1 // SPDX-License-Identifier: GPL-2.0 2 /* Intel PRO/1000 Linux driver 3 * Copyright(c) 1999 - 2015 Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in 15 * the file called "COPYING". 16 * 17 * Contact Information: 18 * Linux NICS <linux.nics@intel.com> 19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 21 */ 22 23 /* ethtool support for e1000 */ 24 25 #include <linux/netdevice.h> 26 #include <linux/interrupt.h> 27 #include <linux/ethtool.h> 28 #include <linux/pci.h> 29 #include <linux/slab.h> 30 #include <linux/delay.h> 31 #include <linux/vmalloc.h> 32 #include <linux/pm_runtime.h> 33 34 #include "e1000.h" 35 36 enum { NETDEV_STATS, E1000_STATS }; 37 38 struct e1000_stats { 39 char stat_string[ETH_GSTRING_LEN]; 40 int type; 41 int sizeof_stat; 42 int stat_offset; 43 }; 44 45 #define E1000_STAT(str, m) { \ 46 .stat_string = str, \ 47 .type = E1000_STATS, \ 48 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 49 .stat_offset = offsetof(struct e1000_adapter, m) } 50 #define E1000_NETDEV_STAT(str, m) { \ 51 .stat_string = str, \ 52 .type = NETDEV_STATS, \ 53 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 54 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 55 56 static const struct e1000_stats e1000_gstrings_stats[] = { 57 E1000_STAT("rx_packets", stats.gprc), 58 E1000_STAT("tx_packets", stats.gptc), 59 E1000_STAT("rx_bytes", stats.gorc), 60 E1000_STAT("tx_bytes", stats.gotc), 61 E1000_STAT("rx_broadcast", stats.bprc), 62 E1000_STAT("tx_broadcast", stats.bptc), 63 E1000_STAT("rx_multicast", stats.mprc), 64 E1000_STAT("tx_multicast", stats.mptc), 65 E1000_NETDEV_STAT("rx_errors", rx_errors), 66 E1000_NETDEV_STAT("tx_errors", tx_errors), 67 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 68 E1000_STAT("multicast", stats.mprc), 69 E1000_STAT("collisions", stats.colc), 70 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 71 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 72 E1000_STAT("rx_crc_errors", stats.crcerrs), 73 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 74 E1000_STAT("rx_no_buffer_count", stats.rnbc), 75 E1000_STAT("rx_missed_errors", stats.mpc), 76 E1000_STAT("tx_aborted_errors", stats.ecol), 77 E1000_STAT("tx_carrier_errors", stats.tncrs), 78 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 79 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 80 E1000_STAT("tx_window_errors", stats.latecol), 81 E1000_STAT("tx_abort_late_coll", stats.latecol), 82 E1000_STAT("tx_deferred_ok", stats.dc), 83 E1000_STAT("tx_single_coll_ok", stats.scc), 84 E1000_STAT("tx_multi_coll_ok", stats.mcc), 85 E1000_STAT("tx_timeout_count", tx_timeout_count), 86 E1000_STAT("tx_restart_queue", restart_queue), 87 E1000_STAT("rx_long_length_errors", stats.roc), 88 E1000_STAT("rx_short_length_errors", stats.ruc), 89 E1000_STAT("rx_align_errors", stats.algnerrc), 90 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 91 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 92 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 93 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 94 E1000_STAT("tx_flow_control_xon", stats.xontxc), 95 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 96 E1000_STAT("rx_csum_offload_good", hw_csum_good), 97 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 98 E1000_STAT("rx_header_split", rx_hdr_split), 99 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 100 E1000_STAT("tx_smbus", stats.mgptc), 101 E1000_STAT("rx_smbus", stats.mgprc), 102 E1000_STAT("dropped_smbus", stats.mgpdc), 103 E1000_STAT("rx_dma_failed", rx_dma_failed), 104 E1000_STAT("tx_dma_failed", tx_dma_failed), 105 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 106 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 107 E1000_STAT("corr_ecc_errors", corr_errors), 108 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 109 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 110 }; 111 112 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 113 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 114 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 115 "Register test (offline)", "Eeprom test (offline)", 116 "Interrupt test (offline)", "Loopback test (offline)", 117 "Link test (on/offline)" 118 }; 119 120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 121 122 static int e1000_get_link_ksettings(struct net_device *netdev, 123 struct ethtool_link_ksettings *cmd) 124 { 125 struct e1000_adapter *adapter = netdev_priv(netdev); 126 struct e1000_hw *hw = &adapter->hw; 127 u32 speed, supported, advertising; 128 129 if (hw->phy.media_type == e1000_media_type_copper) { 130 supported = (SUPPORTED_10baseT_Half | 131 SUPPORTED_10baseT_Full | 132 SUPPORTED_100baseT_Half | 133 SUPPORTED_100baseT_Full | 134 SUPPORTED_1000baseT_Full | 135 SUPPORTED_Autoneg | 136 SUPPORTED_TP); 137 if (hw->phy.type == e1000_phy_ife) 138 supported &= ~SUPPORTED_1000baseT_Full; 139 advertising = ADVERTISED_TP; 140 141 if (hw->mac.autoneg == 1) { 142 advertising |= ADVERTISED_Autoneg; 143 /* the e1000 autoneg seems to match ethtool nicely */ 144 advertising |= hw->phy.autoneg_advertised; 145 } 146 147 cmd->base.port = PORT_TP; 148 cmd->base.phy_address = hw->phy.addr; 149 } else { 150 supported = (SUPPORTED_1000baseT_Full | 151 SUPPORTED_FIBRE | 152 SUPPORTED_Autoneg); 153 154 advertising = (ADVERTISED_1000baseT_Full | 155 ADVERTISED_FIBRE | 156 ADVERTISED_Autoneg); 157 158 cmd->base.port = PORT_FIBRE; 159 } 160 161 speed = SPEED_UNKNOWN; 162 cmd->base.duplex = DUPLEX_UNKNOWN; 163 164 if (netif_running(netdev)) { 165 if (netif_carrier_ok(netdev)) { 166 speed = adapter->link_speed; 167 cmd->base.duplex = adapter->link_duplex - 1; 168 } 169 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 170 u32 status = er32(STATUS); 171 172 if (status & E1000_STATUS_LU) { 173 if (status & E1000_STATUS_SPEED_1000) 174 speed = SPEED_1000; 175 else if (status & E1000_STATUS_SPEED_100) 176 speed = SPEED_100; 177 else 178 speed = SPEED_10; 179 180 if (status & E1000_STATUS_FD) 181 cmd->base.duplex = DUPLEX_FULL; 182 else 183 cmd->base.duplex = DUPLEX_HALF; 184 } 185 } 186 187 cmd->base.speed = speed; 188 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 189 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 190 191 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 192 if ((hw->phy.media_type == e1000_media_type_copper) && 193 netif_carrier_ok(netdev)) 194 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 195 ETH_TP_MDI_X : ETH_TP_MDI; 196 else 197 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 198 199 if (hw->phy.mdix == AUTO_ALL_MODES) 200 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 201 else 202 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 203 204 if (hw->phy.media_type != e1000_media_type_copper) 205 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 206 207 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 208 supported); 209 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 210 advertising); 211 212 return 0; 213 } 214 215 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 216 { 217 struct e1000_mac_info *mac = &adapter->hw.mac; 218 219 mac->autoneg = 0; 220 221 /* Make sure dplx is at most 1 bit and lsb of speed is not set 222 * for the switch() below to work 223 */ 224 if ((spd & 1) || (dplx & ~1)) 225 goto err_inval; 226 227 /* Fiber NICs only allow 1000 gbps Full duplex */ 228 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 229 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 230 goto err_inval; 231 } 232 233 switch (spd + dplx) { 234 case SPEED_10 + DUPLEX_HALF: 235 mac->forced_speed_duplex = ADVERTISE_10_HALF; 236 break; 237 case SPEED_10 + DUPLEX_FULL: 238 mac->forced_speed_duplex = ADVERTISE_10_FULL; 239 break; 240 case SPEED_100 + DUPLEX_HALF: 241 mac->forced_speed_duplex = ADVERTISE_100_HALF; 242 break; 243 case SPEED_100 + DUPLEX_FULL: 244 mac->forced_speed_duplex = ADVERTISE_100_FULL; 245 break; 246 case SPEED_1000 + DUPLEX_FULL: 247 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 248 mac->autoneg = 1; 249 adapter->hw.phy.autoneg_advertised = 250 ADVERTISE_1000_FULL; 251 } else { 252 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 253 } 254 break; 255 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 256 default: 257 goto err_inval; 258 } 259 260 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 261 adapter->hw.phy.mdix = AUTO_ALL_MODES; 262 263 return 0; 264 265 err_inval: 266 e_err("Unsupported Speed/Duplex configuration\n"); 267 return -EINVAL; 268 } 269 270 static int e1000_set_link_ksettings(struct net_device *netdev, 271 const struct ethtool_link_ksettings *cmd) 272 { 273 struct e1000_adapter *adapter = netdev_priv(netdev); 274 struct e1000_hw *hw = &adapter->hw; 275 int ret_val = 0; 276 u32 advertising; 277 278 ethtool_convert_link_mode_to_legacy_u32(&advertising, 279 cmd->link_modes.advertising); 280 281 pm_runtime_get_sync(netdev->dev.parent); 282 283 /* When SoL/IDER sessions are active, autoneg/speed/duplex 284 * cannot be changed 285 */ 286 if (hw->phy.ops.check_reset_block && 287 hw->phy.ops.check_reset_block(hw)) { 288 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 289 ret_val = -EINVAL; 290 goto out; 291 } 292 293 /* MDI setting is only allowed when autoneg enabled because 294 * some hardware doesn't allow MDI setting when speed or 295 * duplex is forced. 