1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2015 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  */
22 
23 /* ethtool support for e1000 */
24 
25 #include <linux/netdevice.h>
26 #include <linux/interrupt.h>
27 #include <linux/ethtool.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pm_runtime.h>
33 
34 #include "e1000.h"
35 
36 enum { NETDEV_STATS, E1000_STATS };
37 
38 struct e1000_stats {
39 	char stat_string[ETH_GSTRING_LEN];
40 	int type;
41 	int sizeof_stat;
42 	int stat_offset;
43 };
44 
45 #define E1000_STAT(str, m) { \
46 		.stat_string = str, \
47 		.type = E1000_STATS, \
48 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
49 		.stat_offset = offsetof(struct e1000_adapter, m) }
50 #define E1000_NETDEV_STAT(str, m) { \
51 		.stat_string = str, \
52 		.type = NETDEV_STATS, \
53 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
54 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
55 
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57 	E1000_STAT("rx_packets", stats.gprc),
58 	E1000_STAT("tx_packets", stats.gptc),
59 	E1000_STAT("rx_bytes", stats.gorc),
60 	E1000_STAT("tx_bytes", stats.gotc),
61 	E1000_STAT("rx_broadcast", stats.bprc),
62 	E1000_STAT("tx_broadcast", stats.bptc),
63 	E1000_STAT("rx_multicast", stats.mprc),
64 	E1000_STAT("tx_multicast", stats.mptc),
65 	E1000_NETDEV_STAT("rx_errors", rx_errors),
66 	E1000_NETDEV_STAT("tx_errors", tx_errors),
67 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
68 	E1000_STAT("multicast", stats.mprc),
69 	E1000_STAT("collisions", stats.colc),
70 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
71 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
72 	E1000_STAT("rx_crc_errors", stats.crcerrs),
73 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
74 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
75 	E1000_STAT("rx_missed_errors", stats.mpc),
76 	E1000_STAT("tx_aborted_errors", stats.ecol),
77 	E1000_STAT("tx_carrier_errors", stats.tncrs),
78 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
79 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
80 	E1000_STAT("tx_window_errors", stats.latecol),
81 	E1000_STAT("tx_abort_late_coll", stats.latecol),
82 	E1000_STAT("tx_deferred_ok", stats.dc),
83 	E1000_STAT("tx_single_coll_ok", stats.scc),
84 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
85 	E1000_STAT("tx_timeout_count", tx_timeout_count),
86 	E1000_STAT("tx_restart_queue", restart_queue),
87 	E1000_STAT("rx_long_length_errors", stats.roc),
88 	E1000_STAT("rx_short_length_errors", stats.ruc),
89 	E1000_STAT("rx_align_errors", stats.algnerrc),
90 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
91 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
92 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
93 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
94 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
95 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
96 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
97 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
98 	E1000_STAT("rx_header_split", rx_hdr_split),
99 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
100 	E1000_STAT("tx_smbus", stats.mgptc),
101 	E1000_STAT("rx_smbus", stats.mgprc),
102 	E1000_STAT("dropped_smbus", stats.mgpdc),
103 	E1000_STAT("rx_dma_failed", rx_dma_failed),
104 	E1000_STAT("tx_dma_failed", tx_dma_failed),
105 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
106 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
107 	E1000_STAT("corr_ecc_errors", corr_errors),
108 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
109 	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
110 };
111 
112 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
113 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
114 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
115 	"Register test  (offline)", "Eeprom test    (offline)",
116 	"Interrupt test (offline)", "Loopback test  (offline)",
117 	"Link test   (on/offline)"
118 };
119 
120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121 
122 static int e1000_get_link_ksettings(struct net_device *netdev,
123 				    struct ethtool_link_ksettings *cmd)
124 {
125 	struct e1000_adapter *adapter = netdev_priv(netdev);
126 	struct e1000_hw *hw = &adapter->hw;
127 	u32 speed, supported, advertising;
128 
129 	if (hw->phy.media_type == e1000_media_type_copper) {
130 		supported = (SUPPORTED_10baseT_Half |
131 			     SUPPORTED_10baseT_Full |
132 			     SUPPORTED_100baseT_Half |
133 			     SUPPORTED_100baseT_Full |
134 			     SUPPORTED_1000baseT_Full |
135 			     SUPPORTED_Autoneg |
136 			     SUPPORTED_TP);
137 		if (hw->phy.type == e1000_phy_ife)
138 			supported &= ~SUPPORTED_1000baseT_Full;
139 		advertising = ADVERTISED_TP;
140 
141 		if (hw->mac.autoneg == 1) {
142 			advertising |= ADVERTISED_Autoneg;
143 			/* the e1000 autoneg seems to match ethtool nicely */
144 			advertising |= hw->phy.autoneg_advertised;
145 		}
146 
147 		cmd->base.port = PORT_TP;
148 		cmd->base.phy_address = hw->phy.addr;
149 	} else {
150 		supported   = (SUPPORTED_1000baseT_Full |
151 			       SUPPORTED_FIBRE |
152 			       SUPPORTED_Autoneg);
153 
154 		advertising = (ADVERTISED_1000baseT_Full |
155 			       ADVERTISED_FIBRE |
156 			       ADVERTISED_Autoneg);
157 
158 		cmd->base.port = PORT_FIBRE;
159 	}
160 
161 	speed = SPEED_UNKNOWN;
162 	cmd->base.duplex = DUPLEX_UNKNOWN;
163 
164 	if (netif_running(netdev)) {
165 		if (netif_carrier_ok(netdev)) {
166 			speed = adapter->link_speed;
167 			cmd->base.duplex = adapter->link_duplex - 1;
168 		}
169 	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
170 		u32 status = er32(STATUS);
171 
172 		if (status & E1000_STATUS_LU) {
173 			if (status & E1000_STATUS_SPEED_1000)
174 				speed = SPEED_1000;
175 			else if (status & E1000_STATUS_SPEED_100)
176 				speed = SPEED_100;
177 			else
178 				speed = SPEED_10;
179 
180 			if (status & E1000_STATUS_FD)
181 				cmd->base.duplex = DUPLEX_FULL;
182 			else
183 				cmd->base.duplex = DUPLEX_HALF;
184 		}
185 	}
186 
187 	cmd->base.speed = speed;
188 	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
189 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
190 
191 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
192 	if ((hw->phy.media_type == e1000_media_type_copper) &&
193 	    netif_carrier_ok(netdev))
194 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
195 			ETH_TP_MDI_X : ETH_TP_MDI;
196 	else
197 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
198 
199 	if (hw->phy.mdix == AUTO_ALL_MODES)
200 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201 	else
202 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
203 
204 	if (hw->phy.media_type != e1000_media_type_copper)
205 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
206 
207 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
208 						supported);
209 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
210 						advertising);
211 
212 	return 0;
213 }
214 
215 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
216 {
217 	struct e1000_mac_info *mac = &adapter->hw.mac;
218 
219 	mac->autoneg = 0;
220 
221 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
222 	 * for the switch() below to work
223 	 */
224 	if ((spd & 1) || (dplx & ~1))
225 		goto err_inval;
226 
227 	/* Fiber NICs only allow 1000 gbps Full duplex */
228 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
229 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
230 		goto err_inval;
231 	}
232 
233 	switch (spd + dplx) {
234 	case SPEED_10 + DUPLEX_HALF:
235 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
236 		break;
237 	case SPEED_10 + DUPLEX_FULL:
238 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
239 		break;
240 	case SPEED_100 + DUPLEX_HALF:
241 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
242 		break;
243 	case SPEED_100 + DUPLEX_FULL:
244 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
245 		break;
246 	case SPEED_1000 + DUPLEX_FULL:
247 		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
248 			mac->autoneg = 1;
249 			adapter->hw.phy.autoneg_advertised =
250 				ADVERTISE_1000_FULL;
251 		} else {
252 			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
253 		}
254 		break;
255 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
256 	default:
257 		goto err_inval;
258 	}
259 
260 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
261 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
262 
263 	return 0;
264 
265 err_inval:
266 	e_err("Unsupported Speed/Duplex configuration\n");
267 	return -EINVAL;
268 }
269 
270 static int e1000_set_link_ksettings(struct net_device *netdev,
271 				    const struct ethtool_link_ksettings *cmd)
272 {
273 	struct e1000_adapter *adapter = netdev_priv(netdev);
274 	struct e1000_hw *hw = &adapter->hw;
275 	int ret_val = 0;
276 	u32 advertising;
277 
278 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
279 						cmd->link_modes.advertising);
280 
281 	pm_runtime_get_sync(netdev->dev.parent);
282 
283 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
284 	 * cannot be changed
285 	 */
286 	if (hw->phy.ops.check_reset_block &&
287 	    hw->phy.ops.check_reset_block(hw)) {
288 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
289 		ret_val = -EINVAL;
290 		goto out;
291 	}
292 
293 	/* MDI setting is only allowed when autoneg enabled because
294 	 * some hardware doesn't allow MDI setting when speed or
295 	 * duplex is forced.
