1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 #include <linux/pm_runtime.h>
39 
40 #include "e1000.h"
41 
42 enum { NETDEV_STATS, E1000_STATS };
43 
44 struct e1000_stats {
45 	char stat_string[ETH_GSTRING_LEN];
46 	int type;
47 	int sizeof_stat;
48 	int stat_offset;
49 };
50 
51 #define E1000_STAT(str, m) { \
52 		.stat_string = str, \
53 		.type = E1000_STATS, \
54 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
55 		.stat_offset = offsetof(struct e1000_adapter, m) }
56 #define E1000_NETDEV_STAT(str, m) { \
57 		.stat_string = str, \
58 		.type = NETDEV_STATS, \
59 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
60 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
61 
62 static const struct e1000_stats e1000_gstrings_stats[] = {
63 	E1000_STAT("rx_packets", stats.gprc),
64 	E1000_STAT("tx_packets", stats.gptc),
65 	E1000_STAT("rx_bytes", stats.gorc),
66 	E1000_STAT("tx_bytes", stats.gotc),
67 	E1000_STAT("rx_broadcast", stats.bprc),
68 	E1000_STAT("tx_broadcast", stats.bptc),
69 	E1000_STAT("rx_multicast", stats.mprc),
70 	E1000_STAT("tx_multicast", stats.mptc),
71 	E1000_NETDEV_STAT("rx_errors", rx_errors),
72 	E1000_NETDEV_STAT("tx_errors", tx_errors),
73 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
74 	E1000_STAT("multicast", stats.mprc),
75 	E1000_STAT("collisions", stats.colc),
76 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
77 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
78 	E1000_STAT("rx_crc_errors", stats.crcerrs),
79 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
80 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
81 	E1000_STAT("rx_missed_errors", stats.mpc),
82 	E1000_STAT("tx_aborted_errors", stats.ecol),
83 	E1000_STAT("tx_carrier_errors", stats.tncrs),
84 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
85 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
86 	E1000_STAT("tx_window_errors", stats.latecol),
87 	E1000_STAT("tx_abort_late_coll", stats.latecol),
88 	E1000_STAT("tx_deferred_ok", stats.dc),
89 	E1000_STAT("tx_single_coll_ok", stats.scc),
90 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
91 	E1000_STAT("tx_timeout_count", tx_timeout_count),
92 	E1000_STAT("tx_restart_queue", restart_queue),
93 	E1000_STAT("rx_long_length_errors", stats.roc),
94 	E1000_STAT("rx_short_length_errors", stats.ruc),
95 	E1000_STAT("rx_align_errors", stats.algnerrc),
96 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
97 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
98 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
99 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
100 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
101 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
102 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
103 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104 	E1000_STAT("rx_header_split", rx_hdr_split),
105 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106 	E1000_STAT("tx_smbus", stats.mgptc),
107 	E1000_STAT("rx_smbus", stats.mgprc),
108 	E1000_STAT("dropped_smbus", stats.mgpdc),
109 	E1000_STAT("rx_dma_failed", rx_dma_failed),
110 	E1000_STAT("tx_dma_failed", tx_dma_failed),
111 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
112 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
113 	E1000_STAT("corr_ecc_errors", corr_errors),
114 };
115 
116 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
119 	"Register test  (offline)", "Eeprom test    (offline)",
120 	"Interrupt test (offline)", "Loopback test  (offline)",
121 	"Link test   (on/offline)"
122 };
123 
124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
125 
126 static int e1000_get_settings(struct net_device *netdev,
127 			      struct ethtool_cmd *ecmd)
128 {
129 	struct e1000_adapter *adapter = netdev_priv(netdev);
130 	struct e1000_hw *hw = &adapter->hw;
131 	u32 speed;
132 
133 	if (hw->phy.media_type == e1000_media_type_copper) {
134 		ecmd->supported = (SUPPORTED_10baseT_Half |
135 				   SUPPORTED_10baseT_Full |
136 				   SUPPORTED_100baseT_Half |
137 				   SUPPORTED_100baseT_Full |
138 				   SUPPORTED_1000baseT_Full |
139 				   SUPPORTED_Autoneg |
140 				   SUPPORTED_TP);
141 		if (hw->phy.type == e1000_phy_ife)
142 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
143 		ecmd->advertising = ADVERTISED_TP;
144 
145 		if (hw->mac.autoneg == 1) {
146 			ecmd->advertising |= ADVERTISED_Autoneg;
147 			/* the e1000 autoneg seems to match ethtool nicely */
148 			ecmd->advertising |= hw->phy.autoneg_advertised;
149 		}
150 
151 		ecmd->port = PORT_TP;
152 		ecmd->phy_address = hw->phy.addr;
153 		ecmd->transceiver = XCVR_INTERNAL;
154 
155 	} else {
156 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
157 				     SUPPORTED_FIBRE |
158 				     SUPPORTED_Autoneg);
159 
160 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
161 				     ADVERTISED_FIBRE |
162 				     ADVERTISED_Autoneg);
163 
164 		ecmd->port = PORT_FIBRE;
165 		ecmd->transceiver = XCVR_EXTERNAL;
166 	}
167 
168 	speed = -1;
169 	ecmd->duplex = -1;
170 
171 	if (netif_running(netdev)) {
172 		if (netif_carrier_ok(netdev)) {
173 			speed = adapter->link_speed;
174 			ecmd->duplex = adapter->link_duplex - 1;
175 		}
176 	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
177 		u32 status = er32(STATUS);
178 		if (status & E1000_STATUS_LU) {
179 			if (status & E1000_STATUS_SPEED_1000)
180 				speed = SPEED_1000;
181 			else if (status & E1000_STATUS_SPEED_100)
182 				speed = SPEED_100;
183 			else
184 				speed = SPEED_10;
185 
186 			if (status & E1000_STATUS_FD)
187 				ecmd->duplex = DUPLEX_FULL;
188 			else
189 				ecmd->duplex = DUPLEX_HALF;
190 		}
191 	}
192 
193 	ethtool_cmd_speed_set(ecmd, speed);
194 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
195 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
196 
197 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
198 	if ((hw->phy.media_type == e1000_media_type_copper) &&
199 	    netif_carrier_ok(netdev))
200 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
201 	else
202 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
203 
204 	if (hw->phy.mdix == AUTO_ALL_MODES)
205 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
206 	else
207 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
208 
209 	return 0;
210 }
211 
212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
213 {
214 	struct e1000_mac_info *mac = &adapter->hw.mac;
215 
216 	mac->autoneg = 0;
217 
218 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
219 	 * for the switch() below to work
220 	 */
221 	if ((spd & 1) || (dplx & ~1))
222 		goto err_inval;
223 
224 	/* Fiber NICs only allow 1000 gbps Full duplex */
225 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
226 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
227 		goto err_inval;
228 	}
229 
230 	switch (spd + dplx) {
231 	case SPEED_10 + DUPLEX_HALF:
232 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
233 		break;
234 	case SPEED_10 + DUPLEX_FULL:
235 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
236 		break;
237 	case SPEED_100 + DUPLEX_HALF:
238 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
239 		break;
240 	case SPEED_100 + DUPLEX_FULL:
241 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
242 		break;
243 	case SPEED_1000 + DUPLEX_FULL:
244 		mac->autoneg = 1;
245 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
246 		break;
247 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
248 	default:
249 		goto err_inval;
250 	}
251 
252 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
253 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
254 
255 	return 0;
256 
257 err_inval:
258 	e_err("Unsupported Speed/Duplex configuration\n");
259 	return -EINVAL;
260 }
261 
262 static int e1000_set_settings(struct net_device *netdev,
263 			      struct ethtool_cmd *ecmd)
264 {
265 	struct e1000_adapter *adapter = netdev_priv(netdev);
266 	struct e1000_hw *hw = &adapter->hw;
267 	int ret_val = 0;
268 
269 	pm_runtime_get_sync(netdev->dev.parent);
270 
271 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
272 	 * cannot be changed
273 	 */
274 	if (hw->phy.ops.check_reset_block &&
275 	    hw->phy.ops.check_reset_block(hw)) {
276 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
277 		ret_val = -EINVAL;
278 		goto out;
279 	}
280 
281 	/* MDI setting is only allowed when autoneg enabled because
282 	 * some hardware doesn't allow MDI setting when speed or
283 	 * duplex is forced.
