1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 /* ethtool support for e1000 */ 23 24 #include <linux/netdevice.h> 25 #include <linux/interrupt.h> 26 #include <linux/ethtool.h> 27 #include <linux/pci.h> 28 #include <linux/slab.h> 29 #include <linux/delay.h> 30 #include <linux/vmalloc.h> 31 #include <linux/pm_runtime.h> 32 33 #include "e1000.h" 34 35 enum { NETDEV_STATS, E1000_STATS }; 36 37 struct e1000_stats { 38 char stat_string[ETH_GSTRING_LEN]; 39 int type; 40 int sizeof_stat; 41 int stat_offset; 42 }; 43 44 #define E1000_STAT(str, m) { \ 45 .stat_string = str, \ 46 .type = E1000_STATS, \ 47 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 48 .stat_offset = offsetof(struct e1000_adapter, m) } 49 #define E1000_NETDEV_STAT(str, m) { \ 50 .stat_string = str, \ 51 .type = NETDEV_STATS, \ 52 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 53 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 54 55 static const struct e1000_stats e1000_gstrings_stats[] = { 56 E1000_STAT("rx_packets", stats.gprc), 57 E1000_STAT("tx_packets", stats.gptc), 58 E1000_STAT("rx_bytes", stats.gorc), 59 E1000_STAT("tx_bytes", stats.gotc), 60 E1000_STAT("rx_broadcast", stats.bprc), 61 E1000_STAT("tx_broadcast", stats.bptc), 62 E1000_STAT("rx_multicast", stats.mprc), 63 E1000_STAT("tx_multicast", stats.mptc), 64 E1000_NETDEV_STAT("rx_errors", rx_errors), 65 E1000_NETDEV_STAT("tx_errors", tx_errors), 66 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 67 E1000_STAT("multicast", stats.mprc), 68 E1000_STAT("collisions", stats.colc), 69 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 70 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 71 E1000_STAT("rx_crc_errors", stats.crcerrs), 72 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 73 E1000_STAT("rx_no_buffer_count", stats.rnbc), 74 E1000_STAT("rx_missed_errors", stats.mpc), 75 E1000_STAT("tx_aborted_errors", stats.ecol), 76 E1000_STAT("tx_carrier_errors", stats.tncrs), 77 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 78 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 79 E1000_STAT("tx_window_errors", stats.latecol), 80 E1000_STAT("tx_abort_late_coll", stats.latecol), 81 E1000_STAT("tx_deferred_ok", stats.dc), 82 E1000_STAT("tx_single_coll_ok", stats.scc), 83 E1000_STAT("tx_multi_coll_ok", stats.mcc), 84 E1000_STAT("tx_timeout_count", tx_timeout_count), 85 E1000_STAT("tx_restart_queue", restart_queue), 86 E1000_STAT("rx_long_length_errors", stats.roc), 87 E1000_STAT("rx_short_length_errors", stats.ruc), 88 E1000_STAT("rx_align_errors", stats.algnerrc), 89 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 90 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 91 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 92 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 93 E1000_STAT("tx_flow_control_xon", stats.xontxc), 94 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 95 E1000_STAT("rx_csum_offload_good", hw_csum_good), 96 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 97 E1000_STAT("rx_header_split", rx_hdr_split), 98 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 99 E1000_STAT("tx_smbus", stats.mgptc), 100 E1000_STAT("rx_smbus", stats.mgprc), 101 E1000_STAT("dropped_smbus", stats.mgpdc), 102 E1000_STAT("rx_dma_failed", rx_dma_failed), 103 E1000_STAT("tx_dma_failed", tx_dma_failed), 104 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 105 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 106 E1000_STAT("corr_ecc_errors", corr_errors), 107 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 108 }; 109 110 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 113 "Register test (offline)", "Eeprom test (offline)", 114 "Interrupt test (offline)", "Loopback test (offline)", 115 "Link test (on/offline)" 116 }; 117 118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 119 120 static int e1000_get_settings(struct net_device *netdev, 121 struct ethtool_cmd *ecmd) 122 { 123 struct e1000_adapter *adapter = netdev_priv(netdev); 124 struct e1000_hw *hw = &adapter->hw; 125 u32 speed; 126 127 if (hw->phy.media_type == e1000_media_type_copper) { 128 ecmd->supported = (SUPPORTED_10baseT_Half | 129 SUPPORTED_10baseT_Full | 130 SUPPORTED_100baseT_Half | 131 SUPPORTED_100baseT_Full | 132 SUPPORTED_1000baseT_Full | 133 SUPPORTED_Autoneg | 134 SUPPORTED_TP); 135 if (hw->phy.type == e1000_phy_ife) 136 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 137 ecmd->advertising = ADVERTISED_TP; 138 139 if (hw->mac.autoneg == 1) { 140 ecmd->advertising |= ADVERTISED_Autoneg; 141 /* the e1000 autoneg seems to match ethtool nicely */ 142 ecmd->advertising |= hw->phy.autoneg_advertised; 143 } 144 145 ecmd->port = PORT_TP; 146 ecmd->phy_address = hw->phy.addr; 147 ecmd->transceiver = XCVR_INTERNAL; 148 149 } else { 150 ecmd->supported = (SUPPORTED_1000baseT_Full | 151 SUPPORTED_FIBRE | 152 SUPPORTED_Autoneg); 153 154 ecmd->advertising = (ADVERTISED_1000baseT_Full | 155 ADVERTISED_FIBRE | 156 ADVERTISED_Autoneg); 157 158 ecmd->port = PORT_FIBRE; 159 ecmd->transceiver = XCVR_EXTERNAL; 160 } 161 162 speed = SPEED_UNKNOWN; 163 ecmd->duplex = DUPLEX_UNKNOWN; 164 165 if (netif_running(netdev)) { 166 if (netif_carrier_ok(netdev)) { 167 speed = adapter->link_speed; 168 ecmd->duplex = adapter->link_duplex - 1; 169 } 170 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 171 u32 status = er32(STATUS); 172 173 if (status & E1000_STATUS_LU) { 174 if (status & E1000_STATUS_SPEED_1000) 175 speed = SPEED_1000; 176 else if (status & E1000_STATUS_SPEED_100) 177 speed = SPEED_100; 178 else 179 speed = SPEED_10; 180 181 if (status & E1000_STATUS_FD) 182 ecmd->duplex = DUPLEX_FULL; 183 else 184 ecmd->duplex = DUPLEX_HALF; 185 } 186 } 187 188 ethtool_cmd_speed_set(ecmd, speed); 189 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 190 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 191 192 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 193 if ((hw->phy.media_type == e1000_media_type_copper) && 194 netif_carrier_ok(netdev)) 195 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI; 196 else 197 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 198 199 if (hw->phy.mdix == AUTO_ALL_MODES) 200 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 201 else 202 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 203 204 return 0; 205 } 206 207 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 208 { 209 struct e1000_mac_info *mac = &adapter->hw.mac; 210 211 mac->autoneg = 0; 212 213 /* Make sure dplx is at most 1 bit and lsb of speed is not set 214 * for the switch() below to work 215 */ 216 if ((spd & 1) || (dplx & ~1)) 217 goto err_inval; 218 219 /* Fiber NICs only allow 1000 gbps Full duplex */ 220 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 221 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 222 goto err_inval; 223 } 224 225 switch (spd + dplx) { 226 case SPEED_10 + DUPLEX_HALF: 227 mac->forced_speed_duplex = ADVERTISE_10_HALF; 228 break; 229 case SPEED_10 + DUPLEX_FULL: 230 mac->forced_speed_duplex = ADVERTISE_10_FULL; 231 break; 232 case SPEED_100 + DUPLEX_HALF: 233 mac->forced_speed_duplex = ADVERTISE_100_HALF; 234 break; 235 case SPEED_100 + DUPLEX_FULL: 236 mac->forced_speed_duplex = ADVERTISE_100_FULL; 237 break; 238 case SPEED_1000 + DUPLEX_FULL: 239 mac->autoneg = 1; 240 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 241 break; 242 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 243 default: 244 goto err_inval; 245 } 246 247 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 248 adapter->hw.phy.mdix = AUTO_ALL_MODES; 249 250 return 0; 251 252 err_inval: 253 e_err("Unsupported Speed/Duplex configuration\n"); 254 return -EINVAL; 255 } 256 257 static int e1000_set_settings(struct net_device *netdev, 258 struct ethtool_cmd *ecmd) 259 { 260 struct e1000_adapter *adapter = netdev_priv(netdev); 261 struct e1000_hw *hw = &adapter->hw; 262 int ret_val = 0; 263 264 pm_runtime_get_sync(netdev->dev.parent); 265 266 /* When SoL/IDER sessions are active, autoneg/speed/duplex 267 * cannot be changed 268 */ 269 if (hw->phy.ops.check_reset_block && 270 hw->phy.ops.check_reset_block(hw)) { 271 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 272 ret_val = -EINVAL; 273 goto out; 274 } 275 276 /* MDI setting is only allowed when autoneg enabled because 277 * some hardware doesn't allow MDI setting when speed or 278 * duplex is forced. 