1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = { 27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0) 28 "s0ix-enabled", 29 }; 30 31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings) 32 33 #define E1000_STAT(str, m) { \ 34 .stat_string = str, \ 35 .type = E1000_STATS, \ 36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 37 .stat_offset = offsetof(struct e1000_adapter, m) } 38 #define E1000_NETDEV_STAT(str, m) { \ 39 .stat_string = str, \ 40 .type = NETDEV_STATS, \ 41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 42 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 43 44 static const struct e1000_stats e1000_gstrings_stats[] = { 45 E1000_STAT("rx_packets", stats.gprc), 46 E1000_STAT("tx_packets", stats.gptc), 47 E1000_STAT("rx_bytes", stats.gorc), 48 E1000_STAT("tx_bytes", stats.gotc), 49 E1000_STAT("rx_broadcast", stats.bprc), 50 E1000_STAT("tx_broadcast", stats.bptc), 51 E1000_STAT("rx_multicast", stats.mprc), 52 E1000_STAT("tx_multicast", stats.mptc), 53 E1000_NETDEV_STAT("rx_errors", rx_errors), 54 E1000_NETDEV_STAT("tx_errors", tx_errors), 55 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 56 E1000_STAT("multicast", stats.mprc), 57 E1000_STAT("collisions", stats.colc), 58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 60 E1000_STAT("rx_crc_errors", stats.crcerrs), 61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 62 E1000_STAT("rx_no_buffer_count", stats.rnbc), 63 E1000_STAT("rx_missed_errors", stats.mpc), 64 E1000_STAT("tx_aborted_errors", stats.ecol), 65 E1000_STAT("tx_carrier_errors", stats.tncrs), 66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 68 E1000_STAT("tx_window_errors", stats.latecol), 69 E1000_STAT("tx_abort_late_coll", stats.latecol), 70 E1000_STAT("tx_deferred_ok", stats.dc), 71 E1000_STAT("tx_single_coll_ok", stats.scc), 72 E1000_STAT("tx_multi_coll_ok", stats.mcc), 73 E1000_STAT("tx_timeout_count", tx_timeout_count), 74 E1000_STAT("tx_restart_queue", restart_queue), 75 E1000_STAT("rx_long_length_errors", stats.roc), 76 E1000_STAT("rx_short_length_errors", stats.ruc), 77 E1000_STAT("rx_align_errors", stats.algnerrc), 78 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 80 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 82 E1000_STAT("tx_flow_control_xon", stats.xontxc), 83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 84 E1000_STAT("rx_csum_offload_good", hw_csum_good), 85 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 86 E1000_STAT("rx_header_split", rx_hdr_split), 87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 88 E1000_STAT("tx_smbus", stats.mgptc), 89 E1000_STAT("rx_smbus", stats.mgprc), 90 E1000_STAT("dropped_smbus", stats.mgpdc), 91 E1000_STAT("rx_dma_failed", rx_dma_failed), 92 E1000_STAT("tx_dma_failed", tx_dma_failed), 93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 94 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 95 E1000_STAT("corr_ecc_errors", corr_errors), 96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 98 }; 99 100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 103 "Register test (offline)", "Eeprom test (offline)", 104 "Interrupt test (offline)", "Loopback test (offline)", 105 "Link test (on/offline)" 106 }; 107 108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 109 110 static int e1000_get_link_ksettings(struct net_device *netdev, 111 struct ethtool_link_ksettings *cmd) 112 { 113 struct e1000_adapter *adapter = netdev_priv(netdev); 114 struct e1000_hw *hw = &adapter->hw; 115 u32 speed, supported, advertising; 116 117 if (hw->phy.media_type == e1000_media_type_copper) { 118 supported = (SUPPORTED_10baseT_Half | 119 SUPPORTED_10baseT_Full | 120 SUPPORTED_100baseT_Half | 121 SUPPORTED_100baseT_Full | 122 SUPPORTED_1000baseT_Full | 123 SUPPORTED_Autoneg | 124 SUPPORTED_TP); 125 if (hw->phy.type == e1000_phy_ife) 126 supported &= ~SUPPORTED_1000baseT_Full; 127 advertising = ADVERTISED_TP; 128 129 if (hw->mac.autoneg == 1) { 130 advertising |= ADVERTISED_Autoneg; 131 /* the e1000 autoneg seems to match ethtool nicely */ 132 advertising |= hw->phy.autoneg_advertised; 133 } 134 135 cmd->base.port = PORT_TP; 136 cmd->base.phy_address = hw->phy.addr; 137 } else { 138 supported = (SUPPORTED_1000baseT_Full | 139 SUPPORTED_FIBRE | 140 SUPPORTED_Autoneg); 141 142 advertising = (ADVERTISED_1000baseT_Full | 143 ADVERTISED_FIBRE | 144 ADVERTISED_Autoneg); 145 146 cmd->base.port = PORT_FIBRE; 147 } 148 149 speed = SPEED_UNKNOWN; 150 cmd->base.duplex = DUPLEX_UNKNOWN; 151 152 if (netif_running(netdev)) { 153 if (netif_carrier_ok(netdev)) { 154 speed = adapter->link_speed; 155 cmd->base.duplex = adapter->link_duplex - 1; 156 } 157 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 158 u32 status = er32(STATUS); 159 160 if (status & E1000_STATUS_LU) { 161 if (status & E1000_STATUS_SPEED_1000) 162 speed = SPEED_1000; 163 else if (status & E1000_STATUS_SPEED_100) 164 speed = SPEED_100; 165 else 166 speed = SPEED_10; 167 168 if (status & E1000_STATUS_FD) 169 cmd->base.duplex = DUPLEX_FULL; 170 else 171 cmd->base.duplex = DUPLEX_HALF; 172 } 173 } 174 175 cmd->base.speed = speed; 176 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 177 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 178 179 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 180 if ((hw->phy.media_type == e1000_media_type_copper) && 181 netif_carrier_ok(netdev)) 182 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 183 ETH_TP_MDI_X : ETH_TP_MDI; 184 else 185 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 186 187 if (hw->phy.mdix == AUTO_ALL_MODES) 188 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 189 else 190 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 191 192 if (hw->phy.media_type != e1000_media_type_copper) 193 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 194 195 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 196 supported); 197 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 198 advertising); 199 200 return 0; 201 } 202 203 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 204 { 205 struct e1000_mac_info *mac = &adapter->hw.mac; 206 207 mac->autoneg = 0; 208 209 /* Make sure dplx is at most 1 bit and lsb of speed is not set 210 * for the switch() below to work 211 */ 212 if ((spd & 1) || (dplx & ~1)) 213 goto err_inval; 214 215 /* Fiber NICs only allow 1000 gbps Full duplex */ 216 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 217 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 218 goto err_inval; 219 } 220 221 switch (spd + dplx) { 222 case SPEED_10 + DUPLEX_HALF: 223 mac->forced_speed_duplex = ADVERTISE_10_HALF; 224 break; 225 case SPEED_10 + DUPLEX_FULL: 226 mac->forced_speed_duplex = ADVERTISE_10_FULL; 227 break; 228 case SPEED_100 + DUPLEX_HALF: 229 mac->forced_speed_duplex = ADVERTISE_100_HALF; 230 break; 231 case SPEED_100 + DUPLEX_FULL: 232 mac->forced_speed_duplex = ADVERTISE_100_FULL; 233 break; 234 case SPEED_1000 + DUPLEX_FULL: 235 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 236 mac->autoneg = 1; 237 adapter->hw.phy.autoneg_advertised = 238 ADVERTISE_1000_FULL; 239 } else { 240 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 241 } 242 break; 243 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 244 default: 245 goto err_inval; 246 } 247 248 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 249 adapter->hw.phy.mdix = AUTO_ALL_MODES; 250 251 return 0; 252 253 err_inval: 254 e_err("Unsupported Speed/Duplex configuration\n"); 255 return -EINVAL; 256 } 257 258 static int e1000_set_link_ksettings(struct net_device *netdev, 259 const struct ethtool_link_ksettings *cmd) 260 { 261 struct e1000_adapter *adapter = netdev_priv(netdev); 262 struct e1000_hw *hw = &adapter->hw; 263 int ret_val = 0; 264 u32 advertising; 265 266 ethtool_convert_link_mode_to_legacy_u32(&advertising, 267 cmd->link_modes.advertising); 268 269 pm_runtime_get_sync(netdev->dev.parent); 270 271 /* When SoL/IDER sessions are active, autoneg/speed/duplex 272 * cannot be changed 273 */ 274 if (hw->phy.ops.check_reset_block && 275 hw->phy.ops.check_reset_block(hw)) { 276 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 277 ret_val = -EINVAL; 278 goto out; 279 } 280 281 /* MDI setting is only allowed when autoneg enabled because 282 * some hardware doesn't allow MDI setting when speed or 283 * duplex is forced. 