xref: /openbmc/linux/drivers/net/ethernet/intel/e1000e/ethtool.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* ethtool support for e1000 */
5 
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14 
15 #include "e1000.h"
16 
17 enum { NETDEV_STATS, E1000_STATS };
18 
19 struct e1000_stats {
20 	char stat_string[ETH_GSTRING_LEN];
21 	int type;
22 	int sizeof_stat;
23 	int stat_offset;
24 };
25 
26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED	BIT(0)
28 	"s0ix-enabled",
29 };
30 
31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
32 
33 #define E1000_STAT(str, m) { \
34 		.stat_string = str, \
35 		.type = E1000_STATS, \
36 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37 		.stat_offset = offsetof(struct e1000_adapter, m) }
38 #define E1000_NETDEV_STAT(str, m) { \
39 		.stat_string = str, \
40 		.type = NETDEV_STATS, \
41 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
43 
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45 	E1000_STAT("rx_packets", stats.gprc),
46 	E1000_STAT("tx_packets", stats.gptc),
47 	E1000_STAT("rx_bytes", stats.gorc),
48 	E1000_STAT("tx_bytes", stats.gotc),
49 	E1000_STAT("rx_broadcast", stats.bprc),
50 	E1000_STAT("tx_broadcast", stats.bptc),
51 	E1000_STAT("rx_multicast", stats.mprc),
52 	E1000_STAT("tx_multicast", stats.mptc),
53 	E1000_NETDEV_STAT("rx_errors", rx_errors),
54 	E1000_NETDEV_STAT("tx_errors", tx_errors),
55 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
56 	E1000_STAT("multicast", stats.mprc),
57 	E1000_STAT("collisions", stats.colc),
58 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
59 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
60 	E1000_STAT("rx_crc_errors", stats.crcerrs),
61 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
62 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
63 	E1000_STAT("rx_missed_errors", stats.mpc),
64 	E1000_STAT("tx_aborted_errors", stats.ecol),
65 	E1000_STAT("tx_carrier_errors", stats.tncrs),
66 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
67 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
68 	E1000_STAT("tx_window_errors", stats.latecol),
69 	E1000_STAT("tx_abort_late_coll", stats.latecol),
70 	E1000_STAT("tx_deferred_ok", stats.dc),
71 	E1000_STAT("tx_single_coll_ok", stats.scc),
72 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
73 	E1000_STAT("tx_timeout_count", tx_timeout_count),
74 	E1000_STAT("tx_restart_queue", restart_queue),
75 	E1000_STAT("rx_long_length_errors", stats.roc),
76 	E1000_STAT("rx_short_length_errors", stats.ruc),
77 	E1000_STAT("rx_align_errors", stats.algnerrc),
78 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
79 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
81 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
83 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
84 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
85 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
86 	E1000_STAT("rx_header_split", rx_hdr_split),
87 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
88 	E1000_STAT("tx_smbus", stats.mgptc),
89 	E1000_STAT("rx_smbus", stats.mgprc),
90 	E1000_STAT("dropped_smbus", stats.mgpdc),
91 	E1000_STAT("rx_dma_failed", rx_dma_failed),
92 	E1000_STAT("tx_dma_failed", tx_dma_failed),
93 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
95 	E1000_STAT("corr_ecc_errors", corr_errors),
96 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
98 };
99 
100 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 	"Register test  (offline)", "Eeprom test    (offline)",
104 	"Interrupt test (offline)", "Loopback test  (offline)",
105 	"Link test   (on/offline)"
106 };
107 
108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 
110 static int e1000_get_link_ksettings(struct net_device *netdev,
111 				    struct ethtool_link_ksettings *cmd)
112 {
113 	struct e1000_adapter *adapter = netdev_priv(netdev);
114 	struct e1000_hw *hw = &adapter->hw;
115 	u32 speed, supported, advertising;
116 
117 	if (hw->phy.media_type == e1000_media_type_copper) {
118 		supported = (SUPPORTED_10baseT_Half |
119 			     SUPPORTED_10baseT_Full |
120 			     SUPPORTED_100baseT_Half |
121 			     SUPPORTED_100baseT_Full |
122 			     SUPPORTED_1000baseT_Full |
123 			     SUPPORTED_Autoneg |
124 			     SUPPORTED_TP);
125 		if (hw->phy.type == e1000_phy_ife)
126 			supported &= ~SUPPORTED_1000baseT_Full;
127 		advertising = ADVERTISED_TP;
128 
129 		if (hw->mac.autoneg == 1) {
130 			advertising |= ADVERTISED_Autoneg;
131 			/* the e1000 autoneg seems to match ethtool nicely */
132 			advertising |= hw->phy.autoneg_advertised;
133 		}
134 
135 		cmd->base.port = PORT_TP;
136 		cmd->base.phy_address = hw->phy.addr;
137 	} else {
138 		supported   = (SUPPORTED_1000baseT_Full |
139 			       SUPPORTED_FIBRE |
140 			       SUPPORTED_Autoneg);
141 
142 		advertising = (ADVERTISED_1000baseT_Full |
143 			       ADVERTISED_FIBRE |
144 			       ADVERTISED_Autoneg);
145 
146 		cmd->base.port = PORT_FIBRE;
147 	}
148 
149 	speed = SPEED_UNKNOWN;
150 	cmd->base.duplex = DUPLEX_UNKNOWN;
151 
152 	if (netif_running(netdev)) {
153 		if (netif_carrier_ok(netdev)) {
154 			speed = adapter->link_speed;
155 			cmd->base.duplex = adapter->link_duplex - 1;
156 		}
157 	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
158 		u32 status = er32(STATUS);
159 
160 		if (status & E1000_STATUS_LU) {
161 			if (status & E1000_STATUS_SPEED_1000)
162 				speed = SPEED_1000;
163 			else if (status & E1000_STATUS_SPEED_100)
164 				speed = SPEED_100;
165 			else
166 				speed = SPEED_10;
167 
168 			if (status & E1000_STATUS_FD)
169 				cmd->base.duplex = DUPLEX_FULL;
170 			else
171 				cmd->base.duplex = DUPLEX_HALF;
172 		}
173 	}
174 
175 	cmd->base.speed = speed;
176 	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
177 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
178 
179 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
180 	if ((hw->phy.media_type == e1000_media_type_copper) &&
181 	    netif_carrier_ok(netdev))
182 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
183 			ETH_TP_MDI_X : ETH_TP_MDI;
184 	else
185 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
186 
187 	if (hw->phy.mdix == AUTO_ALL_MODES)
188 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
189 	else
190 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
191 
192 	if (hw->phy.media_type != e1000_media_type_copper)
193 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
194 
195 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
196 						supported);
197 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
198 						advertising);
199 
200 	return 0;
201 }
202 
203 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
204 {
205 	struct e1000_mac_info *mac = &adapter->hw.mac;
206 
207 	mac->autoneg = 0;
208 
209 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
210 	 * for the switch() below to work
211 	 */
212 	if ((spd & 1) || (dplx & ~1))
213 		goto err_inval;
214 
215 	/* Fiber NICs only allow 1000 gbps Full duplex */
216 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
218 		goto err_inval;
219 	}
220 
221 	switch (spd + dplx) {
222 	case SPEED_10 + DUPLEX_HALF:
223 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
224 		break;
225 	case SPEED_10 + DUPLEX_FULL:
226 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
227 		break;
228 	case SPEED_100 + DUPLEX_HALF:
229 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
230 		break;
231 	case SPEED_100 + DUPLEX_FULL:
232 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
233 		break;
234 	case SPEED_1000 + DUPLEX_FULL:
235 		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
236 			mac->autoneg = 1;
237 			adapter->hw.phy.autoneg_advertised =
238 				ADVERTISE_1000_FULL;
239 		} else {
240 			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
241 		}
242 		break;
243 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
244 	default:
245 		goto err_inval;
246 	}
247 
248 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
249 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
250 
251 	return 0;
252 
253 err_inval:
254 	e_err("Unsupported Speed/Duplex configuration\n");
255 	return -EINVAL;
256 }
257 
258 static int e1000_set_link_ksettings(struct net_device *netdev,
259 				    const struct ethtool_link_ksettings *cmd)
260 {
261 	struct e1000_adapter *adapter = netdev_priv(netdev);
262 	struct e1000_hw *hw = &adapter->hw;
263 	int ret_val = 0;
264 	u32 advertising;
265 
266 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
267 						cmd->link_modes.advertising);
268 
269 	pm_runtime_get_sync(netdev->dev.parent);
270 
271 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
272 	 * cannot be changed
273 	 */
274 	if (hw->phy.ops.check_reset_block &&
275 	    hw->phy.ops.check_reset_block(hw)) {
276 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
277 		ret_val = -EINVAL;
278 		goto out;
279 	}
280 
281 	/* MDI setting is only allowed when autoneg enabled because
282 	 * some hardware doesn't allow MDI setting when speed or
283 	 * duplex is forced.
