1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/ethtool.h> 34 #include <linux/pci.h> 35 #include <linux/slab.h> 36 #include <linux/delay.h> 37 #include <linux/vmalloc.h> 38 #include <linux/pm_runtime.h> 39 40 #include "e1000.h" 41 42 enum { NETDEV_STATS, E1000_STATS }; 43 44 struct e1000_stats { 45 char stat_string[ETH_GSTRING_LEN]; 46 int type; 47 int sizeof_stat; 48 int stat_offset; 49 }; 50 51 #define E1000_STAT(str, m) { \ 52 .stat_string = str, \ 53 .type = E1000_STATS, \ 54 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 55 .stat_offset = offsetof(struct e1000_adapter, m) } 56 #define E1000_NETDEV_STAT(str, m) { \ 57 .stat_string = str, \ 58 .type = NETDEV_STATS, \ 59 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 60 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 61 62 static const struct e1000_stats e1000_gstrings_stats[] = { 63 E1000_STAT("rx_packets", stats.gprc), 64 E1000_STAT("tx_packets", stats.gptc), 65 E1000_STAT("rx_bytes", stats.gorc), 66 E1000_STAT("tx_bytes", stats.gotc), 67 E1000_STAT("rx_broadcast", stats.bprc), 68 E1000_STAT("tx_broadcast", stats.bptc), 69 E1000_STAT("rx_multicast", stats.mprc), 70 E1000_STAT("tx_multicast", stats.mptc), 71 E1000_NETDEV_STAT("rx_errors", rx_errors), 72 E1000_NETDEV_STAT("tx_errors", tx_errors), 73 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 74 E1000_STAT("multicast", stats.mprc), 75 E1000_STAT("collisions", stats.colc), 76 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 77 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 78 E1000_STAT("rx_crc_errors", stats.crcerrs), 79 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 80 E1000_STAT("rx_no_buffer_count", stats.rnbc), 81 E1000_STAT("rx_missed_errors", stats.mpc), 82 E1000_STAT("tx_aborted_errors", stats.ecol), 83 E1000_STAT("tx_carrier_errors", stats.tncrs), 84 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 85 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 86 E1000_STAT("tx_window_errors", stats.latecol), 87 E1000_STAT("tx_abort_late_coll", stats.latecol), 88 E1000_STAT("tx_deferred_ok", stats.dc), 89 E1000_STAT("tx_single_coll_ok", stats.scc), 90 E1000_STAT("tx_multi_coll_ok", stats.mcc), 91 E1000_STAT("tx_timeout_count", tx_timeout_count), 92 E1000_STAT("tx_restart_queue", restart_queue), 93 E1000_STAT("rx_long_length_errors", stats.roc), 94 E1000_STAT("rx_short_length_errors", stats.ruc), 95 E1000_STAT("rx_align_errors", stats.algnerrc), 96 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 97 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 98 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 99 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 100 E1000_STAT("tx_flow_control_xon", stats.xontxc), 101 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 102 E1000_STAT("rx_csum_offload_good", hw_csum_good), 103 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 104 E1000_STAT("rx_header_split", rx_hdr_split), 105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 106 E1000_STAT("tx_smbus", stats.mgptc), 107 E1000_STAT("rx_smbus", stats.mgprc), 108 E1000_STAT("dropped_smbus", stats.mgpdc), 109 E1000_STAT("rx_dma_failed", rx_dma_failed), 110 E1000_STAT("tx_dma_failed", tx_dma_failed), 111 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 112 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 113 E1000_STAT("corr_ecc_errors", corr_errors), 114 }; 115 116 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 119 "Register test (offline)", "Eeprom test (offline)", 120 "Interrupt test (offline)", "Loopback test (offline)", 121 "Link test (on/offline)" 122 }; 123 124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 125 126 static int e1000_get_settings(struct net_device *netdev, 127 struct ethtool_cmd *ecmd) 128 { 129 struct e1000_adapter *adapter = netdev_priv(netdev); 130 struct e1000_hw *hw = &adapter->hw; 131 u32 speed; 132 133 if (hw->phy.media_type == e1000_media_type_copper) { 134 ecmd->supported = (SUPPORTED_10baseT_Half | 135 SUPPORTED_10baseT_Full | 136 SUPPORTED_100baseT_Half | 137 SUPPORTED_100baseT_Full | 138 SUPPORTED_1000baseT_Full | 139 SUPPORTED_Autoneg | 140 SUPPORTED_TP); 141 if (hw->phy.type == e1000_phy_ife) 142 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 143 ecmd->advertising = ADVERTISED_TP; 144 145 if (hw->mac.autoneg == 1) { 146 ecmd->advertising |= ADVERTISED_Autoneg; 147 /* the e1000 autoneg seems to match ethtool nicely */ 148 ecmd->advertising |= hw->phy.autoneg_advertised; 149 } 150 151 ecmd->port = PORT_TP; 152 ecmd->phy_address = hw->phy.addr; 153 ecmd->transceiver = XCVR_INTERNAL; 154 155 } else { 156 ecmd->supported = (SUPPORTED_1000baseT_Full | 157 SUPPORTED_FIBRE | 158 SUPPORTED_Autoneg); 159 160 ecmd->advertising = (ADVERTISED_1000baseT_Full | 161 ADVERTISED_FIBRE | 162 ADVERTISED_Autoneg); 163 164 ecmd->port = PORT_FIBRE; 165 ecmd->transceiver = XCVR_EXTERNAL; 166 } 167 168 speed = -1; 169 ecmd->duplex = -1; 170 171 if (netif_running(netdev)) { 172 if (netif_carrier_ok(netdev)) { 173 speed = adapter->link_speed; 174 ecmd->duplex = adapter->link_duplex - 1; 175 } 176 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 177 u32 status = er32(STATUS); 178 if (status & E1000_STATUS_LU) { 179 if (status & E1000_STATUS_SPEED_1000) 180 speed = SPEED_1000; 181 else if (status & E1000_STATUS_SPEED_100) 182 speed = SPEED_100; 183 else 184 speed = SPEED_10; 185 186 if (status & E1000_STATUS_FD) 187 ecmd->duplex = DUPLEX_FULL; 188 else 189 ecmd->duplex = DUPLEX_HALF; 190 } 191 } 192 193 ethtool_cmd_speed_set(ecmd, speed); 194 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 195 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 196 197 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 198 if ((hw->phy.media_type == e1000_media_type_copper) && 199 netif_carrier_ok(netdev)) 200 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI; 201 else 202 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 203 204 if (hw->phy.mdix == AUTO_ALL_MODES) 205 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 206 else 207 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 208 209 return 0; 210 } 211 212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 213 { 214 struct e1000_mac_info *mac = &adapter->hw.mac; 215 216 mac->autoneg = 0; 217 218 /* Make sure dplx is at most 1 bit and lsb of speed is not set 219 * for the switch() below to work 220 */ 221 if ((spd & 1) || (dplx & ~1)) 222 goto err_inval; 223 224 /* Fiber NICs only allow 1000 gbps Full duplex */ 225 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 226 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 227 goto err_inval; 228 } 229 230 switch (spd + dplx) { 231 case SPEED_10 + DUPLEX_HALF: 232 mac->forced_speed_duplex = ADVERTISE_10_HALF; 233 break; 234 case SPEED_10 + DUPLEX_FULL: 235 mac->forced_speed_duplex = ADVERTISE_10_FULL; 236 break; 237 case SPEED_100 + DUPLEX_HALF: 238 mac->forced_speed_duplex = ADVERTISE_100_HALF; 239 break; 240 case SPEED_100 + DUPLEX_FULL: 241 mac->forced_speed_duplex = ADVERTISE_100_FULL; 242 break; 243 case SPEED_1000 + DUPLEX_FULL: 244 mac->autoneg = 1; 245 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 246 break; 247 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 248 default: 249 goto err_inval; 250 } 251 252 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 253 adapter->hw.phy.mdix = AUTO_ALL_MODES; 254 255 return 0; 256 257 err_inval: 258 e_err("Unsupported Speed/Duplex configuration\n"); 259 return -EINVAL; 260 } 261 262 static int e1000_set_settings(struct net_device *netdev, 263 struct ethtool_cmd *ecmd) 264 { 265 struct e1000_adapter *adapter = netdev_priv(netdev); 266 struct e1000_hw *hw = &adapter->hw; 267 int ret_val = 0; 268 269 pm_runtime_get_sync(netdev->dev.parent); 270 271 /* When SoL/IDER sessions are active, autoneg/speed/duplex 272 * cannot be changed 273 */ 274 if (hw->phy.ops.check_reset_block && 275 hw->phy.ops.check_reset_block(hw)) { 276 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 277 ret_val = -EINVAL; 278 goto out; 279 } 280 281 /* MDI setting is only allowed when autoneg enabled because 282 * some hardware doesn't allow MDI setting when speed or 283 * duplex is forced. 