1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = { 27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0) 28 "s0ix-enabled", 29 }; 30 31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings) 32 33 #define E1000_STAT(str, m) { \ 34 .stat_string = str, \ 35 .type = E1000_STATS, \ 36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 37 .stat_offset = offsetof(struct e1000_adapter, m) } 38 #define E1000_NETDEV_STAT(str, m) { \ 39 .stat_string = str, \ 40 .type = NETDEV_STATS, \ 41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 42 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 43 44 static const struct e1000_stats e1000_gstrings_stats[] = { 45 E1000_STAT("rx_packets", stats.gprc), 46 E1000_STAT("tx_packets", stats.gptc), 47 E1000_STAT("rx_bytes", stats.gorc), 48 E1000_STAT("tx_bytes", stats.gotc), 49 E1000_STAT("rx_broadcast", stats.bprc), 50 E1000_STAT("tx_broadcast", stats.bptc), 51 E1000_STAT("rx_multicast", stats.mprc), 52 E1000_STAT("tx_multicast", stats.mptc), 53 E1000_NETDEV_STAT("rx_errors", rx_errors), 54 E1000_NETDEV_STAT("tx_errors", tx_errors), 55 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 56 E1000_STAT("multicast", stats.mprc), 57 E1000_STAT("collisions", stats.colc), 58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 60 E1000_STAT("rx_crc_errors", stats.crcerrs), 61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 62 E1000_STAT("rx_no_buffer_count", stats.rnbc), 63 E1000_STAT("rx_missed_errors", stats.mpc), 64 E1000_STAT("tx_aborted_errors", stats.ecol), 65 E1000_STAT("tx_carrier_errors", stats.tncrs), 66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 68 E1000_STAT("tx_window_errors", stats.latecol), 69 E1000_STAT("tx_abort_late_coll", stats.latecol), 70 E1000_STAT("tx_deferred_ok", stats.dc), 71 E1000_STAT("tx_single_coll_ok", stats.scc), 72 E1000_STAT("tx_multi_coll_ok", stats.mcc), 73 E1000_STAT("tx_timeout_count", tx_timeout_count), 74 E1000_STAT("tx_restart_queue", restart_queue), 75 E1000_STAT("rx_long_length_errors", stats.roc), 76 E1000_STAT("rx_short_length_errors", stats.ruc), 77 E1000_STAT("rx_align_errors", stats.algnerrc), 78 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 80 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 82 E1000_STAT("tx_flow_control_xon", stats.xontxc), 83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 84 E1000_STAT("rx_csum_offload_good", hw_csum_good), 85 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 86 E1000_STAT("rx_header_split", rx_hdr_split), 87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 88 E1000_STAT("tx_smbus", stats.mgptc), 89 E1000_STAT("rx_smbus", stats.mgprc), 90 E1000_STAT("dropped_smbus", stats.mgpdc), 91 E1000_STAT("rx_dma_failed", rx_dma_failed), 92 E1000_STAT("tx_dma_failed", tx_dma_failed), 93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 94 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 95 E1000_STAT("corr_ecc_errors", corr_errors), 96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 98 }; 99 100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 103 "Register test (offline)", "Eeprom test (offline)", 104 "Interrupt test (offline)", "Loopback test (offline)", 105 "Link test (on/offline)" 106 }; 107 108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 109 110 static int e1000_get_link_ksettings(struct net_device *netdev, 111 struct ethtool_link_ksettings *cmd) 112 { 113 struct e1000_adapter *adapter = netdev_priv(netdev); 114 struct e1000_hw *hw = &adapter->hw; 115 u32 speed, supported, advertising; 116 117 if (hw->phy.media_type == e1000_media_type_copper) { 118 supported = (SUPPORTED_10baseT_Half | 119 SUPPORTED_10baseT_Full | 120 SUPPORTED_100baseT_Half | 121 SUPPORTED_100baseT_Full | 122 SUPPORTED_1000baseT_Full | 123 SUPPORTED_Autoneg | 124 SUPPORTED_TP); 125 if (hw->phy.type == e1000_phy_ife) 126 supported &= ~SUPPORTED_1000baseT_Full; 127 advertising = ADVERTISED_TP; 128 129 if (hw->mac.autoneg == 1) { 130 advertising |= ADVERTISED_Autoneg; 131 /* the e1000 autoneg seems to match ethtool nicely */ 132 advertising |= hw->phy.autoneg_advertised; 133 } 134 135 cmd->base.port = PORT_TP; 136 cmd->base.phy_address = hw->phy.addr; 137 } else { 138 supported = (SUPPORTED_1000baseT_Full | 139 SUPPORTED_FIBRE | 140 SUPPORTED_Autoneg); 141 142 advertising = (ADVERTISED_1000baseT_Full | 143 ADVERTISED_FIBRE | 144 ADVERTISED_Autoneg); 145 146 cmd->base.port = PORT_FIBRE; 147 } 148 149 speed = SPEED_UNKNOWN; 150 cmd->base.duplex = DUPLEX_UNKNOWN; 151 152 if (netif_running(netdev)) { 153 if (netif_carrier_ok(netdev)) { 154 speed = adapter->link_speed; 155 cmd->base.duplex = adapter->link_duplex - 1; 156 } 157 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 158 u32 status = er32(STATUS); 159 160 if (status & E1000_STATUS_LU) { 161 if (status & E1000_STATUS_SPEED_1000) 162 speed = SPEED_1000; 163 else if (status & E1000_STATUS_SPEED_100) 164 speed = SPEED_100; 165 else 166 speed = SPEED_10; 167 168 if (status & E1000_STATUS_FD) 169 cmd->base.duplex = DUPLEX_FULL; 170 else 171 cmd->base.duplex = DUPLEX_HALF; 172 } 173 } 174 175 cmd->base.speed = speed; 176 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 177 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 178 179 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 180 if ((hw->phy.media_type == e1000_media_type_copper) && 181 netif_carrier_ok(netdev)) 182 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 183 ETH_TP_MDI_X : ETH_TP_MDI; 184 else 185 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 186 187 if (hw->phy.mdix == AUTO_ALL_MODES) 188 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 189 else 190 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 191 192 if (hw->phy.media_type != e1000_media_type_copper) 193 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 194 195 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 196 supported); 197 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 198 advertising); 199 200 return 0; 201 } 202 203 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 204 { 205 struct e1000_mac_info *mac = &adapter->hw.mac; 206 207 mac->autoneg = 0; 208 209 /* Make sure dplx is at most 1 bit and lsb of speed is not set 210 * for the switch() below to work 211 */ 212 if ((spd & 1) || (dplx & ~1)) 213 goto err_inval; 214 215 /* Fiber NICs only allow 1000 gbps Full duplex */ 216 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 217 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 218 goto err_inval; 219 } 220 221 switch (spd + dplx) { 222 case SPEED_10 + DUPLEX_HALF: 223 mac->forced_speed_duplex = ADVERTISE_10_HALF; 224 break; 225 case SPEED_10 + DUPLEX_FULL: 226 mac->forced_speed_duplex = ADVERTISE_10_FULL; 227 break; 228 case SPEED_100 + DUPLEX_HALF: 229 mac->forced_speed_duplex = ADVERTISE_100_HALF; 230 break; 231 case SPEED_100 + DUPLEX_FULL: 232 mac->forced_speed_duplex = ADVERTISE_100_FULL; 233 break; 234 case SPEED_1000 + DUPLEX_FULL: 235 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 236 mac->autoneg = 1; 237 adapter->hw.phy.autoneg_advertised = 238 ADVERTISE_1000_FULL; 239 } else { 240 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 241 } 242 break; 243 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 244 default: 245 goto err_inval; 246 } 247 248 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 249 adapter->hw.phy.mdix = AUTO_ALL_MODES; 250 251 return 0; 252 253 err_inval: 254 e_err("Unsupported Speed/Duplex configuration\n"); 255 return -EINVAL; 256 } 257 258 static int e1000_set_link_ksettings(struct net_device *netdev, 259 const struct ethtool_link_ksettings *cmd) 260 { 261 struct e1000_adapter *adapter = netdev_priv(netdev); 262 struct e1000_hw *hw = &adapter->hw; 263 int ret_val = 0; 264 u32 advertising; 265 266 ethtool_convert_link_mode_to_legacy_u32(&advertising, 267 cmd->link_modes.advertising); 268 269 pm_runtime_get_sync(netdev->dev.parent); 270 271 /* When SoL/IDER sessions are active, autoneg/speed/duplex 272 * cannot be changed 273 */ 274 if (hw->phy.ops.check_reset_block && 275 hw->phy.ops.check_reset_block(hw)) { 276 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 277 ret_val = -EINVAL; 278 goto out; 279 } 280 281 /* MDI setting is only allowed when autoneg enabled because 282 * some hardware doesn't allow MDI setting when speed or 283 * duplex is forced. 