296 	 */
297 	if (cmd->base.eth_tp_mdix_ctrl) {
298 		if (hw->phy.media_type != e1000_media_type_copper) {
299 			ret_val = -EOPNOTSUPP;
300 			goto out;
301 		}
302 
303 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
304 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
305 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
306 			ret_val = -EINVAL;
307 			goto out;
308 		}
309 	}
310 
311 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
312 		usleep_range(1000, 2000);
313 
314 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
315 		hw->mac.autoneg = 1;
316 		if (hw->phy.media_type == e1000_media_type_fiber)
317 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
318 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
319 		else
320 			hw->phy.autoneg_advertised = advertising |
321 			    ADVERTISED_TP | ADVERTISED_Autoneg;
322 		advertising = hw->phy.autoneg_advertised;
323 		if (adapter->fc_autoneg)
324 			hw->fc.requested_mode = e1000_fc_default;
325 	} else {
326 		u32 speed = cmd->base.speed;
327 		/* calling this overrides forced MDI setting */
328 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
329 			ret_val = -EINVAL;
330 			goto out;
331 		}
332 	}
333 
334 	/* MDI-X => 2; MDI => 1; Auto => 3 */
335 	if (cmd->base.eth_tp_mdix_ctrl) {
336 		/* fix up the value for auto (3 => 0) as zero is mapped
337 		 * internally to auto
338 		 */
339 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
340 			hw->phy.mdix = AUTO_ALL_MODES;
341 		else
342 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
343 	}
344 
345 	/* reset the link */
346 	if (netif_running(adapter->netdev)) {
347 		e1000e_down(adapter, true);
348 		e1000e_up(adapter);
349 	} else {
350 		e1000e_reset(adapter);
351 	}
352 
353 out:
354 	pm_runtime_put_sync(netdev->dev.parent);
355 	clear_bit(__E1000_RESETTING, &adapter->state);
356 	return ret_val;
357 }
358 
359 static void e1000_get_pauseparam(struct net_device *netdev,
360 				 struct ethtool_pauseparam *pause)
361 {
362 	struct e1000_adapter *adapter = netdev_priv(netdev);
363 	struct e1000_hw *hw = &adapter->hw;
364 
365 	pause->autoneg =
366 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
367 
368 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
369 		pause->rx_pause = 1;
370 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
371 		pause->tx_pause = 1;
372 	} else if (hw->fc.current_mode == e1000_fc_full) {
373 		pause->rx_pause = 1;
374 		pause->tx_pause = 1;
375 	}
376 }
377 
378 static int e1000_set_pauseparam(struct net_device *netdev,
379 				struct ethtool_pauseparam *pause)
380 {
381 	struct e1000_adapter *adapter = netdev_priv(netdev);
382 	struct e1000_hw *hw = &adapter->hw;
383 	int retval = 0;
384 
385 	adapter->fc_autoneg = pause->autoneg;
386 
387 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
388 		usleep_range(1000, 2000);
389 
390 	pm_runtime_get_sync(netdev->dev.parent);
391 
392 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
393 		hw->fc.requested_mode = e1000_fc_default;
394 		if (netif_running(adapter->netdev)) {
395 			e1000e_down(adapter, true);
396 			e1000e_up(adapter);
397 		} else {
398 			e1000e_reset(adapter);
399 		}
400 	} else {
401 		if (pause->rx_pause && pause->tx_pause)
402 			hw->fc.requested_mode = e1000_fc_full;
403 		else if (pause->rx_pause && !pause->tx_pause)
404 			hw->fc.requested_mode = e1000_fc_rx_pause;
405 		else if (!pause->rx_pause && pause->tx_pause)
406 			hw->fc.requested_mode = e1000_fc_tx_pause;
407 		else if (!pause->rx_pause && !pause->tx_pause)
408 			hw->fc.requested_mode = e1000_fc_none;
409 
410 		hw->fc.current_mode = hw->fc.requested_mode;
411 
412 		if (hw->phy.media_type == e1000_media_type_fiber) {
413 			retval = hw->mac.ops.setup_link(hw);
414 			/* implicit goto out */
415 		} else {
416 			retval = e1000e_force_mac_fc(hw);
417 			if (retval)
418 				goto out;
419 			e1000e_set_fc_watermarks(hw);
420 		}
421 	}
422 
423 out:
424 	pm_runtime_put_sync(netdev->dev.parent);
425 	clear_bit(__E1000_RESETTING, &adapter->state);
426 	return retval;
427 }
428 
429 static u32 e1000_get_msglevel(struct net_device *netdev)
430 {
431 	struct e1000_adapter *adapter = netdev_priv(netdev);
432 	return adapter->msg_enable;
433 }
434 
435 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
436 {
437 	struct e1000_adapter *adapter = netdev_priv(netdev);
438 	adapter->msg_enable = data;
439 }
440 
441 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
442 {
443 #define E1000_REGS_LEN 32	/* overestimate */
444 	return E1000_REGS_LEN * sizeof(u32);
445 }
446 
447 static void e1000_get_regs(struct net_device *netdev,
448 			   struct ethtool_regs *regs, void *p)
449 {
450 	struct e1000_adapter *adapter = netdev_priv(netdev);
451 	struct e1000_hw *hw = &adapter->hw;
452 	u32 *regs_buff = p;
453 	u16 phy_data;
454 
455 	pm_runtime_get_sync(netdev->dev.parent);
456 
457 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
458 
459 	regs->version = (1u << 24) |
460 			(adapter->pdev->revision << 16) |
461 			adapter->pdev->device;
462 
463 	regs_buff[0] = er32(CTRL);
464 	regs_buff[1] = er32(STATUS);
465 
466 	regs_buff[2] = er32(RCTL);
467 	regs_buff[3] = er32(RDLEN(0));
468 	regs_buff[4] = er32(RDH(0));
469 	regs_buff[5] = er32(RDT(0));
470 	regs_buff[6] = er32(RDTR);
471 
472 	regs_buff[7] = er32(TCTL);
473 	regs_buff[8] = er32(TDLEN(0));
474 	regs_buff[9] = er32(TDH(0));
475 	regs_buff[10] = er32(TDT(0));
476 	regs_buff[11] = er32(TIDV);
477 
478 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
479 
480 	/* ethtool doesn't use anything past this point, so all this
481 	 * code is likely legacy junk for apps that may or may not exist
482 	 */
483 	if (hw->phy.type == e1000_phy_m88) {
484 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
485 		regs_buff[13] = (u32)phy_data; /* cable length */
486 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
487 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
488 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
489 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
490 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
491 		regs_buff[18] = regs_buff[13]; /* cable polarity */
492 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
493 		regs_buff[20] = regs_buff[17]; /* polarity correction */
494 		/* phy receive errors */
495 		regs_buff[22] = adapter->phy_stats.receive_errors;
496 		regs_buff[23] = regs_buff[13]; /* mdix mode */
497 	}
498 	regs_buff[21] = 0;	/* was idle_errors */
499 	e1e_rphy(hw, MII_STAT1000, &phy_data);
500 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
501 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
502 
503 	pm_runtime_put_sync(netdev->dev.parent);
504 }
505 
506 static int e1000_get_eeprom_len(struct net_device *netdev)
507 {
508 	struct e1000_adapter *adapter = netdev_priv(netdev);
509 	return adapter->hw.nvm.word_size * 2;
510 }
511 
512 static int e1000_get_eeprom(struct net_device *netdev,
513 			    struct ethtool_eeprom *eeprom, u8 *bytes)
514 {
515 	struct e1000_adapter *adapter = netdev_priv(netdev);
516 	struct e1000_hw *hw = &adapter->hw;
517 	u16 *eeprom_buff;
518 	int first_word;
519 	int last_word;
520 	int ret_val = 0;
521 	u16 i;
522 
523 	if (eeprom->len == 0)
524 		return -EINVAL;
525 
526 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
527 
528 	first_word = eeprom->offset >> 1;
529 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
530 
531 	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
532 			      GFP_KERNEL);
533 	if (!eeprom_buff)
534 		return -ENOMEM;
535 
536 	pm_runtime_get_sync(netdev->dev.parent);
537 
538 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
539 		ret_val = e1000_read_nvm(hw, first_word,
540 					 last_word - first_word + 1,
541 					 eeprom_buff);
542 	} else {
543 		for (i = 0; i < last_word - first_word + 1; i++) {
544 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
545 						 &eeprom_buff[i]);
546 			if (ret_val)
547 				break;
548 		}
549 	}
550 
551 	pm_runtime_put_sync(netdev->dev.parent);
552 
553 	if (ret_val) {
554 		/* a read error occurred, throw away the result */
555 		memset(eeprom_buff, 0xff, sizeof(u16) *
556 		       (last_word - first_word + 1));
557 	} else {
558 		/* Device's eeprom is always little-endian, word addressable */
559 		for (i = 0; i < last_word - first_word + 1; i++)
560 			le16_to_cpus(&eeprom_buff[i]);
561 	}
562 
563 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
564 	kfree(eeprom_buff);
565 
566 	return ret_val;
567 }
568 
569 static int e1000_set_eeprom(struct net_device *netdev,
570 			    struct ethtool_eeprom *eeprom, u8 *bytes)
571 {
572 	struct e1000_adapter *adapter = netdev_priv(netdev);
573 	struct e1000_hw *hw = &adapter->hw;
574 	u16 *eeprom_buff;