284 */ 285 if (ecmd->eth_tp_mdix_ctrl) { 286 if (hw->phy.media_type != e1000_media_type_copper) { 287 ret_val = -EOPNOTSUPP; 288 goto out; 289 } 290 291 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 292 (ecmd->autoneg != AUTONEG_ENABLE)) { 293 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 294 ret_val = -EINVAL; 295 goto out; 296 } 297 } 298 299 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 300 usleep_range(1000, 2000); 301 302 if (ecmd->autoneg == AUTONEG_ENABLE) { 303 hw->mac.autoneg = 1; 304 if (hw->phy.media_type == e1000_media_type_fiber) 305 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 306 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 307 else 308 hw->phy.autoneg_advertised = ecmd->advertising | 309 ADVERTISED_TP | ADVERTISED_Autoneg; 310 ecmd->advertising = hw->phy.autoneg_advertised; 311 if (adapter->fc_autoneg) 312 hw->fc.requested_mode = e1000_fc_default; 313 } else { 314 u32 speed = ethtool_cmd_speed(ecmd); 315 /* calling this overrides forced MDI setting */ 316 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 317 ret_val = -EINVAL; 318 goto out; 319 } 320 } 321 322 /* MDI-X => 2; MDI => 1; Auto => 3 */ 323 if (ecmd->eth_tp_mdix_ctrl) { 324 /* fix up the value for auto (3 => 0) as zero is mapped 325 * internally to auto 326 */ 327 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 328 hw->phy.mdix = AUTO_ALL_MODES; 329 else 330 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 331 } 332 333 /* reset the link */ 334 if (netif_running(adapter->netdev)) { 335 e1000e_down(adapter); 336 e1000e_up(adapter); 337 } else { 338 e1000e_reset(adapter); 339 } 340 341 out: 342 pm_runtime_put_sync(netdev->dev.parent); 343 clear_bit(__E1000_RESETTING, &adapter->state); 344 return ret_val; 345 } 346 347 static void e1000_get_pauseparam(struct net_device *netdev, 348 struct ethtool_pauseparam *pause) 349 { 350 struct e1000_adapter *adapter = netdev_priv(netdev); 351 struct e1000_hw *hw = &adapter->hw; 352 353 pause->autoneg = 354 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 355 356 if (hw->fc.current_mode == e1000_fc_rx_pause) { 357 pause->rx_pause = 1; 358 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 359 pause->tx_pause = 1; 360 } else if (hw->fc.current_mode == e1000_fc_full) { 361 pause->rx_pause = 1; 362 pause->tx_pause = 1; 363 } 364 } 365 366 static int e1000_set_pauseparam(struct net_device *netdev, 367 struct ethtool_pauseparam *pause) 368 { 369 struct e1000_adapter *adapter = netdev_priv(netdev); 370 struct e1000_hw *hw = &adapter->hw; 371 int retval = 0; 372 373 adapter->fc_autoneg = pause->autoneg; 374 375 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 376 usleep_range(1000, 2000); 377 378 pm_runtime_get_sync(netdev->dev.parent); 379 380 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 381 hw->fc.requested_mode = e1000_fc_default; 382 if (netif_running(adapter->netdev)) { 383 e1000e_down(adapter); 384 e1000e_up(adapter); 385 } else { 386 e1000e_reset(adapter); 387 } 388 } else { 389 if (pause->rx_pause && pause->tx_pause) 390 hw->fc.requested_mode = e1000_fc_full; 391 else if (pause->rx_pause && !pause->tx_pause) 392 hw->fc.requested_mode = e1000_fc_rx_pause; 393 else if (!pause->rx_pause && pause->tx_pause) 394 hw->fc.requested_mode = e1000_fc_tx_pause; 395 else if (!pause->rx_pause && !pause->tx_pause) 396 hw->fc.requested_mode = e1000_fc_none; 397 398 hw->fc.current_mode = hw->fc.requested_mode; 399 400 if (hw->phy.media_type == e1000_media_type_fiber) { 401 retval = hw->mac.ops.setup_link(hw); 402 /* implicit goto out */ 403 } else { 404 retval = e1000e_force_mac_fc(hw); 405 if (retval) 406 goto out; 407 e1000e_set_fc_watermarks(hw); 408 } 409 } 410 411 out: 412 pm_runtime_put_sync(netdev->dev.parent); 413 clear_bit(__E1000_RESETTING, &adapter->state); 414 return retval; 415 } 416 417 static u32 e1000_get_msglevel(struct net_device *netdev) 418 { 419 struct e1000_adapter *adapter = netdev_priv(netdev); 420 return adapter->msg_enable; 421 } 422 423 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 424 { 425 struct e1000_adapter *adapter = netdev_priv(netdev); 426 adapter->msg_enable = data; 427 } 428 429 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 430 { 431 #define E1000_REGS_LEN 32 /* overestimate */ 432 return E1000_REGS_LEN * sizeof(u32); 433 } 434 435 static void e1000_get_regs(struct net_device *netdev, 436 struct ethtool_regs *regs, void *p) 437 { 438 struct e1000_adapter *adapter = netdev_priv(netdev); 439 struct e1000_hw *hw = &adapter->hw; 440 u32 *regs_buff = p; 441 u16 phy_data; 442 443 pm_runtime_get_sync(netdev->dev.parent); 444 445 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 446 447 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 448 adapter->pdev->device; 449 450 regs_buff[0] = er32(CTRL); 451 regs_buff[1] = er32(STATUS); 452 453 regs_buff[2] = er32(RCTL); 454 regs_buff[3] = er32(RDLEN(0)); 455 regs_buff[4] = er32(RDH(0)); 456 regs_buff[5] = er32(RDT(0)); 457 regs_buff[6] = er32(RDTR); 458 459 regs_buff[7] = er32(TCTL); 460 regs_buff[8] = er32(TDLEN(0)); 461 regs_buff[9] = er32(TDH(0)); 462 regs_buff[10] = er32(TDT(0)); 463 regs_buff[11] = er32(TIDV); 464 465 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 466 467 /* ethtool doesn't use anything past this point, so all this 468 * code is likely legacy junk for apps that may or may not exist 469 */ 470 if (hw->phy.type == e1000_phy_m88) { 471 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 472 regs_buff[13] = (u32)phy_data; /* cable length */ 473 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 474 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 475 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 476 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 477 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 478 regs_buff[18] = regs_buff[13]; /* cable polarity */ 479 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 480 regs_buff[20] = regs_buff[17]; /* polarity correction */ 481 /* phy receive errors */ 482 regs_buff[22] = adapter->phy_stats.receive_errors; 483 regs_buff[23] = regs_buff[13]; /* mdix mode */ 484 } 485 regs_buff[21] = 0; /* was idle_errors */ 486 e1e_rphy(hw, MII_STAT1000, &phy_data); 487 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 488 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 489 490 pm_runtime_put_sync(netdev->dev.parent); 491 } 492 493 static int e1000_get_eeprom_len(struct net_device *netdev) 494 { 495 struct e1000_adapter *adapter = netdev_priv(netdev); 496 return adapter->hw.nvm.word_size * 2; 497 } 498 499 static int e1000_get_eeprom(struct net_device *netdev, 500 struct ethtool_eeprom *eeprom, u8 *bytes) 501 { 502 struct e1000_adapter *adapter = netdev_priv(netdev); 503 struct e1000_hw *hw = &adapter->hw; 504 u16 *eeprom_buff; 505 int first_word; 506 int last_word; 507 int ret_val = 0; 508 u16 i; 509 510 if (eeprom->len == 0) 511 return -EINVAL; 512 513 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 514 515 first_word = eeprom->offset >> 1; 516 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 517 518 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), 519 GFP_KERNEL); 520 if (!eeprom_buff) 521 return -ENOMEM; 522 523 pm_runtime_get_sync(netdev->dev.parent); 524 525 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 526 ret_val = e1000_read_nvm(hw, first_word, 527 last_word - first_word + 1, 528 eeprom_buff); 529 } else { 530 for (i = 0; i < last_word - first_word + 1; i++) { 531 ret_val = e1000_read_nvm(hw, first_word + i, 1, 532 &eeprom_buff[i]); 533 if (ret_val) 534 break; 535 } 536 } 537 538 pm_runtime_put_sync(netdev->dev.parent); 539 540 if (ret_val) { 541 /* a read error occurred, throw away the result */ 542 memset(eeprom_buff, 0xff, sizeof(u16) * 543 (last_word - first_word + 1)); 544 } else { 545 /* Device's eeprom is always little-endian, word addressable */ 546 for (i = 0; i < last_word - first_word + 1; i++) 547 le16_to_cpus(&eeprom_buff[i]); 548 } 549 550 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 551 kfree(eeprom_buff); 552 553 return ret_val; 554 } 555 556 static int e1000_set_eeprom(struct net_device *netdev, 557 struct ethtool_eeprom *eeprom, u8 *bytes) 558 { 559 struct e1000_adapter *adapter = netdev_priv(netdev); 560 struct e1000_hw *hw = &adapter->hw; 561 u16 *eeprom_buff; 562 void *ptr; 563 int max_len; 564 int first_word; 565 int last_word; 566 int ret_val = 0; 567 u16 i; 568 569 if (eeprom->len == 0) 570 return -EOPNOTSUPP; 571 572 if (eeprom->magic != 573 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 574 return -EFAULT; 575 576 if (adapter->flags & FLAG_READ_ONLY_NVM) 577 return -EINVAL; 578 