296 */ 297 if (cmd->base.eth_tp_mdix_ctrl) { 298 if (hw->phy.media_type != e1000_media_type_copper) { 299 ret_val = -EOPNOTSUPP; 300 goto out; 301 } 302 303 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 304 (cmd->base.autoneg != AUTONEG_ENABLE)) { 305 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 306 ret_val = -EINVAL; 307 goto out; 308 } 309 } 310 311 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 312 usleep_range(1000, 2000); 313 314 if (cmd->base.autoneg == AUTONEG_ENABLE) { 315 hw->mac.autoneg = 1; 316 if (hw->phy.media_type == e1000_media_type_fiber) 317 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 318 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 319 else 320 hw->phy.autoneg_advertised = advertising | 321 ADVERTISED_TP | ADVERTISED_Autoneg; 322 advertising = hw->phy.autoneg_advertised; 323 if (adapter->fc_autoneg) 324 hw->fc.requested_mode = e1000_fc_default; 325 } else { 326 u32 speed = cmd->base.speed; 327 /* calling this overrides forced MDI setting */ 328 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 329 ret_val = -EINVAL; 330 goto out; 331 } 332 } 333 334 /* MDI-X => 2; MDI => 1; Auto => 3 */ 335 if (cmd->base.eth_tp_mdix_ctrl) { 336 /* fix up the value for auto (3 => 0) as zero is mapped 337 * internally to auto 338 */ 339 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 340 hw->phy.mdix = AUTO_ALL_MODES; 341 else 342 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 343 } 344 345 /* reset the link */ 346 if (netif_running(adapter->netdev)) { 347 e1000e_down(adapter, true); 348 e1000e_up(adapter); 349 } else { 350 e1000e_reset(adapter); 351 } 352 353 out: 354 pm_runtime_put_sync(netdev->dev.parent); 355 clear_bit(__E1000_RESETTING, &adapter->state); 356 return ret_val; 357 } 358 359 static void e1000_get_pauseparam(struct net_device *netdev, 360 struct ethtool_pauseparam *pause) 361 { 362 struct e1000_adapter *adapter = netdev_priv(netdev); 363 struct e1000_hw *hw = &adapter->hw; 364 365 pause->autoneg = 366 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 367 368 if (hw->fc.current_mode == e1000_fc_rx_pause) { 369 pause->rx_pause = 1; 370 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 371 pause->tx_pause = 1; 372 } else if (hw->fc.current_mode == e1000_fc_full) { 373 pause->rx_pause = 1; 374 pause->tx_pause = 1; 375 } 376 } 377 378 static int e1000_set_pauseparam(struct net_device *netdev, 379 struct ethtool_pauseparam *pause) 380 { 381 struct e1000_adapter *adapter = netdev_priv(netdev); 382 struct e1000_hw *hw = &adapter->hw; 383 int retval = 0; 384 385 adapter->fc_autoneg = pause->autoneg; 386 387 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 388 usleep_range(1000, 2000); 389 390 pm_runtime_get_sync(netdev->dev.parent); 391 392 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 393 hw->fc.requested_mode = e1000_fc_default; 394 if (netif_running(adapter->netdev)) { 395 e1000e_down(adapter, true); 396 e1000e_up(adapter); 397 } else { 398 e1000e_reset(adapter); 399 } 400 } else { 401 if (pause->rx_pause && pause->tx_pause) 402 hw->fc.requested_mode = e1000_fc_full; 403 else if (pause->rx_pause && !pause->tx_pause) 404 hw->fc.requested_mode = e1000_fc_rx_pause; 405 else if (!pause->rx_pause && pause->tx_pause) 406 hw->fc.requested_mode = e1000_fc_tx_pause; 407 else if (!pause->rx_pause && !pause->tx_pause) 408 hw->fc.requested_mode = e1000_fc_none; 409 410 hw->fc.current_mode = hw->fc.requested_mode; 411 412 if (hw->phy.media_type == e1000_media_type_fiber) { 413 retval = hw->mac.ops.setup_link(hw); 414 /* implicit goto out */ 415 } else { 416 retval = e1000e_force_mac_fc(hw); 417 if (retval) 418 goto out; 419 e1000e_set_fc_watermarks(hw); 420 } 421 } 422 423 out: 424 pm_runtime_put_sync(netdev->dev.parent); 425 clear_bit(__E1000_RESETTING, &adapter->state); 426 return retval; 427 } 428 429 static u32 e1000_get_msglevel(struct net_device *netdev) 430 { 431 struct e1000_adapter *adapter = netdev_priv(netdev); 432 return adapter->msg_enable; 433 } 434 435 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 436 { 437 struct e1000_adapter *adapter = netdev_priv(netdev); 438 adapter->msg_enable = data; 439 } 440 441 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 442 { 443 #define E1000_REGS_LEN 32 /* overestimate */ 444 return E1000_REGS_LEN * sizeof(u32); 445 } 446 447 static void e1000_get_regs(struct net_device *netdev, 448 struct ethtool_regs *regs, void *p) 449 { 450 struct e1000_adapter *adapter = netdev_priv(netdev); 451 struct e1000_hw *hw = &adapter->hw; 452 u32 *regs_buff = p; 453 u16 phy_data; 454 455 pm_runtime_get_sync(netdev->dev.parent); 456 457 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 458 459 regs->version = (1u << 24) | 460 (adapter->pdev->revision << 16) | 461 adapter->pdev->device; 462 463 regs_buff[0] = er32(CTRL); 464 regs_buff[1] = er32(STATUS); 465 466 regs_buff[2] = er32(RCTL); 467 regs_buff[3] = er32(RDLEN(0)); 468 regs_buff[4] = er32(RDH(0)); 469 regs_buff[5] = er32(RDT(0)); 470 regs_buff[6] = er32(RDTR); 471 472 regs_buff[7] = er32(TCTL); 473 regs_buff[8] = er32(TDLEN(0)); 474 regs_buff[9] = er32(TDH(0)); 475 regs_buff[10] = er32(TDT(0)); 476 regs_buff[11] = er32(TIDV); 477 478 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 479 480 /* ethtool doesn't use anything past this point, so all this 481 * code is likely legacy junk for apps that may or may not exist 482 */ 483 if (hw->phy.type == e1000_phy_m88) { 484 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 485 regs_buff[13] = (u32)phy_data; /* cable length */ 486 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 487 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 488 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 489 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 490 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 491 regs_buff[18] = regs_buff[13]; /* cable polarity */ 492 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 493 regs_buff[20] = regs_buff[17]; /* polarity correction */ 494 /* phy receive errors */ 495 regs_buff[22] = adapter->phy_stats.receive_errors; 496 regs_buff[23] = regs_buff[13]; /* mdix mode */ 497 } 498 regs_buff[21] = 0; /* was idle_errors */ 499 e1e_rphy(hw, MII_STAT1000, &phy_data); 500 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 501 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 502 503 pm_runtime_put_sync(netdev->dev.parent); 504 } 505 506 static int e1000_get_eeprom_len(struct net_device *netdev) 507 { 508 struct e1000_adapter *adapter = netdev_priv(netdev); 509 return adapter->hw.nvm.word_size * 2; 510 } 511 512 static int e1000_get_eeprom(struct net_device *netdev, 513 struct ethtool_eeprom *eeprom, u8 *bytes) 514 { 515 struct e1000_adapter *adapter = netdev_priv(netdev); 516 struct e1000_hw *hw = &adapter->hw; 517 u16 *eeprom_buff; 518 int first_word; 519 int last_word; 520 int ret_val = 0; 521 u16 i; 522 523 if (eeprom->len == 0) 524 return -EINVAL; 525 526 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 527 528 first_word = eeprom->offset >> 1; 529 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 530 531 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), 532 GFP_KERNEL); 533 if (!eeprom_buff) 534 return -ENOMEM; 535 536 pm_runtime_get_sync(netdev->dev.parent); 537 538 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 539 ret_val = e1000_read_nvm(hw, first_word, 540 last_word - first_word + 1, 541 eeprom_buff); 542 } else { 543 for (i = 0; i < last_word - first_word + 1; i++) { 544 ret_val = e1000_read_nvm(hw, first_word + i, 1, 545 &eeprom_buff[i]); 546 if (ret_val) 547 break; 548 } 549 } 550 551 pm_runtime_put_sync(netdev->dev.parent); 552 553 if (ret_val) { 554 /* a read error occurred, throw away the result */ 555 memset(eeprom_buff, 0xff, sizeof(u16) * 556 (last_word - first_word + 1)); 557 } else { 558 /* Device's eeprom is always little-endian, word addressable */ 559 for (i = 0; i < last_word - first_word + 1; i++) 560 le16_to_cpus(&eeprom_buff[i]); 561 } 562 563 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 