1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 #define E1000_STAT(str, m) { \ 27 .stat_string = str, \ 28 .type = E1000_STATS, \ 29 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 30 .stat_offset = offsetof(struct e1000_adapter, m) } 31 #define E1000_NETDEV_STAT(str, m) { \ 32 .stat_string = str, \ 33 .type = NETDEV_STATS, \ 34 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 35 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 36 37 static const struct e1000_stats e1000_gstrings_stats[] = { 38 E1000_STAT("rx_packets", stats.gprc), 39 E1000_STAT("tx_packets", stats.gptc), 40 E1000_STAT("rx_bytes", stats.gorc), 41 E1000_STAT("tx_bytes", stats.gotc), 42 E1000_STAT("rx_broadcast", stats.bprc), 43 E1000_STAT("tx_broadcast", stats.bptc), 44 E1000_STAT("rx_multicast", stats.mprc), 45 E1000_STAT("tx_multicast", stats.mptc), 46 E1000_NETDEV_STAT("rx_errors", rx_errors), 47 E1000_NETDEV_STAT("tx_errors", tx_errors), 48 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 49 E1000_STAT("multicast", stats.mprc), 50 E1000_STAT("collisions", stats.colc), 51 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 52 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 53 E1000_STAT("rx_crc_errors", stats.crcerrs), 54 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 55 E1000_STAT("rx_no_buffer_count", stats.rnbc), 56 E1000_STAT("rx_missed_errors", stats.mpc), 57 E1000_STAT("tx_aborted_errors", stats.ecol), 58 E1000_STAT("tx_carrier_errors", stats.tncrs), 59 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 60 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 61 E1000_STAT("tx_window_errors", stats.latecol), 62 E1000_STAT("tx_abort_late_coll", stats.latecol), 63 E1000_STAT("tx_deferred_ok", stats.dc), 64 E1000_STAT("tx_single_coll_ok", stats.scc), 65 E1000_STAT("tx_multi_coll_ok", stats.mcc), 66 E1000_STAT("tx_timeout_count", tx_timeout_count), 67 E1000_STAT("tx_restart_queue", restart_queue), 68 E1000_STAT("rx_long_length_errors", stats.roc), 69 E1000_STAT("rx_short_length_errors", stats.ruc), 70 E1000_STAT("rx_align_errors", stats.algnerrc), 71 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 72 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 73 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 74 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 75 E1000_STAT("tx_flow_control_xon", stats.xontxc), 76 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 77 E1000_STAT("rx_csum_offload_good", hw_csum_good), 78 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 79 E1000_STAT("rx_header_split", rx_hdr_split), 80 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 81 E1000_STAT("tx_smbus", stats.mgptc), 82 E1000_STAT("rx_smbus", stats.mgprc), 83 E1000_STAT("dropped_smbus", stats.mgpdc), 84 E1000_STAT("rx_dma_failed", rx_dma_failed), 85 E1000_STAT("tx_dma_failed", tx_dma_failed), 86 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 87 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 88 E1000_STAT("corr_ecc_errors", corr_errors), 89 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 90 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 91 }; 92 93 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 94 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 95 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 96 "Register test (offline)", "Eeprom test (offline)", 97 "Interrupt test (offline)", "Loopback test (offline)", 98 "Link test (on/offline)" 99 }; 100 101 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 102 103 static int e1000_get_link_ksettings(struct net_device *netdev, 104 struct ethtool_link_ksettings *cmd) 105 { 106 struct e1000_adapter *adapter = netdev_priv(netdev); 107 struct e1000_hw *hw = &adapter->hw; 108 u32 speed, supported, advertising; 109 110 if (hw->phy.media_type == e1000_media_type_copper) { 111 supported = (SUPPORTED_10baseT_Half | 112 SUPPORTED_10baseT_Full | 113 SUPPORTED_100baseT_Half | 114 SUPPORTED_100baseT_Full | 115 SUPPORTED_1000baseT_Full | 116 SUPPORTED_Autoneg | 117 SUPPORTED_TP); 118 if (hw->phy.type == e1000_phy_ife) 119 supported &= ~SUPPORTED_1000baseT_Full; 120 advertising = ADVERTISED_TP; 121 122 if (hw->mac.autoneg == 1) { 123 advertising |= ADVERTISED_Autoneg; 124 /* the e1000 autoneg seems to match ethtool nicely */ 125 advertising |= hw->phy.autoneg_advertised; 126 } 127 128 cmd->base.port = PORT_TP; 129 cmd->base.phy_address = hw->phy.addr; 130 } else { 131 supported = (SUPPORTED_1000baseT_Full | 132 SUPPORTED_FIBRE | 133 SUPPORTED_Autoneg); 134 135 advertising = (ADVERTISED_1000baseT_Full | 136 ADVERTISED_FIBRE | 137 ADVERTISED_Autoneg); 138 139 cmd->base.port = PORT_FIBRE; 140 } 141 142 speed = SPEED_UNKNOWN; 143 cmd->base.duplex = DUPLEX_UNKNOWN; 144 145 if (netif_running(netdev)) { 146 if (netif_carrier_ok(netdev)) { 147 speed = adapter->link_speed; 148 cmd->base.duplex = adapter->link_duplex - 1; 149 } 150 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 151 u32 status = er32(STATUS); 152 153 if (status & E1000_STATUS_LU) { 154 if (status & E1000_STATUS_SPEED_1000) 155 speed = SPEED_1000; 156 else if (status & E1000_STATUS_SPEED_100) 157 speed = SPEED_100; 158 else 159 speed = SPEED_10; 160 161 if (status & E1000_STATUS_FD) 162 cmd->base.duplex = DUPLEX_FULL; 163 else 164 cmd->base.duplex = DUPLEX_HALF; 165 } 166 } 167 168 cmd->base.speed = speed; 169 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 170 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 171 172 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 173 if ((hw->phy.media_type == e1000_media_type_copper) && 174 netif_carrier_ok(netdev)) 175 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 176 ETH_TP_MDI_X : ETH_TP_MDI; 177 else 178 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 179 180 if (hw->phy.mdix == AUTO_ALL_MODES) 181 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 182 else 183 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 184 185 if (hw->phy.media_type != e1000_media_type_copper) 186 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 187 188 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 189 supported); 190 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 191 advertising); 192 193 return 0; 194 } 195 196 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 197 { 198 struct e1000_mac_info *mac = &adapter->hw.mac; 199 200 mac->autoneg = 0; 201 202 /* Make sure dplx is at most 1 bit and lsb of speed is not set 203 * for the switch() below to work 204 */ 205 if ((spd & 1) || (dplx & ~1)) 206 goto err_inval; 207 208 /* Fiber NICs only allow 1000 gbps Full duplex */ 209 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 210 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 211 goto err_inval; 212 } 213 214 switch (spd + dplx) { 215 case SPEED_10 + DUPLEX_HALF: 216 mac->forced_speed_duplex = ADVERTISE_10_HALF; 217 break; 218 case SPEED_10 + DUPLEX_FULL: 219 mac->forced_speed_duplex = ADVERTISE_10_FULL; 220 break; 221 case SPEED_100 + DUPLEX_HALF: 222 mac->forced_speed_duplex = ADVERTISE_100_HALF; 223 break; 224 case SPEED_100 + DUPLEX_FULL: 225 mac->forced_speed_duplex = ADVERTISE_100_FULL; 226 break; 227 case SPEED_1000 + DUPLEX_FULL: 228 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 229 mac->autoneg = 1; 230 adapter->hw.phy.autoneg_advertised = 231 ADVERTISE_1000_FULL; 232 } else { 233 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 234 } 235 break; 236 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 237 default: 238 goto err_inval; 239 } 240 241 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 242 adapter->hw.phy.mdix = AUTO_ALL_MODES; 243 244 return 0; 245 246 err_inval: 247 e_err("Unsupported Speed/Duplex configuration\n"); 248 return -EINVAL; 249 } 250 251 static int e1000_set_link_ksettings(struct net_device *netdev, 252 const struct ethtool_link_ksettings *cmd) 253 { 254 struct e1000_adapter *adapter = netdev_priv(netdev); 255 struct e1000_hw *hw = &adapter->hw; 256 int ret_val = 0; 257 u32 advertising; 258 259 ethtool_convert_link_mode_to_legacy_u32(&advertising, 260 cmd->link_modes.advertising); 261 262 pm_runtime_get_sync(netdev->dev.parent); 263 264 /* When SoL/IDER sessions are active, autoneg/speed/duplex 265 * cannot be changed 266 */ 267 if (hw->phy.ops.check_reset_block && 268 hw->phy.ops.check_reset_block(hw)) { 269 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 270 ret_val = -EINVAL; 271 goto out; 272 } 273 274 /* MDI setting is only allowed when autoneg enabled because 275 * some hardware doesn't allow MDI setting when speed or 276 * duplex is forced. 