575 	void *ptr;
576 	int max_len;
577 	int first_word;
578 	int last_word;
579 	int ret_val = 0;
580 	u16 i;
581 
582 	if (eeprom->len == 0)
583 		return -EOPNOTSUPP;
584 
585 	if (eeprom->magic !=
586 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
587 		return -EFAULT;
588 
589 	if (adapter->flags & FLAG_READ_ONLY_NVM)
590 		return -EINVAL;
591 
592 	max_len = hw->nvm.word_size * 2;
593 
594 	first_word = eeprom->offset >> 1;
595 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
596 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
597 	if (!eeprom_buff)
598 		return -ENOMEM;
599 
600 	ptr = (void *)eeprom_buff;
601 
602 	pm_runtime_get_sync(netdev->dev.parent);
603 
604 	if (eeprom->offset & 1) {
605 		/* need read/modify/write of first changed EEPROM word */
606 		/* only the second byte of the word is being modified */
607 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
608 		ptr++;
609 	}
610 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
611 		/* need read/modify/write of last changed EEPROM word */
612 		/* only the first byte of the word is being modified */
613 		ret_val = e1000_read_nvm(hw, last_word, 1,
614 					 &eeprom_buff[last_word - first_word]);
615 
616 	if (ret_val)
617 		goto out;
618 
619 	/* Device's eeprom is always little-endian, word addressable */
620 	for (i = 0; i < last_word - first_word + 1; i++)
621 		le16_to_cpus(&eeprom_buff[i]);
622 
623 	memcpy(ptr, bytes, eeprom->len);
624 
625 	for (i = 0; i < last_word - first_word + 1; i++)
626 		cpu_to_le16s(&eeprom_buff[i]);
627 
628 	ret_val = e1000_write_nvm(hw, first_word,
629 				  last_word - first_word + 1, eeprom_buff);
630 
631 	if (ret_val)
632 		goto out;
633 
634 	/* Update the checksum over the first part of the EEPROM if needed
635 	 * and flush shadow RAM for applicable controllers
636 	 */
637 	if ((first_word <= NVM_CHECKSUM_REG) ||
638 	    (hw->mac.type == e1000_82583) ||
639 	    (hw->mac.type == e1000_82574) ||
640 	    (hw->mac.type == e1000_82573))
641 		ret_val = e1000e_update_nvm_checksum(hw);
642 
643 out:
644 	pm_runtime_put_sync(netdev->dev.parent);
645 	kfree(eeprom_buff);
646 	return ret_val;
647 }
648 
649 static void e1000_get_drvinfo(struct net_device *netdev,
650 			      struct ethtool_drvinfo *drvinfo)
651 {
652 	struct e1000_adapter *adapter = netdev_priv(netdev);
653 
654 	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
655 	strlcpy(drvinfo->version, e1000e_driver_version,
656 		sizeof(drvinfo->version));
657 
658 	/* EEPROM image version # is reported as firmware version # for
659 	 * PCI-E controllers
660 	 */
661 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
662 		 "%d.%d-%d",
663 		 (adapter->eeprom_vers & 0xF000) >> 12,
664 		 (adapter->eeprom_vers & 0x0FF0) >> 4,
665 		 (adapter->eeprom_vers & 0x000F));
666 
667 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
668 		sizeof(drvinfo->bus_info));
669 }
670 
671 static void e1000_get_ringparam(struct net_device *netdev,
672 				struct ethtool_ringparam *ring)
673 {
674 	struct e1000_adapter *adapter = netdev_priv(netdev);
675 
676 	ring->rx_max_pending = E1000_MAX_RXD;
677 	ring->tx_max_pending = E1000_MAX_TXD;
678 	ring->rx_pending = adapter->rx_ring_count;
679 	ring->tx_pending = adapter->tx_ring_count;
680 }
681 
682 static int e1000_set_ringparam(struct net_device *netdev,
683 			       struct ethtool_ringparam *ring)
684 {
685 	struct e1000_adapter *adapter = netdev_priv(netdev);
686 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
687 	int err = 0, size = sizeof(struct e1000_ring);
688 	bool set_tx = false, set_rx = false;
689 	u16 new_rx_count, new_tx_count;
690 
691 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
692 		return -EINVAL;
693 
694 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
695 			       E1000_MAX_RXD);
696 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
697 
698 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
699 			       E1000_MAX_TXD);
700 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
701 
702 	if ((new_tx_count == adapter->tx_ring_count) &&
703 	    (new_rx_count == adapter->rx_ring_count))
704 		/* nothing to do */
705 		return 0;
706 
707 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
708 		usleep_range(1000, 2000);
709 
710 	if (!netif_running(adapter->netdev)) {
711 		/* Set counts now and allocate resources during open() */
712 		adapter->tx_ring->count = new_tx_count;
713 		adapter->rx_ring->count = new_rx_count;
714 		adapter->tx_ring_count = new_tx_count;
715 		adapter->rx_ring_count = new_rx_count;
716 		goto clear_reset;
717 	}
718 
719 	set_tx = (new_tx_count != adapter->tx_ring_count);
720 	set_rx = (new_rx_count != adapter->rx_ring_count);
721 
722 	/* Allocate temporary storage for ring updates */
723 	if (set_tx) {
724 		temp_tx = vmalloc(size);
725 		if (!temp_tx) {
726 			err = -ENOMEM;
727 			goto free_temp;
728 		}
729 	}
730 	if (set_rx) {
731 		temp_rx = vmalloc(size);
732 		if (!temp_rx) {
733 			err = -ENOMEM;
734 			goto free_temp;
735 		}
736 	}
737 
738 	pm_runtime_get_sync(netdev->dev.parent);
739 
740 	e1000e_down(adapter, true);
741 
742 	/* We can't just free everything and then setup again, because the
743 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
744 	 * structs.  First, attempt to allocate new resources...
745 	 */
746 	if (set_tx) {
747 		memcpy(temp_tx, adapter->tx_ring, size);
748 		temp_tx->count = new_tx_count;
749 		err = e1000e_setup_tx_resources(temp_tx);
750 		if (err)
751 			goto err_setup;
752 	}
753 	if (set_rx) {
754 		memcpy(temp_rx, adapter->rx_ring, size);
755 		temp_rx->count = new_rx_count;
756 		err = e1000e_setup_rx_resources(temp_rx);
757 		if (err)
758 			goto err_setup_rx;
759 	}
760 
761 	/* ...then free the old resources and copy back any new ring data */
762 	if (set_tx) {
763 		e1000e_free_tx_resources(adapter->tx_ring);
764 		memcpy(adapter->tx_ring, temp_tx, size);
765 		adapter->tx_ring_count = new_tx_count;
766 	}
767 	if (set_rx) {
768 		e1000e_free_rx_resources(adapter->rx_ring);
769 		memcpy(adapter->rx_ring, temp_rx, size);
770 		adapter->rx_ring_count = new_rx_count;
771 	}
772 
773 err_setup_rx:
774 	if (err && set_tx)
775 		e1000e_free_tx_resources(temp_tx);
776 err_setup:
777 	e1000e_up(adapter);
778 	pm_runtime_put_sync(netdev->dev.parent);
779 free_temp:
780 	vfree(temp_tx);
781 	vfree(temp_rx);
782 clear_reset:
783 	clear_bit(__E1000_RESETTING, &adapter->state);
784 	return err;
785 }
786 
787 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
788 			     int reg, int offset, u32 mask, u32 write)
789 {
790 	u32 pat, val;
791 	static const u32 test[] = {
792 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
793 	};
794 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
795 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
796 				      (test[pat] & write));
797 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
798 		if (val != (test[pat] & write & mask)) {
799 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
800 			      reg + (offset << 2), val,
801 			      (test[pat] & write & mask));
802 			*data = reg;
803 			return true;
804 		}
805 	}
806 	return false;
807 }
808 
809 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
810 			      int reg, u32 mask, u32 write)
811 {
812 	u32 val;
813 
814 	__ew32(&adapter->hw, reg, write & mask);
815 	val = __er32(&adapter->hw, reg);
816 	if ((write & mask) != (val & mask)) {
817 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
818 		      reg, (val & mask), (write & mask));
819 		*data = reg;
820 		return true;
821 	}
822 	return false;
823 }
824 
825 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
826 	do {                                                                   \
827 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
828 			return 1;                                              \
829 	} while (0)
830 #define REG_PATTERN_TEST(reg, mask, write)                                     \
831 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
832 
833 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
834 	do {                                                                   \
835 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
836 			return 1;                                              \
837 	} while (0)
838 
839 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
840 {
841 	struct e1000_hw *hw = &adapter->hw;
842 	struct e1000_mac_info *mac = &adapter->hw.mac;
843 	u32 value;
844 	u32 before;
845 	u32 after;
846 	u32 i;
847 	u32 toggle;
848 	u32 mask;
849 	u32 wlock_mac = 0;
850 
851 	/* The status register is Read Only, so a write should fail.
852 	 * Some bits that get toggled are ignored.  There are several bits
853 	 * on newer hardware that are r/w.