284 	 */
285 	if (cmd->base.eth_tp_mdix_ctrl) {
286 		if (hw->phy.media_type != e1000_media_type_copper) {
287 			ret_val = -EOPNOTSUPP;
288 			goto out;
289 		}
290 
291 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
292 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
293 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
294 			ret_val = -EINVAL;
295 			goto out;
296 		}
297 	}
298 
299 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
300 		usleep_range(1000, 2000);
301 
302 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
303 		hw->mac.autoneg = 1;
304 		if (hw->phy.media_type == e1000_media_type_fiber)
305 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
306 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
307 		else
308 			hw->phy.autoneg_advertised = advertising |
309 			    ADVERTISED_TP | ADVERTISED_Autoneg;
310 		advertising = hw->phy.autoneg_advertised;
311 		if (adapter->fc_autoneg)
312 			hw->fc.requested_mode = e1000_fc_default;
313 	} else {
314 		u32 speed = cmd->base.speed;
315 		/* calling this overrides forced MDI setting */
316 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
317 			ret_val = -EINVAL;
318 			goto out;
319 		}
320 	}
321 
322 	/* MDI-X => 2; MDI => 1; Auto => 3 */
323 	if (cmd->base.eth_tp_mdix_ctrl) {
324 		/* fix up the value for auto (3 => 0) as zero is mapped
325 		 * internally to auto
326 		 */
327 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
328 			hw->phy.mdix = AUTO_ALL_MODES;
329 		else
330 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
331 	}
332 
333 	/* reset the link */
334 	if (netif_running(adapter->netdev)) {
335 		e1000e_down(adapter, true);
336 		e1000e_up(adapter);
337 	} else {
338 		e1000e_reset(adapter);
339 	}
340 
341 out:
342 	pm_runtime_put_sync(netdev->dev.parent);
343 	clear_bit(__E1000_RESETTING, &adapter->state);
344 	return ret_val;
345 }
346 
347 static void e1000_get_pauseparam(struct net_device *netdev,
348 				 struct ethtool_pauseparam *pause)
349 {
350 	struct e1000_adapter *adapter = netdev_priv(netdev);
351 	struct e1000_hw *hw = &adapter->hw;
352 
353 	pause->autoneg =
354 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
355 
356 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
357 		pause->rx_pause = 1;
358 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
359 		pause->tx_pause = 1;
360 	} else if (hw->fc.current_mode == e1000_fc_full) {
361 		pause->rx_pause = 1;
362 		pause->tx_pause = 1;
363 	}
364 }
365 
366 static int e1000_set_pauseparam(struct net_device *netdev,
367 				struct ethtool_pauseparam *pause)
368 {
369 	struct e1000_adapter *adapter = netdev_priv(netdev);
370 	struct e1000_hw *hw = &adapter->hw;
371 	int retval = 0;
372 
373 	adapter->fc_autoneg = pause->autoneg;
374 
375 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
376 		usleep_range(1000, 2000);
377 
378 	pm_runtime_get_sync(netdev->dev.parent);
379 
380 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
381 		hw->fc.requested_mode = e1000_fc_default;
382 		if (netif_running(adapter->netdev)) {
383 			e1000e_down(adapter, true);
384 			e1000e_up(adapter);
385 		} else {
386 			e1000e_reset(adapter);
387 		}
388 	} else {
389 		if (pause->rx_pause && pause->tx_pause)
390 			hw->fc.requested_mode = e1000_fc_full;
391 		else if (pause->rx_pause && !pause->tx_pause)
392 			hw->fc.requested_mode = e1000_fc_rx_pause;
393 		else if (!pause->rx_pause && pause->tx_pause)
394 			hw->fc.requested_mode = e1000_fc_tx_pause;
395 		else if (!pause->rx_pause && !pause->tx_pause)
396 			hw->fc.requested_mode = e1000_fc_none;
397 
398 		hw->fc.current_mode = hw->fc.requested_mode;
399 
400 		if (hw->phy.media_type == e1000_media_type_fiber) {
401 			retval = hw->mac.ops.setup_link(hw);
402 			/* implicit goto out */
403 		} else {
404 			retval = e1000e_force_mac_fc(hw);
405 			if (retval)
406 				goto out;
407 			e1000e_set_fc_watermarks(hw);
408 		}
409 	}
410 
411 out:
412 	pm_runtime_put_sync(netdev->dev.parent);
413 	clear_bit(__E1000_RESETTING, &adapter->state);
414 	return retval;
415 }
416 
417 static u32 e1000_get_msglevel(struct net_device *netdev)
418 {
419 	struct e1000_adapter *adapter = netdev_priv(netdev);
420 	return adapter->msg_enable;
421 }
422 
423 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
424 {
425 	struct e1000_adapter *adapter = netdev_priv(netdev);
426 	adapter->msg_enable = data;
427 }
428 
429 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
430 {
431 #define E1000_REGS_LEN 32	/* overestimate */
432 	return E1000_REGS_LEN * sizeof(u32);
433 }
434 
435 static void e1000_get_regs(struct net_device *netdev,
436 			   struct ethtool_regs *regs, void *p)
437 {
438 	struct e1000_adapter *adapter = netdev_priv(netdev);
439 	struct e1000_hw *hw = &adapter->hw;
440 	u32 *regs_buff = p;
441 	u16 phy_data;
442 
443 	pm_runtime_get_sync(netdev->dev.parent);
444 
445 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
446 
447 	regs->version = (1u << 24) |
448 			(adapter->pdev->revision << 16) |
449 			adapter->pdev->device;
450 
451 	regs_buff[0] = er32(CTRL);
452 	regs_buff[1] = er32(STATUS);
453 
454 	regs_buff[2] = er32(RCTL);
455 	regs_buff[3] = er32(RDLEN(0));
456 	regs_buff[4] = er32(RDH(0));
457 	regs_buff[5] = er32(RDT(0));
458 	regs_buff[6] = er32(RDTR);
459 
460 	regs_buff[7] = er32(TCTL);
461 	regs_buff[8] = er32(TDLEN(0));
462 	regs_buff[9] = er32(TDH(0));
463 	regs_buff[10] = er32(TDT(0));
464 	regs_buff[11] = er32(TIDV);
465 
466 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
467 
468 	/* ethtool doesn't use anything past this point, so all this
469 	 * code is likely legacy junk for apps that may or may not exist
470 	 */
471 	if (hw->phy.type == e1000_phy_m88) {
472 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
473 		regs_buff[13] = (u32)phy_data; /* cable length */
474 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
475 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
476 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
477 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
478 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
479 		regs_buff[18] = regs_buff[13]; /* cable polarity */
480 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
481 		regs_buff[20] = regs_buff[17]; /* polarity correction */
482 		/* phy receive errors */
483 		regs_buff[22] = adapter->phy_stats.receive_errors;
484 		regs_buff[23] = regs_buff[13]; /* mdix mode */
485 	}
486 	regs_buff[21] = 0;	/* was idle_errors */
487 	e1e_rphy(hw, MII_STAT1000, &phy_data);
488 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
489 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
490 
491 	pm_runtime_put_sync(netdev->dev.parent);
492 }
493 
494 static int e1000_get_eeprom_len(struct net_device *netdev)
495 {
496 	struct e1000_adapter *adapter = netdev_priv(netdev);
497 	return adapter->hw.nvm.word_size * 2;
498 }
499 
500 static int e1000_get_eeprom(struct net_device *netdev,
501 			    struct ethtool_eeprom *eeprom, u8 *bytes)
502 {
503 	struct e1000_adapter *adapter = netdev_priv(netdev);
504 	struct e1000_hw *hw = &adapter->hw;
505 	u16 *eeprom_buff;
506 	int first_word;
507 	int last_word;
508 	int ret_val = 0;
509 	u16 i;
510 
511 	if (eeprom->len == 0)
512 		return -EINVAL;
513 
514 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
515 
516 	first_word = eeprom->offset >> 1;
517 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518 
519 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
520 				    GFP_KERNEL);
521 	if (!eeprom_buff)
522 		return -ENOMEM;
523 
524 	pm_runtime_get_sync(netdev->dev.parent);
525 
526 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
527 		ret_val = e1000_read_nvm(hw, first_word,
528 					 last_word - first_word + 1,
529 					 eeprom_buff);
530 	} else {
531 		for (i = 0; i < last_word - first_word + 1; i++) {
532 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
533 						 &eeprom_buff[i]);
534 			if (ret_val)
535 				break;
536 		}
537 	}
538 
539 	pm_runtime_put_sync(netdev->dev.parent);
540 
541 	if (ret_val) {
542 		/* a read error occurred, throw away the result */
543 		memset(eeprom_buff, 0xff, sizeof(u16) *
544 		       (last_word - first_word + 1));
545 	} else {
546 		/* Device's eeprom is always little-endian, word addressable */
547 		for (i = 0; i < last_word - first_word + 1; i++)
548 			le16_to_cpus(&eeprom_buff[i]);
549 	}
550 
551 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
552 	kfree(eeprom_buff);
553 
554 	return ret_val;
555 }
556 
557 static int e1000_set_eeprom(struct net_device *netdev,
558 			    struct ethtool_eeprom *eeprom, u8 *bytes)
559 {
560 	struct e1000_adapter *adapter = netdev_priv(netdev);
561 	struct e1000_hw *hw = &adapter->hw;