284 */ 285 if (cmd->base.eth_tp_mdix_ctrl) { 286 if (hw->phy.media_type != e1000_media_type_copper) { 287 ret_val = -EOPNOTSUPP; 288 goto out; 289 } 290 291 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 292 (cmd->base.autoneg != AUTONEG_ENABLE)) { 293 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 294 ret_val = -EINVAL; 295 goto out; 296 } 297 } 298 299 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 300 usleep_range(1000, 2000); 301 302 if (cmd->base.autoneg == AUTONEG_ENABLE) { 303 hw->mac.autoneg = 1; 304 if (hw->phy.media_type == e1000_media_type_fiber) 305 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 306 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 307 else 308 hw->phy.autoneg_advertised = advertising | 309 ADVERTISED_TP | ADVERTISED_Autoneg; 310 advertising = hw->phy.autoneg_advertised; 311 if (adapter->fc_autoneg) 312 hw->fc.requested_mode = e1000_fc_default; 313 } else { 314 u32 speed = cmd->base.speed; 315 /* calling this overrides forced MDI setting */ 316 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 317 ret_val = -EINVAL; 318 goto out; 319 } 320 } 321 322 /* MDI-X => 2; MDI => 1; Auto => 3 */ 323 if (cmd->base.eth_tp_mdix_ctrl) { 324 /* fix up the value for auto (3 => 0) as zero is mapped 325 * internally to auto 326 */ 327 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 328 hw->phy.mdix = AUTO_ALL_MODES; 329 else 330 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 331 } 332 333 /* reset the link */ 334 if (netif_running(adapter->netdev)) { 335 e1000e_down(adapter, true); 336 e1000e_up(adapter); 337 } else { 338 e1000e_reset(adapter); 339 } 340 341 out: 342 pm_runtime_put_sync(netdev->dev.parent); 343 clear_bit(__E1000_RESETTING, &adapter->state); 344 return ret_val; 345 } 346 347 static void e1000_get_pauseparam(struct net_device *netdev, 348 struct ethtool_pauseparam *pause) 349 { 350 struct e1000_adapter *adapter = netdev_priv(netdev); 351 struct e1000_hw *hw = &adapter->hw; 352 353 pause->autoneg = 354 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 355 356 if (hw->fc.current_mode == e1000_fc_rx_pause) { 357 pause->rx_pause = 1; 358 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 359 pause->tx_pause = 1; 360 } else if (hw->fc.current_mode == e1000_fc_full) { 361 pause->rx_pause = 1; 362 pause->tx_pause = 1; 363 } 364 } 365 366 static int e1000_set_pauseparam(struct net_device *netdev, 367 struct ethtool_pauseparam *pause) 368 { 369 struct e1000_adapter *adapter = netdev_priv(netdev); 370 struct e1000_hw *hw = &adapter->hw; 371 int retval = 0; 372 373 adapter->fc_autoneg = pause->autoneg; 374 375 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 376 usleep_range(1000, 2000); 377 378 pm_runtime_get_sync(netdev->dev.parent); 379 380 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 381 hw->fc.requested_mode = e1000_fc_default; 382 if (netif_running(adapter->netdev)) { 383 e1000e_down(adapter, true); 384 e1000e_up(adapter); 385 } else { 386 e1000e_reset(adapter); 387 } 388 } else { 389 if (pause->rx_pause && pause->tx_pause) 390 hw->fc.requested_mode = e1000_fc_full; 391 else if (pause->rx_pause && !pause->tx_pause) 392 hw->fc.requested_mode = e1000_fc_rx_pause; 393 else if (!pause->rx_pause && pause->tx_pause) 394 hw->fc.requested_mode = e1000_fc_tx_pause; 395 else if (!pause->rx_pause && !pause->tx_pause) 396 hw->fc.requested_mode = e1000_fc_none; 397 398 hw->fc.current_mode = hw->fc.requested_mode; 399 400 if (hw->phy.media_type == e1000_media_type_fiber) { 401 retval = hw->mac.ops.setup_link(hw); 402 /* implicit goto out */ 403 } else { 404 retval = e1000e_force_mac_fc(hw); 405 if (retval) 406 goto out; 407 e1000e_set_fc_watermarks(hw); 408 } 409 } 410 411 out: 412 pm_runtime_put_sync(netdev->dev.parent); 413 clear_bit(__E1000_RESETTING, &adapter->state); 414 return retval; 415 } 416 417 static u32 e1000_get_msglevel(struct net_device *netdev) 418 { 419 struct e1000_adapter *adapter = netdev_priv(netdev); 420 return adapter->msg_enable; 421 } 422 423 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 424 { 425 struct e1000_adapter *adapter = netdev_priv(netdev); 426 adapter->msg_enable = data; 427 } 428 429 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 430 { 431 #define E1000_REGS_LEN 32 /* overestimate */ 432 return E1000_REGS_LEN * sizeof(u32); 433 } 434 435 static void e1000_get_regs(struct net_device *netdev, 436 struct ethtool_regs *regs, void *p) 437 { 438 struct e1000_adapter *adapter = netdev_priv(netdev); 439 struct e1000_hw *hw = &adapter->hw; 440 u32 *regs_buff = p; 441 u16 phy_data; 442 443 pm_runtime_get_sync(netdev->dev.parent); 444 445 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 446 447 regs->version = (1u << 24) | 448 (adapter->pdev->revision << 16) | 449 adapter->pdev->device; 450 451 regs_buff[0] = er32(CTRL); 452 regs_buff[1] = er32(STATUS); 453 454 regs_buff[2] = er32(RCTL); 455 regs_buff[3] = er32(RDLEN(0)); 456 regs_buff[4] = er32(RDH(0)); 457 regs_buff[5] = er32(RDT(0)); 458 regs_buff[6] = er32(RDTR); 459 460 regs_buff[7] = er32(TCTL); 461 regs_buff[8] = er32(TDLEN(0)); 462 regs_buff[9] = er32(TDH(0)); 463 regs_buff[10] = er32(TDT(0)); 464 regs_buff[11] = er32(TIDV); 465 466 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 467 468 /* ethtool doesn't use anything past this point, so all this 469 * code is likely legacy junk for apps that may or may not exist 470 */ 471 if (hw->phy.type == e1000_phy_m88) { 472 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 473 regs_buff[13] = (u32)phy_data; /* cable length */ 474 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 475 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 476 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 477 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 478 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 479 regs_buff[18] = regs_buff[13]; /* cable polarity */ 480 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 481 regs_buff[20] = regs_buff[17]; /* polarity correction */ 482 /* phy receive errors */ 483 regs_buff[22] = adapter->phy_stats.receive_errors; 484 regs_buff[23] = regs_buff[13]; /* mdix mode */ 485 } 486 regs_buff[21] = 0; /* was idle_errors */ 487 e1e_rphy(hw, MII_STAT1000, &phy_data); 488 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 489 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 490 491 pm_runtime_put_sync(netdev->dev.parent); 492 } 493 494 static int e1000_get_eeprom_len(struct net_device *netdev) 495 { 496 struct e1000_adapter *adapter = netdev_priv(netdev); 497 return adapter->hw.nvm.word_size * 2; 498 } 499 500 static int e1000_get_eeprom(struct net_device *netdev, 501 struct ethtool_eeprom *eeprom, u8 *bytes) 502 { 503 struct e1000_adapter *adapter = netdev_priv(netdev); 504 struct e1000_hw *hw = &adapter->hw; 505 u16 *eeprom_buff; 506 int first_word; 507 int last_word; 508 int ret_val = 0; 509 u16 i; 510 511 if (eeprom->len == 0) 512 return -EINVAL; 513 514 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 515 516 first_word = eeprom->offset >> 1; 517 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 518 519 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 520 GFP_KERNEL); 521 if (!eeprom_buff) 522 return -ENOMEM; 523 524 pm_runtime_get_sync(netdev->dev.parent); 525 526 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 527 ret_val = e1000_read_nvm(hw, first_word, 528 last_word - first_word + 1, 529 eeprom_buff); 530 } else { 531 for (i = 0; i < last_word - first_word + 1; i++) { 532 ret_val = e1000_read_nvm(hw, first_word + i, 1, 533 &eeprom_buff[i]); 534 if (ret_val) 535 break; 536 } 537 } 538 539 pm_runtime_put_sync(netdev->dev.parent); 540 541 if (ret_val) { 542 /* a read error occurred, throw away the result */ 543 memset(eeprom_buff, 0xff, sizeof(u16) * 544 (last_word - first_word + 1)); 545 } else { 546 /* Device's eeprom is always little-endian, word addressable */ 547 for (i = 0; i < last_word - first_word + 1; i++) 548 le16_to_cpus(&eeprom_buff[i]); 549 } 550 551 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 552 kfree(eeprom_buff); 553 554 return ret_val; 555 } 556 557 static int e1000_set_eeprom(struct net_device *netdev, 558 struct ethtool_eeprom *eeprom, u8 *bytes) 559 { 560 struct e1000_adapter *adapter = netdev_priv(netdev); 561 struct e1000_hw *hw = &adapter->hw; 562 u16 *eeprom_buff; 563 void *ptr; 564 int max_len; 565 int first_word; 566 int last_word; 567 int ret_val = 0; 568 u16 i; 569 570 if (eeprom->len == 0) 571 return -EOPNOTSUPP; 572 573 if (eeprom->magic != 574 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 575 return -EFAULT; 576 577 if (adapter->flags & FLAG_READ_ONLY_NVM) 578 return -EINVAL; 579 580 max_len = hw->nvm.word_size * 2; 581 582 first_word = eeprom->offset >> 1; 583 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 584 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 585 if (!eeprom_buff) 586 return -ENOMEM; 587 588 ptr = (void *)eeprom_buff; 589 590 pm_runtime_get_sync(netdev->dev.parent); 591 592 if (eeprom->offset & 1) { 593 /* need read/modify/write of first changed EEPROM word */ 594 /* only the second byte of the word is being modified */ 595 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 