279 */ 280 if (ecmd->eth_tp_mdix_ctrl) { 281 if (hw->phy.media_type != e1000_media_type_copper) { 282 ret_val = -EOPNOTSUPP; 283 goto out; 284 } 285 286 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 287 (ecmd->autoneg != AUTONEG_ENABLE)) { 288 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 289 ret_val = -EINVAL; 290 goto out; 291 } 292 } 293 294 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 295 usleep_range(1000, 2000); 296 297 if (ecmd->autoneg == AUTONEG_ENABLE) { 298 hw->mac.autoneg = 1; 299 if (hw->phy.media_type == e1000_media_type_fiber) 300 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 301 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 302 else 303 hw->phy.autoneg_advertised = ecmd->advertising | 304 ADVERTISED_TP | ADVERTISED_Autoneg; 305 ecmd->advertising = hw->phy.autoneg_advertised; 306 if (adapter->fc_autoneg) 307 hw->fc.requested_mode = e1000_fc_default; 308 } else { 309 u32 speed = ethtool_cmd_speed(ecmd); 310 /* calling this overrides forced MDI setting */ 311 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 312 ret_val = -EINVAL; 313 goto out; 314 } 315 } 316 317 /* MDI-X => 2; MDI => 1; Auto => 3 */ 318 if (ecmd->eth_tp_mdix_ctrl) { 319 /* fix up the value for auto (3 => 0) as zero is mapped 320 * internally to auto 321 */ 322 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 323 hw->phy.mdix = AUTO_ALL_MODES; 324 else 325 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 326 } 327 328 /* reset the link */ 329 if (netif_running(adapter->netdev)) { 330 e1000e_down(adapter, true); 331 e1000e_up(adapter); 332 } else { 333 e1000e_reset(adapter); 334 } 335 336 out: 337 pm_runtime_put_sync(netdev->dev.parent); 338 clear_bit(__E1000_RESETTING, &adapter->state); 339 return ret_val; 340 } 341 342 static void e1000_get_pauseparam(struct net_device *netdev, 343 struct ethtool_pauseparam *pause) 344 { 345 struct e1000_adapter *adapter = netdev_priv(netdev); 346 struct e1000_hw *hw = &adapter->hw; 347 348 pause->autoneg = 349 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 350 351 if (hw->fc.current_mode == e1000_fc_rx_pause) { 352 pause->rx_pause = 1; 353 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 354 pause->tx_pause = 1; 355 } else if (hw->fc.current_mode == e1000_fc_full) { 356 pause->rx_pause = 1; 357 pause->tx_pause = 1; 358 } 359 } 360 361 static int e1000_set_pauseparam(struct net_device *netdev, 362 struct ethtool_pauseparam *pause) 363 { 364 struct e1000_adapter *adapter = netdev_priv(netdev); 365 struct e1000_hw *hw = &adapter->hw; 366 int retval = 0; 367 368 adapter->fc_autoneg = pause->autoneg; 369 370 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 371 usleep_range(1000, 2000); 372 373 pm_runtime_get_sync(netdev->dev.parent); 374 375 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 376 hw->fc.requested_mode = e1000_fc_default; 377 if (netif_running(adapter->netdev)) { 378 e1000e_down(adapter, true); 379 e1000e_up(adapter); 380 } else { 381 e1000e_reset(adapter); 382 } 383 } else { 384 if (pause->rx_pause && pause->tx_pause) 385 hw->fc.requested_mode = e1000_fc_full; 386 else if (pause->rx_pause && !pause->tx_pause) 387 hw->fc.requested_mode = e1000_fc_rx_pause; 388 else if (!pause->rx_pause && pause->tx_pause) 389 hw->fc.requested_mode = e1000_fc_tx_pause; 390 else if (!pause->rx_pause && !pause->tx_pause) 391 hw->fc.requested_mode = e1000_fc_none; 392 393 hw->fc.current_mode = hw->fc.requested_mode; 394 395 if (hw->phy.media_type == e1000_media_type_fiber) { 396 retval = hw->mac.ops.setup_link(hw); 397 /* implicit goto out */ 398 } else { 399 retval = e1000e_force_mac_fc(hw); 400 if (retval) 401 goto out; 402 e1000e_set_fc_watermarks(hw); 403 } 404 } 405 406 out: 407 pm_runtime_put_sync(netdev->dev.parent); 408 clear_bit(__E1000_RESETTING, &adapter->state); 409 return retval; 410 } 411 412 static u32 e1000_get_msglevel(struct net_device *netdev) 413 { 414 struct e1000_adapter *adapter = netdev_priv(netdev); 415 return adapter->msg_enable; 416 } 417 418 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 419 { 420 struct e1000_adapter *adapter = netdev_priv(netdev); 421 adapter->msg_enable = data; 422 } 423 424 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 425 { 426 #define E1000_REGS_LEN 32 /* overestimate */ 427 return E1000_REGS_LEN * sizeof(u32); 428 } 429 430 static void e1000_get_regs(struct net_device *netdev, 431 struct ethtool_regs *regs, void *p) 432 { 433 struct e1000_adapter *adapter = netdev_priv(netdev); 434 struct e1000_hw *hw = &adapter->hw; 435 u32 *regs_buff = p; 436 u16 phy_data; 437 438 pm_runtime_get_sync(netdev->dev.parent); 439 440 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 441 442 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 443 adapter->pdev->device; 444 445 regs_buff[0] = er32(CTRL); 446 regs_buff[1] = er32(STATUS); 447 448 regs_buff[2] = er32(RCTL); 449 regs_buff[3] = er32(RDLEN(0)); 450 regs_buff[4] = er32(RDH(0)); 451 regs_buff[5] = er32(RDT(0)); 452 regs_buff[6] = er32(RDTR); 453 454 regs_buff[7] = er32(TCTL); 455 regs_buff[8] = er32(TDLEN(0)); 456 regs_buff[9] = er32(TDH(0)); 457 regs_buff[10] = er32(TDT(0)); 458 regs_buff[11] = er32(TIDV); 459 460 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 461 462 /* ethtool doesn't use anything past this point, so all this 463 * code is likely legacy junk for apps that may or may not exist 464 */ 465 if (hw->phy.type == e1000_phy_m88) { 466 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 467 regs_buff[13] = (u32)phy_data; /* cable length */ 468 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 469 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 470 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 471 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 472 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 473 regs_buff[18] = regs_buff[13]; /* cable polarity */ 474 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 475 regs_buff[20] = regs_buff[17]; /* polarity correction */ 476 /* phy receive errors */ 477 regs_buff[22] = adapter->phy_stats.receive_errors; 478 regs_buff[23] = regs_buff[13]; /* mdix mode */ 479 } 480 regs_buff[21] = 0; /* was idle_errors */ 481 e1e_rphy(hw, MII_STAT1000, &phy_data); 482 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 483 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 484 485 pm_runtime_put_sync(netdev->dev.parent); 486 } 487 488 static int e1000_get_eeprom_len(struct net_device *netdev) 489 { 490 struct e1000_adapter *adapter = netdev_priv(netdev); 491 return adapter->hw.nvm.word_size * 2; 492 } 493 494 static int e1000_get_eeprom(struct net_device *netdev, 495 struct ethtool_eeprom *eeprom, u8 *bytes) 496 { 497 struct e1000_adapter *adapter = netdev_priv(netdev); 498 struct e1000_hw *hw = &adapter->hw; 499 u16 *eeprom_buff; 500 int first_word; 501 int last_word; 502 int ret_val = 0; 503 u16 i; 504 505 if (eeprom->len == 0) 506 return -EINVAL; 507 508 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 509 510 first_word = eeprom->offset >> 1; 511 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 512 513 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), 514 GFP_KERNEL); 515 if (!eeprom_buff) 516 return -ENOMEM; 517 518 pm_runtime_get_sync(netdev->dev.parent); 519 520 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 521 ret_val = e1000_read_nvm(hw, first_word, 522 last_word - first_word + 1, 523 eeprom_buff); 524 } else { 525 for (i = 0; i < last_word - first_word + 1; i++) { 526 ret_val = e1000_read_nvm(hw, first_word + i, 1, 527 &eeprom_buff[i]); 528 if (ret_val) 529 break; 530 } 531 } 532 533 pm_runtime_put_sync(netdev->dev.parent); 534 535 if (ret_val) { 536 /* a read error occurred, throw away the result */ 537 memset(eeprom_buff, 0xff, sizeof(u16) * 538 (last_word - first_word + 1)); 539 } else { 540 /* Device's eeprom is always little-endian, word addressable */ 541 for (i = 0; i < last_word - first_word + 1; i++) 542 le16_to_cpus(&eeprom_buff[i]); 543 } 544 545 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 546 kfree(eeprom_buff); 547 548 return ret_val; 549 } 550 551 static int e1000_set_eeprom(struct net_device *netdev, 552 struct ethtool_eeprom *eeprom, u8 *bytes) 553 { 554 struct e1000_adapter *adapter = netdev_priv(netdev); 555 struct e1000_hw *hw = &adapter->hw; 556 u16 *eeprom_buff; 557 void *ptr; 558 int max_len; 559 int first_word; 560 int last_word; 561 int ret_val = 0; 562 u16 i; 563 564 if (eeprom->len == 0) 565 return -EOPNOTSUPP; 566 567 if (eeprom->magic != 568 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 