1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/ethtool.h> 34 #include <linux/pci.h> 35 #include <linux/slab.h> 36 #include <linux/delay.h> 37 #include <linux/vmalloc.h> 38 #include <linux/pm_runtime.h> 39 40 #include "e1000.h" 41 42 enum { NETDEV_STATS, E1000_STATS }; 43 44 struct e1000_stats { 45 char stat_string[ETH_GSTRING_LEN]; 46 int type; 47 int sizeof_stat; 48 int stat_offset; 49 }; 50 51 #define E1000_STAT(str, m) { \ 52 .stat_string = str, \ 53 .type = E1000_STATS, \ 54 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 55 .stat_offset = offsetof(struct e1000_adapter, m) } 56 #define E1000_NETDEV_STAT(str, m) { \ 57 .stat_string = str, \ 58 .type = NETDEV_STATS, \ 59 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 60 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 61 62 static const struct e1000_stats e1000_gstrings_stats[] = { 63 E1000_STAT("rx_packets", stats.gprc), 64 E1000_STAT("tx_packets", stats.gptc), 65 E1000_STAT("rx_bytes", stats.gorc), 66 E1000_STAT("tx_bytes", stats.gotc), 67 E1000_STAT("rx_broadcast", stats.bprc), 68 E1000_STAT("tx_broadcast", stats.bptc), 69 E1000_STAT("rx_multicast", stats.mprc), 70 E1000_STAT("tx_multicast", stats.mptc), 71 E1000_NETDEV_STAT("rx_errors", rx_errors), 72 E1000_NETDEV_STAT("tx_errors", tx_errors), 73 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 74 E1000_STAT("multicast", stats.mprc), 75 E1000_STAT("collisions", stats.colc), 76 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 77 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 78 E1000_STAT("rx_crc_errors", stats.crcerrs), 79 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 80 E1000_STAT("rx_no_buffer_count", stats.rnbc), 81 E1000_STAT("rx_missed_errors", stats.mpc), 82 E1000_STAT("tx_aborted_errors", stats.ecol), 83 E1000_STAT("tx_carrier_errors", stats.tncrs), 84 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 85 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 86 E1000_STAT("tx_window_errors", stats.latecol), 87 E1000_STAT("tx_abort_late_coll", stats.latecol), 88 E1000_STAT("tx_deferred_ok", stats.dc), 89 E1000_STAT("tx_single_coll_ok", stats.scc), 90 E1000_STAT("tx_multi_coll_ok", stats.mcc), 91 E1000_STAT("tx_timeout_count", tx_timeout_count), 92 E1000_STAT("tx_restart_queue", restart_queue), 93 E1000_STAT("rx_long_length_errors", stats.roc), 94 E1000_STAT("rx_short_length_errors", stats.ruc), 95 E1000_STAT("rx_align_errors", stats.algnerrc), 96 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 97 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 98 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 99 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 100 E1000_STAT("tx_flow_control_xon", stats.xontxc), 101 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 102 E1000_STAT("rx_csum_offload_good", hw_csum_good), 103 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 104 E1000_STAT("rx_header_split", rx_hdr_split), 105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 106 E1000_STAT("tx_smbus", stats.mgptc), 107 E1000_STAT("rx_smbus", stats.mgprc), 108 E1000_STAT("dropped_smbus", stats.mgpdc), 109 E1000_STAT("rx_dma_failed", rx_dma_failed), 110 E1000_STAT("tx_dma_failed", tx_dma_failed), 111 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 112 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 113 E1000_STAT("corr_ecc_errors", corr_errors), 114 }; 115 116 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 119 "Register test (offline)", "Eeprom test (offline)", 120 "Interrupt test (offline)", "Loopback test (offline)", 121 "Link test (on/offline)" 122 }; 123 124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 125 126 static int e1000_get_settings(struct net_device *netdev, 127 struct ethtool_cmd *ecmd) 128 { 129 struct e1000_adapter *adapter = netdev_priv(netdev); 130 struct e1000_hw *hw = &adapter->hw; 131 u32 speed; 132 133 if (hw->phy.media_type == e1000_media_type_copper) { 134 ecmd->supported = (SUPPORTED_10baseT_Half | 135 SUPPORTED_10baseT_Full | 136 SUPPORTED_100baseT_Half | 137 SUPPORTED_100baseT_Full | 138 SUPPORTED_1000baseT_Full | 139 SUPPORTED_Autoneg | 140 SUPPORTED_TP); 141 if (hw->phy.type == e1000_phy_ife) 142 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 143 ecmd->advertising = ADVERTISED_TP; 144 145 if (hw->mac.autoneg == 1) { 146 ecmd->advertising |= ADVERTISED_Autoneg; 147 /* the e1000 autoneg seems to match ethtool nicely */ 148 ecmd->advertising |= hw->phy.autoneg_advertised; 149 } 150 151 ecmd->port = PORT_TP; 152 ecmd->phy_address = hw->phy.addr; 153 ecmd->transceiver = XCVR_INTERNAL; 154 155 } else { 156 ecmd->supported = (SUPPORTED_1000baseT_Full | 157 SUPPORTED_FIBRE | 158 SUPPORTED_Autoneg); 159 160 ecmd->advertising = (ADVERTISED_1000baseT_Full | 161 ADVERTISED_FIBRE | 162 ADVERTISED_Autoneg); 163 164 ecmd->port = PORT_FIBRE; 165 ecmd->transceiver = XCVR_EXTERNAL; 166 } 167 168 speed = -1; 169 ecmd->duplex = -1; 170 171 if (netif_running(netdev)) { 172 if (netif_carrier_ok(netdev)) { 173 speed = adapter->link_speed; 174 ecmd->duplex = adapter->link_duplex - 1; 175 } 176 } else { 177 u32 status = er32(STATUS); 178 if (status & E1000_STATUS_LU) { 179 if (status & E1000_STATUS_SPEED_1000) 180 speed = SPEED_1000; 181 else if (status & E1000_STATUS_SPEED_100) 182 speed = SPEED_100; 183 else 184 speed = SPEED_10; 185 186 if (status & E1000_STATUS_FD) 187 ecmd->duplex = DUPLEX_FULL; 188 else 189 ecmd->duplex = DUPLEX_HALF; 190 } 191 } 192 193 ethtool_cmd_speed_set(ecmd, speed); 194 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 195 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 196 197 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 198 if ((hw->phy.media_type == e1000_media_type_copper) && 199 netif_carrier_ok(netdev)) 200 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI; 201 else 202 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 203 204 if (hw->phy.mdix == AUTO_ALL_MODES) 205 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 206 else 207 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 208 209 return 0; 210 } 211 212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 213 { 214 struct e1000_mac_info *mac = &adapter->hw.mac; 215 216 mac->autoneg = 0; 217 218 /* Make sure dplx is at most 1 bit and lsb of speed is not set 219 * for the switch() below to work 220 */ 221 if ((spd & 1) || (dplx & ~1)) 222 goto err_inval; 223 224 /* Fiber NICs only allow 1000 gbps Full duplex */ 225 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 226 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 227 goto err_inval; 228 } 229 230 switch (spd + dplx) { 231 case SPEED_10 + DUPLEX_HALF: 232 mac->forced_speed_duplex = ADVERTISE_10_HALF; 233 break; 234 case SPEED_10 + DUPLEX_FULL: 235 mac->forced_speed_duplex = ADVERTISE_10_FULL; 236 break; 237 case SPEED_100 + DUPLEX_HALF: 238 mac->forced_speed_duplex = ADVERTISE_100_HALF; 239 break; 240 case SPEED_100 + DUPLEX_FULL: 241 mac->forced_speed_duplex = ADVERTISE_100_FULL; 242 break; 243 case SPEED_1000 + DUPLEX_FULL: 244 mac->autoneg = 1; 245 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 246 break; 247 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 248 default: 249 goto err_inval; 250 } 251 252 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 253 adapter->hw.phy.mdix = AUTO_ALL_MODES; 254 255 return 0; 256 257 err_inval: 258 e_err("Unsupported Speed/Duplex configuration\n"); 259 return -EINVAL; 260 } 261 262 static int e1000_set_settings(struct net_device *netdev, 263 struct ethtool_cmd *ecmd) 264 { 265 struct e1000_adapter *adapter = netdev_priv(netdev); 266 struct e1000_hw *hw = &adapter->hw; 267 268 /* When SoL/IDER sessions are active, autoneg/speed/duplex 269 * cannot be changed 270 */ 271 if (hw->phy.ops.check_reset_block && 272 hw->phy.ops.check_reset_block(hw)) { 273 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 274 return -EINVAL; 275 } 276 277 /* MDI setting is only allowed when autoneg enabled because 278 * some hardware doesn't allow MDI setting when speed or 279 * duplex is forced. 