854 	 */
855 	switch (mac->type) {
856 	case e1000_82571:
857 	case e1000_82572:
858 	case e1000_80003es2lan:
859 		toggle = 0x7FFFF3FF;
860 		break;
861 	default:
862 		toggle = 0x7FFFF033;
863 		break;
864 	}
865 
866 	before = er32(STATUS);
867 	value = (er32(STATUS) & toggle);
868 	ew32(STATUS, toggle);
869 	after = er32(STATUS) & toggle;
870 	if (value != after) {
871 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
872 		      after, value);
873 		*data = 1;
874 		return 1;
875 	}
876 	/* restore previous status */
877 	ew32(STATUS, before);
878 
879 	if (!(adapter->flags & FLAG_IS_ICH)) {
880 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
881 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
882 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
883 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
884 	}
885 
886 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
887 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
888 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
889 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
890 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
891 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
892 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
893 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
894 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
895 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
896 
897 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
898 
899 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
900 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
901 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
902 
903 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
904 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
905 	if (!(adapter->flags & FLAG_IS_ICH))
906 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
907 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
908 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
909 	mask = 0x8003FFFF;
910 	switch (mac->type) {
911 	case e1000_ich10lan:
912 	case e1000_pchlan:
913 	case e1000_pch2lan:
914 	case e1000_pch_lpt:
915 	case e1000_pch_spt:
916 		/* fall through */
917 	case e1000_pch_cnp:
918 		mask |= BIT(18);
919 		break;
920 	default:
921 		break;
922 	}
923 
924 	if (mac->type >= e1000_pch_lpt)
925 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
926 		    E1000_FWSM_WLOCK_MAC_SHIFT;
927 
928 	for (i = 0; i < mac->rar_entry_count; i++) {
929 		if (mac->type >= e1000_pch_lpt) {
930 			/* Cannot test write-protected SHRAL[n] registers */
931 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
932 				continue;
933 
934 			/* SHRAH[9] different than the others */
935 			if (i == 10)
936 				mask |= BIT(30);
937 			else
938 				mask &= ~BIT(30);
939 		}
940 		if (mac->type == e1000_pch2lan) {
941 			/* SHRAH[0,1,2] different than previous */
942 			if (i == 1)
943 				mask &= 0xFFF4FFFF;
944 			/* SHRAH[3] different than SHRAH[0,1,2] */
945 			if (i == 4)
946 				mask |= BIT(30);
947 			/* RAR[1-6] owned by management engine - skipping */
948 			if (i > 0)
949 				i += 6;
950 		}
951 
952 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
953 				       0xFFFFFFFF);
954 		/* reset index to actual value */
955 		if ((mac->type == e1000_pch2lan) && (i > 6))
956 			i -= 6;
957 	}
958 
959 	for (i = 0; i < mac->mta_reg_count; i++)
960 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
961 
962 	*data = 0;
963 
964 	return 0;
965 }
966 
967 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
968 {
969 	u16 temp;
970 	u16 checksum = 0;
971 	u16 i;
972 
973 	*data = 0;
974 	/* Read and add up the contents of the EEPROM */
975 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
976 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
977 			*data = 1;
978 			return *data;
979 		}
980 		checksum += temp;
981 	}
982 
983 	/* If Checksum is not Correct return error else test passed */
984 	if ((checksum != (u16)NVM_SUM) && !(*data))
985 		*data = 2;
986 
987 	return *data;
988 }
989 
990 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
991 {
992 	struct net_device *netdev = (struct net_device *)data;
993 	struct e1000_adapter *adapter = netdev_priv(netdev);
994 	struct e1000_hw *hw = &adapter->hw;
995 
996 	adapter->test_icr |= er32(ICR);
997 
998 	return IRQ_HANDLED;
999 }
1000 
1001 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1002 {
1003 	struct net_device *netdev = adapter->netdev;
1004 	struct e1000_hw *hw = &adapter->hw;
1005 	u32 mask;
1006 	u32 shared_int = 1;
1007 	u32 irq = adapter->pdev->irq;
1008 	int i;
1009 	int ret_val = 0;
1010 	int int_mode = E1000E_INT_MODE_LEGACY;
1011 
1012 	*data = 0;
1013 
1014 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1015 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1016 		int_mode = adapter->int_mode;
1017 		e1000e_reset_interrupt_capability(adapter);
1018 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1019 		e1000e_set_interrupt_capability(adapter);
1020 	}
1021 	/* Hook up test interrupt handler just for this test */
1022 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1023 			 netdev)) {
1024 		shared_int = 0;
1025 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1026 			       netdev)) {
1027 		*data = 1;
1028 		ret_val = -1;
1029 		goto out;
1030 	}
1031 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1032 
1033 	/* Disable all the interrupts */
1034 	ew32(IMC, 0xFFFFFFFF);
1035 	e1e_flush();
1036 	usleep_range(10000, 20000);
1037 
1038 	/* Test each interrupt */
1039 	for (i = 0; i < 10; i++) {
1040 		/* Interrupt to test */
1041 		mask = BIT(i);
1042 
1043 		if (adapter->flags & FLAG_IS_ICH) {
1044 			switch (mask) {
1045 			case E1000_ICR_RXSEQ:
1046 				continue;
1047 			case 0x00000100:
1048 				if (adapter->hw.mac.type == e1000_ich8lan ||
1049 				    adapter->hw.mac.type == e1000_ich9lan)
1050 					continue;
1051 				break;
1052 			default:
1053 				break;
1054 			}
1055 		}
1056 
1057 		if (!shared_int) {
1058 			/* Disable the interrupt to be reported in
1059 			 * the cause register and then force the same
1060 			 * interrupt and see if one gets posted.  If
1061 			 * an interrupt was posted to the bus, the
1062 			 * test failed.
1063 			 */
1064 			adapter->test_icr = 0;
1065 			ew32(IMC, mask);
1066 			ew32(ICS, mask);
1067 			e1e_flush();
1068 			usleep_range(10000, 20000);
1069 
1070 			if (adapter->test_icr & mask) {
1071 				*data = 3;
1072 				break;
1073 			}
1074 		}
1075 
1076 		/* Enable the interrupt to be reported in
1077 		 * the cause register and then force the same
1078 		 * interrupt and see if one gets posted.  If
1079 		 * an interrupt was not posted to the bus, the
1080 		 * test failed.
1081 		 */
1082 		adapter->test_icr = 0;
1083 		ew32(IMS, mask);
1084 		ew32(ICS, mask);
1085 		e1e_flush();
1086 		usleep_range(10000, 20000);
1087 
1088 		if (!(adapter->test_icr & mask)) {
1089 			*data = 4;
1090 			break;
1091 		}
1092 
1093 		if (!shared_int) {
1094 			/* Disable the other interrupts to be reported in
1095 			 * the cause register and then force the other
1096 			 * interrupts and see if any get posted.  If
1097 			 * an interrupt was posted to the bus, the
1098 			 * test failed.
1099 			 */
1100 			adapter->test_icr = 0;
1101 			ew32(IMC, ~mask & 0x00007FFF);
1102 			ew32(ICS, ~mask & 0x00007FFF);
1103 			e1e_flush();
1104 			usleep_range(10000, 20000);
1105 
1106 			if (adapter->test_icr) {
1107 				*data = 5;
1108 				break;
1109 			}
1110 		}
1111 	}
1112 
1113 	/* Disable all the interrupts */
1114 	ew32(IMC, 0xFFFFFFFF);
1115 	e1e_flush();
1116 	usleep_range(10000, 20000);
1117 
1118 	/* Unhook test interrupt handler */
1119 	free_irq(irq, netdev);
1120 
1121 out:
1122 	if (int_mode == E1000E_INT_MODE_MSIX) {
1123 		e1000e_reset_interrupt_capability(adapter);
1124 		adapter->int_mode = int_mode;
1125 		e1000e_set_interrupt_capability(adapter);
1126 	}
1127 
1128 	return ret_val;
1129 }
1130 
1131 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1132 {
1133 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1134 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1135 	struct pci_dev *pdev = adapter->pdev;
1136 	struct e1000_buffer *buffer_info;
1137 	int i;
1138 
1139 	if (tx_ring->desc && tx_ring->buffer_info) {
1140 		for (i = 0; i < tx_ring->count; i++) {
1141 			buffer_info = &tx_ring->buffer_info[i];
1142 
1143 			if (buffer_info->dma)
1144 				dma_unmap_single(&pdev->dev,
1145 						 buffer_info->dma,
1146 						 buffer_info->length,
1147 						 DMA_TO_DEVICE);
1148 			if (buffer_info->skb)
1149 				dev_kfree_skb(buffer_info->skb);
1150 		}
1151 	}
1152 
1153 	if (rx_ring->desc && rx_ring->buffer_info) {
1154 		for (i = 0; i < rx_ring->count; i++) {
1155 			buffer_info = &rx_ring->buffer_info[i];
1156 
1157 			if (buffer_info->dma)
1158 				dma_unmap_single(&pdev->dev,
1159 						 buffer_info->dma,
1160 						 2048, DMA_FROM_DEVICE);
1161 			if (buffer_info->skb)
1162 				dev_kfree_skb(buffer_info->skb);
1163 		}
1164 	}
1165 
1166 	if (tx_ring->desc) {
1167 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1168 				  tx_ring->dma);
1169 		tx_ring->desc = NULL;
1170 	}
1171 	if (rx_ring->desc) {