284 	 */
285 	if (ecmd->eth_tp_mdix_ctrl) {
286 		if (hw->phy.media_type != e1000_media_type_copper) {
287 			ret_val = -EOPNOTSUPP;
288 			goto out;
289 		}
290 
291 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
292 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
293 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
294 			ret_val = -EINVAL;
295 			goto out;
296 		}
297 	}
298 
299 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
300 		usleep_range(1000, 2000);
301 
302 	if (ecmd->autoneg == AUTONEG_ENABLE) {
303 		hw->mac.autoneg = 1;
304 		if (hw->phy.media_type == e1000_media_type_fiber)
305 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
306 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
307 		else
308 			hw->phy.autoneg_advertised = ecmd->advertising |
309 			    ADVERTISED_TP | ADVERTISED_Autoneg;
310 		ecmd->advertising = hw->phy.autoneg_advertised;
311 		if (adapter->fc_autoneg)
312 			hw->fc.requested_mode = e1000_fc_default;
313 	} else {
314 		u32 speed = ethtool_cmd_speed(ecmd);
315 		/* calling this overrides forced MDI setting */
316 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
317 			ret_val = -EINVAL;
318 			goto out;
319 		}
320 	}
321 
322 	/* MDI-X => 2; MDI => 1; Auto => 3 */
323 	if (ecmd->eth_tp_mdix_ctrl) {
324 		/* fix up the value for auto (3 => 0) as zero is mapped
325 		 * internally to auto
326 		 */
327 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
328 			hw->phy.mdix = AUTO_ALL_MODES;
329 		else
330 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
331 	}
332 
333 	/* reset the link */
334 	if (netif_running(adapter->netdev)) {
335 		e1000e_down(adapter);
336 		e1000e_up(adapter);
337 	} else {
338 		e1000e_reset(adapter);
339 	}
340 
341 out:
342 	pm_runtime_put_sync(netdev->dev.parent);
343 	clear_bit(__E1000_RESETTING, &adapter->state);
344 	return ret_val;
345 }
346 
347 static void e1000_get_pauseparam(struct net_device *netdev,
348 				 struct ethtool_pauseparam *pause)
349 {
350 	struct e1000_adapter *adapter = netdev_priv(netdev);
351 	struct e1000_hw *hw = &adapter->hw;
352 
353 	pause->autoneg =
354 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
355 
356 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
357 		pause->rx_pause = 1;
358 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
359 		pause->tx_pause = 1;
360 	} else if (hw->fc.current_mode == e1000_fc_full) {
361 		pause->rx_pause = 1;
362 		pause->tx_pause = 1;
363 	}
364 }
365 
366 static int e1000_set_pauseparam(struct net_device *netdev,
367 				struct ethtool_pauseparam *pause)
368 {
369 	struct e1000_adapter *adapter = netdev_priv(netdev);
370 	struct e1000_hw *hw = &adapter->hw;
371 	int retval = 0;
372 
373 	adapter->fc_autoneg = pause->autoneg;
374 
375 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
376 		usleep_range(1000, 2000);
377 
378 	pm_runtime_get_sync(netdev->dev.parent);
379 
380 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
381 		hw->fc.requested_mode = e1000_fc_default;
382 		if (netif_running(adapter->netdev)) {
383 			e1000e_down(adapter);
384 			e1000e_up(adapter);
385 		} else {
386 			e1000e_reset(adapter);
387 		}
388 	} else {
389 		if (pause->rx_pause && pause->tx_pause)
390 			hw->fc.requested_mode = e1000_fc_full;
391 		else if (pause->rx_pause && !pause->tx_pause)
392 			hw->fc.requested_mode = e1000_fc_rx_pause;
393 		else if (!pause->rx_pause && pause->tx_pause)
394 			hw->fc.requested_mode = e1000_fc_tx_pause;
395 		else if (!pause->rx_pause && !pause->tx_pause)
396 			hw->fc.requested_mode = e1000_fc_none;
397 
398 		hw->fc.current_mode = hw->fc.requested_mode;
399 
400 		if (hw->phy.media_type == e1000_media_type_fiber) {
401 			retval = hw->mac.ops.setup_link(hw);
402 			/* implicit goto out */
403 		} else {
404 			retval = e1000e_force_mac_fc(hw);
405 			if (retval)
406 				goto out;
407 			e1000e_set_fc_watermarks(hw);
408 		}
409 	}
410 
411 out:
412 	pm_runtime_put_sync(netdev->dev.parent);
413 	clear_bit(__E1000_RESETTING, &adapter->state);
414 	return retval;
415 }
416 
417 static u32 e1000_get_msglevel(struct net_device *netdev)
418 {
419 	struct e1000_adapter *adapter = netdev_priv(netdev);
420 	return adapter->msg_enable;
421 }
422 
423 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
424 {
425 	struct e1000_adapter *adapter = netdev_priv(netdev);
426 	adapter->msg_enable = data;
427 }
428 
429 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
430 {
431 #define E1000_REGS_LEN 32	/* overestimate */
432 	return E1000_REGS_LEN * sizeof(u32);
433 }
434 
435 static void e1000_get_regs(struct net_device *netdev,
436 			   struct ethtool_regs *regs, void *p)
437 {
438 	struct e1000_adapter *adapter = netdev_priv(netdev);
439 	struct e1000_hw *hw = &adapter->hw;
440 	u32 *regs_buff = p;
441 	u16 phy_data;
442 
443 	pm_runtime_get_sync(netdev->dev.parent);
444 
445 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
446 
447 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
448 	    adapter->pdev->device;
449 
450 	regs_buff[0] = er32(CTRL);
451 	regs_buff[1] = er32(STATUS);
452 
453 	regs_buff[2] = er32(RCTL);
454 	regs_buff[3] = er32(RDLEN(0));
455 	regs_buff[4] = er32(RDH(0));
456 	regs_buff[5] = er32(RDT(0));
457 	regs_buff[6] = er32(RDTR);
458 
459 	regs_buff[7] = er32(TCTL);
460 	regs_buff[8] = er32(TDLEN(0));
461 	regs_buff[9] = er32(TDH(0));
462 	regs_buff[10] = er32(TDT(0));
463 	regs_buff[11] = er32(TIDV);
464 
465 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
466 
467 	/* ethtool doesn't use anything past this point, so all this
468 	 * code is likely legacy junk for apps that may or may not exist
469 	 */
470 	if (hw->phy.type == e1000_phy_m88) {
471 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
472 		regs_buff[13] = (u32)phy_data; /* cable length */
473 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
474 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
475 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
476 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
477 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
478 		regs_buff[18] = regs_buff[13]; /* cable polarity */
479 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
480 		regs_buff[20] = regs_buff[17]; /* polarity correction */
481 		/* phy receive errors */
482 		regs_buff[22] = adapter->phy_stats.receive_errors;
483 		regs_buff[23] = regs_buff[13]; /* mdix mode */
484 	}
485 	regs_buff[21] = 0;	/* was idle_errors */
486 	e1e_rphy(hw, MII_STAT1000, &phy_data);
487 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
488 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
489 
490 	pm_runtime_put_sync(netdev->dev.parent);
491 }
492 
493 static int e1000_get_eeprom_len(struct net_device *netdev)
494 {
495 	struct e1000_adapter *adapter = netdev_priv(netdev);
496 	return adapter->hw.nvm.word_size * 2;
497 }
498 
499 static int e1000_get_eeprom(struct net_device *netdev,
500 			    struct ethtool_eeprom *eeprom, u8 *bytes)
501 {
502 	struct e1000_adapter *adapter = netdev_priv(netdev);
503 	struct e1000_hw *hw = &adapter->hw;
504 	u16 *eeprom_buff;
505 	int first_word;
506 	int last_word;
507 	int ret_val = 0;
508 	u16 i;
509 
510 	if (eeprom->len == 0)
511 		return -EINVAL;
512 
513 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
514 
515 	first_word = eeprom->offset >> 1;
516 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
517 
518 	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
519 			      GFP_KERNEL);
520 	if (!eeprom_buff)
521 		return -ENOMEM;
522 
523 	pm_runtime_get_sync(netdev->dev.parent);
524 
525 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
526 		ret_val = e1000_read_nvm(hw, first_word,
527 					 last_word - first_word + 1,
528 					 eeprom_buff);
529 	} else {
530 		for (i = 0; i < last_word - first_word + 1; i++) {
531 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
532 						 &eeprom_buff[i]);
533 			if (ret_val)
534 				break;
535 		}
536 	}
537 
538 	pm_runtime_put_sync(netdev->dev.parent);
539 
540 	if (ret_val) {
541 		/* a read error occurred, throw away the result */
542 		memset(eeprom_buff, 0xff, sizeof(u16) *
543 		       (last_word - first_word + 1));
544 	} else {
545 		/* Device's eeprom is always little-endian, word addressable */
546 		for (i = 0; i < last_word - first_word + 1; i++)
547 			le16_to_cpus(&eeprom_buff[i]);
548 	}
549 
550 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
551 	kfree(eeprom_buff);
552 
553 	return ret_val;
554 }
555 
556 static int e1000_set_eeprom(struct net_device *netdev,
557 			    struct ethtool_eeprom *eeprom, u8 *bytes)
558 {
559 	struct e1000_adapter *adapter = netdev_priv(netdev);
560 	struct e1000_hw *hw = &adapter->hw;
561 	u16 *eeprom_buff;
562 	void *ptr;
563 	int max_len;
564 	int first_word;