579 max_len = hw->nvm.word_size * 2; 580 581 first_word = eeprom->offset >> 1; 582 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 583 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 584 if (!eeprom_buff) 585 return -ENOMEM; 586 587 ptr = (void *)eeprom_buff; 588 589 pm_runtime_get_sync(netdev->dev.parent); 590 591 if (eeprom->offset & 1) { 592 /* need read/modify/write of first changed EEPROM word */ 593 /* only the second byte of the word is being modified */ 594 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 595 ptr++; 596 } 597 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 598 /* need read/modify/write of last changed EEPROM word */ 599 /* only the first byte of the word is being modified */ 600 ret_val = e1000_read_nvm(hw, last_word, 1, 601 &eeprom_buff[last_word - first_word]); 602 603 if (ret_val) 604 goto out; 605 606 /* Device's eeprom is always little-endian, word addressable */ 607 for (i = 0; i < last_word - first_word + 1; i++) 608 le16_to_cpus(&eeprom_buff[i]); 609 610 memcpy(ptr, bytes, eeprom->len); 611 612 for (i = 0; i < last_word - first_word + 1; i++) 613 cpu_to_le16s(&eeprom_buff[i]); 614 615 ret_val = e1000_write_nvm(hw, first_word, 616 last_word - first_word + 1, eeprom_buff); 617 618 if (ret_val) 619 goto out; 620 621 /* Update the checksum over the first part of the EEPROM if needed 622 * and flush shadow RAM for applicable controllers 623 */ 624 if ((first_word <= NVM_CHECKSUM_REG) || 625 (hw->mac.type == e1000_82583) || 626 (hw->mac.type == e1000_82574) || 627 (hw->mac.type == e1000_82573)) 628 ret_val = e1000e_update_nvm_checksum(hw); 629 630 out: 631 pm_runtime_put_sync(netdev->dev.parent); 632 kfree(eeprom_buff); 633 return ret_val; 634 } 635 636 static void e1000_get_drvinfo(struct net_device *netdev, 637 struct ethtool_drvinfo *drvinfo) 638 { 639 struct e1000_adapter *adapter = netdev_priv(netdev); 640 641 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 642 strlcpy(drvinfo->version, e1000e_driver_version, 643 sizeof(drvinfo->version)); 644 645 /* EEPROM image version # is reported as firmware version # for 646 * PCI-E controllers 647 */ 648 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 649 "%d.%d-%d", 650 (adapter->eeprom_vers & 0xF000) >> 12, 651 (adapter->eeprom_vers & 0x0FF0) >> 4, 652 (adapter->eeprom_vers & 0x000F)); 653 654 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 655 sizeof(drvinfo->bus_info)); 656 drvinfo->regdump_len = e1000_get_regs_len(netdev); 657 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 658 } 659 660 static void e1000_get_ringparam(struct net_device *netdev, 661 struct ethtool_ringparam *ring) 662 { 663 struct e1000_adapter *adapter = netdev_priv(netdev); 664 665 ring->rx_max_pending = E1000_MAX_RXD; 666 ring->tx_max_pending = E1000_MAX_TXD; 667 ring->rx_pending = adapter->rx_ring_count; 668 ring->tx_pending = adapter->tx_ring_count; 669 } 670 671 static int e1000_set_ringparam(struct net_device *netdev, 672 struct ethtool_ringparam *ring) 673 { 674 struct e1000_adapter *adapter = netdev_priv(netdev); 675 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 676 int err = 0, size = sizeof(struct e1000_ring); 677 bool set_tx = false, set_rx = false; 678 u16 new_rx_count, new_tx_count; 679 680 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 681 return -EINVAL; 682 683 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 684 E1000_MAX_RXD); 685 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 686 687 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 688 E1000_MAX_TXD); 689 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 690 691 if ((new_tx_count == adapter->tx_ring_count) && 692 (new_rx_count == adapter->rx_ring_count)) 693 /* nothing to do */ 694 return 0; 695 696 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 697 usleep_range(1000, 2000); 698 699 if (!netif_running(adapter->netdev)) { 700 /* Set counts now and allocate resources during open() */ 701 adapter->tx_ring->count = new_tx_count; 702 adapter->rx_ring->count = new_rx_count; 703 adapter->tx_ring_count = new_tx_count; 704 adapter->rx_ring_count = new_rx_count; 705 goto clear_reset; 706 } 707 708 set_tx = (new_tx_count != adapter->tx_ring_count); 709 set_rx = (new_rx_count != adapter->rx_ring_count); 710 711 /* Allocate temporary storage for ring updates */ 712 if (set_tx) { 713 temp_tx = vmalloc(size); 714 if (!temp_tx) { 715 err = -ENOMEM; 716 goto free_temp; 717 } 718 } 719 if (set_rx) { 720 temp_rx = vmalloc(size); 721 if (!temp_rx) { 722 err = -ENOMEM; 723 goto free_temp; 724 } 725 } 726 727 pm_runtime_get_sync(netdev->dev.parent); 728 729 e1000e_down(adapter); 730 731 /* We can't just free everything and then setup again, because the 732 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 733 * structs. First, attempt to allocate new resources... 734 */ 735 if (set_tx) { 736 memcpy(temp_tx, adapter->tx_ring, size); 737 temp_tx->count = new_tx_count; 738 err = e1000e_setup_tx_resources(temp_tx); 739 if (err) 740 goto err_setup; 741 } 742 if (set_rx) { 743 memcpy(temp_rx, adapter->rx_ring, size); 744 temp_rx->count = new_rx_count; 745 err = e1000e_setup_rx_resources(temp_rx); 746 if (err) 747 goto err_setup_rx; 748 } 749 750 /* ...then free the old resources and copy back any new ring data */ 751 if (set_tx) { 752 e1000e_free_tx_resources(adapter->tx_ring); 753 memcpy(adapter->tx_ring, temp_tx, size); 754 adapter->tx_ring_count = new_tx_count; 755 } 756 if (set_rx) { 757 e1000e_free_rx_resources(adapter->rx_ring); 758 memcpy(adapter->rx_ring, temp_rx, size); 759 adapter->rx_ring_count = new_rx_count; 760 } 761 762 err_setup_rx: 763 if (err && set_tx) 764 e1000e_free_tx_resources(temp_tx); 765 err_setup: 766 e1000e_up(adapter); 767 pm_runtime_put_sync(netdev->dev.parent); 768 free_temp: 769 vfree(temp_tx); 770 vfree(temp_rx); 771 clear_reset: 772 clear_bit(__E1000_RESETTING, &adapter->state); 773 return err; 774 } 775 776 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 777 int reg, int offset, u32 mask, u32 write) 778 { 779 u32 pat, val; 780 static const u32 test[] = { 781 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 782 }; 783 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 784 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 785 (test[pat] & write)); 786 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 787 if (val != (test[pat] & write & mask)) { 788 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 789 reg + (offset << 2), val, 790 (test[pat] & write & mask)); 791 *data = reg; 792 return 1; 793 } 794 } 795 return 0; 796 } 797 798 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 799 int reg, u32 mask, u32 write) 800 { 801 u32 val; 802 __ew32(&adapter->hw, reg, write & mask); 803 val = __er32(&adapter->hw, reg); 804 if ((write & mask) != (val & mask)) { 805 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 806 reg, (val & mask), (write & mask)); 807 *data = reg; 808 return 1; 809 } 810 return 0; 811 } 812 813 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 814 do { \ 815 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 816 return 1; \ 817 } while (0) 818 #define REG_PATTERN_TEST(reg, mask, write) \ 819 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 820 821 #define REG_SET_AND_CHECK(reg, mask, write) \ 822 do { \ 823 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 824 return 1; \ 825 } while (0) 826 827 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 828 { 829 struct e1000_hw *hw = &adapter->hw; 830 struct e1000_mac_info *mac = &adapter->hw.mac; 831 u32 value; 832 u32 before; 833 u32 after; 834 u32 i; 835 u32 toggle; 836 u32 mask; 837 u32 wlock_mac = 0; 838 839 /* The status register is Read Only, so a write should fail. 840 * Some bits that get toggled are ignored. There are several bits 841 * on newer hardware that are r/w. 842 */ 843 switch (mac->type) { 844 case e1000_82571: 845 case e1000_82572: 846 case e1000_80003es2lan: 847 toggle = 0x7FFFF3FF; 848 break; 849 default: 850 toggle = 0x7FFFF033; 851 break; 852 } 853 854 before = er32(STATUS); 855 value = (er32(STATUS) & toggle); 856 ew32(STATUS, toggle); 857 after = er32(STATUS) & toggle; 858 if (value != after) { 859 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 860 after, value); 861 *data = 1; 862 return 1; 863 } 864 /* restore previous status */ 865 ew32(STATUS, before); 866 867 if (!