284 */ 285 if (cmd->base.eth_tp_mdix_ctrl) { 286 if (hw->phy.media_type != e1000_media_type_copper) { 287 ret_val = -EOPNOTSUPP; 288 goto out; 289 } 290 291 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 292 (cmd->base.autoneg != AUTONEG_ENABLE)) { 293 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 294 ret_val = -EINVAL; 295 goto out; 296 } 297 } 298 299 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 300 usleep_range(1000, 2000); 301 302 if (cmd->base.autoneg == AUTONEG_ENABLE) { 303 hw->mac.autoneg = 1; 304 if (hw->phy.media_type == e1000_media_type_fiber) 305 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 306 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 307 else 308 hw->phy.autoneg_advertised = advertising | 309 ADVERTISED_TP | ADVERTISED_Autoneg; 310 advertising = hw->phy.autoneg_advertised; 311 if (adapter->fc_autoneg) 312 hw->fc.requested_mode = e1000_fc_default; 313 } else { 314 u32 speed = cmd->base.speed; 315 /* calling this overrides forced MDI setting */ 316 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 317 ret_val = -EINVAL; 318 goto out; 319 } 320 } 321 322 /* MDI-X => 2; MDI => 1; Auto => 3 */ 323 if (cmd->base.eth_tp_mdix_ctrl) { 324 /* fix up the value for auto (3 => 0) as zero is mapped 325 * internally to auto 326 */ 327 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 328 hw->phy.mdix = AUTO_ALL_MODES; 329 else 330 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 331 } 332 333 /* reset the link */ 334 if (netif_running(adapter->netdev)) { 335 e1000e_down(adapter, true); 336 e1000e_up(adapter); 337 } else { 338 e1000e_reset(adapter); 339 } 340 341 out: 342 pm_runtime_put_sync(netdev->dev.parent); 343 clear_bit(__E1000_RESETTING, &adapter->state); 344 return ret_val; 345 } 346 347 static void e1000_get_pauseparam(struct net_device *netdev, 348 struct ethtool_pauseparam *pause) 349 { 350 struct e1000_adapter *adapter = netdev_priv(netdev); 351 struct e1000_hw *hw = &adapter->hw; 352 353 pause->autoneg = 354 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 355 356 if (hw->fc.current_mode == e1000_fc_rx_pause) { 357 pause->rx_pause = 1; 358 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 359 pause->tx_pause = 1; 360 } else if (hw->fc.current_mode == e1000_fc_full) { 361 pause->rx_pause = 1; 362 pause->tx_pause = 1; 363 } 364 } 365 366 static int e1000_set_pauseparam(struct net_device *netdev, 367 struct ethtool_pauseparam *pause) 368 { 369 struct e1000_adapter *adapter = netdev_priv(netdev); 370 struct e1000_hw *hw = &adapter->hw; 371 int retval = 0; 372 373 adapter->fc_autoneg = pause->autoneg; 374 375 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 376 usleep_range(1000, 2000); 377 378 pm_runtime_get_sync(netdev->dev.parent); 379 380 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 381 hw->fc.requested_mode = e1000_fc_default; 382 if (netif_running(adapter->netdev)) { 383 e1000e_down(adapter, true); 384 e1000e_up(adapter); 385 } else { 386 e1000e_reset(adapter); 387 } 388 } else { 389 if (pause->rx_pause && pause->tx_pause) 390 hw->fc.requested_mode = e1000_fc_full; 391 else if (pause->rx_pause && !pause->tx_pause) 392 hw->fc.requested_mode = e1000_fc_rx_pause; 393 else if (!pause->rx_pause && pause->tx_pause) 394 hw->fc.requested_mode = e1000_fc_tx_pause; 395 else if (!pause->rx_pause && !pause->tx_pause) 396 hw->fc.requested_mode = e1000_fc_none; 397 398 hw->fc.current_mode = hw->fc.requested_mode; 399 400 if (hw->phy.media_type == e1000_media_type_fiber) { 401 retval = hw->mac.ops.setup_link(hw); 402 /* implicit goto out */ 403 } else { 404 retval = e1000e_force_mac_fc(hw); 405 if (retval) 406 goto out; 407 e1000e_set_fc_watermarks(hw); 408 } 409 } 410 411 out: 412 pm_runtime_put_sync(netdev->dev.parent); 413 clear_bit(__E1000_RESETTING, &adapter->state); 414 return retval; 415 } 416 417 static u32 e1000_get_msglevel(struct net_device *netdev) 418 { 419 struct e1000_adapter *adapter = netdev_priv(netdev); 420 return adapter->msg_enable; 421 } 422 423 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 424 { 425 struct e1000_adapter *adapter = netdev_priv(netdev); 426 adapter->msg_enable = data; 427 } 428 429 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 430 { 431 #define E1000_REGS_LEN 32 /* overestimate */ 432 return E1000_REGS_LEN * sizeof(u32); 433 } 434 435 static void e1000_get_regs(struct net_device *netdev, 436 struct ethtool_regs *regs, void *p) 437 { 438 struct e1000_adapter *adapter = netdev_priv(netdev); 439 struct e1000_hw *hw = &adapter->hw; 440 u32 *regs_buff = p; 441 u16 phy_data; 442 443 pm_runtime_get_sync(netdev->dev.parent); 444 445 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 446 447 regs->version = (1u << 24) | 448 (adapter->pdev->revision << 16) | 449 adapter->pdev->device; 450 451 regs_buff[0] = er32(CTRL); 452 regs_buff[1] = er32(STATUS); 453 454 regs_buff[2] = er32(RCTL); 455 regs_buff[3] = er32(RDLEN(0)); 456 regs_buff[4] = er32(RDH(0)); 457 regs_buff[5] = er32(RDT(0)); 458 regs_buff[6] = er32(RDTR); 459 460 regs_buff[7] = er32(TCTL); 461 regs_buff[8] = er32(TDLEN(0)); 462 regs_buff[9] = er32(TDH(0)); 463 regs_buff[10] = er32(TDT(0)); 464 regs_buff[11] = er32(TIDV); 465 466 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 467 468 /* ethtool doesn't use anything past this point, so all this 469 * code is likely legacy junk for apps that may or may not exist 470 */ 471 if (hw->phy.type == e1000_phy_m88) { 472 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 473 regs_buff[13] = (u32)phy_data; /* cable length */ 474 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 475 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 476 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 477 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 478 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 479 regs_buff[18] = regs_buff[13]; /* cable polarity */ 480 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 481 regs_buff[20] = regs_buff[17]; /* polarity correction */ 482 /* phy receive errors */ 483 regs_buff[22] = adapter->phy_stats.receive_errors; 484 regs_buff[23] = regs_buff[13]; /* mdix mode */ 485 } 486 regs_buff[21] = 0; /* was idle_errors */ 487 e1e_rphy(hw, MII_STAT1000, &phy_data); 488 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 489 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 490 491 pm_runtime_put_sync(netdev->dev.parent); 492 } 493 494 static int e1000_get_eeprom_len(struct net_device *netdev) 495 { 496 struct e1000_adapter *adapter = netdev_priv(netdev); 497 return adapter->hw.nvm.word_size * 2; 498 } 499 500 static int e1000_get_eeprom(struct net_device *netdev, 501 struct ethtool_eeprom *eeprom, u8 *bytes) 502 { 503 struct e1000_adapter *adapter = netdev_priv(netdev); 504 struct e1000_hw *hw = &adapter->hw; 505 u16 *eeprom_buff; 506 int first_word; 507 int last_word; 508 int ret_val = 0; 509 u16 i; 510 511 if (eeprom->len == 0) 512 return -EINVAL; 513 514 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 515 516 first_word = eeprom->offset >> 1; 517 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 518 519 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 520 GFP_KERNEL); 521 if (!eeprom_buff) 522 return -ENOMEM; 523 524 pm_runtime_get_sync(netdev->dev.parent); 525 526 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 527 ret_val = e1000_read_nvm(hw, first_word, 528 last_word - first_word + 1, 529 eeprom_buff); 530 } else { 531 for (i = 0; i < last_word - first_word + 1; i++) { 532 ret_val = e1000_read_nvm(hw, first_word + i, 1, 533 &eeprom_buff[i]); 534 if (ret_val) 535 break; 536 } 537 } 538 539 pm_runtime_put_sync(netdev->dev.parent); 540 541 if (ret_val) { 542 /* a read error occurred, throw away the result */ 543 memset(eeprom_buff, 0xff, sizeof(u16) * 544 (last_word - first_word + 1)); 545 } else { 546 /* Device's eeprom is always little-endian, word addressable */ 547 for (i = 0; i < last_word - first_word + 1; i++) 548 le16_to_cpus(&eeprom_buff[i]); 549 } 550 551 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 552 kfree(eeprom_buff); 553 554 return ret_val; 555 } 556 557 static int e1000_set_eeprom(struct net_device *netdev, 558 struct ethtool_eeprom *eeprom, u8 *bytes) 559 { 560 struct e1000_adapter *adapter = netdev_priv(netdev); 561 struct e1000_hw *hw = &adapter->hw; 562 u16 *eeprom_buff; 563 void *ptr; 564 int max_len; 565 int first_word; 566 int last_word; 567 int ret_val = 0; 568 u16 i; 569 570 if (eeprom->len == 0) 571 return -EOPNOTSUPP; 572 573 if (eeprom->magic != 574 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 575 return -EFAULT; 576 577 if (adapter->flags & FLAG_READ_ONLY_NVM) 578 return -EINVAL; 579 580 max_len = hw->nvm.word_size * 2; 581 582 first_word = eeprom->offset >> 1; 583 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 584 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 585 if (!eeprom_buff) 586 return -ENOMEM; 587 588 ptr = (void *)eeprom_buff; 589 590 pm_runtime_get_sync(netdev->dev.parent); 591 592 if (eeprom->offset & 1) { 593 /* need read/modify/write of first changed EEPROM word */ 594 /* only the second byte of the word is being modified */ 595 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 596 ptr++; 597 } 598 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 599 /* need read/modify/write of last changed EEPROM word */ 600 /* only the first byte of the word is being modified */ 601 ret_val = e1000_read_nvm(hw, last_word, 1, 602 &eeprom_buff[last_word - first_word]); 603 604 if (ret_val) 605 goto out; 606 607 /* Device's eeprom is always little-endian, word addressable */ 608 for (i = 0; i < last_word - first_word + 1; i++) 609 le16_to_cpus(&eeprom_buff[i]); 610 611 memcpy(ptr, bytes, eeprom->len); 612 613 for (i = 0; i < last_word - first_word + 1; i++) 614 cpu_to_le16s(&eeprom_buff[i]); 615 616 ret_val = e1000_write_nvm(hw, first_word, 617 last_word - first_word + 1, eeprom_buff); 618 619 if (ret_val) 620 goto out; 621 622 /* Update the checksum over the first part of the EEPROM if needed 623 * and flush shadow RAM for applicable controllers 624 */ 625 if ((first_word <= NVM_CHECKSUM_REG) || 626 (hw->mac.type == e1000_82583) || 627 (hw->mac.type == e1000_82574) || 628 (hw->mac.type == e1000_82573)) 629 ret_val = e1000e_update_nvm_checksum(hw); 630 631 out: 632 pm_runtime_put_sync(netdev->dev.parent); 633 kfree(eeprom_buff); 634 return ret_val; 635 } 636 637 static void e1000_get_drvinfo(struct net_device *netdev, 638 struct ethtool_drvinfo *drvinfo) 639 { 640 struct e1000_adapter *adapter = netdev_priv(netdev); 641 642 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 643 644 /* EEPROM image version # is reported as firmware version # for 645 * PCI-E controllers 646 */ 647 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 648 "%d.%d-%d", 649 (adapter->eeprom_vers & 0xF000) >> 12, 650 (adapter->eeprom_vers & 0x0FF0) >> 4, 651 (adapter->eeprom_vers & 0x000F)); 652 653 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 654 sizeof(drvinfo->bus_info)); 655 } 656 657 static void e1000_get_ringparam(struct net_device *netdev, 658 struct ethtool_ringparam *ring) 659 { 660 struct e1000_adapter *adapter = netdev_priv(netdev); 661 662 ring->rx_max_pending = E1000_MAX_RXD; 663 ring->tx_max_pending = E1000_MAX_TXD; 664 ring->rx_pending = adapter->rx_ring_count; 665 ring->tx_pending = adapter->tx_ring_count; 666 } 667 668 static int e1000_set_ringparam(struct net_device *netdev, 669 struct ethtool_ringparam *ring) 670 { 671 struct e1000_adapter *adapter = netdev_priv(netdev); 672 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 673 int err = 0, size = sizeof(struct e1000_ring); 674 bool set_tx = false, set_rx = false; 675 u16 new_rx_count, new_tx_count; 676 677 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 678 return -EINVAL; 679 680 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 681 E1000_MAX_RXD); 682 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 683 684 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 685 E1000_MAX_TXD); 686 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 687 688 if ((new_tx_count == adapter->tx_ring_count) && 689 (new_rx_count == adapter->rx_ring_count)) 690 /* nothing to do */ 691 return 0; 692 693 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 694 usleep_range(1000, 2000); 695 696 if (!netif_running(adapter->netdev)) { 697 /* Set counts now and allocate resources during open() */ 698 adapter->tx_ring->count = new_tx_count; 699 adapter->rx_ring->count = new_rx_count; 700 adapter->tx_ring_count = new_tx_count; 701 adapter->rx_ring_count = new_rx_count; 702 goto clear_reset; 703 } 704 705 set_tx = (new_tx_count != adapter->tx_ring_count); 706 set_rx = (new_rx_count != adapter->rx_ring_count); 707 708 /* Allocate temporary storage for ring updates */ 709 if (set_tx) { 710 temp_tx = vmalloc(size); 711 if (!temp_tx) { 712 err = -ENOMEM; 713 goto free_temp; 714 } 715 } 716 if (set_rx) { 717 temp_rx = vmalloc(size); 718 if (!temp_rx) { 719 err = -ENOMEM; 720 goto free_temp; 721 } 722 } 723 724 pm_runtime_get_sync(netdev->dev.parent); 725 726 e1000e_down(adapter, true); 727 728 /* We can't just free everything and then setup again, because the 729 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 730 * structs. First, attempt to allocate new resources... 731 */ 732 if (set_tx) { 733 memcpy(temp_tx, adapter->tx_ring, size); 734 temp_tx->count = new_tx_count; 735 err = e1000e_setup_tx_resources(temp_tx); 736 if (err) 737 goto err_setup; 738 } 739 if (set_rx) { 740 memcpy(temp_rx, adapter->rx_ring, size); 741 temp_rx->count = new_rx_count; 742 err = e1000e_setup_rx_resources(temp_rx); 743 if (err) 744 goto err_setup_rx; 745 } 746 747 /* ...then free the old resources and copy back any new ring data */ 748 if (set_tx) { 749 e1000e_free_tx_resources(adapter->tx_ring); 750 memcpy(adapter->tx_ring, temp_tx, size); 751 adapter->tx_ring_count = new_tx_count; 752 } 753 if (set_rx) { 754 e1000e_free_rx_resources(adapter->rx_ring); 755 memcpy(adapter->rx_ring, temp_rx, size); 756 adapter->rx_ring_count = new_rx_count; 757 } 758 759 err_setup_rx: 760 if (err && set_tx) 761 e1000e_free_tx_resources(temp_tx); 762 err_setup: 763 e1000e_up(adapter); 764 pm_runtime_put_sync(netdev->dev.parent); 765 free_temp: 766 vfree(temp_tx); 767 vfree(temp_rx); 768 clear_reset: 769 clear_bit(__E1000_RESETTING, &adapter->state); 770 return err; 771 } 772 773 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 774 int reg, int offset, u32 mask, u32 write) 775 { 776 u32 pat, val; 777 static const u32 test[] = { 778 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 779 }; 780 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 781 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 782 (test[pat] & write)); 783 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 784 if (val != (test[pat] & write & mask)) { 785 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 786 reg + (offset << 2), val, 787 (test[pat] & write & mask)); 788 *data = reg; 789 return true; 790 } 791 } 792 return false; 793 } 794 795 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 796 int reg, u32 mask, u32 write) 797 { 798 u32 val; 799 800 __ew32(&adapter->hw, reg, write & mask); 801 val = __er32(&adapter->hw, reg); 802 if ((write & mask) != (val & mask)) { 803 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 804 reg, (val & mask), (write & mask)); 805 *data = reg; 806 return true; 807 } 808 return false; 809 } 810 811 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 812 do { \ 813 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 814 return 1; \ 815 } while (0) 816 #define REG_PATTERN_TEST(reg, mask, write) \ 817 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 818 819 #define REG_SET_AND_CHECK(reg, mask, write) \ 820 do { \ 821 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 822 return 1; \ 823 } while (0) 824 825 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 826 { 827 struct e1000_hw *hw = &adapter->hw; 828 struct e1000_mac_info *mac = &adapter->hw.mac; 829 u32 value; 830 u32 before; 831 u32 after; 832 u32 i; 833 u32 toggle; 834 u32 mask; 835 u32 wlock_mac = 0; 836 837 /* The status register is Read Only, so a write should fail. 838 * Some bits that get toggled are ignored. There are several bits 839 * on newer hardware that are r/w. 840 */ 841 switch (mac->type) { 842 case e1000_82571: 843 case e1000_82572: 844 case e1000_80003es2lan: 845 toggle = 0x7FFFF3FF; 846 break; 847 default: 848 toggle = 0x7FFFF033; 849 break; 850 } 851 852 before = er32(STATUS); 853 value = (er32(STATUS) & toggle); 854 ew32(STATUS, toggle); 855 after = er32(STATUS) & toggle; 856 if (value != after) { 857 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 858 after, value); 859 *data = 1; 860 return 1; 861 } 862 /* restore previous status */ 863 ew32(STATUS, before); 864 865 if (!(adapter->flags & FLAG_IS_ICH)) { 866 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 867 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 868 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 869 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 870 } 871 872 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 873 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 874 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 875 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 876 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 877 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 878 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 879 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 880 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 881 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 882 883 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 884 885 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 886 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 887 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 888 889 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 890 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 891 if (!