569 return -EFAULT; 570 571 if (adapter->flags & FLAG_READ_ONLY_NVM) 572 return -EINVAL; 573 574 max_len = hw->nvm.word_size * 2; 575 576 first_word = eeprom->offset >> 1; 577 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 578 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 579 if (!eeprom_buff) 580 return -ENOMEM; 581 582 ptr = (void *)eeprom_buff; 583 584 pm_runtime_get_sync(netdev->dev.parent); 585 586 if (eeprom->offset & 1) { 587 /* need read/modify/write of first changed EEPROM word */ 588 /* only the second byte of the word is being modified */ 589 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 590 ptr++; 591 } 592 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 593 /* need read/modify/write of last changed EEPROM word */ 594 /* only the first byte of the word is being modified */ 595 ret_val = e1000_read_nvm(hw, last_word, 1, 596 &eeprom_buff[last_word - first_word]); 597 598 if (ret_val) 599 goto out; 600 601 /* Device's eeprom is always little-endian, word addressable */ 602 for (i = 0; i < last_word - first_word + 1; i++) 603 le16_to_cpus(&eeprom_buff[i]); 604 605 memcpy(ptr, bytes, eeprom->len); 606 607 for (i = 0; i < last_word - first_word + 1; i++) 608 cpu_to_le16s(&eeprom_buff[i]); 609 610 ret_val = e1000_write_nvm(hw, first_word, 611 last_word - first_word + 1, eeprom_buff); 612 613 if (ret_val) 614 goto out; 615 616 /* Update the checksum over the first part of the EEPROM if needed 617 * and flush shadow RAM for applicable controllers 618 */ 619 if ((first_word <= NVM_CHECKSUM_REG) || 620 (hw->mac.type == e1000_82583) || 621 (hw->mac.type == e1000_82574) || 622 (hw->mac.type == e1000_82573)) 623 ret_val = e1000e_update_nvm_checksum(hw); 624 625 out: 626 pm_runtime_put_sync(netdev->dev.parent); 627 kfree(eeprom_buff); 628 return ret_val; 629 } 630 631 static void e1000_get_drvinfo(struct net_device *netdev, 632 struct ethtool_drvinfo *drvinfo) 633 { 634 struct e1000_adapter *adapter = netdev_priv(netdev); 635 636 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 637 strlcpy(drvinfo->version, e1000e_driver_version, 638 sizeof(drvinfo->version)); 639 640 /* EEPROM image version # is reported as firmware version # for 641 * PCI-E controllers 642 */ 643 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 644 "%d.%d-%d", 645 (adapter->eeprom_vers & 0xF000) >> 12, 646 (adapter->eeprom_vers & 0x0FF0) >> 4, 647 (adapter->eeprom_vers & 0x000F)); 648 649 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 650 sizeof(drvinfo->bus_info)); 651 drvinfo->regdump_len = e1000_get_regs_len(netdev); 652 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 653 } 654 655 static void e1000_get_ringparam(struct net_device *netdev, 656 struct ethtool_ringparam *ring) 657 { 658 struct e1000_adapter *adapter = netdev_priv(netdev); 659 660 ring->rx_max_pending = E1000_MAX_RXD; 661 ring->tx_max_pending = E1000_MAX_TXD; 662 ring->rx_pending = adapter->rx_ring_count; 663 ring->tx_pending = adapter->tx_ring_count; 664 } 665 666 static int e1000_set_ringparam(struct net_device *netdev, 667 struct ethtool_ringparam *ring) 668 { 669 struct e1000_adapter *adapter = netdev_priv(netdev); 670 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 671 int err = 0, size = sizeof(struct e1000_ring); 672 bool set_tx = false, set_rx = false; 673 u16 new_rx_count, new_tx_count; 674 675 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 676 return -EINVAL; 677 678 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 679 E1000_MAX_RXD); 680 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 681 682 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 683 E1000_MAX_TXD); 684 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 685 686 if ((new_tx_count == adapter->tx_ring_count) && 687 (new_rx_count == adapter->rx_ring_count)) 688 /* nothing to do */ 689 return 0; 690 691 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 692 usleep_range(1000, 2000); 693 694 if (!netif_running(adapter->netdev)) { 695 /* Set counts now and allocate resources during open() */ 696 adapter->tx_ring->count = new_tx_count; 697 adapter->rx_ring->count = new_rx_count; 698 adapter->tx_ring_count = new_tx_count; 699 adapter->rx_ring_count = new_rx_count; 700 goto clear_reset; 701 } 702 703 set_tx = (new_tx_count != adapter->tx_ring_count); 704 set_rx = (new_rx_count != adapter->rx_ring_count); 705 706 /* Allocate temporary storage for ring updates */ 707 if (set_tx) { 708 temp_tx = vmalloc(size); 709 if (!temp_tx) { 710 err = -ENOMEM; 711 goto free_temp; 712 } 713 } 714 if (set_rx) { 715 temp_rx = vmalloc(size); 716 if (!temp_rx) { 717 err = -ENOMEM; 718 goto free_temp; 719 } 720 } 721 722 pm_runtime_get_sync(netdev->dev.parent); 723 724 e1000e_down(adapter, true); 725 726 /* We can't just free everything and then setup again, because the 727 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 728 * structs. First, attempt to allocate new resources... 729 */ 730 if (set_tx) { 731 memcpy(temp_tx, adapter->tx_ring, size); 732 temp_tx->count = new_tx_count; 733 err = e1000e_setup_tx_resources(temp_tx); 734 if (err) 735 goto err_setup; 736 } 737 if (set_rx) { 738 memcpy(temp_rx, adapter->rx_ring, size); 739 temp_rx->count = new_rx_count; 740 err = e1000e_setup_rx_resources(temp_rx); 741 if (err) 742 goto err_setup_rx; 743 } 744 745 /* ...then free the old resources and copy back any new ring data */ 746 if (set_tx) { 747 e1000e_free_tx_resources(adapter->tx_ring); 748 memcpy(adapter->tx_ring, temp_tx, size); 749 adapter->tx_ring_count = new_tx_count; 750 } 751 if (set_rx) { 752 e1000e_free_rx_resources(adapter->rx_ring); 753 memcpy(adapter->rx_ring, temp_rx, size); 754 adapter->rx_ring_count = new_rx_count; 755 } 756 757 err_setup_rx: 758 if (err && set_tx) 759 e1000e_free_tx_resources(temp_tx); 760 err_setup: 761 e1000e_up(adapter); 762 pm_runtime_put_sync(netdev->dev.parent); 763 free_temp: 764 vfree(temp_tx); 765 vfree(temp_rx); 766 clear_reset: 767 clear_bit(__E1000_RESETTING, &adapter->state); 768 return err; 769 } 770 771 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 772 int reg, int offset, u32 mask, u32 write) 773 { 774 u32 pat, val; 775 static const u32 test[] = { 776 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 777 }; 778 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 779 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 780 (test[pat] & write)); 781 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 782 if (val != (test[pat] & write & mask)) { 783 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 784 reg + (offset << 2), val, 785 (test[pat] & write & mask)); 786 *data = reg; 787 return true; 788 } 789 } 790 return false; 791 } 792 793 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 794 int reg, u32 mask, u32 write) 795 { 796 u32 val; 797 798 __ew32(&adapter->hw, reg, write & mask); 799 val = __er32(&adapter->hw, reg); 800 if ((write & mask) != (val & mask)) { 801 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 802 reg, (val & mask), (write & mask)); 803 *data = reg; 804 return true; 805 } 806 return false; 807 } 808 809 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 810 do { \ 811 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 812 return 1; \ 813 } while (0) 814 #define REG_PATTERN_TEST(reg, mask, write) \ 815 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 816 817 #define REG_SET_AND_CHECK(reg, mask, write) \ 818 do { \ 819 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 820 return 1; \ 821 } while (0) 822 823 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 824 { 825 struct e1000_hw *hw = &adapter->hw; 826 struct e1000_mac_info *mac = &adapter->hw.mac; 827 u32 value; 828 u32 before; 829 u32 after; 830 u32 i; 831 u32 toggle; 832 u32 mask; 833 u32 wlock_mac = 0; 834 835 /* The status register is Read Only, so a write should fail. 836 * Some bits that get toggled are ignored. There are several bits 837 * on newer hardware that are r/w. 838 */ 839 switch (mac->type) { 840 case e1000_82571: 841 case e1000_82572: 842 case e1000_80003es2lan: 843 toggle = 0x7FFFF3FF; 844 break; 845 default: 846 toggle = 0x7FFFF033; 847 break; 848 } 849 850 before = er32(STATUS); 851 value = (er32(STATUS) & toggle); 852 ew32(STATUS, toggle); 853 after = er32(STATUS) & toggle; 854 if (value != after) { 855 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 856 after, value); 857 *data = 1; 858 return 1; 859 } 860 /* restore previous status */ 861 ew32(STATUS, before); 862 863 if (!