564 kfree(eeprom_buff); 565 566 return ret_val; 567 } 568 569 static int e1000_set_eeprom(struct net_device *netdev, 570 struct ethtool_eeprom *eeprom, u8 *bytes) 571 { 572 struct e1000_adapter *adapter = netdev_priv(netdev); 573 struct e1000_hw *hw = &adapter->hw; 574 u16 *eeprom_buff; 575 void *ptr; 576 int max_len; 577 int first_word; 578 int last_word; 579 int ret_val = 0; 580 u16 i; 581 582 if (eeprom->len == 0) 583 return -EOPNOTSUPP; 584 585 if (eeprom->magic != 586 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 587 return -EFAULT; 588 589 if (adapter->flags & FLAG_READ_ONLY_NVM) 590 return -EINVAL; 591 592 max_len = hw->nvm.word_size * 2; 593 594 first_word = eeprom->offset >> 1; 595 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 596 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 597 if (!eeprom_buff) 598 return -ENOMEM; 599 600 ptr = (void *)eeprom_buff; 601 602 pm_runtime_get_sync(netdev->dev.parent); 603 604 if (eeprom->offset & 1) { 605 /* need read/modify/write of first changed EEPROM word */ 606 /* only the second byte of the word is being modified */ 607 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 608 ptr++; 609 } 610 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 611 /* need read/modify/write of last changed EEPROM word */ 612 /* only the first byte of the word is being modified */ 613 ret_val = e1000_read_nvm(hw, last_word, 1, 614 &eeprom_buff[last_word - first_word]); 615 616 if (ret_val) 617 goto out; 618 619 /* Device's eeprom is always little-endian, word addressable */ 620 for (i = 0; i < last_word - first_word + 1; i++) 621 le16_to_cpus(&eeprom_buff[i]); 622 623 memcpy(ptr, bytes, eeprom->len); 624 625 for (i = 0; i < last_word - first_word + 1; i++) 626 cpu_to_le16s(&eeprom_buff[i]); 627 628 ret_val = e1000_write_nvm(hw, first_word, 629 last_word - first_word + 1, eeprom_buff); 630 631 if (ret_val) 632 goto out; 633 634 /* Update the checksum over the first part of the EEPROM if needed 635 * and flush shadow RAM for applicable controllers 636 */ 637 if ((first_word <= NVM_CHECKSUM_REG) || 638 (hw->mac.type == e1000_82583) || 639 (hw->mac.type == e1000_82574) || 640 (hw->mac.type == e1000_82573)) 641 ret_val = e1000e_update_nvm_checksum(hw); 642 643 out: 644 pm_runtime_put_sync(netdev->dev.parent); 645 kfree(eeprom_buff); 646 return ret_val; 647 } 648 649 static void e1000_get_drvinfo(struct net_device *netdev, 650 struct ethtool_drvinfo *drvinfo) 651 { 652 struct e1000_adapter *adapter = netdev_priv(netdev); 653 654 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 655 strlcpy(drvinfo->version, e1000e_driver_version, 656 sizeof(drvinfo->version)); 657 658 /* EEPROM image version # is reported as firmware version # for 659 * PCI-E controllers 660 */ 661 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 662 "%d.%d-%d", 663 (adapter->eeprom_vers & 0xF000) >> 12, 664 (adapter->eeprom_vers & 0x0FF0) >> 4, 665 (adapter->eeprom_vers & 0x000F)); 666 667 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 668 sizeof(drvinfo->bus_info)); 669 } 670 671 static void e1000_get_ringparam(struct net_device *netdev, 672 struct ethtool_ringparam *ring) 673 { 674 struct e1000_adapter *adapter = netdev_priv(netdev); 675 676 ring->rx_max_pending = E1000_MAX_RXD; 677 ring->tx_max_pending = E1000_MAX_TXD; 678 ring->rx_pending = adapter->rx_ring_count; 679 ring->tx_pending = adapter->tx_ring_count; 680 } 681 682 static int e1000_set_ringparam(struct net_device *netdev, 683 struct ethtool_ringparam *ring) 684 { 685 struct e1000_adapter *adapter = netdev_priv(netdev); 686 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 687 int err = 0, size = sizeof(struct e1000_ring); 688 bool set_tx = false, set_rx = false; 689 u16 new_rx_count, new_tx_count; 690 691 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 692 return -EINVAL; 693 694 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 695 E1000_MAX_RXD); 696 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 697 698 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 699 E1000_MAX_TXD); 700 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 701 702 if ((new_tx_count == adapter->tx_ring_count) && 703 (new_rx_count == adapter->rx_ring_count)) 704 /* nothing to do */ 705 return 0; 706 707 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 708 usleep_range(1000, 2000); 709 710 if (!netif_running(adapter->netdev)) { 711 /* Set counts now and allocate resources during open() */ 712 adapter->tx_ring->count = new_tx_count; 713 adapter->rx_ring->count = new_rx_count; 714 adapter->tx_ring_count = new_tx_count; 715 adapter->rx_ring_count = new_rx_count; 716 goto clear_reset; 717 } 718 719 set_tx = (new_tx_count != adapter->tx_ring_count); 720 set_rx = (new_rx_count != adapter->rx_ring_count); 721 722 /* Allocate temporary storage for ring updates */ 723 if (set_tx) { 724 temp_tx = vmalloc(size); 725 if (!temp_tx) { 726 err = -ENOMEM; 727 goto free_temp; 728 } 729 } 730 if (set_rx) { 731 temp_rx = vmalloc(size); 732 if (!temp_rx) { 733 err = -ENOMEM; 734 goto free_temp; 735 } 736 } 737 738 pm_runtime_get_sync(netdev->dev.parent); 739 740 e1000e_down(adapter, true); 741 742 /* We can't just free everything and then setup again, because the 743 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 744 * structs. First, attempt to allocate new resources... 745 */ 746 if (set_tx) { 747 memcpy(temp_tx, adapter->tx_ring, size); 748 temp_tx->count = new_tx_count; 749 err = e1000e_setup_tx_resources(temp_tx); 750 if (err) 751 goto err_setup; 752 } 753 if (set_rx) { 754 memcpy(temp_rx, adapter->rx_ring, size); 755 temp_rx->count = new_rx_count; 756 err = e1000e_setup_rx_resources(temp_rx); 757 if (err) 758 goto err_setup_rx; 759 } 760 761 /* ...then free the old resources and copy back any new ring data */ 762 if (set_tx) { 763 e1000e_free_tx_resources(adapter->tx_ring); 764 memcpy(adapter->tx_ring, temp_tx, size); 765 adapter->tx_ring_count = new_tx_count; 766 } 767 if (set_rx) { 768 e1000e_free_rx_resources(adapter->rx_ring); 769 memcpy(adapter->rx_ring, temp_rx, size); 770 adapter->rx_ring_count = new_rx_count; 771 } 772 773 err_setup_rx: 774 if (err && set_tx) 775 e1000e_free_tx_resources(temp_tx); 776 err_setup: 777 e1000e_up(adapter); 778 pm_runtime_put_sync(netdev->dev.parent); 779 free_temp: 780 vfree(temp_tx); 781 vfree(temp_rx); 782 clear_reset: 783 clear_bit(__E1000_RESETTING, &adapter->state); 784 return err; 785 } 786 787 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 788 int reg, int offset, u32 mask, u32 write) 789 { 790 u32 pat, val; 791 static const u32 test[] = { 792 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 793 }; 794 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 795 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 796 (test[pat] & write)); 797 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 798 if (val != (test[pat] & write & mask)) { 799 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 800 reg + (offset << 2), val, 801 (test[pat] & write & mask)); 802 *data = reg; 803 return true; 804 } 805 } 806 return false; 807 } 808 809 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 810 int reg, u32 mask, u32 write) 811 { 812 u32 val; 813 814 __ew32(&adapter->hw, reg, write & mask); 815 val = __er32(&adapter->hw, reg); 816 if ((write & mask) != (val & mask)) { 817 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 818 reg, (val & mask), (write & mask)); 819 *data = reg; 820 return true; 821 } 822 return false; 823 } 824 825 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 826 do { \ 827 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 828 return 1; \ 829 } while (0) 830 #define REG_PATTERN_TEST(reg, mask, write) \ 831 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 832 833 #define REG_SET_AND_CHECK(reg, mask, write) \ 834 do { \ 835 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 836 return 1; \ 837 } while (0) 838 839 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 840 { 841 struct e1000_hw *hw = &adapter->hw; 842 struct e1000_mac_info *mac = &adapter->hw.mac; 843 u32 value; 844 u32 before; 845 u32 after; 846 u32 i; 847 u32 toggle; 848 u32 mask; 849 u32 wlock_mac = 0; 850 851 /* The status register is Read Only, so a write should fail. 852 * Some bits that get toggled are ignored. There are several bits 853 * on newer hardware that are r/w. 854 */ 855 switch (mac->type) { 856 case e1000_82571: 857 case e1000_82572: 858 case e1000_80003es2lan: 859 toggle = 0x7FFFF3FF; 860 break; 861 default: 862 toggle = 0x7FFFF033; 863 break; 864 } 865 866 before = er32(STATUS); 867 value = (er32(STATUS) & toggle); 868 ew32(STATUS, toggle); 869 after = er32(STATUS) & toggle; 870 if (value != after) { 871 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 872 after, value); 873 *data = 1; 874 return 1; 875 } 876 /* restore previous status */ 877 ew32(STATUS, before); 878 879 if (!