596 ptr++; 597 } 598 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 599 /* need read/modify/write of last changed EEPROM word */ 600 /* only the first byte of the word is being modified */ 601 ret_val = e1000_read_nvm(hw, last_word, 1, 602 &eeprom_buff[last_word - first_word]); 603 604 if (ret_val) 605 goto out; 606 607 /* Device's eeprom is always little-endian, word addressable */ 608 for (i = 0; i < last_word - first_word + 1; i++) 609 le16_to_cpus(&eeprom_buff[i]); 610 611 memcpy(ptr, bytes, eeprom->len); 612 613 for (i = 0; i < last_word - first_word + 1; i++) 614 cpu_to_le16s(&eeprom_buff[i]); 615 616 ret_val = e1000_write_nvm(hw, first_word, 617 last_word - first_word + 1, eeprom_buff); 618 619 if (ret_val) 620 goto out; 621 622 /* Update the checksum over the first part of the EEPROM if needed 623 * and flush shadow RAM for applicable controllers 624 */ 625 if ((first_word <= NVM_CHECKSUM_REG) || 626 (hw->mac.type == e1000_82583) || 627 (hw->mac.type == e1000_82574) || 628 (hw->mac.type == e1000_82573)) 629 ret_val = e1000e_update_nvm_checksum(hw); 630 631 out: 632 pm_runtime_put_sync(netdev->dev.parent); 633 kfree(eeprom_buff); 634 return ret_val; 635 } 636 637 static void e1000_get_drvinfo(struct net_device *netdev, 638 struct ethtool_drvinfo *drvinfo) 639 { 640 struct e1000_adapter *adapter = netdev_priv(netdev); 641 642 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 643 644 /* EEPROM image version # is reported as firmware version # for 645 * PCI-E controllers 646 */ 647 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 648 "%d.%d-%d", 649 (adapter->eeprom_vers & 0xF000) >> 12, 650 (adapter->eeprom_vers & 0x0FF0) >> 4, 651 (adapter->eeprom_vers & 0x000F)); 652 653 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 654 sizeof(drvinfo->bus_info)); 655 } 656 657 static void e1000_get_ringparam(struct net_device *netdev, 658 struct ethtool_ringparam *ring, 659 struct kernel_ethtool_ringparam *kernel_ring, 660 struct netlink_ext_ack *extack) 661 { 662 struct e1000_adapter *adapter = netdev_priv(netdev); 663 664 ring->rx_max_pending = E1000_MAX_RXD; 665 ring->tx_max_pending = E1000_MAX_TXD; 666 ring->rx_pending = adapter->rx_ring_count; 667 ring->tx_pending = adapter->tx_ring_count; 668 } 669 670 static int e1000_set_ringparam(struct net_device *netdev, 671 struct ethtool_ringparam *ring, 672 struct kernel_ethtool_ringparam *kernel_ring, 673 struct netlink_ext_ack *extack) 674 { 675 struct e1000_adapter *adapter = netdev_priv(netdev); 676 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 677 int err = 0, size = sizeof(struct e1000_ring); 678 bool set_tx = false, set_rx = false; 679 u16 new_rx_count, new_tx_count; 680 681 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 682 return -EINVAL; 683 684 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 685 E1000_MAX_RXD); 686 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 687 688 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 689 E1000_MAX_TXD); 690 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 691 692 if ((new_tx_count == adapter->tx_ring_count) && 693 (new_rx_count == adapter->rx_ring_count)) 694 /* nothing to do */ 695 return 0; 696 697 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 698 usleep_range(1000, 2000); 699 700 if (!netif_running(adapter->netdev)) { 701 /* Set counts now and allocate resources during open() */ 702 adapter->tx_ring->count = new_tx_count; 703 adapter->rx_ring->count = new_rx_count; 704 adapter->tx_ring_count = new_tx_count; 705 adapter->rx_ring_count = new_rx_count; 706 goto clear_reset; 707 } 708 709 set_tx = (new_tx_count != adapter->tx_ring_count); 710 set_rx = (new_rx_count != adapter->rx_ring_count); 711 712 /* Allocate temporary storage for ring updates */ 713 if (set_tx) { 714 temp_tx = vmalloc(size); 715 if (!temp_tx) { 716 err = -ENOMEM; 717 goto free_temp; 718 } 719 } 720 if (set_rx) { 721 temp_rx = vmalloc(size); 722 if (!temp_rx) { 723 err = -ENOMEM; 724 goto free_temp; 725 } 726 } 727 728 pm_runtime_get_sync(netdev->dev.parent); 729 730 e1000e_down(adapter, true); 731 732 /* We can't just free everything and then setup again, because the 733 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 734 * structs. First, attempt to allocate new resources... 735 */ 736 if (set_tx) { 737 memcpy(temp_tx, adapter->tx_ring, size); 738 temp_tx->count = new_tx_count; 739 err = e1000e_setup_tx_resources(temp_tx); 740 if (err) 741 goto err_setup; 742 } 743 if (set_rx) { 744 memcpy(temp_rx, adapter->rx_ring, size); 745 temp_rx->count = new_rx_count; 746 err = e1000e_setup_rx_resources(temp_rx); 747 if (err) 748 goto err_setup_rx; 749 } 750 751 /* ...then free the old resources and copy back any new ring data */ 752 if (set_tx) { 753 e1000e_free_tx_resources(adapter->tx_ring); 754 memcpy(adapter->tx_ring, temp_tx, size); 755 adapter->tx_ring_count = new_tx_count; 756 } 757 if (set_rx) { 758 e1000e_free_rx_resources(adapter->rx_ring); 759 memcpy(adapter->rx_ring, temp_rx, size); 760 adapter->rx_ring_count = new_rx_count; 761 } 762 763 err_setup_rx: 764 if (err && set_tx) 765 e1000e_free_tx_resources(temp_tx); 766 err_setup: 767 e1000e_up(adapter); 768 pm_runtime_put_sync(netdev->dev.parent); 769 free_temp: 770 vfree(temp_tx); 771 vfree(temp_rx); 772 clear_reset: 773 clear_bit(__E1000_RESETTING, &adapter->state); 774 return err; 775 } 776 777 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 778 int reg, int offset, u32 mask, u32 write) 779 { 780 u32 pat, val; 781 static const u32 test[] = { 782 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 783 }; 784 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 785 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 786 (test[pat] & write)); 787 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 788 if (val != (test[pat] & write & mask)) { 789 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 790 reg + (offset << 2), val, 791 (test[pat] & write & mask)); 792 *data = reg; 793 return true; 794 } 795 } 796 return false; 797 } 798 799 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 800 int reg, u32 mask, u32 write) 801 { 802 u32 val; 803 804 __ew32(&adapter->hw, reg, write & mask); 805 val = __er32(&adapter->hw, reg); 806 if ((write & mask) != (val & mask)) { 807 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 808 reg, (val & mask), (write & mask)); 809 *data = reg; 810 return true; 811 } 812 return false; 813 } 814 815 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 816 do { \ 817 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 818 return 1; \ 819 } while (0) 820 #define REG_PATTERN_TEST(reg, mask, write) \ 821 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 822 823 #define REG_SET_AND_CHECK(reg, mask, write) \ 824 do { \ 825 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 826 return 1; \ 827 } while (0) 828 829 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 830 { 831 struct e1000_hw *hw = &adapter->hw; 832 struct e1000_mac_info *mac = &adapter->hw.mac; 833 u32 value; 834 u32 before; 835 u32 after; 836 u32 i; 837 u32 toggle; 838 u32 mask; 839 u32 wlock_mac = 0; 840 841 /* The status register is Read Only, so a write should fail. 842 * Some bits that get toggled are ignored. There are several bits 843 * on newer hardware that are r/w. 844 */ 845 switch (mac->type) { 846 case e1000_82571: 847 case e1000_82572: 848 case e1000_80003es2lan: 849 toggle = 0x7FFFF3FF; 850 break; 851 default: 852 toggle = 0x7FFFF033; 853 break; 854 } 855 856 before = er32(STATUS); 857 value = (er32(STATUS) & toggle); 858 ew32(STATUS, toggle); 859 after = er32(STATUS) & toggle; 860 if (value != after) { 861 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 862 after, value); 863 *data = 1; 864 return 1; 865 } 866 /* restore previous status */ 867 ew32(STATUS, before); 868 869 if (!(adapter->flags & FLAG_IS_ICH)) { 870 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 871 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 872 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 873 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 874 } 875 876 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 877 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 878 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 879 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 880 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 881 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 882 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 883 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 884 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 885 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 886 887 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 888 889 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 890 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 891 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 892 893 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 894 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 895 if (!