1172 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1173 				  rx_ring->dma);
1174 		rx_ring->desc = NULL;
1175 	}
1176 
1177 	kfree(tx_ring->buffer_info);
1178 	tx_ring->buffer_info = NULL;
1179 	kfree(rx_ring->buffer_info);
1180 	rx_ring->buffer_info = NULL;
1181 }
1182 
1183 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1184 {
1185 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1186 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1187 	struct pci_dev *pdev = adapter->pdev;
1188 	struct e1000_hw *hw = &adapter->hw;
1189 	u32 rctl;
1190 	int i;
1191 	int ret_val;
1192 
1193 	/* Setup Tx descriptor ring and Tx buffers */
1194 
1195 	if (!tx_ring->count)
1196 		tx_ring->count = E1000_DEFAULT_TXD;
1197 
1198 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1199 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1200 	if (!tx_ring->buffer_info) {
1201 		ret_val = 1;
1202 		goto err_nomem;
1203 	}
1204 
1205 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1206 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1207 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1208 					   &tx_ring->dma, GFP_KERNEL);
1209 	if (!tx_ring->desc) {
1210 		ret_val = 2;
1211 		goto err_nomem;
1212 	}
1213 	tx_ring->next_to_use = 0;
1214 	tx_ring->next_to_clean = 0;
1215 
1216 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1217 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1218 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1219 	ew32(TDH(0), 0);
1220 	ew32(TDT(0), 0);
1221 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1222 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1223 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1224 
1225 	for (i = 0; i < tx_ring->count; i++) {
1226 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1227 		struct sk_buff *skb;
1228 		unsigned int skb_size = 1024;
1229 
1230 		skb = alloc_skb(skb_size, GFP_KERNEL);
1231 		if (!skb) {
1232 			ret_val = 3;
1233 			goto err_nomem;
1234 		}
1235 		skb_put(skb, skb_size);
1236 		tx_ring->buffer_info[i].skb = skb;
1237 		tx_ring->buffer_info[i].length = skb->len;
1238 		tx_ring->buffer_info[i].dma =
1239 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1240 				   DMA_TO_DEVICE);
1241 		if (dma_mapping_error(&pdev->dev,
1242 				      tx_ring->buffer_info[i].dma)) {
1243 			ret_val = 4;
1244 			goto err_nomem;
1245 		}
1246 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1247 		tx_desc->lower.data = cpu_to_le32(skb->len);
1248 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1249 						   E1000_TXD_CMD_IFCS |
1250 						   E1000_TXD_CMD_RS);
1251 		tx_desc->upper.data = 0;
1252 	}
1253 
1254 	/* Setup Rx descriptor ring and Rx buffers */
1255 
1256 	if (!rx_ring->count)
1257 		rx_ring->count = E1000_DEFAULT_RXD;
1258 
1259 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1260 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1261 	if (!rx_ring->buffer_info) {
1262 		ret_val = 5;
1263 		goto err_nomem;
1264 	}
1265 
1266 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1267 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1268 					   &rx_ring->dma, GFP_KERNEL);
1269 	if (!rx_ring->desc) {
1270 		ret_val = 6;
1271 		goto err_nomem;
1272 	}
1273 	rx_ring->next_to_use = 0;
1274 	rx_ring->next_to_clean = 0;
1275 
1276 	rctl = er32(RCTL);
1277 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1278 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1279 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1280 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1281 	ew32(RDLEN(0), rx_ring->size);
1282 	ew32(RDH(0), 0);
1283 	ew32(RDT(0), 0);
1284 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1285 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1286 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1287 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1288 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1289 	ew32(RCTL, rctl);
1290 
1291 	for (i = 0; i < rx_ring->count; i++) {
1292 		union e1000_rx_desc_extended *rx_desc;
1293 		struct sk_buff *skb;
1294 
1295 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1296 		if (!skb) {
1297 			ret_val = 7;
1298 			goto err_nomem;
1299 		}
1300 		skb_reserve(skb, NET_IP_ALIGN);
1301 		rx_ring->buffer_info[i].skb = skb;
1302 		rx_ring->buffer_info[i].dma =
1303 		    dma_map_single(&pdev->dev, skb->data, 2048,
1304 				   DMA_FROM_DEVICE);
1305 		if (dma_mapping_error(&pdev->dev,
1306 				      rx_ring->buffer_info[i].dma)) {
1307 			ret_val = 8;
1308 			goto err_nomem;
1309 		}
1310 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1311 		rx_desc->read.buffer_addr =
1312 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1313 		memset(skb->data, 0x00, skb->len);
1314 	}
1315 
1316 	return 0;
1317 
1318 err_nomem:
1319 	e1000_free_desc_rings(adapter);
1320 	return ret_val;
1321 }
1322 
1323 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1324 {
1325 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1326 	e1e_wphy(&adapter->hw, 29, 0x001F);
1327 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1328 	e1e_wphy(&adapter->hw, 29, 0x001A);
1329 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1330 }
1331 
1332 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1333 {
1334 	struct e1000_hw *hw = &adapter->hw;
1335 	u32 ctrl_reg = 0;
1336 	u16 phy_reg = 0;
1337 	s32 ret_val = 0;
1338 
1339 	hw->mac.autoneg = 0;
1340 
1341 	if (hw->phy.type == e1000_phy_ife) {
1342 		/* force 100, set loopback */
1343 		e1e_wphy(hw, MII_BMCR, 0x6100);
1344 
1345 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1346 		ctrl_reg = er32(CTRL);
1347 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1348 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1349 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1350 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1351 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1352 
1353 		ew32(CTRL, ctrl_reg);
1354 		e1e_flush();
1355 		usleep_range(500, 1000);
1356 
1357 		return 0;
1358 	}
1359 
1360 	/* Specific PHY configuration for loopback */
1361 	switch (hw->phy.type) {
1362 	case e1000_phy_m88:
1363 		/* Auto-MDI/MDIX Off */
1364 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1365 		/* reset to update Auto-MDI/MDIX */
1366 		e1e_wphy(hw, MII_BMCR, 0x9140);
1367 		/* autoneg off */
1368 		e1e_wphy(hw, MII_BMCR, 0x8140);
1369 		break;
1370 	case e1000_phy_gg82563:
1371 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1372 		break;
1373 	case e1000_phy_bm:
1374 		/* Set Default MAC Interface speed to 1GB */
1375 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1376 		phy_reg &= ~0x0007;
1377 		phy_reg |= 0x006;
1378 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1379 		/* Assert SW reset for above settings to take effect */
1380 		hw->phy.ops.commit(hw);
1381 		usleep_range(1000, 2000);
1382 		/* Force Full Duplex */
1383 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1384 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1385 		/* Set Link Up (in force link) */
1386 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1387 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1388 		/* Force Link */
1389 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1390 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1391 		/* Set Early Link Enable */
1392 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1393 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1394 		break;
1395 	case e1000_phy_82577:
1396 	case e1000_phy_82578:
1397 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1398 		ret_val = hw->phy.ops.acquire(hw);
1399 		if (ret_val) {
1400 			e_err("Cannot setup 1Gbps loopback.\n");
1401 			return ret_val;
1402 		}
1403 		e1000_configure_k1_ich8lan(hw, false);
1404 		hw->phy.ops.release(hw);
1405 		break;
1406 	case e1000_phy_82579:
1407 		/* Disable PHY energy detect power down */
1408 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1409 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1410 		/* Disable full chip energy detect */
1411 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1412 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1413 		/* Enable loopback on the PHY */
1414 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1415 		break;
1416 	default:
1417 		break;
1418 	}
1419 
1420 	/* force 1000, set loopback */
1421 	e1e_wphy(hw, MII_BMCR, 0x4140);
1422 	msleep(250);
1423 
1424 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1425 	ctrl_reg = er32(CTRL);
1426 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1427 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1428 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1429 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1430 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1431 
1432 	if (adapter->flags & FLAG_IS_ICH)
1433 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1434 
1435 	if (hw->phy.media_type == e1000_media_type_copper &&
1436 	    hw->phy.type == e1000_phy_m88) {
1437 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1438 	} else {
1439 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1440 		 * detected.