280 */ 281 if (ecmd->eth_tp_mdix_ctrl) { 282 if (hw->phy.media_type != e1000_media_type_copper) 283 return -EOPNOTSUPP; 284 285 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 286 (ecmd->autoneg != AUTONEG_ENABLE)) { 287 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 288 return -EINVAL; 289 } 290 } 291 292 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 293 usleep_range(1000, 2000); 294 295 if (ecmd->autoneg == AUTONEG_ENABLE) { 296 hw->mac.autoneg = 1; 297 if (hw->phy.media_type == e1000_media_type_fiber) 298 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 299 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 300 else 301 hw->phy.autoneg_advertised = ecmd->advertising | 302 ADVERTISED_TP | ADVERTISED_Autoneg; 303 ecmd->advertising = hw->phy.autoneg_advertised; 304 if (adapter->fc_autoneg) 305 hw->fc.requested_mode = e1000_fc_default; 306 } else { 307 u32 speed = ethtool_cmd_speed(ecmd); 308 /* calling this overrides forced MDI setting */ 309 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 310 clear_bit(__E1000_RESETTING, &adapter->state); 311 return -EINVAL; 312 } 313 } 314 315 /* MDI-X => 2; MDI => 1; Auto => 3 */ 316 if (ecmd->eth_tp_mdix_ctrl) { 317 /* fix up the value for auto (3 => 0) as zero is mapped 318 * internally to auto 319 */ 320 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 321 hw->phy.mdix = AUTO_ALL_MODES; 322 else 323 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 324 } 325 326 /* reset the link */ 327 if (netif_running(adapter->netdev)) { 328 e1000e_down(adapter); 329 e1000e_up(adapter); 330 } else { 331 e1000e_reset(adapter); 332 } 333 334 clear_bit(__E1000_RESETTING, &adapter->state); 335 return 0; 336 } 337 338 static void e1000_get_pauseparam(struct net_device *netdev, 339 struct ethtool_pauseparam *pause) 340 { 341 struct e1000_adapter *adapter = netdev_priv(netdev); 342 struct e1000_hw *hw = &adapter->hw; 343 344 pause->autoneg = 345 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 346 347 if (hw->fc.current_mode == e1000_fc_rx_pause) { 348 pause->rx_pause = 1; 349 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 350 pause->tx_pause = 1; 351 } else if (hw->fc.current_mode == e1000_fc_full) { 352 pause->rx_pause = 1; 353 pause->tx_pause = 1; 354 } 355 } 356 357 static int e1000_set_pauseparam(struct net_device *netdev, 358 struct ethtool_pauseparam *pause) 359 { 360 struct e1000_adapter *adapter = netdev_priv(netdev); 361 struct e1000_hw *hw = &adapter->hw; 362 int retval = 0; 363 364 adapter->fc_autoneg = pause->autoneg; 365 366 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 367 usleep_range(1000, 2000); 368 369 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 370 hw->fc.requested_mode = e1000_fc_default; 371 if (netif_running(adapter->netdev)) { 372 e1000e_down(adapter); 373 e1000e_up(adapter); 374 } else { 375 e1000e_reset(adapter); 376 } 377 } else { 378 if (pause->rx_pause && pause->tx_pause) 379 hw->fc.requested_mode = e1000_fc_full; 380 else if (pause->rx_pause && !pause->tx_pause) 381 hw->fc.requested_mode = e1000_fc_rx_pause; 382 else if (!pause->rx_pause && pause->tx_pause) 383 hw->fc.requested_mode = e1000_fc_tx_pause; 384 else if (!pause->rx_pause && !pause->tx_pause) 385 hw->fc.requested_mode = e1000_fc_none; 386 387 hw->fc.current_mode = hw->fc.requested_mode; 388 389 if (hw->phy.media_type == e1000_media_type_fiber) { 390 retval = hw->mac.ops.setup_link(hw); 391 /* implicit goto out */ 392 } else { 393 retval = e1000e_force_mac_fc(hw); 394 if (retval) 395 goto out; 396 e1000e_set_fc_watermarks(hw); 397 } 398 } 399 400 out: 401 clear_bit(__E1000_RESETTING, &adapter->state); 402 return retval; 403 } 404 405 static u32 e1000_get_msglevel(struct net_device *netdev) 406 { 407 struct e1000_adapter *adapter = netdev_priv(netdev); 408 return adapter->msg_enable; 409 } 410 411 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 412 { 413 struct e1000_adapter *adapter = netdev_priv(netdev); 414 adapter->msg_enable = data; 415 } 416 417 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 418 { 419 #define E1000_REGS_LEN 32 /* overestimate */ 420 return E1000_REGS_LEN * sizeof(u32); 421 } 422 423 static void e1000_get_regs(struct net_device *netdev, 424 struct ethtool_regs *regs, void *p) 425 { 426 struct e1000_adapter *adapter = netdev_priv(netdev); 427 struct e1000_hw *hw = &adapter->hw; 428 u32 *regs_buff = p; 429 u16 phy_data; 430 431 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 432 433 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 434 adapter->pdev->device; 435 436 regs_buff[0] = er32(CTRL); 437 regs_buff[1] = er32(STATUS); 438 439 regs_buff[2] = er32(RCTL); 440 regs_buff[3] = er32(RDLEN(0)); 441 regs_buff[4] = er32(RDH(0)); 442 regs_buff[5] = er32(RDT(0)); 443 regs_buff[6] = er32(RDTR); 444 445 regs_buff[7] = er32(TCTL); 446 regs_buff[8] = er32(TDLEN(0)); 447 regs_buff[9] = er32(TDH(0)); 448 regs_buff[10] = er32(TDT(0)); 449 regs_buff[11] = er32(TIDV); 450 451 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 452 453 /* ethtool doesn't use anything past this point, so all this 454 * code is likely legacy junk for apps that may or may not exist 455 */ 456 if (hw->phy.type == e1000_phy_m88) { 457 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 458 regs_buff[13] = (u32)phy_data; /* cable length */ 459 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 460 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 461 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 462 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 463 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 464 regs_buff[18] = regs_buff[13]; /* cable polarity */ 465 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 466 regs_buff[20] = regs_buff[17]; /* polarity correction */ 467 /* phy receive errors */ 468 regs_buff[22] = adapter->phy_stats.receive_errors; 469 regs_buff[23] = regs_buff[13]; /* mdix mode */ 470 } 471 regs_buff[21] = 0; /* was idle_errors */ 472 e1e_rphy(hw, MII_STAT1000, &phy_data); 473 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 474 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 475 } 476 477 static int e1000_get_eeprom_len(struct net_device *netdev) 478 { 479 struct e1000_adapter *adapter = netdev_priv(netdev); 480 return adapter->hw.nvm.word_size * 2; 481 } 482 483 static int e1000_get_eeprom(struct net_device *netdev, 484 struct ethtool_eeprom *eeprom, u8 *bytes) 485 { 486 struct e1000_adapter *adapter = netdev_priv(netdev); 487 struct e1000_hw *hw = &adapter->hw; 488 u16 *eeprom_buff; 489 int first_word; 490 int last_word; 491 int ret_val = 0; 492 u16 i; 493 494 if (eeprom->len == 0) 495 return -EINVAL; 496 497 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 498 499 first_word = eeprom->offset >> 1; 500 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 501 502 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), 503 GFP_KERNEL); 504 if (!eeprom_buff) 505 return -ENOMEM; 506 507 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 508 ret_val = e1000_read_nvm(hw, first_word, 509 last_word - first_word + 1, 510 eeprom_buff); 511 } else { 512 for (i = 0; i < last_word - first_word + 1; i++) { 513 ret_val = e1000_read_nvm(hw, first_word + i, 1, 514 &eeprom_buff[i]); 515 if (ret_val) 516 break; 517 } 518 } 519 520 if (ret_val) { 521 /* a read error occurred, throw away the result */ 522 memset(eeprom_buff, 0xff, sizeof(u16) * 523 (last_word - first_word + 1)); 524 } else { 525 /* Device's eeprom is always little-endian, word addressable */ 526 for (i = 0; i < last_word - first_word + 1; i++) 527 le16_to_cpus(&eeprom_buff[i]); 528 } 529 530 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 531 kfree(eeprom_buff); 532 533 return ret_val; 534 } 535 536 static int e1000_set_eeprom(struct net_device *netdev, 537 struct ethtool_eeprom *eeprom, u8 *bytes) 538 { 539 struct e1000_adapter *adapter = netdev_priv(netdev); 540 struct e1000_hw *hw = &adapter->hw; 541 u16 *eeprom_buff; 542 void *ptr; 543 int max_len; 544 int first_word; 545 int last_word; 546 int ret_val = 0; 547 u16 i; 548 549 if (eeprom->len == 0) 550 return -EOPNOTSUPP; 551 552 if (eeprom->magic != 553 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 554 return -EFAULT; 555 556 if (adapter->flags & FLAG_READ_ONLY_NVM) 557 return -EINVAL; 558 559 max_len = hw->nvm.word_size * 2; 560 561 first_word = eeprom->offset >> 1; 562 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 