 			goto err_nomem;
1190 		}
1191 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1192 		tx_desc->lower.data = cpu_to_le32(skb->len);
1193 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1194 						   E1000_TXD_CMD_IFCS |
1195 						   E1000_TXD_CMD_RS);
1196 		tx_desc->upper.data = 0;
1197 	}
1198 
1199 	/* Setup Rx descriptor ring and Rx buffers */
1200 
1201 	if (!rx_ring->count)
1202 		rx_ring->count = E1000_DEFAULT_RXD;
1203 
1204 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1205 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1206 	if (!rx_ring->buffer_info) {
1207 		ret_val = 5;
1208 		goto err_nomem;
1209 	}
1210 
1211 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1212 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1213 					   &rx_ring->dma, GFP_KERNEL);
1214 	if (!rx_ring->desc) {
1215 		ret_val = 6;
1216 		goto err_nomem;
1217 	}
1218 	rx_ring->next_to_use = 0;
1219 	rx_ring->next_to_clean = 0;
1220 
1221 	rctl = er32(RCTL);
1222 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1223 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1224 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1225 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1226 	ew32(RDLEN(0), rx_ring->size);
1227 	ew32(RDH(0), 0);
1228 	ew32(RDT(0), 0);
1229 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1230 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1231 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1232 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1233 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1234 	ew32(RCTL, rctl);
1235 
1236 	for (i = 0; i < rx_ring->count; i++) {
1237 		union e1000_rx_desc_extended *rx_desc;
1238 		struct sk_buff *skb;
1239 
1240 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1241 		if (!skb) {
1242 			ret_val = 7;
1243 			goto err_nomem;
1244 		}
1245 		skb_reserve(skb, NET_IP_ALIGN);
1246 		rx_ring->buffer_info[i].skb = skb;
1247 		rx_ring->buffer_info[i].dma =
1248 		    dma_map_single(&pdev->dev, skb->data, 2048,
1249 				   DMA_FROM_DEVICE);
1250 		if (dma_mapping_error(&pdev->dev,
1251 				      rx_ring->buffer_info[i].dma)) {
1252 			ret_val = 8;
1253 			goto err_nomem;
1254 		}
1255 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1256 		rx_desc->read.buffer_addr =
1257 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1258 		memset(skb->data, 0x00, skb->len);
1259 	}
1260 
1261 	return 0;
1262 
1263 err_nomem:
1264 	e1000_free_desc_rings(adapter);
1265 	return ret_val;
1266 }
1267 
1268 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1269 {
1270 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1271 	e1e_wphy(&adapter->hw, 29, 0x001F);
1272 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1273 	e1e_wphy(&adapter->hw, 29, 0x001A);
1274 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1275 }
1276 
1277 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1278 {
1279 	struct e1000_hw *hw = &adapter->hw;
1280 	u32 ctrl_reg = 0;
1281 	u16 phy_reg = 0;
1282 	s32 ret_val = 0;
1283 
1284 	hw->mac.autoneg = 0;
1285 
1286 	if (hw->phy.type == e1000_phy_ife) {
1287 		/* force 100, set loopback */
1288 		e1e_wphy(hw, MII_BMCR, 0x6100);
1289 
1290 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1291 		ctrl_reg = er32(CTRL);
1292 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1293 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1294 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1295 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1296 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1297 
1298 		ew32(CTRL, ctrl_reg);
1299 		e1e_flush();
1300 		usleep_range(500, 1000);
1301 
1302 		return 0;
1303 	}
1304 
1305 	/* Specific PHY configuration for loopback */
1306 	switch (hw->phy.type) {
1307 	case e1000_phy_m88:
1308 		/* Auto-MDI/MDIX Off */
1309 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1310 		/* reset to update Auto-MDI/MDIX */
1311 		e1e_wphy(hw, MII_BMCR, 0x9140);
1312 		/* autoneg off */
1313 		e1e_wphy(hw, MII_BMCR, 0x8140);
1314 		break;
1315 	case e1000_phy_gg82563:
1316 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1317 		break;
1318 	case e1000_phy_bm:
1319 		/* Set Default MAC Interface speed to 1GB */
1320 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1321 		phy_reg &= ~0x0007;
1322 		phy_reg |= 0x006;
1323 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1324 		/* Assert SW reset for above settings to take effect */
1325 		hw->phy.ops.commit(hw);
1326 		usleep_range(1000, 2000);
1327 		/* Force Full Duplex */
1328 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1329 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1330 		/* Set Link Up (in force link) */
1331 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1332 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1333 		/* Force Link */
1334 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1335 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1336 		/* Set Early Link Enable */
1337 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1338 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1339 		break;
1340 	case e1000_phy_82577:
1341 	case e1000_phy_82578:
1342 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1343 		ret_val = hw->phy.ops.acquire(hw);
1344 		if (ret_val) {
1345 			e_err("Cannot setup 1Gbps loopback.\n");
1346 			return ret_val;
1347 		}
1348 		e1000_configure_k1_ich8lan(hw, false);
1349 		hw->phy.ops.release(hw);
1350 		break;
1351 	case e1000_phy_82579:
1352 		/* Disable PHY energy detect power down */
1353 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1354 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1355 		/* Disable full chip energy detect */
1356 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1357 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1358 		/* Enable loopback on the PHY */
1359 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1360 		break;
1361 	default:
1362 		break;
1363 	}
1364 
1365 	/* force 1000, set loopback */
1366 	e1e_wphy(hw, MII_BMCR, 0x4140);
1367 	msleep(250);
1368 
1369 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1370 	ctrl_reg = er32(CTRL);
1371 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1372 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1373 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1374 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1375 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1376 
1377 	if (adapter->flags & FLAG_IS_ICH)
1378 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1379 
1380 	if (hw->phy.media_type == e1000_media_type_copper &&
1381 	    hw->phy.type == e1000_phy_m88) {
1382 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1383 	} else {
1384 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1385 		 * detected.
1386 		 */
1387 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1388 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1389 	}
1390 
1391 	ew32(CTRL, ctrl_reg);
1392 
1393 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1394 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1395 	 */
1396 	if (hw->phy.type == e1000_phy_m88)
1397 		e1000_phy_disable_receiver(adapter);
1398 
1399 	usleep_range(500, 1000);
1400 
1401 	return 0;
1402 }
1403 
1404 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1405 {
1406 	struct e1000_hw *hw = &adapter->hw;
1407 	u32 ctrl = er32(CTRL);
1408 	int link;
1409 
1410 	/* special requirements for 82571/82572 fiber adapters */
1411 
1412 	/* jump through hoops to make sure link is up because serdes
1413 	 * link is hardwired up
1414 	 */
1415 	ctrl |= E1000_CTRL_SLU;
1416 	ew32(CTRL, ctrl);
1417 
1418 	/* disable autoneg */
1419 	ctrl = er32(TXCW);
1420 	ctrl &= ~(1 << 31);
1421 	ew32(TXCW, ctrl);
1422 
1423 	link = (er32(STATUS) & E1000_STATUS_LU);
1424 
1425 	if (!link) {
1426 		/* set invert loss of signal */
1427 		ctrl = er32(CTRL);
1428 		ctrl |= E1000_CTRL_ILOS;
1429 		ew32(CTRL, ctrl);
1430 	}
1431 
1432 	/* special write to serdes control register to enable SerDes analog
1433 	 * loopback
1434 	 */
1435 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1436 	e1e_flush();
1437 	usleep_range(10000, 20000);
1438 