(adapter->flags & FLAG_IS_ICH)) { 868 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 869 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 870 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 871 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 872 } 873 874 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 875 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 876 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 877 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 878 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 879 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 880 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 881 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 882 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 883 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 884 885 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 886 887 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 888 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 889 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 890 891 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 892 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 893 if (!(adapter->flags & FLAG_IS_ICH)) 894 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 895 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 896 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 897 mask = 0x8003FFFF; 898 switch (mac->type) { 899 case e1000_ich10lan: 900 case e1000_pchlan: 901 case e1000_pch2lan: 902 case e1000_pch_lpt: 903 mask |= (1 << 18); 904 break; 905 default: 906 break; 907 } 908 909 if (mac->type == e1000_pch_lpt) 910 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 911 E1000_FWSM_WLOCK_MAC_SHIFT; 912 913 for (i = 0; i < mac->rar_entry_count; i++) { 914 if (mac->type == e1000_pch_lpt) { 915 /* Cannot test write-protected SHRAL[n] registers */ 916 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 917 continue; 918 919 /* SHRAH[9] different than the others */ 920 if (i == 10) 921 mask |= (1 << 30); 922 else 923 mask &= ~(1 << 30); 924 } 925 if (mac->type == e1000_pch2lan) { 926 /* SHRAH[0,1,2] different than previous */ 927 if (i == 7) 928 mask &= 0xFFF4FFFF; 929 /* SHRAH[3] different than SHRAH[0,1,2] */ 930 if (i == 10) 931 mask |= (1 << 30); 932 } 933 934 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 935 0xFFFFFFFF); 936 } 937 938 for (i = 0; i < mac->mta_reg_count; i++) 939 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 940 941 *data = 0; 942 943 return 0; 944 } 945 946 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 947 { 948 u16 temp; 949 u16 checksum = 0; 950 u16 i; 951 952 *data = 0; 953 /* Read and add up the contents of the EEPROM */ 954 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 955 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 956 *data = 1; 957 return *data; 958 } 959 checksum += temp; 960 } 961 962 /* If Checksum is not Correct return error else test passed */ 963 if ((checksum != (u16)NVM_SUM) && !(*data)) 964 *data = 2; 965 966 return *data; 967 } 968 969 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 970 { 971 struct net_device *netdev = (struct net_device *)data; 972 struct e1000_adapter *adapter = netdev_priv(netdev); 973 struct e1000_hw *hw = &adapter->hw; 974 975 adapter->test_icr |= er32(ICR); 976 977 return IRQ_HANDLED; 978 } 979 980 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 981 { 982 struct net_device *netdev = adapter->netdev; 983 struct e1000_hw *hw = &adapter->hw; 984 u32 mask; 985 u32 shared_int = 1; 986 u32 irq = adapter->pdev->irq; 987 int i; 988 int ret_val = 0; 989 int int_mode = E1000E_INT_MODE_LEGACY; 990 991 *data = 0; 992 993 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 994 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 995 int_mode = adapter->int_mode; 996 e1000e_reset_interrupt_capability(adapter); 997 adapter->int_mode = E1000E_INT_MODE_LEGACY; 998 e1000e_set_interrupt_capability(adapter); 999 } 1000 /* Hook up test interrupt handler just for this test */ 1001 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1002 netdev)) { 1003 shared_int = 0; 1004 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1005 netdev)) { 1006 *data = 1; 1007 ret_val = -1; 1008 goto out; 1009 } 1010 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1011 1012 /* Disable all the interrupts */ 1013 ew32(IMC, 0xFFFFFFFF); 1014 e1e_flush(); 1015 usleep_range(10000, 20000); 1016 1017 /* Test each interrupt */ 1018 for (i = 0; i < 10; i++) { 1019 /* Interrupt to test */ 1020 mask = 1 << i; 1021 1022 if (adapter->flags & FLAG_IS_ICH) { 1023 switch (mask) { 1024 case E1000_ICR_RXSEQ: 1025 continue; 1026 case 0x00000100: 1027 if (adapter->hw.mac.type == e1000_ich8lan || 1028 adapter->hw.mac.type == e1000_ich9lan) 1029 continue; 1030 break; 1031 default: 1032 break; 1033 } 1034 } 1035 1036 if (!shared_int) { 1037 /* Disable the interrupt to be reported in 1038 * the cause register and then force the same 1039 * interrupt and see if one gets posted. If 1040 * an interrupt was posted to the bus, the 1041 * test failed. 1042 */ 1043 adapter->test_icr = 0; 1044 ew32(IMC, mask); 1045 ew32(ICS, mask); 1046 e1e_flush(); 1047 usleep_range(10000, 20000); 1048 1049 if (adapter->test_icr & mask) { 1050 *data = 3; 1051 break; 1052 } 1053 } 1054 1055 /* Enable the interrupt to be reported in 1056 * the cause register and then force the same 1057 * interrupt and see if one gets posted. If 1058 * an interrupt was not posted to the bus, the 1059 * test failed. 1060 */ 1061 adapter->test_icr = 0; 1062 ew32(IMS, mask); 1063 ew32(ICS, mask); 1064 e1e_flush(); 1065 usleep_range(10000, 20000); 1066 1067 if (!(adapter->test_icr & mask)) { 1068 *data = 4; 1069 break; 1070 } 1071 1072 if (!shared_int) { 1073 /* Disable the other interrupts to be reported in 1074 * the cause register and then force the other 1075 * interrupts and see if any get posted. If 1076 * an interrupt was posted to the bus, the 1077 * test failed. 1078 */ 1079 adapter->test_icr = 0; 1080 ew32(IMC, ~mask & 0x00007FFF); 1081 ew32(ICS, ~mask & 0x00007FFF); 1082 e1e_flush(); 1083 usleep_range(10000, 20000); 1084 1085 if (adapter->test_icr) { 1086 *data = 5; 1087 break; 1088 } 1089 } 1090 } 1091 1092 /* Disable all the interrupts */ 1093 ew32(IMC, 0xFFFFFFFF); 1094 e1e_flush(); 1095 usleep_range(10000, 20000); 1096 1097 /* Unhook test interrupt handler */ 1098 free_irq(irq, netdev); 1099 1100 out: 1101 if (int_mode == E1000E_INT_MODE_MSIX) { 1102 e1000e_reset_interrupt_capability(adapter); 1103 adapter->int_mode = int_mode; 1104 e1000e_set_interrupt_capability(adapter); 1105 } 1106 1107 return ret_val; 1108 } 1109 1110 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1111 { 1112 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1113 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1114 struct pci_dev *pdev = adapter->pdev; 1115 struct e1000_buffer *buffer_info; 1116 int i; 1117 1118 if (tx_ring->desc && tx_ring->buffer_info) { 1119 for (i = 0; i < tx_ring->count; i++) { 1120 buffer_info = &tx_ring->buffer_info[i]; 1121 1122 if (buffer_info->dma) 1123 dma_unmap_single(&pdev->dev, 1124 buffer_info->dma, 1125 buffer_info->length, 1126 DMA_TO_DEVICE); 1127 if (buffer_info->skb) 1128 dev_kfree_skb(buffer_info->skb); 1129 } 1130 } 1131 1132 if (rx_ring->desc && rx_ring->buffer_info) { 1133 for (i = 0; i < rx_ring->count; i++) { 1134 buffer_info = &rx_ring->buffer_info[i]; 1135 1136 if (buffer_info->dma) 1137 dma_unmap_single(&pdev->dev, 1138 buffer_info->dma, 1139 2048, DMA_FROM_DEVICE); 1140 if (buffer_info->skb) 1141 dev_kfree_skb(buffer_info->skb); 1142 } 1143 } 1144 1145 if (tx_ring->desc) { 1146 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1147 tx_ring->dma); 1148 tx_ring->desc = NULL; 1149 } 1150 if (rx_ring->desc) { 1151 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1152 rx_ring->dma); 1153 rx_ring->desc = NULL; 1154 } 1155 1156 kfree(tx_ring->buffer_info); 1157 tx_ring->buffer_info = NULL; 1158 kfree(rx_ring->buffer_info); 1159 rx_ring->buffer_info = NULL; 1160 } 1161 1162 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1163 { 1164 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1165 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1166 struct pci_dev *pdev = adapter->pdev; 1167 struct e1000_hw *hw = &adapter->hw; 1168 u32 rctl; 1169 int i; 1170 int ret_val; 1171 1172 /* Setup Tx descriptor ring and Tx buffers */ 1173 1174 if (!tx_ring->count) 