563 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 564 if (!eeprom_buff) 565 return -ENOMEM; 566 567 ptr = (void *)eeprom_buff; 568 569 if (eeprom->offset & 1) { 570 /* need read/modify/write of first changed EEPROM word */ 571 /* only the second byte of the word is being modified */ 572 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 573 ptr++; 574 } 575 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 576 /* need read/modify/write of last changed EEPROM word */ 577 /* only the first byte of the word is being modified */ 578 ret_val = e1000_read_nvm(hw, last_word, 1, 579 &eeprom_buff[last_word - first_word]); 580 581 if (ret_val) 582 goto out; 583 584 /* Device's eeprom is always little-endian, word addressable */ 585 for (i = 0; i < last_word - first_word + 1; i++) 586 le16_to_cpus(&eeprom_buff[i]); 587 588 memcpy(ptr, bytes, eeprom->len); 589 590 for (i = 0; i < last_word - first_word + 1; i++) 591 cpu_to_le16s(&eeprom_buff[i]); 592 593 ret_val = e1000_write_nvm(hw, first_word, 594 last_word - first_word + 1, eeprom_buff); 595 596 if (ret_val) 597 goto out; 598 599 /* Update the checksum over the first part of the EEPROM if needed 600 * and flush shadow RAM for applicable controllers 601 */ 602 if ((first_word <= NVM_CHECKSUM_REG) || 603 (hw->mac.type == e1000_82583) || 604 (hw->mac.type == e1000_82574) || 605 (hw->mac.type == e1000_82573)) 606 ret_val = e1000e_update_nvm_checksum(hw); 607 608 out: 609 kfree(eeprom_buff); 610 return ret_val; 611 } 612 613 static void e1000_get_drvinfo(struct net_device *netdev, 614 struct ethtool_drvinfo *drvinfo) 615 { 616 struct e1000_adapter *adapter = netdev_priv(netdev); 617 618 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 619 strlcpy(drvinfo->version, e1000e_driver_version, 620 sizeof(drvinfo->version)); 621 622 /* EEPROM image version # is reported as firmware version # for 623 * PCI-E controllers 624 */ 625 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 626 "%d.%d-%d", 627 (adapter->eeprom_vers & 0xF000) >> 12, 628 (adapter->eeprom_vers & 0x0FF0) >> 4, 629 (adapter->eeprom_vers & 0x000F)); 630 631 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 632 sizeof(drvinfo->bus_info)); 633 drvinfo->regdump_len = e1000_get_regs_len(netdev); 634 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 635 } 636 637 static void e1000_get_ringparam(struct net_device *netdev, 638 struct ethtool_ringparam *ring) 639 { 640 struct e1000_adapter *adapter = netdev_priv(netdev); 641 642 ring->rx_max_pending = E1000_MAX_RXD; 643 ring->tx_max_pending = E1000_MAX_TXD; 644 ring->rx_pending = adapter->rx_ring_count; 645 ring->tx_pending = adapter->tx_ring_count; 646 } 647 648 static int e1000_set_ringparam(struct net_device *netdev, 649 struct ethtool_ringparam *ring) 650 { 651 struct e1000_adapter *adapter = netdev_priv(netdev); 652 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 653 int err = 0, size = sizeof(struct e1000_ring); 654 bool set_tx = false, set_rx = false; 655 u16 new_rx_count, new_tx_count; 656 657 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 658 return -EINVAL; 659 660 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 661 E1000_MAX_RXD); 662 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 663 664 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 665 E1000_MAX_TXD); 666 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 667 668 if ((new_tx_count == adapter->tx_ring_count) && 669 (new_rx_count == adapter->rx_ring_count)) 670 /* nothing to do */ 671 return 0; 672 673 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 674 usleep_range(1000, 2000); 675 676 if (!netif_running(adapter->netdev)) { 677 /* Set counts now and allocate resources during open() */ 678 adapter->tx_ring->count = new_tx_count; 679 adapter->rx_ring->count = new_rx_count; 680 adapter->tx_ring_count = new_tx_count; 681 adapter->rx_ring_count = new_rx_count; 682 goto clear_reset; 683 } 684 685 set_tx = (new_tx_count != adapter->tx_ring_count); 686 set_rx = (new_rx_count != adapter->rx_ring_count); 687 688 /* Allocate temporary storage for ring updates */ 689 if (set_tx) { 690 temp_tx = vmalloc(size); 691 if (!temp_tx) { 692 err = -ENOMEM; 693 goto free_temp; 694 } 695 } 696 if (set_rx) { 697 temp_rx = vmalloc(size); 698 if (!temp_rx) { 699 err = -ENOMEM; 700 goto free_temp; 701 } 702 } 703 704 e1000e_down(adapter); 705 706 /* We can't just free everything and then setup again, because the 707 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 708 * structs. First, attempt to allocate new resources... 709 */ 710 if (set_tx) { 711 memcpy(temp_tx, adapter->tx_ring, size); 712 temp_tx->count = new_tx_count; 713 err = e1000e_setup_tx_resources(temp_tx); 714 if (err) 715 goto err_setup; 716 } 717 if (set_rx) { 718 memcpy(temp_rx, adapter->rx_ring, size); 719 temp_rx->count = new_rx_count; 720 err = e1000e_setup_rx_resources(temp_rx); 721 if (err) 722 goto err_setup_rx; 723 } 724 725 /* ...then free the old resources and copy back any new ring data */ 726 if (set_tx) { 727 e1000e_free_tx_resources(adapter->tx_ring); 728 memcpy(adapter->tx_ring, temp_tx, size); 729 adapter->tx_ring_count = new_tx_count; 730 } 731 if (set_rx) { 732 e1000e_free_rx_resources(adapter->rx_ring); 733 memcpy(adapter->rx_ring, temp_rx, size); 734 adapter->rx_ring_count = new_rx_count; 735 } 736 737 err_setup_rx: 738 if (err && set_tx) 739 e1000e_free_tx_resources(temp_tx); 740 err_setup: 741 e1000e_up(adapter); 742 free_temp: 743 vfree(temp_tx); 744 vfree(temp_rx); 745 clear_reset: 746 clear_bit(__E1000_RESETTING, &adapter->state); 747 return err; 748 } 749 750 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 751 int reg, int offset, u32 mask, u32 write) 752 { 753 u32 pat, val; 754 static const u32 test[] = { 755 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 756 }; 757 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 758 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 759 (test[pat] & write)); 760 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 761 if (val != (test[pat] & write & mask)) { 762 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 763 reg + (offset << 2), val, 764 (test[pat] & write & mask)); 765 *data = reg; 766 return 1; 767 } 768 } 769 return 0; 770 } 771 772 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 773 int reg, u32 mask, u32 write) 774 { 775 u32 val; 776 __ew32(&adapter->hw, reg, write & mask); 777 val = __er32(&adapter->hw, reg); 778 if ((write & mask) != (val & mask)) { 779 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 780 reg, (val & mask), (write & mask)); 781 *data = reg; 782 return 1; 783 } 784 return 0; 785 } 786 787 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 788 do { \ 789 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 790 return 1; \ 791 } while (0) 792 #define REG_PATTERN_TEST(reg, mask, write) \ 793 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 794 795 #define REG_SET_AND_CHECK(reg, mask, write) \ 796 do { \ 797 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 798 return 1; \ 799 } while (0) 800 801 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 802 { 803 struct e1000_hw *hw = &adapter->hw; 804 struct e1000_mac_info *mac = &adapter->hw.mac; 805 u32 value; 806 u32 before; 807 u32 after; 808 u32 i; 809 u32 toggle; 810 u32 mask; 811 u32 wlock_mac = 0; 812 813 /* The status register is Read Only, so a write should fail. 814 * Some bits that get toggled are ignored. There are several bits 815 * on newer hardware that are r/w. 816 */ 817 switch (mac->type) { 818 case e1000_82571: 819 case e1000_82572: 820 case e1000_80003es2lan: 821 toggle = 0x7FFFF3FF; 822 break; 823 default: 824 toggle = 0x7FFFF033; 825 break; 826 } 827 828 before = er32(STATUS); 829 value = (er32(STATUS) & toggle); 830 ew32(STATUS, toggle); 831 after = er32(STATUS) & toggle; 832 if (value != after) { 833 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 834 after, value); 835 *data = 1; 836 return 1; 837 } 838 /* restore previous status */ 839 ew32(STATUS, before); 840 841 if (!