277 */ 278 if (cmd->base.eth_tp_mdix_ctrl) { 279 if (hw->phy.media_type != e1000_media_type_copper) { 280 ret_val = -EOPNOTSUPP; 281 goto out; 282 } 283 284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 285 (cmd->base.autoneg != AUTONEG_ENABLE)) { 286 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 287 ret_val = -EINVAL; 288 goto out; 289 } 290 } 291 292 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 293 usleep_range(1000, 2000); 294 295 if (cmd->base.autoneg == AUTONEG_ENABLE) { 296 hw->mac.autoneg = 1; 297 if (hw->phy.media_type == e1000_media_type_fiber) 298 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 299 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 300 else 301 hw->phy.autoneg_advertised = advertising | 302 ADVERTISED_TP | ADVERTISED_Autoneg; 303 advertising = hw->phy.autoneg_advertised; 304 if (adapter->fc_autoneg) 305 hw->fc.requested_mode = e1000_fc_default; 306 } else { 307 u32 speed = cmd->base.speed; 308 /* calling this overrides forced MDI setting */ 309 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 310 ret_val = -EINVAL; 311 goto out; 312 } 313 } 314 315 /* MDI-X => 2; MDI => 1; Auto => 3 */ 316 if (cmd->base.eth_tp_mdix_ctrl) { 317 /* fix up the value for auto (3 => 0) as zero is mapped 318 * internally to auto 319 */ 320 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 321 hw->phy.mdix = AUTO_ALL_MODES; 322 else 323 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 324 } 325 326 /* reset the link */ 327 if (netif_running(adapter->netdev)) { 328 e1000e_down(adapter, true); 329 e1000e_up(adapter); 330 } else { 331 e1000e_reset(adapter); 332 } 333 334 out: 335 pm_runtime_put_sync(netdev->dev.parent); 336 clear_bit(__E1000_RESETTING, &adapter->state); 337 return ret_val; 338 } 339 340 static void e1000_get_pauseparam(struct net_device *netdev, 341 struct ethtool_pauseparam *pause) 342 { 343 struct e1000_adapter *adapter = netdev_priv(netdev); 344 struct e1000_hw *hw = &adapter->hw; 345 346 pause->autoneg = 347 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 348 349 if (hw->fc.current_mode == e1000_fc_rx_pause) { 350 pause->rx_pause = 1; 351 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 352 pause->tx_pause = 1; 353 } else if (hw->fc.current_mode == e1000_fc_full) { 354 pause->rx_pause = 1; 355 pause->tx_pause = 1; 356 } 357 } 358 359 static int e1000_set_pauseparam(struct net_device *netdev, 360 struct ethtool_pauseparam *pause) 361 { 362 struct e1000_adapter *adapter = netdev_priv(netdev); 363 struct e1000_hw *hw = &adapter->hw; 364 int retval = 0; 365 366 adapter->fc_autoneg = pause->autoneg; 367 368 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 369 usleep_range(1000, 2000); 370 371 pm_runtime_get_sync(netdev->dev.parent); 372 373 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 374 hw->fc.requested_mode = e1000_fc_default; 375 if (netif_running(adapter->netdev)) { 376 e1000e_down(adapter, true); 377 e1000e_up(adapter); 378 } else { 379 e1000e_reset(adapter); 380 } 381 } else { 382 if (pause->rx_pause && pause->tx_pause) 383 hw->fc.requested_mode = e1000_fc_full; 384 else if (pause->rx_pause && !pause->tx_pause) 385 hw->fc.requested_mode = e1000_fc_rx_pause; 386 else if (!pause->rx_pause && pause->tx_pause) 387 hw->fc.requested_mode = e1000_fc_tx_pause; 388 else if (!pause->rx_pause && !pause->tx_pause) 389 hw->fc.requested_mode = e1000_fc_none; 390 391 hw->fc.current_mode = hw->fc.requested_mode; 392 393 if (hw->phy.media_type == e1000_media_type_fiber) { 394 retval = hw->mac.ops.setup_link(hw); 395 /* implicit goto out */ 396 } else { 397 retval = e1000e_force_mac_fc(hw); 398 if (retval) 399 goto out; 400 e1000e_set_fc_watermarks(hw); 401 } 402 } 403 404 out: 405 pm_runtime_put_sync(netdev->dev.parent); 406 clear_bit(__E1000_RESETTING, &adapter->state); 407 return retval; 408 } 409 410 static u32 e1000_get_msglevel(struct net_device *netdev) 411 { 412 struct e1000_adapter *adapter = netdev_priv(netdev); 413 return adapter->msg_enable; 414 } 415 416 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 417 { 418 struct e1000_adapter *adapter = netdev_priv(netdev); 419 adapter->msg_enable = data; 420 } 421 422 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 423 { 424 #define E1000_REGS_LEN 32 /* overestimate */ 425 return E1000_REGS_LEN * sizeof(u32); 426 } 427 428 static void e1000_get_regs(struct net_device *netdev, 429 struct ethtool_regs *regs, void *p) 430 { 431 struct e1000_adapter *adapter = netdev_priv(netdev); 432 struct e1000_hw *hw = &adapter->hw; 433 u32 *regs_buff = p; 434 u16 phy_data; 435 436 pm_runtime_get_sync(netdev->dev.parent); 437 438 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 439 440 regs->version = (1u << 24) | 441 (adapter->pdev->revision << 16) | 442 adapter->pdev->device; 443 444 regs_buff[0] = er32(CTRL); 445 regs_buff[1] = er32(STATUS); 446 447 regs_buff[2] = er32(RCTL); 448 regs_buff[3] = er32(RDLEN(0)); 449 regs_buff[4] = er32(RDH(0)); 450 regs_buff[5] = er32(RDT(0)); 451 regs_buff[6] = er32(RDTR); 452 453 regs_buff[7] = er32(TCTL); 454 regs_buff[8] = er32(TDLEN(0)); 455 regs_buff[9] = er32(TDH(0)); 456 regs_buff[10] = er32(TDT(0)); 457 regs_buff[11] = er32(TIDV); 458 459 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 460 461 /* ethtool doesn't use anything past this point, so all this 462 * code is likely legacy junk for apps that may or may not exist 463 */ 464 if (hw->phy.type == e1000_phy_m88) { 465 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 466 regs_buff[13] = (u32)phy_data; /* cable length */ 467 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 468 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 469 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 470 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 471 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 472 regs_buff[18] = regs_buff[13]; /* cable polarity */ 473 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 474 regs_buff[20] = regs_buff[17]; /* polarity correction */ 475 /* phy receive errors */ 476 regs_buff[22] = adapter->phy_stats.receive_errors; 477 regs_buff[23] = regs_buff[13]; /* mdix mode */ 478 } 479 regs_buff[21] = 0; /* was idle_errors */ 480 e1e_rphy(hw, MII_STAT1000, &phy_data); 481 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 482 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 483 484 pm_runtime_put_sync(netdev->dev.parent); 485 } 486 487 static int e1000_get_eeprom_len(struct net_device *netdev) 488 { 489 struct e1000_adapter *adapter = netdev_priv(netdev); 490 return adapter->hw.nvm.word_size * 2; 491 } 492 493 static int e1000_get_eeprom(struct net_device *netdev, 494 struct ethtool_eeprom *eeprom, u8 *bytes) 495 { 496 struct e1000_adapter *adapter = netdev_priv(netdev); 497 struct e1000_hw *hw = &adapter->hw; 498 u16 *eeprom_buff; 499 int first_word; 500 int last_word; 501 int ret_val = 0; 502 u16 i; 503 504 if (eeprom->len == 0) 505 return -EINVAL; 506 507 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 508 509 first_word = eeprom->offset >> 1; 510 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 511 512 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 513 GFP_KERNEL); 514 if (!eeprom_buff) 515 return -ENOMEM; 516 517 pm_runtime_get_sync(netdev->dev.parent); 518 519 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 520 ret_val = e1000_read_nvm(hw, first_word, 521 last_word - first_word + 1, 522 eeprom_buff); 523 } else { 524 for (i = 0; i < last_word - first_word + 1; i++) { 525 ret_val = e1000_read_nvm(hw, first_word + i, 1, 526 &eeprom_buff[i]); 527 if (ret_val) 528 break; 529 } 530 } 531 532 pm_runtime_put_sync(netdev->dev.parent); 533 534 if (ret_val) { 535 /* a read error occurred, throw away the result */ 536 memset(eeprom_buff, 0xff, sizeof(u16) * 537 (last_word - first_word + 1)); 538 } else { 539 /* Device's eeprom is always little-endian, word addressable */ 540 for (i = 0; i < last_word - first_word + 1; i++) 541 le16_to_cpus(&eeprom_buff[i]); 542 } 543 544 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 545 kfree(eeprom_buff); 546 547 return ret_val; 548 } 549 550 static int e1000_set_eeprom(struct net_device *netdev, 551 struct ethtool_eeprom *eeprom, u8 *bytes) 552 { 553 struct e1000_adapter *adapter = netdev_priv(netdev); 554 struct e1000_hw *hw = &adapter->hw; 555 u16 *eeprom_buff; 556 void *ptr; 557 int max_len; 558 int first_word; 559 int last_word; 560 int ret_val = 0; 561 u16 i; 562 563 if (eeprom->len == 0) 564 return -EOPNOTSUPP; 565 566 if (eeprom->magic != 567 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 568 return -EFAULT; 569 570 