(adapter->flags & FLAG_IS_ICH)) { 864 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 865 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 866 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 867 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 868 } 869 870 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 871 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 872 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 873 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 874 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 875 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 876 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 877 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 878 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 879 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 880 881 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 882 883 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 884 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 885 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 886 887 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 888 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 889 if (!(adapter->flags & FLAG_IS_ICH)) 890 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 891 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 892 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 893 mask = 0x8003FFFF; 894 switch (mac->type) { 895 case e1000_ich10lan: 896 case e1000_pchlan: 897 case e1000_pch2lan: 898 case e1000_pch_lpt: 899 mask |= (1 << 18); 900 break; 901 default: 902 break; 903 } 904 905 if (mac->type == e1000_pch_lpt) 906 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 907 E1000_FWSM_WLOCK_MAC_SHIFT; 908 909 for (i = 0; i < mac->rar_entry_count; i++) { 910 if (mac->type == e1000_pch_lpt) { 911 /* Cannot test write-protected SHRAL[n] registers */ 912 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 913 continue; 914 915 /* SHRAH[9] different than the others */ 916 if (i == 10) 917 mask |= (1 << 30); 918 else 919 mask &= ~(1 << 30); 920 } 921 if (mac->type == e1000_pch2lan) { 922 /* SHRAH[0,1,2] different than previous */ 923 if (i == 1) 924 mask &= 0xFFF4FFFF; 925 /* SHRAH[3] different than SHRAH[0,1,2] */ 926 if (i == 4) 927 mask |= (1 << 30); 928 /* RAR[1-6] owned by management engine - skipping */ 929 if (i > 0) 930 i += 6; 931 } 932 933 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 934 0xFFFFFFFF); 935 /* reset index to actual value */ 936 if ((mac->type == e1000_pch2lan) && (i > 6)) 937 i -= 6; 938 } 939 940 for (i = 0; i < mac->mta_reg_count; i++) 941 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 942 943 *data = 0; 944 945 return 0; 946 } 947 948 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 949 { 950 u16 temp; 951 u16 checksum = 0; 952 u16 i; 953 954 *data = 0; 955 /* Read and add up the contents of the EEPROM */ 956 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 957 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 958 *data = 1; 959 return *data; 960 } 961 checksum += temp; 962 } 963 964 /* If Checksum is not Correct return error else test passed */ 965 if ((checksum != (u16)NVM_SUM) && !(*data)) 966 *data = 2; 967 968 return *data; 969 } 970 971 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 972 { 973 struct net_device *netdev = (struct net_device *)data; 974 struct e1000_adapter *adapter = netdev_priv(netdev); 975 struct e1000_hw *hw = &adapter->hw; 976 977 adapter->test_icr |= er32(ICR); 978 979 return IRQ_HANDLED; 980 } 981 982 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 983 { 984 struct net_device *netdev = adapter->netdev; 985 struct e1000_hw *hw = &adapter->hw; 986 u32 mask; 987 u32 shared_int = 1; 988 u32 irq = adapter->pdev->irq; 989 int i; 990 int ret_val = 0; 991 int int_mode = E1000E_INT_MODE_LEGACY; 992 993 *data = 0; 994 995 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 996 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 997 int_mode = adapter->int_mode; 998 e1000e_reset_interrupt_capability(adapter); 999 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1000 e1000e_set_interrupt_capability(adapter); 1001 } 1002 /* Hook up test interrupt handler just for this test */ 1003 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1004 netdev)) { 1005 shared_int = 0; 1006 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1007 netdev)) { 1008 *data = 1; 1009 ret_val = -1; 1010 goto out; 1011 } 1012 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1013 1014 /* Disable all the interrupts */ 1015 ew32(IMC, 0xFFFFFFFF); 1016 e1e_flush(); 1017 usleep_range(10000, 20000); 1018 1019 /* Test each interrupt */ 1020 for (i = 0; i < 10; i++) { 1021 /* Interrupt to test */ 1022 mask = 1 << i; 1023 1024 if (adapter->flags & FLAG_IS_ICH) { 1025 switch (mask) { 1026 case E1000_ICR_RXSEQ: 1027 continue; 1028 case 0x00000100: 1029 if (adapter->hw.mac.type == e1000_ich8lan || 1030 adapter->hw.mac.type == e1000_ich9lan) 1031 continue; 1032 break; 1033 default: 1034 break; 1035 } 1036 } 1037 1038 if (!shared_int) { 1039 /* Disable the interrupt to be reported in 1040 * the cause register and then force the same 1041 * interrupt and see if one gets posted. If 1042 * an interrupt was posted to the bus, the 1043 * test failed. 1044 */ 1045 adapter->test_icr = 0; 1046 ew32(IMC, mask); 1047 ew32(ICS, mask); 1048 e1e_flush(); 1049 usleep_range(10000, 20000); 1050 1051 if (adapter->test_icr & mask) { 1052 *data = 3; 1053 break; 1054 } 1055 } 1056 1057 /* Enable the interrupt to be reported in 1058 * the cause register and then force the same 1059 * interrupt and see if one gets posted. If 1060 * an interrupt was not posted to the bus, the 1061 * test failed. 1062 */ 1063 adapter->test_icr = 0; 1064 ew32(IMS, mask); 1065 ew32(ICS, mask); 1066 e1e_flush(); 1067 usleep_range(10000, 20000); 1068 1069 if (!(adapter->test_icr & mask)) { 1070 *data = 4; 1071 break; 1072 } 1073 1074 if (!shared_int) { 1075 /* Disable the other interrupts to be reported in 1076 * the cause register and then force the other 1077 * interrupts and see if any get posted. If 1078 * an interrupt was posted to the bus, the 1079 * test failed. 1080 */ 1081 adapter->test_icr = 0; 1082 ew32(IMC, ~mask & 0x00007FFF); 1083 ew32(ICS, ~mask & 0x00007FFF); 1084 e1e_flush(); 1085 usleep_range(10000, 20000); 1086 1087 if (adapter->test_icr) { 1088 *data = 5; 1089 break; 1090 } 1091 } 1092 } 1093 1094 /* Disable all the interrupts */ 1095 ew32(IMC, 0xFFFFFFFF); 1096 e1e_flush(); 1097 usleep_range(10000, 20000); 1098 1099 /* Unhook test interrupt handler */ 1100 free_irq(irq, netdev); 1101 1102 out: 1103 if (int_mode == E1000E_INT_MODE_MSIX) { 1104 e1000e_reset_interrupt_capability(adapter); 1105 adapter->int_mode = int_mode; 1106 e1000e_set_interrupt_capability(adapter); 1107 } 1108 1109 return ret_val; 1110 } 1111 1112 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1113 { 1114 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1115 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1116 struct pci_dev *pdev = adapter->pdev; 1117 struct e1000_buffer *buffer_info; 1118 int i; 1119 1120 if (tx_ring->desc && tx_ring->buffer_info) { 1121 for (i = 0; i < tx_ring->count; i++) { 1122 buffer_info = &tx_ring->buffer_info[i]; 1123 1124 if (buffer_info->dma) 1125 dma_unmap_single(&pdev->dev, 1126 buffer_info->dma, 1127 buffer_info->length, 1128 DMA_TO_DEVICE); 1129 if (buffer_info->skb) 1130 dev_kfree_skb(buffer_info->skb); 1131 } 1132 } 1133 1134 if (rx_ring->desc && rx_ring->buffer_info) { 1135 for (i = 0; i < rx_ring->count; i++) { 1136 buffer_info = &rx_ring->buffer_info[i]; 1137 1138 if (buffer_info->dma) 1139 dma_unmap_single(&pdev->dev, 1140 buffer_info->dma, 1141 2048, DMA_FROM_DEVICE); 1142 if (buffer_info->skb) 1143 dev_kfree_skb(buffer_info->skb); 1144 } 1145 } 1146 1147 if (tx_ring->desc) { 1148 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1149 tx_ring->dma); 1150 tx_ring->desc = NULL; 1151 } 1152 if (rx_ring->desc) { 1153 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1154 rx_ring->dma); 1155 rx_ring->desc = NULL; 1156 } 1157 1158 kfree(tx_ring->buffer_info); 1159 tx_ring->buffer_info = NULL; 1160 kfree(rx_ring->buffer_info); 1161 rx_ring->buffer_info = NULL; 1162 } 1163 1164 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1165 { 1166 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1167 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1168 