565 	int last_word;
566 	int ret_val = 0;
567 	u16 i;
568 
569 	if (eeprom->len == 0)
570 		return -EOPNOTSUPP;
571 
572 	if (eeprom->magic !=
573 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
574 		return -EFAULT;
575 
576 	if (adapter->flags & FLAG_READ_ONLY_NVM)
577 		return -EINVAL;
578 
579 	max_len = hw->nvm.word_size * 2;
580 
581 	first_word = eeprom->offset >> 1;
582 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
583 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
584 	if (!eeprom_buff)
585 		return -ENOMEM;
586 
587 	ptr = (void *)eeprom_buff;
588 
589 	pm_runtime_get_sync(netdev->dev.parent);
590 
591 	if (eeprom->offset & 1) {
592 		/* need read/modify/write of first changed EEPROM word */
593 		/* only the second byte of the word is being modified */
594 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
595 		ptr++;
596 	}
597 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
598 		/* need read/modify/write of last changed EEPROM word */
599 		/* only the first byte of the word is being modified */
600 		ret_val = e1000_read_nvm(hw, last_word, 1,
601 					 &eeprom_buff[last_word - first_word]);
602 
603 	if (ret_val)
604 		goto out;
605 
606 	/* Device's eeprom is always little-endian, word addressable */
607 	for (i = 0; i < last_word - first_word + 1; i++)
608 		le16_to_cpus(&eeprom_buff[i]);
609 
610 	memcpy(ptr, bytes, eeprom->len);
611 
612 	for (i = 0; i < last_word - first_word + 1; i++)
613 		cpu_to_le16s(&eeprom_buff[i]);
614 
615 	ret_val = e1000_write_nvm(hw, first_word,
616 				  last_word - first_word + 1, eeprom_buff);
617 
618 	if (ret_val)
619 		goto out;
620 
621 	/* Update the checksum over the first part of the EEPROM if needed
622 	 * and flush shadow RAM for applicable controllers
623 	 */
624 	if ((first_word <= NVM_CHECKSUM_REG) ||
625 	    (hw->mac.type == e1000_82583) ||
626 	    (hw->mac.type == e1000_82574) ||
627 	    (hw->mac.type == e1000_82573))
628 		ret_val = e1000e_update_nvm_checksum(hw);
629 
630 out:
631 	pm_runtime_put_sync(netdev->dev.parent);
632 	kfree(eeprom_buff);
633 	return ret_val;
634 }
635 
636 static void e1000_get_drvinfo(struct net_device *netdev,
637 			      struct ethtool_drvinfo *drvinfo)
638 {
639 	struct e1000_adapter *adapter = netdev_priv(netdev);
640 
641 	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
642 	strlcpy(drvinfo->version, e1000e_driver_version,
643 		sizeof(drvinfo->version));
644 
645 	/* EEPROM image version # is reported as firmware version # for
646 	 * PCI-E controllers
647 	 */
648 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
649 		 "%d.%d-%d",
650 		 (adapter->eeprom_vers & 0xF000) >> 12,
651 		 (adapter->eeprom_vers & 0x0FF0) >> 4,
652 		 (adapter->eeprom_vers & 0x000F));
653 
654 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
655 		sizeof(drvinfo->bus_info));
656 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
657 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
658 }
659 
660 static void e1000_get_ringparam(struct net_device *netdev,
661 				struct ethtool_ringparam *ring)
662 {
663 	struct e1000_adapter *adapter = netdev_priv(netdev);
664 
665 	ring->rx_max_pending = E1000_MAX_RXD;
666 	ring->tx_max_pending = E1000_MAX_TXD;
667 	ring->rx_pending = adapter->rx_ring_count;
668 	ring->tx_pending = adapter->tx_ring_count;
669 }
670 
671 static int e1000_set_ringparam(struct net_device *netdev,
672 			       struct ethtool_ringparam *ring)
673 {
674 	struct e1000_adapter *adapter = netdev_priv(netdev);
675 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
676 	int err = 0, size = sizeof(struct e1000_ring);
677 	bool set_tx = false, set_rx = false;
678 	u16 new_rx_count, new_tx_count;
679 
680 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
681 		return -EINVAL;
682 
683 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
684 			       E1000_MAX_RXD);
685 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
686 
687 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
688 			       E1000_MAX_TXD);
689 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
690 
691 	if ((new_tx_count == adapter->tx_ring_count) &&
692 	    (new_rx_count == adapter->rx_ring_count))
693 		/* nothing to do */
694 		return 0;
695 
696 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
697 		usleep_range(1000, 2000);
698 
699 	if (!netif_running(adapter->netdev)) {
700 		/* Set counts now and allocate resources during open() */
701 		adapter->tx_ring->count = new_tx_count;
702 		adapter->rx_ring->count = new_rx_count;
703 		adapter->tx_ring_count = new_tx_count;
704 		adapter->rx_ring_count = new_rx_count;
705 		goto clear_reset;
706 	}
707 
708 	set_tx = (new_tx_count != adapter->tx_ring_count);
709 	set_rx = (new_rx_count != adapter->rx_ring_count);
710 
711 	/* Allocate temporary storage for ring updates */
712 	if (set_tx) {
713 		temp_tx = vmalloc(size);
714 		if (!temp_tx) {
715 			err = -ENOMEM;
716 			goto free_temp;
717 		}
718 	}
719 	if (set_rx) {
720 		temp_rx = vmalloc(size);
721 		if (!temp_rx) {
722 			err = -ENOMEM;
723 			goto free_temp;
724 		}
725 	}
726 
727 	pm_runtime_get_sync(netdev->dev.parent);
728 
729 	e1000e_down(adapter);
730 
731 	/* We can't just free everything and then setup again, because the
732 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
733 	 * structs.  First, attempt to allocate new resources...
734 	 */
735 	if (set_tx) {
736 		memcpy(temp_tx, adapter->tx_ring, size);
737 		temp_tx->count = new_tx_count;
738 		err = e1000e_setup_tx_resources(temp_tx);
739 		if (err)
740 			goto err_setup;
741 	}
742 	if (set_rx) {
743 		memcpy(temp_rx, adapter->rx_ring, size);
744 		temp_rx->count = new_rx_count;
745 		err = e1000e_setup_rx_resources(temp_rx);
746 		if (err)
747 			goto err_setup_rx;
748 	}
749 
750 	/* ...then free the old resources and copy back any new ring data */
751 	if (set_tx) {
752 		e1000e_free_tx_resources(adapter->tx_ring);
753 		memcpy(adapter->tx_ring, temp_tx, size);
754 		adapter->tx_ring_count = new_tx_count;
755 	}
756 	if (set_rx) {
757 		e1000e_free_rx_resources(adapter->rx_ring);
758 		memcpy(adapter->rx_ring, temp_rx, size);
759 		adapter->rx_ring_count = new_rx_count;
760 	}
761 
762 err_setup_rx:
763 	if (err && set_tx)
764 		e1000e_free_tx_resources(temp_tx);
765 err_setup:
766 	e1000e_up(adapter);
767 	pm_runtime_put_sync(netdev->dev.parent);
768 free_temp:
769 	vfree(temp_tx);
770 	vfree(temp_rx);
771 clear_reset:
772 	clear_bit(__E1000_RESETTING, &adapter->state);
773 	return err;
774 }
775 
776 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
777 			     int reg, int offset, u32 mask, u32 write)
778 {
779 	u32 pat, val;
780 	static const u32 test[] = {
781 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
782 	};
783 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
784 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
785 				      (test[pat] & write));
786 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
787 		if (val != (test[pat] & write & mask)) {
788 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
789 			      reg + (offset << 2), val,
790 			      (test[pat] & write & mask));
791 			*data = reg;
792 			return 1;
793 		}
794 	}
795 	return 0;
796 }
797 
798 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
799 			      int reg, u32 mask, u32 write)
800 {
801 	u32 val;
802 	__ew32(&adapter->hw, reg, write & mask);
803 	val = __er32(&adapter->hw, reg);
804 	if ((write & mask) != (val & mask)) {
805 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
806 		      reg, (val & mask), (write & mask));
807 		*data = reg;
808 		return 1;
809 	}
810 	return 0;
811 }
812 
813 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
814 	do {                                                                   \
815 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
816 			return 1;                                              \
817 	} while (0)
818 #define REG_PATTERN_TEST(reg, mask, write)                                     \
819 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
820 
821 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
822 	do {                                                                   \
823 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
824 			return 1;                                              \
825 	} while (0)
826 
827 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
828 {
829 	struct e1000_hw *hw = &adapter->hw;
830 	struct e1000_mac_info *mac = &adapter->hw.mac;
831 	u32 value;
832 	u32 before;
833 	u32 after;
834 	u32 i;
835 	u32 toggle;
836 	u32 mask;
837 	u32 wlock_mac = 0;
838 
839 	/* The status register is Read Only, so a write should fail.
840 	 * Some bits that get toggled are ignored.  There are several bits
841 	 * on newer hardware that are r/w.