if (adapter->flags & FLAG_READ_ONLY_NVM) 571 return -EINVAL; 572 573 max_len = hw->nvm.word_size * 2; 574 575 first_word = eeprom->offset >> 1; 576 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 577 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 578 if (!eeprom_buff) 579 return -ENOMEM; 580 581 ptr = (void *)eeprom_buff; 582 583 pm_runtime_get_sync(netdev->dev.parent); 584 585 if (eeprom->offset & 1) { 586 /* need read/modify/write of first changed EEPROM word */ 587 /* only the second byte of the word is being modified */ 588 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 589 ptr++; 590 } 591 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 592 /* need read/modify/write of last changed EEPROM word */ 593 /* only the first byte of the word is being modified */ 594 ret_val = e1000_read_nvm(hw, last_word, 1, 595 &eeprom_buff[last_word - first_word]); 596 597 if (ret_val) 598 goto out; 599 600 /* Device's eeprom is always little-endian, word addressable */ 601 for (i = 0; i < last_word - first_word + 1; i++) 602 le16_to_cpus(&eeprom_buff[i]); 603 604 memcpy(ptr, bytes, eeprom->len); 605 606 for (i = 0; i < last_word - first_word + 1; i++) 607 cpu_to_le16s(&eeprom_buff[i]); 608 609 ret_val = e1000_write_nvm(hw, first_word, 610 last_word - first_word + 1, eeprom_buff); 611 612 if (ret_val) 613 goto out; 614 615 /* Update the checksum over the first part of the EEPROM if needed 616 * and flush shadow RAM for applicable controllers 617 */ 618 if ((first_word <= NVM_CHECKSUM_REG) || 619 (hw->mac.type == e1000_82583) || 620 (hw->mac.type == e1000_82574) || 621 (hw->mac.type == e1000_82573)) 622 ret_val = e1000e_update_nvm_checksum(hw); 623 624 out: 625 pm_runtime_put_sync(netdev->dev.parent); 626 kfree(eeprom_buff); 627 return ret_val; 628 } 629 630 static void e1000_get_drvinfo(struct net_device *netdev, 631 struct ethtool_drvinfo *drvinfo) 632 { 633 struct e1000_adapter *adapter = netdev_priv(netdev); 634 635 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 636 strlcpy(drvinfo->version, e1000e_driver_version, 637 sizeof(drvinfo->version)); 638 639 /* EEPROM image version # is reported as firmware version # for 640 * PCI-E controllers 641 */ 642 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 643 "%d.%d-%d", 644 (adapter->eeprom_vers & 0xF000) >> 12, 645 (adapter->eeprom_vers & 0x0FF0) >> 4, 646 (adapter->eeprom_vers & 0x000F)); 647 648 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 649 sizeof(drvinfo->bus_info)); 650 } 651 652 static void e1000_get_ringparam(struct net_device *netdev, 653 struct ethtool_ringparam *ring) 654 { 655 struct e1000_adapter *adapter = netdev_priv(netdev); 656 657 ring->rx_max_pending = E1000_MAX_RXD; 658 ring->tx_max_pending = E1000_MAX_TXD; 659 ring->rx_pending = adapter->rx_ring_count; 660 ring->tx_pending = adapter->tx_ring_count; 661 } 662 663 static int e1000_set_ringparam(struct net_device *netdev, 664 struct ethtool_ringparam *ring) 665 { 666 struct e1000_adapter *adapter = netdev_priv(netdev); 667 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 668 int err = 0, size = sizeof(struct e1000_ring); 669 bool set_tx = false, set_rx = false; 670 u16 new_rx_count, new_tx_count; 671 672 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 673 return -EINVAL; 674 675 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 676 E1000_MAX_RXD); 677 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 678 679 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 680 E1000_MAX_TXD); 681 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 682 683 if ((new_tx_count == adapter->tx_ring_count) && 684 (new_rx_count == adapter->rx_ring_count)) 685 /* nothing to do */ 686 return 0; 687 688 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 689 usleep_range(1000, 2000); 690 691 if (!netif_running(adapter->netdev)) { 692 /* Set counts now and allocate resources during open() */ 693 adapter->tx_ring->count = new_tx_count; 694 adapter->rx_ring->count = new_rx_count; 695 adapter->tx_ring_count = new_tx_count; 696 adapter->rx_ring_count = new_rx_count; 697 goto clear_reset; 698 } 699 700 set_tx = (new_tx_count != adapter->tx_ring_count); 701 set_rx = (new_rx_count != adapter->rx_ring_count); 702 703 /* Allocate temporary storage for ring updates */ 704 if (set_tx) { 705 temp_tx = vmalloc(size); 706 if (!temp_tx) { 707 err = -ENOMEM; 708 goto free_temp; 709 } 710 } 711 if (set_rx) { 712 temp_rx = vmalloc(size); 713 if (!temp_rx) { 714 err = -ENOMEM; 715 goto free_temp; 716 } 717 } 718 719 pm_runtime_get_sync(netdev->dev.parent); 720 721 e1000e_down(adapter, true); 722 723 /* We can't just free everything and then setup again, because the 724 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 725 * structs. First, attempt to allocate new resources... 726 */ 727 if (set_tx) { 728 memcpy(temp_tx, adapter->tx_ring, size); 729 temp_tx->count = new_tx_count; 730 err = e1000e_setup_tx_resources(temp_tx); 731 if (err) 732 goto err_setup; 733 } 734 if (set_rx) { 735 memcpy(temp_rx, adapter->rx_ring, size); 736 temp_rx->count = new_rx_count; 737 err = e1000e_setup_rx_resources(temp_rx); 738 if (err) 739 goto err_setup_rx; 740 } 741 742 /* ...then free the old resources and copy back any new ring data */ 743 if (set_tx) { 744 e1000e_free_tx_resources(adapter->tx_ring); 745 memcpy(adapter->tx_ring, temp_tx, size); 746 adapter->tx_ring_count = new_tx_count; 747 } 748 if (set_rx) { 749 e1000e_free_rx_resources(adapter->rx_ring); 750 memcpy(adapter->rx_ring, temp_rx, size); 751 adapter->rx_ring_count = new_rx_count; 752 } 753 754 err_setup_rx: 755 if (err && set_tx) 756 e1000e_free_tx_resources(temp_tx); 757 err_setup: 758 e1000e_up(adapter); 759 pm_runtime_put_sync(netdev->dev.parent); 760 free_temp: 761 vfree(temp_tx); 762 vfree(temp_rx); 763 clear_reset: 764 clear_bit(__E1000_RESETTING, &adapter->state); 765 return err; 766 } 767 768 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 769 int reg, int offset, u32 mask, u32 write) 770 { 771 u32 pat, val; 772 static const u32 test[] = { 773 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 774 }; 775 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 776 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 777 (test[pat] & write)); 778 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 779 if (val != (test[pat] & write & mask)) { 780 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 781 reg + (offset << 2), val, 782 (test[pat] & write & mask)); 783 *data = reg; 784 return true; 785 } 786 } 787 return false; 788 } 789 790 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 791 int reg, u32 mask, u32 write) 792 { 793 u32 val; 794 795 __ew32(&adapter->hw, reg, write & mask); 796 val = __er32(&adapter->hw, reg); 797 if ((write & mask) != (val & mask)) { 798 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 799 reg, (val & mask), (write & mask)); 800 *data = reg; 801 return true; 802 } 803 return false; 804 } 805 806 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 807 do { \ 808 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 809 return 1; \ 810 } while (0) 811 #define REG_PATTERN_TEST(reg, mask, write) \ 812 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 813 814 #define REG_SET_AND_CHECK(reg, mask, write) \ 815 do { \ 816 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 817 return 1; \ 818 } while (0) 819 820 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 821 { 822 struct e1000_hw *hw = &adapter->hw; 823 struct e1000_mac_info *mac = &adapter->hw.mac; 824 u32 value; 825 u32 before; 826 u32 after; 827 u32 i; 828 u32 toggle; 829 u32 mask; 830 u32 wlock_mac = 0; 831 832 /* The status register is Read Only, so a write should fail. 833 * Some bits that get toggled are ignored. There are several bits 834 * on newer hardware that are r/w. 835 */ 836 switch (mac->type) { 837 case e1000_82571: 838 case e1000_82572: 839 case e1000_80003es2lan: 840 toggle = 0x7FFFF3FF; 841 break; 842 default: 843 toggle = 0x7FFFF033; 844 break; 845 } 846 847 before = er32(STATUS); 848 value = (er32(STATUS) & toggle); 849 ew32(STATUS, toggle); 850 after = er32(STATUS) & toggle; 851 if (value != after) { 852 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 853 after, value); 854 *data = 1; 855 return 1; 856 } 857 /* restore previous status */ 858 ew32(STATUS, before); 859 860 if (!