1441 		 */
1442 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1443 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1444 	}
1445 
1446 	ew32(CTRL, ctrl_reg);
1447 
1448 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1449 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1450 	 */
1451 	if (hw->phy.type == e1000_phy_m88)
1452 		e1000_phy_disable_receiver(adapter);
1453 
1454 	usleep_range(500, 1000);
1455 
1456 	return 0;
1457 }
1458 
1459 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1460 {
1461 	struct e1000_hw *hw = &adapter->hw;
1462 	u32 ctrl = er32(CTRL);
1463 	int link;
1464 
1465 	/* special requirements for 82571/82572 fiber adapters */
1466 
1467 	/* jump through hoops to make sure link is up because serdes
1468 	 * link is hardwired up
1469 	 */
1470 	ctrl |= E1000_CTRL_SLU;
1471 	ew32(CTRL, ctrl);
1472 
1473 	/* disable autoneg */
1474 	ctrl = er32(TXCW);
1475 	ctrl &= ~BIT(31);
1476 	ew32(TXCW, ctrl);
1477 
1478 	link = (er32(STATUS) & E1000_STATUS_LU);
1479 
1480 	if (!link) {
1481 		/* set invert loss of signal */
1482 		ctrl = er32(CTRL);
1483 		ctrl |= E1000_CTRL_ILOS;
1484 		ew32(CTRL, ctrl);
1485 	}
1486 
1487 	/* special write to serdes control register to enable SerDes analog
1488 	 * loopback
1489 	 */
1490 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1491 	e1e_flush();
1492 	usleep_range(10000, 20000);
1493 
1494 	return 0;
1495 }
1496 
1497 /* only call this for fiber/serdes connections to es2lan */
1498 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1499 {
1500 	struct e1000_hw *hw = &adapter->hw;
1501 	u32 ctrlext = er32(CTRL_EXT);
1502 	u32 ctrl = er32(CTRL);
1503 
1504 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1505 	 * on mac_type 80003es2lan)
1506 	 */
1507 	adapter->tx_fifo_head = ctrlext;
1508 
1509 	/* clear the serdes mode bits, putting the device into mac loopback */
1510 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1511 	ew32(CTRL_EXT, ctrlext);
1512 
1513 	/* force speed to 1000/FD, link up */
1514 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1515 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1516 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1517 	ew32(CTRL, ctrl);
1518 
1519 	/* set mac loopback */
1520 	ctrl = er32(RCTL);
1521 	ctrl |= E1000_RCTL_LBM_MAC;
1522 	ew32(RCTL, ctrl);
1523 
1524 	/* set testing mode parameters (no need to reset later) */
1525 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1526 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1527 	ew32(KMRNCTRLSTA,
1528 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1529 
1530 	return 0;
1531 }
1532 
1533 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1534 {
1535 	struct e1000_hw *hw = &adapter->hw;
1536 	u32 rctl, fext_nvm11, tarc0;
1537 
1538 	if (hw->mac.type >= e1000_pch_spt) {
1539 		fext_nvm11 = er32(FEXTNVM11);
1540 		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1541 		ew32(FEXTNVM11, fext_nvm11);
1542 		tarc0 = er32(TARC(0));
1543 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1544 		tarc0 &= 0xcfffffff;
1545 		/* set bit 29 (value of MULR requests is now 2) */
1546 		tarc0 |= 0x20000000;
1547 		ew32(TARC(0), tarc0);
1548 	}
1549 	if (hw->phy.media_type == e1000_media_type_fiber ||
1550 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1551 		switch (hw->mac.type) {
1552 		case e1000_80003es2lan:
1553 			return e1000_set_es2lan_mac_loopback(adapter);
1554 		case e1000_82571:
1555 		case e1000_82572:
1556 			return e1000_set_82571_fiber_loopback(adapter);
1557 		default:
1558 			rctl = er32(RCTL);
1559 			rctl |= E1000_RCTL_LBM_TCVR;
1560 			ew32(RCTL, rctl);
1561 			return 0;
1562 		}
1563 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1564 		return e1000_integrated_phy_loopback(adapter);
1565 	}
1566 
1567 	return 7;
1568 }
1569 
1570 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1571 {
1572 	struct e1000_hw *hw = &adapter->hw;
1573 	u32 rctl, fext_nvm11, tarc0;
1574 	u16 phy_reg;
1575 
1576 	rctl = er32(RCTL);
1577 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1578 	ew32(RCTL, rctl);
1579 
1580 	switch (hw->mac.type) {
1581 	case e1000_pch_spt:
1582 	case e1000_pch_cnp:
1583 		fext_nvm11 = er32(FEXTNVM11);
1584 		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1585 		ew32(FEXTNVM11, fext_nvm11);
1586 		tarc0 = er32(TARC(0));
1587 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1588 		/* set bit 29 (value of MULR requests is now 0) */
1589 		tarc0 &= 0xcfffffff;
1590 		ew32(TARC(0), tarc0);
1591 		/* fall through */
1592 	case e1000_80003es2lan:
1593 		if (hw->phy.media_type == e1000_media_type_fiber ||
1594 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1595 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1596 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1597 			adapter->tx_fifo_head = 0;
1598 		}
1599 		/* fall through */
1600 	case e1000_82571:
1601 	case e1000_82572:
1602 		if (hw->phy.media_type == e1000_media_type_fiber ||
1603 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1604 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1605 			e1e_flush();
1606 			usleep_range(10000, 20000);
1607 			break;
1608 		}
1609 		/* Fall Through */
1610 	default:
1611 		hw->mac.autoneg = 1;
1612 		if (hw->phy.type == e1000_phy_gg82563)
1613 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1614 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1615 		if (phy_reg & BMCR_LOOPBACK) {
1616 			phy_reg &= ~BMCR_LOOPBACK;
1617 			e1e_wphy(hw, MII_BMCR, phy_reg);
1618 			if (hw->phy.ops.commit)
1619 				hw->phy.ops.commit(hw);
1620 		}
1621 		break;
1622 	}
1623 }
1624 
1625 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1626 				      unsigned int frame_size)
1627 {
1628 	memset(skb->data, 0xFF, frame_size);
1629 	frame_size &= ~1;
1630 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1631 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1632 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1633 }
1634 
1635 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1636 				    unsigned int frame_size)
1637 {
1638 	frame_size &= ~1;
1639 	if (*(skb->data + 3) == 0xFF)
1640 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1641 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1642 			return 0;
1643 	return 13;
1644 }
1645 
1646 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1647 {
1648 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1649 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1650 	struct pci_dev *pdev = adapter->pdev;
1651 	struct e1000_hw *hw = &adapter->hw;
1652 	struct e1000_buffer *buffer_info;
1653 	int i, j, k, l;
1654 	int lc;
1655 	int good_cnt;
1656 	int ret_val = 0;
1657 	unsigned long time;
1658 
1659 	ew32(RDT(0), rx_ring->count - 1);
1660 
1661 	/* Calculate the loop count based on the largest descriptor ring
1662 	 * The idea is to wrap the largest ring a number of times using 64
1663 	 * send/receive pairs during each loop
1664 	 */
1665 
1666 	if (rx_ring->count <= tx_ring->count)
1667 		lc = ((tx_ring->count / 64) * 2) + 1;
1668 	else
1669 		lc = ((rx_ring->count / 64) * 2) + 1;
1670 
1671 	k = 0;
1672 	l = 0;
1673 	/* loop count loop */
1674 	for (j = 0; j <= lc; j++) {
1675 		/* send the packets */
1676 		for (i = 0; i < 64; i++) {
1677 			buffer_info = &tx_ring->buffer_info[k];
1678 
1679 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1680 			dma_sync_single_for_device(&pdev->dev,
1681 						   buffer_info->dma,
1682 						   buffer_info->length,
1683 						   DMA_TO_DEVICE);
1684 			k++;
1685 			if (k == tx_ring->count)
1686 				k = 0;
1687 		}
1688 		ew32(TDT(0), k);
1689 		e1e_flush();
1690 		msleep(200);
1691 		time = jiffies;	/* set the start time for the receive */
1692 		good_cnt = 0;
1693 		/* receive the sent packets */
1694 		do {
1695 			buffer_info = &rx_ring->buffer_info[l];
1696 
1697 			dma_sync_single_for_cpu(&pdev->dev,
1698 						buffer_info->dma, 2048,
1699 						DMA_FROM_DEVICE);
1700 
1701 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1702 							   1024);
1703 			if (!ret_val)
1704 				good_cnt++;
1705 			l++;
1706 			if (l == rx_ring->count)
1707 				l = 0;
1708 			/* time + 20 msecs (200 msecs on 2.4) is more than
1709 			 * enough time to complete the receives, if it's
1710 			 * exceeded, break and error off
1711 			 */
1712 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1713 		if (good_cnt != 64) {
1714 			ret_val = 13;	/* ret_val is the same as mis-compare */
1715 			break;
1716 		}
1717 		if (time_after(jiffies, time + 20)) {
1718 			ret_val = 14;	/* error code for time out error */
1719 			break;
1720 		}
1721 	}
1722 	return ret_val;
1723 }
1724 
1725 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1726 {
1727 	struct e1000_hw *hw = &adapter->hw;
1728 
1729 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1730 	if (hw->phy.ops.check_reset_block &&
1731 	    hw->phy.ops.check_reset_block(hw)) {
1732 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1733 		*data = 0;
1734 		goto out;
1735 	}
1736 
1737 	*data = e1000_setup_desc_rings(adapter);
1738 	if (*data)
1739 		goto out;
1740 
1741 	*data = e1000_setup_loopback_test(adapter);
1742 	if (*data)
1743 		goto err_loopback;
1744 
1745 	*data = e1000_run_loopback_test(adapter);
1746 	e1000_loopback_cleanup(adapter);
1747 
1748 err_loopback:
1749 	e1000_free_desc_rings(adapter);
1750 out:
1751 	return *data;
1752 }
1753 
1754 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1755 {
1756 	struct e1000_hw *hw = &adapter->hw;
1757 
1758 	*data = 0;
1759 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1760 		int i = 0;
1761 
1762 		hw->mac.serdes_has_link = false;
1763 
1764 		/* On some blade server designs, link establishment
1765 		 * could take as long as 2-3 minutes
1766 		 */
1767 		do {
1768 			hw->mac.ops.check_for_link(hw);
1769 			if (hw->mac.serdes_has_link)
1770 				return *data;
1771 			msleep(20);
1772 		} while (i++ < 3750);
1773 
1774 		*data = 1;
1775 	} else {
1776 		hw->mac.ops.check_for_link(hw);
1777 		if (hw->mac.autoneg)
1778 			/* On some Phy/switch combinations, link establishment
1779 			 * can take a few seconds more than expected.