842 	 */
843 	switch (mac->type) {
844 	case e1000_82571:
845 	case e1000_82572:
846 	case e1000_80003es2lan:
847 		toggle = 0x7FFFF3FF;
848 		break;
849 	default:
850 		toggle = 0x7FFFF033;
851 		break;
852 	}
853 
854 	before = er32(STATUS);
855 	value = (er32(STATUS) & toggle);
856 	ew32(STATUS, toggle);
857 	after = er32(STATUS) & toggle;
858 	if (value != after) {
859 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
860 		      after, value);
861 		*data = 1;
862 		return 1;
863 	}
864 	/* restore previous status */
865 	ew32(STATUS, before);
866 
867 	if (!(adapter->flags & FLAG_IS_ICH)) {
868 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
869 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
870 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
871 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
872 	}
873 
874 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
875 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
876 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
877 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
878 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
879 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
880 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
881 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
882 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
883 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
884 
885 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
886 
887 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
888 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
889 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
890 
891 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
892 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
893 	if (!(adapter->flags & FLAG_IS_ICH))
894 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
895 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
896 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
897 	mask = 0x8003FFFF;
898 	switch (mac->type) {
899 	case e1000_ich10lan:
900 	case e1000_pchlan:
901 	case e1000_pch2lan:
902 	case e1000_pch_lpt:
903 		mask |= (1 << 18);
904 		break;
905 	default:
906 		break;
907 	}
908 
909 	if (mac->type == e1000_pch_lpt)
910 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
911 		    E1000_FWSM_WLOCK_MAC_SHIFT;
912 
913 	for (i = 0; i < mac->rar_entry_count; i++) {
914 		if (mac->type == e1000_pch_lpt) {
915 			/* Cannot test write-protected SHRAL[n] registers */
916 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
917 				continue;
918 
919 			/* SHRAH[9] different than the others */
920 			if (i == 10)
921 				mask |= (1 << 30);
922 			else
923 				mask &= ~(1 << 30);
924 		}
925 		if (mac->type == e1000_pch2lan) {
926 			/* SHRAH[0,1,2] different than previous */
927 			if (i == 7)
928 				mask &= 0xFFF4FFFF;
929 			/* SHRAH[3] different than SHRAH[0,1,2] */
930 			if (i == 10)
931 				mask |= (1 << 30);
932 		}
933 
934 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
935 				       0xFFFFFFFF);
936 	}
937 
938 	for (i = 0; i < mac->mta_reg_count; i++)
939 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
940 
941 	*data = 0;
942 
943 	return 0;
944 }
945 
946 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
947 {
948 	u16 temp;
949 	u16 checksum = 0;
950 	u16 i;
951 
952 	*data = 0;
953 	/* Read and add up the contents of the EEPROM */
954 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
955 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
956 			*data = 1;
957 			return *data;
958 		}
959 		checksum += temp;
960 	}
961 
962 	/* If Checksum is not Correct return error else test passed */
963 	if ((checksum != (u16)NVM_SUM) && !(*data))
964 		*data = 2;
965 
966 	return *data;
967 }
968 
969 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
970 {
971 	struct net_device *netdev = (struct net_device *)data;
972 	struct e1000_adapter *adapter = netdev_priv(netdev);
973 	struct e1000_hw *hw = &adapter->hw;
974 
975 	adapter->test_icr |= er32(ICR);
976 
977 	return IRQ_HANDLED;
978 }
979 
980 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
981 {
982 	struct net_device *netdev = adapter->netdev;
983 	struct e1000_hw *hw = &adapter->hw;
984 	u32 mask;
985 	u32 shared_int = 1;
986 	u32 irq = adapter->pdev->irq;
987 	int i;
988 	int ret_val = 0;
989 	int int_mode = E1000E_INT_MODE_LEGACY;
990 
991 	*data = 0;
992 
993 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
994 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
995 		int_mode = adapter->int_mode;
996 		e1000e_reset_interrupt_capability(adapter);
997 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
998 		e1000e_set_interrupt_capability(adapter);
999 	}
1000 	/* Hook up test interrupt handler just for this test */
1001 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1002 			 netdev)) {
1003 		shared_int = 0;
1004 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1005 			       netdev)) {
1006 		*data = 1;
1007 		ret_val = -1;
1008 		goto out;
1009 	}
1010 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1011 
1012 	/* Disable all the interrupts */
1013 	ew32(IMC, 0xFFFFFFFF);
1014 	e1e_flush();
1015 	usleep_range(10000, 20000);
1016 
1017 	/* Test each interrupt */
1018 	for (i = 0; i < 10; i++) {
1019 		/* Interrupt to test */
1020 		mask = 1 << i;
1021 
1022 		if (adapter->flags & FLAG_IS_ICH) {
1023 			switch (mask) {
1024 			case E1000_ICR_RXSEQ:
1025 				continue;
1026 			case 0x00000100:
1027 				if (adapter->hw.mac.type == e1000_ich8lan ||
1028 				    adapter->hw.mac.type == e1000_ich9lan)
1029 					continue;
1030 				break;
1031 			default:
1032 				break;
1033 			}
1034 		}
1035 
1036 		if (!shared_int) {
1037 			/* Disable the interrupt to be reported in
1038 			 * the cause register and then force the same
1039 			 * interrupt and see if one gets posted.  If
1040 			 * an interrupt was posted to the bus, the
1041 			 * test failed.
1042 			 */
1043 			adapter->test_icr = 0;
1044 			ew32(IMC, mask);
1045 			ew32(ICS, mask);
1046 			e1e_flush();
1047 			usleep_range(10000, 20000);
1048 
1049 			if (adapter->test_icr & mask) {
1050 				*data = 3;
1051 				break;
1052 			}
1053 		}
1054 
1055 		/* Enable the interrupt to be reported in
1056 		 * the cause register and then force the same
1057 		 * interrupt and see if one gets posted.  If
1058 		 * an interrupt was not posted to the bus, the
1059 		 * test failed.
1060 		 */
1061 		adapter->test_icr = 0;
1062 		ew32(IMS, mask);
1063 		ew32(ICS, mask);
1064 		e1e_flush();
1065 		usleep_range(10000, 20000);
1066 
1067 		if (!(adapter->test_icr & mask)) {
1068 			*data = 4;
1069 			break;
1070 		}
1071 
1072 		if (!shared_int) {
1073 			/* Disable the other interrupts to be reported in
1074 			 * the cause register and then force the other
1075 			 * interrupts and see if any get posted.  If
1076 			 * an interrupt was posted to the bus, the
1077 			 * test failed.
1078 			 */
1079 			adapter->test_icr = 0;
1080 			ew32(IMC, ~mask & 0x00007FFF);
1081 			ew32(ICS, ~mask & 0x00007FFF);
1082 			e1e_flush();
1083 			usleep_range(10000, 20000);
1084 
1085 			if (adapter->test_icr) {
1086 				*data = 5;
1087 				break;
1088 			}
1089 		}
1090 	}
1091 
1092 	/* Disable all the interrupts */
1093 	ew32(IMC, 0xFFFFFFFF);
1094 	e1e_flush();
1095 	usleep_range(10000, 20000);
1096 
1097 	/* Unhook test interrupt handler */
1098 	free_irq(irq, netdev);
1099 
1100 out:
1101 	if (int_mode == E1000E_INT_MODE_MSIX) {
1102 		e1000e_reset_interrupt_capability(adapter);
1103 		adapter->int_mode = int_mode;
1104 		e1000e_set_interrupt_capability(adapter);
1105 	}
1106 
1107 	return ret_val;
1108 }
1109 
1110 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1111 {
1112 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1113 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1114 	struct pci_dev *pdev = adapter->pdev;
1115 	struct e1000_buffer *buffer_info;
1116 	int i;
1117 
1118 	if (tx_ring->desc && tx_ring->buffer_info) {
1119 		for (i = 0; i < tx_ring->count; i++) {
1120 			buffer_info = &tx_ring->buffer_info[i];
1121 
1122 			if (buffer_info->dma)
1123 				dma_unmap_single(&pdev->dev,
1124 						 buffer_info->dma,
1125 						 buffer_info->length,
1126 						 DMA_TO_DEVICE);
1127 			if (buffer_info->skb)
1128 				dev_kfree_skb(buffer_info->skb);
1129 		}
1130 	}
1131 
1132 	if (rx_ring->desc && rx_ring->buffer_info) {
1133 		for (i = 0; i < rx_ring->count; i++) {
1134 			buffer_info = &rx_ring->buffer_info[i];
1135 
1136 			if (buffer_info->dma)
1137 				dma_unmap_single(&pdev->dev,
1138 						 buffer_info->dma,
1139 						 2048, DMA_FROM_DEVICE);
1140 			if (buffer_info->skb)
1141 				dev_kfree_skb(buffer_info->skb);
1142 		}
1143 	}
1144 
1145 	if (tx_ring->desc) {
1146 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1147 				  tx_ring->dma);
1148 		tx_ring->desc = NULL;
1149 	}
1150 	if (rx_ring->desc) {
1151 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1152 				  rx_ring->dma);
1153 		rx_ring->desc = NULL;
1154 	}
1155 