(adapter->flags & FLAG_IS_ICH)) { 861 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 862 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 863 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 864 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 865 } 866 867 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 868 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 869 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 870 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 871 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 872 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 873 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 874 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 875 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 876 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 877 878 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 879 880 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 881 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 882 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 883 884 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 885 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 886 if (!(adapter->flags & FLAG_IS_ICH)) 887 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 888 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 889 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 890 mask = 0x8003FFFF; 891 switch (mac->type) { 892 case e1000_ich10lan: 893 case e1000_pchlan: 894 case e1000_pch2lan: 895 case e1000_pch_lpt: 896 case e1000_pch_spt: 897 case e1000_pch_cnp: 898 /* fall through */ 899 case e1000_pch_tgp: 900 mask |= BIT(18); 901 break; 902 default: 903 break; 904 } 905 906 if (mac->type >= e1000_pch_lpt) 907 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 908 E1000_FWSM_WLOCK_MAC_SHIFT; 909 910 for (i = 0; i < mac->rar_entry_count; i++) { 911 if (mac->type >= e1000_pch_lpt) { 912 /* Cannot test write-protected SHRAL[n] registers */ 913 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 914 continue; 915 916 /* SHRAH[9] different than the others */ 917 if (i == 10) 918 mask |= BIT(30); 919 else 920 mask &= ~BIT(30); 921 } 922 if (mac->type == e1000_pch2lan) { 923 /* SHRAH[0,1,2] different than previous */ 924 if (i == 1) 925 mask &= 0xFFF4FFFF; 926 /* SHRAH[3] different than SHRAH[0,1,2] */ 927 if (i == 4) 928 mask |= BIT(30); 929 /* RAR[1-6] owned by management engine - skipping */ 930 if (i > 0) 931 i += 6; 932 } 933 934 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 935 0xFFFFFFFF); 936 /* reset index to actual value */ 937 if ((mac->type == e1000_pch2lan) && (i > 6)) 938 i -= 6; 939 } 940 941 for (i = 0; i < mac->mta_reg_count; i++) 942 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 943 944 *data = 0; 945 946 return 0; 947 } 948 949 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 950 { 951 u16 temp; 952 u16 checksum = 0; 953 u16 i; 954 955 *data = 0; 956 /* Read and add up the contents of the EEPROM */ 957 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 958 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 959 *data = 1; 960 return *data; 961 } 962 checksum += temp; 963 } 964 965 /* If Checksum is not Correct return error else test passed */ 966 if ((checksum != (u16)NVM_SUM) && !(*data)) 967 *data = 2; 968 969 return *data; 970 } 971 972 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 973 { 974 struct net_device *netdev = (struct net_device *)data; 975 struct e1000_adapter *adapter = netdev_priv(netdev); 976 struct e1000_hw *hw = &adapter->hw; 977 978 adapter->test_icr |= er32(ICR); 979 980 return IRQ_HANDLED; 981 } 982 983 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 984 { 985 struct net_device *netdev = adapter->netdev; 986 struct e1000_hw *hw = &adapter->hw; 987 u32 mask; 988 u32 shared_int = 1; 989 u32 irq = adapter->pdev->irq; 990 int i; 991 int ret_val = 0; 992 int int_mode = E1000E_INT_MODE_LEGACY; 993 994 *data = 0; 995 996 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 997 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 998 int_mode = adapter->int_mode; 999 e1000e_reset_interrupt_capability(adapter); 1000 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1001 e1000e_set_interrupt_capability(adapter); 1002 } 1003 /* Hook up test interrupt handler just for this test */ 1004 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1005 netdev)) { 1006 shared_int = 0; 1007 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1008 netdev)) { 1009 *data = 1; 1010 ret_val = -1; 1011 goto out; 1012 } 1013 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1014 1015 /* Disable all the interrupts */ 1016 ew32(IMC, 0xFFFFFFFF); 1017 e1e_flush(); 1018 usleep_range(10000, 11000); 1019 1020 /* Test each interrupt */ 1021 for (i = 0; i < 10; i++) { 1022 /* Interrupt to test */ 1023 mask = BIT(i); 1024 1025 if (adapter->flags & FLAG_IS_ICH) { 1026 switch (mask) { 1027 case E1000_ICR_RXSEQ: 1028 continue; 1029 case 0x00000100: 1030 if (adapter->hw.mac.type == e1000_ich8lan || 1031 adapter->hw.mac.type == e1000_ich9lan) 1032 continue; 1033 break; 1034 default: 1035 break; 1036 } 1037 } 1038 1039 if (!shared_int) { 1040 /* Disable the interrupt to be reported in 1041 * the cause register and then force the same 1042 * interrupt and see if one gets posted. If 1043 * an interrupt was posted to the bus, the 1044 * test failed. 1045 */ 1046 adapter->test_icr = 0; 1047 ew32(IMC, mask); 1048 ew32(ICS, mask); 1049 e1e_flush(); 1050 usleep_range(10000, 11000); 1051 1052 if (adapter->test_icr & mask) { 1053 *data = 3; 1054 break; 1055 } 1056 } 1057 1058 /* Enable the interrupt to be reported in 1059 * the cause register and then force the same 1060 * interrupt and see if one gets posted. If 1061 * an interrupt was not posted to the bus, the 1062 * test failed. 1063 */ 1064 adapter->test_icr = 0; 1065 ew32(IMS, mask); 1066 ew32(ICS, mask); 1067 e1e_flush(); 1068 usleep_range(10000, 11000); 1069 1070 if (!(adapter->test_icr & mask)) { 1071 *data = 4; 1072 break; 1073 } 1074 1075 if (!shared_int) { 1076 /* Disable the other interrupts to be reported in 1077 * the cause register and then force the other 1078 * interrupts and see if any get posted. If 1079 * an interrupt was posted to the bus, the 1080 * test failed. 1081 */ 1082 adapter->test_icr = 0; 1083 ew32(IMC, ~mask & 0x00007FFF); 1084 ew32(ICS, ~mask & 0x00007FFF); 1085 e1e_flush(); 1086 usleep_range(10000, 11000); 1087 1088 if (adapter->test_icr) { 1089 *data = 5; 1090 break; 1091 } 1092 } 1093 } 1094 1095 /* Disable all the interrupts */ 1096 ew32(IMC, 0xFFFFFFFF); 1097 e1e_flush(); 1098 usleep_range(10000, 11000); 1099 1100 /* Unhook test interrupt handler */ 1101 free_irq(irq, netdev); 1102 1103 out: 1104 if (int_mode == E1000E_INT_MODE_MSIX) { 1105 e1000e_reset_interrupt_capability(adapter); 1106 adapter->int_mode = int_mode; 1107 e1000e_set_interrupt_capability(adapter); 1108 } 1109 1110 return ret_val; 1111 } 1112 1113 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1114 { 1115 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1116 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1117 struct pci_dev *pdev = adapter->pdev; 1118 struct e1000_buffer *buffer_info; 1119 int i; 1120 1121 if (tx_ring->desc && tx_ring->buffer_info) { 1122 for (i = 0; i < tx_ring->count; i++) { 1123 buffer_info = &tx_ring->buffer_info[i]; 1124 1125 if (buffer_info->dma) 1126 dma_unmap_single(&pdev->dev, 1127 buffer_info->dma, 1128 buffer_info->length, 1129 DMA_TO_DEVICE); 1130 dev_kfree_skb(buffer_info->skb); 1131 } 1132 } 1133 1134 if (rx_ring->desc && rx_ring->buffer_info) { 1135 for (i = 0; i < rx_ring->count; i++) { 1136 buffer_info = &rx_ring->buffer_info[i]; 1137 1138 if (buffer_info->dma) 1139 dma_unmap_single(&pdev->dev, 1140 buffer_info->dma, 1141 2048, DMA_FROM_DEVICE); 1142 dev_kfree_skb(buffer_info->skb); 1143 } 1144 } 1145 1146 if (tx_ring->desc) { 1147 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1148 tx_ring->dma); 1149 tx_ring->desc = NULL; 1150 } 1151 if (rx_ring->desc) { 1152 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1153 rx_ring->dma); 1154 rx_ring->desc = NULL; 1155 } 1156 1157 kfree(tx_ring->buffer_info); 1158 tx_ring->buffer_info = NULL; 1159 kfree(rx_ring->buffer_info); 1160 rx_ring->buffer_info = NULL; 1161 } 1162 1163 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1164 { 1165 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1166 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1167 struct pci_dev *pdev = adapter->pdev; 1168 struct e1000_hw *hw = &adapter->hw; 1169 u32 rctl; 1170 int i; 1171 int ret_val; 1172 1173 /* Setup Tx descriptor ring and Tx buffers */ 1174 1175 if (!tx_ring->count) 1176 tx_ring->count = E1000_DEFAULT_TXD; 1177 1178 tx_ring->buffer_info = kcalloc(tx_ring->count, 1179 sizeof(struct e1000_buffer), GFP_KERNEL); 