struct pci_dev *pdev = adapter->pdev; 1169 struct e1000_hw *hw = &adapter->hw; 1170 u32 rctl; 1171 int i; 1172 int ret_val; 1173 1174 /* Setup Tx descriptor ring and Tx buffers */ 1175 1176 if (!tx_ring->count) 1177 tx_ring->count = E1000_DEFAULT_TXD; 1178 1179 tx_ring->buffer_info = kcalloc(tx_ring->count, 1180 sizeof(struct e1000_buffer), GFP_KERNEL); 1181 if (!tx_ring->buffer_info) { 1182 ret_val = 1; 1183 goto err_nomem; 1184 } 1185 1186 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1187 tx_ring->size = ALIGN(tx_ring->size, 4096); 1188 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1189 &tx_ring->dma, GFP_KERNEL); 1190 if (!tx_ring->desc) { 1191 ret_val = 2; 1192 goto err_nomem; 1193 } 1194 tx_ring->next_to_use = 0; 1195 tx_ring->next_to_clean = 0; 1196 1197 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1198 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1199 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1200 ew32(TDH(0), 0); 1201 ew32(TDT(0), 0); 1202 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1203 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1204 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1205 1206 for (i = 0; i < tx_ring->count; i++) { 1207 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1208 struct sk_buff *skb; 1209 unsigned int skb_size = 1024; 1210 1211 skb = alloc_skb(skb_size, GFP_KERNEL); 1212 if (!skb) { 1213 ret_val = 3; 1214 goto err_nomem; 1215 } 1216 skb_put(skb, skb_size); 1217 tx_ring->buffer_info[i].skb = skb; 1218 tx_ring->buffer_info[i].length = skb->len; 1219 tx_ring->buffer_info[i].dma = 1220 dma_map_single(&pdev->dev, skb->data, skb->len, 1221 DMA_TO_DEVICE); 1222 if (dma_mapping_error(&pdev->dev, 1223 tx_ring->buffer_info[i].dma)) { 1224 ret_val = 4; 1225 goto err_nomem; 1226 } 1227 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1228 tx_desc->lower.data = cpu_to_le32(skb->len); 1229 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1230 E1000_TXD_CMD_IFCS | 1231 E1000_TXD_CMD_RS); 1232 tx_desc->upper.data = 0; 1233 } 1234 1235 /* Setup Rx descriptor ring and Rx buffers */ 1236 1237 if (!rx_ring->count) 1238 rx_ring->count = E1000_DEFAULT_RXD; 1239 1240 rx_ring->buffer_info = kcalloc(rx_ring->count, 1241 sizeof(struct e1000_buffer), GFP_KERNEL); 1242 if (!rx_ring->buffer_info) { 1243 ret_val = 5; 1244 goto err_nomem; 1245 } 1246 1247 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1248 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1249 &rx_ring->dma, GFP_KERNEL); 1250 if (!rx_ring->desc) { 1251 ret_val = 6; 1252 goto err_nomem; 1253 } 1254 rx_ring->next_to_use = 0; 1255 rx_ring->next_to_clean = 0; 1256 1257 rctl = er32(RCTL); 1258 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1259 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1260 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1261 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1262 ew32(RDLEN(0), rx_ring->size); 1263 ew32(RDH(0), 0); 1264 ew32(RDT(0), 0); 1265 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1266 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1267 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1268 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1269 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1270 ew32(RCTL, rctl); 1271 1272 for (i = 0; i < rx_ring->count; i++) { 1273 union e1000_rx_desc_extended *rx_desc; 1274 struct sk_buff *skb; 1275 1276 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1277 if (!skb) { 1278 ret_val = 7; 1279 goto err_nomem; 1280 } 1281 skb_reserve(skb, NET_IP_ALIGN); 1282 rx_ring->buffer_info[i].skb = skb; 1283 rx_ring->buffer_info[i].dma = 1284 dma_map_single(&pdev->dev, skb->data, 2048, 1285 DMA_FROM_DEVICE); 1286 if (dma_mapping_error(&pdev->dev, 1287 rx_ring->buffer_info[i].dma)) { 1288 ret_val = 8; 1289 goto err_nomem; 1290 } 1291 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1292 rx_desc->read.buffer_addr = 1293 cpu_to_le64(rx_ring->buffer_info[i].dma); 1294 memset(skb->data, 0x00, skb->len); 1295 } 1296 1297 return 0; 1298 1299 err_nomem: 1300 e1000_free_desc_rings(adapter); 1301 return ret_val; 1302 } 1303 1304 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1305 { 1306 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1307 e1e_wphy(&adapter->hw, 29, 0x001F); 1308 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1309 e1e_wphy(&adapter->hw, 29, 0x001A); 1310 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1311 } 1312 1313 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1314 { 1315 struct e1000_hw *hw = &adapter->hw; 1316 u32 ctrl_reg = 0; 1317 u16 phy_reg = 0; 1318 s32 ret_val = 0; 1319 1320 hw->mac.autoneg = 0; 1321 1322 if (hw->phy.type == e1000_phy_ife) { 1323 /* force 100, set loopback */ 1324 e1e_wphy(hw, MII_BMCR, 0x6100); 1325 1326 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1327 ctrl_reg = er32(CTRL); 1328 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1329 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1330 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1331 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1332 E1000_CTRL_FD); /* Force Duplex to FULL */ 1333 1334 ew32(CTRL, ctrl_reg); 1335 e1e_flush(); 1336 usleep_range(500, 1000); 1337 1338 return 0; 1339 } 1340 1341 /* Specific PHY configuration for loopback */ 1342 switch (hw->phy.type) { 1343 case e1000_phy_m88: 1344 /* Auto-MDI/MDIX Off */ 1345 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1346 /* reset to update Auto-MDI/MDIX */ 1347 e1e_wphy(hw, MII_BMCR, 0x9140); 1348 /* autoneg off */ 1349 e1e_wphy(hw, MII_BMCR, 0x8140); 1350 break; 1351 case e1000_phy_gg82563: 1352 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1353 break; 1354 case e1000_phy_bm: 1355 /* Set Default MAC Interface speed to 1GB */ 1356 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1357 phy_reg &= ~0x0007; 1358 phy_reg |= 0x006; 1359 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1360 /* Assert SW reset for above settings to take effect */ 1361 hw->phy.ops.commit(hw); 1362 usleep_range(1000, 2000); 1363 /* Force Full Duplex */ 1364 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1365 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1366 /* Set Link Up (in force link) */ 1367 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1368 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1369 /* Force Link */ 1370 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1371 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1372 /* Set Early Link Enable */ 1373 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1374 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1375 break; 1376 case e1000_phy_82577: 1377 case e1000_phy_82578: 1378 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1379 ret_val = hw->phy.ops.acquire(hw); 1380 if (ret_val) { 1381 e_err("Cannot setup 1Gbps loopback.\n"); 1382 return ret_val; 1383 } 1384 e1000_configure_k1_ich8lan(hw, false); 1385 hw->phy.ops.release(hw); 1386 break; 1387 case e1000_phy_82579: 1388 /* Disable PHY energy detect power down */ 1389 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1390 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); 1391 /* Disable full chip energy detect */ 1392 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1393 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1394 /* Enable loopback on the PHY */ 1395 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1396 break; 1397 default: 1398 break; 1399 } 1400 1401 /* force 1000, set loopback */ 1402 e1e_wphy(hw, MII_BMCR, 0x4140); 1403 msleep(250); 1404 1405 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1406 ctrl_reg = er32(CTRL); 1407 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1408 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1409 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1410 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1411 E1000_CTRL_FD); /* Force Duplex to FULL */ 1412 1413 if (adapter->flags & FLAG_IS_ICH) 1414 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1415 1416 if (hw->phy.media_type == e1000_media_type_copper && 1417 hw->phy.type == e1000_phy_m88) { 1418 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1419 } else { 1420 /* Set the ILOS bit on the fiber Nic if half duplex link is 1421 * detected. 