(adapter->flags & FLAG_IS_ICH)) 896 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 897 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 898 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 899 mask = 0x8003FFFF; 900 switch (mac->type) { 901 case e1000_ich10lan: 902 case e1000_pchlan: 903 case e1000_pch2lan: 904 case e1000_pch_lpt: 905 case e1000_pch_spt: 906 case e1000_pch_cnp: 907 case e1000_pch_tgp: 908 case e1000_pch_adp: 909 case e1000_pch_mtp: 910 case e1000_pch_lnp: 911 case e1000_pch_ptp: 912 mask |= BIT(18); 913 break; 914 default: 915 break; 916 } 917 918 if (mac->type >= e1000_pch_lpt) 919 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 920 E1000_FWSM_WLOCK_MAC_SHIFT; 921 922 for (i = 0; i < mac->rar_entry_count; i++) { 923 if (mac->type >= e1000_pch_lpt) { 924 /* Cannot test write-protected SHRAL[n] registers */ 925 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 926 continue; 927 928 /* SHRAH[9] different than the others */ 929 if (i == 10) 930 mask |= BIT(30); 931 else 932 mask &= ~BIT(30); 933 } 934 if (mac->type == e1000_pch2lan) { 935 /* SHRAH[0,1,2] different than previous */ 936 if (i == 1) 937 mask &= 0xFFF4FFFF; 938 /* SHRAH[3] different than SHRAH[0,1,2] */ 939 if (i == 4) 940 mask |= BIT(30); 941 /* RAR[1-6] owned by management engine - skipping */ 942 if (i > 0) 943 i += 6; 944 } 945 946 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 947 0xFFFFFFFF); 948 /* reset index to actual value */ 949 if ((mac->type == e1000_pch2lan) && (i > 6)) 950 i -= 6; 951 } 952 953 for (i = 0; i < mac->mta_reg_count; i++) 954 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 955 956 *data = 0; 957 958 return 0; 959 } 960 961 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 962 { 963 u16 temp; 964 u16 checksum = 0; 965 u16 i; 966 967 *data = 0; 968 /* Read and add up the contents of the EEPROM */ 969 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 970 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 971 *data = 1; 972 return *data; 973 } 974 checksum += temp; 975 } 976 977 /* If Checksum is not Correct return error else test passed */ 978 if ((checksum != (u16)NVM_SUM) && !(*data)) 979 *data = 2; 980 981 return *data; 982 } 983 984 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 985 { 986 struct net_device *netdev = (struct net_device *)data; 987 struct e1000_adapter *adapter = netdev_priv(netdev); 988 struct e1000_hw *hw = &adapter->hw; 989 990 adapter->test_icr |= er32(ICR); 991 992 return IRQ_HANDLED; 993 } 994 995 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 996 { 997 struct net_device *netdev = adapter->netdev; 998 struct e1000_hw *hw = &adapter->hw; 999 u32 mask; 1000 u32 shared_int = 1; 1001 u32 irq = adapter->pdev->irq; 1002 int i; 1003 int ret_val = 0; 1004 int int_mode = E1000E_INT_MODE_LEGACY; 1005 1006 *data = 0; 1007 1008 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 1009 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 1010 int_mode = adapter->int_mode; 1011 e1000e_reset_interrupt_capability(adapter); 1012 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1013 e1000e_set_interrupt_capability(adapter); 1014 } 1015 /* Hook up test interrupt handler just for this test */ 1016 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1017 netdev)) { 1018 shared_int = 0; 1019 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1020 netdev)) { 1021 *data = 1; 1022 ret_val = -1; 1023 goto out; 1024 } 1025 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1026 1027 /* Disable all the interrupts */ 1028 ew32(IMC, 0xFFFFFFFF); 1029 e1e_flush(); 1030 usleep_range(10000, 11000); 1031 1032 /* Test each interrupt */ 1033 for (i = 0; i < 10; i++) { 1034 /* Interrupt to test */ 1035 mask = BIT(i); 1036 1037 if (adapter->flags & FLAG_IS_ICH) { 1038 switch (mask) { 1039 case E1000_ICR_RXSEQ: 1040 continue; 1041 case 0x00000100: 1042 if (adapter->hw.mac.type == e1000_ich8lan || 1043 adapter->hw.mac.type == e1000_ich9lan) 1044 continue; 1045 break; 1046 default: 1047 break; 1048 } 1049 } 1050 1051 if (!shared_int) { 1052 /* Disable the interrupt to be reported in 1053 * the cause register and then force the same 1054 * interrupt and see if one gets posted. If 1055 * an interrupt was posted to the bus, the 1056 * test failed. 1057 */ 1058 adapter->test_icr = 0; 1059 ew32(IMC, mask); 1060 ew32(ICS, mask); 1061 e1e_flush(); 1062 usleep_range(10000, 11000); 1063 1064 if (adapter->test_icr & mask) { 1065 *data = 3; 1066 break; 1067 } 1068 } 1069 1070 /* Enable the interrupt to be reported in 1071 * the cause register and then force the same 1072 * interrupt and see if one gets posted. If 1073 * an interrupt was not posted to the bus, the 1074 * test failed. 1075 */ 1076 adapter->test_icr = 0; 1077 ew32(IMS, mask); 1078 ew32(ICS, mask); 1079 e1e_flush(); 1080 usleep_range(10000, 11000); 1081 1082 if (!(adapter->test_icr & mask)) { 1083 *data = 4; 1084 break; 1085 } 1086 1087 if (!shared_int) { 1088 /* Disable the other interrupts to be reported in 1089 * the cause register and then force the other 1090 * interrupts and see if any get posted. If 1091 * an interrupt was posted to the bus, the 1092 * test failed. 1093 */ 1094 adapter->test_icr = 0; 1095 ew32(IMC, ~mask & 0x00007FFF); 1096 ew32(ICS, ~mask & 0x00007FFF); 1097 e1e_flush(); 1098 usleep_range(10000, 11000); 1099 1100 if (adapter->test_icr) { 1101 *data = 5; 1102 break; 1103 } 1104 } 1105 } 1106 1107 /* Disable all the interrupts */ 1108 ew32(IMC, 0xFFFFFFFF); 1109 e1e_flush(); 1110 usleep_range(10000, 11000); 1111 1112 /* Unhook test interrupt handler */ 1113 free_irq(irq, netdev); 1114 1115 out: 1116 if (int_mode == E1000E_INT_MODE_MSIX) { 1117 e1000e_reset_interrupt_capability(adapter); 1118 adapter->int_mode = int_mode; 1119 e1000e_set_interrupt_capability(adapter); 1120 } 1121 1122 return ret_val; 1123 } 1124 1125 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1126 { 1127 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1128 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1129 struct pci_dev *pdev = adapter->pdev; 1130 struct e1000_buffer *buffer_info; 1131 int i; 1132 1133 if (tx_ring->desc && tx_ring->buffer_info) { 1134 for (i = 0; i < tx_ring->count; i++) { 1135 buffer_info = &tx_ring->buffer_info[i]; 1136 1137 if (buffer_info->dma) 1138 dma_unmap_single(&pdev->dev, 1139 buffer_info->dma, 1140 buffer_info->length, 1141 DMA_TO_DEVICE); 1142 dev_kfree_skb(buffer_info->skb); 1143 } 1144 } 1145 1146 if (rx_ring->desc && rx_ring->buffer_info) { 1147 for (i = 0; i < rx_ring->count; i++) { 1148 buffer_info = &rx_ring->buffer_info[i]; 1149 1150 if (buffer_info->dma) 1151 dma_unmap_single(&pdev->dev, 1152 buffer_info->dma, 1153 2048, DMA_FROM_DEVICE); 1154 dev_kfree_skb(buffer_info->skb); 1155 } 1156 } 1157 1158 if (tx_ring->desc) { 1159 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1160 tx_ring->dma); 1161 tx_ring->desc = NULL; 1162 } 1163 if (rx_ring->desc) { 1164 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1165 rx_ring->dma); 1166 rx_ring->desc = NULL; 1167 } 1168 1169 kfree(tx_ring->buffer_info); 1170 tx_ring->buffer_info = NULL; 1171 kfree(rx_ring->buffer_info); 1172 rx_ring->buffer_info = NULL; 1173 } 1174 1175 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1176 { 1177 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1178 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1179 struct pci_dev *pdev = adapter->pdev; 1180 struct e1000_hw *hw = &adapter->hw; 1181 u32 rctl; 1182 int i; 1183 int ret_val; 1184 1185 /* Setup Tx descriptor ring and Tx buffers */ 1186 1187 if (!tx_ring->count) 1188 tx_ring->count = E1000_DEFAULT_TXD; 1189 1190 tx_ring->buffer_info = kcalloc(tx_ring->count, 1191 sizeof(struct e1000_buffer), GFP_KERNEL); 1192 if (!tx_ring->buffer_info) { 1193 ret_val = 1; 1194 goto err_nomem; 1195 } 1196 1197 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1198 tx_ring->size = ALIGN(tx_ring->size, 4096); 1199 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1200 &tx_ring->dma, GFP_KERNEL); 1201 if (!tx_ring->desc) { 1202 ret_val = 2; 1203 goto err_nomem; 1204 } 1205 tx_ring->next_to_use = 0; 1206 tx_ring->next_to_clean = 0; 1207 1208 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1209 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1210 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1211 ew32(TDH(0), 0); 1212 ew32(TDT(0), 0); 1213 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1214 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1215 