562 	u16 *eeprom_buff;
563 	void *ptr;
564 	int max_len;
565 	int first_word;
566 	int last_word;
567 	int ret_val = 0;
568 	u16 i;
569 
570 	if (eeprom->len == 0)
571 		return -EOPNOTSUPP;
572 
573 	if (eeprom->magic !=
574 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
575 		return -EFAULT;
576 
577 	if (adapter->flags & FLAG_READ_ONLY_NVM)
578 		return -EINVAL;
579 
580 	max_len = hw->nvm.word_size * 2;
581 
582 	first_word = eeprom->offset >> 1;
583 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
584 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
585 	if (!eeprom_buff)
586 		return -ENOMEM;
587 
588 	ptr = (void *)eeprom_buff;
589 
590 	pm_runtime_get_sync(netdev->dev.parent);
591 
592 	if (eeprom->offset & 1) {
593 		/* need read/modify/write of first changed EEPROM word */
594 		/* only the second byte of the word is being modified */
595 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
596 		ptr++;
597 	}
598 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
599 		/* need read/modify/write of last changed EEPROM word */
600 		/* only the first byte of the word is being modified */
601 		ret_val = e1000_read_nvm(hw, last_word, 1,
602 					 &eeprom_buff[last_word - first_word]);
603 
604 	if (ret_val)
605 		goto out;
606 
607 	/* Device's eeprom is always little-endian, word addressable */
608 	for (i = 0; i < last_word - first_word + 1; i++)
609 		le16_to_cpus(&eeprom_buff[i]);
610 
611 	memcpy(ptr, bytes, eeprom->len);
612 
613 	for (i = 0; i < last_word - first_word + 1; i++)
614 		cpu_to_le16s(&eeprom_buff[i]);
615 
616 	ret_val = e1000_write_nvm(hw, first_word,
617 				  last_word - first_word + 1, eeprom_buff);
618 
619 	if (ret_val)
620 		goto out;
621 
622 	/* Update the checksum over the first part of the EEPROM if needed
623 	 * and flush shadow RAM for applicable controllers
624 	 */
625 	if ((first_word <= NVM_CHECKSUM_REG) ||
626 	    (hw->mac.type == e1000_82583) ||
627 	    (hw->mac.type == e1000_82574) ||
628 	    (hw->mac.type == e1000_82573))
629 		ret_val = e1000e_update_nvm_checksum(hw);
630 
631 out:
632 	pm_runtime_put_sync(netdev->dev.parent);
633 	kfree(eeprom_buff);
634 	return ret_val;
635 }
636 
637 static void e1000_get_drvinfo(struct net_device *netdev,
638 			      struct ethtool_drvinfo *drvinfo)
639 {
640 	struct e1000_adapter *adapter = netdev_priv(netdev);
641 
642 	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
643 
644 	/* EEPROM image version # is reported as firmware version # for
645 	 * PCI-E controllers
646 	 */
647 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
648 		 "%d.%d-%d",
649 		 (adapter->eeprom_vers & 0xF000) >> 12,
650 		 (adapter->eeprom_vers & 0x0FF0) >> 4,
651 		 (adapter->eeprom_vers & 0x000F));
652 
653 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
654 		sizeof(drvinfo->bus_info));
655 }
656 
657 static void e1000_get_ringparam(struct net_device *netdev,
658 				struct ethtool_ringparam *ring)
659 {
660 	struct e1000_adapter *adapter = netdev_priv(netdev);
661 
662 	ring->rx_max_pending = E1000_MAX_RXD;
663 	ring->tx_max_pending = E1000_MAX_TXD;
664 	ring->rx_pending = adapter->rx_ring_count;
665 	ring->tx_pending = adapter->tx_ring_count;
666 }
667 
668 static int e1000_set_ringparam(struct net_device *netdev,
669 			       struct ethtool_ringparam *ring)
670 {
671 	struct e1000_adapter *adapter = netdev_priv(netdev);
672 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
673 	int err = 0, size = sizeof(struct e1000_ring);
674 	bool set_tx = false, set_rx = false;
675 	u16 new_rx_count, new_tx_count;
676 
677 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
678 		return -EINVAL;
679 
680 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
681 			       E1000_MAX_RXD);
682 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
683 
684 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
685 			       E1000_MAX_TXD);
686 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
687 
688 	if ((new_tx_count == adapter->tx_ring_count) &&
689 	    (new_rx_count == adapter->rx_ring_count))
690 		/* nothing to do */
691 		return 0;
692 
693 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
694 		usleep_range(1000, 2000);
695 
696 	if (!netif_running(adapter->netdev)) {
697 		/* Set counts now and allocate resources during open() */
698 		adapter->tx_ring->count = new_tx_count;
699 		adapter->rx_ring->count = new_rx_count;
700 		adapter->tx_ring_count = new_tx_count;
701 		adapter->rx_ring_count = new_rx_count;
702 		goto clear_reset;
703 	}
704 
705 	set_tx = (new_tx_count != adapter->tx_ring_count);
706 	set_rx = (new_rx_count != adapter->rx_ring_count);
707 
708 	/* Allocate temporary storage for ring updates */
709 	if (set_tx) {
710 		temp_tx = vmalloc(size);
711 		if (!temp_tx) {
712 			err = -ENOMEM;
713 			goto free_temp;
714 		}
715 	}
716 	if (set_rx) {
717 		temp_rx = vmalloc(size);
718 		if (!temp_rx) {
719 			err = -ENOMEM;
720 			goto free_temp;
721 		}
722 	}
723 
724 	pm_runtime_get_sync(netdev->dev.parent);
725 
726 	e1000e_down(adapter, true);
727 
728 	/* We can't just free everything and then setup again, because the
729 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
730 	 * structs.  First, attempt to allocate new resources...
731 	 */
732 	if (set_tx) {
733 		memcpy(temp_tx, adapter->tx_ring, size);
734 		temp_tx->count = new_tx_count;
735 		err = e1000e_setup_tx_resources(temp_tx);
736 		if (err)
737 			goto err_setup;
738 	}
739 	if (set_rx) {
740 		memcpy(temp_rx, adapter->rx_ring, size);
741 		temp_rx->count = new_rx_count;
742 		err = e1000e_setup_rx_resources(temp_rx);
743 		if (err)
744 			goto err_setup_rx;
745 	}
746 
747 	/* ...then free the old resources and copy back any new ring data */
748 	if (set_tx) {
749 		e1000e_free_tx_resources(adapter->tx_ring);
750 		memcpy(adapter->tx_ring, temp_tx, size);
751 		adapter->tx_ring_count = new_tx_count;
752 	}
753 	if (set_rx) {
754 		e1000e_free_rx_resources(adapter->rx_ring);
755 		memcpy(adapter->rx_ring, temp_rx, size);
756 		adapter->rx_ring_count = new_rx_count;
757 	}
758 
759 err_setup_rx:
760 	if (err && set_tx)
761 		e1000e_free_tx_resources(temp_tx);
762 err_setup:
763 	e1000e_up(adapter);
764 	pm_runtime_put_sync(netdev->dev.parent);
765 free_temp:
766 	vfree(temp_tx);
767 	vfree(temp_rx);
768 clear_reset:
769 	clear_bit(__E1000_RESETTING, &adapter->state);
770 	return err;
771 }
772 
773 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
774 			     int reg, int offset, u32 mask, u32 write)
775 {
776 	u32 pat, val;
777 	static const u32 test[] = {
778 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
779 	};
780 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
781 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
782 				      (test[pat] & write));
783 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
784 		if (val != (test[pat] & write & mask)) {
785 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
786 			      reg + (offset << 2), val,
787 			      (test[pat] & write & mask));
788 			*data = reg;
789 			return true;
790 		}
791 	}
792 	return false;
793 }
794 
795 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
796 			      int reg, u32 mask, u32 write)
797 {
798 	u32 val;
799 
800 	__ew32(&adapter->hw, reg, write & mask);
801 	val = __er32(&adapter->hw, reg);
802 	if ((write & mask) != (val & mask)) {
803 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
804 		      reg, (val & mask), (write & mask));
805 		*data = reg;
806 		return true;
807 	}
808 	return false;
809 }
810 
811 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
812 	do {                                                                   \
813 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
814 			return 1;                                              \
815 	} while (0)
816 #define REG_PATTERN_TEST(reg, mask, write)                                     \
817 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
818 
819 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
820 	do {                                                                   \
821 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
822 			return 1;                                              \
823 	} while (0)
824 
825 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
826 {
827 	struct e1000_hw *hw = &adapter->hw;
828 	struct e1000_mac_info *mac = &adapter->hw.mac;
829 	u32 value;
830 	u32 before;
831 	u32 after;
832 	u32 i;
833 	u32 toggle;
834 	u32 mask;
835 	u32 wlock_mac = 0;
836 
837 	/* The status register is Read Only, so a write should fail.
838 	 * Some bits that get toggled are ignored.  There are several bits
839 	 * on newer hardware that are r/w.