1422 */ 1423 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1424 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1425 } 1426 1427 ew32(CTRL, ctrl_reg); 1428 1429 /* Disable the receiver on the PHY so when a cable is plugged in, the 1430 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1431 */ 1432 if (hw->phy.type == e1000_phy_m88) 1433 e1000_phy_disable_receiver(adapter); 1434 1435 usleep_range(500, 1000); 1436 1437 return 0; 1438 } 1439 1440 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1441 { 1442 struct e1000_hw *hw = &adapter->hw; 1443 u32 ctrl = er32(CTRL); 1444 int link; 1445 1446 /* special requirements for 82571/82572 fiber adapters */ 1447 1448 /* jump through hoops to make sure link is up because serdes 1449 * link is hardwired up 1450 */ 1451 ctrl |= E1000_CTRL_SLU; 1452 ew32(CTRL, ctrl); 1453 1454 /* disable autoneg */ 1455 ctrl = er32(TXCW); 1456 ctrl &= ~(1 << 31); 1457 ew32(TXCW, ctrl); 1458 1459 link = (er32(STATUS) & E1000_STATUS_LU); 1460 1461 if (!link) { 1462 /* set invert loss of signal */ 1463 ctrl = er32(CTRL); 1464 ctrl |= E1000_CTRL_ILOS; 1465 ew32(CTRL, ctrl); 1466 } 1467 1468 /* special write to serdes control register to enable SerDes analog 1469 * loopback 1470 */ 1471 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1472 e1e_flush(); 1473 usleep_range(10000, 20000); 1474 1475 return 0; 1476 } 1477 1478 /* only call this for fiber/serdes connections to es2lan */ 1479 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1480 { 1481 struct e1000_hw *hw = &adapter->hw; 1482 u32 ctrlext = er32(CTRL_EXT); 1483 u32 ctrl = er32(CTRL); 1484 1485 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1486 * on mac_type 80003es2lan) 1487 */ 1488 adapter->tx_fifo_head = ctrlext; 1489 1490 /* clear the serdes mode bits, putting the device into mac loopback */ 1491 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1492 ew32(CTRL_EXT, ctrlext); 1493 1494 /* force speed to 1000/FD, link up */ 1495 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1496 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1497 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1498 ew32(CTRL, ctrl); 1499 1500 /* set mac loopback */ 1501 ctrl = er32(RCTL); 1502 ctrl |= E1000_RCTL_LBM_MAC; 1503 ew32(RCTL, ctrl); 1504 1505 /* set testing mode parameters (no need to reset later) */ 1506 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1507 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1508 ew32(KMRNCTRLSTA, 1509 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1510 1511 return 0; 1512 } 1513 1514 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1515 { 1516 struct e1000_hw *hw = &adapter->hw; 1517 u32 rctl; 1518 1519 if (hw->phy.media_type == e1000_media_type_fiber || 1520 hw->phy.media_type == e1000_media_type_internal_serdes) { 1521 switch (hw->mac.type) { 1522 case e1000_80003es2lan: 1523 return e1000_set_es2lan_mac_loopback(adapter); 1524 case e1000_82571: 1525 case e1000_82572: 1526 return e1000_set_82571_fiber_loopback(adapter); 1527 default: 1528 rctl = er32(RCTL); 1529 rctl |= E1000_RCTL_LBM_TCVR; 1530 ew32(RCTL, rctl); 1531 return 0; 1532 } 1533 } else if (hw->phy.media_type == e1000_media_type_copper) { 1534 return e1000_integrated_phy_loopback(adapter); 1535 } 1536 1537 return 7; 1538 } 1539 1540 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1541 { 1542 struct e1000_hw *hw = &adapter->hw; 1543 u32 rctl; 1544 u16 phy_reg; 1545 1546 rctl = er32(RCTL); 1547 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1548 ew32(RCTL, rctl); 1549 1550 switch (hw->mac.type) { 1551 case e1000_80003es2lan: 1552 if (hw->phy.media_type == e1000_media_type_fiber || 1553 hw->phy.media_type == e1000_media_type_internal_serdes) { 1554 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1555 ew32(CTRL_EXT, adapter->tx_fifo_head); 1556 adapter->tx_fifo_head = 0; 1557 } 1558 /* fall through */ 1559 case e1000_82571: 1560 case e1000_82572: 1561 if (hw->phy.media_type == e1000_media_type_fiber || 1562 hw->phy.media_type == e1000_media_type_internal_serdes) { 1563 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1564 e1e_flush(); 1565 usleep_range(10000, 20000); 1566 break; 1567 } 1568 /* Fall Through */ 1569 default: 1570 hw->mac.autoneg = 1; 1571 if (hw->phy.type == e1000_phy_gg82563) 1572 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1573 e1e_rphy(hw, MII_BMCR, &phy_reg); 1574 if (phy_reg & BMCR_LOOPBACK) { 1575 phy_reg &= ~BMCR_LOOPBACK; 1576 e1e_wphy(hw, MII_BMCR, phy_reg); 1577 if (hw->phy.ops.commit) 1578 hw->phy.ops.commit(hw); 1579 } 1580 break; 1581 } 1582 } 1583 1584 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1585 unsigned int frame_size) 1586 { 1587 memset(skb->data, 0xFF, frame_size); 1588 frame_size &= ~1; 1589 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1590 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1591 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1592 } 1593 1594 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1595 unsigned int frame_size) 1596 { 1597 frame_size &= ~1; 1598 if (*(skb->data + 3) == 0xFF) 1599 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1600 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1601 return 0; 1602 return 13; 1603 } 1604 1605 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1606 { 1607 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1608 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1609 struct pci_dev *pdev = adapter->pdev; 1610 struct e1000_hw *hw = &adapter->hw; 1611 struct e1000_buffer *buffer_info; 1612 int i, j, k, l; 1613 int lc; 1614 int good_cnt; 1615 int ret_val = 0; 1616 unsigned long time; 1617 1618 ew32(RDT(0), rx_ring->count - 1); 1619 1620 /* Calculate the loop count based on the largest descriptor ring 1621 * The idea is to wrap the largest ring a number of times using 64 1622 * send/receive pairs during each loop 1623 */ 1624 1625 if (rx_ring->count <= tx_ring->count) 1626 lc = ((tx_ring->count / 64) * 2) + 1; 1627 else 1628 lc = ((rx_ring->count / 64) * 2) + 1; 1629 1630 k = 0; 1631 l = 0; 1632 /* loop count loop */ 1633 for (j = 0; j <= lc; j++) { 1634 /* send the packets */ 1635 for (i = 0; i < 64; i++) { 1636 buffer_info = &tx_ring->buffer_info[k]; 1637 1638 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1639 dma_sync_single_for_device(&pdev->dev, 1640 buffer_info->dma, 1641 buffer_info->length, 1642 DMA_TO_DEVICE); 1643 k++; 1644 if (k == tx_ring->count) 1645 k = 0; 1646 } 1647 ew32(TDT(0), k); 1648 e1e_flush(); 1649 msleep(200); 1650 time = jiffies; /* set the start time for the receive */ 1651 good_cnt = 0; 1652 /* receive the sent packets */ 1653 do { 1654 buffer_info = &rx_ring->buffer_info[l]; 1655 1656 dma_sync_single_for_cpu(&pdev->dev, 1657 buffer_info->dma, 2048, 1658 DMA_FROM_DEVICE); 1659 1660 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1661 1024); 1662 if (!ret_val) 1663 good_cnt++; 1664 l++; 1665 if (l == rx_ring->count) 1666 l = 0; 1667 /* time + 20 msecs (200 msecs on 2.4) is more than 1668 * enough time to complete the receives, if it's 1669 * exceeded, break and error off 1670 */ 1671 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1672 if (good_cnt != 64) { 1673 ret_val = 13; /* ret_val is the same as mis-compare */ 1674 break; 1675 } 1676 if (time_after(jiffies, time + 20)) { 1677 ret_val = 14; /* error code for time out error */ 1678 break; 1679 } 1680 } 1681 return ret_val; 1682 } 1683 1684 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1685 { 1686 struct e1000_hw *hw = &adapter->hw; 1687 1688 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1689 if (hw->phy.ops.check_reset_block && 1690 hw->phy.ops.check_reset_block(hw)) { 1691 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1692 *data = 0; 1693 goto out; 1694 } 1695 1696 *data = e1000_setup_desc_rings(adapter); 1697 if (*data) 1698 goto out; 1699 1700 *data = e1000_setup_loopback_test(adapter); 1701 if (*data) 1702 goto err_loopback; 1703 1704 *data = e1000_run_loopback_test(adapter); 1705 e1000_loopback_cleanup(adapter); 1706 1707 err_loopback: 1708 e1000_free_desc_rings(adapter); 1709 out: 1710 return *data; 1711 } 1712 1713 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1714 { 1715 struct e1000_hw *hw = &adapter->hw; 1716 1717 *data = 0; 1718 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1719 int i = 0; 1720 1721 hw->mac.serdes_has_link = false; 1722 1723 /* On some blade server designs, link establishment 1724 * could take as long as 2-3 minutes 1725 */ 1726 do { 1727 hw->mac.ops.check_for_link(hw); 1728 if (hw->mac.serdes_has_link) 1729 return *data; 1730 msleep(20); 1731 } while (i++ < 3750); 1732 1733 *data = 1; 1734 } else { 1735 hw->mac.ops.check_for_link(hw); 1736 if (hw->mac.autoneg) 1737 /* On some Phy/switch combinations, link establishment 1738 * can take a few seconds more than expected. 