1439 	return 0;
1440 }
1441 
1442 /* only call this for fiber/serdes connections to es2lan */
1443 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1444 {
1445 	struct e1000_hw *hw = &adapter->hw;
1446 	u32 ctrlext = er32(CTRL_EXT);
1447 	u32 ctrl = er32(CTRL);
1448 
1449 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1450 	 * on mac_type 80003es2lan)
1451 	 */
1452 	adapter->tx_fifo_head = ctrlext;
1453 
1454 	/* clear the serdes mode bits, putting the device into mac loopback */
1455 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1456 	ew32(CTRL_EXT, ctrlext);
1457 
1458 	/* force speed to 1000/FD, link up */
1459 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1460 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1461 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1462 	ew32(CTRL, ctrl);
1463 
1464 	/* set mac loopback */
1465 	ctrl = er32(RCTL);
1466 	ctrl |= E1000_RCTL_LBM_MAC;
1467 	ew32(RCTL, ctrl);
1468 
1469 	/* set testing mode parameters (no need to reset later) */
1470 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1471 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1472 	ew32(KMRNCTRLSTA,
1473 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1474 
1475 	return 0;
1476 }
1477 
1478 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1479 {
1480 	struct e1000_hw *hw = &adapter->hw;
1481 	u32 rctl;
1482 
1483 	if (hw->phy.media_type == e1000_media_type_fiber ||
1484 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1485 		switch (hw->mac.type) {
1486 		case e1000_80003es2lan:
1487 			return e1000_set_es2lan_mac_loopback(adapter);
1488 			break;
1489 		case e1000_82571:
1490 		case e1000_82572:
1491 			return e1000_set_82571_fiber_loopback(adapter);
1492 			break;
1493 		default:
1494 			rctl = er32(RCTL);
1495 			rctl |= E1000_RCTL_LBM_TCVR;
1496 			ew32(RCTL, rctl);
1497 			return 0;
1498 		}
1499 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1500 		return e1000_integrated_phy_loopback(adapter);
1501 	}
1502 
1503 	return 7;
1504 }
1505 
1506 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1507 {
1508 	struct e1000_hw *hw = &adapter->hw;
1509 	u32 rctl;
1510 	u16 phy_reg;
1511 
1512 	rctl = er32(RCTL);
1513 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1514 	ew32(RCTL, rctl);
1515 
1516 	switch (hw->mac.type) {
1517 	case e1000_80003es2lan:
1518 		if (hw->phy.media_type == e1000_media_type_fiber ||
1519 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1520 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1521 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1522 			adapter->tx_fifo_head = 0;
1523 		}
1524 		/* fall through */
1525 	case e1000_82571:
1526 	case e1000_82572:
1527 		if (hw->phy.media_type == e1000_media_type_fiber ||
1528 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1529 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1530 			e1e_flush();
1531 			usleep_range(10000, 20000);
1532 			break;
1533 		}
1534 		/* Fall Through */
1535 	default:
1536 		hw->mac.autoneg = 1;
1537 		if (hw->phy.type == e1000_phy_gg82563)
1538 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1539 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1540 		if (phy_reg & BMCR_LOOPBACK) {
1541 			phy_reg &= ~BMCR_LOOPBACK;
1542 			e1e_wphy(hw, MII_BMCR, phy_reg);
1543 			if (hw->phy.ops.commit)
1544 				hw->phy.ops.commit(hw);
1545 		}
1546 		break;
1547 	}
1548 }
1549 
1550 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1551 				      unsigned int frame_size)
1552 {
1553 	memset(skb->data, 0xFF, frame_size);
1554 	frame_size &= ~1;
1555 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1556 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1557 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1558 }
1559 
1560 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1561 				    unsigned int frame_size)
1562 {
1563 	frame_size &= ~1;
1564 	if (*(skb->data + 3) == 0xFF)
1565 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1566 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1567 			return 0;
1568 	return 13;
1569 }
1570 