(adapter->flags & FLAG_IS_ICH)) { 880 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 881 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 882 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 883 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 884 } 885 886 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 887 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 888 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 889 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 890 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 891 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 892 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 893 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 894 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 895 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 896 897 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 898 899 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 900 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 901 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 902 903 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 904 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 905 if (!(adapter->flags & FLAG_IS_ICH)) 906 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 907 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 908 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 909 mask = 0x8003FFFF; 910 switch (mac->type) { 911 case e1000_ich10lan: 912 case e1000_pchlan: 913 case e1000_pch2lan: 914 case e1000_pch_lpt: 915 case e1000_pch_spt: 916 /* fall through */ 917 case e1000_pch_cnp: 918 mask |= BIT(18); 919 break; 920 default: 921 break; 922 } 923 924 if (mac->type >= e1000_pch_lpt) 925 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 926 E1000_FWSM_WLOCK_MAC_SHIFT; 927 928 for (i = 0; i < mac->rar_entry_count; i++) { 929 if (mac->type >= e1000_pch_lpt) { 930 /* Cannot test write-protected SHRAL[n] registers */ 931 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 932 continue; 933 934 /* SHRAH[9] different than the others */ 935 if (i == 10) 936 mask |= BIT(30); 937 else 938 mask &= ~BIT(30); 939 } 940 if (mac->type == e1000_pch2lan) { 941 /* SHRAH[0,1,2] different than previous */ 942 if (i == 1) 943 mask &= 0xFFF4FFFF; 944 /* SHRAH[3] different than SHRAH[0,1,2] */ 945 if (i == 4) 946 mask |= BIT(30); 947 /* RAR[1-6] owned by management engine - skipping */ 948 if (i > 0) 949 i += 6; 950 } 951 952 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 953 0xFFFFFFFF); 954 /* reset index to actual value */ 955 if ((mac->type == e1000_pch2lan) && (i > 6)) 956 i -= 6; 957 } 958 959 for (i = 0; i < mac->mta_reg_count; i++) 960 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 961 962 *data = 0; 963 964 return 0; 965 } 966 967 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 968 { 969 u16 temp; 970 u16 checksum = 0; 971 u16 i; 972 973 *data = 0; 974 /* Read and add up the contents of the EEPROM */ 975 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 976 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 977 *data = 1; 978 return *data; 979 } 980 checksum += temp; 981 } 982 983 /* If Checksum is not Correct return error else test passed */ 984 if ((checksum != (u16)NVM_SUM) && !(*data)) 985 *data = 2; 986 987 return *data; 988 } 989 990 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 991 { 992 struct net_device *netdev = (struct net_device *)data; 993 struct e1000_adapter *adapter = netdev_priv(netdev); 994 struct e1000_hw *hw = &adapter->hw; 995 996 adapter->test_icr |= er32(ICR); 997 998 return IRQ_HANDLED; 999 } 1000 1001 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 1002 { 1003 struct net_device *netdev = adapter->netdev; 1004 struct e1000_hw *hw = &adapter->hw; 1005 u32 mask; 1006 u32 shared_int = 1; 1007 u32 irq = adapter->pdev->irq; 1008 int i; 1009 int ret_val = 0; 1010 int int_mode = E1000E_INT_MODE_LEGACY; 1011 1012 *data = 0; 1013 1014 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 1015 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 1016 int_mode = adapter->int_mode; 1017 e1000e_reset_interrupt_capability(adapter); 1018 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1019 e1000e_set_interrupt_capability(adapter); 1020 } 1021 /* Hook up test interrupt handler just for this test */ 1022 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1023 netdev)) { 1024 shared_int = 0; 1025 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1026 netdev)) { 1027 *data = 1; 1028 ret_val = -1; 1029 goto out; 1030 } 1031 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1032 1033 /* Disable all the interrupts */ 1034 ew32(IMC, 0xFFFFFFFF); 1035 e1e_flush(); 1036 usleep_range(10000, 20000); 1037 1038 /* Test each interrupt */ 1039 for (i = 0; i < 10; i++) { 1040 /* Interrupt to test */ 1041 mask = BIT(i); 1042 1043 if (adapter->flags & FLAG_IS_ICH) { 1044 switch (mask) { 1045 case E1000_ICR_RXSEQ: 1046 continue; 1047 case 0x00000100: 1048 if (adapter->hw.mac.type == e1000_ich8lan || 1049 adapter->hw.mac.type == e1000_ich9lan) 1050 continue; 1051 break; 1052 default: 1053 break; 1054 } 1055 } 1056 1057 if (!shared_int) { 1058 /* Disable the interrupt to be reported in 1059 * the cause register and then force the same 1060 * interrupt and see if one gets posted. If 1061 * an interrupt was posted to the bus, the 1062 * test failed. 1063 */ 1064 adapter->test_icr = 0; 1065 ew32(IMC, mask); 1066 ew32(ICS, mask); 1067 e1e_flush(); 1068 usleep_range(10000, 20000); 1069 1070 if (adapter->test_icr & mask) { 1071 *data = 3; 1072 break; 1073 } 1074 } 1075 1076 /* Enable the interrupt to be reported in 1077 * the cause register and then force the same 1078 * interrupt and see if one gets posted. If 1079 * an interrupt was not posted to the bus, the 1080 * test failed. 1081 */ 1082 adapter->test_icr = 0; 1083 ew32(IMS, mask); 1084 ew32(ICS, mask); 1085 e1e_flush(); 1086 usleep_range(10000, 20000); 1087 1088 if (!(adapter->test_icr & mask)) { 1089 *data = 4; 1090 break; 1091 } 1092 1093 if (!shared_int) { 1094 /* Disable the other interrupts to be reported in 1095 * the cause register and then force the other 1096 * interrupts and see if any get posted. If 1097 * an interrupt was posted to the bus, the 1098 * test failed. 1099 */ 1100 adapter->test_icr = 0; 1101 ew32(IMC, ~mask & 0x00007FFF); 1102 ew32(ICS, ~mask & 0x00007FFF); 1103 e1e_flush(); 1104 usleep_range(10000, 20000); 1105 1106 if (adapter->test_icr) { 1107 *data = 5; 1108 break; 1109 } 1110 } 1111 } 1112 1113 /* Disable all the interrupts */ 1114 ew32(IMC, 0xFFFFFFFF); 1115 e1e_flush(); 1116 usleep_range(10000, 20000); 1117 1118 /* Unhook test interrupt handler */ 1119 free_irq(irq, netdev); 1120 1121 out: 1122 if (int_mode == E1000E_INT_MODE_MSIX) { 1123 e1000e_reset_interrupt_capability(adapter); 1124 adapter->int_mode = int_mode; 1125 e1000e_set_interrupt_capability(adapter); 1126 } 1127 1128 return ret_val; 1129 } 1130 1131 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1132 { 1133 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1134 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1135 struct pci_dev *pdev = adapter->pdev; 1136 struct e1000_buffer *buffer_info; 1137 int i; 1138 1139 if (tx_ring->desc && tx_ring->buffer_info) { 1140 for (i = 0; i < tx_ring->count; i++) { 1141 buffer_info = &tx_ring->buffer_info[i]; 1142 1143 if (buffer_info->dma) 1144 dma_unmap_single(&pdev->dev, 1145 buffer_info->dma, 1146 buffer_info->length, 1147 DMA_TO_DEVICE); 1148 if (buffer_info->skb) 1149 dev_kfree_skb(buffer_info->skb); 1150 } 1151 } 1152 1153 if (rx_ring->desc && rx_ring->buffer_info) { 1154 for (i = 0; i < rx_ring->count; i++) { 1155 buffer_info = &rx_ring->buffer_info[i]; 1156 1157 if (buffer_info->dma) 1158 dma_unmap_single(&pdev->dev, 1159 buffer_info->dma, 1160 2048, DMA_FROM_DEVICE); 1161 if (buffer_info->skb) 1162 dev_kfree_skb(buffer_info->skb); 1163 } 1164 } 1165 1166 if (tx_ring->desc) { 1167 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1168 tx_ring->dma); 1169 tx_ring->desc = NULL; 1170 } 1171 if (rx_ring->desc) { 1172 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1173 rx_ring->dma); 1174 rx_ring->desc = NULL; 1175 } 1176 1177 kfree(tx_ring->buffer_info); 1178 tx_ring->buffer_info = NULL; 1179 kfree(rx_ring->buffer_info); 1180 rx_ring->buffer_info = NULL; 1181 } 1182 1183 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1184 { 1185 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1186 