(adapter->flags & FLAG_IS_ICH)) { 842 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 843 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 844 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 845 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 846 } 847 848 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 849 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 850 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 851 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 852 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 853 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 854 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 855 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 856 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 857 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 858 859 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 860 861 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 862 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 863 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 864 865 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 866 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 867 if (!(adapter->flags & FLAG_IS_ICH)) 868 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 869 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 870 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 871 mask = 0x8003FFFF; 872 switch (mac->type) { 873 case e1000_ich10lan: 874 case e1000_pchlan: 875 case e1000_pch2lan: 876 case e1000_pch_lpt: 877 mask |= (1 << 18); 878 break; 879 default: 880 break; 881 } 882 883 if (mac->type == e1000_pch_lpt) 884 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 885 E1000_FWSM_WLOCK_MAC_SHIFT; 886 887 for (i = 0; i < mac->rar_entry_count; i++) { 888 if (mac->type == e1000_pch_lpt) { 889 /* Cannot test write-protected SHRAL[n] registers */ 890 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 891 continue; 892 893 /* SHRAH[9] different than the others */ 894 if (i == 10) 895 mask |= (1 << 30); 896 else 897 mask &= ~(1 << 30); 898 } 899 900 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 901 0xFFFFFFFF); 902 } 903 904 for (i = 0; i < mac->mta_reg_count; i++) 905 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 906 907 *data = 0; 908 909 return 0; 910 } 911 912 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 913 { 914 u16 temp; 915 u16 checksum = 0; 916 u16 i; 917 918 *data = 0; 919 /* Read and add up the contents of the EEPROM */ 920 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 921 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 922 *data = 1; 923 return *data; 924 } 925 checksum += temp; 926 } 927 928 /* If Checksum is not Correct return error else test passed */ 929 if ((checksum != (u16)NVM_SUM) && !(*data)) 930 *data = 2; 931 932 return *data; 933 } 934 935 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 936 { 937 struct net_device *netdev = (struct net_device *)data; 938 struct e1000_adapter *adapter = netdev_priv(netdev); 939 struct e1000_hw *hw = &adapter->hw; 940 941 adapter->test_icr |= er32(ICR); 942 943 return IRQ_HANDLED; 944 } 945 946 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 947 { 948 struct net_device *netdev = adapter->netdev; 949 struct e1000_hw *hw = &adapter->hw; 950 u32 mask; 951 u32 shared_int = 1; 952 u32 irq = adapter->pdev->irq; 953 int i; 954 int ret_val = 0; 955 int int_mode = E1000E_INT_MODE_LEGACY; 956 957 *data = 0; 958 959 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 960 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 961 int_mode = adapter->int_mode; 962 e1000e_reset_interrupt_capability(adapter); 963 adapter->int_mode = E1000E_INT_MODE_LEGACY; 964 e1000e_set_interrupt_capability(adapter); 965 } 966 /* Hook up test interrupt handler just for this test */ 967 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 968 netdev)) { 969 shared_int = 0; 970 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 971 netdev)) { 972 *data = 1; 973 ret_val = -1; 974 goto out; 975 } 976 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 977 978 /* Disable all the interrupts */ 979 ew32(IMC, 0xFFFFFFFF); 980 e1e_flush(); 981 usleep_range(10000, 20000); 982 983 /* Test each interrupt */ 984 for (i = 0; i < 10; i++) { 985 /* Interrupt to test */ 986 mask = 1 << i; 987 988 if (adapter->flags & FLAG_IS_ICH) { 989 switch (mask) { 990 case E1000_ICR_RXSEQ: 991 continue; 992 case 0x00000100: 993 if (adapter->hw.mac.type == e1000_ich8lan || 994 adapter->hw.mac.type == e1000_ich9lan) 995 continue; 996 break; 997 default: 998 break; 999 } 1000 } 1001 1002 if (!shared_int) { 1003 /* Disable the interrupt to be reported in 1004 * the cause register and then force the same 1005 * interrupt and see if one gets posted. If 1006 * an interrupt was posted to the bus, the 1007 * test failed. 1008 */ 1009 adapter->test_icr = 0; 1010 ew32(IMC, mask); 1011 ew32(ICS, mask); 1012 e1e_flush(); 1013 usleep_range(10000, 20000); 1014 1015 if (adapter->test_icr & mask) { 1016 *data = 3; 1017 break; 1018 } 1019 } 1020 1021 /* Enable the interrupt to be reported in 1022 * the cause register and then force the same 1023 * interrupt and see if one gets posted. If 1024 * an interrupt was not posted to the bus, the 1025 * test failed. 1026 */ 1027 adapter->test_icr = 0; 1028 ew32(IMS, mask); 1029 ew32(ICS, mask); 1030 e1e_flush(); 1031 usleep_range(10000, 20000); 1032 1033 if (!(adapter->test_icr & mask)) { 1034 *data = 4; 1035 break; 1036 } 1037 1038 if (!shared_int) { 1039 /* Disable the other interrupts to be reported in 1040 * the cause register and then force the other 1041 * interrupts and see if any get posted. If 1042 * an interrupt was posted to the bus, the 1043 * test failed. 1044 */ 1045 adapter->test_icr = 0; 1046 ew32(IMC, ~mask & 0x00007FFF); 1047 ew32(ICS, ~mask & 0x00007FFF); 1048 e1e_flush(); 1049 usleep_range(10000, 20000); 1050 1051 if (adapter->test_icr) { 1052 *data = 5; 1053 break; 1054 } 1055 } 1056 } 1057 1058 /* Disable all the interrupts */ 1059 ew32(IMC, 0xFFFFFFFF); 1060 e1e_flush(); 1061 usleep_range(10000, 20000); 1062 1063 /* Unhook test interrupt handler */ 1064 free_irq(irq, netdev); 1065 1066 out: 1067 if (int_mode == E1000E_INT_MODE_MSIX) { 1068 e1000e_reset_interrupt_capability(adapter); 1069 adapter->int_mode = int_mode; 1070 e1000e_set_interrupt_capability(adapter); 1071 } 1072 1073 return ret_val; 1074 } 1075 1076 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1077 { 1078 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1079 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1080 struct pci_dev *pdev = adapter->pdev; 1081 struct e1000_buffer *buffer_info; 1082 int i; 1083 1084 if (tx_ring->desc && tx_ring->buffer_info) { 1085 for (i = 0; i < tx_ring->count; i++) { 1086 buffer_info = &tx_ring->buffer_info[i]; 1087 1088 if (buffer_info->dma) 1089 dma_unmap_single(&pdev->dev, 1090 buffer_info->dma, 1091 buffer_info->length, 1092 DMA_TO_DEVICE); 1093 if (buffer_info->skb) 1094 dev_kfree_skb(buffer_info->skb); 1095 } 1096 } 1097 1098 if (rx_ring->desc && rx_ring->buffer_info) { 1099 for (i = 0; i < rx_ring->count; i++) { 1100 buffer_info = &rx_ring->buffer_info[i]; 1101 1102 if (buffer_info->dma) 1103 dma_unmap_single(&pdev->dev, 1104 buffer_info->dma, 1105 2048, DMA_FROM_DEVICE); 1106 if (buffer_info->skb) 1107 dev_kfree_skb(buffer_info->skb); 1108 } 1109 } 1110 1111 if (tx_ring->desc) { 1112 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1113 tx_ring->dma); 1114 tx_ring->desc = NULL; 1115 } 1116 if (rx_ring->desc) { 1117 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1118 rx_ring->dma); 1119 rx_ring->desc = NULL; 1120 } 1121 1122 kfree(tx_ring->buffer_info); 1123 tx_ring->buffer_info = NULL; 1124 kfree(rx_ring->buffer_info); 1125 rx_ring->buffer_info = NULL; 1126 } 1127 1128 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1129 { 1130 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1131 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1132 struct pci_dev *pdev = adapter->pdev; 1133 struct e1000_hw *hw = &adapter->hw; 1134 u32 rctl; 1135 int i; 1136 int ret_val; 1137 1138 /* Setup Tx descriptor ring and Tx buffers */ 1139 1140 if (!tx_ring->count) 1141 tx_ring->count = E1000_DEFAULT_TXD; 1142 1143 tx_ring->buffer_info = kcalloc(tx_ring->count, 1144 sizeof(struct e1000_buffer), GFP_KERNEL); 1145 if (!tx_ring->buffer_info) { 