1571 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1572 {
1573 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1574 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1575 	struct pci_dev *pdev = adapter->pdev;
1576 	struct e1000_hw *hw = &adapter->hw;
1577 	struct e1000_buffer *buffer_info;
1578 	int i, j, k, l;
1579 	int lc;
1580 	int good_cnt;
1581 	int ret_val = 0;
1582 	unsigned long time;
1583 
1584 	ew32(RDT(0), rx_ring->count - 1);
1585 
1586 	/* Calculate the loop count based on the largest descriptor ring
1587 	 * The idea is to wrap the largest ring a number of times using 64
1588 	 * send/receive pairs during each loop
1589 	 */
1590 
1591 	if (rx_ring->count <= tx_ring->count)
1592 		lc = ((tx_ring->count / 64) * 2) + 1;
1593 	else
1594 		lc = ((rx_ring->count / 64) * 2) + 1;
1595 
1596 	k = 0;
1597 	l = 0;
1598 	/* loop count loop */
1599 	for (j = 0; j <= lc; j++) {
1600 		/* send the packets */
1601 		for (i = 0; i < 64; i++) {
1602 			buffer_info = &tx_ring->buffer_info[k];
1603 
1604 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1605 			dma_sync_single_for_device(&pdev->dev,
1606 						   buffer_info->dma,
1607 						   buffer_info->length,
1608 						   DMA_TO_DEVICE);
1609 			k++;
1610 			if (k == tx_ring->count)
1611 				k = 0;
1612 		}
1613 		ew32(TDT(0), k);
1614 		e1e_flush();
1615 		msleep(200);
1616 		time = jiffies; /* set the start time for the receive */
1617 		good_cnt = 0;
1618 		/* receive the sent packets */
1619 		do {
1620 			buffer_info = &rx_ring->buffer_info[l];
1621 
1622 			dma_sync_single_for_cpu(&pdev->dev,
1623 						buffer_info->dma, 2048,
1624 						DMA_FROM_DEVICE);
1625 
1626 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1627 							   1024);
1628 			if (!ret_val)
1629 				good_cnt++;
1630 			l++;
1631 			if (l == rx_ring->count)
1632 				l = 0;
1633 			/* time + 20 msecs (200 msecs on 2.4) is more than
1634 			 * enough time to complete the receives, if it's
1635 			 * exceeded, break and error off
1636 			 */
1637 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1638 		if (good_cnt != 64) {
1639 			ret_val = 13; /* ret_val is the same as mis-compare */
1640 			break;
1641 		}
1642 		if (jiffies >= (time + 20)) {
1643 			ret_val = 14; /* error code for time out error */
1644 			break;
1645 		}
1646 	}
1647 	return ret_val;
1648 }
1649 
1650 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1651 {
1652 	struct e1000_hw *hw = &adapter->hw;
1653 
1654 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1655 	if (hw->phy.ops.check_reset_block &&
1656 	    hw->phy.ops.check_reset_block(hw)) {
1657 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1658 		*data = 0;
1659 		goto out;
1660 	}
1661 
1662 	*data = e1000_setup_desc_rings(adapter);
1663 	if (*data)
1664 		goto out;
1665 
1666 	*data = e1000_setup_loopback_test(adapter);
1667 	if (*data)
1668 		goto err_loopback;
1669 
1670 	*data = e1000_run_loopback_test(adapter);
1671 	e1000_loopback_cleanup(adapter);
1672 
1673 err_loopback:
1674 	e1000_free_desc_rings(adapter);
1675 out:
1676 	return *data;
1677 }
1678 
1679 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1680 {
1681 	struct e1000_hw *hw = &adapter->hw;
1682 
1683 	*data = 0;
1684 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1685 		int i = 0;
1686 		hw->mac.serdes_has_link = false;
1687 
1688 		/* On some blade server designs, link establishment
1689 		 * could take as long as 2-3 minutes
1690 		 */
1691 		do {
1692 			hw->mac.ops.check_for_link(hw);
1693 			if (hw->mac.serdes_has_link)
1694 				return *data;
1695 			msleep(20);
1696 		} while (i++ < 3750);
1697 
1698 		*data = 1;
1699 	} else {
1700 		hw->mac.ops.check_for_link(hw);
1701 		if (hw->mac.autoneg)
1702 			/* On some Phy/switch combinations, link establishment
1703 			 * can take a few seconds more than expected.
1704 			 */
1705 			msleep_interruptible(5000);
1706 
1707 		if (!(er32(STATUS) & E1000_STATUS_LU))
1708 			*data = 1;
1709 	}
1710 	return *data;
1711 }
1712 
1713 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1714 				 int sset)
1715 {
1716 	switch (sset) {
1717 	case ETH_SS_TEST:
1718 		return E1000_TEST_LEN;
1719 	case ETH_SS_STATS:
1720 		return E1000_STATS_LEN;
1721 	default:
1722 		return -EOPNOTSUPP;
1723 	}
1724 }
1725 
1726 static void e1000_diag_test(struct net_device *netdev,
1727 			    struct ethtool_test *eth_test, u64 *data)
1728 {
1729 	struct e1000_adapter *adapter = netdev_priv(netdev);
1730 	u16 autoneg_advertised;
1731 	u8 forced_speed_duplex;
1732 	u8 autoneg;
1733 	bool if_running = netif_running(netdev);
1734 
1735 	set_bit(__E1000_TESTING, &adapter->state);
1736 
1737 	if (!if_running) {
1738 		/* Get control of and reset hardware */
1739 		if (adapter->flags & FLAG_HAS_AMT)
1740 			e1000e_get_hw_control(adapter);
1741 
1742 		e1000e_power_up_phy(adapter);
1743 
1744 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1745 		e1000e_reset(adapter);
1746 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1747 	}
1748 
1749 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1750 		/* Offline tests */
1751 
1752 		/* save speed, duplex, autoneg settings */
1753 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1754 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1755 		autoneg = adapter->hw.mac.autoneg;
1756 
1757 		e_info("offline testing starting\n");
1758 
1759 		if (if_running)
1760 			/* indicate we're in test mode */
1761 			dev_close(netdev);
1762 
1763 		if (e1000_reg_test(adapter, &data[0]))
1764 			eth_test->flags |= ETH_TEST_FL_FAILED;
1765 
1766 		e1000e_reset(adapter);
1767 		if (e1000_eeprom_test(adapter, &data[1]))
1768 			eth_test->flags |= ETH_TEST_FL_FAILED;
1769 
1770 		e1000e_reset(adapter);
1771 		if (e1000_intr_test(adapter, &data[2]))
1772 			eth_test->flags |= ETH_TEST_FL_FAILED;
1773 
1774 		e1000e_reset(adapter);
1775 		if (e1000_loopback_test(adapter, &data[3]))
1776 			eth_test->flags |= ETH_TEST_FL_FAILED;
1777 
1778 		/* force this routine to wait until autoneg complete/timeout */
1779 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1780 		e1000e_reset(adapter);
1781 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1782 
1783 		if (e1000_link_test(adapter, &data[4]))
1784 			eth_test->flags |= ETH_TEST_FL_FAILED;
1785 
1786 		/* restore speed, duplex, autoneg settings */
1787 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1788 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1789 		adapter->hw.mac.autoneg = autoneg;
1790 		e1000e_reset(adapter);
1791 
1792 		clear_bit(__E1000_TESTING, &adapter->state);
1793 		if (if_running)
1794 			dev_open(netdev);
1795 	} else {
1796 		/* Online tests */
1797 
1798 		e_info("online testing starting\n");
1799 
1800 		/* register, eeprom, intr and loopback tests not run online */
1801 		data[0] = 0;
1802 		data[1] = 0;
1803 		data[2] = 0;
1804 		data[3] = 0;
1805 
1806 		if (e1000_link_test(adapter, &data[4]))
1807 			eth_test->flags |= ETH_TEST_FL_FAILED;
1808 
1809 		clear_bit(__E1000_TESTING, &adapter->state);
1810 	}
1811 
1812 	if (!if_running) {
1813 		e1000e_reset(adapter);
1814 
1815 		if (adapter->flags & FLAG_HAS_AMT)
1816 			e1000e_release_hw_control(adapter);
1817 	}
1818 
1819 	msleep_interruptible(4 * 1000);
1820 }
1821 
1822 static void e1000_get_wol(struct net_device *netdev,
1823 			  struct ethtool_wolinfo *wol)
1824 {
1825 	struct e1000_adapter *adapter = netdev_priv(netdev);
1826 
1827 	wol->supported = 0;
1828 	wol->wolopts = 0;
1829 
1830 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1831 	    !device_can_wakeup(&adapter->pdev->dev))
1832 		return;
1833 
1834 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1835 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1836 
1837 	/* apply any specific unsupported masks here */
1838 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1839 		wol->supported &= ~WAKE_UCAST;
1840 
1841 		if (adapter->wol & E1000_WUFC_EX)
1842 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1843 	}
1844 
1845 	if (adapter->wol & E1000_WUFC_EX)
1846 		wol->wolopts |= WAKE_UCAST;
1847 	if (adapter->wol & E1000_WUFC_MC)
1848 		wol->wolopts |= WAKE_MCAST;
1849 	if (adapter->wol & E1000_WUFC_BC)
1850 		wol->wolopts |= WAKE_BCAST;