1180 if (!tx_ring->buffer_info) { 1181 ret_val = 1; 1182 goto err_nomem; 1183 } 1184 1185 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1186 tx_ring->size = ALIGN(tx_ring->size, 4096); 1187 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1188 &tx_ring->dma, GFP_KERNEL); 1189 if (!tx_ring->desc) { 1190 ret_val = 2; 1191 goto err_nomem; 1192 } 1193 tx_ring->next_to_use = 0; 1194 tx_ring->next_to_clean = 0; 1195 1196 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1197 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1198 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1199 ew32(TDH(0), 0); 1200 ew32(TDT(0), 0); 1201 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1202 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1203 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1204 1205 for (i = 0; i < tx_ring->count; i++) { 1206 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1207 struct sk_buff *skb; 1208 unsigned int skb_size = 1024; 1209 1210 skb = alloc_skb(skb_size, GFP_KERNEL); 1211 if (!skb) { 1212 ret_val = 3; 1213 goto err_nomem; 1214 } 1215 skb_put(skb, skb_size); 1216 tx_ring->buffer_info[i].skb = skb; 1217 tx_ring->buffer_info[i].length = skb->len; 1218 tx_ring->buffer_info[i].dma = 1219 dma_map_single(&pdev->dev, skb->data, skb->len, 1220 DMA_TO_DEVICE); 1221 if (dma_mapping_error(&pdev->dev, 1222 tx_ring->buffer_info[i].dma)) { 1223 ret_val = 4; 1224 goto err_nomem; 1225 } 1226 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1227 tx_desc->lower.data = cpu_to_le32(skb->len); 1228 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1229 E1000_TXD_CMD_IFCS | 1230 E1000_TXD_CMD_RS); 1231 tx_desc->upper.data = 0; 1232 } 1233 1234 /* Setup Rx descriptor ring and Rx buffers */ 1235 1236 if (!rx_ring->count) 1237 rx_ring->count = E1000_DEFAULT_RXD; 1238 1239 rx_ring->buffer_info = kcalloc(rx_ring->count, 1240 sizeof(struct e1000_buffer), GFP_KERNEL); 1241 if (!rx_ring->buffer_info) { 1242 ret_val = 5; 1243 goto err_nomem; 1244 } 1245 1246 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1247 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1248 &rx_ring->dma, GFP_KERNEL); 1249 if (!rx_ring->desc) { 1250 ret_val = 6; 1251 goto err_nomem; 1252 } 1253 rx_ring->next_to_use = 0; 1254 rx_ring->next_to_clean = 0; 1255 1256 rctl = er32(RCTL); 1257 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1258 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1259 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1260 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1261 ew32(RDLEN(0), rx_ring->size); 1262 ew32(RDH(0), 0); 1263 ew32(RDT(0), 0); 1264 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1265 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1266 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1267 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1268 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1269 ew32(RCTL, rctl); 1270 1271 for (i = 0; i < rx_ring->count; i++) { 1272 union e1000_rx_desc_extended *rx_desc; 1273 struct sk_buff *skb; 1274 1275 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1276 if (!skb) { 1277 ret_val = 7; 1278 goto err_nomem; 1279 } 1280 skb_reserve(skb, NET_IP_ALIGN); 1281 rx_ring->buffer_info[i].skb = skb; 1282 rx_ring->buffer_info[i].dma = 1283 dma_map_single(&pdev->dev, skb->data, 2048, 1284 DMA_FROM_DEVICE); 1285 if (dma_mapping_error(&pdev->dev, 1286 rx_ring->buffer_info[i].dma)) { 1287 ret_val = 8; 1288 goto err_nomem; 1289 } 1290 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1291 rx_desc->read.buffer_addr = 1292 cpu_to_le64(rx_ring->buffer_info[i].dma); 1293 memset(skb->data, 0x00, skb->len); 1294 } 1295 1296 return 0; 1297 1298 err_nomem: 1299 e1000_free_desc_rings(adapter); 1300 return ret_val; 1301 } 1302 1303 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1304 { 1305 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1306 e1e_wphy(&adapter->hw, 29, 0x001F); 1307 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1308 e1e_wphy(&adapter->hw, 29, 0x001A); 1309 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1310 } 1311 1312 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1313 { 1314 struct e1000_hw *hw = &adapter->hw; 1315 u32 ctrl_reg = 0; 1316 u16 phy_reg = 0; 1317 s32 ret_val = 0; 1318 1319 hw->mac.autoneg = 0; 1320 1321 if (hw->phy.type == e1000_phy_ife) { 1322 /* force 100, set loopback */ 1323 e1e_wphy(hw, MII_BMCR, 0x6100); 1324 1325 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1326 ctrl_reg = er32(CTRL); 1327 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1328 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1329 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1330 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1331 E1000_CTRL_FD); /* Force Duplex to FULL */ 1332 1333 ew32(CTRL, ctrl_reg); 1334 e1e_flush(); 1335 usleep_range(500, 1000); 1336 1337 return 0; 1338 } 1339 1340 /* Specific PHY configuration for loopback */ 1341 switch (hw->phy.type) { 1342 case e1000_phy_m88: 1343 /* Auto-MDI/MDIX Off */ 1344 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1345 /* reset to update Auto-MDI/MDIX */ 1346 e1e_wphy(hw, MII_BMCR, 0x9140); 1347 /* autoneg off */ 1348 e1e_wphy(hw, MII_BMCR, 0x8140); 1349 break; 1350 case e1000_phy_gg82563: 1351 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1352 break; 1353 case e1000_phy_bm: 1354 /* Set Default MAC Interface speed to 1GB */ 1355 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1356 phy_reg &= ~0x0007; 1357 phy_reg |= 0x006; 1358 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1359 /* Assert SW reset for above settings to take effect */ 1360 hw->phy.ops.commit(hw); 1361 usleep_range(1000, 2000); 1362 /* Force Full Duplex */ 1363 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1364 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1365 /* Set Link Up (in force link) */ 1366 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1367 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1368 /* Force Link */ 1369 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1370 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1371 /* Set Early Link Enable */ 1372 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1373 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1374 break; 1375 case e1000_phy_82577: 1376 case e1000_phy_82578: 1377 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1378 ret_val = hw->phy.ops.acquire(hw); 1379 if (ret_val) { 1380 e_err("Cannot setup 1Gbps loopback.\n"); 1381 return ret_val; 1382 } 1383 e1000_configure_k1_ich8lan(hw, false); 1384 hw->phy.ops.release(hw); 1385 break; 1386 case e1000_phy_82579: 1387 /* Disable PHY energy detect power down */ 1388 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1389 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1390 /* Disable full chip energy detect */ 1391 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1392 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1393 /* Enable loopback on the PHY */ 1394 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1395 break; 1396 default: 1397 break; 1398 } 1399 1400 /* force 1000, set loopback */ 1401 e1e_wphy(hw, MII_BMCR, 0x4140); 1402 msleep(250); 1403 1404 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1405 ctrl_reg = er32(CTRL); 1406 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1407 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1408 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1409 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1410 E1000_CTRL_FD); /* Force Duplex to FULL */ 1411 1412 if (adapter->flags & FLAG_IS_ICH) 1413 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1414 1415 if (hw->phy.media_type == e1000_media_type_copper && 1416 hw->phy.type == e1000_phy_m88) { 1417 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1418 } else { 1419 /* Set the ILOS bit on the fiber Nic if half duplex link is 1420 * detected. 