1175 tx_ring->count = E1000_DEFAULT_TXD; 1176 1177 tx_ring->buffer_info = kcalloc(tx_ring->count, 1178 sizeof(struct e1000_buffer), GFP_KERNEL); 1179 if (!tx_ring->buffer_info) { 1180 ret_val = 1; 1181 goto err_nomem; 1182 } 1183 1184 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1185 tx_ring->size = ALIGN(tx_ring->size, 4096); 1186 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1187 &tx_ring->dma, GFP_KERNEL); 1188 if (!tx_ring->desc) { 1189 ret_val = 2; 1190 goto err_nomem; 1191 } 1192 tx_ring->next_to_use = 0; 1193 tx_ring->next_to_clean = 0; 1194 1195 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1196 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1197 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1198 ew32(TDH(0), 0); 1199 ew32(TDT(0), 0); 1200 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1201 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1202 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1203 1204 for (i = 0; i < tx_ring->count; i++) { 1205 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1206 struct sk_buff *skb; 1207 unsigned int skb_size = 1024; 1208 1209 skb = alloc_skb(skb_size, GFP_KERNEL); 1210 if (!skb) { 1211 ret_val = 3; 1212 goto err_nomem; 1213 } 1214 skb_put(skb, skb_size); 1215 tx_ring->buffer_info[i].skb = skb; 1216 tx_ring->buffer_info[i].length = skb->len; 1217 tx_ring->buffer_info[i].dma = 1218 dma_map_single(&pdev->dev, skb->data, skb->len, 1219 DMA_TO_DEVICE); 1220 if (dma_mapping_error(&pdev->dev, 1221 tx_ring->buffer_info[i].dma)) { 1222 ret_val = 4; 1223 goto err_nomem; 1224 } 1225 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1226 tx_desc->lower.data = cpu_to_le32(skb->len); 1227 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1228 E1000_TXD_CMD_IFCS | 1229 E1000_TXD_CMD_RS); 1230 tx_desc->upper.data = 0; 1231 } 1232 1233 /* Setup Rx descriptor ring and Rx buffers */ 1234 1235 if (!rx_ring->count) 1236 rx_ring->count = E1000_DEFAULT_RXD; 1237 1238 rx_ring->buffer_info = kcalloc(rx_ring->count, 1239 sizeof(struct e1000_buffer), GFP_KERNEL); 1240 if (!rx_ring->buffer_info) { 1241 ret_val = 5; 1242 goto err_nomem; 1243 } 1244 1245 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1246 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1247 &rx_ring->dma, GFP_KERNEL); 1248 if (!rx_ring->desc) { 1249 ret_val = 6; 1250 goto err_nomem; 1251 } 1252 rx_ring->next_to_use = 0; 1253 rx_ring->next_to_clean = 0; 1254 1255 rctl = er32(RCTL); 1256 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1257 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1258 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1259 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1260 ew32(RDLEN(0), rx_ring->size); 1261 ew32(RDH(0), 0); 1262 ew32(RDT(0), 0); 1263 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1264 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1265 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1266 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1267 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1268 ew32(RCTL, rctl); 1269 1270 for (i = 0; i < rx_ring->count; i++) { 1271 union e1000_rx_desc_extended *rx_desc; 1272 struct sk_buff *skb; 1273 1274 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1275 if (!skb) { 1276 ret_val = 7; 1277 goto err_nomem; 1278 } 1279 skb_reserve(skb, NET_IP_ALIGN); 1280 rx_ring->buffer_info[i].skb = skb; 1281 rx_ring->buffer_info[i].dma = 1282 dma_map_single(&pdev->dev, skb->data, 2048, 1283 DMA_FROM_DEVICE); 1284 if (dma_mapping_error(&pdev->dev, 1285 rx_ring->buffer_info[i].dma)) { 1286 ret_val = 8; 1287 goto err_nomem; 1288 } 1289 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1290 rx_desc->read.buffer_addr = 1291 cpu_to_le64(rx_ring->buffer_info[i].dma); 1292 memset(skb->data, 0x00, skb->len); 1293 } 1294 1295 return 0; 1296 1297 err_nomem: 1298 e1000_free_desc_rings(adapter); 1299 return ret_val; 1300 } 1301 1302 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1303 { 1304 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1305 e1e_wphy(&adapter->hw, 29, 0x001F); 1306 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1307 e1e_wphy(&adapter->hw, 29, 0x001A); 1308 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1309 } 1310 1311 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1312 { 1313 struct e1000_hw *hw = &adapter->hw; 1314 u32 ctrl_reg = 0; 1315 u16 phy_reg = 0; 1316 s32 ret_val = 0; 1317 1318 hw->mac.autoneg = 0; 1319 1320 if (hw->phy.type == e1000_phy_ife) { 1321 /* force 100, set loopback */ 1322 e1e_wphy(hw, MII_BMCR, 0x6100); 1323 1324 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1325 ctrl_reg = er32(CTRL); 1326 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1327 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1328 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1329 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1330 E1000_CTRL_FD); /* Force Duplex to FULL */ 1331 1332 ew32(CTRL, ctrl_reg); 1333 e1e_flush(); 1334 usleep_range(500, 1000); 1335 1336 return 0; 1337 } 1338 1339 /* Specific PHY configuration for loopback */ 1340 switch (hw->phy.type) { 1341 case e1000_phy_m88: 1342 /* Auto-MDI/MDIX Off */ 1343 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1344 /* reset to update Auto-MDI/MDIX */ 1345 e1e_wphy(hw, MII_BMCR, 0x9140); 1346 /* autoneg off */ 1347 e1e_wphy(hw, MII_BMCR, 0x8140); 1348 break; 1349 case e1000_phy_gg82563: 1350 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1351 break; 1352 case e1000_phy_bm: 1353 /* Set Default MAC Interface speed to 1GB */ 1354 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1355 phy_reg &= ~0x0007; 1356 phy_reg |= 0x006; 1357 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1358 /* Assert SW reset for above settings to take effect */ 1359 hw->phy.ops.commit(hw); 1360 usleep_range(1000, 2000); 1361 /* Force Full Duplex */ 1362 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1363 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1364 /* Set Link Up (in force link) */ 1365 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1366 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1367 /* Force Link */ 1368 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1369 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1370 /* Set Early Link Enable */ 1371 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1372 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1373 break; 1374 case e1000_phy_82577: 1375 case e1000_phy_82578: 1376 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1377 ret_val = hw->phy.ops.acquire(hw); 1378 if (ret_val) { 1379 e_err("Cannot setup 1Gbps loopback.\n"); 1380 return ret_val; 1381 } 1382 e1000_configure_k1_ich8lan(hw, false); 1383 hw->phy.ops.release(hw); 1384 break; 1385 case e1000_phy_82579: 1386 /* Disable PHY energy detect power down */ 1387 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1388 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); 1389 /* Disable full chip energy detect */ 1390 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1391 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1392 /* Enable loopback on the PHY */ 1393 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1394 break; 1395 default: 1396 break; 1397 } 1398 1399 /* force 1000, set loopback */ 1400 e1e_wphy(hw, MII_BMCR, 0x4140); 1401 msleep(250); 1402 1403 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1404 ctrl_reg = er32(CTRL); 1405 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1406 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1407 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1408 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1409 E1000_CTRL_FD); /* Force Duplex to FULL */ 1410 1411 if (adapter->flags & FLAG_IS_ICH) 1412 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1413 1414 if (hw->phy.media_type == e1000_media_type_copper && 1415 hw->phy.type == e1000_phy_m88) { 1416 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1417 } else { 1418 /* Set the ILOS bit on the fiber Nic if half duplex link is 1419 * detected. 