1851 	if (adapter->wol & E1000_WUFC_MAG)
1852 		wol->wolopts |= WAKE_MAGIC;
1853 	if (adapter->wol & E1000_WUFC_LNKC)
1854 		wol->wolopts |= WAKE_PHY;
1855 }
1856 
1857 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1858 {
1859 	struct e1000_adapter *adapter = netdev_priv(netdev);
1860 
1861 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1862 	    !device_can_wakeup(&adapter->pdev->dev) ||
1863 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1864 			      WAKE_MAGIC | WAKE_PHY)))
1865 		return -EOPNOTSUPP;
1866 
1867 	/* these settings will always override what we currently have */
1868 	adapter->wol = 0;
1869 
1870 	if (wol->wolopts & WAKE_UCAST)
1871 		adapter->wol |= E1000_WUFC_EX;
1872 	if (wol->wolopts & WAKE_MCAST)
1873 		adapter->wol |= E1000_WUFC_MC;
1874 	if (wol->wolopts & WAKE_BCAST)
1875 		adapter->wol |= E1000_WUFC_BC;
1876 	if (wol->wolopts & WAKE_MAGIC)
1877 		adapter->wol |= E1000_WUFC_MAG;
1878 	if (wol->wolopts & WAKE_PHY)
1879 		adapter->wol |= E1000_WUFC_LNKC;
1880 
1881 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1882 
1883 	return 0;
1884 }
1885 
1886 static int e1000_set_phys_id(struct net_device *netdev,
1887 			     enum ethtool_phys_id_state state)
1888 {
1889 	struct e1000_adapter *adapter = netdev_priv(netdev);
1890 	struct e1000_hw *hw = &adapter->hw;
1891 
1892 	switch (state) {
1893 	case ETHTOOL_ID_ACTIVE:
1894 		if (!hw->mac.ops.blink_led)
1895 			return 2;	/* cycle on/off twice per second */
1896 
1897 		hw->mac.ops.blink_led(hw);
1898 		break;
1899 
1900 	case ETHTOOL_ID_INACTIVE:
1901 		if (hw->phy.type == e1000_phy_ife)
1902 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1903 		hw->mac.ops.led_off(hw);
1904 		hw->mac.ops.cleanup_led(hw);
1905 		break;
1906 
1907 	case ETHTOOL_ID_ON:
1908 		hw->mac.ops.led_on(hw);
1909 		break;
1910 
1911 	case ETHTOOL_ID_OFF:
1912 		hw->mac.ops.led_off(hw);
1913 		break;
1914 	}
1915 	return 0;
1916 }
1917 
1918 static int e1000_get_coalesce(struct net_device *netdev,
1919 			      struct ethtool_coalesce *ec)
1920 {
1921 	struct e1000_adapter *adapter = netdev_priv(netdev);
1922 
1923 	if (adapter->itr_setting <= 4)
1924 		ec->rx_coalesce_usecs = adapter->itr_setting;
1925 	else
1926 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1927 
1928 	return 0;
1929 }
1930 
1931 static int e1000_set_coalesce(struct net_device *netdev,
1932 			      struct ethtool_coalesce *ec)
1933 {
1934 	struct e1000_adapter *adapter = netdev_priv(netdev);
1935 
1936 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1937 	    ((ec->rx_coalesce_usecs > 4) &&
1938 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1939 	    (ec->rx_coalesce_usecs == 2))
1940 		return -EINVAL;
1941 
1942 	if (ec->rx_coalesce_usecs == 4) {
1943 		adapter->itr_setting = 4;
1944 		adapter->itr = adapter->itr_setting;
1945 	} else if (ec->rx_coalesce_usecs <= 3) {
1946 		adapter->itr = 20000;
1947 		adapter->itr_setting = ec->rx_coalesce_usecs;
1948 	} else {
1949 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1950 		adapter->itr_setting = adapter->itr & ~3;
1951 	}
1952 
1953 	if (adapter->itr_setting != 0)
1954 		e1000e_write_itr(adapter, adapter->itr);
1955 	else
1956 		e1000e_write_itr(adapter, 0);
1957 
1958 	return 0;
1959 }
1960 
1961 static int e1000_nway_reset(struct net_device *netdev)
1962 {
1963 	struct e1000_adapter *adapter = netdev_priv(netdev);
1964 
1965 	if (!netif_running(netdev))
1966 		return -EAGAIN;
1967 
1968 	if (!adapter->hw.mac.autoneg)
1969 		return -EINVAL;
1970 
1971 	e1000e_reinit_locked(adapter);
1972 
1973 	return 0;
1974 }
1975 
1976 static void e1000_get_ethtool_stats(struct net_device *netdev,
1977 				    struct ethtool_stats __always_unused *stats,
1978 				    u64 *data)
1979 {
1980 	struct e1000_adapter *adapter = netdev_priv(netdev);
1981 	struct rtnl_link_stats64 net_stats;
1982 	int i;
1983 	char *p = NULL;
1984 
1985 	e1000e_get_stats64(netdev, &net_stats);
1986 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1987 		switch (e1000_gstrings_stats[i].type) {
1988 		case NETDEV_STATS:
1989 			p = (char *)&net_stats +
1990 			    e1000_gstrings_stats[i].stat_offset;