1146 ret_val = 1; 1147 goto err_nomem; 1148 } 1149 1150 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1151 tx_ring->size = ALIGN(tx_ring->size, 4096); 1152 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1153 &tx_ring->dma, GFP_KERNEL); 1154 if (!tx_ring->desc) { 1155 ret_val = 2; 1156 goto err_nomem; 1157 } 1158 tx_ring->next_to_use = 0; 1159 tx_ring->next_to_clean = 0; 1160 1161 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1162 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1163 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1164 ew32(TDH(0), 0); 1165 ew32(TDT(0), 0); 1166 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1167 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1168 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1169 1170 for (i = 0; i < tx_ring->count; i++) { 1171 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1172 struct sk_buff *skb; 1173 unsigned int skb_size = 1024; 1174 1175 skb = alloc_skb(skb_size, GFP_KERNEL); 1176 if (!skb) { 1177 ret_val = 3; 1178 goto err_nomem; 1179 } 1180 skb_put(skb, skb_size); 1181 tx_ring->buffer_info[i].skb = skb; 1182 tx_ring->buffer_info[i].length = skb->len; 1183 tx_ring->buffer_info[i].dma = 1184 dma_map_single(&pdev->dev, skb->data, skb->len, 1185 DMA_TO_DEVICE); 1186 if (dma_mapping_error(&pdev->dev, 1187 tx_ring->buffer_info[i].dma)) { 1188 ret_val = 4; 1189 goto err_nomem; 1190 } 1191 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1192 tx_desc->lower.data = cpu_to_le32(skb->len); 1193 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1194 E1000_TXD_CMD_IFCS | 1195 E1000_TXD_CMD_RS); 1196 tx_desc->upper.data = 0; 1197 } 1198 1199 /* Setup Rx descriptor ring and Rx buffers */ 1200 1201 if (!rx_ring->count) 1202 rx_ring->count = E1000_DEFAULT_RXD; 1203 1204 rx_ring->buffer_info = kcalloc(rx_ring->count, 1205 sizeof(struct e1000_buffer), GFP_KERNEL); 1206 if (!rx_ring->buffer_info) { 1207 ret_val = 5; 1208 goto err_nomem; 1209 } 1210 1211 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1212 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1213 &rx_ring->dma, GFP_KERNEL); 1214 if (!rx_ring->desc) { 1215 ret_val = 6; 1216 goto err_nomem; 1217 } 1218 rx_ring->next_to_use = 0; 1219 rx_ring->next_to_clean = 0; 1220 1221 rctl = er32(RCTL); 1222 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1223 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1224 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1225 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1226 ew32(RDLEN(0), rx_ring->size); 1227 ew32(RDH(0), 0); 1228 ew32(RDT(0), 0); 1229 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1230 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1231 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1232 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1233 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1234 ew32(RCTL, rctl); 1235 1236 for (i = 0; i < rx_ring->count; i++) { 1237 union e1000_rx_desc_extended *rx_desc; 1238 struct sk_buff *skb; 1239 1240 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1241 if (!skb) { 1242 ret_val = 7; 1243 goto err_nomem; 1244 } 1245 skb_reserve(skb, NET_IP_ALIGN); 1246 rx_ring->buffer_info[i].skb = skb; 1247 rx_ring->buffer_info[i].dma = 1248 dma_map_single(&pdev->dev, skb->data, 2048, 1249 DMA_FROM_DEVICE); 1250 if (dma_mapping_error(&pdev->dev, 1251 rx_ring->buffer_info[i].dma)) { 1252 ret_val = 8; 1253 goto err_nomem; 1254 } 1255 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1256 rx_desc->read.buffer_addr = 1257 cpu_to_le64(rx_ring->buffer_info[i].dma); 1258 memset(skb->data, 0x00, skb->len); 1259 } 1260 1261 return 0; 1262 1263 err_nomem: 1264 e1000_free_desc_rings(adapter); 1265 return ret_val; 1266 } 1267 1268 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1269 { 1270 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1271 e1e_wphy(&adapter->hw, 29, 0x001F); 1272 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1273 e1e_wphy(&adapter->hw, 29, 0x001A); 1274 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1275 } 1276 1277 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1278 { 1279 struct e1000_hw *hw = &adapter->hw; 1280 u32 ctrl_reg = 0; 1281 u16 phy_reg = 0; 1282 s32 ret_val = 0; 1283 1284 hw->mac.autoneg = 0; 1285 1286 if (hw->phy.type == e1000_phy_ife) { 1287 /* force 100, set loopback */ 1288 e1e_wphy(hw, MII_BMCR, 0x6100); 1289 1290 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1291 ctrl_reg = er32(CTRL); 1292 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1293 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1294 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1295 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1296 E1000_CTRL_FD); /* Force Duplex to FULL */ 1297 1298 ew32(CTRL, ctrl_reg); 1299 e1e_flush(); 1300 usleep_range(500, 1000); 1301 1302 return 0; 1303 } 1304 1305 /* Specific PHY configuration for loopback */ 1306 switch (hw->phy.type) { 1307 case e1000_phy_m88: 1308 /* Auto-MDI/MDIX Off */ 1309 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1310 /* reset to update Auto-MDI/MDIX */ 1311 e1e_wphy(hw, MII_BMCR, 0x9140); 1312 /* autoneg off */ 1313 e1e_wphy(hw, MII_BMCR, 0x8140); 1314 break; 1315 case e1000_phy_gg82563: 1316 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1317 break; 1318 case e1000_phy_bm: 1319 /* Set Default MAC Interface speed to 1GB */ 1320 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1321 phy_reg &= ~0x0007; 1322 phy_reg |= 0x006; 1323 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1324 /* Assert SW reset for above settings to take effect */ 1325 hw->phy.ops.commit(hw); 1326 usleep_range(1000, 2000); 1327 /* Force Full Duplex */ 1328 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1329 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1330 /* Set Link Up (in force link) */ 1331 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1332 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1333 /* Force Link */ 1334 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1335 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1336 /* Set Early Link Enable */ 1337 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1338 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1339 break; 1340 case e1000_phy_82577: 1341 case e1000_phy_82578: 1342 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1343 ret_val = hw->phy.ops.acquire(hw); 1344 if (ret_val) { 1345 e_err("Cannot setup 1Gbps loopback.\n"); 1346 return ret_val; 1347 } 1348 e1000_configure_k1_ich8lan(hw, false); 1349 hw->phy.ops.release(hw); 1350 break; 1351 case e1000_phy_82579: 1352 /* Disable PHY energy detect power down */ 1353 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1354 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); 1355 /* Disable full chip energy detect */ 1356 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1357 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1358 /* Enable loopback on the PHY */ 1359 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1360 break; 1361 default: 1362 break; 1363 } 1364 1365 /* force 1000, set loopback */ 1366 e1e_wphy(hw, MII_BMCR, 0x4140); 1367 msleep(250); 1368 1369 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1370 ctrl_reg = er32(CTRL); 1371 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1372 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1373 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1374 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1375 E1000_CTRL_FD); /* Force Duplex to FULL */ 1376 1377 if (adapter->flags & FLAG_IS_ICH) 1378 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1379 1380 if (hw->phy.media_type == e1000_media_type_copper && 1381 hw->phy.type == e1000_phy_m88) { 1382 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1383 } else { 1384 /* Set the ILOS bit on the fiber Nic if half duplex link is 1385 * detected. 