1739 */ 1740 msleep_interruptible(5000); 1741 1742 if (!(er32(STATUS) & E1000_STATUS_LU)) 1743 *data = 1; 1744 } 1745 return *data; 1746 } 1747 1748 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1749 int sset) 1750 { 1751 switch (sset) { 1752 case ETH_SS_TEST: 1753 return E1000_TEST_LEN; 1754 case ETH_SS_STATS: 1755 return E1000_STATS_LEN; 1756 default: 1757 return -EOPNOTSUPP; 1758 } 1759 } 1760 1761 static void e1000_diag_test(struct net_device *netdev, 1762 struct ethtool_test *eth_test, u64 *data) 1763 { 1764 struct e1000_adapter *adapter = netdev_priv(netdev); 1765 u16 autoneg_advertised; 1766 u8 forced_speed_duplex; 1767 u8 autoneg; 1768 bool if_running = netif_running(netdev); 1769 1770 pm_runtime_get_sync(netdev->dev.parent); 1771 1772 set_bit(__E1000_TESTING, &adapter->state); 1773 1774 if (!if_running) { 1775 /* Get control of and reset hardware */ 1776 if (adapter->flags & FLAG_HAS_AMT) 1777 e1000e_get_hw_control(adapter); 1778 1779 e1000e_power_up_phy(adapter); 1780 1781 adapter->hw.phy.autoneg_wait_to_complete = 1; 1782 e1000e_reset(adapter); 1783 adapter->hw.phy.autoneg_wait_to_complete = 0; 1784 } 1785 1786 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1787 /* Offline tests */ 1788 1789 /* save speed, duplex, autoneg settings */ 1790 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1791 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1792 autoneg = adapter->hw.mac.autoneg; 1793 1794 e_info("offline testing starting\n"); 1795 1796 if (if_running) 1797 /* indicate we're in test mode */ 1798 dev_close(netdev); 1799 1800 if (e1000_reg_test(adapter, &data[0])) 1801 eth_test->flags |= ETH_TEST_FL_FAILED; 1802 1803 e1000e_reset(adapter); 1804 if (e1000_eeprom_test(adapter, &data[1])) 1805 eth_test->flags |= ETH_TEST_FL_FAILED; 1806 1807 e1000e_reset(adapter); 1808 if (e1000_intr_test(adapter, &data[2])) 1809 eth_test->flags |= ETH_TEST_FL_FAILED; 1810 1811 e1000e_reset(adapter); 1812 if (e1000_loopback_test(adapter, &data[3])) 1813 eth_test->flags |= ETH_TEST_FL_FAILED; 1814 1815 /* force this routine to wait until autoneg complete/timeout */ 1816 adapter->hw.phy.autoneg_wait_to_complete = 1; 1817 e1000e_reset(adapter); 1818 adapter->hw.phy.autoneg_wait_to_complete = 0; 1819 1820 if (e1000_link_test(adapter, &data[4])) 1821 eth_test->flags |= ETH_TEST_FL_FAILED; 1822 1823 /* restore speed, duplex, autoneg settings */ 1824 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1825 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1826 adapter->hw.mac.autoneg = autoneg; 1827 e1000e_reset(adapter); 1828 1829 clear_bit(__E1000_TESTING, &adapter->state); 1830 if (if_running) 1831 dev_open(netdev); 1832 } else { 1833 /* Online tests */ 1834 1835 e_info("online testing starting\n"); 1836 1837 /* register, eeprom, intr and loopback tests not run online */ 1838 data[0] = 0; 1839 data[1] = 0; 1840 data[2] = 0; 1841 data[3] = 0; 1842 1843 if (e1000_link_test(adapter, &data[4])) 1844 eth_test->flags |= ETH_TEST_FL_FAILED; 1845 1846 clear_bit(__E1000_TESTING, &adapter->state); 1847 } 1848 1849 if (!if_running) { 1850 e1000e_reset(adapter); 1851 1852 if (adapter->flags & FLAG_HAS_AMT) 1853 e1000e_release_hw_control(adapter); 1854 } 1855 1856 msleep_interruptible(4 * 1000); 1857 1858 pm_runtime_put_sync(netdev->dev.parent); 1859 } 1860 1861 static void e1000_get_wol(struct net_device *netdev, 1862 struct ethtool_wolinfo *wol) 1863 { 1864 struct e1000_adapter *adapter = netdev_priv(netdev); 1865 1866 wol->supported = 0; 1867 wol->wolopts = 0; 1868 1869 if (!(adapter->flags & FLAG_HAS_WOL) || 1870 !device_can_wakeup(&adapter->pdev->dev)) 1871 return; 1872 1873 wol->supported = WAKE_UCAST | WAKE_MCAST | 1874 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1875 1876 /* apply any specific unsupported masks here */ 1877 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1878 wol->supported &= ~WAKE_UCAST; 1879 1880 if (adapter->wol & E1000_WUFC_EX) 1881 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1882 } 1883 1884 if (adapter->wol & E1000_WUFC_EX) 1885 wol->wolopts |= WAKE_UCAST; 1886 if (adapter->wol & E1000_WUFC_MC) 1887 wol->wolopts |= WAKE_MCAST; 1888 if (adapter->wol & E1000_WUFC_BC) 1889 wol->wolopts |= WAKE_BCAST; 1890 if (adapter->wol & E1000_WUFC_MAG) 1891 wol->wolopts |= WAKE_MAGIC; 1892 if (adapter->wol & E1000_WUFC_LNKC) 1893 wol->wolopts |= WAKE_PHY; 1894 } 1895 1896 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1897 { 1898 struct e1000_adapter *adapter = netdev_priv(netdev); 1899 1900 if (!(adapter->flags & FLAG_HAS_WOL) || 1901 !device_can_wakeup(&adapter->pdev->dev) || 1902 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1903 WAKE_MAGIC | WAKE_PHY))) 1904 return -EOPNOTSUPP; 1905 1906 /* these settings will always override what we currently have */ 1907 adapter->wol = 0; 1908 1909 if (wol->wolopts & WAKE_UCAST) 1910 adapter->wol |= E1000_WUFC_EX; 1911 if (wol->wolopts & WAKE_MCAST) 1912 adapter->wol |= E1000_WUFC_MC; 1913 if (wol->wolopts & WAKE_BCAST) 1914 adapter->wol |= E1000_WUFC_BC; 1915 if (wol->wolopts & WAKE_MAGIC) 1916 adapter->wol |= E1000_WUFC_MAG; 1917 if (wol->wolopts & WAKE_PHY) 1918 adapter->wol |= E1000_WUFC_LNKC; 1919 1920 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1921 1922 return 0; 1923 } 1924 1925 static int e1000_set_phys_id(struct net_device *netdev, 1926 enum ethtool_phys_id_state state) 1927 { 1928 struct e1000_adapter *adapter = netdev_priv(netdev); 1929 struct e1000_hw *hw = &adapter->hw; 1930 1931 switch (state) { 1932 case ETHTOOL_ID_ACTIVE: 1933 pm_runtime_get_sync(netdev->dev.parent); 1934 1935 if (!hw->mac.ops.blink_led) 1936 return 2; /* cycle on/off twice per second */ 1937 1938 hw->mac.ops.blink_led(hw); 1939 break; 1940 1941 case ETHTOOL_ID_INACTIVE: 1942 if (hw->phy.type == e1000_phy_ife) 1943 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1944 hw->mac.ops.led_off(hw); 1945 hw->mac.ops.cleanup_led(hw); 1946 pm_runtime_put_sync(netdev->dev.parent); 1947 break; 1948 1949 case ETHTOOL_ID_ON: 1950 hw->mac.ops.led_on(hw); 1951 break; 1952 1953 case ETHTOOL_ID_OFF: 1954 hw->mac.ops.led_off(hw); 1955 break; 1956 } 1957 1958 return 0; 1959 } 1960 1961 static int e1000_get_coalesce(struct net_device *netdev, 1962 struct ethtool_coalesce *ec) 1963 { 1964 struct e1000_adapter *adapter = netdev_priv(netdev); 1965 1966 if (adapter->itr_setting <= 4) 1967 ec->rx_coalesce_usecs = adapter->itr_setting; 1968 else 1969 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1970 1971 return 0; 1972 } 1973 1974 static int e1000_set_coalesce(struct net_device *netdev, 1975 struct ethtool_coalesce *ec) 1976 { 1977 struct e1000_adapter *adapter = netdev_priv(netdev); 1978 1979 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1980 ((ec->rx_coalesce_usecs > 4) && 1981 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1982 (ec->rx_coalesce_usecs == 2)) 1983 return -EINVAL; 1984 1985 if (ec->rx_coalesce_usecs == 4) { 1986 adapter->itr_setting = 4; 1987 adapter->itr = adapter->itr_setting; 1988 } else if (ec->rx_coalesce_usecs <= 3) { 1989 adapter->itr = 20000; 1990 adapter->itr_setting = ec->rx_coalesce_usecs; 1991 } else { 1992 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1993 adapter->itr_setting = adapter->itr & ~3; 1994 } 1995 1996 pm_runtime_get_sync(netdev->dev.parent); 1997 1998 if (adapter->itr_setting != 0) 1999 e1000e_write_itr(adapter, adapter->itr); 2000 else 2001 e1000e_write_itr(adapter, 0); 2002 2003 pm_runtime_put_sync(netdev->dev.parent); 2004 2005 return 0; 2006 } 2007 2008 static int e1000_nway_reset(struct net_device *netdev) 2009 { 2010 struct e1000_adapter *adapter = netdev_priv(netdev); 2011 2012 if (!netif_running(netdev)) 2013 return -EAGAIN; 2014 2015 if (!adapter->hw.mac.autoneg) 2016 return -EINVAL; 2017 2018 pm_runtime_get_sync(netdev->dev.parent); 2019 e1000e_reinit_locked(adapter); 2020 pm_runtime_put_sync(netdev->dev.parent); 2021 2022 return 0; 2023 } 2024 2025 static void e1000_get_ethtool_stats(struct net_device *netdev, 2026 struct ethtool_stats __always_unused *stats, 2027 u64 *data) 2028 { 2029 struct e1000_adapter *adapter = netdev_priv(netdev); 2030 struct rtnl_link_stats64 net_stats; 2031 int i; 2032 char *p = NULL; 2033 2034 pm_runtime_get_sync(netdev->dev.parent); 