1991 			break;
1992 		case E1000_STATS:
1993 			p = (char *)adapter +
1994 			    e1000_gstrings_stats[i].stat_offset;
1995 			break;
1996 		default:
1997 			data[i] = 0;
1998 			continue;
1999 		}
2000 
2001 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2002 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2003 	}
2004 }
2005 
2006 static void e1000_get_strings(struct net_device __always_unused *netdev,
2007 			      u32 stringset, u8 *data)
2008 {
2009 	u8 *p = data;
2010 	int i;
2011 
2012 	switch (stringset) {
2013 	case ETH_SS_TEST:
2014 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2015 		break;
2016 	case ETH_SS_STATS:
2017 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2018 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2019 			       ETH_GSTRING_LEN);
2020 			p += ETH_GSTRING_LEN;
2021 		}
2022 		break;
2023 	}
2024 }
2025 
2026 static int e1000_get_rxnfc(struct net_device *netdev,
2027 			   struct ethtool_rxnfc *info,
2028 			   u32 __always_unused *rule_locs)
2029 {
2030 	info->data = 0;
2031 
2032 	switch (info->cmd) {
2033 	case ETHTOOL_GRXFH: {
2034 		struct e1000_adapter *adapter = netdev_priv(netdev);
2035 		struct e1000_hw *hw = &adapter->hw;
2036 		u32 mrqc = er32(MRQC);
2037 
2038 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2039 			return 0;
2040 
2041 		switch (info->flow_type) {
2042 		case TCP_V4_FLOW:
2043 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2044 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2045 			/* fall through */
2046 		case UDP_V4_FLOW:
2047 		case SCTP_V4_FLOW:
2048 		case AH_ESP_V4_FLOW:
2049 		case IPV4_FLOW:
2050 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2051 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2052 			break;
2053 		case TCP_V6_FLOW:
2054 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2055 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2056 			/* fall through */
2057 		case UDP_V6_FLOW:
2058 		case SCTP_V6_FLOW:
2059 		case AH_ESP_V6_FLOW:
2060 		case IPV6_FLOW:
2061 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2062 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2063 			break;
2064 		default:
2065 			break;
2066 		}
2067 		return 0;
2068 	}
2069 	default:
2070 		return -EOPNOTSUPP;
2071 	}
2072 }
2073 
2074 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2075 {
2076 	struct e1000_adapter *adapter = netdev_priv(netdev);
2077 	struct e1000_hw *hw = &adapter->hw;
2078 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2079 	u32 ret_val;
2080 
2081 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2082 		return -EOPNOTSUPP;
2083 
2084 	switch (hw->phy.type) {
2085 	case e1000_phy_82579:
2086 		cap_addr = I82579_EEE_CAPABILITY;
2087 		lpa_addr = I82579_EEE_LP_ABILITY;
2088 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2089 		break;
2090 	case e1000_phy_i217:
2091 		cap_addr = I217_EEE_CAPABILITY;
2092 		lpa_addr = I217_EEE_LP_ABILITY;
2093 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2094 		break;
2095 	default:
2096 		return -EOPNOTSUPP;
2097 	}
2098 
2099 	ret_val = hw->phy.ops.acquire(hw);
2100 	if (ret_val)
2101 		return -EBUSY;
2102 
2103 	/* EEE Capability */
2104 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2105 	if (ret_val)
2106 		goto release;
2107 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2108 
2109 	/* EEE Advertised */
2110 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2111 
2112 	/* EEE Link Partner Advertised */
2113 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2114 	if (ret_val)
2115 		goto release;
2116 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2117 
2118 	/* EEE PCS Status */
2119 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2120 	if (hw->phy.type == e1000_phy_82579)
2121 		phy_data <<= 8;
2122 
2123 release:
2124 	hw->phy.ops.release(hw);
2125 	if (ret_val)
2126 		return -ENODATA;
2127 
2128 	/* Result of the EEE auto negotiation - there is no register that
2129 	 * has the status of the EEE negotiation so do a best-guess based
2130 	 * on whether Tx or Rx LPI indications have been received.