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1216 1217 for (i = 0; i < tx_ring->count; i++) { 1218 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1219 struct sk_buff *skb; 1220 unsigned int skb_size = 1024; 1221 1222 skb = alloc_skb(skb_size, GFP_KERNEL); 1223 if (!skb) { 1224 ret_val = 3; 1225 goto err_nomem; 1226 } 1227 skb_put(skb, skb_size); 1228 tx_ring->buffer_info[i].skb = skb; 1229 tx_ring->buffer_info[i].length = skb->len; 1230 tx_ring->buffer_info[i].dma = 1231 dma_map_single(&pdev->dev, skb->data, skb->len, 1232 DMA_TO_DEVICE); 1233 if (dma_mapping_error(&pdev->dev, 1234 tx_ring->buffer_info[i].dma)) { 1235 ret_val = 4; 1236 goto err_nomem; 1237 } 1238 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1239 tx_desc->lower.data = cpu_to_le32(skb->len); 1240 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1241 E1000_TXD_CMD_IFCS | 1242 E1000_TXD_CMD_RS); 1243 tx_desc->upper.data = 0; 1244 } 1245 1246 /* Setup Rx descriptor ring and Rx buffers */ 1247 1248 if (!rx_ring->count) 1249 rx_ring->count = E1000_DEFAULT_RXD; 1250 1251 rx_ring->buffer_info = kcalloc(rx_ring->count, 1252 sizeof(struct e1000_buffer), GFP_KERNEL); 1253 if (!rx_ring->buffer_info) { 1254 ret_val = 5; 1255 goto err_nomem; 1256 } 1257 1258 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1259 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1260 &rx_ring->dma, GFP_KERNEL); 1261 if (!rx_ring->desc) { 1262 ret_val = 6; 1263 goto err_nomem; 1264 } 1265 rx_ring->next_to_use = 0; 1266 rx_ring->next_to_clean = 0; 1267 1268 rctl = er32(RCTL); 1269 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1270 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1271 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1272 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1273 ew32(RDLEN(0), rx_ring->size); 1274 ew32(RDH(0), 0); 1275 ew32(RDT(0), 0); 1276 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1277 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1278 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1279 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1280 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1281 ew32(RCTL, rctl); 1282 1283 for (i = 0; i < rx_ring->count; i++) { 1284 union e1000_rx_desc_extended *rx_desc; 1285 struct sk_buff *skb; 1286 1287 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1288 if (!skb) { 1289 ret_val = 7; 1290 goto err_nomem; 1291 } 1292 skb_reserve(skb, NET_IP_ALIGN); 1293 rx_ring->buffer_info[i].skb = skb; 1294 rx_ring->buffer_info[i].dma = 1295 dma_map_single(&pdev->dev, skb->data, 2048, 1296 DMA_FROM_DEVICE); 1297 if (dma_mapping_error(&pdev->dev, 1298 rx_ring->buffer_info[i].dma)) { 1299 ret_val = 8; 1300 goto err_nomem; 1301 } 1302 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1303 rx_desc->read.buffer_addr = 1304 cpu_to_le64(rx_ring->buffer_info[i].dma); 1305 memset(skb->data, 0x00, skb->len); 1306 } 1307 1308 return 0; 1309 1310 err_nomem: 1311 e1000_free_desc_rings(adapter); 1312 return ret_val; 1313 } 1314 1315 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1316 { 1317 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1318 e1e_wphy(&adapter->hw, 29, 0x001F); 1319 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1320 e1e_wphy(&adapter->hw, 29, 0x001A); 1321 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1322 } 1323 1324 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1325 { 1326 struct e1000_hw *hw = &adapter->hw; 1327 u32 ctrl_reg = 0; 1328 u16 phy_reg = 0; 1329 s32 ret_val = 0; 1330 1331 hw->mac.autoneg = 0; 1332 1333 if (hw->phy.type == e1000_phy_ife) { 1334 /* force 100, set loopback */ 1335 e1e_wphy(hw, MII_BMCR, 0x6100); 1336 1337 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1338 ctrl_reg = er32(CTRL); 1339 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1340 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1341 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1342 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1343 E1000_CTRL_FD); /* Force Duplex to FULL */ 1344 1345 ew32(CTRL, ctrl_reg); 1346 e1e_flush(); 1347 usleep_range(500, 1000); 1348 1349 return 0; 1350 } 1351 1352 /* Specific PHY configuration for loopback */ 1353 switch (hw->phy.type) { 1354 case e1000_phy_m88: 1355 /* Auto-MDI/MDIX Off */ 1356 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1357 /* reset to update Auto-MDI/MDIX */ 1358 e1e_wphy(hw, MII_BMCR, 0x9140); 1359 /* autoneg off */ 1360 e1e_wphy(hw, MII_BMCR, 0x8140); 1361 break; 1362 case e1000_phy_gg82563: 1363 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1364 break; 1365 case e1000_phy_bm: 1366 /* Set Default MAC Interface speed to 1GB */ 1367 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1368 phy_reg &= ~0x0007; 1369 phy_reg |= 0x006; 1370 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1371 /* Assert SW reset for above settings to take effect */ 1372 hw->phy.ops.commit(hw); 1373 usleep_range(1000, 2000); 1374 /* Force Full Duplex */ 1375 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1376 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1377 /* Set Link Up (in force link) */ 1378 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1379 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1380 /* Force Link */ 1381 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1382 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1383 /* Set Early Link Enable */ 1384 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1385 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1386 break; 1387 case e1000_phy_82577: 1388 case e1000_phy_82578: 1389 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1390 ret_val = hw->phy.ops.acquire(hw); 1391 if (ret_val) { 1392 e_err("Cannot setup 1Gbps loopback.\n"); 1393 return ret_val; 1394 } 1395 e1000_configure_k1_ich8lan(hw, false); 1396 hw->phy.ops.release(hw); 1397 break; 1398 case e1000_phy_82579: 1399 /* Disable PHY energy detect power down */ 1400 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1401 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1402 /* Disable full chip energy detect */ 1403 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1404 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1405 /* Enable loopback on the PHY */ 1406 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1407 break; 1408 default: 1409 break; 1410 } 1411 1412 /* force 1000, set loopback */ 1413 e1e_wphy(hw, MII_BMCR, 0x4140); 1414 msleep(250); 1415 1416 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1417 ctrl_reg = er32(CTRL); 1418 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1419 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1420 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1421 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1422 E1000_CTRL_FD); /* Force Duplex to FULL */ 1423 1424 if (adapter->flags & FLAG_IS_ICH) 1425 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1426 1427 if (hw->phy.media_type == e1000_media_type_copper && 1428 hw->phy.type == e1000_phy_m88) { 1429 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1430 } else { 1431 /* Set the ILOS bit on the fiber Nic if half duplex link is 1432 * detected. 1433 */ 1434 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1435 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1436 } 1437 1438 ew32(CTRL, ctrl_reg); 1439 1440 /* Disable the receiver on the PHY so when a cable is plugged in, the 1441 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1442 */ 1443 if (hw->phy.type == e1000_phy_m88) 1444 e1000_phy_disable_receiver(adapter); 1445 1446 usleep_range(500, 1000); 1447 1448 return 0; 1449 } 1450 1451 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1452 { 1453 struct e1000_hw *hw = &adapter->hw; 1454 u32 ctrl = er32(CTRL); 1455 int link; 1456 1457 /* special requirements for 82571/82572 fiber adapters */ 1458 1459 /* jump through hoops to make sure link is up because serdes 1460 * link is hardwired up 1461 */ 1462 ctrl |= E1000_CTRL_SLU; 1463 ew32(CTRL, ctrl); 1464 1465 /* disable autoneg */ 1466 ctrl = er32(TXCW); 1467 ctrl &= ~BIT(31); 1468 ew32(TXCW, ctrl); 1469 1470 link = (er32(STATUS) & E1000_STATUS_LU); 1471 1472 if (!link) { 1473 /* set invert loss of signal */ 1474 ctrl = er32(CTRL); 1475 ctrl |= E1000_CTRL_ILOS; 1476 ew32(CTRL, ctrl); 1477 } 1478 1479 /* special write to serdes control register to enable SerDes analog 1480 * loopback 1481 */ 1482 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1483 e1e_flush(); 1484 usleep_range(10000, 11000); 1485 1486 return 0; 1487 } 1488 1489 /* only call this for fiber/serdes connections to es2lan */ 1490 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1491 { 1492 struct e1000_hw *hw = &adapter->hw; 1493 u32 