1780 			 */
1781 			msleep_interruptible(5000);
1782 
1783 		if (!(er32(STATUS) & E1000_STATUS_LU))
1784 			*data = 1;
1785 	}
1786 	return *data;
1787 }
1788 
1789 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1790 				 int sset)
1791 {
1792 	switch (sset) {
1793 	case ETH_SS_TEST:
1794 		return E1000_TEST_LEN;
1795 	case ETH_SS_STATS:
1796 		return E1000_STATS_LEN;
1797 	default:
1798 		return -EOPNOTSUPP;
1799 	}
1800 }
1801 
1802 static void e1000_diag_test(struct net_device *netdev,
1803 			    struct ethtool_test *eth_test, u64 *data)
1804 {
1805 	struct e1000_adapter *adapter = netdev_priv(netdev);
1806 	u16 autoneg_advertised;
1807 	u8 forced_speed_duplex;
1808 	u8 autoneg;
1809 	bool if_running = netif_running(netdev);
1810 
1811 	pm_runtime_get_sync(netdev->dev.parent);
1812 
1813 	set_bit(__E1000_TESTING, &adapter->state);
1814 
1815 	if (!if_running) {
1816 		/* Get control of and reset hardware */
1817 		if (adapter->flags & FLAG_HAS_AMT)
1818 			e1000e_get_hw_control(adapter);
1819 
1820 		e1000e_power_up_phy(adapter);
1821 
1822 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1823 		e1000e_reset(adapter);
1824 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1825 	}
1826 
1827 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1828 		/* Offline tests */
1829 
1830 		/* save speed, duplex, autoneg settings */
1831 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1832 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1833 		autoneg = adapter->hw.mac.autoneg;
1834 
1835 		e_info("offline testing starting\n");
1836 
1837 		if (if_running)
1838 			/* indicate we're in test mode */
1839 			e1000e_close(netdev);
1840 
1841 		if (e1000_reg_test(adapter, &data[0]))
1842 			eth_test->flags |= ETH_TEST_FL_FAILED;
1843 
1844 		e1000e_reset(adapter);
1845 		if (e1000_eeprom_test(adapter, &data[1]))
1846 			eth_test->flags |= ETH_TEST_FL_FAILED;
1847 
1848 		e1000e_reset(adapter);
1849 		if (e1000_intr_test(adapter, &data[2]))
1850 			eth_test->flags |= ETH_TEST_FL_FAILED;
1851 
1852 		e1000e_reset(adapter);
1853 		if (e1000_loopback_test(adapter, &data[3]))
1854 			eth_test->flags |= ETH_TEST_FL_FAILED;
1855 
1856 		/* force this routine to wait until autoneg complete/timeout */
1857 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1858 		e1000e_reset(adapter);
1859 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1860 
1861 		if (e1000_link_test(adapter, &data[4]))
1862 			eth_test->flags |= ETH_TEST_FL_FAILED;
1863 
1864 		/* restore speed, duplex, autoneg settings */
1865 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1866 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1867 		adapter->hw.mac.autoneg = autoneg;
1868 		e1000e_reset(adapter);
1869 
1870 		clear_bit(__E1000_TESTING, &adapter->state);
1871 		if (if_running)
1872 			e1000e_open(netdev);
1873 	} else {
1874 		/* Online tests */
1875 
1876 		e_info("online testing starting\n");
1877 
1878 		/* register, eeprom, intr and loopback tests not run online */
1879 		data[0] = 0;
1880 		data[1] = 0;
1881 		data[2] = 0;
1882 		data[3] = 0;
1883 
1884 		if (e1000_link_test(adapter, &data[4]))
1885 			eth_test->flags |= ETH_TEST_FL_FAILED;
1886 
1887 		clear_bit(__E1000_TESTING, &adapter->state);
1888 	}
1889 
1890 	if (!if_running) {
1891 		e1000e_reset(adapter);
1892 
1893 		if (adapter->flags & FLAG_HAS_AMT)
1894 			e1000e_release_hw_control(adapter);
1895 	}
1896 
1897 	msleep_interruptible(4 * 1000);
1898 
1899 	pm_runtime_put_sync(netdev->dev.parent);
1900 }
1901 
1902 static void e1000_get_wol(struct net_device *netdev,
1903 			  struct ethtool_wolinfo *wol)
1904 {
1905 	struct e1000_adapter *adapter = netdev_priv(netdev);
1906 
1907 	wol->supported = 0;
1908 	wol->wolopts = 0;
1909 
1910 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1911 	    !device_can_wakeup(&adapter->pdev->dev))
1912 		return;
1913 
1914 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1915 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1916 
1917 	/* apply any specific unsupported masks here */
1918 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1919 		wol->supported &= ~WAKE_UCAST;
1920 
1921 		if (adapter->wol & E1000_WUFC_EX)
1922 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1923 	}
1924 
1925 	if (adapter->wol & E1000_WUFC_EX)
1926 		wol->wolopts |= WAKE_UCAST;
1927 	if (adapter->wol & E1000_WUFC_MC)
1928 		wol->wolopts |= WAKE_MCAST;
1929 	if (adapter->wol & E1000_WUFC_BC)
1930 		wol->wolopts |= WAKE_BCAST;
1931 	if (adapter->wol & E1000_WUFC_MAG)
1932 		wol->wolopts |= WAKE_MAGIC;
1933 	if (adapter->wol & E1000_WUFC_LNKC)
1934 		wol->wolopts |= WAKE_PHY;
1935 }
1936 
1937 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1938 {
1939 	struct e1000_adapter *adapter = netdev_priv(netdev);
1940 
1941 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1942 	    !device_can_wakeup(&adapter->pdev->dev) ||
1943 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1944 			      WAKE_MAGIC | WAKE_PHY)))
1945 		return -EOPNOTSUPP;
1946 
1947 	/* these settings will always override what we currently have */
1948 	adapter->wol = 0;
1949 
1950 	if (wol->wolopts & WAKE_UCAST)
1951 		adapter->wol |= E1000_WUFC_EX;
1952 	if (wol->wolopts & WAKE_MCAST)
1953 		adapter->wol |= E1000_WUFC_MC;
1954 	if (wol->wolopts & WAKE_BCAST)
1955 		adapter->wol |= E1000_WUFC_BC;
1956 	if (wol->wolopts & WAKE_MAGIC)
1957 		adapter->wol |= E1000_WUFC_MAG;
1958 	if (wol->wolopts & WAKE_PHY)
1959 		adapter->wol |= E1000_WUFC_LNKC;
1960 
1961 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1962 
1963 	return 0;
1964 }
1965 
1966 static int e1000_set_phys_id(struct net_device *netdev,
1967 			     enum ethtool_phys_id_state state)
1968 {
1969 	struct e1000_adapter *adapter = netdev_priv(netdev);
1970 	struct e1000_hw *hw = &adapter->hw;
1971 
1972 	switch (state) {
1973 	case ETHTOOL_ID_ACTIVE:
1974 		pm_runtime_get_sync(netdev->dev.parent);
1975 
1976 		if (!hw->mac.ops.blink_led)
1977 			return 2;	/* cycle on/off twice per second */
1978 
1979 		hw->mac.ops.blink_led(hw);
1980 		break;
1981 
1982 	case ETHTOOL_ID_INACTIVE:
1983 		if (hw->phy.type == e1000_phy_ife)
1984 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1985 		hw->mac.ops.led_off(hw);
1986 		hw->mac.ops.cleanup_led(hw);
1987 		pm_runtime_put_sync(netdev->dev.parent);
1988 		break;
1989 
1990 	case ETHTOOL_ID_ON:
1991 		hw->mac.ops.led_on(hw);
1992 		break;
1993 
1994 	case ETHTOOL_ID_OFF:
1995 		hw->mac.ops.led_off(hw);
1996 		break;
1997 	}
1998 
1999 	return 0;
2000 }
2001 
2002 static int e1000_get_coalesce(struct net_device *netdev,
2003 			      struct ethtool_coalesce *ec)
2004 {
2005 	struct e1000_adapter *adapter = netdev_priv(netdev);
2006 
2007 	if (adapter->itr_setting <= 4)
2008 		ec->rx_coalesce_usecs = adapter->itr_setting;
2009 	else
2010 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2011 
2012 	return 0;
2013 }
2014 
2015 static int e1000_set_coalesce(struct net_device *netdev,
2016 			      struct ethtool_coalesce *ec)
2017 {
2018 	struct e1000_adapter *adapter = netdev_priv(netdev);
2019 
2020 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2021 	    ((ec->rx_coalesce_usecs > 4) &&
2022 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2023 	    (ec->rx_coalesce_usecs == 2))
2024 		return -EINVAL;
2025 
2026 	if (ec->rx_coalesce_usecs == 4) {
2027 		adapter->itr_setting = 4;
2028 		adapter->itr = adapter->itr_setting;
2029 	} else if (ec->rx_coalesce_usecs <= 3) {
2030 		adapter->itr = 20000;
2031 		adapter->itr_setting = ec->rx_coalesce_usecs;
2032 	} else {
2033 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2034 		adapter->itr_setting = adapter->itr & ~3;
2035 	}
2036 
2037 	pm_runtime_get_sync(netdev->dev.parent);
2038 
2039 	if (adapter->itr_setting != 0)
2040 		e1000e_write_itr(adapter, adapter->itr);
2041 	else
2042 		e1000e_write_itr(adapter, 0);
2043 
2044 	pm_runtime_put_sync(netdev->dev.parent);
2045 
2046 	return 0;
2047 }
2048 
2049 static int e1000_nway_reset(struct net_device *netdev)
2050 {
2051 	struct e1000_adapter *adapter = netdev_priv(netdev);
2052 
2053 	if (!netif_running(netdev))
2054 		return -EAGAIN;
2055 
2056 	if (!adapter->hw.mac.autoneg)
2057 		return -EINVAL;
2058 
2059 	pm_runtime_get_sync(netdev->dev.parent);
2060 	e1000e_reinit_locked(adapter);
2061 	pm_runtime_put_sync(netdev->dev.parent);
2062 
2063 	return 0;
2064 }
2065 
2066 static void e1000_get_ethtool_stats(struct net_device *netdev,
2067 				    struct ethtool_stats __always_unused *stats,
2068 				    u64 *data)
2069 {
2070 	struct e1000_adapter *adapter = netdev_priv(netdev);
2071 	struct rtnl_link_stats64 net_stats;
2072 	int i;
2073 	char *p = NULL;
2074 
2075 	pm_runtime_get_sync(netdev->dev.parent);
2076 
2077 	dev_get_stats(netdev, &net_stats);
2078 
2079 	pm_runtime_put_sync(netdev->dev.parent);
2080 