(adapter->flags & FLAG_IS_ICH)) 892 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 893 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 894 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 895 mask = 0x8003FFFF; 896 switch (mac->type) { 897 case e1000_ich10lan: 898 case e1000_pchlan: 899 case e1000_pch2lan: 900 case e1000_pch_lpt: 901 case e1000_pch_spt: 902 case e1000_pch_cnp: 903 case e1000_pch_tgp: 904 case e1000_pch_adp: 905 case e1000_pch_mtp: 906 case e1000_pch_lnp: 907 mask |= BIT(18); 908 break; 909 default: 910 break; 911 } 912 913 if (mac->type >= e1000_pch_lpt) 914 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 915 E1000_FWSM_WLOCK_MAC_SHIFT; 916 917 for (i = 0; i < mac->rar_entry_count; i++) { 918 if (mac->type >= e1000_pch_lpt) { 919 /* Cannot test write-protected SHRAL[n] registers */ 920 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 921 continue; 922 923 /* SHRAH[9] different than the others */ 924 if (i == 10) 925 mask |= BIT(30); 926 else 927 mask &= ~BIT(30); 928 } 929 if (mac->type == e1000_pch2lan) { 930 /* SHRAH[0,1,2] different than previous */ 931 if (i == 1) 932 mask &= 0xFFF4FFFF; 933 /* SHRAH[3] different than SHRAH[0,1,2] */ 934 if (i == 4) 935 mask |= BIT(30); 936 /* RAR[1-6] owned by management engine - skipping */ 937 if (i > 0) 938 i += 6; 939 } 940 941 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 942 0xFFFFFFFF); 943 /* reset index to actual value */ 944 if ((mac->type == e1000_pch2lan) && (i > 6)) 945 i -= 6; 946 } 947 948 for (i = 0; i < mac->mta_reg_count; i++) 949 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 950 951 *data = 0; 952 953 return 0; 954 } 955 956 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 957 { 958 u16 temp; 959 u16 checksum = 0; 960 u16 i; 961 962 *data = 0; 963 /* Read and add up the contents of the EEPROM */ 964 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 965 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 966 *data = 1; 967 return *data; 968 } 969 checksum += temp; 970 } 971 972 /* If Checksum is not Correct return error else test passed */ 973 if ((checksum != (u16)NVM_SUM) && !(*data)) 974 *data = 2; 975 976 return *data; 977 } 978 979 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 980 { 981 struct net_device *netdev = (struct net_device *)data; 982 struct e1000_adapter *adapter = netdev_priv(netdev); 983 struct e1000_hw *hw = &adapter->hw; 984 985 adapter->test_icr |= er32(ICR); 986 987 return IRQ_HANDLED; 988 } 989 990 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 991 { 992 struct net_device *netdev = adapter->netdev; 993 struct e1000_hw *hw = &adapter->hw; 994 u32 mask; 995 u32 shared_int = 1; 996 u32 irq = adapter->pdev->irq; 997 int i; 998 int ret_val = 0; 999 int int_mode = E1000E_INT_MODE_LEGACY; 1000 1001 *data = 0; 1002 1003 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 1004 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 1005 int_mode = adapter->int_mode; 1006 e1000e_reset_interrupt_capability(adapter); 1007 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1008 e1000e_set_interrupt_capability(adapter); 1009 } 1010 /* Hook up test interrupt handler just for this test */ 1011 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1012 netdev)) { 1013 shared_int = 0; 1014 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1015 netdev)) { 1016 *data = 1; 1017 ret_val = -1; 1018 goto out; 1019 } 1020 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1021 1022 /* Disable all the interrupts */ 1023 ew32(IMC, 0xFFFFFFFF); 1024 e1e_flush(); 1025 usleep_range(10000, 11000); 1026 1027 /* Test each interrupt */ 1028 for (i = 0; i < 10; i++) { 1029 /* Interrupt to test */ 1030 mask = BIT(i); 1031 1032 if (adapter->flags & FLAG_IS_ICH) { 1033 switch (mask) { 1034 case E1000_ICR_RXSEQ: 1035 continue; 1036 case 0x00000100: 1037 if (adapter->hw.mac.type == e1000_ich8lan || 1038 adapter->hw.mac.type == e1000_ich9lan) 1039 continue; 1040 break; 1041 default: 1042 break; 1043 } 1044 } 1045 1046 if (!shared_int) { 1047 /* Disable the interrupt to be reported in 1048 * the cause register and then force the same 1049 * interrupt and see if one gets posted. If 1050 * an interrupt was posted to the bus, the 1051 * test failed. 1052 */ 1053 adapter->test_icr = 0; 1054 ew32(IMC, mask); 1055 ew32(ICS, mask); 1056 e1e_flush(); 1057 usleep_range(10000, 11000); 1058 1059 if (adapter->test_icr & mask) { 1060 *data = 3; 1061 break; 1062 } 1063 } 1064 1065 /* Enable the interrupt to be reported in 1066 * the cause register and then force the same 1067 * interrupt and see if one gets posted. If 1068 * an interrupt was not posted to the bus, the 1069 * test failed. 1070 */ 1071 adapter->test_icr = 0; 1072 ew32(IMS, mask); 1073 ew32(ICS, mask); 1074 e1e_flush(); 1075 usleep_range(10000, 11000); 1076 1077 if (!(adapter->test_icr & mask)) { 1078 *data = 4; 1079 break; 1080 } 1081 1082 if (!shared_int) { 1083 /* Disable the other interrupts to be reported in 1084 * the cause register and then force the other 1085 * interrupts and see if any get posted. If 1086 * an interrupt was posted to the bus, the 1087 * test failed. 1088 */ 1089 adapter->test_icr = 0; 1090 ew32(IMC, ~mask & 0x00007FFF); 1091 ew32(ICS, ~mask & 0x00007FFF); 1092 e1e_flush(); 1093 usleep_range(10000, 11000); 1094 1095 if (adapter->test_icr) { 1096 *data = 5; 1097 break; 1098 } 1099 } 1100 } 1101 1102 /* Disable all the interrupts */ 1103 ew32(IMC, 0xFFFFFFFF); 1104 e1e_flush(); 1105 usleep_range(10000, 11000); 1106 1107 /* Unhook test interrupt handler */ 1108 free_irq(irq, netdev); 1109 1110 out: 1111 if (int_mode == E1000E_INT_MODE_MSIX) { 1112 e1000e_reset_interrupt_capability(adapter); 1113 adapter->int_mode = int_mode; 1114 e1000e_set_interrupt_capability(adapter); 1115 } 1116 1117 return ret_val; 1118 } 1119 1120 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1121 { 1122 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1123 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1124 struct pci_dev *pdev = adapter->pdev; 1125 struct e1000_buffer *buffer_info; 1126 int i; 1127 1128 if (tx_ring->desc && tx_ring->buffer_info) { 1129 for (i = 0; i < tx_ring->count; i++) { 1130 buffer_info = &tx_ring->buffer_info[i]; 1131 1132 if (buffer_info->dma) 1133 dma_unmap_single(&pdev->dev, 1134 buffer_info->dma, 1135 buffer_info->length, 1136 DMA_TO_DEVICE); 1137 dev_kfree_skb(buffer_info->skb); 1138 } 1139 } 1140 1141 if (rx_ring->desc && rx_ring->buffer_info) { 1142 for (i = 0; i < rx_ring->count; i++) { 1143 buffer_info = &rx_ring->buffer_info[i]; 1144 1145 if (buffer_info->dma) 1146 dma_unmap_single(&pdev->dev, 1147 buffer_info->dma, 1148 2048, DMA_FROM_DEVICE); 1149 dev_kfree_skb(buffer_info->skb); 1150 } 1151 } 1152 1153 if (tx_ring->desc) { 1154 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1155 tx_ring->dma); 1156 tx_ring->desc = NULL; 1157 } 1158 if (rx_ring->desc) { 1159 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1160 rx_ring->dma); 1161 rx_ring->desc = NULL; 1162 } 1163 1164 kfree(tx_ring->buffer_info); 1165 tx_ring->buffer_info = NULL; 1166 kfree(rx_ring->buffer_info); 1167 rx_ring->buffer_info = NULL; 1168 } 1169 1170 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1171 { 1172 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1173 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1174 struct pci_dev *pdev = adapter->pdev; 1175 struct e1000_hw *hw = &adapter->hw; 1176 u32 rctl; 1177 int i; 1178 int ret_val; 1179 1180 /* Setup Tx descriptor ring and Tx buffers */ 1181 1182 if (!tx_ring->count) 1183 tx_ring->count = E1000_DEFAULT_TXD; 1184 1185 tx_ring->buffer_info = kcalloc(tx_ring->count, 1186 sizeof(struct e1000_buffer), GFP_KERNEL); 1187 if (!tx_ring->buffer_info) { 1188 ret_val = 1; 1189 goto err_nomem; 1190 } 1191 1192 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1193 tx_ring->size = ALIGN(tx_ring->size, 4096); 1194 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1195 &tx_ring->dma, GFP_KERNEL); 1196 if (!tx_ring->desc) { 1197 ret_val = 2; 1198 goto err_nomem; 1199 } 1200 tx_ring->next_to_use = 0; 1201 tx_ring->next_to_clean = 0; 1202 1203 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1204 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1205 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1206 ew32(TDH(0), 0); 1207 ew32(TDT(0), 0); 1208 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1209 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1210 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1211 1212 for (i = 0; i < tx_ring->count; i++) { 1213 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1214 struct sk_buff *skb; 1215 unsigned int skb_size = 1024; 1216 1217 skb = alloc_skb(skb_size, GFP_KERNEL); 1218 if (!skb) { 1219 ret_val = 3; 1220 goto err_nomem; 1221 } 1222 skb_put(skb, skb_size); 1223 tx_ring->buffer_info[i].skb = skb; 1224 tx_ring->buffer_info[i].length = skb->len; 1225 tx_ring->buffer_info[i].dma = 1226 dma_map_single(&pdev->dev, skb->data, skb->len, 1227 DMA_TO_DEVICE); 1228 if (dma_mapping_error(&pdev->dev, 1229 tx_ring->buffer_info[i].dma)) { 1230 ret_val = 4; 1231 goto err_nomem; 1232 } 1233 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1234 tx_desc->lower.data = cpu_to_le32(skb->len); 1235 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1236 E1000_TXD_CMD_IFCS | 1237 E1000_TXD_CMD_RS); 1238 tx_desc->upper.data = 0; 1239 } 1240 1241 /* Setup Rx descriptor ring and Rx buffers */ 1242 1243 if (!rx_ring->count) 1244 rx_ring->count = E1000_DEFAULT_RXD; 1245 1246 rx_ring->buffer_info = kcalloc(rx_ring->count, 1247 sizeof(struct e1000_buffer), GFP_KERNEL); 1248 if (!rx_ring->buffer_info) { 1249 ret_val = 5; 1250 goto err_nomem; 1251 } 1252 1253 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1254 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1255 &rx_ring->dma, GFP_KERNEL); 1256 if (!rx_ring->desc) { 1257 ret_val = 6; 1258 goto err_nomem; 1259 } 1260 rx_ring->next_to_use = 0; 1261 rx_ring->next_to_clean = 0; 1262 1263 rctl = er32(RCTL); 1264 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1265 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1266 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1267 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1268 ew32(RDLEN(0), rx_ring->size); 1269 ew32(RDH(0), 0); 1270 ew32(RDT(0), 0); 1271 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1272 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1273 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1274 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1275 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1276 ew32(RCTL, rctl); 1277 1278 for (i = 0; i < rx_ring->count; i++) { 1279 union e1000_rx_desc_extended *rx_desc; 1280 struct sk_buff *skb; 1281 1282 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1283 if (!skb) { 1284 ret_val = 7; 1285 goto err_nomem; 1286 } 1287 skb_reserve(skb, NET_IP_ALIGN); 1288 rx_ring->buffer_info[i].skb = skb; 1289 rx_ring->buffer_info[i].dma = 1290 dma_map_single(&pdev->dev, skb->data, 2048, 1291 DMA_FROM_DEVICE); 1292 if (dma_mapping_error(&pdev->dev, 1293 rx_ring->buffer_info[i].dma)) { 1294 ret_val = 8; 1295 goto err_nomem; 1296 } 1297 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1298 rx_desc->read.buffer_addr = 1299 cpu_to_le64(rx_ring->buffer_info[i].dma); 1300 memset(skb->data, 0x00, skb->len); 1301 } 1302 1303 return 0; 1304 1305 err_nomem: 1306 e1000_free_desc_rings(adapter); 1307 return ret_val; 1308 } 1309 1310 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1311 { 1312 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1313 e1e_wphy(&adapter->hw, 29, 0x001F); 1314 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1315 e1e_wphy(&adapter->hw, 29, 0x001A); 1316 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1317 } 1318 1319 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1320 { 1321 struct e1000_hw *hw = &adapter->hw; 1322 u32 ctrl_reg = 0; 1323 u16 phy_reg = 0; 1324 s32 ret_val = 0; 1325 1326 hw->mac.autoneg = 0; 1327 1328 if (hw->phy.type == e1000_phy_ife) { 1329 /* force 100, set loopback */ 1330 e1e_wphy(hw, MII_BMCR, 0x6100); 1331 1332 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1333 ctrl_reg = er32(CTRL); 1334 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1335 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1336 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1337 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1338 E1000_CTRL_FD); /* Force Duplex to FULL */ 1339 1340 ew32(CTRL, ctrl_reg); 1341 e1e_flush(); 1342 usleep_range(500, 1000); 1343 1344 return 0; 1345 } 1346 1347 /* Specific PHY configuration for loopback */ 1348 switch (hw->phy.type) { 1349 case e1000_phy_m88: 1350 /* Auto-MDI/MDIX Off */ 1351 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1352 /* reset to update Auto-MDI/MDIX */ 1353 e1e_wphy(hw, MII_BMCR, 0x9140); 1354 /* autoneg off */ 1355 e1e_wphy(hw, MII_BMCR, 0x8140); 1356 break; 1357 case e1000_phy_gg82563: 1358 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1359 break; 1360 case e1000_phy_bm: 1361 /* Set Default MAC Interface speed to 1GB */ 1362 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1363 phy_reg &= ~0x0007; 1364 phy_reg |= 0x006; 1365 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1366 /* Assert SW reset for above settings to take effect */ 1367 hw->phy.ops.commit(hw); 1368 usleep_range(1000, 2000); 1369 /* Force Full Duplex */ 1370 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1371 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1372 /* Set Link Up (in force link) */ 1373 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1374 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1375 /* Force Link */ 1376 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1377 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1378 /* Set Early Link Enable */ 1379 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1380 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1381 break; 1382 case e1000_phy_82577: 1383 case e1000_phy_82578: 1384 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1385 ret_val = hw->phy.ops.acquire(hw); 1386 if (ret_val) { 1387 e_err("Cannot setup 1Gbps loopback.\n"); 1388 return ret_val; 1389 } 1390 e1000_configure_k1_ich8lan(hw, false); 1391 hw->phy.ops.release(hw); 1392 break; 1393 case e1000_phy_82579: 1394 /* Disable PHY energy detect power down */ 1395 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1396 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1397 /* Disable full chip energy detect */ 1398 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1399 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1400 /* Enable loopback on the PHY */ 1401 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1402 break; 1403 default: 1404 break; 1405 } 1406 1407 /* force 1000, set loopback */ 1408 e1e_wphy(hw, MII_BMCR, 0x4140); 1409 msleep(250); 1410 1411 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1412 ctrl_reg = er32(CTRL); 1413 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1414 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1415 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1416 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1417 E1000_CTRL_FD); /* Force Duplex to FULL */ 1418 1419 if (adapter->flags & FLAG_IS_ICH) 1420 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1421 1422 if (hw->phy.media_type == e1000_media_type_copper && 1423 hw->phy.type == e1000_phy_m88) { 1424 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1425 } else { 1426 /* Set the ILOS bit on the fiber Nic if half duplex link is 1427 * detected. 1428 */ 1429 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1430 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1431 } 1432 1433 ew32(CTRL, ctrl_reg); 1434 1435 /* Disable the receiver on the PHY so when a cable is plugged in, the 1436 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1437 */ 1438 if (hw->phy.type == e1000_phy_m88) 1439 e1000_phy_disable_receiver(adapter); 1440 1441 usleep_range(500, 1000); 1442 1443 return 0; 1444 } 1445 1446 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1447 { 1448 struct e1000_hw *hw = &adapter->hw; 1449 u32 ctrl = er32(CTRL); 1450 int link; 1451 1452 /* special requirements for 82571/82572 fiber adapters */ 1453 1454 /* jump through hoops to make sure link is up because serdes 1455 * link is hardwired up 1456 */ 1457 ctrl |= E1000_CTRL_SLU; 1458 ew32(CTRL, ctrl); 1459 1460 /* disable autoneg */ 1461 ctrl = er32(TXCW); 1462 ctrl &= ~BIT(31); 1463 ew32(TXCW, ctrl); 1464 1465 link = (er32(STATUS) & E1000_STATUS_LU); 1466 1467 if (!link) { 1468 /* set invert loss of signal */ 1469 ctrl = er32(CTRL); 1470 ctrl |= E1000_CTRL_ILOS; 1471 ew32(CTRL, ctrl); 1472 } 1473 1474 /* special write to serdes control register to enable SerDes analog 1475 * loopback 1476 */ 1477 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1478 e1e_flush(); 1479 usleep_range(10000, 11000); 1480 1481 return 0; 1482 } 1483 1484 /* only call this for fiber/serdes connections to es2lan */ 1485 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1486 { 1487 struct e1000_hw *hw = &adapter->hw; 1488 u32 ctrlext = er32(CTRL_EXT); 1489 u32 ctrl = er32(CTRL); 1490 1491 