ctrlext = er32(CTRL_EXT); 1494 u32 ctrl = er32(CTRL); 1495 1496 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1497 * on mac_type 80003es2lan) 1498 */ 1499 adapter->tx_fifo_head = ctrlext; 1500 1501 /* clear the serdes mode bits, putting the device into mac loopback */ 1502 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1503 ew32(CTRL_EXT, ctrlext); 1504 1505 /* force speed to 1000/FD, link up */ 1506 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1507 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1508 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1509 ew32(CTRL, ctrl); 1510 1511 /* set mac loopback */ 1512 ctrl = er32(RCTL); 1513 ctrl |= E1000_RCTL_LBM_MAC; 1514 ew32(RCTL, ctrl); 1515 1516 /* set testing mode parameters (no need to reset later) */ 1517 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1518 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1519 ew32(KMRNCTRLSTA, 1520 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1521 1522 return 0; 1523 } 1524 1525 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1526 { 1527 struct e1000_hw *hw = &adapter->hw; 1528 u32 rctl, fext_nvm11, tarc0; 1529 1530 if (hw->mac.type >= e1000_pch_spt) { 1531 fext_nvm11 = er32(FEXTNVM11); 1532 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1533 ew32(FEXTNVM11, fext_nvm11); 1534 tarc0 = er32(TARC(0)); 1535 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1536 tarc0 &= 0xcfffffff; 1537 /* set bit 29 (value of MULR requests is now 2) */ 1538 tarc0 |= 0x20000000; 1539 ew32(TARC(0), tarc0); 1540 } 1541 if (hw->phy.media_type == e1000_media_type_fiber || 1542 hw->phy.media_type == e1000_media_type_internal_serdes) { 1543 switch (hw->mac.type) { 1544 case e1000_80003es2lan: 1545 return e1000_set_es2lan_mac_loopback(adapter); 1546 case e1000_82571: 1547 case e1000_82572: 1548 return e1000_set_82571_fiber_loopback(adapter); 1549 default: 1550 rctl = er32(RCTL); 1551 rctl |= E1000_RCTL_LBM_TCVR; 1552 ew32(RCTL, rctl); 1553 return 0; 1554 } 1555 } else if (hw->phy.media_type == e1000_media_type_copper) { 1556 return e1000_integrated_phy_loopback(adapter); 1557 } 1558 1559 return 7; 1560 } 1561 1562 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1563 { 1564 struct e1000_hw *hw = &adapter->hw; 1565 u32 rctl, fext_nvm11, tarc0; 1566 u16 phy_reg; 1567 1568 rctl = er32(RCTL); 1569 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1570 ew32(RCTL, rctl); 1571 1572 switch (hw->mac.type) { 1573 case e1000_pch_spt: 1574 case e1000_pch_cnp: 1575 case e1000_pch_tgp: 1576 case e1000_pch_adp: 1577 case e1000_pch_mtp: 1578 case e1000_pch_lnp: 1579 case e1000_pch_ptp: 1580 fext_nvm11 = er32(FEXTNVM11); 1581 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1582 ew32(FEXTNVM11, fext_nvm11); 1583 tarc0 = er32(TARC(0)); 1584 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1585 /* set bit 29 (value of MULR requests is now 0) */ 1586 tarc0 &= 0xcfffffff; 1587 ew32(TARC(0), tarc0); 1588 fallthrough; 1589 case e1000_80003es2lan: 1590 if (hw->phy.media_type == e1000_media_type_fiber || 1591 hw->phy.media_type == e1000_media_type_internal_serdes) { 1592 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1593 ew32(CTRL_EXT, adapter->tx_fifo_head); 1594 adapter->tx_fifo_head = 0; 1595 } 1596 fallthrough; 1597 case e1000_82571: 1598 case e1000_82572: 1599 if (hw->phy.media_type == e1000_media_type_fiber || 1600 hw->phy.media_type == e1000_media_type_internal_serdes) { 1601 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1602 e1e_flush(); 1603 usleep_range(10000, 11000); 1604 break; 1605 } 1606 fallthrough; 1607 default: 1608 hw->mac.autoneg = 1; 1609 if (hw->phy.type == e1000_phy_gg82563) 1610 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1611 e1e_rphy(hw, MII_BMCR, &phy_reg); 1612 if (phy_reg & BMCR_LOOPBACK) { 1613 phy_reg &= ~BMCR_LOOPBACK; 1614 e1e_wphy(hw, MII_BMCR, phy_reg); 1615 if (hw->phy.ops.commit) 1616 hw->phy.ops.commit(hw); 1617 } 1618 break; 1619 } 1620 } 1621 1622 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1623 unsigned int frame_size) 1624 { 1625 memset(skb->data, 0xFF, frame_size); 1626 frame_size &= ~1; 1627 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1628 skb->data[frame_size / 2 + 10] = 0xBE; 1629 skb->data[frame_size / 2 + 12] = 0xAF; 1630 } 1631 1632 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1633 unsigned int frame_size) 1634 { 1635 frame_size &= ~1; 1636 if (*(skb->data + 3) == 0xFF) 1637 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1638 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1639 return 0; 1640 return 13; 1641 } 1642 1643 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1644 { 1645 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1646 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1647 struct pci_dev *pdev = adapter->pdev; 1648 struct e1000_hw *hw = &adapter->hw; 1649 struct e1000_buffer *buffer_info; 1650 int i, j, k, l; 1651 int lc; 1652 int good_cnt; 1653 int ret_val = 0; 1654 unsigned long time; 1655 1656 ew32(RDT(0), rx_ring->count - 1); 1657 1658 /* Calculate the loop count based on the largest descriptor ring 1659 * The idea is to wrap the largest ring a number of times using 64 1660 * send/receive pairs during each loop 1661 */ 1662 1663 if (rx_ring->count <= tx_ring->count) 1664 lc = ((tx_ring->count / 64) * 2) + 1; 1665 else 1666 lc = ((rx_ring->count / 64) * 2) + 1; 1667 1668 k = 0; 1669 l = 0; 1670 /* loop count loop */ 1671 for (j = 0; j <= lc; j++) { 1672 /* send the packets */ 1673 for (i = 0; i < 64; i++) { 1674 buffer_info = &tx_ring->buffer_info[k]; 1675 1676 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1677 dma_sync_single_for_device(&pdev->dev, 1678 buffer_info->dma, 1679 buffer_info->length, 1680 DMA_TO_DEVICE); 1681 k++; 1682 if (k == tx_ring->count) 1683 k = 0; 1684 } 1685 ew32(TDT(0), k); 1686 e1e_flush(); 1687 msleep(200); 1688 time = jiffies; /* set the start time for the receive */ 1689 good_cnt = 0; 1690 /* receive the sent packets */ 1691 do { 1692 buffer_info = &rx_ring->buffer_info[l]; 1693 1694 dma_sync_single_for_cpu(&pdev->dev, 1695 buffer_info->dma, 2048, 1696 DMA_FROM_DEVICE); 1697 1698 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1699 1024); 1700 if (!ret_val) 1701 good_cnt++; 1702 l++; 1703 if (l == rx_ring->count) 1704 l = 0; 1705 /* time + 20 msecs (200 msecs on 2.4) is more than 1706 * enough time to complete the receives, if it's 1707 * exceeded, break and error off 1708 */ 1709 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1710 if (good_cnt != 64) { 1711 ret_val = 13; /* ret_val is the same as mis-compare */ 1712 break; 1713 } 1714 if (time_after(jiffies, time + 20)) { 1715 ret_val = 14; /* error code for time out error */ 1716 break; 1717 } 1718 } 1719 return ret_val; 1720 } 1721 1722 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1723 { 1724 struct e1000_hw *hw = &adapter->hw; 1725 1726 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1727 if (hw->phy.ops.check_reset_block && 1728 hw->phy.ops.check_reset_block(hw)) { 1729 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1730 *data = 0; 1731 goto out; 1732 } 1733 1734 *data = e1000_setup_desc_rings(adapter); 1735 if (*data) 1736 goto out; 1737 1738 *data = e1000_setup_loopback_test(adapter); 1739 if (*data) 1740 goto err_loopback; 1741 1742 *data = e1000_run_loopback_test(adapter); 1743 e1000_loopback_cleanup(adapter); 1744 1745 err_loopback: 1746 e1000_free_desc_rings(adapter); 1747 out: 1748 return *data; 1749 } 1750 1751 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1752 { 1753 struct e1000_hw *hw = &adapter->hw; 1754 1755 *data = 0; 1756 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1757 int i = 0; 1758 1759 hw->mac.serdes_has_link = false; 1760 1761 /* On some blade server designs, link establishment 1762 * could take as long as 2-3 minutes 1763 */ 1764 do { 1765 hw->mac.ops.check_for_link(hw); 1766 if (hw->mac.serdes_has_link) 1767 return *data; 1768 msleep(20); 1769 } while (i++ < 3750); 1770 1771 *data = 1; 1772 } else { 1773 hw->mac.ops.check_for_link(hw); 1774 if (hw->mac.autoneg) 1775 /* On some Phy/switch combinations, link establishment 1776 * can take a few seconds more than expected. 1777 */ 1778 msleep_interruptible(5000); 1779 1780 if (!