1156 	kfree(tx_ring->buffer_info);
1157 	tx_ring->buffer_info = NULL;
1158 	kfree(rx_ring->buffer_info);
1159 	rx_ring->buffer_info = NULL;
1160 }
1161 
1162 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1163 {
1164 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1165 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1166 	struct pci_dev *pdev = adapter->pdev;
1167 	struct e1000_hw *hw = &adapter->hw;
1168 	u32 rctl;
1169 	int i;
1170 	int ret_val;
1171 
1172 	/* Setup Tx descriptor ring and Tx buffers */
1173 
1174 	if (!tx_ring->count)
1175 		tx_ring->count = E1000_DEFAULT_TXD;
1176 
1177 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1178 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1179 	if (!tx_ring->buffer_info) {
1180 		ret_val = 1;
1181 		goto err_nomem;
1182 	}
1183 
1184 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1185 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1186 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1187 					   &tx_ring->dma, GFP_KERNEL);
1188 	if (!tx_ring->desc) {
1189 		ret_val = 2;
1190 		goto err_nomem;
1191 	}
1192 	tx_ring->next_to_use = 0;
1193 	tx_ring->next_to_clean = 0;
1194 
1195 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1196 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1197 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1198 	ew32(TDH(0), 0);
1199 	ew32(TDT(0), 0);
1200 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1201 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1202 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1203 
1204 	for (i = 0; i < tx_ring->count; i++) {
1205 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1206 		struct sk_buff *skb;
1207 		unsigned int skb_size = 1024;
1208 
1209 		skb = alloc_skb(skb_size, GFP_KERNEL);
1210 		if (!skb) {
1211 			ret_val = 3;
1212 			goto err_nomem;
1213 		}
1214 		skb_put(skb, skb_size);
1215 		tx_ring->buffer_info[i].skb = skb;
1216 		tx_ring->buffer_info[i].length = skb->len;
1217 		tx_ring->buffer_info[i].dma =
1218 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1219 				   DMA_TO_DEVICE);
1220 		if (dma_mapping_error(&pdev->dev,
1221 				      tx_ring->buffer_info[i].dma)) {
1222 			ret_val = 4;
1223 			goto err_nomem;
1224 		}
1225 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1226 		tx_desc->lower.data = cpu_to_le32(skb->len);
1227 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1228 						   E1000_TXD_CMD_IFCS |
1229 						   E1000_TXD_CMD_RS);
1230 		tx_desc->upper.data = 0;
1231 	}
1232 
1233 	/* Setup Rx descriptor ring and Rx buffers */
1234 
1235 	if (!rx_ring->count)
1236 		rx_ring->count = E1000_DEFAULT_RXD;
1237 
1238 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1239 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1240 	if (!rx_ring->buffer_info) {
1241 		ret_val = 5;
1242 		goto err_nomem;
1243 	}
1244 
1245 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1246 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1247 					   &rx_ring->dma, GFP_KERNEL);
1248 	if (!rx_ring->desc) {
1249 		ret_val = 6;
1250 		goto err_nomem;
1251 	}
1252 	rx_ring->next_to_use = 0;
1253 	rx_ring->next_to_clean = 0;
1254 
1255 	rctl = er32(RCTL);
1256 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1257 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1258 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1259 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1260 	ew32(RDLEN(0), rx_ring->size);
1261 	ew32(RDH(0), 0);
1262 	ew32(RDT(0), 0);
1263 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1264 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1265 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1266 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1267 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1268 	ew32(RCTL, rctl);
1269 
1270 	for (i = 0; i < rx_ring->count; i++) {
1271 		union e1000_rx_desc_extended *rx_desc;
1272 		struct sk_buff *skb;
1273 
1274 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1275 		if (!skb) {
1276 			ret_val = 7;
1277 			goto err_nomem;
1278 		}
1279 		skb_reserve(skb, NET_IP_ALIGN);
1280 		rx_ring->buffer_info[i].skb = skb;
1281 		rx_ring->buffer_info[i].dma =
1282 		    dma_map_single(&pdev->dev, skb->data, 2048,
1283 				   DMA_FROM_DEVICE);
1284 		if (dma_mapping_error(&pdev->dev,
1285 				      rx_ring->buffer_info[i].dma)) {
1286 			ret_val = 8;
1287 			goto err_nomem;
1288 		}
1289 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1290 		rx_desc->read.buffer_addr =
1291 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1292 		memset(skb->data, 0x00, skb->len);
1293 	}
1294 
1295 	return 0;
1296 
1297 err_nomem:
1298 	e1000_free_desc_rings(adapter);
1299 	return ret_val;
1300 }
1301 
1302 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1303 {
1304 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1305 	e1e_wphy(&adapter->hw, 29, 0x001F);
1306 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1307 	e1e_wphy(&adapter->hw, 29, 0x001A);
1308 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1309 }
1310 
1311 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1312 {
1313 	struct e1000_hw *hw = &adapter->hw;
1314 	u32 ctrl_reg = 0;
1315 	u16 phy_reg = 0;
1316 	s32 ret_val = 0;
1317 
1318 	hw->mac.autoneg = 0;
1319 
1320 	if (hw->phy.type == e1000_phy_ife) {
1321 		/* force 100, set loopback */
1322 		e1e_wphy(hw, MII_BMCR, 0x6100);
1323 
1324 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1325 		ctrl_reg = er32(CTRL);
1326 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1327 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1328 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1329 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1330 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1331 
1332 		ew32(CTRL, ctrl_reg);
1333 		e1e_flush();
1334 		usleep_range(500, 1000);
1335 
1336 		return 0;
1337 	}
1338 
1339 	/* Specific PHY configuration for loopback */
1340 	switch (hw->phy.type) {
1341 	case e1000_phy_m88:
1342 		/* Auto-MDI/MDIX Off */
1343 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1344 		/* reset to update Auto-MDI/MDIX */
1345 		e1e_wphy(hw, MII_BMCR, 0x9140);
1346 		/* autoneg off */
1347 		e1e_wphy(hw, MII_BMCR, 0x8140);
1348 		break;
1349 	case e1000_phy_gg82563:
1350 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1351 		break;
1352 	case e1000_phy_bm:
1353 		/* Set Default MAC Interface speed to 1GB */
1354 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1355 		phy_reg &= ~0x0007;
1356 		phy_reg |= 0x006;
1357 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1358 		/* Assert SW reset for above settings to take effect */
1359 		hw->phy.ops.commit(hw);
1360 		usleep_range(1000, 2000);
1361 		/* Force Full Duplex */
1362 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1363 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1364 		/* Set Link Up (in force link) */
1365 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1366 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1367 		/* Force Link */
1368 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1369 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1370 		/* Set Early Link Enable */
1371 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1372 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1373 		break;
1374 	case e1000_phy_82577:
1375 	case e1000_phy_82578:
1376 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1377 		ret_val = hw->phy.ops.acquire(hw);
1378 		if (ret_val) {
1379 			e_err("Cannot setup 1Gbps loopback.\n");
1380 			return ret_val;
1381 		}
1382 		e1000_configure_k1_ich8lan(hw, false);
1383 		hw->phy.ops.release(hw);
1384 		break;
1385 	case e1000_phy_82579:
1386 		/* Disable PHY energy detect power down */
1387 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1388 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1389 		/* Disable full chip energy detect */
1390 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1391 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1392 		/* Enable loopback on the PHY */
1393 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1394 		break;
1395 	default:
1396 		break;
1397 	}
1398 
1399 	/* force 1000, set loopback */
1400 	e1e_wphy(hw, MII_BMCR, 0x4140);
1401 	msleep(250);
1402 
1403 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1404 	ctrl_reg = er32(CTRL);
1405 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1406 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1407 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1408 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1409 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1410 
1411 	if (adapter->flags & FLAG_IS_ICH)
1412 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1413 
1414 	if (hw->phy.media_type == e1000_media_type_copper &&
1415 	    hw->phy.type == e1000_phy_m88) {
1416 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1417 	} else {
1418 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1419 		 * detected.