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1492 * on mac_type 80003es2lan) 1493 */ 1494 adapter->tx_fifo_head = ctrlext; 1495 1496 /* clear the serdes mode bits, putting the device into mac loopback */ 1497 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1498 ew32(CTRL_EXT, ctrlext); 1499 1500 /* force speed to 1000/FD, link up */ 1501 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1502 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1503 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1504 ew32(CTRL, ctrl); 1505 1506 /* set mac loopback */ 1507 ctrl = er32(RCTL); 1508 ctrl |= E1000_RCTL_LBM_MAC; 1509 ew32(RCTL, ctrl); 1510 1511 /* set testing mode parameters (no need to reset later) */ 1512 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1513 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1514 ew32(KMRNCTRLSTA, 1515 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1516 1517 return 0; 1518 } 1519 1520 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1521 { 1522 struct e1000_hw *hw = &adapter->hw; 1523 u32 rctl, fext_nvm11, tarc0; 1524 1525 if (hw->mac.type >= e1000_pch_spt) { 1526 fext_nvm11 = er32(FEXTNVM11); 1527 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1528 ew32(FEXTNVM11, fext_nvm11); 1529 tarc0 = er32(TARC(0)); 1530 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1531 tarc0 &= 0xcfffffff; 1532 /* set bit 29 (value of MULR requests is now 2) */ 1533 tarc0 |= 0x20000000; 1534 ew32(TARC(0), tarc0); 1535 } 1536 if (hw->phy.media_type == e1000_media_type_fiber || 1537 hw->phy.media_type == e1000_media_type_internal_serdes) { 1538 switch (hw->mac.type) { 1539 case e1000_80003es2lan: 1540 return e1000_set_es2lan_mac_loopback(adapter); 1541 case e1000_82571: 1542 case e1000_82572: 1543 return e1000_set_82571_fiber_loopback(adapter); 1544 default: 1545 rctl = er32(RCTL); 1546 rctl |= E1000_RCTL_LBM_TCVR; 1547 ew32(RCTL, rctl); 1548 return 0; 1549 } 1550 } else if (hw->phy.media_type == e1000_media_type_copper) { 1551 return e1000_integrated_phy_loopback(adapter); 1552 } 1553 1554 return 7; 1555 } 1556 1557 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1558 { 1559 struct e1000_hw *hw = &adapter->hw; 1560 u32 rctl, fext_nvm11, tarc0; 1561 u16 phy_reg; 1562 1563 rctl = er32(RCTL); 1564 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1565 ew32(RCTL, rctl); 1566 1567 switch (hw->mac.type) { 1568 case e1000_pch_spt: 1569 case e1000_pch_cnp: 1570 case e1000_pch_tgp: 1571 case e1000_pch_adp: 1572 case e1000_pch_mtp: 1573 case e1000_pch_lnp: 1574 fext_nvm11 = er32(FEXTNVM11); 1575 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1576 ew32(FEXTNVM11, fext_nvm11); 1577 tarc0 = er32(TARC(0)); 1578 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1579 /* set bit 29 (value of MULR requests is now 0) */ 1580 tarc0 &= 0xcfffffff; 1581 ew32(TARC(0), tarc0); 1582 fallthrough; 1583 case e1000_80003es2lan: 1584 if (hw->phy.media_type == e1000_media_type_fiber || 1585 hw->phy.media_type == e1000_media_type_internal_serdes) { 1586 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1587 ew32(CTRL_EXT, adapter->tx_fifo_head); 1588 adapter->tx_fifo_head = 0; 1589 } 1590 fallthrough; 1591 case e1000_82571: 1592 case e1000_82572: 1593 if (hw->phy.media_type == e1000_media_type_fiber || 1594 hw->phy.media_type == e1000_media_type_internal_serdes) { 1595 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1596 e1e_flush(); 1597 usleep_range(10000, 11000); 1598 break; 1599 } 1600 fallthrough; 1601 default: 1602 hw->mac.autoneg = 1; 1603 if (hw->phy.type == e1000_phy_gg82563) 1604 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1605 e1e_rphy(hw, MII_BMCR, &phy_reg); 1606 if (phy_reg & BMCR_LOOPBACK) { 1607 phy_reg &= ~BMCR_LOOPBACK; 1608 e1e_wphy(hw, MII_BMCR, phy_reg); 1609 if (hw->phy.ops.commit) 1610 hw->phy.ops.commit(hw); 1611 } 1612 break; 1613 } 1614 } 1615 1616 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1617 unsigned int frame_size) 1618 { 1619 memset(skb->data, 0xFF, frame_size); 1620 frame_size &= ~1; 1621 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1622 skb->data[frame_size / 2 + 10] = 0xBE; 1623 skb->data[frame_size / 2 + 12] = 0xAF; 1624 } 1625 1626 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1627 unsigned int frame_size) 1628 { 1629 frame_size &= ~1; 1630 if (*(skb->data + 3) == 0xFF) 1631 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1632 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1633 return 0; 1634 return 13; 1635 } 1636 1637 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1638 { 1639 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1640 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1641 struct pci_dev *pdev = adapter->pdev; 1642 struct e1000_hw *hw = &adapter->hw; 1643 struct e1000_buffer *buffer_info; 1644 int i, j, k, l; 1645 int lc; 1646 int good_cnt; 1647 int ret_val = 0; 1648 unsigned long time; 1649 1650 ew32(RDT(0), rx_ring->count - 1); 1651 1652 /* Calculate the loop count based on the largest descriptor ring 1653 * The idea is to wrap the largest ring a number of times using 64 1654 * send/receive pairs during each loop 1655 */ 1656 1657 if (rx_ring->count <= tx_ring->count) 1658 lc = ((tx_ring->count / 64) * 2) + 1; 1659 else 1660 lc = ((rx_ring->count / 64) * 2) + 1; 1661 1662 k = 0; 1663 l = 0; 1664 /* loop count loop */ 1665 for (j = 0; j <= lc; j++) { 1666 /* send the packets */ 1667 for (i = 0; i < 64; i++) { 1668 buffer_info = &tx_ring->buffer_info[k]; 1669 1670 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1671 dma_sync_single_for_device(&pdev->dev, 1672 buffer_info->dma, 1673 buffer_info->length, 1674 DMA_TO_DEVICE); 1675 k++; 1676 if (k == tx_ring->count) 1677 k = 0; 1678 } 1679 ew32(TDT(0), k); 1680 e1e_flush(); 1681 msleep(200); 1682 time = jiffies; /* set the start time for the receive */ 1683 good_cnt = 0; 1684 /* receive the sent packets */ 1685 do { 1686 buffer_info = &rx_ring->buffer_info[l]; 1687 1688 dma_sync_single_for_cpu(&pdev->dev, 1689 buffer_info->dma, 2048, 1690 DMA_FROM_DEVICE); 1691 1692 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1693 1024); 1694 if (!ret_val) 1695 good_cnt++; 1696 l++; 1697 if (l == rx_ring->count) 1698 l = 0; 1699 /* time + 20 msecs (200 msecs on 2.4) is more than 1700 * enough time to complete the receives, if it's 1701 * exceeded, break and error off 1702 */ 1703 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1704 if (good_cnt != 64) { 1705 ret_val = 13; /* ret_val is the same as mis-compare */ 1706 break; 1707 } 1708 if (time_after(jiffies, time + 20)) { 1709 ret_val = 14; /* error code for time out error */ 1710 break; 1711 } 1712 } 1713 return ret_val; 1714 } 1715 1716 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1717 { 1718 struct e1000_hw *hw = &adapter->hw; 1719 1720 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1721 if (hw->phy.ops.check_reset_block && 1722 hw->phy.ops.check_reset_block(hw)) { 1723 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1724 *data = 0; 1725 goto out; 1726 } 1727 1728 *data = e1000_setup_desc_rings(adapter); 1729 if (*data) 1730 goto out; 1731 1732 *data = e1000_setup_loopback_test(adapter); 1733 if (*data) 1734 goto err_loopback; 1735 1736 *data = e1000_run_loopback_test(adapter); 1737 e1000_loopback_cleanup(adapter); 1738 1739 err_loopback: 1740 e1000_free_desc_rings(adapter); 1741 out: 1742 return *data; 1743 } 1744 1745 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1746 { 1747 struct e1000_hw *hw = &adapter->hw; 1748 1749 *data = 0; 1750 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1751 int i = 0; 1752 1753 hw->mac.serdes_has_link = false; 1754 1755 /* On some blade server designs, link establishment 1756 * could take as long as 2-3 minutes 1757 */ 1758 do { 1759 hw->mac.ops.check_for_link(hw); 1760 if (hw->mac.serdes_has_link) 1761 return *data; 1762 msleep(20); 1763 } while (i++ < 3750); 1764 1765 *data = 1; 1766 } else { 1767 hw->mac.ops.check_for_link(hw); 1768 if (hw->mac.autoneg) 1769 /* On some Phy/switch combinations, link establishment 1770 * can take a few seconds more than expected. 1771 */ 1772 msleep_interruptible(5000); 1773 1774 if (!