840 	 */
841 	switch (mac->type) {
842 	case e1000_82571:
843 	case e1000_82572:
844 	case e1000_80003es2lan:
845 		toggle = 0x7FFFF3FF;
846 		break;
847 	default:
848 		toggle = 0x7FFFF033;
849 		break;
850 	}
851 
852 	before = er32(STATUS);
853 	value = (er32(STATUS) & toggle);
854 	ew32(STATUS, toggle);
855 	after = er32(STATUS) & toggle;
856 	if (value != after) {
857 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
858 		      after, value);
859 		*data = 1;
860 		return 1;
861 	}
862 	/* restore previous status */
863 	ew32(STATUS, before);
864 
865 	if (!(adapter->flags & FLAG_IS_ICH)) {
866 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
867 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
868 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
869 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
870 	}
871 
872 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
873 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
874 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
875 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
876 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
877 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
878 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
879 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
880 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
881 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
882 
883 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
884 
885 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
886 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
887 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
888 
889 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
890 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
891 	if (!(adapter->flags & FLAG_IS_ICH))
892 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
893 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
894 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
895 	mask = 0x8003FFFF;
896 	switch (mac->type) {
897 	case e1000_ich10lan:
898 	case e1000_pchlan:
899 	case e1000_pch2lan:
900 	case e1000_pch_lpt:
901 	case e1000_pch_spt:
902 	case e1000_pch_cnp:
903 	case e1000_pch_tgp:
904 	case e1000_pch_adp:
905 	case e1000_pch_mtp:
906 		mask |= BIT(18);
907 		break;
908 	default:
909 		break;
910 	}
911 
912 	if (mac->type >= e1000_pch_lpt)
913 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
914 		    E1000_FWSM_WLOCK_MAC_SHIFT;
915 
916 	for (i = 0; i < mac->rar_entry_count; i++) {
917 		if (mac->type >= e1000_pch_lpt) {
918 			/* Cannot test write-protected SHRAL[n] registers */
919 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
920 				continue;
921 
922 			/* SHRAH[9] different than the others */
923 			if (i == 10)
924 				mask |= BIT(30);
925 			else
926 				mask &= ~BIT(30);
927 		}
928 		if (mac->type == e1000_pch2lan) {
929 			/* SHRAH[0,1,2] different than previous */
930 			if (i == 1)
931 				mask &= 0xFFF4FFFF;
932 			/* SHRAH[3] different than SHRAH[0,1,2] */
933 			if (i == 4)
934 				mask |= BIT(30);
935 			/* RAR[1-6] owned by management engine - skipping */
936 			if (i > 0)
937 				i += 6;
938 		}
939 
940 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
941 				       0xFFFFFFFF);
942 		/* reset index to actual value */
943 		if ((mac->type == e1000_pch2lan) && (i > 6))
944 			i -= 6;
945 	}
946 
947 	for (i = 0; i < mac->mta_reg_count; i++)
948 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
949 
950 	*data = 0;
951 
952 	return 0;
953 }
954 
955 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
956 {
957 	u16 temp;
958 	u16 checksum = 0;
959 	u16 i;
960 
961 	*data = 0;
962 	/* Read and add up the contents of the EEPROM */
963 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
964 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
965 			*data = 1;
966 			return *data;
967 		}
968 		checksum += temp;
969 	}
970 
971 	/* If Checksum is not Correct return error else test passed */
972 	if ((checksum != (u16)NVM_SUM) && !(*data))
973 		*data = 2;
974 
975 	return *data;
976 }
977 
978 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
979 {
980 	struct net_device *netdev = (struct net_device *)data;
981 	struct e1000_adapter *adapter = netdev_priv(netdev);
982 	struct e1000_hw *hw = &adapter->hw;
983 
984 	adapter->test_icr |= er32(ICR);
985 
986 	return IRQ_HANDLED;
987 }
988 
989 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
990 {
991 	struct net_device *netdev = adapter->netdev;
992 	struct e1000_hw *hw = &adapter->hw;
993 	u32 mask;
994 	u32 shared_int = 1;
995 	u32 irq = adapter->pdev->irq;
996 	int i;
997 	int ret_val = 0;
998 	int int_mode = E1000E_INT_MODE_LEGACY;
999 
1000 	*data = 0;
1001 
1002 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1003 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1004 		int_mode = adapter->int_mode;
1005 		e1000e_reset_interrupt_capability(adapter);
1006 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1007 		e1000e_set_interrupt_capability(adapter);
1008 	}
1009 	/* Hook up test interrupt handler just for this test */
1010 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1011 			 netdev)) {
1012 		shared_int = 0;
1013 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1014 			       netdev)) {
1015 		*data = 1;
1016 		ret_val = -1;
1017 		goto out;
1018 	}
1019 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1020 
1021 	/* Disable all the interrupts */
1022 	ew32(IMC, 0xFFFFFFFF);
1023 	e1e_flush();
1024 	usleep_range(10000, 11000);
1025 
1026 	/* Test each interrupt */
1027 	for (i = 0; i < 10; i++) {
1028 		/* Interrupt to test */
1029 		mask = BIT(i);
1030 
1031 		if (adapter->flags & FLAG_IS_ICH) {
1032 			switch (mask) {
1033 			case E1000_ICR_RXSEQ:
1034 				continue;
1035 			case 0x00000100:
1036 				if (adapter->hw.mac.type == e1000_ich8lan ||
1037 				    adapter->hw.mac.type == e1000_ich9lan)
1038 					continue;
1039 				break;
1040 			default:
1041 				break;
1042 			}
1043 		}
1044 
1045 		if (!shared_int) {
1046 			/* Disable the interrupt to be reported in
1047 			 * the cause register and then force the same
1048 			 * interrupt and see if one gets posted.  If
1049 			 * an interrupt was posted to the bus, the
1050 			 * test failed.
1051 			 */
1052 			adapter->test_icr = 0;
1053 			ew32(IMC, mask);
1054 			ew32(ICS, mask);
1055 			e1e_flush();
1056 			usleep_range(10000, 11000);
1057 
1058 			if (adapter->test_icr & mask) {
1059 				*data = 3;
1060 				break;
1061 			}
1062 		}
1063 
1064 		/* Enable the interrupt to be reported in
1065 		 * the cause register and then force the same
1066 		 * interrupt and see if one gets posted.  If
1067 		 * an interrupt was not posted to the bus, the
1068 		 * test failed.
1069 		 */
1070 		adapter->test_icr = 0;
1071 		ew32(IMS, mask);
1072 		ew32(ICS, mask);
1073 		e1e_flush();
1074 		usleep_range(10000, 11000);
1075 
1076 		if (!(adapter->test_icr & mask)) {
1077 			*data = 4;
1078 			break;
1079 		}
1080 
1081 		if (!shared_int) {
1082 			/* Disable the other interrupts to be reported in
1083 			 * the cause register and then force the other
1084 			 * interrupts and see if any get posted.  If
1085 			 * an interrupt was posted to the bus, the
1086 			 * test failed.
1087 			 */
1088 			adapter->test_icr = 0;
1089 			ew32(IMC, ~mask & 0x00007FFF);
1090 			ew32(ICS, ~mask & 0x00007FFF);
1091 			e1e_flush();
1092 			usleep_range(10000, 11000);
1093 
1094 			if (adapter->test_icr) {
1095 				*data = 5;
1096 				break;
1097 			}
1098 		}
1099 	}
1100 
1101 	/* Disable all the interrupts */
1102 	ew32(IMC, 0xFFFFFFFF);
1103 	e1e_flush();
1104 	usleep_range(10000, 11000);
1105 
1106 	/* Unhook test interrupt handler */
1107 	free_irq(irq, netdev);
1108 
1109 out:
1110 	if (int_mode == E1000E_INT_MODE_MSIX) {
1111 		e1000e_reset_interrupt_capability(adapter);
1112 		adapter->int_mode = int_mode;
1113 		e1000e_set_interrupt_capability(adapter);
1114 	}
1115 
1116 	return ret_val;
1117 }
1118 
1119 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1120 {
1121 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1122 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1123 	struct pci_dev *pdev = adapter->pdev;
1124 	struct e1000_buffer *buffer_info;
1125 	int i;
1126 
1127 	if (tx_ring->desc && tx_ring->buffer_info) {
1128 		for (i = 0; i < tx_ring->count; i++) {
1129 			buffer_info = &tx_ring->buffer_info[i];
1130 
1131 			if (buffer_info->dma)
1132 				dma_unmap_single(&pdev->dev,
1133 						 buffer_info->dma,
1134 						 buffer_info->length,
1135 						 DMA_TO_DEVICE);
1136 			dev_kfree_skb(buffer_info->skb);
1137 		}
1138 	}
1139 
1140 	if (rx_ring->desc && rx_ring->buffer_info) {
1141 		for (i = 0; i < rx_ring->count; i++) {
1142 			buffer_info = &rx_ring->buffer_info[i];
1143 
1144 			if (buffer_info->dma)
1145 				dma_unmap_single(&pdev->dev,
1146 						 buffer_info->dma,
1147 						 2048, DMA_FROM_DEVICE);
1148 			dev_kfree_skb(buffer_info->skb);
1149 		}
1150 	}
1151 
1152 	if (tx_ring->desc) {
1153 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1154 				  tx_ring->dma);
1155 		tx_ring->desc = NULL;
1156 	}
1157 	if (rx_ring->desc) {