1420 		 */
1421 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1422 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1423 	}
1424 
1425 	ew32(CTRL, ctrl_reg);
1426 
1427 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1428 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1429 	 */
1430 	if (hw->phy.type == e1000_phy_m88)
1431 		e1000_phy_disable_receiver(adapter);
1432 
1433 	usleep_range(500, 1000);
1434 
1435 	return 0;
1436 }
1437 
1438 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1439 {
1440 	struct e1000_hw *hw = &adapter->hw;
1441 	u32 ctrl = er32(CTRL);
1442 	int link;
1443 
1444 	/* special requirements for 82571/82572 fiber adapters */
1445 
1446 	/* jump through hoops to make sure link is up because serdes
1447 	 * link is hardwired up
1448 	 */
1449 	ctrl |= E1000_CTRL_SLU;
1450 	ew32(CTRL, ctrl);
1451 
1452 	/* disable autoneg */
1453 	ctrl = er32(TXCW);
1454 	ctrl &= ~(1 << 31);
1455 	ew32(TXCW, ctrl);
1456 
1457 	link = (er32(STATUS) & E1000_STATUS_LU);
1458 
1459 	if (!link) {
1460 		/* set invert loss of signal */
1461 		ctrl = er32(CTRL);
1462 		ctrl |= E1000_CTRL_ILOS;
1463 		ew32(CTRL, ctrl);
1464 	}
1465 
1466 	/* special write to serdes control register to enable SerDes analog
1467 	 * loopback
1468 	 */
1469 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1470 	e1e_flush();
1471 	usleep_range(10000, 20000);
1472 
1473 	return 0;
1474 }
1475 
1476 /* only call this for fiber/serdes connections to es2lan */
1477 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 	u32 ctrlext = er32(CTRL_EXT);
1481 	u32 ctrl = er32(CTRL);
1482 
1483 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1484 	 * on mac_type 80003es2lan)
1485 	 */
1486 	adapter->tx_fifo_head = ctrlext;
1487 
1488 	/* clear the serdes mode bits, putting the device into mac loopback */
1489 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1490 	ew32(CTRL_EXT, ctrlext);
1491 
1492 	/* force speed to 1000/FD, link up */
1493 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1494 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1495 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1496 	ew32(CTRL, ctrl);
1497 
1498 	/* set mac loopback */
1499 	ctrl = er32(RCTL);
1500 	ctrl |= E1000_RCTL_LBM_MAC;
1501 	ew32(RCTL, ctrl);
1502 
1503 	/* set testing mode parameters (no need to reset later) */
1504 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1505 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1506 	ew32(KMRNCTRLSTA,
1507 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1508 
1509 	return 0;
1510 }
1511 
1512 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1513 {
1514 	struct e1000_hw *hw = &adapter->hw;
1515 	u32 rctl;
1516 
1517 	if (hw->phy.media_type == e1000_media_type_fiber ||
1518 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1519 		switch (hw->mac.type) {
1520 		case e1000_80003es2lan:
1521 			return e1000_set_es2lan_mac_loopback(adapter);
1522 			break;
1523 		case e1000_82571:
1524 		case e1000_82572:
1525 			return e1000_set_82571_fiber_loopback(adapter);
1526 			break;
1527 		default:
1528 			rctl = er32(RCTL);
1529 			rctl |= E1000_RCTL_LBM_TCVR;
1530 			ew32(RCTL, rctl);
1531 			return 0;
1532 		}
1533 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1534 		return e1000_integrated_phy_loopback(adapter);
1535 	}
1536 
1537 	return 7;
1538 }
1539 
1540 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1541 {
1542 	struct e1000_hw *hw = &adapter->hw;
1543 	u32 rctl;
1544 	u16 phy_reg;
1545 
1546 	rctl = er32(RCTL);
1547 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1548 	ew32(RCTL, rctl);
1549 
1550 	switch (hw->mac.type) {
1551 	case e1000_80003es2lan:
1552 		if (hw->phy.media_type == e1000_media_type_fiber ||
1553 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1554 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1555 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1556 			adapter->tx_fifo_head = 0;
1557 		}
1558 		/* fall through */
1559 	case e1000_82571:
1560 	case e1000_82572:
1561 		if (hw->phy.media_type == e1000_media_type_fiber ||
1562 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1563 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1564 			e1e_flush();
1565 			usleep_range(10000, 20000);
1566 			break;
1567 		}
1568 		/* Fall Through */
1569 	default:
1570 		hw->mac.autoneg = 1;
1571 		if (hw->phy.type == e1000_phy_gg82563)
1572 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1573 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1574 		if (phy_reg & BMCR_LOOPBACK) {
1575 			phy_reg &= ~BMCR_LOOPBACK;
1576 			e1e_wphy(hw, MII_BMCR, phy_reg);
1577 			if (hw->phy.ops.commit)
1578 				hw->phy.ops.commit(hw);
1579 		}
1580 		break;
1581 	}
1582 }
1583 
1584 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1585 				      unsigned int frame_size)
1586 {
1587 	memset(skb->data, 0xFF, frame_size);
1588 	frame_size &= ~1;
1589 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1590 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1591 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1592 }
1593 
1594 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1595 				    unsigned int frame_size)
1596 {
1597 	frame_size &= ~1;
1598 	if (*(skb->data + 3) == 0xFF)
1599 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1600 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1601 			return 0;
1602 	return 13;
1603 }
1604 
1605 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1606 {
1607 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1608 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1609 	struct pci_dev *pdev = adapter->pdev;
1610 	struct e1000_hw *hw = &adapter->hw;
1611 	struct e1000_buffer *buffer_info;
1612 	int i, j, k, l;
1613 	int lc;
1614 	int good_cnt;
1615 	int ret_val = 0;
1616 	unsigned long time;
1617 
1618 	ew32(RDT(0), rx_ring->count - 1);
1619 
1620 	/* Calculate the loop count based on the largest descriptor ring
1621 	 * The idea is to wrap the largest ring a number of times using 64
1622 	 * send/receive pairs during each loop
1623 	 */
1624 
1625 	if (rx_ring->count <= tx_ring->count)
1626 		lc = ((tx_ring->count / 64) * 2) + 1;
1627 	else
1628 		lc = ((rx_ring->count / 64) * 2) + 1;
1629 
1630 	k = 0;
1631 	l = 0;
1632 	/* loop count loop */
1633 	for (j = 0; j <= lc; j++) {
1634 		/* send the packets */
1635 		for (i = 0; i < 64; i++) {
1636 			buffer_info = &tx_ring->buffer_info[k];
1637 
1638 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1639 			dma_sync_single_for_device(&pdev->dev,
1640 						   buffer_info->dma,
1641 						   buffer_info->length,
1642 						   DMA_TO_DEVICE);
1643 			k++;
1644 			if (k == tx_ring->count)
1645 				k = 0;
1646 		}
1647 		ew32(TDT(0), k);
1648 		e1e_flush();
1649 		msleep(200);
1650 		time = jiffies;	/* set the start time for the receive */
1651 		good_cnt = 0;
1652 		/* receive the sent packets */
1653 		do {
1654 			buffer_info = &rx_ring->buffer_info[l];
1655 
1656 			dma_sync_single_for_cpu(&pdev->dev,
1657 						buffer_info->dma, 2048,
1658 						DMA_FROM_DEVICE);
1659 
1660 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1661 							   1024);
1662 			if (!ret_val)
1663 				good_cnt++;
1664 			l++;
1665 			if (l == rx_ring->count)
1666 				l = 0;
1667 			/* time + 20 msecs (200 msecs on 2.4) is more than
1668 			 * enough time to complete the receives, if it's
1669 			 * exceeded, break and error off
1670 			 */
1671 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1672 		if (good_cnt != 64) {
1673 			ret_val = 13;	/* ret_val is the same as mis-compare */
1674 			break;
1675 		}
1676 		if (time_after(jiffies, time + 20)) {
1677 			ret_val = 14;	/* error code for time out error */
1678 			break;
1679 		}
1680 	}
1681 	return ret_val;
1682 }
1683 
1684 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1685 {
1686 	struct e1000_hw *hw = &adapter->hw;
1687 
1688 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1689 	if (hw->phy.ops.check_reset_block &&
1690 	    hw->phy.ops.check_reset_block(hw)) {
1691 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1692 		*data = 0;
1693 		goto out;
1694 	}
1695 
1696 	*data = e1000_setup_desc_rings(adapter);
1697 	if (*data)
1698 		goto out;
1699 
1700 	*data = e1000_setup_loopback_test(adapter);
1701 	if (*data)
1702 		goto err_loopback;
1703 
1704 	*data = e1000_run_loopback_test(adapter);
1705 	e1000_loopback_cleanup(adapter);
1706 
1707 err_loopback:
1708 	e1000_free_desc_rings(adapter);
1709 out:
1710 	return *data;
1711 }
1712 
1713 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1714 {
1715 	struct e1000_hw *hw = &adapter->hw;
1716 
1717 	*data = 0;
1718 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1719 		int i = 0;
1720 		hw->mac.serdes_has_link = false;
1721 
1722 		/* On some blade server designs, link establishment
1723 		 * could take as long as 2-3 minutes
1724 		 */
1725 		do {
1726 			hw->mac.ops.check_for_link(hw);
1727 			if (hw->mac.serdes_has_link)
1728 				return *data;
1729 			msleep(20);
1730 		} while (i++ < 3750);
1731 
1732 		*data = 1;
1733 	} else {
1734 		hw->mac.ops.check_for_link(hw);
1735 		if (hw->mac.autoneg)
1736 			/* On some Phy/switch combinations, link establishment
1737 			 * can take a few seconds more than expected.