1420 */ 1421 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1422 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1423 } 1424 1425 ew32(CTRL, ctrl_reg); 1426 1427 /* Disable the receiver on the PHY so when a cable is plugged in, the 1428 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1429 */ 1430 if (hw->phy.type == e1000_phy_m88) 1431 e1000_phy_disable_receiver(adapter); 1432 1433 usleep_range(500, 1000); 1434 1435 return 0; 1436 } 1437 1438 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1439 { 1440 struct e1000_hw *hw = &adapter->hw; 1441 u32 ctrl = er32(CTRL); 1442 int link; 1443 1444 /* special requirements for 82571/82572 fiber adapters */ 1445 1446 /* jump through hoops to make sure link is up because serdes 1447 * link is hardwired up 1448 */ 1449 ctrl |= E1000_CTRL_SLU; 1450 ew32(CTRL, ctrl); 1451 1452 /* disable autoneg */ 1453 ctrl = er32(TXCW); 1454 ctrl &= ~(1 << 31); 1455 ew32(TXCW, ctrl); 1456 1457 link = (er32(STATUS) & E1000_STATUS_LU); 1458 1459 if (!link) { 1460 /* set invert loss of signal */ 1461 ctrl = er32(CTRL); 1462 ctrl |= E1000_CTRL_ILOS; 1463 ew32(CTRL, ctrl); 1464 } 1465 1466 /* special write to serdes control register to enable SerDes analog 1467 * loopback 1468 */ 1469 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1470 e1e_flush(); 1471 usleep_range(10000, 20000); 1472 1473 return 0; 1474 } 1475 1476 /* only call this for fiber/serdes connections to es2lan */ 1477 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1478 { 1479 struct e1000_hw *hw = &adapter->hw; 1480 u32 ctrlext = er32(CTRL_EXT); 1481 u32 ctrl = er32(CTRL); 1482 1483 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1484 * on mac_type 80003es2lan) 1485 */ 1486 adapter->tx_fifo_head = ctrlext; 1487 1488 /* clear the serdes mode bits, putting the device into mac loopback */ 1489 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1490 ew32(CTRL_EXT, ctrlext); 1491 1492 /* force speed to 1000/FD, link up */ 1493 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1494 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1495 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1496 ew32(CTRL, ctrl); 1497 1498 /* set mac loopback */ 1499 ctrl = er32(RCTL); 1500 ctrl |= E1000_RCTL_LBM_MAC; 1501 ew32(RCTL, ctrl); 1502 1503 /* set testing mode parameters (no need to reset later) */ 1504 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1505 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1506 ew32(KMRNCTRLSTA, 1507 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1508 1509 return 0; 1510 } 1511 1512 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1513 { 1514 struct e1000_hw *hw = &adapter->hw; 1515 u32 rctl; 1516 1517 if (hw->phy.media_type == e1000_media_type_fiber || 1518 hw->phy.media_type == e1000_media_type_internal_serdes) { 1519 switch (hw->mac.type) { 1520 case e1000_80003es2lan: 1521 return e1000_set_es2lan_mac_loopback(adapter); 1522 break; 1523 case e1000_82571: 1524 case e1000_82572: 1525 return e1000_set_82571_fiber_loopback(adapter); 1526 break; 1527 default: 1528 rctl = er32(RCTL); 1529 rctl |= E1000_RCTL_LBM_TCVR; 1530 ew32(RCTL, rctl); 1531 return 0; 1532 } 1533 } else if (hw->phy.media_type == e1000_media_type_copper) { 1534 return e1000_integrated_phy_loopback(adapter); 1535 } 1536 1537 return 7; 1538 } 1539 1540 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1541 { 1542 struct e1000_hw *hw = &adapter->hw; 1543 u32 rctl; 1544 u16 phy_reg; 1545 1546 rctl = er32(RCTL); 1547 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1548 ew32(RCTL, rctl); 1549 1550 switch (hw->mac.type) { 1551 case e1000_80003es2lan: 1552 if (hw->phy.media_type == e1000_media_type_fiber || 1553 hw->phy.media_type == e1000_media_type_internal_serdes) { 1554 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1555 ew32(CTRL_EXT, adapter->tx_fifo_head); 1556 adapter->tx_fifo_head = 0; 1557 } 1558 /* fall through */ 1559 case e1000_82571: 1560 case e1000_82572: 1561 if (hw->phy.media_type == e1000_media_type_fiber || 1562 hw->phy.media_type == e1000_media_type_internal_serdes) { 1563 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1564 e1e_flush(); 1565 usleep_range(10000, 20000); 1566 break; 1567 } 1568 /* Fall Through */ 1569 default: 1570 hw->mac.autoneg = 1; 1571 if (hw->phy.type == e1000_phy_gg82563) 1572 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1573 e1e_rphy(hw, MII_BMCR, &phy_reg); 1574 if (phy_reg & BMCR_LOOPBACK) { 1575 phy_reg &= ~BMCR_LOOPBACK; 1576 e1e_wphy(hw, MII_BMCR, phy_reg); 1577 if (hw->phy.ops.commit) 1578 hw->phy.ops.commit(hw); 1579 } 1580 break; 1581 } 1582 } 1583 1584 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1585 unsigned int frame_size) 1586 { 1587 memset(skb->data, 0xFF, frame_size); 1588 frame_size &= ~1; 1589 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1590 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1591 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1592 } 1593 1594 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1595 unsigned int frame_size) 1596 { 1597 frame_size &= ~1; 1598 if (*(skb->data + 3) == 0xFF) 1599 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1600 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1601 return 0; 1602 return 13; 1603 } 1604 1605 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1606 { 1607 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1608 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1609 struct pci_dev *pdev = adapter->pdev; 1610 struct e1000_hw *hw = &adapter->hw; 1611 struct e1000_buffer *buffer_info; 1612 int i, j, k, l; 1613 int lc; 1614 int good_cnt; 1615 int ret_val = 0; 1616 unsigned long time; 1617 1618 ew32(RDT(0), rx_ring->count - 1); 1619 1620 /* Calculate the loop count based on the largest descriptor ring 1621 * The idea is to wrap the largest ring a number of times using 64 1622 * send/receive pairs during each loop 1623 */ 1624 1625 if (rx_ring->count <= tx_ring->count) 1626 lc = ((tx_ring->count / 64) * 2) + 1; 1627 else 1628 lc = ((rx_ring->count / 64) * 2) + 1; 1629 1630 k = 0; 1631 l = 0; 1632 /* loop count loop */ 1633 for (j = 0; j <= lc; j++) { 1634 /* send the packets */ 1635 for (i = 0; i < 64; i++) { 1636 buffer_info = &tx_ring->buffer_info[k]; 1637 1638 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1639 dma_sync_single_for_device(&pdev->dev, 1640 buffer_info->dma, 1641 buffer_info->length, 1642 DMA_TO_DEVICE); 1643 k++; 1644 if (k == tx_ring->count) 1645 k = 0; 1646 } 1647 ew32(TDT(0), k); 1648 e1e_flush(); 1649 msleep(200); 1650 time = jiffies; /* set the start time for the receive */ 1651 good_cnt = 0; 1652 /* receive the sent packets */ 1653 do { 1654 buffer_info = &rx_ring->buffer_info[l]; 1655 1656 dma_sync_single_for_cpu(&pdev->dev, 1657 buffer_info->dma, 2048, 1658 DMA_FROM_DEVICE); 1659 1660 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1661 1024); 1662 if (!ret_val) 1663 good_cnt++; 1664 l++; 1665 if (l == rx_ring->count) 1666 l = 0; 1667 /* time + 20 msecs (200 msecs on 2.4) is more than 1668 * enough time to complete the receives, if it's 1669 * exceeded, break and error off 1670 */ 1671 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1672 if (good_cnt != 64) { 1673 ret_val = 13; /* ret_val is the same as mis-compare */ 1674 break; 1675 } 1676 if (time_after(jiffies, time + 20)) { 1677 ret_val = 14; /* error code for time out error */ 1678 break; 1679 } 1680 } 1681 return ret_val; 1682 } 1683 1684 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1685 { 1686 struct e1000_hw *hw = &adapter->hw; 1687 1688 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1689 if (hw->phy.ops.check_reset_block && 1690 hw->phy.ops.check_reset_block(hw)) { 1691 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1692 *data = 0; 1693 goto out; 1694 } 1695 1696 *data = e1000_setup_desc_rings(adapter); 1697 if (*data) 1698 goto out; 1699 1700 *data = e1000_setup_loopback_test(adapter); 1701 if (*data) 1702 goto err_loopback; 1703 1704 *data = e1000_run_loopback_test(adapter); 1705 e1000_loopback_cleanup(adapter); 1706 1707 err_loopback: 1708 e1000_free_desc_rings(adapter); 1709 out: 1710 return *data; 1711 } 1712 1713 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1714 { 1715 struct e1000_hw *hw = &adapter->hw; 1716 1717 *data = 0; 1718 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1719 int i = 0; 1720 hw->mac.serdes_has_link = false; 1721 1722 /* On some blade server designs, link establishment 1723 * could take as long as 2-3 minutes 1724 */ 1725 do { 1726 hw->mac.ops.check_for_link(hw); 1727 if (hw->mac.serdes_has_link) 1728 return *data; 1729 msleep(20); 1730 } while (i++ < 3750); 1731 1732 *data = 1; 1733 } else { 1734 hw->mac.ops.check_for_link(hw); 1735 if (hw->mac.autoneg) 1736 /* On some Phy/switch combinations, link establishment 1737 * can take a few seconds more than expected. 