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1187 struct pci_dev *pdev = adapter->pdev; 1188 struct e1000_hw *hw = &adapter->hw; 1189 u32 rctl; 1190 int i; 1191 int ret_val; 1192 1193 /* Setup Tx descriptor ring and Tx buffers */ 1194 1195 if (!tx_ring->count) 1196 tx_ring->count = E1000_DEFAULT_TXD; 1197 1198 tx_ring->buffer_info = kcalloc(tx_ring->count, 1199 sizeof(struct e1000_buffer), GFP_KERNEL); 1200 if (!tx_ring->buffer_info) { 1201 ret_val = 1; 1202 goto err_nomem; 1203 } 1204 1205 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1206 tx_ring->size = ALIGN(tx_ring->size, 4096); 1207 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1208 &tx_ring->dma, GFP_KERNEL); 1209 if (!tx_ring->desc) { 1210 ret_val = 2; 1211 goto err_nomem; 1212 } 1213 tx_ring->next_to_use = 0; 1214 tx_ring->next_to_clean = 0; 1215 1216 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1217 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1218 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1219 ew32(TDH(0), 0); 1220 ew32(TDT(0), 0); 1221 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1222 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1223 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1224 1225 for (i = 0; i < tx_ring->count; i++) { 1226 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1227 struct sk_buff *skb; 1228 unsigned int skb_size = 1024; 1229 1230 skb = alloc_skb(skb_size, GFP_KERNEL); 1231 if (!skb) { 1232 ret_val = 3; 1233 goto err_nomem; 1234 } 1235 skb_put(skb, skb_size); 1236 tx_ring->buffer_info[i].skb = skb; 1237 tx_ring->buffer_info[i].length = skb->len; 1238 tx_ring->buffer_info[i].dma = 1239 dma_map_single(&pdev->dev, skb->data, skb->len, 1240 DMA_TO_DEVICE); 1241 if (dma_mapping_error(&pdev->dev, 1242 tx_ring->buffer_info[i].dma)) { 1243 ret_val = 4; 1244 goto err_nomem; 1245 } 1246 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1247 tx_desc->lower.data = cpu_to_le32(skb->len); 1248 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1249 E1000_TXD_CMD_IFCS | 1250 E1000_TXD_CMD_RS); 1251 tx_desc->upper.data = 0; 1252 } 1253 1254 /* Setup Rx descriptor ring and Rx buffers */ 1255 1256 if (!rx_ring->count) 1257 rx_ring->count = E1000_DEFAULT_RXD; 1258 1259 rx_ring->buffer_info = kcalloc(rx_ring->count, 1260 sizeof(struct e1000_buffer), GFP_KERNEL); 1261 if (!rx_ring->buffer_info) { 1262 ret_val = 5; 1263 goto err_nomem; 1264 } 1265 1266 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1267 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1268 &rx_ring->dma, GFP_KERNEL); 1269 if (!rx_ring->desc) { 1270 ret_val = 6; 1271 goto err_nomem; 1272 } 1273 rx_ring->next_to_use = 0; 1274 rx_ring->next_to_clean = 0; 1275 1276 rctl = er32(RCTL); 1277 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1278 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1279 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1280 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1281 ew32(RDLEN(0), rx_ring->size); 1282 ew32(RDH(0), 0); 1283 ew32(RDT(0), 0); 1284 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1285 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1286 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1287 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1288 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1289 ew32(RCTL, rctl); 1290 1291 for (i = 0; i < rx_ring->count; i++) { 1292 union e1000_rx_desc_extended *rx_desc; 1293 struct sk_buff *skb; 1294 1295 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1296 if (!skb) { 1297 ret_val = 7; 1298 goto err_nomem; 1299 } 1300 skb_reserve(skb, NET_IP_ALIGN); 1301 rx_ring->buffer_info[i].skb = skb; 1302 rx_ring->buffer_info[i].dma = 1303 dma_map_single(&pdev->dev, skb->data, 2048, 1304 DMA_FROM_DEVICE); 1305 if (dma_mapping_error(&pdev->dev, 1306 rx_ring->buffer_info[i].dma)) { 1307 ret_val = 8; 1308 goto err_nomem; 1309 } 1310 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1311 rx_desc->read.buffer_addr = 1312 cpu_to_le64(rx_ring->buffer_info[i].dma); 1313 memset(skb->data, 0x00, skb->len); 1314 } 1315 1316 return 0; 1317 1318 err_nomem: 1319 e1000_free_desc_rings(adapter); 1320 return ret_val; 1321 } 1322 1323 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1324 { 1325 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1326 e1e_wphy(&adapter->hw, 29, 0x001F); 1327 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1328 e1e_wphy(&adapter->hw, 29, 0x001A); 1329 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1330 } 1331 1332 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1333 { 1334 struct e1000_hw *hw = &adapter->hw; 1335 u32 ctrl_reg = 0; 1336 u16 phy_reg = 0; 1337 s32 ret_val = 0; 1338 1339 hw->mac.autoneg = 0; 1340 1341 if (hw->phy.type == e1000_phy_ife) { 1342 /* force 100, set loopback */ 1343 e1e_wphy(hw, MII_BMCR, 0x6100); 1344 1345 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1346 ctrl_reg = er32(CTRL); 1347 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1348 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1349 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1350 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1351 E1000_CTRL_FD); /* Force Duplex to FULL */ 1352 1353 ew32(CTRL, ctrl_reg); 1354 e1e_flush(); 1355 usleep_range(500, 1000); 1356 1357 return 0; 1358 } 1359 1360 /* Specific PHY configuration for loopback */ 1361 switch (hw->phy.type) { 1362 case e1000_phy_m88: 1363 /* Auto-MDI/MDIX Off */ 1364 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1365 /* reset to update Auto-MDI/MDIX */ 1366 e1e_wphy(hw, MII_BMCR, 0x9140); 1367 /* autoneg off */ 1368 e1e_wphy(hw, MII_BMCR, 0x8140); 1369 break; 1370 case e1000_phy_gg82563: 1371 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1372 break; 1373 case e1000_phy_bm: 1374 /* Set Default MAC Interface speed to 1GB */ 1375 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1376 phy_reg &= ~0x0007; 1377 phy_reg |= 0x006; 1378 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1379 /* Assert SW reset for above settings to take effect */ 1380 hw->phy.ops.commit(hw); 1381 usleep_range(1000, 2000); 1382 /* Force Full Duplex */ 1383 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1384 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1385 /* Set Link Up (in force link) */ 1386 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1387 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1388 /* Force Link */ 1389 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1390 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1391 /* Set Early Link Enable */ 1392 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1393 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1394 break; 1395 case e1000_phy_82577: 1396 case e1000_phy_82578: 1397 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1398 ret_val = hw->phy.ops.acquire(hw); 1399 if (ret_val) { 1400 e_err("Cannot setup 1Gbps loopback.\n"); 1401 return ret_val; 1402 } 1403 e1000_configure_k1_ich8lan(hw, false); 1404 hw->phy.ops.release(hw); 1405 break; 1406 case e1000_phy_82579: 1407 /* Disable PHY energy detect power down */ 1408 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1409 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1410 /* Disable full chip energy detect */ 1411 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1412 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1413 /* Enable loopback on the PHY */ 1414 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1415 break; 1416 default: 1417 break; 1418 } 1419 1420 /* force 1000, set loopback */ 1421 e1e_wphy(hw, MII_BMCR, 0x4140); 1422 msleep(250); 1423 1424 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1425 ctrl_reg = er32(CTRL); 1426 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1427 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1428 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1429 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1430 E1000_CTRL_FD); /* Force Duplex to FULL */ 1431 1432 if (adapter->flags & FLAG_IS_ICH) 1433 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1434 1435 if (hw->phy.media_type == e1000_media_type_copper && 1436 hw->phy.type == e1000_phy_m88) { 1437 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1438 } else { 1439 /* Set the ILOS bit on the fiber Nic if half duplex link is 1440 * detected. 