1158 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1159 				  rx_ring->dma);
1160 		rx_ring->desc = NULL;
1161 	}
1162 
1163 	kfree(tx_ring->buffer_info);
1164 	tx_ring->buffer_info = NULL;
1165 	kfree(rx_ring->buffer_info);
1166 	rx_ring->buffer_info = NULL;
1167 }
1168 
1169 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1170 {
1171 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1172 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1173 	struct pci_dev *pdev = adapter->pdev;
1174 	struct e1000_hw *hw = &adapter->hw;
1175 	u32 rctl;
1176 	int i;
1177 	int ret_val;
1178 
1179 	/* Setup Tx descriptor ring and Tx buffers */
1180 
1181 	if (!tx_ring->count)
1182 		tx_ring->count = E1000_DEFAULT_TXD;
1183 
1184 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1185 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1186 	if (!tx_ring->buffer_info) {
1187 		ret_val = 1;
1188 		goto err_nomem;
1189 	}
1190 
1191 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1192 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1193 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1194 					   &tx_ring->dma, GFP_KERNEL);
1195 	if (!tx_ring->desc) {
1196 		ret_val = 2;
1197 		goto err_nomem;
1198 	}
1199 	tx_ring->next_to_use = 0;
1200 	tx_ring->next_to_clean = 0;
1201 
1202 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1203 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1204 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1205 	ew32(TDH(0), 0);
1206 	ew32(TDT(0), 0);
1207 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1208 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1209 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1210 
1211 	for (i = 0; i < tx_ring->count; i++) {
1212 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1213 		struct sk_buff *skb;
1214 		unsigned int skb_size = 1024;
1215 
1216 		skb = alloc_skb(skb_size, GFP_KERNEL);
1217 		if (!skb) {
1218 			ret_val = 3;
1219 			goto err_nomem;
1220 		}
1221 		skb_put(skb, skb_size);
1222 		tx_ring->buffer_info[i].skb = skb;
1223 		tx_ring->buffer_info[i].length = skb->len;
1224 		tx_ring->buffer_info[i].dma =
1225 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1226 				   DMA_TO_DEVICE);
1227 		if (dma_mapping_error(&pdev->dev,
1228 				      tx_ring->buffer_info[i].dma)) {
1229 			ret_val = 4;
1230 			goto err_nomem;
1231 		}
1232 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1233 		tx_desc->lower.data = cpu_to_le32(skb->len);
1234 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1235 						   E1000_TXD_CMD_IFCS |
1236 						   E1000_TXD_CMD_RS);
1237 		tx_desc->upper.data = 0;
1238 	}
1239 
1240 	/* Setup Rx descriptor ring and Rx buffers */
1241 
1242 	if (!rx_ring->count)
1243 		rx_ring->count = E1000_DEFAULT_RXD;
1244 
1245 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1246 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1247 	if (!rx_ring->buffer_info) {
1248 		ret_val = 5;
1249 		goto err_nomem;
1250 	}
1251 
1252 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1253 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1254 					   &rx_ring->dma, GFP_KERNEL);
1255 	if (!rx_ring->desc) {
1256 		ret_val = 6;
1257 		goto err_nomem;
1258 	}
1259 	rx_ring->next_to_use = 0;
1260 	rx_ring->next_to_clean = 0;
1261 
1262 	rctl = er32(RCTL);
1263 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1264 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1265 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1266 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1267 	ew32(RDLEN(0), rx_ring->size);
1268 	ew32(RDH(0), 0);
1269 	ew32(RDT(0), 0);
1270 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1271 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1272 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1273 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1274 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1275 	ew32(RCTL, rctl);
1276 
1277 	for (i = 0; i < rx_ring->count; i++) {
1278 		union e1000_rx_desc_extended *rx_desc;
1279 		struct sk_buff *skb;
1280 
1281 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1282 		if (!skb) {
1283 			ret_val = 7;
1284 			goto err_nomem;
1285 		}
1286 		skb_reserve(skb, NET_IP_ALIGN);
1287 		rx_ring->buffer_info[i].skb = skb;
1288 		rx_ring->buffer_info[i].dma =
1289 		    dma_map_single(&pdev->dev, skb->data, 2048,
1290 				   DMA_FROM_DEVICE);
1291 		if (dma_mapping_error(&pdev->dev,
1292 				      rx_ring->buffer_info[i].dma)) {
1293 			ret_val = 8;
1294 			goto err_nomem;
1295 		}
1296 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1297 		rx_desc->read.buffer_addr =
1298 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1299 		memset(skb->data, 0x00, skb->len);
1300 	}
1301 
1302 	return 0;
1303 
1304 err_nomem:
1305 	e1000_free_desc_rings(adapter);
1306 	return ret_val;
1307 }
1308 
1309 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1310 {
1311 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1312 	e1e_wphy(&adapter->hw, 29, 0x001F);
1313 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1314 	e1e_wphy(&adapter->hw, 29, 0x001A);
1315 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1316 }
1317 
1318 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1319 {
1320 	struct e1000_hw *hw = &adapter->hw;
1321 	u32 ctrl_reg = 0;
1322 	u16 phy_reg = 0;
1323 	s32 ret_val = 0;
1324 
1325 	hw->mac.autoneg = 0;
1326 
1327 	if (hw->phy.type == e1000_phy_ife) {
1328 		/* force 100, set loopback */
1329 		e1e_wphy(hw, MII_BMCR, 0x6100);
1330 
1331 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1332 		ctrl_reg = er32(CTRL);
1333 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1334 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1335 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1336 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1337 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1338 
1339 		ew32(CTRL, ctrl_reg);
1340 		e1e_flush();
1341 		usleep_range(500, 1000);
1342 
1343 		return 0;
1344 	}
1345 
1346 	/* Specific PHY configuration for loopback */
1347 	switch (hw->phy.type) {
1348 	case e1000_phy_m88:
1349 		/* Auto-MDI/MDIX Off */
1350 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1351 		/* reset to update Auto-MDI/MDIX */
1352 		e1e_wphy(hw, MII_BMCR, 0x9140);
1353 		/* autoneg off */
1354 		e1e_wphy(hw, MII_BMCR, 0x8140);
1355 		break;
1356 	case e1000_phy_gg82563:
1357 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1358 		break;
1359 	case e1000_phy_bm:
1360 		/* Set Default MAC Interface speed to 1GB */
1361 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1362 		phy_reg &= ~0x0007;
1363 		phy_reg |= 0x006;
1364 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1365 		/* Assert SW reset for above settings to take effect */
1366 		hw->phy.ops.commit(hw);
1367 		usleep_range(1000, 2000);
1368 		/* Force Full Duplex */
1369 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1370 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1371 		/* Set Link Up (in force link) */
1372 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1373 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1374 		/* Force Link */
1375 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1376 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1377 		/* Set Early Link Enable */
1378 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1379 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1380 		break;
1381 	case e1000_phy_82577:
1382 	case e1000_phy_82578:
1383 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1384 		ret_val = hw->phy.ops.acquire(hw);
1385 		if (ret_val) {
1386 			e_err("Cannot setup 1Gbps loopback.\n");
1387 			return ret_val;
1388 		}
1389 		e1000_configure_k1_ich8lan(hw, false);
1390 		hw->phy.ops.release(hw);
1391 		break;
1392 	case e1000_phy_82579:
1393 		/* Disable PHY energy detect power down */
1394 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1395 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1396 		/* Disable full chip energy detect */
1397 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1398 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1399 		/* Enable loopback on the PHY */
1400 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1401 		break;
1402 	default:
1403 		break;
1404 	}
1405 
1406 	/* force 1000, set loopback */
1407 	e1e_wphy(hw, MII_BMCR, 0x4140);
1408 	msleep(250);
1409 
1410 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1411 	ctrl_reg = er32(CTRL);
1412 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1413 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1414 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1415 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1416 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1417 
1418 	if (adapter->flags & FLAG_IS_ICH)
1419 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1420 
1421 	if (hw->phy.media_type == e1000_media_type_copper &&
1422 	    hw->phy.type == e1000_phy_m88) {
1423 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1424 	} else {
1425 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1426 		 * detected.