2081 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2082 		switch (e1000_gstrings_stats[i].type) {
2083 		case NETDEV_STATS:
2084 			p = (char *)&net_stats +
2085 			    e1000_gstrings_stats[i].stat_offset;
2086 			break;
2087 		case E1000_STATS:
2088 			p = (char *)adapter +
2089 			    e1000_gstrings_stats[i].stat_offset;
2090 			break;
2091 		default:
2092 			data[i] = 0;
2093 			continue;
2094 		}
2095 
2096 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2097 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2098 	}
2099 }
2100 
2101 static void e1000_get_strings(struct net_device __always_unused *netdev,
2102 			      u32 stringset, u8 *data)
2103 {
2104 	u8 *p = data;
2105 	int i;
2106 
2107 	switch (stringset) {
2108 	case ETH_SS_TEST:
2109 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2110 		break;
2111 	case ETH_SS_STATS:
2112 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2113 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2114 			       ETH_GSTRING_LEN);
2115 			p += ETH_GSTRING_LEN;
2116 		}
2117 		break;
2118 	}
2119 }
2120 
2121 static int e1000_get_rxnfc(struct net_device *netdev,
2122 			   struct ethtool_rxnfc *info,
2123 			   u32 __always_unused *rule_locs)
2124 {
2125 	info->data = 0;
2126 
2127 	switch (info->cmd) {
2128 	case ETHTOOL_GRXFH: {
2129 		struct e1000_adapter *adapter = netdev_priv(netdev);
2130 		struct e1000_hw *hw = &adapter->hw;
2131 		u32 mrqc;
2132 
2133 		pm_runtime_get_sync(netdev->dev.parent);
2134 		mrqc = er32(MRQC);
2135 		pm_runtime_put_sync(netdev->dev.parent);
2136 
2137 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2138 			return 0;
2139 
2140 		switch (info->flow_type) {
2141 		case TCP_V4_FLOW:
2142 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2143 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2144 			/* fall through */
2145 		case UDP_V4_FLOW:
2146 		case SCTP_V4_FLOW:
2147 		case AH_ESP_V4_FLOW:
2148 		case IPV4_FLOW:
2149 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2150 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2151 			break;
2152 		case TCP_V6_FLOW:
2153 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2154 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2155 			/* fall through */
2156 		case UDP_V6_FLOW:
2157 		case SCTP_V6_FLOW:
2158 		case AH_ESP_V6_FLOW:
2159 		case IPV6_FLOW:
2160 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2161 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2162 			break;
2163 		default:
2164 			break;
2165 		}
2166 		return 0;
2167 	}
2168 	default:
2169 		return -EOPNOTSUPP;
2170 	}
2171 }
2172 
2173 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2174 {
2175 	struct e1000_adapter *adapter = netdev_priv(netdev);
2176 	struct e1000_hw *hw = &adapter->hw;
2177 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2178 	u32 ret_val;
2179 
2180 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2181 		return -EOPNOTSUPP;
2182 
2183 	switch (hw->phy.type) {
2184 	case e1000_phy_82579:
2185 		cap_addr = I82579_EEE_CAPABILITY;
2186 		lpa_addr = I82579_EEE_LP_ABILITY;
2187 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2188 		break;
2189 	case e1000_phy_i217:
2190 		cap_addr = I217_EEE_CAPABILITY;
2191 		lpa_addr = I217_EEE_LP_ABILITY;
2192 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2193 		break;
2194 	default:
2195 		return -EOPNOTSUPP;
2196 	}
2197 
2198 	pm_runtime_get_sync(netdev->dev.parent);
2199 
2200 	ret_val = hw->phy.ops.acquire(hw);
2201 	if (ret_val) {
2202 		pm_runtime_put_sync(netdev->dev.parent);
2203 		return -EBUSY;
2204 	}
2205 
2206 	/* EEE Capability */
2207 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2208 	if (ret_val)
2209 		goto release;
2210 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2211 
2212 	/* EEE Advertised */
2213 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2214 
2215 	/* EEE Link Partner Advertised */
2216 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2217 	if (ret_val)
2218 		goto release;
2219 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2220 
2221 	/* EEE PCS Status */
2222 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2223 	if (ret_val)
2224 		goto release;
2225 	if (hw->phy.type == e1000_phy_82579)
2226 		phy_data <<= 8;
2227 
2228 	/* Result of the EEE auto negotiation - there is no register that
2229 	 * has the status of the EEE negotiation so do a best-guess based
2230 	 * on whether Tx or Rx LPI indications have been received.
2231 	 */
2232 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2233 		edata->eee_active = true;
2234 
2235 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2236 	edata->tx_lpi_enabled = true;
2237 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2238 
2239 release:
2240 	hw->phy.ops.release(hw);
2241 	if (ret_val)
2242 		ret_val = -ENODATA;
2243 
2244 	pm_runtime_put_sync(netdev->dev.parent);
2245 
2246 	return ret_val;
2247 }
2248 
2249 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2250 {
2251 	struct e1000_adapter *adapter = netdev_priv(netdev);
2252 	struct e1000_hw *hw = &adapter->hw;
2253 	struct ethtool_eee eee_curr;
2254 	s32 ret_val;
2255 
2256 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2257 	if (ret_val)
2258 		return ret_val;
2259 
2260 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2261 		e_err("Setting EEE tx-lpi is not supported\n");
2262 		return -EINVAL;
2263 	}
2264 
2265 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2266 		e_err("Setting EEE Tx LPI timer is not supported\n");
2267 		return -EINVAL;
2268 	}
2269 
2270 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2271 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2272 		return -EINVAL;
2273 	}
2274 
2275 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2276 
2277 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2278 
2279 	pm_runtime_get_sync(netdev->dev.parent);
2280 
2281 	/* reset the link */
2282 	if (netif_running(netdev))
2283 		e1000e_reinit_locked(adapter);
2284 	else
2285 		e1000e_reset(adapter);
2286 
2287 	pm_runtime_put_sync(netdev->dev.parent);
2288 
2289 	return 0;
2290 }
2291 
2292 static int e1000e_get_ts_info(struct net_device *netdev,
2293 			      struct ethtool_ts_info *info)
2294 {
2295 	struct e1000_adapter *adapter = netdev_priv(netdev);
2296 
2297 	ethtool_op_get_ts_info(netdev, info);
2298 
2299 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2300 		return 0;
2301 
2302 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2303 				  SOF_TIMESTAMPING_RX_HARDWARE |
2304 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2305 
2306 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2307 
2308 	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2309 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2310 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2311 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2312 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2313 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2314 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2315 			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2316 			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2317 			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2318 			    BIT(HWTSTAMP_FILTER_ALL));
2319 
2320 	if (adapter->ptp_clock)
2321 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2322 
2323 	return 0;
2324 }
2325 
2326 static const struct ethtool_ops e1000_ethtool_ops = {
2327 	.get_drvinfo		= e1000_get_drvinfo,
2328 	.get_regs_len		= e1000_get_regs_len,
2329 	.get_regs		= e1000_get_regs,
2330 	.get_wol		= e1000_get_wol,
2331 	.set_wol		= e1000_set_wol,
2332 	.get_msglevel		= e1000_get_msglevel,
2333 	.set_msglevel		= e1000_set_msglevel,
2334 	.nway_reset		= e1000_nway_reset,
2335 	.get_link		= ethtool_op_get_link,
2336 	.get_eeprom_len		= e1000_get_eeprom_len,
2337 	.get_eeprom		= e1000_get_eeprom,
2338 	.set_eeprom		= e1000_set_eeprom,
2339 	.get_ringparam		= e1000_get_ringparam,
2340 	.set_ringparam		= e1000_set_ringparam,
2341 	.get_pauseparam		= e1000_get_pauseparam,
2342 	.set_pauseparam		= e1000_set_pauseparam,
2343 	.self_test		= e1000_diag_test,
2344 	.get_strings		= e1000_get_strings,
2345 	.set_phys_id		= e1000_set_phys_id,
2346 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2347 	.get_sset_count		= e1000e_get_sset_count,
2348 	.get_coalesce		= e1000_get_coalesce,
2349 	.set_coalesce		= e1000_set_coalesce,
2350 	.get_rxnfc		= e1000_get_rxnfc,
2351 	.get_ts_info		= e1000e_get_ts_info,
2352 	.get_eee		= e1000e_get_eee,
2353 	.set_eee		= e1000e_set_eee,
2354 	.get_link_ksettings	= e1000_get_link_ksettings,
2355 	.set_link_ksettings	= e1000_set_link_ksettings,
2356 };
2357 
2358 void e1000e_set_ethtool_ops(struct net_device *netdev)
2359 {
2360 	netdev->ethtool_ops = &e1000_ethtool_ops;
2361 }
2362