1441 */ 1442 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1443 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1444 } 1445 1446 ew32(CTRL, ctrl_reg); 1447 1448 /* Disable the receiver on the PHY so when a cable is plugged in, the 1449 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1450 */ 1451 if (hw->phy.type == e1000_phy_m88) 1452 e1000_phy_disable_receiver(adapter); 1453 1454 usleep_range(500, 1000); 1455 1456 return 0; 1457 } 1458 1459 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1460 { 1461 struct e1000_hw *hw = &adapter->hw; 1462 u32 ctrl = er32(CTRL); 1463 int link; 1464 1465 /* special requirements for 82571/82572 fiber adapters */ 1466 1467 /* jump through hoops to make sure link is up because serdes 1468 * link is hardwired up 1469 */ 1470 ctrl |= E1000_CTRL_SLU; 1471 ew32(CTRL, ctrl); 1472 1473 /* disable autoneg */ 1474 ctrl = er32(TXCW); 1475 ctrl &= ~BIT(31); 1476 ew32(TXCW, ctrl); 1477 1478 link = (er32(STATUS) & E1000_STATUS_LU); 1479 1480 if (!link) { 1481 /* set invert loss of signal */ 1482 ctrl = er32(CTRL); 1483 ctrl |= E1000_CTRL_ILOS; 1484 ew32(CTRL, ctrl); 1485 } 1486 1487 /* special write to serdes control register to enable SerDes analog 1488 * loopback 1489 */ 1490 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1491 e1e_flush(); 1492 usleep_range(10000, 20000); 1493 1494 return 0; 1495 } 1496 1497 /* only call this for fiber/serdes connections to es2lan */ 1498 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1499 { 1500 struct e1000_hw *hw = &adapter->hw; 1501 u32 ctrlext = er32(CTRL_EXT); 1502 u32 ctrl = er32(CTRL); 1503 1504 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1505 * on mac_type 80003es2lan) 1506 */ 1507 adapter->tx_fifo_head = ctrlext; 1508 1509 /* clear the serdes mode bits, putting the device into mac loopback */ 1510 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1511 ew32(CTRL_EXT, ctrlext); 1512 1513 /* force speed to 1000/FD, link up */ 1514 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1515 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1516 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1517 ew32(CTRL, ctrl); 1518 1519 /* set mac loopback */ 1520 ctrl = er32(RCTL); 1521 ctrl |= E1000_RCTL_LBM_MAC; 1522 ew32(RCTL, ctrl); 1523 1524 /* set testing mode parameters (no need to reset later) */ 1525 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1526 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1527 ew32(KMRNCTRLSTA, 1528 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1529 1530 return 0; 1531 } 1532 1533 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1534 { 1535 struct e1000_hw *hw = &adapter->hw; 1536 u32 rctl, fext_nvm11, tarc0; 1537 1538 if (hw->mac.type >= e1000_pch_spt) { 1539 fext_nvm11 = er32(FEXTNVM11); 1540 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1541 ew32(FEXTNVM11, fext_nvm11); 1542 tarc0 = er32(TARC(0)); 1543 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1544 tarc0 &= 0xcfffffff; 1545 /* set bit 29 (value of MULR requests is now 2) */ 1546 tarc0 |= 0x20000000; 1547 ew32(TARC(0), tarc0); 1548 } 1549 if (hw->phy.media_type == e1000_media_type_fiber || 1550 hw->phy.media_type == e1000_media_type_internal_serdes) { 1551 switch (hw->mac.type) { 1552 case e1000_80003es2lan: 1553 return e1000_set_es2lan_mac_loopback(adapter); 1554 case e1000_82571: 1555 case e1000_82572: 1556 return e1000_set_82571_fiber_loopback(adapter); 1557 default: 1558 rctl = er32(RCTL); 1559 rctl |= E1000_RCTL_LBM_TCVR; 1560 ew32(RCTL, rctl); 1561 return 0; 1562 } 1563 } else if (hw->phy.media_type == e1000_media_type_copper) { 1564 return e1000_integrated_phy_loopback(adapter); 1565 } 1566 1567 return 7; 1568 } 1569 1570 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1571 { 1572 struct e1000_hw *hw = &adapter->hw; 1573 u32 rctl, fext_nvm11, tarc0; 1574 u16 phy_reg; 1575 1576 rctl = er32(RCTL); 1577 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1578 ew32(RCTL, rctl); 1579 1580 switch (hw->mac.type) { 1581 case e1000_pch_spt: 1582 case e1000_pch_cnp: 1583 fext_nvm11 = er32(FEXTNVM11); 1584 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1585 ew32(FEXTNVM11, fext_nvm11); 1586 tarc0 = er32(TARC(0)); 1587 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1588 /* set bit 29 (value of MULR requests is now 0) */ 1589 tarc0 &= 0xcfffffff; 1590 ew32(TARC(0), tarc0); 1591 /* fall through */ 1592 case e1000_80003es2lan: 1593 if (hw->phy.media_type == e1000_media_type_fiber || 1594 hw->phy.media_type == e1000_media_type_internal_serdes) { 1595 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1596 ew32(CTRL_EXT, adapter->tx_fifo_head); 1597 adapter->tx_fifo_head = 0; 1598 } 1599 /* fall through */ 1600 case e1000_82571: 1601 case e1000_82572: 1602 if (hw->phy.media_type == e1000_media_type_fiber || 1603 hw->phy.media_type == e1000_media_type_internal_serdes) { 1604 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1605 e1e_flush(); 1606 usleep_range(10000, 20000); 1607 break; 1608 } 1609 /* Fall Through */ 1610 default: 1611 hw->mac.autoneg = 1; 1612 if (hw->phy.type == e1000_phy_gg82563) 1613 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1614 e1e_rphy(hw, MII_BMCR, &phy_reg); 1615 if (phy_reg & BMCR_LOOPBACK) { 1616 phy_reg &= ~BMCR_LOOPBACK; 1617 e1e_wphy(hw, MII_BMCR, phy_reg); 1618 if (hw->phy.ops.commit) 1619 hw->phy.ops.commit(hw); 1620 } 1621 break; 1622 } 1623 } 1624 1625 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1626 unsigned int frame_size) 1627 { 1628 memset(skb->data, 0xFF, frame_size); 1629 frame_size &= ~1; 1630 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1631 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1632 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1633 } 1634 1635 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1636 unsigned int frame_size) 1637 { 1638 frame_size &= ~1; 1639 if (*(skb->data + 3) == 0xFF) 1640 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1641 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1642 return 0; 1643 return 13; 1644 } 1645 1646 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1647 { 1648 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1649 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1650 struct pci_dev *pdev = adapter->pdev; 1651 struct e1000_hw *hw = &adapter->hw; 1652 struct e1000_buffer *buffer_info; 1653 int i, j, k, l; 1654 int lc; 1655 int good_cnt; 1656 int ret_val = 0; 1657 unsigned long time; 1658 1659 ew32(RDT(0), rx_ring->count - 1); 1660 1661 /* Calculate the loop count based on the largest descriptor ring 1662 * The idea is to wrap the largest ring a number of times using 64 1663 * send/receive pairs during each loop 1664 */ 1665 1666 if (rx_ring->count <= tx_ring->count) 1667 lc = ((tx_ring->count / 64) * 2) + 1; 1668 else 1669 lc = ((rx_ring->count / 64) * 2) + 1; 1670 1671 k = 0; 1672 l = 0; 1673 /* loop count loop */ 1674 for (j = 0; j <= lc; j++) { 1675 /* send the packets */ 1676 for (i = 0; i < 64; i++) { 1677 buffer_info = &tx_ring->buffer_info[k]; 1678 1679 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1680 dma_sync_single_for_device(&pdev->dev, 1681 buffer_info->dma, 1682 buffer_info->length, 1683 DMA_TO_DEVICE); 1684 k++; 1685 if (k == tx_ring->count) 1686 k = 0; 1687 } 1688 ew32(TDT(0), k); 1689 e1e_flush(); 1690 msleep(200); 1691 time = jiffies; /* set the start time for the receive */ 1692 good_cnt = 0; 1693 /* receive the sent packets */ 1694 do { 1695 buffer_info = &rx_ring->buffer_info[l]; 1696 1697 dma_sync_single_for_cpu(&pdev->dev, 1698 buffer_info->dma, 2048, 1699 DMA_FROM_DEVICE); 1700 1701 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1702 1024); 1703 if (!ret_val) 1704 good_cnt++; 1705 l++; 1706 if (l == rx_ring->count) 1707 l = 0; 1708 /* time + 20 msecs (200 msecs on 2.4) is more than 1709 * enough time to complete the receives, if it's 1710 * exceeded, break and error off 1711 */ 1712 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1713 if (good_cnt != 64) { 1714 ret_val = 13; /* ret_val is the same as mis-compare */ 1715 break; 1716 } 1717 if (time_after(jiffies, time + 20)) { 1718 ret_val = 14; /* error code for time out error */ 1719 break; 1720 } 1721 } 1722 return ret_val; 1723 } 1724 1725 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1726 { 1727 struct e1000_hw *hw = &adapter->hw; 1728 1729 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1730 if (hw->phy.ops.check_reset_block && 1731 hw->phy.ops.check_reset_block(hw)) { 1732 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1733 *data = 0; 1734 goto out; 1735 } 1736 1737 *data = e1000_setup_desc_rings(adapter); 1738 if (*data) 1739 goto out; 1740 1741 *data = e1000_setup_loopback_test(adapter); 1742 if (*data) 1743 goto err_loopback; 1744 1745 *data = e1000_run_loopback_test(adapter); 1746 e1000_loopback_cleanup(adapter); 1747 1748 err_loopback: 1749 e1000_free_desc_rings(adapter); 1750 out: 1751 return *data; 1752 } 1753 1754 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1755 { 1756 struct e1000_hw *hw = &adapter->hw; 1757 1758 *data = 0; 1759 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1760 int i = 0; 1761 1762 hw->mac.serdes_has_link = false; 1763 1764 /* On some blade server designs, link establishment 1765 * could take as long as 2-3 minutes 1766 */ 1767 do { 1768 hw->mac.ops.check_for_link(hw); 1769 if (hw->mac.serdes_has_link) 1770 return *data; 1771 msleep(20); 1772 } while (i++ < 3750); 1773 1774 *data = 1; 1775 } else { 1776 hw->mac.ops.check_for_link(hw); 1777 if (hw->mac.autoneg) 1778 /* On some Phy/switch combinations, link establishment 1779 * can take a few seconds more than expected. 