1738 			 */
1739 			msleep_interruptible(5000);
1740 
1741 		if (!(er32(STATUS) & E1000_STATUS_LU))
1742 			*data = 1;
1743 	}
1744 	return *data;
1745 }
1746 
1747 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1748 				 int sset)
1749 {
1750 	switch (sset) {
1751 	case ETH_SS_TEST:
1752 		return E1000_TEST_LEN;
1753 	case ETH_SS_STATS:
1754 		return E1000_STATS_LEN;
1755 	default:
1756 		return -EOPNOTSUPP;
1757 	}
1758 }
1759 
1760 static void e1000_diag_test(struct net_device *netdev,
1761 			    struct ethtool_test *eth_test, u64 *data)
1762 {
1763 	struct e1000_adapter *adapter = netdev_priv(netdev);
1764 	u16 autoneg_advertised;
1765 	u8 forced_speed_duplex;
1766 	u8 autoneg;
1767 	bool if_running = netif_running(netdev);
1768 
1769 	pm_runtime_get_sync(netdev->dev.parent);
1770 
1771 	set_bit(__E1000_TESTING, &adapter->state);
1772 
1773 	if (!if_running) {
1774 		/* Get control of and reset hardware */
1775 		if (adapter->flags & FLAG_HAS_AMT)
1776 			e1000e_get_hw_control(adapter);
1777 
1778 		e1000e_power_up_phy(adapter);
1779 
1780 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1781 		e1000e_reset(adapter);
1782 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1783 	}
1784 
1785 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1786 		/* Offline tests */
1787 
1788 		/* save speed, duplex, autoneg settings */
1789 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1790 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1791 		autoneg = adapter->hw.mac.autoneg;
1792 
1793 		e_info("offline testing starting\n");
1794 
1795 		if (if_running)
1796 			/* indicate we're in test mode */
1797 			dev_close(netdev);
1798 
1799 		if (e1000_reg_test(adapter, &data[0]))
1800 			eth_test->flags |= ETH_TEST_FL_FAILED;
1801 
1802 		e1000e_reset(adapter);
1803 		if (e1000_eeprom_test(adapter, &data[1]))
1804 			eth_test->flags |= ETH_TEST_FL_FAILED;
1805 
1806 		e1000e_reset(adapter);
1807 		if (e1000_intr_test(adapter, &data[2]))
1808 			eth_test->flags |= ETH_TEST_FL_FAILED;
1809 
1810 		e1000e_reset(adapter);
1811 		if (e1000_loopback_test(adapter, &data[3]))
1812 			eth_test->flags |= ETH_TEST_FL_FAILED;
1813 
1814 		/* force this routine to wait until autoneg complete/timeout */
1815 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1816 		e1000e_reset(adapter);
1817 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1818 
1819 		if (e1000_link_test(adapter, &data[4]))
1820 			eth_test->flags |= ETH_TEST_FL_FAILED;
1821 
1822 		/* restore speed, duplex, autoneg settings */
1823 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1824 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1825 		adapter->hw.mac.autoneg = autoneg;
1826 		e1000e_reset(adapter);
1827 
1828 		clear_bit(__E1000_TESTING, &adapter->state);
1829 		if (if_running)
1830 			dev_open(netdev);
1831 	} else {
1832 		/* Online tests */
1833 
1834 		e_info("online testing starting\n");
1835 
1836 		/* register, eeprom, intr and loopback tests not run online */
1837 		data[0] = 0;
1838 		data[1] = 0;
1839 		data[2] = 0;
1840 		data[3] = 0;
1841 
1842 		if (e1000_link_test(adapter, &data[4]))
1843 			eth_test->flags |= ETH_TEST_FL_FAILED;
1844 
1845 		clear_bit(__E1000_TESTING, &adapter->state);
1846 	}
1847 
1848 	if (!if_running) {
1849 		e1000e_reset(adapter);
1850 
1851 		if (adapter->flags & FLAG_HAS_AMT)
1852 			e1000e_release_hw_control(adapter);
1853 	}
1854 
1855 	msleep_interruptible(4 * 1000);
1856 
1857 	pm_runtime_put_sync(netdev->dev.parent);
1858 }
1859 
1860 static void e1000_get_wol(struct net_device *netdev,
1861 			  struct ethtool_wolinfo *wol)
1862 {
1863 	struct e1000_adapter *adapter = netdev_priv(netdev);
1864 
1865 	wol->supported = 0;
1866 	wol->wolopts = 0;
1867 
1868 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1869 	    !device_can_wakeup(&adapter->pdev->dev))
1870 		return;
1871 
1872 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1873 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1874 
1875 	/* apply any specific unsupported masks here */
1876 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1877 		wol->supported &= ~WAKE_UCAST;
1878 
1879 		if (adapter->wol & E1000_WUFC_EX)
1880 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1881 	}
1882 
1883 	if (adapter->wol & E1000_WUFC_EX)
1884 		wol->wolopts |= WAKE_UCAST;
1885 	if (adapter->wol & E1000_WUFC_MC)
1886 		wol->wolopts |= WAKE_MCAST;
1887 	if (adapter->wol & E1000_WUFC_BC)
1888 		wol->wolopts |= WAKE_BCAST;
1889 	if (adapter->wol & E1000_WUFC_MAG)
1890 		wol->wolopts |= WAKE_MAGIC;
1891 	if (adapter->wol & E1000_WUFC_LNKC)
1892 		wol->wolopts |= WAKE_PHY;
1893 }
1894 
1895 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1896 {
1897 	struct e1000_adapter *adapter = netdev_priv(netdev);
1898 
1899 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1900 	    !device_can_wakeup(&adapter->pdev->dev) ||
1901 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1902 			      WAKE_MAGIC | WAKE_PHY)))
1903 		return -EOPNOTSUPP;
1904 
1905 	/* these settings will always override what we currently have */
1906 	adapter->wol = 0;
1907 
1908 	if (wol->wolopts & WAKE_UCAST)
1909 		adapter->wol |= E1000_WUFC_EX;
1910 	if (wol->wolopts & WAKE_MCAST)
1911 		adapter->wol |= E1000_WUFC_MC;
1912 	if (wol->wolopts & WAKE_BCAST)
1913 		adapter->wol |= E1000_WUFC_BC;
1914 	if (wol->wolopts & WAKE_MAGIC)
1915 		adapter->wol |= E1000_WUFC_MAG;
1916 	if (wol->wolopts & WAKE_PHY)
1917 		adapter->wol |= E1000_WUFC_LNKC;
1918 
1919 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1920 
1921 	return 0;
1922 }
1923 
1924 static int e1000_set_phys_id(struct net_device *netdev,
1925 			     enum ethtool_phys_id_state state)
1926 {
1927 	struct e1000_adapter *adapter = netdev_priv(netdev);
1928 	struct e1000_hw *hw = &adapter->hw;
1929 
1930 	switch (state) {
1931 	case ETHTOOL_ID_ACTIVE:
1932 		pm_runtime_get_sync(netdev->dev.parent);
1933 
1934 		if (!hw->mac.ops.blink_led)
1935 			return 2;	/* cycle on/off twice per second */
1936 
1937 		hw->mac.ops.blink_led(hw);
1938 		break;
1939 
1940 	case ETHTOOL_ID_INACTIVE:
1941 		if (hw->phy.type == e1000_phy_ife)
1942 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1943 		hw->mac.ops.led_off(hw);
1944 		hw->mac.ops.cleanup_led(hw);
1945 		pm_runtime_put_sync(netdev->dev.parent);
1946 		break;
1947 
1948 	case ETHTOOL_ID_ON:
1949 		hw->mac.ops.led_on(hw);
1950 		break;
1951 
1952 	case ETHTOOL_ID_OFF:
1953 		hw->mac.ops.led_off(hw);
1954 		break;
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 static int e1000_get_coalesce(struct net_device *netdev,
1961 			      struct ethtool_coalesce *ec)
1962 {
1963 	struct e1000_adapter *adapter = netdev_priv(netdev);
1964 
1965 	if (adapter->itr_setting <= 4)
1966 		ec->rx_coalesce_usecs = adapter->itr_setting;
1967 	else
1968 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1969 
1970 	return 0;
1971 }
1972 
1973 static int e1000_set_coalesce(struct net_device *netdev,
1974 			      struct ethtool_coalesce *ec)
1975 {
1976 	struct e1000_adapter *adapter = netdev_priv(netdev);
1977 
1978 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1979 	    ((ec->rx_coalesce_usecs > 4) &&
1980 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1981 	    (ec->rx_coalesce_usecs == 2))
1982 		return -EINVAL;
1983 
1984 	if (ec->rx_coalesce_usecs == 4) {
1985 		adapter->itr_setting = 4;
1986 		adapter->itr = adapter->itr_setting;
1987 	} else if (ec->rx_coalesce_usecs <= 3) {
1988 		adapter->itr = 20000;
1989 		adapter->itr_setting = ec->rx_coalesce_usecs;
1990 	} else {
1991 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1992 		adapter->itr_setting = adapter->itr & ~3;
1993 	}
1994 
1995 	pm_runtime_get_sync(netdev->dev.parent);
1996 
1997 	if (adapter->itr_setting != 0)
1998 		e1000e_write_itr(adapter, adapter->itr);
1999 	else
2000 		e1000e_write_itr(adapter, 0);
2001 
2002 	pm_runtime_put_sync(netdev->dev.parent);
2003 
2004 	return 0;
2005 }
2006 
2007 static int e1000_nway_reset(struct net_device *netdev)
2008 {
2009 	struct e1000_adapter *adapter = netdev_priv(netdev);
2010 
2011 	if (!netif_running(netdev))
2012 		return -EAGAIN;
2013 
2014 	if (!adapter->hw.mac.autoneg)
2015 		return -EINVAL;
2016 
2017 	pm_runtime_get_sync(netdev->dev.parent);
2018 	e1000e_reinit_locked(adapter);
2019 	pm_runtime_put_sync(netdev->dev.parent);
2020 
2021 	return 0;
2022 }
2023 
2024 static void e1000_get_ethtool_stats(struct net_device *netdev,
2025 				    struct ethtool_stats __always_unused *stats,
2026 				    u64 *data)
2027 {
2028 	struct e1000_adapter *adapter = netdev_priv(netdev);
2029 	struct rtnl_link_stats64 net_stats;
2030 	int i;
2031 	char *p = NULL;
2032 
2033 	pm_runtime_get_sync(netdev->dev.parent);
2034 
2035 	e1000e_get_stats64(netdev, &net_stats);
2036 
2037 	pm_runtime_put_sync(netdev->dev.parent);
2038 