(er32(STATUS) & E1000_STATUS_LU)) 1781 *data = 1; 1782 } 1783 return *data; 1784 } 1785 1786 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1787 int sset) 1788 { 1789 switch (sset) { 1790 case ETH_SS_TEST: 1791 return E1000_TEST_LEN; 1792 case ETH_SS_STATS: 1793 return E1000_STATS_LEN; 1794 case ETH_SS_PRIV_FLAGS: 1795 return E1000E_PRIV_FLAGS_STR_LEN; 1796 default: 1797 return -EOPNOTSUPP; 1798 } 1799 } 1800 1801 static void e1000_diag_test(struct net_device *netdev, 1802 struct ethtool_test *eth_test, u64 *data) 1803 { 1804 struct e1000_adapter *adapter = netdev_priv(netdev); 1805 u16 autoneg_advertised; 1806 u8 forced_speed_duplex; 1807 u8 autoneg; 1808 bool if_running = netif_running(netdev); 1809 1810 pm_runtime_get_sync(netdev->dev.parent); 1811 1812 set_bit(__E1000_TESTING, &adapter->state); 1813 1814 if (!if_running) { 1815 /* Get control of and reset hardware */ 1816 if (adapter->flags & FLAG_HAS_AMT) 1817 e1000e_get_hw_control(adapter); 1818 1819 e1000e_power_up_phy(adapter); 1820 1821 adapter->hw.phy.autoneg_wait_to_complete = 1; 1822 e1000e_reset(adapter); 1823 adapter->hw.phy.autoneg_wait_to_complete = 0; 1824 } 1825 1826 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1827 /* Offline tests */ 1828 1829 /* save speed, duplex, autoneg settings */ 1830 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1831 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1832 autoneg = adapter->hw.mac.autoneg; 1833 1834 e_info("offline testing starting\n"); 1835 1836 if (if_running) 1837 /* indicate we're in test mode */ 1838 e1000e_close(netdev); 1839 1840 if (e1000_reg_test(adapter, &data[0])) 1841 eth_test->flags |= ETH_TEST_FL_FAILED; 1842 1843 e1000e_reset(adapter); 1844 if (e1000_eeprom_test(adapter, &data[1])) 1845 eth_test->flags |= ETH_TEST_FL_FAILED; 1846 1847 e1000e_reset(adapter); 1848 if (e1000_intr_test(adapter, &data[2])) 1849 eth_test->flags |= ETH_TEST_FL_FAILED; 1850 1851 e1000e_reset(adapter); 1852 if (e1000_loopback_test(adapter, &data[3])) 1853 eth_test->flags |= ETH_TEST_FL_FAILED; 1854 1855 /* force this routine to wait until autoneg complete/timeout */ 1856 adapter->hw.phy.autoneg_wait_to_complete = 1; 1857 e1000e_reset(adapter); 1858 adapter->hw.phy.autoneg_wait_to_complete = 0; 1859 1860 if (e1000_link_test(adapter, &data[4])) 1861 eth_test->flags |= ETH_TEST_FL_FAILED; 1862 1863 /* restore speed, duplex, autoneg settings */ 1864 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1865 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1866 adapter->hw.mac.autoneg = autoneg; 1867 e1000e_reset(adapter); 1868 1869 clear_bit(__E1000_TESTING, &adapter->state); 1870 if (if_running) 1871 e1000e_open(netdev); 1872 } else { 1873 /* Online tests */ 1874 1875 e_info("online testing starting\n"); 1876 1877 /* register, eeprom, intr and loopback tests not run online */ 1878 data[0] = 0; 1879 data[1] = 0; 1880 data[2] = 0; 1881 data[3] = 0; 1882 1883 if (e1000_link_test(adapter, &data[4])) 1884 eth_test->flags |= ETH_TEST_FL_FAILED; 1885 1886 clear_bit(__E1000_TESTING, &adapter->state); 1887 } 1888 1889 if (!if_running) { 1890 e1000e_reset(adapter); 1891 1892 if (adapter->flags & FLAG_HAS_AMT) 1893 e1000e_release_hw_control(adapter); 1894 } 1895 1896 msleep_interruptible(4 * 1000); 1897 1898 pm_runtime_put_sync(netdev->dev.parent); 1899 } 1900 1901 static void e1000_get_wol(struct net_device *netdev, 1902 struct ethtool_wolinfo *wol) 1903 { 1904 struct e1000_adapter *adapter = netdev_priv(netdev); 1905 1906 wol->supported = 0; 1907 wol->wolopts = 0; 1908 1909 if (!(adapter->flags & FLAG_HAS_WOL) || 1910 !device_can_wakeup(&adapter->pdev->dev)) 1911 return; 1912 1913 wol->supported = WAKE_UCAST | WAKE_MCAST | 1914 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1915 1916 /* apply any specific unsupported masks here */ 1917 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1918 wol->supported &= ~WAKE_UCAST; 1919 1920 if (adapter->wol & E1000_WUFC_EX) 1921 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1922 } 1923 1924 if (adapter->wol & E1000_WUFC_EX) 1925 wol->wolopts |= WAKE_UCAST; 1926 if (adapter->wol & E1000_WUFC_MC) 1927 wol->wolopts |= WAKE_MCAST; 1928 if (adapter->wol & E1000_WUFC_BC) 1929 wol->wolopts |= WAKE_BCAST; 1930 if (adapter->wol & E1000_WUFC_MAG) 1931 wol->wolopts |= WAKE_MAGIC; 1932 if (adapter->wol & E1000_WUFC_LNKC) 1933 wol->wolopts |= WAKE_PHY; 1934 } 1935 1936 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1937 { 1938 struct e1000_adapter *adapter = netdev_priv(netdev); 1939 1940 if (!(adapter->flags & FLAG_HAS_WOL) || 1941 !device_can_wakeup(&adapter->pdev->dev) || 1942 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1943 WAKE_MAGIC | WAKE_PHY))) 1944 return -EOPNOTSUPP; 1945 1946 /* these settings will always override what we currently have */ 1947 adapter->wol = 0; 1948 1949 if (wol->wolopts & WAKE_UCAST) 1950 adapter->wol |= E1000_WUFC_EX; 1951 if (wol->wolopts & WAKE_MCAST) 1952 adapter->wol |= E1000_WUFC_MC; 1953 if (wol->wolopts & WAKE_BCAST) 1954 adapter->wol |= E1000_WUFC_BC; 1955 if (wol->wolopts & WAKE_MAGIC) 1956 adapter->wol |= E1000_WUFC_MAG; 1957 if (wol->wolopts & WAKE_PHY) 1958 adapter->wol |= E1000_WUFC_LNKC; 1959 1960 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1961 1962 return 0; 1963 } 1964 1965 static int e1000_set_phys_id(struct net_device *netdev, 1966 enum ethtool_phys_id_state state) 1967 { 1968 struct e1000_adapter *adapter = netdev_priv(netdev); 1969 struct e1000_hw *hw = &adapter->hw; 1970 1971 switch (state) { 1972 case ETHTOOL_ID_ACTIVE: 1973 pm_runtime_get_sync(netdev->dev.parent); 1974 1975 if (!hw->mac.ops.blink_led) 1976 return 2; /* cycle on/off twice per second */ 1977 1978 hw->mac.ops.blink_led(hw); 1979 break; 1980 1981 case ETHTOOL_ID_INACTIVE: 1982 if (hw->phy.type == e1000_phy_ife) 1983 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1984 hw->mac.ops.led_off(hw); 1985 hw->mac.ops.cleanup_led(hw); 1986 pm_runtime_put_sync(netdev->dev.parent); 1987 break; 1988 1989 case ETHTOOL_ID_ON: 1990 hw->mac.ops.led_on(hw); 1991 break; 1992 1993 case ETHTOOL_ID_OFF: 1994 hw->mac.ops.led_off(hw); 1995 break; 1996 } 1997 1998 return 0; 1999 } 2000 2001 static int e1000_get_coalesce(struct net_device *netdev, 2002 struct ethtool_coalesce *ec, 2003 struct kernel_ethtool_coalesce *kernel_coal, 2004 struct netlink_ext_ack *extack) 2005 { 2006 struct e1000_adapter *adapter = netdev_priv(netdev); 2007 2008 if (adapter->itr_setting <= 4) 2009 ec->rx_coalesce_usecs = adapter->itr_setting; 2010 else 2011 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 2012 2013 return 0; 2014 } 2015 2016 static int e1000_set_coalesce(struct net_device *netdev, 2017 struct ethtool_coalesce *ec, 2018 struct kernel_ethtool_coalesce *kernel_coal, 2019 struct netlink_ext_ack *extack) 2020 { 2021 struct e1000_adapter *adapter = netdev_priv(netdev); 2022 2023 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2024 ((ec->rx_coalesce_usecs > 4) && 2025 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2026 (ec->rx_coalesce_usecs == 2)) 2027 return -EINVAL; 2028 2029 if (ec->rx_coalesce_usecs == 4) { 2030 adapter->itr_setting = 4; 2031 adapter->itr = adapter->itr_setting; 2032 } else if (ec->rx_coalesce_usecs <= 3) { 2033 adapter->itr = 20000; 2034 adapter->itr_setting = ec->rx_coalesce_usecs; 2035 } else { 2036 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2037 adapter->itr_setting = adapter->itr & ~3; 2038 } 2039 2040 pm_runtime_get_sync(netdev->dev.parent); 2041 2042 if (adapter->itr_setting != 0) 2043 e1000e_write_itr(adapter, adapter->itr); 2044 else 2045 e1000e_write_itr(adapter, 0); 2046 2047 pm_runtime_put_sync(netdev->dev.parent); 2048 2049 return 0; 2050 } 2051 2052 static int e1000_nway_reset(struct net_device *netdev) 2053 { 2054 struct e1000_adapter *adapter = netdev_priv(netdev); 2055 2056 if (!netif_running(netdev)) 2057 return -EAGAIN; 2058 2059 if (!adapter->hw.mac.autoneg) 2060 return -EINVAL; 2061 2062 pm_runtime_get_sync(netdev->dev.parent); 2063 e1000e_reinit_locked(adapter); 2064 pm_runtime_put_sync(netdev->dev.parent); 2065 2066 return 0; 2067 } 2068 2069 static void e1000_get_ethtool_stats(struct net_device *netdev, 2070 struct ethtool_stats __always_unused *stats, 2071 u64 *data) 2072 { 2073 struct e1000_adapter *adapter = netdev_priv(netdev); 2074 struct rtnl_link_stats64 net_stats; 2075 int i; 2076 char *p = NULL; 2077 2078 pm_runtime_get_sync(netdev->dev.parent); 2079 2080 dev_get_stats(netdev, &net_stats); 2081 2082 pm_runtime_put_sync(netdev->dev.parent); 2083 2084 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2085 switch (e1000_gstrings_stats[i].type) { 2086 case NETDEV_STATS: 2087 p = (char *)&net_stats + 2088 e1000_gstrings_stats[i].stat_offset; 2089 break; 2090 case E1000_STATS: 2091 p = (char *)adapter + 2092 e1000_gstrings_stats[i].stat_offset; 2093 break; 2094 default: 2095 data[i] = 0; 2096 continue; 2097 } 2098 2099 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2100 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2101 } 2102 } 2103 2104 static void e1000_get_strings(struct net_device __always_unused *netdev, 2105 u32 stringset, u8 *data) 2106 { 2107 u8 *p = data; 2108 int i; 2109 2110 switch (stringset) { 2111 case ETH_SS_TEST: 2112 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2113 