(er32(STATUS) & E1000_STATUS_LU)) 1775 *data = 1; 1776 } 1777 return *data; 1778 } 1779 1780 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1781 int sset) 1782 { 1783 switch (sset) { 1784 case ETH_SS_TEST: 1785 return E1000_TEST_LEN; 1786 case ETH_SS_STATS: 1787 return E1000_STATS_LEN; 1788 case ETH_SS_PRIV_FLAGS: 1789 return E1000E_PRIV_FLAGS_STR_LEN; 1790 default: 1791 return -EOPNOTSUPP; 1792 } 1793 } 1794 1795 static void e1000_diag_test(struct net_device *netdev, 1796 struct ethtool_test *eth_test, u64 *data) 1797 { 1798 struct e1000_adapter *adapter = netdev_priv(netdev); 1799 u16 autoneg_advertised; 1800 u8 forced_speed_duplex; 1801 u8 autoneg; 1802 bool if_running = netif_running(netdev); 1803 1804 pm_runtime_get_sync(netdev->dev.parent); 1805 1806 set_bit(__E1000_TESTING, &adapter->state); 1807 1808 if (!if_running) { 1809 /* Get control of and reset hardware */ 1810 if (adapter->flags & FLAG_HAS_AMT) 1811 e1000e_get_hw_control(adapter); 1812 1813 e1000e_power_up_phy(adapter); 1814 1815 adapter->hw.phy.autoneg_wait_to_complete = 1; 1816 e1000e_reset(adapter); 1817 adapter->hw.phy.autoneg_wait_to_complete = 0; 1818 } 1819 1820 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1821 /* Offline tests */ 1822 1823 /* save speed, duplex, autoneg settings */ 1824 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1825 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1826 autoneg = adapter->hw.mac.autoneg; 1827 1828 e_info("offline testing starting\n"); 1829 1830 if (if_running) 1831 /* indicate we're in test mode */ 1832 e1000e_close(netdev); 1833 1834 if (e1000_reg_test(adapter, &data[0])) 1835 eth_test->flags |= ETH_TEST_FL_FAILED; 1836 1837 e1000e_reset(adapter); 1838 if (e1000_eeprom_test(adapter, &data[1])) 1839 eth_test->flags |= ETH_TEST_FL_FAILED; 1840 1841 e1000e_reset(adapter); 1842 if (e1000_intr_test(adapter, &data[2])) 1843 eth_test->flags |= ETH_TEST_FL_FAILED; 1844 1845 e1000e_reset(adapter); 1846 if (e1000_loopback_test(adapter, &data[3])) 1847 eth_test->flags |= ETH_TEST_FL_FAILED; 1848 1849 /* force this routine to wait until autoneg complete/timeout */ 1850 adapter->hw.phy.autoneg_wait_to_complete = 1; 1851 e1000e_reset(adapter); 1852 adapter->hw.phy.autoneg_wait_to_complete = 0; 1853 1854 if (e1000_link_test(adapter, &data[4])) 1855 eth_test->flags |= ETH_TEST_FL_FAILED; 1856 1857 /* restore speed, duplex, autoneg settings */ 1858 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1859 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1860 adapter->hw.mac.autoneg = autoneg; 1861 e1000e_reset(adapter); 1862 1863 clear_bit(__E1000_TESTING, &adapter->state); 1864 if (if_running) 1865 e1000e_open(netdev); 1866 } else { 1867 /* Online tests */ 1868 1869 e_info("online testing starting\n"); 1870 1871 /* register, eeprom, intr and loopback tests not run online */ 1872 data[0] = 0; 1873 data[1] = 0; 1874 data[2] = 0; 1875 data[3] = 0; 1876 1877 if (e1000_link_test(adapter, &data[4])) 1878 eth_test->flags |= ETH_TEST_FL_FAILED; 1879 1880 clear_bit(__E1000_TESTING, &adapter->state); 1881 } 1882 1883 if (!if_running) { 1884 e1000e_reset(adapter); 1885 1886 if (adapter->flags & FLAG_HAS_AMT) 1887 e1000e_release_hw_control(adapter); 1888 } 1889 1890 msleep_interruptible(4 * 1000); 1891 1892 pm_runtime_put_sync(netdev->dev.parent); 1893 } 1894 1895 static void e1000_get_wol(struct net_device *netdev, 1896 struct ethtool_wolinfo *wol) 1897 { 1898 struct e1000_adapter *adapter = netdev_priv(netdev); 1899 1900 wol->supported = 0; 1901 wol->wolopts = 0; 1902 1903 if (!(adapter->flags & FLAG_HAS_WOL) || 1904 !device_can_wakeup(&adapter->pdev->dev)) 1905 return; 1906 1907 wol->supported = WAKE_UCAST | WAKE_MCAST | 1908 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1909 1910 /* apply any specific unsupported masks here */ 1911 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1912 wol->supported &= ~WAKE_UCAST; 1913 1914 if (adapter->wol & E1000_WUFC_EX) 1915 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1916 } 1917 1918 if (adapter->wol & E1000_WUFC_EX) 1919 wol->wolopts |= WAKE_UCAST; 1920 if (adapter->wol & E1000_WUFC_MC) 1921 wol->wolopts |= WAKE_MCAST; 1922 if (adapter->wol & E1000_WUFC_BC) 1923 wol->wolopts |= WAKE_BCAST; 1924 if (adapter->wol & E1000_WUFC_MAG) 1925 wol->wolopts |= WAKE_MAGIC; 1926 if (adapter->wol & E1000_WUFC_LNKC) 1927 wol->wolopts |= WAKE_PHY; 1928 } 1929 1930 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1931 { 1932 struct e1000_adapter *adapter = netdev_priv(netdev); 1933 1934 if (!(adapter->flags & FLAG_HAS_WOL) || 1935 !device_can_wakeup(&adapter->pdev->dev) || 1936 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1937 WAKE_MAGIC | WAKE_PHY))) 1938 return -EOPNOTSUPP; 1939 1940 /* these settings will always override what we currently have */ 1941 adapter->wol = 0; 1942 1943 if (wol->wolopts & WAKE_UCAST) 1944 adapter->wol |= E1000_WUFC_EX; 1945 if (wol->wolopts & WAKE_MCAST) 1946 adapter->wol |= E1000_WUFC_MC; 1947 if (wol->wolopts & WAKE_BCAST) 1948 adapter->wol |= E1000_WUFC_BC; 1949 if (wol->wolopts & WAKE_MAGIC) 1950 adapter->wol |= E1000_WUFC_MAG; 1951 if (wol->wolopts & WAKE_PHY) 1952 adapter->wol |= E1000_WUFC_LNKC; 1953 1954 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1955 1956 return 0; 1957 } 1958 1959 static int e1000_set_phys_id(struct net_device *netdev, 1960 enum ethtool_phys_id_state state) 1961 { 1962 struct e1000_adapter *adapter = netdev_priv(netdev); 1963 struct e1000_hw *hw = &adapter->hw; 1964 1965 switch (state) { 1966 case ETHTOOL_ID_ACTIVE: 1967 pm_runtime_get_sync(netdev->dev.parent); 1968 1969 if (!hw->mac.ops.blink_led) 1970 return 2; /* cycle on/off twice per second */ 1971 1972 hw->mac.ops.blink_led(hw); 1973 break; 1974 1975 case ETHTOOL_ID_INACTIVE: 1976 if (hw->phy.type == e1000_phy_ife) 1977 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1978 hw->mac.ops.led_off(hw); 1979 hw->mac.ops.cleanup_led(hw); 1980 pm_runtime_put_sync(netdev->dev.parent); 1981 break; 1982 1983 case ETHTOOL_ID_ON: 1984 hw->mac.ops.led_on(hw); 1985 break; 1986 1987 case ETHTOOL_ID_OFF: 1988 hw->mac.ops.led_off(hw); 1989 break; 1990 } 1991 1992 return 0; 1993 } 1994 1995 static int e1000_get_coalesce(struct net_device *netdev, 1996 struct ethtool_coalesce *ec, 1997 struct kernel_ethtool_coalesce *kernel_coal, 1998 struct netlink_ext_ack *extack) 1999 { 2000 struct e1000_adapter *adapter = netdev_priv(netdev); 2001 2002 if (adapter->itr_setting <= 4) 2003 ec->rx_coalesce_usecs = adapter->itr_setting; 2004 else 2005 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 2006 2007 return 0; 2008 } 2009 2010 static int e1000_set_coalesce(struct net_device *netdev, 2011 struct ethtool_coalesce *ec, 2012 struct kernel_ethtool_coalesce *kernel_coal, 2013 struct netlink_ext_ack *extack) 2014 { 2015 struct e1000_adapter *adapter = netdev_priv(netdev); 2016 2017 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2018 ((ec->rx_coalesce_usecs > 4) && 2019 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2020 (ec->rx_coalesce_usecs == 2)) 2021 return -EINVAL; 2022 2023 if (ec->rx_coalesce_usecs == 4) { 2024 adapter->itr_setting = 4; 2025 adapter->itr = adapter->itr_setting; 2026 } else if (ec->rx_coalesce_usecs <= 3) { 2027 adapter->itr = 20000; 2028 adapter->itr_setting = ec->rx_coalesce_usecs; 2029 } else { 2030 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2031 adapter->itr_setting = adapter->itr & ~3; 2032 } 2033 2034 pm_runtime_get_sync(netdev->dev.parent); 2035 2036 if (adapter->itr_setting != 0) 2037 e1000e_write_itr(adapter, adapter->itr); 2038 else 2039 e1000e_write_itr(adapter, 0); 2040 2041 pm_runtime_put_sync(netdev->dev.parent); 2042 2043 return 0; 2044 } 2045 2046 static int e1000_nway_reset(struct net_device *netdev) 2047 { 2048 struct e1000_adapter *adapter = netdev_priv(netdev); 2049 2050 if (!netif_running(netdev)) 2051 return -EAGAIN; 2052 2053 if (!adapter->hw.mac.autoneg) 2054 return -EINVAL; 2055 2056 pm_runtime_get_sync(netdev->dev.parent); 2057 e1000e_reinit_locked(adapter); 2058 pm_runtime_put_sync(netdev->dev.parent); 2059 2060 return 0; 2061 } 2062 2063 static void e1000_get_ethtool_stats(struct net_device *netdev, 2064 struct ethtool_stats __always_unused *stats, 2065 u64 *data) 2066 { 2067 struct e1000_adapter *adapter = netdev_priv(netdev); 2068 struct rtnl_link_stats64 net_stats; 2069 int i; 2070 char *p = NULL; 2071 2072 pm_runtime_get_sync(netdev->dev.parent); 2073 2074 dev_get_stats(netdev, &net_stats); 2075 2076 pm_runtime_put_sync(netdev->dev.parent); 2077 2078 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2079 switch (e1000_gstrings_stats[i].type) { 2080 case NETDEV_STATS: 2081 p = (char *)&net_stats + 2082 e1000_gstrings_stats[i].stat_offset; 2083 break; 2084 case E1000_STATS: 2085 p = (char *)adapter + 2086 e1000_gstrings_stats[i].stat_offset; 2087 break; 2088 default: 2089 data[i] = 0; 2090 continue; 2091 } 2092 2093 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2094 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2095 } 2096 } 2097 2098 static void e1000_get_strings(struct net_device __always_unused *netdev, 2099 u32 stringset, u8 *data) 2100 { 2101 u8 *p = data; 2102 int i; 2103 2104 switch (stringset) { 2105 case ETH_SS_TEST: 2106 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2107 break; 2108 