1427 		 */
1428 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1429 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1430 	}
1431 
1432 	ew32(CTRL, ctrl_reg);
1433 
1434 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1435 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1436 	 */
1437 	if (hw->phy.type == e1000_phy_m88)
1438 		e1000_phy_disable_receiver(adapter);
1439 
1440 	usleep_range(500, 1000);
1441 
1442 	return 0;
1443 }
1444 
1445 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1446 {
1447 	struct e1000_hw *hw = &adapter->hw;
1448 	u32 ctrl = er32(CTRL);
1449 	int link;
1450 
1451 	/* special requirements for 82571/82572 fiber adapters */
1452 
1453 	/* jump through hoops to make sure link is up because serdes
1454 	 * link is hardwired up
1455 	 */
1456 	ctrl |= E1000_CTRL_SLU;
1457 	ew32(CTRL, ctrl);
1458 
1459 	/* disable autoneg */
1460 	ctrl = er32(TXCW);
1461 	ctrl &= ~BIT(31);
1462 	ew32(TXCW, ctrl);
1463 
1464 	link = (er32(STATUS) & E1000_STATUS_LU);
1465 
1466 	if (!link) {
1467 		/* set invert loss of signal */
1468 		ctrl = er32(CTRL);
1469 		ctrl |= E1000_CTRL_ILOS;
1470 		ew32(CTRL, ctrl);
1471 	}
1472 
1473 	/* special write to serdes control register to enable SerDes analog
1474 	 * loopback
1475 	 */
1476 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1477 	e1e_flush();
1478 	usleep_range(10000, 11000);
1479 
1480 	return 0;
1481 }
1482 
1483 /* only call this for fiber/serdes connections to es2lan */
1484 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1485 {
1486 	struct e1000_hw *hw = &adapter->hw;
1487 	u32 ctrlext = er32(CTRL_EXT);
1488 	u32 ctrl = er32(CTRL);
1489 
1490 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1491 	 * on mac_type 80003es2lan)
1492 	 */
1493 	adapter->tx_fifo_head = ctrlext;
1494 
1495 	/* clear the serdes mode bits, putting the device into mac loopback */
1496 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1497 	ew32(CTRL_EXT, ctrlext);
1498 
1499 	/* force speed to 1000/FD, link up */
1500 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1501 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1502 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1503 	ew32(CTRL, ctrl);
1504 
1505 	/* set mac loopback */
1506 	ctrl = er32(RCTL);
1507 	ctrl |= E1000_RCTL_LBM_MAC;
1508 	ew32(RCTL, ctrl);
1509 
1510 	/* set testing mode parameters (no need to reset later) */
1511 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1512 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1513 	ew32(KMRNCTRLSTA,
1514 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1515 
1516 	return 0;
1517 }
1518 
1519 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1520 {
1521 	struct e1000_hw *hw = &adapter->hw;
1522 	u32 rctl, fext_nvm11, tarc0;
1523 
1524 	if (hw->mac.type >= e1000_pch_spt) {
1525 		fext_nvm11 = er32(FEXTNVM11);
1526 		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1527 		ew32(FEXTNVM11, fext_nvm11);
1528 		tarc0 = er32(TARC(0));
1529 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1530 		tarc0 &= 0xcfffffff;
1531 		/* set bit 29 (value of MULR requests is now 2) */
1532 		tarc0 |= 0x20000000;
1533 		ew32(TARC(0), tarc0);
1534 	}
1535 	if (hw->phy.media_type == e1000_media_type_fiber ||
1536 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1537 		switch (hw->mac.type) {
1538 		case e1000_80003es2lan:
1539 			return e1000_set_es2lan_mac_loopback(adapter);
1540 		case e1000_82571:
1541 		case e1000_82572:
1542 			return e1000_set_82571_fiber_loopback(adapter);
1543 		default:
1544 			rctl = er32(RCTL);
1545 			rctl |= E1000_RCTL_LBM_TCVR;
1546 			ew32(RCTL, rctl);
1547 			return 0;
1548 		}
1549 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1550 		return e1000_integrated_phy_loopback(adapter);
1551 	}
1552 
1553 	return 7;
1554 }
1555 
1556 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1557 {
1558 	struct e1000_hw *hw = &adapter->hw;
1559 	u32 rctl, fext_nvm11, tarc0;
1560 	u16 phy_reg;
1561 
1562 	rctl = er32(RCTL);
1563 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1564 	ew32(RCTL, rctl);
1565 
1566 	switch (hw->mac.type) {
1567 	case e1000_pch_spt:
1568 	case e1000_pch_cnp:
1569 	case e1000_pch_tgp:
1570 	case e1000_pch_adp:
1571 	case e1000_pch_mtp:
1572 		fext_nvm11 = er32(FEXTNVM11);
1573 		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1574 		ew32(FEXTNVM11, fext_nvm11);
1575 		tarc0 = er32(TARC(0));
1576 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1577 		/* set bit 29 (value of MULR requests is now 0) */
1578 		tarc0 &= 0xcfffffff;
1579 		ew32(TARC(0), tarc0);
1580 		fallthrough;
1581 	case e1000_80003es2lan:
1582 		if (hw->phy.media_type == e1000_media_type_fiber ||
1583 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1584 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1585 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1586 			adapter->tx_fifo_head = 0;
1587 		}
1588 		fallthrough;
1589 	case e1000_82571:
1590 	case e1000_82572:
1591 		if (hw->phy.media_type == e1000_media_type_fiber ||
1592 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1593 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1594 			e1e_flush();
1595 			usleep_range(10000, 11000);
1596 			break;
1597 		}
1598 		fallthrough;
1599 	default:
1600 		hw->mac.autoneg = 1;
1601 		if (hw->phy.type == e1000_phy_gg82563)
1602 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1603 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1604 		if (phy_reg & BMCR_LOOPBACK) {
1605 			phy_reg &= ~BMCR_LOOPBACK;
1606 			e1e_wphy(hw, MII_BMCR, phy_reg);
1607 			if (hw->phy.ops.commit)
1608 				hw->phy.ops.commit(hw);
1609 		}
1610 		break;
1611 	}
1612 }
1613 
1614 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1615 				      unsigned int frame_size)
1616 {
1617 	memset(skb->data, 0xFF, frame_size);
1618 	frame_size &= ~1;
1619 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1620 	skb->data[frame_size / 2 + 10] = 0xBE;
1621 	skb->data[frame_size / 2 + 12] = 0xAF;
1622 }
1623 
1624 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1625 				    unsigned int frame_size)
1626 {
1627 	frame_size &= ~1;
1628 	if (*(skb->data + 3) == 0xFF)
1629 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1630 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1631 			return 0;
1632 	return 13;
1633 }
1634 
1635 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1636 {
1637 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1638 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1639 	struct pci_dev *pdev = adapter->pdev;
1640 	struct e1000_hw *hw = &adapter->hw;
1641 	struct e1000_buffer *buffer_info;
1642 	int i, j, k, l;
1643 	int lc;
1644 	int good_cnt;
1645 	int ret_val = 0;
1646 	unsigned long time;
1647 
1648 	ew32(RDT(0), rx_ring->count - 1);
1649 
1650 	/* Calculate the loop count based on the largest descriptor ring
1651 	 * The idea is to wrap the largest ring a number of times using 64
1652 	 * send/receive pairs during each loop
1653 	 */
1654 
1655 	if (rx_ring->count <= tx_ring->count)
1656 		lc = ((tx_ring->count / 64) * 2) + 1;
1657 	else
1658 		lc = ((rx_ring->count / 64) * 2) + 1;
1659 
1660 	k = 0;
1661 	l = 0;
1662 	/* loop count loop */
1663 	for (j = 0; j <= lc; j++) {
1664 		/* send the packets */
1665 		for (i = 0; i < 64; i++) {
1666 			buffer_info = &tx_ring->buffer_info[k];
1667 
1668 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1669 			dma_sync_single_for_device(&pdev->dev,
1670 						   buffer_info->dma,
1671 						   buffer_info->length,
1672 						   DMA_TO_DEVICE);
1673 			k++;
1674 			if (k == tx_ring->count)
1675 				k = 0;
1676 		}
1677 		ew32(TDT(0), k);
1678 		e1e_flush();
1679 		msleep(200);
1680 		time = jiffies;	/* set the start time for the receive */
1681 		good_cnt = 0;
1682 		/* receive the sent packets */
1683 		do {
1684 			buffer_info = &rx_ring->buffer_info[l];
1685 
1686 			dma_sync_single_for_cpu(&pdev->dev,
1687 						buffer_info->dma, 2048,
1688 						DMA_FROM_DEVICE);
1689 
1690 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1691 							   1024);
1692 			if (!ret_val)
1693 				good_cnt++;
1694 			l++;
1695 			if (l == rx_ring->count)
1696 				l = 0;
1697 			/* time + 20 msecs (200 msecs on 2.4) is more than
1698 			 * enough time to complete the receives, if it's
1699 			 * exceeded, break and error off
1700 			 */
1701 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1702 		if (good_cnt != 64) {
1703 			ret_val = 13;	/* ret_val is the same as mis-compare */
1704 			break;
1705 		}
1706 		if (time_after(jiffies, time + 20)) {
1707 			ret_val = 14;	/* error code for time out error */
1708 			break;
1709 		}
1710 	}
1711 	return ret_val;
1712 }
1713 
1714 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1715 {
1716 	struct e1000_hw *hw = &adapter->hw;
1717 
1718 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1719 	if (hw->phy.ops.check_reset_block &&
1720 	    hw->phy.ops.check_reset_block(hw)) {
1721 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1722 		*data = 0;
1723 		goto out;
1724 	}
1725 
1726 	*data = e1000_setup_desc_rings(adapter);
1727 	if (*data)
1728 		goto out;
1729 
1730 	*data = e1000_setup_loopback_test(adapter);
1731 	if (*data)
1732 		goto err_loopback;
1733 
1734 	*data = e1000_run_loopback_test(adapter);
1735 	e1000_loopback_cleanup(adapter);
1736 
1737 err_loopback:
1738 	e1000_free_desc_rings(adapter);
1739 out:
1740 	return *data;
1741 }
1742 
1743 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1744 {
1745 	struct e1000_hw *hw = &adapter->hw;
1746 
1747 	*data = 0;
1748 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1749 		int i = 0;
1750 
1751 		hw->mac.serdes_has_link = false;
1752 
1753 		/* On some blade server designs, link establishment
1754 		 * could take as long as 2-3 minutes
1755 		 */
1756 		do {
1757 			hw->mac.ops.check_for_link(hw);
1758 			if (hw->mac.serdes_has_link)
1759 				return *data;
1760 			msleep(20);
1761 		} while (i++ < 3750);
1762 
1763 		*data = 1;
1764 	} else {
1765 		hw->mac.ops.check_for_link(hw);
1766 		if (hw->mac.autoneg)
1767 			/* On some Phy/switch combinations, link establishment
1768 			 * can take a few seconds more than expected.