1421 */ 1422 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1423 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1424 } 1425 1426 ew32(CTRL, ctrl_reg); 1427 1428 /* Disable the receiver on the PHY so when a cable is plugged in, the 1429 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1430 */ 1431 if (hw->phy.type == e1000_phy_m88) 1432 e1000_phy_disable_receiver(adapter); 1433 1434 usleep_range(500, 1000); 1435 1436 return 0; 1437 } 1438 1439 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1440 { 1441 struct e1000_hw *hw = &adapter->hw; 1442 u32 ctrl = er32(CTRL); 1443 int link; 1444 1445 /* special requirements for 82571/82572 fiber adapters */ 1446 1447 /* jump through hoops to make sure link is up because serdes 1448 * link is hardwired up 1449 */ 1450 ctrl |= E1000_CTRL_SLU; 1451 ew32(CTRL, ctrl); 1452 1453 /* disable autoneg */ 1454 ctrl = er32(TXCW); 1455 ctrl &= ~BIT(31); 1456 ew32(TXCW, ctrl); 1457 1458 link = (er32(STATUS) & E1000_STATUS_LU); 1459 1460 if (!link) { 1461 /* set invert loss of signal */ 1462 ctrl = er32(CTRL); 1463 ctrl |= E1000_CTRL_ILOS; 1464 ew32(CTRL, ctrl); 1465 } 1466 1467 /* special write to serdes control register to enable SerDes analog 1468 * loopback 1469 */ 1470 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1471 e1e_flush(); 1472 usleep_range(10000, 11000); 1473 1474 return 0; 1475 } 1476 1477 /* only call this for fiber/serdes connections to es2lan */ 1478 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1479 { 1480 struct e1000_hw *hw = &adapter->hw; 1481 u32 ctrlext = er32(CTRL_EXT); 1482 u32 ctrl = er32(CTRL); 1483 1484 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1485 * on mac_type 80003es2lan) 1486 */ 1487 adapter->tx_fifo_head = ctrlext; 1488 1489 /* clear the serdes mode bits, putting the device into mac loopback */ 1490 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1491 ew32(CTRL_EXT, ctrlext); 1492 1493 /* force speed to 1000/FD, link up */ 1494 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1495 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1496 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1497 ew32(CTRL, ctrl); 1498 1499 /* set mac loopback */ 1500 ctrl = er32(RCTL); 1501 ctrl |= E1000_RCTL_LBM_MAC; 1502 ew32(RCTL, ctrl); 1503 1504 /* set testing mode parameters (no need to reset later) */ 1505 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1506 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1507 ew32(KMRNCTRLSTA, 1508 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1509 1510 return 0; 1511 } 1512 1513 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1514 { 1515 struct e1000_hw *hw = &adapter->hw; 1516 u32 rctl, fext_nvm11, tarc0; 1517 1518 if (hw->mac.type >= e1000_pch_spt) { 1519 fext_nvm11 = er32(FEXTNVM11); 1520 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1521 ew32(FEXTNVM11, fext_nvm11); 1522 tarc0 = er32(TARC(0)); 1523 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1524 tarc0 &= 0xcfffffff; 1525 /* set bit 29 (value of MULR requests is now 2) */ 1526 tarc0 |= 0x20000000; 1527 ew32(TARC(0), tarc0); 1528 } 1529 if (hw->phy.media_type == e1000_media_type_fiber || 1530 hw->phy.media_type == e1000_media_type_internal_serdes) { 1531 switch (hw->mac.type) { 1532 case e1000_80003es2lan: 1533 return e1000_set_es2lan_mac_loopback(adapter); 1534 case e1000_82571: 1535 case e1000_82572: 1536 return e1000_set_82571_fiber_loopback(adapter); 1537 default: 1538 rctl = er32(RCTL); 1539 rctl |= E1000_RCTL_LBM_TCVR; 1540 ew32(RCTL, rctl); 1541 return 0; 1542 } 1543 } else if (hw->phy.media_type == e1000_media_type_copper) { 1544 return e1000_integrated_phy_loopback(adapter); 1545 } 1546 1547 return 7; 1548 } 1549 1550 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1551 { 1552 struct e1000_hw *hw = &adapter->hw; 1553 u32 rctl, fext_nvm11, tarc0; 1554 u16 phy_reg; 1555 1556 rctl = er32(RCTL); 1557 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1558 ew32(RCTL, rctl); 1559 1560 switch (hw->mac.type) { 1561 case e1000_pch_spt: 1562 case e1000_pch_cnp: 1563 case e1000_pch_tgp: 1564 fext_nvm11 = er32(FEXTNVM11); 1565 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1566 ew32(FEXTNVM11, fext_nvm11); 1567 tarc0 = er32(TARC(0)); 1568 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1569 /* set bit 29 (value of MULR requests is now 0) */ 1570 tarc0 &= 0xcfffffff; 1571 ew32(TARC(0), tarc0); 1572 /* fall through */ 1573 case e1000_80003es2lan: 1574 if (hw->phy.media_type == e1000_media_type_fiber || 1575 hw->phy.media_type == e1000_media_type_internal_serdes) { 1576 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1577 ew32(CTRL_EXT, adapter->tx_fifo_head); 1578 adapter->tx_fifo_head = 0; 1579 } 1580 /* fall through */ 1581 case e1000_82571: 1582 case e1000_82572: 1583 if (hw->phy.media_type == e1000_media_type_fiber || 1584 hw->phy.media_type == e1000_media_type_internal_serdes) { 1585 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1586 e1e_flush(); 1587 usleep_range(10000, 11000); 1588 break; 1589 } 1590 /* Fall Through */ 1591 default: 1592 hw->mac.autoneg = 1; 1593 if (hw->phy.type == e1000_phy_gg82563) 1594 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1595 e1e_rphy(hw, MII_BMCR, &phy_reg); 1596 if (phy_reg & BMCR_LOOPBACK) { 1597 phy_reg &= ~BMCR_LOOPBACK; 1598 e1e_wphy(hw, MII_BMCR, phy_reg); 1599 if (hw->phy.ops.commit) 1600 hw->phy.ops.commit(hw); 1601 } 1602 break; 1603 } 1604 } 1605 1606 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1607 unsigned int frame_size) 1608 { 1609 memset(skb->data, 0xFF, frame_size); 1610 frame_size &= ~1; 1611 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1612 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1613 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1614 } 1615 1616 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1617 unsigned int frame_size) 1618 { 1619 frame_size &= ~1; 1620 if (*(skb->data + 3) == 0xFF) 1621 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1622 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1623 return 0; 1624 return 13; 1625 } 1626 1627 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1628 { 1629 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1630 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1631 struct pci_dev *pdev = adapter->pdev; 1632 struct e1000_hw *hw = &adapter->hw; 1633 struct e1000_buffer *buffer_info; 1634 int i, j, k, l; 1635 int lc; 1636 int good_cnt; 1637 int ret_val = 0; 1638 unsigned long time; 1639 1640 ew32(RDT(0), rx_ring->count - 1); 1641 1642 /* Calculate the loop count based on the largest descriptor ring 1643 * The idea is to wrap the largest ring a number of times using 64 1644 * send/receive pairs during each loop 1645 */ 1646 1647 if (rx_ring->count <= tx_ring->count) 1648 lc = ((tx_ring->count / 64) * 2) + 1; 1649 else 1650 lc = ((rx_ring->count / 64) * 2) + 1; 1651 1652 k = 0; 1653 l = 0; 1654 /* loop count loop */ 1655 for (j = 0; j <= lc; j++) { 1656 /* send the packets */ 1657 for (i = 0; i < 64; i++) { 1658 buffer_info = &tx_ring->buffer_info[k]; 1659 1660 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1661 dma_sync_single_for_device(&pdev->dev, 1662 buffer_info->dma, 1663 buffer_info->length, 1664 DMA_TO_DEVICE); 1665 k++; 1666 if (k == tx_ring->count) 1667 k = 0; 1668 } 1669 ew32(TDT(0), k); 1670 e1e_flush(); 1671 msleep(200); 1672 time = jiffies; /* set the start time for the receive */ 1673 good_cnt = 0; 1674 /* receive the sent packets */ 1675 do { 1676 buffer_info = &rx_ring->buffer_info[l]; 1677 1678 dma_sync_single_for_cpu(&pdev->dev, 1679 buffer_info->dma, 2048, 1680 DMA_FROM_DEVICE); 1681 1682 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1683 1024); 1684 if (!ret_val) 1685 good_cnt++; 1686 l++; 1687 if (l == rx_ring->count) 1688 l = 0; 1689 /* time + 20 msecs (200 msecs on 2.4) is more than 1690 * enough time to complete the receives, if it's 1691 * exceeded, break and error off 1692 */ 1693 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1694 if (good_cnt != 64) { 1695 ret_val = 13; /* ret_val is the same as mis-compare */ 1696 break; 1697 } 1698 if (time_after(jiffies, time + 20)) { 1699 ret_val = 14; /* error code for time out error */ 1700 break; 1701 } 1702 } 1703 return ret_val; 1704 } 1705 1706 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1707 { 1708 struct e1000_hw *hw = &adapter->hw; 1709 1710 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1711 if (hw->phy.ops.check_reset_block && 1712 hw->phy.ops.check_reset_block(hw)) { 1713 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1714 *data = 0; 1715 goto out; 1716 } 1717 1718 *data = e1000_setup_desc_rings(adapter); 1719 if (*data) 1720 goto out; 1721 1722 *data = e1000_setup_loopback_test(adapter); 1723 if (*data) 1724 goto err_loopback; 1725 1726 *data = e1000_run_loopback_test(adapter); 1727 e1000_loopback_cleanup(adapter); 1728 1729 err_loopback: 1730 e1000_free_desc_rings(adapter); 1731 out: 1732 return *data; 1733 } 1734 1735 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1736 { 1737 struct e1000_hw *hw = &adapter->hw; 1738 1739 *data = 0; 1740 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1741 int i = 0; 1742 1743 hw->mac.serdes_has_link = false; 1744 1745 /* On some blade server designs, link establishment 1746 * could take as long as 2-3 minutes 1747 */ 1748 do { 1749 hw->mac.ops.check_for_link(hw); 1750 if (hw->mac.serdes_has_link) 1751 return *data; 1752 msleep(20); 1753 } while (i++ < 3750); 1754 1755 *data = 1; 1756 } else { 1757 hw->mac.ops.check_for_link(hw); 1758 if (hw->mac.autoneg) 1759 /* On some Phy/switch combinations, link establishment 1760 * can take a few seconds more than expected. 