2035 2036 e1000e_get_stats64(netdev, &net_stats); 2037 2038 pm_runtime_put_sync(netdev->dev.parent); 2039 2040 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2041 switch (e1000_gstrings_stats[i].type) { 2042 case NETDEV_STATS: 2043 p = (char *)&net_stats + 2044 e1000_gstrings_stats[i].stat_offset; 2045 break; 2046 case E1000_STATS: 2047 p = (char *)adapter + 2048 e1000_gstrings_stats[i].stat_offset; 2049 break; 2050 default: 2051 data[i] = 0; 2052 continue; 2053 } 2054 2055 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2056 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2057 } 2058 } 2059 2060 static void e1000_get_strings(struct net_device __always_unused *netdev, 2061 u32 stringset, u8 *data) 2062 { 2063 u8 *p = data; 2064 int i; 2065 2066 switch (stringset) { 2067 case ETH_SS_TEST: 2068 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2069 break; 2070 case ETH_SS_STATS: 2071 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2072 memcpy(p, e1000_gstrings_stats[i].stat_string, 2073 ETH_GSTRING_LEN); 2074 p += ETH_GSTRING_LEN; 2075 } 2076 break; 2077 } 2078 } 2079 2080 static int e1000_get_rxnfc(struct net_device *netdev, 2081 struct ethtool_rxnfc *info, 2082 u32 __always_unused *rule_locs) 2083 { 2084 info->data = 0; 2085 2086 switch (info->cmd) { 2087 case ETHTOOL_GRXFH: { 2088 struct e1000_adapter *adapter = netdev_priv(netdev); 2089 struct e1000_hw *hw = &adapter->hw; 2090 u32 mrqc; 2091 2092 pm_runtime_get_sync(netdev->dev.parent); 2093 mrqc = er32(MRQC); 2094 pm_runtime_put_sync(netdev->dev.parent); 2095 2096 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2097 return 0; 2098 2099 switch (info->flow_type) { 2100 case TCP_V4_FLOW: 2101 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2102 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2103 /* fall through */ 2104 case UDP_V4_FLOW: 2105 case SCTP_V4_FLOW: 2106 case AH_ESP_V4_FLOW: 2107 case IPV4_FLOW: 2108 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2109 info->data |= RXH_IP_SRC | RXH_IP_DST; 2110 break; 2111 case TCP_V6_FLOW: 2112 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2113 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2114 /* fall through */ 2115 case UDP_V6_FLOW: 2116 case SCTP_V6_FLOW: 2117 case AH_ESP_V6_FLOW: 2118 case IPV6_FLOW: 2119 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2120 info->data |= RXH_IP_SRC | RXH_IP_DST; 2121 break; 2122 default: 2123 break; 2124 } 2125 return 0; 2126 } 2127 default: 2128 return -EOPNOTSUPP; 2129 } 2130 } 2131 2132 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2133 { 2134 struct e1000_adapter *adapter = netdev_priv(netdev); 2135 struct e1000_hw *hw = &adapter->hw; 2136 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2137 u32 ret_val; 2138 2139 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2140 return -EOPNOTSUPP; 2141 2142 switch (hw->phy.type) { 2143 case e1000_phy_82579: 2144 cap_addr = I82579_EEE_CAPABILITY; 2145 lpa_addr = I82579_EEE_LP_ABILITY; 2146 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2147 break; 2148 case e1000_phy_i217: 2149 cap_addr = I217_EEE_CAPABILITY; 2150 lpa_addr = I217_EEE_LP_ABILITY; 2151 pcs_stat_addr = I217_EEE_PCS_STATUS; 2152 break; 2153 default: 2154 return -EOPNOTSUPP; 2155 } 2156 2157 pm_runtime_get_sync(netdev->dev.parent); 2158 2159 ret_val = hw->phy.ops.acquire(hw); 2160 if (ret_val) { 2161 pm_runtime_put_sync(netdev->dev.parent); 2162 return -EBUSY; 2163 } 2164 2165 /* EEE Capability */ 2166 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2167 if (ret_val) 2168 goto release; 2169 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2170 2171 /* EEE Advertised */ 2172 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2173 2174 /* EEE Link Partner Advertised */ 2175 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2176 if (ret_val) 2177 goto release; 2178 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2179 2180 /* EEE PCS Status */ 2181 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2182 if (ret_val) 2183 goto release; 2184 if (hw->phy.type == e1000_phy_82579) 2185 phy_data <<= 8; 2186 2187 /* Result of the EEE auto negotiation - there is no register that 2188 * has the status of the EEE negotiation so do a best-guess based 2189 * on whether Tx or Rx LPI indications have been received. 2190 */ 2191 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2192 edata->eee_active = true; 2193 2194 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2195 edata->tx_lpi_enabled = true; 2196 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2197 2198 release: 2199 hw->phy.ops.release(hw); 2200 if (ret_val) 2201 ret_val = -ENODATA; 2202 2203 pm_runtime_put_sync(netdev->dev.parent); 2204 2205 return ret_val; 2206 } 2207 2208 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2209 { 2210 struct e1000_adapter *adapter = netdev_priv(netdev); 2211 struct e1000_hw *hw = &adapter->hw; 2212 struct ethtool_eee eee_curr; 2213 s32 ret_val; 2214 2215 ret_val = e1000e_get_eee(netdev, &eee_curr); 2216 if (ret_val) 2217 return ret_val; 2218 2219 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2220 e_err("Setting EEE tx-lpi is not supported\n"); 2221 return -EINVAL; 2222 } 2223 2224 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2225 e_err("Setting EEE Tx LPI timer is not supported\n"); 2226 return -EINVAL; 2227 } 2228 2229 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2230 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2231 return -EINVAL; 2232 } 2233 2234 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2235 2236 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2237 2238 pm_runtime_get_sync(netdev->dev.parent); 2239 2240 /* reset the link */ 2241 if (netif_running(netdev)) 2242 e1000e_reinit_locked(adapter); 2243 else 2244 e1000e_reset(adapter); 2245 2246 pm_runtime_put_sync(netdev->dev.parent); 2247 2248 return 0; 2249 } 2250 2251 static int e1000e_get_ts_info(struct net_device *netdev, 2252 struct ethtool_ts_info *info) 2253 { 2254 struct e1000_adapter *adapter = netdev_priv(netdev); 2255 2256 ethtool_op_get_ts_info(netdev, info); 2257 2258 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2259 return 0; 2260 2261 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2262 SOF_TIMESTAMPING_RX_HARDWARE | 2263 SOF_TIMESTAMPING_RAW_HARDWARE); 2264 2265 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); 2266 2267 info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) | 2268 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2269 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2270 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2271 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2272 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2273 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2274 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) | 2275 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) | 2276 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2277 (1 << HWTSTAMP_FILTER_ALL)); 2278 2279 if (adapter->ptp_clock) 2280 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2281 2282 return 0; 2283 } 2284 2285 static const struct ethtool_ops e1000_ethtool_ops = { 2286 .get_settings = e1000_get_settings, 2287 .set_settings = e1000_set_settings, 2288 .get_drvinfo = e1000_get_drvinfo, 2289 .get_regs_len = e1000_get_regs_len, 2290 .get_regs = e1000_get_regs, 2291 .get_wol = e1000_get_wol, 2292 .set_wol = e1000_set_wol, 2293 .get_msglevel = e1000_get_msglevel, 2294 .set_msglevel = e1000_set_msglevel, 2295 .nway_reset = e1000_nway_reset, 2296 .get_link = ethtool_op_get_link, 2297 .get_eeprom_len = e1000_get_eeprom_len, 2298 .get_eeprom = e1000_get_eeprom, 2299 .set_eeprom = e1000_set_eeprom, 2300 .get_ringparam = e1000_get_ringparam, 2301 .set_ringparam = e1000_set_ringparam, 2302 .get_pauseparam = e1000_get_pauseparam, 2303 .set_pauseparam = e1000_set_pauseparam, 2304 .self_test = e1000_diag_test, 2305 .get_strings = e1000_get_strings, 2306 .set_phys_id = e1000_set_phys_id, 2307 .get_ethtool_stats = e1000_get_ethtool_stats, 2308 .get_sset_count = e1000e_get_sset_count, 2309 .get_coalesce = e1000_get_coalesce, 2310 .set_coalesce = e1000_set_coalesce, 2311 .get_rxnfc = e1000_get_rxnfc, 2312 .get_ts_info = e1000e_get_ts_info, 2313 .get_eee = e1000e_get_eee, 2314 .set_eee = e1000e_set_eee, 2315 }; 2316 2317 void e1000e_set_ethtool_ops(struct net_device *netdev) 2318 { 2319 netdev->ethtool_ops = &e1000_ethtool_ops; 2320 } 2321