1780 */ 1781 msleep_interruptible(5000); 1782 1783 if (!(er32(STATUS) & E1000_STATUS_LU)) 1784 *data = 1; 1785 } 1786 return *data; 1787 } 1788 1789 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1790 int sset) 1791 { 1792 switch (sset) { 1793 case ETH_SS_TEST: 1794 return E1000_TEST_LEN; 1795 case ETH_SS_STATS: 1796 return E1000_STATS_LEN; 1797 default: 1798 return -EOPNOTSUPP; 1799 } 1800 } 1801 1802 static void e1000_diag_test(struct net_device *netdev, 1803 struct ethtool_test *eth_test, u64 *data) 1804 { 1805 struct e1000_adapter *adapter = netdev_priv(netdev); 1806 u16 autoneg_advertised; 1807 u8 forced_speed_duplex; 1808 u8 autoneg; 1809 bool if_running = netif_running(netdev); 1810 1811 pm_runtime_get_sync(netdev->dev.parent); 1812 1813 set_bit(__E1000_TESTING, &adapter->state); 1814 1815 if (!if_running) { 1816 /* Get control of and reset hardware */ 1817 if (adapter->flags & FLAG_HAS_AMT) 1818 e1000e_get_hw_control(adapter); 1819 1820 e1000e_power_up_phy(adapter); 1821 1822 adapter->hw.phy.autoneg_wait_to_complete = 1; 1823 e1000e_reset(adapter); 1824 adapter->hw.phy.autoneg_wait_to_complete = 0; 1825 } 1826 1827 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1828 /* Offline tests */ 1829 1830 /* save speed, duplex, autoneg settings */ 1831 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1832 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1833 autoneg = adapter->hw.mac.autoneg; 1834 1835 e_info("offline testing starting\n"); 1836 1837 if (if_running) 1838 /* indicate we're in test mode */ 1839 e1000e_close(netdev); 1840 1841 if (e1000_reg_test(adapter, &data[0])) 1842 eth_test->flags |= ETH_TEST_FL_FAILED; 1843 1844 e1000e_reset(adapter); 1845 if (e1000_eeprom_test(adapter, &data[1])) 1846 eth_test->flags |= ETH_TEST_FL_FAILED; 1847 1848 e1000e_reset(adapter); 1849 if (e1000_intr_test(adapter, &data[2])) 1850 eth_test->flags |= ETH_TEST_FL_FAILED; 1851 1852 e1000e_reset(adapter); 1853 if (e1000_loopback_test(adapter, &data[3])) 1854 eth_test->flags |= ETH_TEST_FL_FAILED; 1855 1856 /* force this routine to wait until autoneg complete/timeout */ 1857 adapter->hw.phy.autoneg_wait_to_complete = 1; 1858 e1000e_reset(adapter); 1859 adapter->hw.phy.autoneg_wait_to_complete = 0; 1860 1861 if (e1000_link_test(adapter, &data[4])) 1862 eth_test->flags |= ETH_TEST_FL_FAILED; 1863 1864 /* restore speed, duplex, autoneg settings */ 1865 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1866 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1867 adapter->hw.mac.autoneg = autoneg; 1868 e1000e_reset(adapter); 1869 1870 clear_bit(__E1000_TESTING, &adapter->state); 1871 if (if_running) 1872 e1000e_open(netdev); 1873 } else { 1874 /* Online tests */ 1875 1876 e_info("online testing starting\n"); 1877 1878 /* register, eeprom, intr and loopback tests not run online */ 1879 data[0] = 0; 1880 data[1] = 0; 1881 data[2] = 0; 1882 data[3] = 0; 1883 1884 if (e1000_link_test(adapter, &data[4])) 1885 eth_test->flags |= ETH_TEST_FL_FAILED; 1886 1887 clear_bit(__E1000_TESTING, &adapter->state); 1888 } 1889 1890 if (!if_running) { 1891 e1000e_reset(adapter); 1892 1893 if (adapter->flags & FLAG_HAS_AMT) 1894 e1000e_release_hw_control(adapter); 1895 } 1896 1897 msleep_interruptible(4 * 1000); 1898 1899 pm_runtime_put_sync(netdev->dev.parent); 1900 } 1901 1902 static void e1000_get_wol(struct net_device *netdev, 1903 struct ethtool_wolinfo *wol) 1904 { 1905 struct e1000_adapter *adapter = netdev_priv(netdev); 1906 1907 wol->supported = 0; 1908 wol->wolopts = 0; 1909 1910 if (!(adapter->flags & FLAG_HAS_WOL) || 1911 !device_can_wakeup(&adapter->pdev->dev)) 1912 return; 1913 1914 wol->supported = WAKE_UCAST | WAKE_MCAST | 1915 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1916 1917 /* apply any specific unsupported masks here */ 1918 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1919 wol->supported &= ~WAKE_UCAST; 1920 1921 if (adapter->wol & E1000_WUFC_EX) 1922 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1923 } 1924 1925 if (adapter->wol & E1000_WUFC_EX) 1926 wol->wolopts |= WAKE_UCAST; 1927 if (adapter->wol & E1000_WUFC_MC) 1928 wol->wolopts |= WAKE_MCAST; 1929 if (adapter->wol & E1000_WUFC_BC) 1930 wol->wolopts |= WAKE_BCAST; 1931 if (adapter->wol & E1000_WUFC_MAG) 1932 wol->wolopts |= WAKE_MAGIC; 1933 if (adapter->wol & E1000_WUFC_LNKC) 1934 wol->wolopts |= WAKE_PHY; 1935 } 1936 1937 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1938 { 1939 struct e1000_adapter *adapter = netdev_priv(netdev); 1940 1941 if (!(adapter->flags & FLAG_HAS_WOL) || 1942 !device_can_wakeup(&adapter->pdev->dev) || 1943 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1944 WAKE_MAGIC | WAKE_PHY))) 1945 return -EOPNOTSUPP; 1946 1947 /* these settings will always override what we currently have */ 1948 adapter->wol = 0; 1949 1950 if (wol->wolopts & WAKE_UCAST) 1951 adapter->wol |= E1000_WUFC_EX; 1952 if (wol->wolopts & WAKE_MCAST) 1953 adapter->wol |= E1000_WUFC_MC; 1954 if (wol->wolopts & WAKE_BCAST) 1955 adapter->wol |= E1000_WUFC_BC; 1956 if (wol->wolopts & WAKE_MAGIC) 1957 adapter->wol |= E1000_WUFC_MAG; 1958 if (wol->wolopts & WAKE_PHY) 1959 adapter->wol |= E1000_WUFC_LNKC; 1960 1961 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1962 1963 return 0; 1964 } 1965 1966 static int e1000_set_phys_id(struct net_device *netdev, 1967 enum ethtool_phys_id_state state) 1968 { 1969 struct e1000_adapter *adapter = netdev_priv(netdev); 1970 struct e1000_hw *hw = &adapter->hw; 1971 1972 switch (state) { 1973 case ETHTOOL_ID_ACTIVE: 1974 pm_runtime_get_sync(netdev->dev.parent); 1975 1976 if (!hw->mac.ops.blink_led) 1977 return 2; /* cycle on/off twice per second */ 1978 1979 hw->mac.ops.blink_led(hw); 1980 break; 1981 1982 case ETHTOOL_ID_INACTIVE: 1983 if (hw->phy.type == e1000_phy_ife) 1984 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1985 hw->mac.ops.led_off(hw); 1986 hw->mac.ops.cleanup_led(hw); 1987 pm_runtime_put_sync(netdev->dev.parent); 1988 break; 1989 1990 case ETHTOOL_ID_ON: 1991 hw->mac.ops.led_on(hw); 1992 break; 1993 1994 case ETHTOOL_ID_OFF: 1995 hw->mac.ops.led_off(hw); 1996 break; 1997 } 1998 1999 return 0; 2000 } 2001 2002 static int e1000_get_coalesce(struct net_device *netdev, 2003 struct ethtool_coalesce *ec) 2004 { 2005 struct e1000_adapter *adapter = netdev_priv(netdev); 2006 2007 if (adapter->itr_setting <= 4) 2008 ec->rx_coalesce_usecs = adapter->itr_setting; 2009 else 2010 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 2011 2012 return 0; 2013 } 2014 2015 static int e1000_set_coalesce(struct net_device *netdev, 2016 struct ethtool_coalesce *ec) 2017 { 2018 struct e1000_adapter *adapter = netdev_priv(netdev); 2019 2020 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2021 ((ec->rx_coalesce_usecs > 4) && 2022 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2023 (ec->rx_coalesce_usecs == 2)) 2024 return -EINVAL; 2025 2026 if (ec->rx_coalesce_usecs == 4) { 2027 adapter->itr_setting = 4; 2028 adapter->itr = adapter->itr_setting; 2029 } else if (ec->rx_coalesce_usecs <= 3) { 2030 adapter->itr = 20000; 2031 adapter->itr_setting = ec->rx_coalesce_usecs; 2032 } else { 2033 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2034 adapter->itr_setting = adapter->itr & ~3; 2035 } 2036 2037 pm_runtime_get_sync(netdev->dev.parent); 2038 2039 if (adapter->itr_setting != 0) 2040 e1000e_write_itr(adapter, adapter->itr); 2041 else 2042 e1000e_write_itr(adapter, 0); 2043 2044 pm_runtime_put_sync(netdev->dev.parent); 2045 2046 return 0; 2047 } 2048 2049 static int e1000_nway_reset(struct net_device *netdev) 2050 { 2051 struct e1000_adapter *adapter = netdev_priv(netdev); 2052 2053 if (!netif_running(netdev)) 2054 return -EAGAIN; 2055 2056 if (!adapter->hw.mac.autoneg) 2057 return -EINVAL; 2058 2059 pm_runtime_get_sync(netdev->dev.parent); 2060 e1000e_reinit_locked(adapter); 2061 pm_runtime_put_sync(netdev->dev.parent); 2062 2063 return 0; 2064 } 2065 2066 static void e1000_get_ethtool_stats(struct net_device *netdev, 2067 struct ethtool_stats __always_unused *stats, 2068 u64 *data) 2069 { 2070 struct e1000_adapter *adapter = netdev_priv(netdev); 2071 struct rtnl_link_stats64 net_stats; 2072 int i; 2073 char *p = NULL; 2074 2075 pm_runtime_get_sync(netdev->dev.parent); 2076 2077 dev_get_stats(netdev, &net_stats); 2078 2079 pm_runtime_put_sync(netdev->dev.parent); 2080 2081 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2082 switch (e1000_gstrings_stats[i].type) { 2083 case NETDEV_STATS: 2084 p = (char *)&net_stats + 2085 e1000_gstrings_stats[i].stat_offset; 2086 break; 2087 case E1000_STATS: 2088 p = (char *)adapter + 2089 e1000_gstrings_stats[i].stat_offset; 2090 break; 2091 default: 2092 data[i] = 0; 2093 continue; 2094 } 2095 2096 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2097 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2098 } 2099 } 2100 2101 static void e1000_get_strings(struct net_device __always_unused *netdev, 2102 u32 stringset, u8 *data) 2103 { 2104 u8 *p = data; 2105 int i; 2106 2107 switch (stringset) { 2108 case ETH_SS_TEST: 2109 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2110 break; 2111 case ETH_SS_STATS: 2112 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2113 memcpy(p, e1000_gstrings_stats[i].stat_string, 2114 ETH_GSTRING_LEN); 2115 p += ETH_GSTRING_LEN; 2116 } 2117 break; 2118 } 2119 } 2120 2121 static int e1000_get_rxnfc(struct net_device *netdev, 2122 struct ethtool_rxnfc *info, 2123 u32 __always_unused *rule_locs) 2124 { 2125 info->data = 0; 2126 2127 switch (info->cmd) { 2128 case ETHTOOL_GRXFH: { 2129 struct e1000_adapter *adapter = netdev_priv(netdev); 2130 struct e1000_hw *hw = &adapter->hw; 2131 u32 mrqc; 2132 2133 pm_runtime_get_sync(netdev->dev.parent); 2134 mrqc = er32(MRQC); 2135 pm_runtime_put_sync(netdev->dev.parent); 2136 2137 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2138 return 0; 2139 2140 switch (info->flow_type) { 2141 case TCP_V4_FLOW: 2142 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2143 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2144 /* fall through */ 2145 case UDP_V4_FLOW: 2146 case SCTP_V4_FLOW: 2147 case AH_ESP_V4_FLOW: 2148 case IPV4_FLOW: 2149 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2150 info->data |= RXH_IP_SRC | RXH_IP_DST; 2151 break; 2152 case TCP_V6_FLOW: 2153 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2154 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2155 /* fall through */ 2156 case UDP_V6_FLOW: 2157 case SCTP_V6_FLOW: 2158 case AH_ESP_V6_FLOW: 2159 case IPV6_FLOW: 2160 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2161 info->data |= RXH_IP_SRC | RXH_IP_DST; 2162 break; 2163 default: 2164 break; 2165 } 2166 return 0; 2167 } 2168 default: 2169 return -EOPNOTSUPP; 2170 } 2171 } 2172 2173 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2174 { 2175 struct e1000_adapter *adapter = netdev_priv(netdev); 2176 struct e1000_hw *hw = &adapter->hw; 2177 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2178 u32 ret_val; 2179 2180 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2181 return -EOPNOTSUPP; 2182 2183 switch (hw->phy.type) { 2184 case e1000_phy_82579: 2185 cap_addr = I82579_EEE_CAPABILITY; 2186 lpa_addr = I82579_EEE_LP_ABILITY; 2187 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2188 break; 2189 case e1000_phy_i217: 2190 cap_addr = I217_EEE_CAPABILITY; 2191 lpa_addr = I217_EEE_LP_ABILITY; 2192 pcs_stat_addr = I217_EEE_PCS_STATUS; 2193 break; 2194 default: 2195 return -EOPNOTSUPP; 2196 } 2197 2198 pm_runtime_get_sync(netdev->dev.parent); 2199 2200 ret_val = hw->phy.ops.acquire(hw); 2201 if (ret_val) { 2202 pm_runtime_put_sync(netdev->dev.parent); 2203 return -EBUSY; 2204 } 2205 2206 /* EEE Capability */ 2207 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2208 if (ret_val) 2209 goto release; 2210 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2211 2212 /* EEE Advertised */ 2213 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2214 2215 /* EEE Link Partner Advertised */ 2216 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2217 if (ret_val) 2218 goto release; 2219 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2220 2221 /* EEE PCS Status */ 2222 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2223 if (ret_val) 2224 goto release; 2225 if (hw->phy.type == e1000_phy_82579) 2226 phy_data <<= 8; 2227 2228 /* Result of the EEE auto negotiation - there is no register that 2229 * has the status of the EEE negotiation so do a best-guess based 2230 * on whether Tx or Rx LPI indications have been received. 2231 */ 2232 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2233 edata->eee_active = true; 2234 2235 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2236 edata->tx_lpi_enabled = true; 2237 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2238 2239 release: 2240 hw->phy.ops.release(hw); 2241 if (ret_val) 2242 ret_val = -ENODATA; 2243 2244 pm_runtime_put_sync(netdev->dev.parent); 2245 2246 return ret_val; 2247 } 2248 2249 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2250 { 2251 struct e1000_adapter *adapter = netdev_priv(netdev); 2252 struct e1000_hw *hw = &adapter->hw; 2253 struct ethtool_eee eee_curr; 2254 s32 ret_val; 2255 2256 ret_val = e1000e_get_eee(netdev, &eee_curr); 2257 if (ret_val) 2258 return ret_val; 2259 2260 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2261 e_err("Setting EEE tx-lpi is not supported\n"); 2262 return -EINVAL; 2263 } 2264 2265 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2266 e_err("Setting EEE Tx LPI timer is not supported\n"); 2267 return -EINVAL; 2268 } 2269 2270 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2271 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2272 return -EINVAL; 2273 } 2274 2275 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2276 2277 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2278 2279 pm_runtime_get_sync(netdev->dev.parent); 2280 2281 /* reset the link */ 2282 if (netif_running(netdev)) 2283 e1000e_reinit_locked(adapter); 2284 else 2285 e1000e_reset(adapter); 2286 2287 pm_runtime_put_sync(netdev->dev.parent); 2288 2289 return 0; 2290 } 2291 2292 static int e1000e_get_ts_info(struct net_device *netdev, 2293 struct ethtool_ts_info *info) 2294 { 2295 struct e1000_adapter *adapter = netdev_priv(netdev); 2296 2297 ethtool_op_get_ts_info(netdev, info); 2298 2299 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2300 return 0; 2301 2302 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2303 SOF_TIMESTAMPING_RX_HARDWARE | 2304 SOF_TIMESTAMPING_RAW_HARDWARE); 2305 2306 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2307 2308 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2309 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2310 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2311 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2312 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2313 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2314 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2315 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2316 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2317 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2318 BIT(HWTSTAMP_FILTER_ALL)); 2319 2320 if (adapter->ptp_clock) 2321 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2322 2323 return 0; 2324 } 2325 2326 static const struct ethtool_ops e1000_ethtool_ops = { 2327 .get_drvinfo = e1000_get_drvinfo, 2328 .get_regs_len = e1000_get_regs_len, 2329 .get_regs = e1000_get_regs, 2330 .get_wol = e1000_get_wol, 2331 .set_wol = e1000_set_wol, 2332 .get_msglevel = e1000_get_msglevel, 2333 .set_msglevel = e1000_set_msglevel, 2334 .nway_reset = e1000_nway_reset, 2335 .get_link = ethtool_op_get_link, 2336 .get_eeprom_len = e1000_get_eeprom_len, 2337 .get_eeprom = e1000_get_eeprom, 2338 .set_eeprom = e1000_set_eeprom, 2339 .get_ringparam = e1000_get_ringparam, 2340 .set_ringparam = e1000_set_ringparam, 2341 .get_pauseparam = e1000_get_pauseparam, 2342 .set_pauseparam = e1000_set_pauseparam, 2343 .self_test = e1000_diag_test, 2344 .get_strings = e1000_get_strings, 2345 .set_phys_id = e1000_set_phys_id, 2346 .get_ethtool_stats = e1000_get_ethtool_stats, 2347 .get_sset_count = e1000e_get_sset_count, 2348 .get_coalesce = e1000_get_coalesce, 2349 .set_coalesce = e1000_set_coalesce, 2350 .get_rxnfc = e1000_get_rxnfc, 2351 .get_ts_info = e1000e_get_ts_info, 2352 .get_eee = e1000e_get_eee, 2353 .set_eee = e1000e_set_eee, 2354 .get_link_ksettings = e1000_get_link_ksettings, 2355 .set_link_ksettings = e1000_set_link_ksettings, 2356 }; 2357 2358 void e1000e_set_ethtool_ops(struct net_device *netdev) 2359 { 2360 netdev->ethtool_ops = &e1000_ethtool_ops; 2361 } 2362