1769 			 */
1770 			msleep_interruptible(5000);
1771 
1772 		if (!(er32(STATUS) & E1000_STATUS_LU))
1773 			*data = 1;
1774 	}
1775 	return *data;
1776 }
1777 
1778 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1779 				 int sset)
1780 {
1781 	switch (sset) {
1782 	case ETH_SS_TEST:
1783 		return E1000_TEST_LEN;
1784 	case ETH_SS_STATS:
1785 		return E1000_STATS_LEN;
1786 	case ETH_SS_PRIV_FLAGS:
1787 		return E1000E_PRIV_FLAGS_STR_LEN;
1788 	default:
1789 		return -EOPNOTSUPP;
1790 	}
1791 }
1792 
1793 static void e1000_diag_test(struct net_device *netdev,
1794 			    struct ethtool_test *eth_test, u64 *data)
1795 {
1796 	struct e1000_adapter *adapter = netdev_priv(netdev);
1797 	u16 autoneg_advertised;
1798 	u8 forced_speed_duplex;
1799 	u8 autoneg;
1800 	bool if_running = netif_running(netdev);
1801 
1802 	pm_runtime_get_sync(netdev->dev.parent);
1803 
1804 	set_bit(__E1000_TESTING, &adapter->state);
1805 
1806 	if (!if_running) {
1807 		/* Get control of and reset hardware */
1808 		if (adapter->flags & FLAG_HAS_AMT)
1809 			e1000e_get_hw_control(adapter);
1810 
1811 		e1000e_power_up_phy(adapter);
1812 
1813 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1814 		e1000e_reset(adapter);
1815 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1816 	}
1817 
1818 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1819 		/* Offline tests */
1820 
1821 		/* save speed, duplex, autoneg settings */
1822 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1823 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1824 		autoneg = adapter->hw.mac.autoneg;
1825 
1826 		e_info("offline testing starting\n");
1827 
1828 		if (if_running)
1829 			/* indicate we're in test mode */
1830 			e1000e_close(netdev);
1831 
1832 		if (e1000_reg_test(adapter, &data[0]))
1833 			eth_test->flags |= ETH_TEST_FL_FAILED;
1834 
1835 		e1000e_reset(adapter);
1836 		if (e1000_eeprom_test(adapter, &data[1]))
1837 			eth_test->flags |= ETH_TEST_FL_FAILED;
1838 
1839 		e1000e_reset(adapter);
1840 		if (e1000_intr_test(adapter, &data[2]))
1841 			eth_test->flags |= ETH_TEST_FL_FAILED;
1842 
1843 		e1000e_reset(adapter);
1844 		if (e1000_loopback_test(adapter, &data[3]))
1845 			eth_test->flags |= ETH_TEST_FL_FAILED;
1846 
1847 		/* force this routine to wait until autoneg complete/timeout */
1848 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1849 		e1000e_reset(adapter);
1850 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1851 
1852 		if (e1000_link_test(adapter, &data[4]))
1853 			eth_test->flags |= ETH_TEST_FL_FAILED;
1854 
1855 		/* restore speed, duplex, autoneg settings */
1856 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1857 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1858 		adapter->hw.mac.autoneg = autoneg;
1859 		e1000e_reset(adapter);
1860 
1861 		clear_bit(__E1000_TESTING, &adapter->state);
1862 		if (if_running)
1863 			e1000e_open(netdev);
1864 	} else {
1865 		/* Online tests */
1866 
1867 		e_info("online testing starting\n");
1868 
1869 		/* register, eeprom, intr and loopback tests not run online */
1870 		data[0] = 0;
1871 		data[1] = 0;
1872 		data[2] = 0;
1873 		data[3] = 0;
1874 
1875 		if (e1000_link_test(adapter, &data[4]))
1876 			eth_test->flags |= ETH_TEST_FL_FAILED;
1877 
1878 		clear_bit(__E1000_TESTING, &adapter->state);
1879 	}
1880 
1881 	if (!if_running) {
1882 		e1000e_reset(adapter);
1883 
1884 		if (adapter->flags & FLAG_HAS_AMT)
1885 			e1000e_release_hw_control(adapter);
1886 	}
1887 
1888 	msleep_interruptible(4 * 1000);
1889 
1890 	pm_runtime_put_sync(netdev->dev.parent);
1891 }
1892 
1893 static void e1000_get_wol(struct net_device *netdev,
1894 			  struct ethtool_wolinfo *wol)
1895 {
1896 	struct e1000_adapter *adapter = netdev_priv(netdev);
1897 
1898 	wol->supported = 0;
1899 	wol->wolopts = 0;
1900 
1901 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1902 	    !device_can_wakeup(&adapter->pdev->dev))
1903 		return;
1904 
1905 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1906 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1907 
1908 	/* apply any specific unsupported masks here */
1909 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1910 		wol->supported &= ~WAKE_UCAST;
1911 
1912 		if (adapter->wol & E1000_WUFC_EX)
1913 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1914 	}
1915 
1916 	if (adapter->wol & E1000_WUFC_EX)
1917 		wol->wolopts |= WAKE_UCAST;
1918 	if (adapter->wol & E1000_WUFC_MC)
1919 		wol->wolopts |= WAKE_MCAST;
1920 	if (adapter->wol & E1000_WUFC_BC)
1921 		wol->wolopts |= WAKE_BCAST;
1922 	if (adapter->wol & E1000_WUFC_MAG)
1923 		wol->wolopts |= WAKE_MAGIC;
1924 	if (adapter->wol & E1000_WUFC_LNKC)
1925 		wol->wolopts |= WAKE_PHY;
1926 }
1927 
1928 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1929 {
1930 	struct e1000_adapter *adapter = netdev_priv(netdev);
1931 
1932 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1933 	    !device_can_wakeup(&adapter->pdev->dev) ||
1934 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1935 			      WAKE_MAGIC | WAKE_PHY)))
1936 		return -EOPNOTSUPP;
1937 
1938 	/* these settings will always override what we currently have */
1939 	adapter->wol = 0;
1940 
1941 	if (wol->wolopts & WAKE_UCAST)
1942 		adapter->wol |= E1000_WUFC_EX;
1943 	if (wol->wolopts & WAKE_MCAST)
1944 		adapter->wol |= E1000_WUFC_MC;
1945 	if (wol->wolopts & WAKE_BCAST)
1946 		adapter->wol |= E1000_WUFC_BC;
1947 	if (wol->wolopts & WAKE_MAGIC)
1948 		adapter->wol |= E1000_WUFC_MAG;
1949 	if (wol->wolopts & WAKE_PHY)
1950 		adapter->wol |= E1000_WUFC_LNKC;
1951 
1952 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1953 
1954 	return 0;
1955 }
1956 
1957 static int e1000_set_phys_id(struct net_device *netdev,
1958 			     enum ethtool_phys_id_state state)
1959 {
1960 	struct e1000_adapter *adapter = netdev_priv(netdev);
1961 	struct e1000_hw *hw = &adapter->hw;
1962 
1963 	switch (state) {
1964 	case ETHTOOL_ID_ACTIVE:
1965 		pm_runtime_get_sync(netdev->dev.parent);
1966 
1967 		if (!hw->mac.ops.blink_led)
1968 			return 2;	/* cycle on/off twice per second */
1969 
1970 		hw->mac.ops.blink_led(hw);
1971 		break;
1972 
1973 	case ETHTOOL_ID_INACTIVE:
1974 		if (hw->phy.type == e1000_phy_ife)
1975 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1976 		hw->mac.ops.led_off(hw);
1977 		hw->mac.ops.cleanup_led(hw);
1978 		pm_runtime_put_sync(netdev->dev.parent);
1979 		break;
1980 
1981 	case ETHTOOL_ID_ON:
1982 		hw->mac.ops.led_on(hw);
1983 		break;
1984 
1985 	case ETHTOOL_ID_OFF:
1986 		hw->mac.ops.led_off(hw);
1987 		break;
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 static int e1000_get_coalesce(struct net_device *netdev,
1994 			      struct ethtool_coalesce *ec)
1995 {
1996 	struct e1000_adapter *adapter = netdev_priv(netdev);
1997 
1998 	if (adapter->itr_setting <= 4)
1999 		ec->rx_coalesce_usecs = adapter->itr_setting;
2000 	else
2001 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2002 
2003 	return 0;
2004 }
2005 
2006 static int e1000_set_coalesce(struct net_device *netdev,
2007 			      struct ethtool_coalesce *ec)
2008 {
2009 	struct e1000_adapter *adapter = netdev_priv(netdev);
2010 
2011 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2012 	    ((ec->rx_coalesce_usecs > 4) &&
2013 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2014 	    (ec->rx_coalesce_usecs == 2))
2015 		return -EINVAL;
2016 
2017 	if (ec->rx_coalesce_usecs == 4) {
2018 		adapter->itr_setting = 4;
2019 		adapter->itr = adapter->itr_setting;
2020 	} else if (ec->rx_coalesce_usecs <= 3) {
2021 		adapter->itr = 20000;
2022 		adapter->itr_setting = ec->rx_coalesce_usecs;
2023 	} else {
2024 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2025 		adapter->itr_setting = adapter->itr & ~3;
2026 	}
2027 
2028 	pm_runtime_get_sync(netdev->dev.parent);
2029 
2030 	if (adapter->itr_setting != 0)
2031 		e1000e_write_itr(adapter, adapter->itr);
2032 	else
2033 		e1000e_write_itr(adapter, 0);
2034 
2035 	pm_runtime_put_sync(netdev->dev.parent);
2036 
2037 	return 0;
2038 }
2039 
2040 static int e1000_nway_reset(struct net_device *netdev)
2041 {
2042 	struct e1000_adapter *adapter = netdev_priv(netdev);
2043 
2044 	if (!netif_running(netdev))
2045 		return -EAGAIN;
2046 
2047 	if (!adapter->hw.mac.autoneg)
2048 		return -EINVAL;
2049 
2050 	pm_runtime_get_sync(netdev->dev.parent);
2051 	e1000e_reinit_locked(adapter);
2052 	pm_runtime_put_sync(netdev->dev.parent);
2053 
2054 	return 0;
2055 }
2056 
2057 static void e1000_get_ethtool_stats(struct net_device *netdev,
2058 				    struct ethtool_stats __always_unused *stats,
2059 				    u64 *data)
2060 {
2061 	struct e1000_adapter *adapter = netdev_priv(netdev);
2062 	struct rtnl_link_stats64 net_stats;
2063 	int i;
2064 	char *p = NULL;
2065 
2066 	pm_runtime_get_sync(netdev->dev.parent);
2067 
2068 	dev_get_stats(netdev, &net_stats);
2069 
2070 	pm_runtime_put_sync(netdev->dev.parent);
2071 
2072 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2073 		switch (e1000_gstrings_stats[i].type) {
2074 		case NETDEV_STATS:
2075 			p = (char *)&net_stats +
2076 			    e1000_gstrings_stats[i].stat_offset;
2077 			break;
2078 		case E1000_STATS:
2079 			p = (char *)adapter +