1386 */ 1387 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1388 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1389 } 1390 1391 ew32(CTRL, ctrl_reg); 1392 1393 /* Disable the receiver on the PHY so when a cable is plugged in, the 1394 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1395 */ 1396 if (hw->phy.type == e1000_phy_m88) 1397 e1000_phy_disable_receiver(adapter); 1398 1399 usleep_range(500, 1000); 1400 1401 return 0; 1402 } 1403 1404 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1405 { 1406 struct e1000_hw *hw = &adapter->hw; 1407 u32 ctrl = er32(CTRL); 1408 int link; 1409 1410 /* special requirements for 82571/82572 fiber adapters */ 1411 1412 /* jump through hoops to make sure link is up because serdes 1413 * link is hardwired up 1414 */ 1415 ctrl |= E1000_CTRL_SLU; 1416 ew32(CTRL, ctrl); 1417 1418 /* disable autoneg */ 1419 ctrl = er32(TXCW); 1420 ctrl &= ~(1 << 31); 1421 ew32(TXCW, ctrl); 1422 1423 link = (er32(STATUS) & E1000_STATUS_LU); 1424 1425 if (!link) { 1426 /* set invert loss of signal */ 1427 ctrl = er32(CTRL); 1428 ctrl |= E1000_CTRL_ILOS; 1429 ew32(CTRL, ctrl); 1430 } 1431 1432 /* special write to serdes control register to enable SerDes analog 1433 * loopback 1434 */ 1435 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1436 e1e_flush(); 1437 usleep_range(10000, 20000); 1438 1439 return 0; 1440 } 1441 1442 /* only call this for fiber/serdes connections to es2lan */ 1443 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1444 { 1445 struct e1000_hw *hw = &adapter->hw; 1446 u32 ctrlext = er32(CTRL_EXT); 1447 u32 ctrl = er32(CTRL); 1448 1449 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1450 * on mac_type 80003es2lan) 1451 */ 1452 adapter->tx_fifo_head = ctrlext; 1453 1454 /* clear the serdes mode bits, putting the device into mac loopback */ 1455 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1456 ew32(CTRL_EXT, ctrlext); 1457 1458 /* force speed to 1000/FD, link up */ 1459 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1460 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1461 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1462 ew32(CTRL, ctrl); 1463 1464 /* set mac loopback */ 1465 ctrl = er32(RCTL); 1466 ctrl |= E1000_RCTL_LBM_MAC; 1467 ew32(RCTL, ctrl); 1468 1469 /* set testing mode parameters (no need to reset later) */ 1470 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1471 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1472 ew32(KMRNCTRLSTA, 1473 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1474 1475 return 0; 1476 } 1477 1478 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1479 { 1480 struct e1000_hw *hw = &adapter->hw; 1481 u32 rctl; 1482 1483 if (hw->phy.media_type == e1000_media_type_fiber || 1484 hw->phy.media_type == e1000_media_type_internal_serdes) { 1485 switch (hw->mac.type) { 1486 case e1000_80003es2lan: 1487 return e1000_set_es2lan_mac_loopback(adapter); 1488 break; 1489 case e1000_82571: 1490 case e1000_82572: 1491 return e1000_set_82571_fiber_loopback(adapter); 1492 break; 1493 default: 1494 rctl = er32(RCTL); 1495 rctl |= E1000_RCTL_LBM_TCVR; 1496 ew32(RCTL, rctl); 1497 return 0; 1498 } 1499 } else if (hw->phy.media_type == e1000_media_type_copper) { 1500 return e1000_integrated_phy_loopback(adapter); 1501 } 1502 1503 return 7; 1504 } 1505 1506 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1507 { 1508 struct e1000_hw *hw = &adapter->hw; 1509 u32 rctl; 1510 u16 phy_reg; 1511 1512 rctl = er32(RCTL); 1513 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1514 ew32(RCTL, rctl); 1515 1516 switch (hw->mac.type) { 1517 case e1000_80003es2lan: 1518 if (hw->phy.media_type == e1000_media_type_fiber || 1519 hw->phy.media_type == e1000_media_type_internal_serdes) { 1520 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1521 ew32(CTRL_EXT, adapter->tx_fifo_head); 1522 adapter->tx_fifo_head = 0; 1523 } 1524 /* fall through */ 1525 case e1000_82571: 1526 case e1000_82572: 1527 if (hw->phy.media_type == e1000_media_type_fiber || 1528 hw->phy.media_type == e1000_media_type_internal_serdes) { 1529 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1530 e1e_flush(); 1531 usleep_range(10000, 20000); 1532 break; 1533 } 1534 /* Fall Through */ 1535 default: 1536 hw->mac.autoneg = 1; 1537 if (hw->phy.type == e1000_phy_gg82563) 1538 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1539 e1e_rphy(hw, MII_BMCR, &phy_reg); 1540 if (phy_reg & BMCR_LOOPBACK) { 1541 phy_reg &= ~BMCR_LOOPBACK; 1542 e1e_wphy(hw, MII_BMCR, phy_reg); 1543 if (hw->phy.ops.commit) 1544 hw->phy.ops.commit(hw); 1545 } 1546 break; 1547 } 1548 } 1549 1550 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1551 unsigned int frame_size) 1552 { 1553 memset(skb->data, 0xFF, frame_size); 1554 frame_size &= ~1; 1555 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1556 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1557 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1558 } 1559 1560 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1561 unsigned int frame_size) 1562 { 1563 frame_size &= ~1; 1564 if (*(skb->data + 3) == 0xFF) 1565 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1566 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1567 return 0; 1568 return 13; 1569 } 1570 1571 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1572 { 1573 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1574 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1575 struct pci_dev *pdev = adapter->pdev; 1576 struct e1000_hw *hw = &adapter->hw; 1577 struct e1000_buffer *buffer_info; 1578 int i, j, k, l; 1579 int lc; 1580 int good_cnt; 1581 int ret_val = 0; 1582 unsigned long time; 1583 1584 ew32(RDT(0), rx_ring->count - 1); 1585 1586 /* Calculate the loop count based on the largest descriptor ring 1587 * The idea is to wrap the largest ring a number of times using 64 1588 * send/receive pairs during each loop 1589 */ 1590 1591 if (rx_ring->count <= tx_ring->count) 1592 lc = ((tx_ring->count / 64) * 2) + 1; 1593 else 1594 lc = ((rx_ring->count / 64) * 2) + 1; 1595 1596 k = 0; 1597 l = 0; 1598 /* loop count loop */ 1599 for (j = 0; j <= lc; j++) { 1600 /* send the packets */ 1601 for (i = 0; i < 64; i++) { 1602 buffer_info = &tx_ring->buffer_info[k]; 1603 1604 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1605 dma_sync_single_for_device(&pdev->dev, 1606 buffer_info->dma, 1607 buffer_info->length, 1608 DMA_TO_DEVICE); 1609 k++; 1610 if (k == tx_ring->count) 1611 k = 0; 1612 } 1613 ew32(TDT(0), k); 1614 e1e_flush(); 1615 msleep(200); 1616 time = jiffies; /* set the start time for the receive */ 1617 good_cnt = 0; 1618 /* receive the sent packets */ 1619 do { 1620 buffer_info = &rx_ring->buffer_info[l]; 1621 1622 dma_sync_single_for_cpu(&pdev->dev, 1623 buffer_info->dma, 2048, 1624 DMA_FROM_DEVICE); 1625 1626 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1627 1024); 1628 if (!ret_val) 1629 good_cnt++; 1630 l++; 1631 if (l == rx_ring->count) 1632 l = 0; 1633 /* time + 20 msecs (200 msecs on 2.4) is more than 1634 * enough time to complete the receives, if it's 1635 * exceeded, break and error off 1636 */ 1637 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1638 if (good_cnt != 64) { 1639 ret_val = 13; /* ret_val is the same as mis-compare */ 1640 break; 1641 } 1642 if (jiffies >= (time + 20)) { 1643 ret_val = 14; /* error code for time out error */ 1644 break; 1645 } 1646 } 1647 return ret_val; 1648 } 1649 1650 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1651 { 1652 struct e1000_hw *hw = &adapter->hw; 1653 1654 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1655 if (hw->phy.ops.check_reset_block && 1656 hw->phy.ops.check_reset_block(hw)) { 1657 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1658 *data = 0; 1659 goto out; 1660 } 1661 1662 *data = e1000_setup_desc_rings(adapter); 1663 if (*data) 1664 goto out; 1665 1666 *data = e1000_setup_loopback_test(adapter); 1667 if (*data) 1668 goto err_loopback; 1669 1670 *data = e1000_run_loopback_test(adapter); 1671 e1000_loopback_cleanup(adapter); 1672 1673 err_loopback: 1674 e1000_free_desc_rings(adapter); 1675 out: 1676 return *data; 1677 } 1678 1679 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1680 { 1681 struct e1000_hw *hw = &adapter->hw; 1682 1683 *data = 0; 1684 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1685 int i = 0; 1686 hw->mac.serdes_has_link = false; 1687 1688 /* On some blade server designs, link establishment 1689 * could take as long as 2-3 minutes 1690 */ 1691 do { 1692 hw->mac.ops.check_for_link(hw); 1693 if (hw->mac.serdes_has_link) 1694 return *data; 1695 msleep(20); 1696 } while (i++ < 3750); 1697 1698 *data = 1; 1699 } else { 1700 hw->mac.ops.check_for_link(hw); 1701 if (hw->mac.autoneg) 1702 /* On some Phy/switch combinations, link establishment 1703 * can take a few seconds more than expected. 