2039 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2040 		switch (e1000_gstrings_stats[i].type) {
2041 		case NETDEV_STATS:
2042 			p = (char *)&net_stats +
2043 			    e1000_gstrings_stats[i].stat_offset;
2044 			break;
2045 		case E1000_STATS:
2046 			p = (char *)adapter +
2047 			    e1000_gstrings_stats[i].stat_offset;
2048 			break;
2049 		default:
2050 			data[i] = 0;
2051 			continue;
2052 		}
2053 
2054 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2055 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2056 	}
2057 }
2058 
2059 static void e1000_get_strings(struct net_device __always_unused *netdev,
2060 			      u32 stringset, u8 *data)
2061 {
2062 	u8 *p = data;
2063 	int i;
2064 
2065 	switch (stringset) {
2066 	case ETH_SS_TEST:
2067 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2068 		break;
2069 	case ETH_SS_STATS:
2070 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2071 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2072 			       ETH_GSTRING_LEN);
2073 			p += ETH_GSTRING_LEN;
2074 		}
2075 		break;
2076 	}
2077 }
2078 
2079 static int e1000_get_rxnfc(struct net_device *netdev,
2080 			   struct ethtool_rxnfc *info,
2081 			   u32 __always_unused *rule_locs)
2082 {
2083 	info->data = 0;
2084 
2085 	switch (info->cmd) {
2086 	case ETHTOOL_GRXFH: {
2087 		struct e1000_adapter *adapter = netdev_priv(netdev);
2088 		struct e1000_hw *hw = &adapter->hw;
2089 		u32 mrqc;
2090 
2091 		pm_runtime_get_sync(netdev->dev.parent);
2092 		mrqc = er32(MRQC);
2093 		pm_runtime_put_sync(netdev->dev.parent);
2094 
2095 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2096 			return 0;
2097 
2098 		switch (info->flow_type) {
2099 		case TCP_V4_FLOW:
2100 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2101 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2102 			/* fall through */
2103 		case UDP_V4_FLOW:
2104 		case SCTP_V4_FLOW:
2105 		case AH_ESP_V4_FLOW:
2106 		case IPV4_FLOW:
2107 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2108 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2109 			break;
2110 		case TCP_V6_FLOW:
2111 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2112 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2113 			/* fall through */
2114 		case UDP_V6_FLOW:
2115 		case SCTP_V6_FLOW:
2116 		case AH_ESP_V6_FLOW:
2117 		case IPV6_FLOW:
2118 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2119 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2120 			break;
2121 		default:
2122 			break;
2123 		}
2124 		return 0;
2125 	}
2126 	default:
2127 		return -EOPNOTSUPP;
2128 	}
2129 }
2130 
2131 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2132 {
2133 	struct e1000_adapter *adapter = netdev_priv(netdev);
2134 	struct e1000_hw *hw = &adapter->hw;
2135 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2136 	u32 ret_val;
2137 
2138 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2139 		return -EOPNOTSUPP;
2140 
2141 	switch (hw->phy.type) {
2142 	case e1000_phy_82579:
2143 		cap_addr = I82579_EEE_CAPABILITY;
2144 		lpa_addr = I82579_EEE_LP_ABILITY;
2145 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2146 		break;
2147 	case e1000_phy_i217:
2148 		cap_addr = I217_EEE_CAPABILITY;
2149 		lpa_addr = I217_EEE_LP_ABILITY;
2150 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2151 		break;
2152 	default:
2153 		return -EOPNOTSUPP;
2154 	}
2155 
2156 	pm_runtime_get_sync(netdev->dev.parent);
2157 
2158 	ret_val = hw->phy.ops.acquire(hw);
2159 	if (ret_val) {
2160 		pm_runtime_put_sync(netdev->dev.parent);
2161 		return -EBUSY;
2162 	}
2163 
2164 	/* EEE Capability */
2165 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2166 	if (ret_val)
2167 		goto release;
2168 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2169 
2170 	/* EEE Advertised */
2171 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2172 
2173 	/* EEE Link Partner Advertised */
2174 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2175 	if (ret_val)
2176 		goto release;
2177 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2178 
2179 	/* EEE PCS Status */
2180 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2181 	if (ret_val)
2182 		goto release;
2183 	if (hw->phy.type == e1000_phy_82579)
2184 		phy_data <<= 8;
2185 
2186 	/* Result of the EEE auto negotiation - there is no register that
2187 	 * has the status of the EEE negotiation so do a best-guess based
2188 	 * on whether Tx or Rx LPI indications have been received.
2189 	 */
2190 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2191 		edata->eee_active = true;
2192 
2193 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2194 	edata->tx_lpi_enabled = true;
2195 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2196 
2197 release:
2198 	hw->phy.ops.release(hw);
2199 	if (ret_val)
2200 		ret_val = -ENODATA;
2201 
2202 	pm_runtime_put_sync(netdev->dev.parent);
2203 
2204 	return ret_val;
2205 }
2206 
2207 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2208 {
2209 	struct e1000_adapter *adapter = netdev_priv(netdev);
2210 	struct e1000_hw *hw = &adapter->hw;
2211 	struct ethtool_eee eee_curr;
2212 	s32 ret_val;
2213 
2214 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2215 	if (ret_val)
2216 		return ret_val;
2217 
2218 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2219 		e_err("Setting EEE tx-lpi is not supported\n");
2220 		return -EINVAL;
2221 	}
2222 
2223 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2224 		e_err("Setting EEE Tx LPI timer is not supported\n");
2225 		return -EINVAL;
2226 	}
2227 
2228 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2229 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2230 		return -EINVAL;
2231 	}
2232 
2233 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2234 
2235 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2236 
2237 	pm_runtime_get_sync(netdev->dev.parent);
2238 
2239 	/* reset the link */
2240 	if (netif_running(netdev))
2241 		e1000e_reinit_locked(adapter);
2242 	else
2243 		e1000e_reset(adapter);
2244 
2245 	pm_runtime_put_sync(netdev->dev.parent);
2246 
2247 	return 0;
2248 }
2249 
2250 static int e1000e_get_ts_info(struct net_device *netdev,
2251 			      struct ethtool_ts_info *info)
2252 {
2253 	struct e1000_adapter *adapter = netdev_priv(netdev);
2254 
2255 	ethtool_op_get_ts_info(netdev, info);
2256 
2257 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2258 		return 0;
2259 
2260 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2261 				  SOF_TIMESTAMPING_RX_HARDWARE |
2262 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2263 
2264 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2265 
2266 	info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2267 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2268 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2269 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2270 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2271 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2272 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2273 			    (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2274 			    (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2275 			    (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2276 			    (1 << HWTSTAMP_FILTER_ALL));
2277 
2278 	if (adapter->ptp_clock)
2279 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2280 
2281 	return 0;
2282 }
2283 
2284 static const struct ethtool_ops e1000_ethtool_ops = {
2285 	.get_settings		= e1000_get_settings,
2286 	.set_settings		= e1000_set_settings,
2287 	.get_drvinfo		= e1000_get_drvinfo,
2288 	.get_regs_len		= e1000_get_regs_len,
2289 	.get_regs		= e1000_get_regs,
2290 	.get_wol		= e1000_get_wol,
2291 	.set_wol		= e1000_set_wol,
2292 	.get_msglevel		= e1000_get_msglevel,
2293 	.set_msglevel		= e1000_set_msglevel,
2294 	.nway_reset		= e1000_nway_reset,
2295 	.get_link		= ethtool_op_get_link,
2296 	.get_eeprom_len		= e1000_get_eeprom_len,
2297 	.get_eeprom		= e1000_get_eeprom,
2298 	.set_eeprom		= e1000_set_eeprom,
2299 	.get_ringparam		= e1000_get_ringparam,
2300 	.set_ringparam		= e1000_set_ringparam,
2301 	.get_pauseparam		= e1000_get_pauseparam,
2302 	.set_pauseparam		= e1000_set_pauseparam,
2303 	.self_test		= e1000_diag_test,
2304 	.get_strings		= e1000_get_strings,
2305 	.set_phys_id		= e1000_set_phys_id,
2306 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2307 	.get_sset_count		= e1000e_get_sset_count,
2308 	.get_coalesce		= e1000_get_coalesce,
2309 	.set_coalesce		= e1000_set_coalesce,
2310 	.get_rxnfc		= e1000_get_rxnfc,
2311 	.get_ts_info		= e1000e_get_ts_info,
2312 	.get_eee		= e1000e_get_eee,
2313 	.set_eee		= e1000e_set_eee,
2314 };
2315 
2316 void e1000e_set_ethtool_ops(struct net_device *netdev)
2317 {
2318 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2319 }
2320