1738 */ 1739 msleep_interruptible(5000); 1740 1741 if (!(er32(STATUS) & E1000_STATUS_LU)) 1742 *data = 1; 1743 } 1744 return *data; 1745 } 1746 1747 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1748 int sset) 1749 { 1750 switch (sset) { 1751 case ETH_SS_TEST: 1752 return E1000_TEST_LEN; 1753 case ETH_SS_STATS: 1754 return E1000_STATS_LEN; 1755 default: 1756 return -EOPNOTSUPP; 1757 } 1758 } 1759 1760 static void e1000_diag_test(struct net_device *netdev, 1761 struct ethtool_test *eth_test, u64 *data) 1762 { 1763 struct e1000_adapter *adapter = netdev_priv(netdev); 1764 u16 autoneg_advertised; 1765 u8 forced_speed_duplex; 1766 u8 autoneg; 1767 bool if_running = netif_running(netdev); 1768 1769 pm_runtime_get_sync(netdev->dev.parent); 1770 1771 set_bit(__E1000_TESTING, &adapter->state); 1772 1773 if (!if_running) { 1774 /* Get control of and reset hardware */ 1775 if (adapter->flags & FLAG_HAS_AMT) 1776 e1000e_get_hw_control(adapter); 1777 1778 e1000e_power_up_phy(adapter); 1779 1780 adapter->hw.phy.autoneg_wait_to_complete = 1; 1781 e1000e_reset(adapter); 1782 adapter->hw.phy.autoneg_wait_to_complete = 0; 1783 } 1784 1785 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1786 /* Offline tests */ 1787 1788 /* save speed, duplex, autoneg settings */ 1789 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1790 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1791 autoneg = adapter->hw.mac.autoneg; 1792 1793 e_info("offline testing starting\n"); 1794 1795 if (if_running) 1796 /* indicate we're in test mode */ 1797 dev_close(netdev); 1798 1799 if (e1000_reg_test(adapter, &data[0])) 1800 eth_test->flags |= ETH_TEST_FL_FAILED; 1801 1802 e1000e_reset(adapter); 1803 if (e1000_eeprom_test(adapter, &data[1])) 1804 eth_test->flags |= ETH_TEST_FL_FAILED; 1805 1806 e1000e_reset(adapter); 1807 if (e1000_intr_test(adapter, &data[2])) 1808 eth_test->flags |= ETH_TEST_FL_FAILED; 1809 1810 e1000e_reset(adapter); 1811 if (e1000_loopback_test(adapter, &data[3])) 1812 eth_test->flags |= ETH_TEST_FL_FAILED; 1813 1814 /* force this routine to wait until autoneg complete/timeout */ 1815 adapter->hw.phy.autoneg_wait_to_complete = 1; 1816 e1000e_reset(adapter); 1817 adapter->hw.phy.autoneg_wait_to_complete = 0; 1818 1819 if (e1000_link_test(adapter, &data[4])) 1820 eth_test->flags |= ETH_TEST_FL_FAILED; 1821 1822 /* restore speed, duplex, autoneg settings */ 1823 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1824 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1825 adapter->hw.mac.autoneg = autoneg; 1826 e1000e_reset(adapter); 1827 1828 clear_bit(__E1000_TESTING, &adapter->state); 1829 if (if_running) 1830 dev_open(netdev); 1831 } else { 1832 /* Online tests */ 1833 1834 e_info("online testing starting\n"); 1835 1836 /* register, eeprom, intr and loopback tests not run online */ 1837 data[0] = 0; 1838 data[1] = 0; 1839 data[2] = 0; 1840 data[3] = 0; 1841 1842 if (e1000_link_test(adapter, &data[4])) 1843 eth_test->flags |= ETH_TEST_FL_FAILED; 1844 1845 clear_bit(__E1000_TESTING, &adapter->state); 1846 } 1847 1848 if (!if_running) { 1849 e1000e_reset(adapter); 1850 1851 if (adapter->flags & FLAG_HAS_AMT) 1852 e1000e_release_hw_control(adapter); 1853 } 1854 1855 msleep_interruptible(4 * 1000); 1856 1857 pm_runtime_put_sync(netdev->dev.parent); 1858 } 1859 1860 static void e1000_get_wol(struct net_device *netdev, 1861 struct ethtool_wolinfo *wol) 1862 { 1863 struct e1000_adapter *adapter = netdev_priv(netdev); 1864 1865 wol->supported = 0; 1866 wol->wolopts = 0; 1867 1868 if (!(adapter->flags & FLAG_HAS_WOL) || 1869 !device_can_wakeup(&adapter->pdev->dev)) 1870 return; 1871 1872 wol->supported = WAKE_UCAST | WAKE_MCAST | 1873 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1874 1875 /* apply any specific unsupported masks here */ 1876 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1877 wol->supported &= ~WAKE_UCAST; 1878 1879 if (adapter->wol & E1000_WUFC_EX) 1880 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1881 } 1882 1883 if (adapter->wol & E1000_WUFC_EX) 1884 wol->wolopts |= WAKE_UCAST; 1885 if (adapter->wol & E1000_WUFC_MC) 1886 wol->wolopts |= WAKE_MCAST; 1887 if (adapter->wol & E1000_WUFC_BC) 1888 wol->wolopts |= WAKE_BCAST; 1889 if (adapter->wol & E1000_WUFC_MAG) 1890 wol->wolopts |= WAKE_MAGIC; 1891 if (adapter->wol & E1000_WUFC_LNKC) 1892 wol->wolopts |= WAKE_PHY; 1893 } 1894 1895 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1896 { 1897 struct e1000_adapter *adapter = netdev_priv(netdev); 1898 1899 if (!(adapter->flags & FLAG_HAS_WOL) || 1900 !device_can_wakeup(&adapter->pdev->dev) || 1901 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1902 WAKE_MAGIC | WAKE_PHY))) 1903 return -EOPNOTSUPP; 1904 1905 /* these settings will always override what we currently have */ 1906 adapter->wol = 0; 1907 1908 if (wol->wolopts & WAKE_UCAST) 1909 adapter->wol |= E1000_WUFC_EX; 1910 if (wol->wolopts & WAKE_MCAST) 1911 adapter->wol |= E1000_WUFC_MC; 1912 if (wol->wolopts & WAKE_BCAST) 1913 adapter->wol |= E1000_WUFC_BC; 1914 if (wol->wolopts & WAKE_MAGIC) 1915 adapter->wol |= E1000_WUFC_MAG; 1916 if (wol->wolopts & WAKE_PHY) 1917 adapter->wol |= E1000_WUFC_LNKC; 1918 1919 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1920 1921 return 0; 1922 } 1923 1924 static int e1000_set_phys_id(struct net_device *netdev, 1925 enum ethtool_phys_id_state state) 1926 { 1927 struct e1000_adapter *adapter = netdev_priv(netdev); 1928 struct e1000_hw *hw = &adapter->hw; 1929 1930 switch (state) { 1931 case ETHTOOL_ID_ACTIVE: 1932 pm_runtime_get_sync(netdev->dev.parent); 1933 1934 if (!hw->mac.ops.blink_led) 1935 return 2; /* cycle on/off twice per second */ 1936 1937 hw->mac.ops.blink_led(hw); 1938 break; 1939 1940 case ETHTOOL_ID_INACTIVE: 1941 if (hw->phy.type == e1000_phy_ife) 1942 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1943 hw->mac.ops.led_off(hw); 1944 hw->mac.ops.cleanup_led(hw); 1945 pm_runtime_put_sync(netdev->dev.parent); 1946 break; 1947 1948 case ETHTOOL_ID_ON: 1949 hw->mac.ops.led_on(hw); 1950 break; 1951 1952 case ETHTOOL_ID_OFF: 1953 hw->mac.ops.led_off(hw); 1954 break; 1955 } 1956 1957 return 0; 1958 } 1959 1960 static int e1000_get_coalesce(struct net_device *netdev, 1961 struct ethtool_coalesce *ec) 1962 { 1963 struct e1000_adapter *adapter = netdev_priv(netdev); 1964 1965 if (adapter->itr_setting <= 4) 1966 ec->rx_coalesce_usecs = adapter->itr_setting; 1967 else 1968 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1969 1970 return 0; 1971 } 1972 1973 static int e1000_set_coalesce(struct net_device *netdev, 1974 struct ethtool_coalesce *ec) 1975 { 1976 struct e1000_adapter *adapter = netdev_priv(netdev); 1977 1978 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1979 ((ec->rx_coalesce_usecs > 4) && 1980 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1981 (ec->rx_coalesce_usecs == 2)) 1982 return -EINVAL; 1983 1984 if (ec->rx_coalesce_usecs == 4) { 1985 adapter->itr_setting = 4; 1986 adapter->itr = adapter->itr_setting; 1987 } else if (ec->rx_coalesce_usecs <= 3) { 1988 adapter->itr = 20000; 1989 adapter->itr_setting = ec->rx_coalesce_usecs; 1990 } else { 1991 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1992 adapter->itr_setting = adapter->itr & ~3; 1993 } 1994 1995 pm_runtime_get_sync(netdev->dev.parent); 1996 1997 if (adapter->itr_setting != 0) 1998 e1000e_write_itr(adapter, adapter->itr); 1999 else 2000 e1000e_write_itr(adapter, 0); 2001 2002 pm_runtime_put_sync(netdev->dev.parent); 2003 2004 return 0; 2005 } 2006 2007 static int e1000_nway_reset(struct net_device *netdev) 2008 { 2009 struct e1000_adapter *adapter = netdev_priv(netdev); 2010 2011 if (!netif_running(netdev)) 2012 return -EAGAIN; 2013 2014 if (!adapter->hw.mac.autoneg) 2015 return -EINVAL; 2016 2017 pm_runtime_get_sync(netdev->dev.parent); 2018 e1000e_reinit_locked(adapter); 2019 pm_runtime_put_sync(netdev->dev.parent); 2020 2021 return 0; 2022 } 2023 2024 static void e1000_get_ethtool_stats(struct net_device *netdev, 2025 struct ethtool_stats __always_unused *stats, 2026 u64 *data) 2027 { 2028 struct e1000_adapter *adapter = netdev_priv(netdev); 2029 struct rtnl_link_stats64 net_stats; 2030 int i; 2031 char *p = NULL; 2032 2033 pm_runtime_get_sync(netdev->dev.parent); 2034 2035 e1000e_get_stats64(netdev, &net_stats); 2036 