1704 */ 1705 msleep_interruptible(5000); 1706 1707 if (!(er32(STATUS) & E1000_STATUS_LU)) 1708 *data = 1; 1709 } 1710 return *data; 1711 } 1712 1713 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1714 int sset) 1715 { 1716 switch (sset) { 1717 case ETH_SS_TEST: 1718 return E1000_TEST_LEN; 1719 case ETH_SS_STATS: 1720 return E1000_STATS_LEN; 1721 default: 1722 return -EOPNOTSUPP; 1723 } 1724 } 1725 1726 static void e1000_diag_test(struct net_device *netdev, 1727 struct ethtool_test *eth_test, u64 *data) 1728 { 1729 struct e1000_adapter *adapter = netdev_priv(netdev); 1730 u16 autoneg_advertised; 1731 u8 forced_speed_duplex; 1732 u8 autoneg; 1733 bool if_running = netif_running(netdev); 1734 1735 set_bit(__E1000_TESTING, &adapter->state); 1736 1737 if (!if_running) { 1738 /* Get control of and reset hardware */ 1739 if (adapter->flags & FLAG_HAS_AMT) 1740 e1000e_get_hw_control(adapter); 1741 1742 e1000e_power_up_phy(adapter); 1743 1744 adapter->hw.phy.autoneg_wait_to_complete = 1; 1745 e1000e_reset(adapter); 1746 adapter->hw.phy.autoneg_wait_to_complete = 0; 1747 } 1748 1749 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1750 /* Offline tests */ 1751 1752 /* save speed, duplex, autoneg settings */ 1753 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1754 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1755 autoneg = adapter->hw.mac.autoneg; 1756 1757 e_info("offline testing starting\n"); 1758 1759 if (if_running) 1760 /* indicate we're in test mode */ 1761 dev_close(netdev); 1762 1763 if (e1000_reg_test(adapter, &data[0])) 1764 eth_test->flags |= ETH_TEST_FL_FAILED; 1765 1766 e1000e_reset(adapter); 1767 if (e1000_eeprom_test(adapter, &data[1])) 1768 eth_test->flags |= ETH_TEST_FL_FAILED; 1769 1770 e1000e_reset(adapter); 1771 if (e1000_intr_test(adapter, &data[2])) 1772 eth_test->flags |= ETH_TEST_FL_FAILED; 1773 1774 e1000e_reset(adapter); 1775 if (e1000_loopback_test(adapter, &data[3])) 1776 eth_test->flags |= ETH_TEST_FL_FAILED; 1777 1778 /* force this routine to wait until autoneg complete/timeout */ 1779 adapter->hw.phy.autoneg_wait_to_complete = 1; 1780 e1000e_reset(adapter); 1781 adapter->hw.phy.autoneg_wait_to_complete = 0; 1782 1783 if (e1000_link_test(adapter, &data[4])) 1784 eth_test->flags |= ETH_TEST_FL_FAILED; 1785 1786 /* restore speed, duplex, autoneg settings */ 1787 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1788 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1789 adapter->hw.mac.autoneg = autoneg; 1790 e1000e_reset(adapter); 1791 1792 clear_bit(__E1000_TESTING, &adapter->state); 1793 if (if_running) 1794 dev_open(netdev); 1795 } else { 1796 /* Online tests */ 1797 1798 e_info("online testing starting\n"); 1799 1800 /* register, eeprom, intr and loopback tests not run online */ 1801 data[0] = 0; 1802 data[1] = 0; 1803 data[2] = 0; 1804 data[3] = 0; 1805 1806 if (e1000_link_test(adapter, &data[4])) 1807 eth_test->flags |= ETH_TEST_FL_FAILED; 1808 1809 clear_bit(__E1000_TESTING, &adapter->state); 1810 } 1811 1812 if (!if_running) { 1813 e1000e_reset(adapter); 1814 1815 if (adapter->flags & FLAG_HAS_AMT) 1816 e1000e_release_hw_control(adapter); 1817 } 1818 1819 msleep_interruptible(4 * 1000); 1820 } 1821 1822 static void e1000_get_wol(struct net_device *netdev, 1823 struct ethtool_wolinfo *wol) 1824 { 1825 struct e1000_adapter *adapter = netdev_priv(netdev); 1826 1827 wol->supported = 0; 1828 wol->wolopts = 0; 1829 1830 if (!(adapter->flags & FLAG_HAS_WOL) || 1831 !device_can_wakeup(&adapter->pdev->dev)) 1832 return; 1833 1834 wol->supported = WAKE_UCAST | WAKE_MCAST | 1835 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1836 1837 /* apply any specific unsupported masks here */ 1838 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1839 wol->supported &= ~WAKE_UCAST; 1840 1841 if (adapter->wol & E1000_WUFC_EX) 1842 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1843 } 1844 1845 if (adapter->wol & E1000_WUFC_EX) 1846 wol->wolopts |= WAKE_UCAST; 1847 if (adapter->wol & E1000_WUFC_MC) 1848 wol->wolopts |= WAKE_MCAST; 1849 if (adapter->wol & E1000_WUFC_BC) 1850 wol->wolopts |= WAKE_BCAST; 1851 if (adapter->wol & E1000_WUFC_MAG) 1852 wol->wolopts |= WAKE_MAGIC; 1853 if (adapter->wol & E1000_WUFC_LNKC) 1854 wol->wolopts |= WAKE_PHY; 1855 } 1856 1857 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1858 { 1859 struct e1000_adapter *adapter = netdev_priv(netdev); 1860 1861 if (!(adapter->flags & FLAG_HAS_WOL) || 1862 !device_can_wakeup(&adapter->pdev->dev) || 1863 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1864 WAKE_MAGIC | WAKE_PHY))) 1865 return -EOPNOTSUPP; 1866 1867 /* these settings will always override what we currently have */ 1868 adapter->wol = 0; 1869 1870 if (wol->wolopts & WAKE_UCAST) 1871 adapter->wol |= E1000_WUFC_EX; 1872 if (wol->wolopts & WAKE_MCAST) 1873 adapter->wol |= E1000_WUFC_MC; 1874 if (wol->wolopts & WAKE_BCAST) 1875 adapter->wol |= E1000_WUFC_BC; 1876 if (wol->wolopts & WAKE_MAGIC) 1877 adapter->wol |= E1000_WUFC_MAG; 1878 if (wol->wolopts & WAKE_PHY) 1879 adapter->wol |= E1000_WUFC_LNKC; 1880 1881 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1882 1883 return 0; 1884 } 1885 1886 static int e1000_set_phys_id(struct net_device *netdev, 1887 enum ethtool_phys_id_state state) 1888 { 1889 struct e1000_adapter *adapter = netdev_priv(netdev); 1890 struct e1000_hw *hw = &adapter->hw; 1891 1892 switch (state) { 1893 case ETHTOOL_ID_ACTIVE: 1894 if (!hw->mac.ops.blink_led) 1895 return 2; /* cycle on/off twice per second */ 1896 1897 hw->mac.ops.blink_led(hw); 1898 break; 1899 1900 case ETHTOOL_ID_INACTIVE: 1901 if (hw->phy.type == e1000_phy_ife) 1902 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1903 hw->mac.ops.led_off(hw); 1904 hw->mac.ops.cleanup_led(hw); 1905 break; 1906 1907 case ETHTOOL_ID_ON: 1908 hw->mac.ops.led_on(hw); 1909 break; 1910 1911 case ETHTOOL_ID_OFF: 1912 hw->mac.ops.led_off(hw); 1913 break; 1914 } 1915 return 0; 1916 } 1917 1918 static int e1000_get_coalesce(struct net_device *netdev, 1919 struct ethtool_coalesce *ec) 1920 { 1921 struct e1000_adapter *adapter = netdev_priv(netdev); 1922 1923 if (adapter->itr_setting <= 4) 1924 ec->rx_coalesce_usecs = adapter->itr_setting; 1925 else 1926 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1927 1928 return 0; 1929 } 1930 1931 static int e1000_set_coalesce(struct net_device *netdev, 1932 struct ethtool_coalesce *ec) 1933 { 1934 struct e1000_adapter *adapter = netdev_priv(netdev); 1935 1936 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1937 ((ec->rx_coalesce_usecs > 4) && 1938 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1939 (ec->rx_coalesce_usecs == 2)) 1940 return -EINVAL; 1941 1942 if (ec->rx_coalesce_usecs == 4) { 1943 adapter->itr_setting = 4; 1944 adapter->itr = adapter->itr_setting; 1945 } else if (ec->rx_coalesce_usecs <= 3) { 1946 adapter->itr = 20000; 1947 adapter->itr_setting = ec->rx_coalesce_usecs; 1948 } else { 1949 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1950 adapter->itr_setting = adapter->itr & ~3; 1951 } 1952 1953 if (adapter->itr_setting != 0) 1954 e1000e_write_itr(adapter, adapter->itr); 1955 else 1956 e1000e_write_itr(adapter, 0); 1957 1958 return 0; 1959 } 1960 1961 static int e1000_nway_reset(struct net_device *netdev) 1962 { 1963 struct e1000_adapter *adapter = netdev_priv(netdev); 1964 1965 if (!netif_running(netdev)) 1966 return -EAGAIN; 1967 1968 if (!adapter->hw.mac.autoneg) 1969 return -EINVAL; 1970 1971 e1000e_reinit_locked(adapter); 1972 1973 return 0; 1974 } 1975 1976 static void e1000_get_ethtool_stats(struct net_device *netdev, 1977 struct ethtool_stats __always_unused *stats, 1978 u64 *data) 1979 { 1980 struct e1000_adapter *adapter = netdev_priv(netdev); 1981 struct rtnl_link_stats64 net_stats; 1982 int i; 1983 char *p = NULL; 1984 1985 e1000e_get_stats64(netdev, &net_stats); 1986 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1987 switch (e1000_gstrings_stats[i].type) { 1988 case NETDEV_STATS: 1989 p = (char *)&net_stats + 1990 e1000_gstrings_stats[i].stat_offset; 1991 break; 1992 case E1000_STATS: 1993 p = (char *)adapter + 1994 e1000_gstrings_stats[i].stat_offset; 1995 break; 1996 default: 1997 data[i] = 0; 1998 continue; 1999 } 2000 2001 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2002 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2003 } 2004 } 2005 2006 static void e1000_get_strings(struct net_device __always_unused *netdev, 2007 u32 stringset, u8 *data) 2008 { 2009 u8 *p = data; 2010 int i; 2011 2012 switch (stringset) { 2013 case ETH_SS_TEST: 2014 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2015 break; 2016 case ETH_SS_STATS: 2017 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2018 memcpy(p, e1000_gstrings_stats[i].stat_string, 2019 ETH_GSTRING_LEN); 2020 p += ETH_GSTRING_LEN; 2021 } 2022 break; 2023 } 2024 } 2025 2026 static int e1000_get_rxnfc(struct net_device *netdev, 2027 struct ethtool_rxnfc *info, 2028 u32 __always_unused *rule_locs) 2029 { 2030 info->data = 0; 2031 2032 switch (info->cmd) { 2033 case ETHTOOL_GRXFH: { 2034 struct e1000_adapter *adapter = netdev_priv(netdev); 2035 struct e1000_hw *hw = &adapter->hw; 2036 u32 mrqc = er32(MRQC); 2037 2038 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2039 return 0; 2040 2041 switch (info->flow_type) { 2042 case TCP_V4_FLOW: 2043 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2044 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2045 /* fall through */ 2046 case UDP_V4_FLOW: 2047 case SCTP_V4_FLOW: 2048 case AH_ESP_V4_FLOW: 2049 case IPV4_FLOW: 2050 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2051 info->data |= RXH_IP_SRC | RXH_IP_DST; 2052 break; 2053 case TCP_V6_FLOW: 2054 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2055 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2056 /* fall through */ 2057 case UDP_V6_FLOW: 2058 case SCTP_V6_FLOW: 2059 case AH_ESP_V6_FLOW: 2060 case IPV6_FLOW: 2061 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2062 info->data |= RXH_IP_SRC | RXH_IP_DST; 2063 break; 2064 default: 2065 break; 2066 } 2067 return 0; 2068 } 2069 default: 2070 return -EOPNOTSUPP; 2071 } 2072 } 2073 2074 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2075 { 2076 struct e1000_adapter *adapter = netdev_priv(netdev); 2077 struct e1000_hw *hw = &adapter->hw; 2078 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2079 u32 ret_val; 2080 2081 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2082 return -EOPNOTSUPP; 2083 2084 switch (hw->phy.type) { 2085 case e1000_phy_82579: 2086 cap_addr = I82579_EEE_CAPABILITY; 2087 lpa_addr = I82579_EEE_LP_ABILITY; 2088 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2089 break; 2090 case e1000_phy_i217: 2091 cap_addr = I217_EEE_CAPABILITY; 2092 lpa_addr = I217_EEE_LP_ABILITY; 2093 pcs_stat_addr = I217_EEE_PCS_STATUS; 2094 break; 2095 default: 2096 return -EOPNOTSUPP; 2097 } 2098 2099 ret_val = hw->phy.ops.acquire(hw); 2100 if (ret_val) 2101 return -EBUSY; 2102 2103 /* EEE Capability */ 2104 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2105 if (ret_val) 2106 goto release; 2107 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2108 2109 /* EEE Advertised */ 2110 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2111 2112 /* EEE Link Partner Advertised */ 2113 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2114 if (ret_val) 2115 goto release; 2116 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2117 2118 /* EEE PCS Status */ 2119 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2120 if (hw->phy.type == e1000_phy_82579) 2121 phy_data <<= 8; 2122 2123 release: 2124 hw->phy.ops.release(hw); 2125 if (ret_val) 2126 return -ENODATA; 2127 2128 /* Result of the EEE auto negotiation - there is no register that 2129 * has the status of the EEE negotiation so do a best-guess based 2130 * on whether Tx or Rx LPI indications have been received. 2131 */ 2132 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2133 edata->eee_active = true; 2134 2135 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2136 edata->tx_lpi_enabled = true; 2137 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2138 2139 return 0; 2140 } 2141 2142 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2143 { 2144 struct e1000_adapter *adapter = netdev_priv(netdev); 2145 struct e1000_hw *hw = &adapter->hw; 2146 struct ethtool_eee eee_curr; 2147 s32 ret_val; 2148 2149 ret_val = e1000e_get_eee(netdev, &eee_curr); 2150 if (ret_val) 2151 return ret_val; 2152 2153 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2154 e_err("Setting EEE tx-lpi is not supported\n"); 2155 return -EINVAL; 2156 } 2157 2158 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2159 e_err("Setting EEE Tx LPI timer is not supported\n"); 2160 return -EINVAL; 2161 } 2162 2163 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2164 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2165 return -EINVAL; 2166 } 2167 2168 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2169 2170 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2171 2172 /* reset the link */ 2173 if (netif_running(netdev)) 2174 e1000e_reinit_locked(adapter); 2175 else 2176 e1000e_reset(adapter); 2177 2178 return 0; 2179 } 2180 2181 static int e1000e_get_ts_info(struct net_device *netdev, 2182 struct ethtool_ts_info *info) 2183 { 2184 struct e1000_adapter *adapter = netdev_priv(netdev); 2185 2186 ethtool_op_get_ts_info(netdev, info); 2187 2188 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2189 return 0; 2190 2191 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2192 SOF_TIMESTAMPING_RX_HARDWARE | 2193 SOF_TIMESTAMPING_RAW_HARDWARE); 2194 2195 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); 2196 2197 info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) | 2198 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2199 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2200 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2201 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2202 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2203 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2204 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) | 2205 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) | 2206 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2207 (1 << HWTSTAMP_FILTER_ALL)); 2208 2209 if (adapter->ptp_clock) 2210 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2211 2212 return 0; 2213 } 2214 2215 static int e1000e_ethtool_begin(struct net_device *netdev) 2216 { 2217 return pm_runtime_get_sync(netdev->dev.parent); 2218 } 2219 2220 static void e1000e_ethtool_complete(struct net_device *netdev) 2221 { 2222 pm_runtime_put_sync(netdev->dev.parent); 2223 } 2224 2225 static const struct ethtool_ops e1000_ethtool_ops = { 2226 .begin = e1000e_ethtool_begin, 2227 .complete = e1000e_ethtool_complete, 2228 .get_settings = e1000_get_settings, 2229 .set_settings = e1000_set_settings, 2230 .get_drvinfo = e1000_get_drvinfo, 2231 .get_regs_len = e1000_get_regs_len, 2232 .get_regs = e1000_get_regs, 2233 .get_wol = e1000_get_wol, 2234 .set_wol = e1000_set_wol, 2235 .get_msglevel = e1000_get_msglevel, 2236 .set_msglevel = e1000_set_msglevel, 2237 .nway_reset = e1000_nway_reset, 2238 .get_link = ethtool_op_get_link, 2239 .get_eeprom_len = e1000_get_eeprom_len, 2240 .get_eeprom = e1000_get_eeprom, 2241 .set_eeprom = e1000_set_eeprom, 2242 .get_ringparam = e1000_get_ringparam, 2243 .set_ringparam = e1000_set_ringparam, 2244 .get_pauseparam = e1000_get_pauseparam, 2245 .set_pauseparam = e1000_set_pauseparam, 2246 .self_test = e1000_diag_test, 2247 .get_strings = e1000_get_strings, 2248 .set_phys_id = e1000_set_phys_id, 2249 .get_ethtool_stats = e1000_get_ethtool_stats, 2250 .get_sset_count = e1000e_get_sset_count, 2251 .get_coalesce = e1000_get_coalesce, 2252 .set_coalesce = e1000_set_coalesce, 2253 .get_rxnfc = e1000_get_rxnfc, 2254 .get_ts_info = e1000e_get_ts_info, 2255 .get_eee = e1000e_get_eee, 2256 .set_eee = e1000e_set_eee, 2257 }; 2258 2259 void e1000e_set_ethtool_ops(struct net_device *netdev) 2260 { 2261 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 2262 } 2263