break; 2114 case ETH_SS_STATS: 2115 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2116 memcpy(p, e1000_gstrings_stats[i].stat_string, 2117 ETH_GSTRING_LEN); 2118 p += ETH_GSTRING_LEN; 2119 } 2120 break; 2121 case ETH_SS_PRIV_FLAGS: 2122 memcpy(data, e1000e_priv_flags_strings, 2123 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2124 break; 2125 } 2126 } 2127 2128 static int e1000_get_rxnfc(struct net_device *netdev, 2129 struct ethtool_rxnfc *info, 2130 u32 __always_unused *rule_locs) 2131 { 2132 info->data = 0; 2133 2134 switch (info->cmd) { 2135 case ETHTOOL_GRXFH: { 2136 struct e1000_adapter *adapter = netdev_priv(netdev); 2137 struct e1000_hw *hw = &adapter->hw; 2138 u32 mrqc; 2139 2140 pm_runtime_get_sync(netdev->dev.parent); 2141 mrqc = er32(MRQC); 2142 pm_runtime_put_sync(netdev->dev.parent); 2143 2144 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2145 return 0; 2146 2147 switch (info->flow_type) { 2148 case TCP_V4_FLOW: 2149 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2150 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2151 fallthrough; 2152 case UDP_V4_FLOW: 2153 case SCTP_V4_FLOW: 2154 case AH_ESP_V4_FLOW: 2155 case IPV4_FLOW: 2156 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2157 info->data |= RXH_IP_SRC | RXH_IP_DST; 2158 break; 2159 case TCP_V6_FLOW: 2160 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2161 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2162 fallthrough; 2163 case UDP_V6_FLOW: 2164 case SCTP_V6_FLOW: 2165 case AH_ESP_V6_FLOW: 2166 case IPV6_FLOW: 2167 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2168 info->data |= RXH_IP_SRC | RXH_IP_DST; 2169 break; 2170 default: 2171 break; 2172 } 2173 return 0; 2174 } 2175 default: 2176 return -EOPNOTSUPP; 2177 } 2178 } 2179 2180 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2181 { 2182 struct e1000_adapter *adapter = netdev_priv(netdev); 2183 struct e1000_hw *hw = &adapter->hw; 2184 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2185 u32 ret_val; 2186 2187 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2188 return -EOPNOTSUPP; 2189 2190 switch (hw->phy.type) { 2191 case e1000_phy_82579: 2192 cap_addr = I82579_EEE_CAPABILITY; 2193 lpa_addr = I82579_EEE_LP_ABILITY; 2194 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2195 break; 2196 case e1000_phy_i217: 2197 cap_addr = I217_EEE_CAPABILITY; 2198 lpa_addr = I217_EEE_LP_ABILITY; 2199 pcs_stat_addr = I217_EEE_PCS_STATUS; 2200 break; 2201 default: 2202 return -EOPNOTSUPP; 2203 } 2204 2205 pm_runtime_get_sync(netdev->dev.parent); 2206 2207 ret_val = hw->phy.ops.acquire(hw); 2208 if (ret_val) { 2209 pm_runtime_put_sync(netdev->dev.parent); 2210 return -EBUSY; 2211 } 2212 2213 /* EEE Capability */ 2214 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2215 if (ret_val) 2216 goto release; 2217 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2218 2219 /* EEE Advertised */ 2220 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2221 2222 /* EEE Link Partner Advertised */ 2223 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2224 if (ret_val) 2225 goto release; 2226 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2227 2228 /* EEE PCS Status */ 2229 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2230 if (ret_val) 2231 goto release; 2232 if (hw->phy.type == e1000_phy_82579) 2233 phy_data <<= 8; 2234 2235 /* Result of the EEE auto negotiation - there is no register that 2236 * has the status of the EEE negotiation so do a best-guess based 2237 * on whether Tx or Rx LPI indications have been received. 2238 */ 2239 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2240 edata->eee_active = true; 2241 2242 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2243 edata->tx_lpi_enabled = true; 2244 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2245 2246 release: 2247 hw->phy.ops.release(hw); 2248 if (ret_val) 2249 ret_val = -ENODATA; 2250 2251 pm_runtime_put_sync(netdev->dev.parent); 2252 2253 return ret_val; 2254 } 2255 2256 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2257 { 2258 struct e1000_adapter *adapter = netdev_priv(netdev); 2259 struct e1000_hw *hw = &adapter->hw; 2260 struct ethtool_eee eee_curr; 2261 s32 ret_val; 2262 2263 ret_val = e1000e_get_eee(netdev, &eee_curr); 2264 if (ret_val) 2265 return ret_val; 2266 2267 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2268 e_err("Setting EEE tx-lpi is not supported\n"); 2269 return -EINVAL; 2270 } 2271 2272 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2273 e_err("Setting EEE Tx LPI timer is not supported\n"); 2274 return -EINVAL; 2275 } 2276 2277 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2278 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2279 return -EINVAL; 2280 } 2281 2282 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2283 2284 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2285 2286 pm_runtime_get_sync(netdev->dev.parent); 2287 2288 /* reset the link */ 2289 if (netif_running(netdev)) 2290 e1000e_reinit_locked(adapter); 2291 else 2292 e1000e_reset(adapter); 2293 2294 pm_runtime_put_sync(netdev->dev.parent); 2295 2296 return 0; 2297 } 2298 2299 static int e1000e_get_ts_info(struct net_device *netdev, 2300 struct ethtool_ts_info *info) 2301 { 2302 struct e1000_adapter *adapter = netdev_priv(netdev); 2303 2304 ethtool_op_get_ts_info(netdev, info); 2305 2306 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2307 return 0; 2308 2309 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2310 SOF_TIMESTAMPING_RX_HARDWARE | 2311 SOF_TIMESTAMPING_RAW_HARDWARE); 2312 2313 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2314 2315 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2316 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2317 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2318 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2319 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2320 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2321 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2322 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2323 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2324 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2325 BIT(HWTSTAMP_FILTER_ALL)); 2326 2327 if (adapter->ptp_clock) 2328 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2329 2330 return 0; 2331 } 2332 2333 static u32 e1000e_get_priv_flags(struct net_device *netdev) 2334 { 2335 struct e1000_adapter *adapter = netdev_priv(netdev); 2336 u32 priv_flags = 0; 2337 2338 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 2339 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED; 2340 2341 return priv_flags; 2342 } 2343 2344 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags) 2345 { 2346 struct e1000_adapter *adapter = netdev_priv(netdev); 2347 unsigned int flags2 = adapter->flags2; 2348 2349 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS; 2350 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) { 2351 struct e1000_hw *hw = &adapter->hw; 2352 2353 if (hw->mac.type < e1000_pch_cnp) 2354 return -EINVAL; 2355 flags2 |= FLAG2_ENABLE_S0IX_FLOWS; 2356 } 2357 2358 if (flags2 != adapter->flags2) 2359 adapter->flags2 = flags2; 2360 2361 return 0; 2362 } 2363 2364 static const struct ethtool_ops e1000_ethtool_ops = { 2365 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2366 .get_drvinfo = e1000_get_drvinfo, 2367 .get_regs_len = e1000_get_regs_len, 2368 .get_regs = e1000_get_regs, 2369 .get_wol = e1000_get_wol, 2370 .set_wol = e1000_set_wol, 2371 .get_msglevel = e1000_get_msglevel, 2372 .set_msglevel = e1000_set_msglevel, 2373 .nway_reset = e1000_nway_reset, 2374 .get_link = ethtool_op_get_link, 2375 .get_eeprom_len = e1000_get_eeprom_len, 2376 .get_eeprom = e1000_get_eeprom, 2377 .set_eeprom = e1000_set_eeprom, 2378 .get_ringparam = e1000_get_ringparam, 2379 .set_ringparam = e1000_set_ringparam, 2380 .get_pauseparam = e1000_get_pauseparam, 2381 .set_pauseparam = e1000_set_pauseparam, 2382 .self_test = e1000_diag_test, 2383 .get_strings = e1000_get_strings, 2384 .set_phys_id = e1000_set_phys_id, 2385 .get_ethtool_stats = e1000_get_ethtool_stats, 2386 .get_sset_count = e1000e_get_sset_count, 2387 .get_coalesce = e1000_get_coalesce, 2388 .set_coalesce = e1000_set_coalesce, 2389 .get_rxnfc = e1000_get_rxnfc, 2390 .get_ts_info = e1000e_get_ts_info, 2391 .get_eee = e1000e_get_eee, 2392 .set_eee = e1000e_set_eee, 2393 .get_link_ksettings = e1000_get_link_ksettings, 2394 .set_link_ksettings = e1000_set_link_ksettings, 2395 .get_priv_flags = e1000e_get_priv_flags, 2396 .set_priv_flags = e1000e_set_priv_flags, 2397 }; 2398 2399 void e1000e_set_ethtool_ops(struct net_device *netdev) 2400 { 2401 netdev->ethtool_ops = &e1000_ethtool_ops; 2402 } 2403