1761 */ 1762 msleep_interruptible(5000); 1763 1764 if (!(er32(STATUS) & E1000_STATUS_LU)) 1765 *data = 1; 1766 } 1767 return *data; 1768 } 1769 1770 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1771 int sset) 1772 { 1773 switch (sset) { 1774 case ETH_SS_TEST: 1775 return E1000_TEST_LEN; 1776 case ETH_SS_STATS: 1777 return E1000_STATS_LEN; 1778 default: 1779 return -EOPNOTSUPP; 1780 } 1781 } 1782 1783 static void e1000_diag_test(struct net_device *netdev, 1784 struct ethtool_test *eth_test, u64 *data) 1785 { 1786 struct e1000_adapter *adapter = netdev_priv(netdev); 1787 u16 autoneg_advertised; 1788 u8 forced_speed_duplex; 1789 u8 autoneg; 1790 bool if_running = netif_running(netdev); 1791 1792 pm_runtime_get_sync(netdev->dev.parent); 1793 1794 set_bit(__E1000_TESTING, &adapter->state); 1795 1796 if (!if_running) { 1797 /* Get control of and reset hardware */ 1798 if (adapter->flags & FLAG_HAS_AMT) 1799 e1000e_get_hw_control(adapter); 1800 1801 e1000e_power_up_phy(adapter); 1802 1803 adapter->hw.phy.autoneg_wait_to_complete = 1; 1804 e1000e_reset(adapter); 1805 adapter->hw.phy.autoneg_wait_to_complete = 0; 1806 } 1807 1808 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1809 /* Offline tests */ 1810 1811 /* save speed, duplex, autoneg settings */ 1812 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1813 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1814 autoneg = adapter->hw.mac.autoneg; 1815 1816 e_info("offline testing starting\n"); 1817 1818 if (if_running) 1819 /* indicate we're in test mode */ 1820 e1000e_close(netdev); 1821 1822 if (e1000_reg_test(adapter, &data[0])) 1823 eth_test->flags |= ETH_TEST_FL_FAILED; 1824 1825 e1000e_reset(adapter); 1826 if (e1000_eeprom_test(adapter, &data[1])) 1827 eth_test->flags |= ETH_TEST_FL_FAILED; 1828 1829 e1000e_reset(adapter); 1830 if (e1000_intr_test(adapter, &data[2])) 1831 eth_test->flags |= ETH_TEST_FL_FAILED; 1832 1833 e1000e_reset(adapter); 1834 if (e1000_loopback_test(adapter, &data[3])) 1835 eth_test->flags |= ETH_TEST_FL_FAILED; 1836 1837 /* force this routine to wait until autoneg complete/timeout */ 1838 adapter->hw.phy.autoneg_wait_to_complete = 1; 1839 e1000e_reset(adapter); 1840 adapter->hw.phy.autoneg_wait_to_complete = 0; 1841 1842 if (e1000_link_test(adapter, &data[4])) 1843 eth_test->flags |= ETH_TEST_FL_FAILED; 1844 1845 /* restore speed, duplex, autoneg settings */ 1846 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1847 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1848 adapter->hw.mac.autoneg = autoneg; 1849 e1000e_reset(adapter); 1850 1851 clear_bit(__E1000_TESTING, &adapter->state); 1852 if (if_running) 1853 e1000e_open(netdev); 1854 } else { 1855 /* Online tests */ 1856 1857 e_info("online testing starting\n"); 1858 1859 /* register, eeprom, intr and loopback tests not run online */ 1860 data[0] = 0; 1861 data[1] = 0; 1862 data[2] = 0; 1863 data[3] = 0; 1864 1865 if (e1000_link_test(adapter, &data[4])) 1866 eth_test->flags |= ETH_TEST_FL_FAILED; 1867 1868 clear_bit(__E1000_TESTING, &adapter->state); 1869 } 1870 1871 if (!if_running) { 1872 e1000e_reset(adapter); 1873 1874 if (adapter->flags & FLAG_HAS_AMT) 1875 e1000e_release_hw_control(adapter); 1876 } 1877 1878 msleep_interruptible(4 * 1000); 1879 1880 pm_runtime_put_sync(netdev->dev.parent); 1881 } 1882 1883 static void e1000_get_wol(struct net_device *netdev, 1884 struct ethtool_wolinfo *wol) 1885 { 1886 struct e1000_adapter *adapter = netdev_priv(netdev); 1887 1888 wol->supported = 0; 1889 wol->wolopts = 0; 1890 1891 if (!(adapter->flags & FLAG_HAS_WOL) || 1892 !device_can_wakeup(&adapter->pdev->dev)) 1893 return; 1894 1895 wol->supported = WAKE_UCAST | WAKE_MCAST | 1896 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1897 1898 /* apply any specific unsupported masks here */ 1899 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1900 wol->supported &= ~WAKE_UCAST; 1901 1902 if (adapter->wol & E1000_WUFC_EX) 1903 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1904 } 1905 1906 if (adapter->wol & E1000_WUFC_EX) 1907 wol->wolopts |= WAKE_UCAST; 1908 if (adapter->wol & E1000_WUFC_MC) 1909 wol->wolopts |= WAKE_MCAST; 1910 if (adapter->wol & E1000_WUFC_BC) 1911 wol->wolopts |= WAKE_BCAST; 1912 if (adapter->wol & E1000_WUFC_MAG) 1913 wol->wolopts |= WAKE_MAGIC; 1914 if (adapter->wol & E1000_WUFC_LNKC) 1915 wol->wolopts |= WAKE_PHY; 1916 } 1917 1918 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1919 { 1920 struct e1000_adapter *adapter = netdev_priv(netdev); 1921 1922 if (!(adapter->flags & FLAG_HAS_WOL) || 1923 !device_can_wakeup(&adapter->pdev->dev) || 1924 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1925 WAKE_MAGIC | WAKE_PHY))) 1926 return -EOPNOTSUPP; 1927 1928 /* these settings will always override what we currently have */ 1929 adapter->wol = 0; 1930 1931 if (wol->wolopts & WAKE_UCAST) 1932 adapter->wol |= E1000_WUFC_EX; 1933 if (wol->wolopts & WAKE_MCAST) 1934 adapter->wol |= E1000_WUFC_MC; 1935 if (wol->wolopts & WAKE_BCAST) 1936 adapter->wol |= E1000_WUFC_BC; 1937 if (wol->wolopts & WAKE_MAGIC) 1938 adapter->wol |= E1000_WUFC_MAG; 1939 if (wol->wolopts & WAKE_PHY) 1940 adapter->wol |= E1000_WUFC_LNKC; 1941 1942 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1943 1944 return 0; 1945 } 1946 1947 static int e1000_set_phys_id(struct net_device *netdev, 1948 enum ethtool_phys_id_state state) 1949 { 1950 struct e1000_adapter *adapter = netdev_priv(netdev); 1951 struct e1000_hw *hw = &adapter->hw; 1952 1953 switch (state) { 1954 case ETHTOOL_ID_ACTIVE: 1955 pm_runtime_get_sync(netdev->dev.parent); 1956 1957 if (!hw->mac.ops.blink_led) 1958 return 2; /* cycle on/off twice per second */ 1959 1960 hw->mac.ops.blink_led(hw); 1961 break; 1962 1963 case ETHTOOL_ID_INACTIVE: 1964 if (hw->phy.type == e1000_phy_ife) 1965 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1966 hw->mac.ops.led_off(hw); 1967 hw->mac.ops.cleanup_led(hw); 1968 pm_runtime_put_sync(netdev->dev.parent); 1969 break; 1970 1971 case ETHTOOL_ID_ON: 1972 hw->mac.ops.led_on(hw); 1973 break; 1974 1975 case ETHTOOL_ID_OFF: 1976 hw->mac.ops.led_off(hw); 1977 break; 1978 } 1979 1980 return 0; 1981 } 1982 1983 static int e1000_get_coalesce(struct net_device *netdev, 1984 struct ethtool_coalesce *ec) 1985 { 1986 struct e1000_adapter *adapter = netdev_priv(netdev); 1987 1988 if (adapter->itr_setting <= 4) 1989 ec->rx_coalesce_usecs = adapter->itr_setting; 1990 else 1991 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1992 1993 return 0; 1994 } 1995 1996 static int e1000_set_coalesce(struct net_device *netdev, 1997 struct ethtool_coalesce *ec) 1998 { 1999 struct e1000_adapter *adapter = netdev_priv(netdev); 2000 2001 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2002 ((ec->rx_coalesce_usecs > 4) && 2003 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2004 (ec->rx_coalesce_usecs == 2)) 2005 return -EINVAL; 2006 2007 if (ec->rx_coalesce_usecs == 4) { 2008 adapter->itr_setting = 4; 2009 adapter->itr = adapter->itr_setting; 2010 } else if (ec->rx_coalesce_usecs <= 3) { 2011 adapter->itr = 20000; 2012 adapter->itr_setting = ec->rx_coalesce_usecs; 2013 } else { 2014 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2015 adapter->itr_setting = adapter->itr & ~3; 2016 } 2017 2018 pm_runtime_get_sync(netdev->dev.parent); 2019 2020 if (adapter->itr_setting != 0) 2021 e1000e_write_itr(adapter, adapter->itr); 2022 else 2023 e1000e_write_itr(adapter, 0); 2024 2025 pm_runtime_put_sync(netdev->dev.parent); 2026 2027 return 0; 2028 } 2029 2030 static int e1000_nway_reset(struct net_device *netdev) 2031 { 2032 struct e1000_adapter *adapter = netdev_priv(netdev); 2033 2034 if (!netif_running(netdev)) 2035 return -EAGAIN; 2036 2037 if (!adapter->hw.mac.autoneg) 2038 return -EINVAL; 2039 2040 pm_runtime_get_sync(netdev->dev.parent); 2041 e1000e_reinit_locked(adapter); 2042 pm_runtime_put_sync(netdev->dev.parent); 2043 2044 return 0; 2045 } 2046 2047 static void e1000_get_ethtool_stats(struct net_device *netdev, 2048 struct ethtool_stats __always_unused *stats, 2049 u64 *data) 2050 { 2051 struct e1000_adapter *adapter = netdev_priv(netdev); 