2131 	 */
2132 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2133 		edata->eee_active = true;
2134 
2135 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2136 	edata->tx_lpi_enabled = true;
2137 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2138 
2139 	return 0;
2140 }
2141 
2142 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2143 {
2144 	struct e1000_adapter *adapter = netdev_priv(netdev);
2145 	struct e1000_hw *hw = &adapter->hw;
2146 	struct ethtool_eee eee_curr;
2147 	s32 ret_val;
2148 
2149 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2150 	if (ret_val)
2151 		return ret_val;
2152 
2153 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2154 		e_err("Setting EEE tx-lpi is not supported\n");
2155 		return -EINVAL;
2156 	}
2157 
2158 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2159 		e_err("Setting EEE Tx LPI timer is not supported\n");
2160 		return -EINVAL;
2161 	}
2162 
2163 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2164 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2165 		return -EINVAL;
2166 	}
2167 
2168 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2169 
2170 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2171 
2172 	/* reset the link */
2173 	if (netif_running(netdev))
2174 		e1000e_reinit_locked(adapter);
2175 	else
2176 		e1000e_reset(adapter);
2177 
2178 	return 0;
2179 }
2180 
2181 static int e1000e_get_ts_info(struct net_device *netdev,
2182 			      struct ethtool_ts_info *info)
2183 {
2184 	struct e1000_adapter *adapter = netdev_priv(netdev);
2185 
2186 	ethtool_op_get_ts_info(netdev, info);
2187 
2188 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2189 		return 0;
2190 
2191 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2192 				  SOF_TIMESTAMPING_RX_HARDWARE |
2193 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2194 
2195 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2196 
2197 	info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2198 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2199 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2200 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2201 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2202 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2203 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2204 			    (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2205 			    (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2206 			    (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2207 			    (1 << HWTSTAMP_FILTER_ALL));
2208 
2209 	if (adapter->ptp_clock)
2210 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2211 
2212 	return 0;
2213 }
2214 
2215 static int e1000e_ethtool_begin(struct net_device *netdev)
2216 {
2217 	return pm_runtime_get_sync(netdev->dev.parent);
2218 }
2219 
2220 static void e1000e_ethtool_complete(struct net_device *netdev)
2221 {
2222 	pm_runtime_put_sync(netdev->dev.parent);
2223 }
2224 
2225 static const struct ethtool_ops e1000_ethtool_ops = {
2226 	.begin			= e1000e_ethtool_begin,
2227 	.complete		= e1000e_ethtool_complete,
2228 	.get_settings		= e1000_get_settings,
2229 	.set_settings		= e1000_set_settings,
2230 	.get_drvinfo		= e1000_get_drvinfo,
2231 	.get_regs_len		= e1000_get_regs_len,
2232 	.get_regs		= e1000_get_regs,
2233 	.get_wol		= e1000_get_wol,
2234 	.set_wol		= e1000_set_wol,
2235 	.get_msglevel		= e1000_get_msglevel,
2236 	.set_msglevel		= e1000_set_msglevel,
2237 	.nway_reset		= e1000_nway_reset,
2238 	.get_link		= ethtool_op_get_link,
2239 	.get_eeprom_len		= e1000_get_eeprom_len,
2240 	.get_eeprom		= e1000_get_eeprom,
2241 	.set_eeprom		= e1000_set_eeprom,
2242 	.get_ringparam		= e1000_get_ringparam,
2243 	.set_ringparam		= e1000_set_ringparam,
2244 	.get_pauseparam		= e1000_get_pauseparam,
2245 	.set_pauseparam		= e1000_set_pauseparam,
2246 	.self_test		= e1000_diag_test,
2247 	.get_strings		= e1000_get_strings,
2248 	.set_phys_id		= e1000_set_phys_id,
2249 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2250 	.get_sset_count		= e1000e_get_sset_count,
2251 	.get_coalesce		= e1000_get_coalesce,
2252 	.set_coalesce		= e1000_set_coalesce,
2253 	.get_rxnfc		= e1000_get_rxnfc,
2254 	.get_ts_info		= e1000e_get_ts_info,
2255 	.get_eee		= e1000e_get_eee,
2256 	.set_eee		= e1000e_set_eee,
2257 };
2258 
2259 void e1000e_set_ethtool_ops(struct net_device *netdev)
2260 {
2261 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2262 }
2263