case ETH_SS_STATS: 2109 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2110 memcpy(p, e1000_gstrings_stats[i].stat_string, 2111 ETH_GSTRING_LEN); 2112 p += ETH_GSTRING_LEN; 2113 } 2114 break; 2115 case ETH_SS_PRIV_FLAGS: 2116 memcpy(data, e1000e_priv_flags_strings, 2117 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2118 break; 2119 } 2120 } 2121 2122 static int e1000_get_rxnfc(struct net_device *netdev, 2123 struct ethtool_rxnfc *info, 2124 u32 __always_unused *rule_locs) 2125 { 2126 info->data = 0; 2127 2128 switch (info->cmd) { 2129 case ETHTOOL_GRXFH: { 2130 struct e1000_adapter *adapter = netdev_priv(netdev); 2131 struct e1000_hw *hw = &adapter->hw; 2132 u32 mrqc; 2133 2134 pm_runtime_get_sync(netdev->dev.parent); 2135 mrqc = er32(MRQC); 2136 pm_runtime_put_sync(netdev->dev.parent); 2137 2138 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2139 return 0; 2140 2141 switch (info->flow_type) { 2142 case TCP_V4_FLOW: 2143 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2144 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2145 fallthrough; 2146 case UDP_V4_FLOW: 2147 case SCTP_V4_FLOW: 2148 case AH_ESP_V4_FLOW: 2149 case IPV4_FLOW: 2150 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2151 info->data |= RXH_IP_SRC | RXH_IP_DST; 2152 break; 2153 case TCP_V6_FLOW: 2154 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2155 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2156 fallthrough; 2157 case UDP_V6_FLOW: 2158 case SCTP_V6_FLOW: 2159 case AH_ESP_V6_FLOW: 2160 case IPV6_FLOW: 2161 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2162 info->data |= RXH_IP_SRC | RXH_IP_DST; 2163 break; 2164 default: 2165 break; 2166 } 2167 return 0; 2168 } 2169 default: 2170 return -EOPNOTSUPP; 2171 } 2172 } 2173 2174 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2175 { 2176 struct e1000_adapter *adapter = netdev_priv(netdev); 2177 struct e1000_hw *hw = &adapter->hw; 2178 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2179 u32 ret_val; 2180 2181 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2182 return -EOPNOTSUPP; 2183 2184 switch (hw->phy.type) { 2185 case e1000_phy_82579: 2186 cap_addr = I82579_EEE_CAPABILITY; 2187 lpa_addr = I82579_EEE_LP_ABILITY; 2188 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2189 break; 2190 case e1000_phy_i217: 2191 cap_addr = I217_EEE_CAPABILITY; 2192 lpa_addr = I217_EEE_LP_ABILITY; 2193 pcs_stat_addr = I217_EEE_PCS_STATUS; 2194 break; 2195 default: 2196 return -EOPNOTSUPP; 2197 } 2198 2199 pm_runtime_get_sync(netdev->dev.parent); 2200 2201 ret_val = hw->phy.ops.acquire(hw); 2202 if (ret_val) { 2203 pm_runtime_put_sync(netdev->dev.parent); 2204 return -EBUSY; 2205 } 2206 2207 /* EEE Capability */ 2208 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2209 if (ret_val) 2210 goto release; 2211 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2212 2213 /* EEE Advertised */ 2214 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2215 2216 /* EEE Link Partner Advertised */ 2217 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2218 if (ret_val) 2219 goto release; 2220 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2221 2222 /* EEE PCS Status */ 2223 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2224 if (ret_val) 2225 goto release; 2226 if (hw->phy.type == e1000_phy_82579) 2227 phy_data <<= 8; 2228 2229 /* Result of the EEE auto negotiation - there is no register that 2230 * has the status of the EEE negotiation so do a best-guess based 2231 * on whether Tx or Rx LPI indications have been received. 2232 */ 2233 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2234 edata->eee_active = true; 2235 2236 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2237 edata->tx_lpi_enabled = true; 2238 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2239 2240 release: 2241 hw->phy.ops.release(hw); 2242 if (ret_val) 2243 ret_val = -ENODATA; 2244 2245 pm_runtime_put_sync(netdev->dev.parent); 2246 2247 return ret_val; 2248 } 2249 2250 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2251 { 2252 struct e1000_adapter *adapter = netdev_priv(netdev); 2253 struct e1000_hw *hw = &adapter->hw; 2254 struct ethtool_eee eee_curr; 2255 s32 ret_val; 2256 2257 ret_val = e1000e_get_eee(netdev, &eee_curr); 2258 if (ret_val) 2259 return ret_val; 2260 2261 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2262 e_err("Setting EEE tx-lpi is not supported\n"); 2263 return -EINVAL; 2264 } 2265 2266 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2267 e_err("Setting EEE Tx LPI timer is not supported\n"); 2268 return -EINVAL; 2269 } 2270 2271 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2272 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2273 return -EINVAL; 2274 } 2275 2276 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2277 2278 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2279 2280 pm_runtime_get_sync(netdev->dev.parent); 2281 2282 /* reset the link */ 2283 if (netif_running(netdev)) 2284 e1000e_reinit_locked(adapter); 2285 else 2286 e1000e_reset(adapter); 2287 2288 pm_runtime_put_sync(netdev->dev.parent); 2289 2290 return 0; 2291 } 2292 2293 static int e1000e_get_ts_info(struct net_device *netdev, 2294 struct ethtool_ts_info *info) 2295 { 2296 struct e1000_adapter *adapter = netdev_priv(netdev); 2297 2298 ethtool_op_get_ts_info(netdev, info); 2299 2300 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2301 return 0; 2302 2303 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2304 SOF_TIMESTAMPING_RX_HARDWARE | 2305 SOF_TIMESTAMPING_RAW_HARDWARE); 2306 2307 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2308 2309 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2310 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2311 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2312 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2313 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2314 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2315 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2316 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2317 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2318 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2319 BIT(HWTSTAMP_FILTER_ALL)); 2320 2321 if (adapter->ptp_clock) 2322 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2323 2324 return 0; 2325 } 2326 2327 static u32 e1000e_get_priv_flags(struct net_device *netdev) 2328 { 2329 struct e1000_adapter *adapter = netdev_priv(netdev); 2330 u32 priv_flags = 0; 2331 2332 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 2333 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED; 2334 2335 return priv_flags; 2336 } 2337 2338 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags) 2339 { 2340 struct e1000_adapter *adapter = netdev_priv(netdev); 2341 unsigned int flags2 = adapter->flags2; 2342 2343 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS; 2344 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) { 2345 struct e1000_hw *hw = &adapter->hw; 2346 2347 if (hw->mac.type < e1000_pch_cnp) 2348 return -EINVAL; 2349 flags2 |= FLAG2_ENABLE_S0IX_FLOWS; 2350 } 2351 2352 if (flags2 != adapter->flags2) 2353 adapter->flags2 = flags2; 2354 2355 return 0; 2356 } 2357 2358 static const struct ethtool_ops e1000_ethtool_ops = { 2359 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2360 .get_drvinfo = e1000_get_drvinfo, 2361 .get_regs_len = e1000_get_regs_len, 2362 .get_regs = e1000_get_regs, 2363 .get_wol = e1000_get_wol, 2364 .set_wol = e1000_set_wol, 2365 .get_msglevel = e1000_get_msglevel, 2366 .set_msglevel = e1000_set_msglevel, 2367 .nway_reset = e1000_nway_reset, 2368 .get_link = ethtool_op_get_link, 2369 .get_eeprom_len = e1000_get_eeprom_len, 2370 .get_eeprom = e1000_get_eeprom, 2371 .set_eeprom = e1000_set_eeprom, 2372 .get_ringparam = e1000_get_ringparam, 2373 .set_ringparam = e1000_set_ringparam, 2374 .get_pauseparam = e1000_get_pauseparam, 2375 .set_pauseparam = e1000_set_pauseparam, 2376 .self_test = e1000_diag_test, 2377 .get_strings = e1000_get_strings, 2378 .set_phys_id = e1000_set_phys_id, 2379 .get_ethtool_stats = e1000_get_ethtool_stats, 2380 .get_sset_count = e1000e_get_sset_count, 2381 .get_coalesce = e1000_get_coalesce, 2382 .set_coalesce = e1000_set_coalesce, 2383 .get_rxnfc = e1000_get_rxnfc, 2384 .get_ts_info = e1000e_get_ts_info, 2385 .get_eee = e1000e_get_eee, 2386 .set_eee = e1000e_set_eee, 2387 .get_link_ksettings = e1000_get_link_ksettings, 2388 .set_link_ksettings = e1000_set_link_ksettings, 2389 .get_priv_flags = e1000e_get_priv_flags, 2390 .set_priv_flags = e1000e_set_priv_flags, 2391 }; 2392 2393 void e1000e_set_ethtool_ops(struct net_device *netdev) 2394 { 2395 netdev->ethtool_ops = &e1000_ethtool_ops; 2396 } 2397