2052 struct rtnl_link_stats64 net_stats; 2053 int i; 2054 char *p = NULL; 2055 2056 pm_runtime_get_sync(netdev->dev.parent); 2057 2058 dev_get_stats(netdev, &net_stats); 2059 2060 pm_runtime_put_sync(netdev->dev.parent); 2061 2062 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2063 switch (e1000_gstrings_stats[i].type) { 2064 case NETDEV_STATS: 2065 p = (char *)&net_stats + 2066 e1000_gstrings_stats[i].stat_offset; 2067 break; 2068 case E1000_STATS: 2069 p = (char *)adapter + 2070 e1000_gstrings_stats[i].stat_offset; 2071 break; 2072 default: 2073 data[i] = 0; 2074 continue; 2075 } 2076 2077 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2078 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2079 } 2080 } 2081 2082 static void e1000_get_strings(struct net_device __always_unused *netdev, 2083 u32 stringset, u8 *data) 2084 { 2085 u8 *p = data; 2086 int i; 2087 2088 switch (stringset) { 2089 case ETH_SS_TEST: 2090 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2091 break; 2092 case ETH_SS_STATS: 2093 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2094 memcpy(p, e1000_gstrings_stats[i].stat_string, 2095 ETH_GSTRING_LEN); 2096 p += ETH_GSTRING_LEN; 2097 } 2098 break; 2099 } 2100 } 2101 2102 static int e1000_get_rxnfc(struct net_device *netdev, 2103 struct ethtool_rxnfc *info, 2104 u32 __always_unused *rule_locs) 2105 { 2106 info->data = 0; 2107 2108 switch (info->cmd) { 2109 case ETHTOOL_GRXFH: { 2110 struct e1000_adapter *adapter = netdev_priv(netdev); 2111 struct e1000_hw *hw = &adapter->hw; 2112 u32 mrqc; 2113 2114 pm_runtime_get_sync(netdev->dev.parent); 2115 mrqc = er32(MRQC); 2116 pm_runtime_put_sync(netdev->dev.parent); 2117 2118 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2119 return 0; 2120 2121 switch (info->flow_type) { 2122 case TCP_V4_FLOW: 2123 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2124 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2125 /* fall through */ 2126 case UDP_V4_FLOW: 2127 case SCTP_V4_FLOW: 2128 case AH_ESP_V4_FLOW: 2129 case IPV4_FLOW: 2130 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2131 info->data |= RXH_IP_SRC | RXH_IP_DST; 2132 break; 2133 case TCP_V6_FLOW: 2134 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2135 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2136 /* fall through */ 2137 case UDP_V6_FLOW: 2138 case SCTP_V6_FLOW: 2139 case AH_ESP_V6_FLOW: 2140 case IPV6_FLOW: 2141 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2142 info->data |= RXH_IP_SRC | RXH_IP_DST; 2143 break; 2144 default: 2145 break; 2146 } 2147 return 0; 2148 } 2149 default: 2150 return -EOPNOTSUPP; 2151 } 2152 } 2153 2154 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2155 { 2156 struct e1000_adapter *adapter = netdev_priv(netdev); 2157 struct e1000_hw *hw = &adapter->hw; 2158 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2159 u32 ret_val; 2160 2161 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2162 return -EOPNOTSUPP; 2163 2164 switch (hw->phy.type) { 2165 case e1000_phy_82579: 2166 cap_addr = I82579_EEE_CAPABILITY; 2167 lpa_addr = I82579_EEE_LP_ABILITY; 2168 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2169 break; 2170 case e1000_phy_i217: 2171 cap_addr = I217_EEE_CAPABILITY; 2172 lpa_addr = I217_EEE_LP_ABILITY; 2173 pcs_stat_addr = I217_EEE_PCS_STATUS; 2174 break; 2175 default: 2176 return -EOPNOTSUPP; 2177 } 2178 2179 pm_runtime_get_sync(netdev->dev.parent); 2180 2181 ret_val = hw->phy.ops.acquire(hw); 2182 if (ret_val) { 2183 pm_runtime_put_sync(netdev->dev.parent); 2184 return -EBUSY; 2185 } 2186 2187 /* EEE Capability */ 2188 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2189 if (ret_val) 2190 goto release; 2191 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2192 2193 /* EEE Advertised */ 2194 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2195 2196 /* EEE Link Partner Advertised */ 2197 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2198 if (ret_val) 2199 goto release; 2200 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2201 2202 /* EEE PCS Status */ 2203 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2204 if (ret_val) 2205 goto release; 2206 if (hw->phy.type == e1000_phy_82579) 2207 phy_data <<= 8; 2208 2209 /* Result of the EEE auto negotiation - there is no register that 2210 * has the status of the EEE negotiation so do a best-guess based 2211 * on whether Tx or Rx LPI indications have been received. 2212 */ 2213 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2214 edata->eee_active = true; 2215 2216 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2217 edata->tx_lpi_enabled = true; 2218 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2219 2220 release: 2221 hw->phy.ops.release(hw); 2222 if (ret_val) 2223 ret_val = -ENODATA; 2224 2225 pm_runtime_put_sync(netdev->dev.parent); 2226 2227 return ret_val; 2228 } 2229 2230 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2231 { 2232 struct e1000_adapter *adapter = netdev_priv(netdev); 2233 struct e1000_hw *hw = &adapter->hw; 2234 struct ethtool_eee eee_curr; 2235 s32 ret_val; 2236 2237 ret_val = e1000e_get_eee(netdev, &eee_curr); 2238 if (ret_val) 2239 return ret_val; 2240 2241 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2242 e_err("Setting EEE tx-lpi is not supported\n"); 2243 return -EINVAL; 2244 } 2245 2246 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2247 e_err("Setting EEE Tx LPI timer is not supported\n"); 2248 return -EINVAL; 2249 } 2250 2251 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2252 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2253 return -EINVAL; 2254 } 2255 2256 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2257 2258 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2259 2260 pm_runtime_get_sync(netdev->dev.parent); 2261 2262 /* reset the link */ 2263 if (netif_running(netdev)) 2264 e1000e_reinit_locked(adapter); 2265 else 2266 e1000e_reset(adapter); 2267 2268 pm_runtime_put_sync(netdev->dev.parent); 2269 2270 return 0; 2271 } 2272 2273 static int e1000e_get_ts_info(struct net_device *netdev, 2274 struct ethtool_ts_info *info) 2275 { 2276 struct e1000_adapter *adapter = netdev_priv(netdev); 2277 2278 ethtool_op_get_ts_info(netdev, info); 2279 2280 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2281 return 0; 2282 2283 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2284 SOF_TIMESTAMPING_RX_HARDWARE | 2285 SOF_TIMESTAMPING_RAW_HARDWARE); 2286 2287 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2288 2289 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2290 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2291 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2292 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2293 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2294 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2295 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2296 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2297 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2298 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2299 BIT(HWTSTAMP_FILTER_ALL)); 2300 2301 if (adapter->ptp_clock) 2302 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2303 2304 return 0; 2305 } 2306 2307 static const struct ethtool_ops e1000_ethtool_ops = { 2308 .get_drvinfo = e1000_get_drvinfo, 2309 .get_regs_len = e1000_get_regs_len, 2310 .get_regs = e1000_get_regs, 2311 .get_wol = e1000_get_wol, 2312 .set_wol = e1000_set_wol, 2313 .get_msglevel = e1000_get_msglevel, 2314 .set_msglevel = e1000_set_msglevel, 2315 .nway_reset = e1000_nway_reset, 2316 .get_link = ethtool_op_get_link, 2317 .get_eeprom_len = e1000_get_eeprom_len, 2318 .get_eeprom = e1000_get_eeprom, 2319 .set_eeprom = e1000_set_eeprom, 2320 .get_ringparam = e1000_get_ringparam, 2321 .set_ringparam = e1000_set_ringparam, 2322 .get_pauseparam = e1000_get_pauseparam, 2323 .set_pauseparam = e1000_set_pauseparam, 2324 .self_test = e1000_diag_test, 2325 .get_strings = e1000_get_strings, 2326 .set_phys_id = e1000_set_phys_id, 2327 .get_ethtool_stats = e1000_get_ethtool_stats, 2328 .get_sset_count = e1000e_get_sset_count, 2329 .get_coalesce = e1000_get_coalesce, 2330 .set_coalesce = e1000_set_coalesce, 2331 .get_rxnfc = e1000_get_rxnfc, 2332 .get_ts_info = e1000e_get_ts_info, 2333 .get_eee = e1000e_get_eee, 2334 .set_eee = e1000e_set_eee, 2335 .get_link_ksettings = e1000_get_link_ksettings, 2336 .set_link_ksettings = e1000_set_link_ksettings, 2337 }; 2338 2339 void e1000e_set_ethtool_ops(struct net_device *netdev) 2340 { 2341 netdev->ethtool_ops = &e1000_ethtool_ops; 2342 } 2343