2037 pm_runtime_put_sync(netdev->dev.parent); 2038 2039 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2040 switch (e1000_gstrings_stats[i].type) { 2041 case NETDEV_STATS: 2042 p = (char *)&net_stats + 2043 e1000_gstrings_stats[i].stat_offset; 2044 break; 2045 case E1000_STATS: 2046 p = (char *)adapter + 2047 e1000_gstrings_stats[i].stat_offset; 2048 break; 2049 default: 2050 data[i] = 0; 2051 continue; 2052 } 2053 2054 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2055 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2056 } 2057 } 2058 2059 static void e1000_get_strings(struct net_device __always_unused *netdev, 2060 u32 stringset, u8 *data) 2061 { 2062 u8 *p = data; 2063 int i; 2064 2065 switch (stringset) { 2066 case ETH_SS_TEST: 2067 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2068 break; 2069 case ETH_SS_STATS: 2070 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2071 memcpy(p, e1000_gstrings_stats[i].stat_string, 2072 ETH_GSTRING_LEN); 2073 p += ETH_GSTRING_LEN; 2074 } 2075 break; 2076 } 2077 } 2078 2079 static int e1000_get_rxnfc(struct net_device *netdev, 2080 struct ethtool_rxnfc *info, 2081 u32 __always_unused *rule_locs) 2082 { 2083 info->data = 0; 2084 2085 switch (info->cmd) { 2086 case ETHTOOL_GRXFH: { 2087 struct e1000_adapter *adapter = netdev_priv(netdev); 2088 struct e1000_hw *hw = &adapter->hw; 2089 u32 mrqc; 2090 2091 pm_runtime_get_sync(netdev->dev.parent); 2092 mrqc = er32(MRQC); 2093 pm_runtime_put_sync(netdev->dev.parent); 2094 2095 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2096 return 0; 2097 2098 switch (info->flow_type) { 2099 case TCP_V4_FLOW: 2100 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2101 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2102 /* fall through */ 2103 case UDP_V4_FLOW: 2104 case SCTP_V4_FLOW: 2105 case AH_ESP_V4_FLOW: 2106 case IPV4_FLOW: 2107 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2108 info->data |= RXH_IP_SRC | RXH_IP_DST; 2109 break; 2110 case TCP_V6_FLOW: 2111 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2112 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2113 /* fall through */ 2114 case UDP_V6_FLOW: 2115 case SCTP_V6_FLOW: 2116 case AH_ESP_V6_FLOW: 2117 case IPV6_FLOW: 2118 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2119 info->data |= RXH_IP_SRC | RXH_IP_DST; 2120 break; 2121 default: 2122 break; 2123 } 2124 return 0; 2125 } 2126 default: 2127 return -EOPNOTSUPP; 2128 } 2129 } 2130 2131 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2132 { 2133 struct e1000_adapter *adapter = netdev_priv(netdev); 2134 struct e1000_hw *hw = &adapter->hw; 2135 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2136 u32 ret_val; 2137 2138 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2139 return -EOPNOTSUPP; 2140 2141 switch (hw->phy.type) { 2142 case e1000_phy_82579: 2143 cap_addr = I82579_EEE_CAPABILITY; 2144 lpa_addr = I82579_EEE_LP_ABILITY; 2145 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2146 break; 2147 case e1000_phy_i217: 2148 cap_addr = I217_EEE_CAPABILITY; 2149 lpa_addr = I217_EEE_LP_ABILITY; 2150 pcs_stat_addr = I217_EEE_PCS_STATUS; 2151 break; 2152 default: 2153 return -EOPNOTSUPP; 2154 } 2155 2156 pm_runtime_get_sync(netdev->dev.parent); 2157 2158 ret_val = hw->phy.ops.acquire(hw); 2159 if (ret_val) { 2160 pm_runtime_put_sync(netdev->dev.parent); 2161 return -EBUSY; 2162 } 2163 2164 /* EEE Capability */ 2165 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2166 if (ret_val) 2167 goto release; 2168 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2169 2170 /* EEE Advertised */ 2171 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2172 2173 /* EEE Link Partner Advertised */ 2174 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2175 if (ret_val) 2176 goto release; 2177 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2178 2179 /* EEE PCS Status */ 2180 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2181 if (ret_val) 2182 goto release; 2183 if (hw->phy.type == e1000_phy_82579) 2184 phy_data <<= 8; 2185 2186 /* Result of the EEE auto negotiation - there is no register that 2187 * has the status of the EEE negotiation so do a best-guess based 2188 * on whether Tx or Rx LPI indications have been received. 2189 */ 2190 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2191 edata->eee_active = true; 2192 2193 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2194 edata->tx_lpi_enabled = true; 2195 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2196 2197 release: 2198 hw->phy.ops.release(hw); 2199 if (ret_val) 2200 ret_val = -ENODATA; 2201 2202 pm_runtime_put_sync(netdev->dev.parent); 2203 2204 return ret_val; 2205 } 2206 2207 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2208 { 2209 struct e1000_adapter *adapter = netdev_priv(netdev); 2210 struct e1000_hw *hw = &adapter->hw; 2211 struct ethtool_eee eee_curr; 2212 s32 ret_val; 2213 2214 ret_val = e1000e_get_eee(netdev, &eee_curr); 2215 if (ret_val) 2216 return ret_val; 2217 2218 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2219 e_err("Setting EEE tx-lpi is not supported\n"); 2220 return -EINVAL; 2221 } 2222 2223 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2224 e_err("Setting EEE Tx LPI timer is not supported\n"); 2225 return -EINVAL; 2226 } 2227 2228 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2229 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2230 return -EINVAL; 2231 } 2232 2233 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2234 2235 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2236 2237 pm_runtime_get_sync(netdev->dev.parent); 2238 2239 /* reset the link */ 2240 if (netif_running(netdev)) 2241 e1000e_reinit_locked(adapter); 2242 else 2243 e1000e_reset(adapter); 2244 2245 pm_runtime_put_sync(netdev->dev.parent); 2246 2247 return 0; 2248 } 2249 2250 static int e1000e_get_ts_info(struct net_device *netdev, 2251 struct ethtool_ts_info *info) 2252 { 2253 struct e1000_adapter *adapter = netdev_priv(netdev); 2254 2255 ethtool_op_get_ts_info(netdev, info); 2256 2257 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2258 return 0; 2259 2260 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2261 SOF_TIMESTAMPING_RX_HARDWARE | 2262 SOF_TIMESTAMPING_RAW_HARDWARE); 2263 2264 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); 2265 2266 info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) | 2267 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2268 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2269 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2270 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2271 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2272 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2273 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) | 2274 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) | 2275 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2276 (1 << HWTSTAMP_FILTER_ALL)); 2277 2278 if (adapter->ptp_clock) 2279 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2280 2281 return 0; 2282 } 2283 2284 static const struct ethtool_ops e1000_ethtool_ops = { 2285 .get_settings = e1000_get_settings, 2286 .set_settings = e1000_set_settings, 2287 .get_drvinfo = e1000_get_drvinfo, 2288 .get_regs_len = e1000_get_regs_len, 2289 .get_regs = e1000_get_regs, 2290 .get_wol = e1000_get_wol, 2291 .set_wol = e1000_set_wol, 2292 .get_msglevel = e1000_get_msglevel, 2293 .set_msglevel = e1000_set_msglevel, 2294 .nway_reset = e1000_nway_reset, 2295 .get_link = ethtool_op_get_link, 2296 .get_eeprom_len = e1000_get_eeprom_len, 2297 .get_eeprom = e1000_get_eeprom, 2298 .set_eeprom = e1000_set_eeprom, 2299 .get_ringparam = e1000_get_ringparam, 2300 .set_ringparam = e1000_set_ringparam, 2301 .get_pauseparam = e1000_get_pauseparam, 2302 .set_pauseparam = e1000_set_pauseparam, 2303 .self_test = e1000_diag_test, 2304 .get_strings = e1000_get_strings, 2305 .set_phys_id = e1000_set_phys_id, 2306 .get_ethtool_stats = e1000_get_ethtool_stats, 2307 .get_sset_count = e1000e_get_sset_count, 2308 .get_coalesce = e1000_get_coalesce, 2309 .set_coalesce = e1000_set_coalesce, 2310 .get_rxnfc = e1000_get_rxnfc, 2311 .get_ts_info = e1000e_get_ts_info, 2312 .get_eee = e1000e_get_eee, 2313 .set_eee = e1000e_set_eee, 2314 }; 2315 2316 void e1000e_set_ethtool_ops(struct net_device *netdev) 2317 { 2318 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 2319 } 2320