2080 			    e1000_gstrings_stats[i].stat_offset;
2081 			break;
2082 		default:
2083 			data[i] = 0;
2084 			continue;
2085 		}
2086 
2087 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2088 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2089 	}
2090 }
2091 
2092 static void e1000_get_strings(struct net_device __always_unused *netdev,
2093 			      u32 stringset, u8 *data)
2094 {
2095 	u8 *p = data;
2096 	int i;
2097 
2098 	switch (stringset) {
2099 	case ETH_SS_TEST:
2100 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2101 		break;
2102 	case ETH_SS_STATS:
2103 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2104 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2105 			       ETH_GSTRING_LEN);
2106 			p += ETH_GSTRING_LEN;
2107 		}
2108 		break;
2109 	case ETH_SS_PRIV_FLAGS:
2110 		memcpy(data, e1000e_priv_flags_strings,
2111 		       E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2112 		break;
2113 	}
2114 }
2115 
2116 static int e1000_get_rxnfc(struct net_device *netdev,
2117 			   struct ethtool_rxnfc *info,
2118 			   u32 __always_unused *rule_locs)
2119 {
2120 	info->data = 0;
2121 
2122 	switch (info->cmd) {
2123 	case ETHTOOL_GRXFH: {
2124 		struct e1000_adapter *adapter = netdev_priv(netdev);
2125 		struct e1000_hw *hw = &adapter->hw;
2126 		u32 mrqc;
2127 
2128 		pm_runtime_get_sync(netdev->dev.parent);
2129 		mrqc = er32(MRQC);
2130 		pm_runtime_put_sync(netdev->dev.parent);
2131 
2132 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2133 			return 0;
2134 
2135 		switch (info->flow_type) {
2136 		case TCP_V4_FLOW:
2137 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2138 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2139 			fallthrough;
2140 		case UDP_V4_FLOW:
2141 		case SCTP_V4_FLOW:
2142 		case AH_ESP_V4_FLOW:
2143 		case IPV4_FLOW:
2144 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2145 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2146 			break;
2147 		case TCP_V6_FLOW:
2148 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2149 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2150 			fallthrough;
2151 		case UDP_V6_FLOW:
2152 		case SCTP_V6_FLOW:
2153 		case AH_ESP_V6_FLOW:
2154 		case IPV6_FLOW:
2155 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2156 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2157 			break;
2158 		default:
2159 			break;
2160 		}
2161 		return 0;
2162 	}
2163 	default:
2164 		return -EOPNOTSUPP;
2165 	}
2166 }
2167 
2168 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2169 {
2170 	struct e1000_adapter *adapter = netdev_priv(netdev);
2171 	struct e1000_hw *hw = &adapter->hw;
2172 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2173 	u32 ret_val;
2174 
2175 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2176 		return -EOPNOTSUPP;
2177 
2178 	switch (hw->phy.type) {
2179 	case e1000_phy_82579:
2180 		cap_addr = I82579_EEE_CAPABILITY;
2181 		lpa_addr = I82579_EEE_LP_ABILITY;
2182 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2183 		break;
2184 	case e1000_phy_i217:
2185 		cap_addr = I217_EEE_CAPABILITY;
2186 		lpa_addr = I217_EEE_LP_ABILITY;
2187 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2188 		break;
2189 	default:
2190 		return -EOPNOTSUPP;
2191 	}
2192 
2193 	pm_runtime_get_sync(netdev->dev.parent);
2194 
2195 	ret_val = hw->phy.ops.acquire(hw);
2196 	if (ret_val) {
2197 		pm_runtime_put_sync(netdev->dev.parent);
2198 		return -EBUSY;
2199 	}
2200 
2201 	/* EEE Capability */
2202 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2203 	if (ret_val)
2204 		goto release;
2205 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2206 
2207 	/* EEE Advertised */
2208 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2209 
2210 	/* EEE Link Partner Advertised */
2211 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2212 	if (ret_val)
2213 		goto release;
2214 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2215 
2216 	/* EEE PCS Status */
2217 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2218 	if (ret_val)
2219 		goto release;
2220 	if (hw->phy.type == e1000_phy_82579)
2221 		phy_data <<= 8;
2222 
2223 	/* Result of the EEE auto negotiation - there is no register that
2224 	 * has the status of the EEE negotiation so do a best-guess based
2225 	 * on whether Tx or Rx LPI indications have been received.
2226 	 */
2227 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2228 		edata->eee_active = true;
2229 
2230 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2231 	edata->tx_lpi_enabled = true;
2232 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2233 
2234 release:
2235 	hw->phy.ops.release(hw);
2236 	if (ret_val)
2237 		ret_val = -ENODATA;
2238 
2239 	pm_runtime_put_sync(netdev->dev.parent);
2240 
2241 	return ret_val;
2242 }
2243 
2244 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2245 {
2246 	struct e1000_adapter *adapter = netdev_priv(netdev);
2247 	struct e1000_hw *hw = &adapter->hw;
2248 	struct ethtool_eee eee_curr;
2249 	s32 ret_val;
2250 
2251 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2252 	if (ret_val)
2253 		return ret_val;
2254 
2255 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2256 		e_err("Setting EEE tx-lpi is not supported\n");
2257 		return -EINVAL;
2258 	}
2259 
2260 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2261 		e_err("Setting EEE Tx LPI timer is not supported\n");
2262 		return -EINVAL;
2263 	}
2264 
2265 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2266 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2267 		return -EINVAL;
2268 	}
2269 
2270 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2271 
2272 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2273 
2274 	pm_runtime_get_sync(netdev->dev.parent);
2275 
2276 	/* reset the link */
2277 	if (netif_running(netdev))
2278 		e1000e_reinit_locked(adapter);
2279 	else
2280 		e1000e_reset(adapter);
2281 
2282 	pm_runtime_put_sync(netdev->dev.parent);
2283 
2284 	return 0;
2285 }
2286 
2287 static int e1000e_get_ts_info(struct net_device *netdev,
2288 			      struct ethtool_ts_info *info)
2289 {
2290 	struct e1000_adapter *adapter = netdev_priv(netdev);
2291 
2292 	ethtool_op_get_ts_info(netdev, info);
2293 
2294 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2295 		return 0;
2296 
2297 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2298 				  SOF_TIMESTAMPING_RX_HARDWARE |
2299 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2300 
2301 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2302 
2303 	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2304 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2305 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2306 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2307 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2308 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2309 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2310 			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2311 			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2312 			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2313 			    BIT(HWTSTAMP_FILTER_ALL));
2314 
2315 	if (adapter->ptp_clock)
2316 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2317 
2318 	return 0;
2319 }
2320 
2321 static u32 e1000e_get_priv_flags(struct net_device *netdev)
2322 {
2323 	struct e1000_adapter *adapter = netdev_priv(netdev);
2324 	u32 priv_flags = 0;
2325 
2326 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2327 		priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2328 
2329 	return priv_flags;
2330 }
2331 
2332 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2333 {
2334 	struct e1000_adapter *adapter = netdev_priv(netdev);
2335 	unsigned int flags2 = adapter->flags2;
2336 
2337 	flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2338 	if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2339 		struct e1000_hw *hw = &adapter->hw;
2340 
2341 		if (hw->mac.type < e1000_pch_cnp)
2342 			return -EINVAL;
2343 		flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2344 	}
2345 
2346 	if (flags2 != adapter->flags2)
2347 		adapter->flags2 = flags2;
2348 
2349 	return 0;
2350 }
2351 
2352 static const struct ethtool_ops e1000_ethtool_ops = {
2353 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2354 	.get_drvinfo		= e1000_get_drvinfo,
2355 	.get_regs_len		= e1000_get_regs_len,
2356 	.get_regs		= e1000_get_regs,
2357 	.get_wol		= e1000_get_wol,
2358 	.set_wol		= e1000_set_wol,
2359 	.get_msglevel		= e1000_get_msglevel,
2360 	.set_msglevel		= e1000_set_msglevel,
2361 	.nway_reset		= e1000_nway_reset,
2362 	.get_link		= ethtool_op_get_link,
2363 	.get_eeprom_len		= e1000_get_eeprom_len,
2364 	.get_eeprom		= e1000_get_eeprom,
2365 	.set_eeprom		= e1000_set_eeprom,
2366 	.get_ringparam		= e1000_get_ringparam,
2367 	.set_ringparam		= e1000_set_ringparam,
2368 	.get_pauseparam		= e1000_get_pauseparam,
2369 	.set_pauseparam		= e1000_set_pauseparam,
2370 	.self_test		= e1000_diag_test,
2371 	.get_strings		= e1000_get_strings,
2372 	.set_phys_id		= e1000_set_phys_id,
2373 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2374 	.get_sset_count		= e1000e_get_sset_count,
2375 	.get_coalesce		= e1000_get_coalesce,
2376 	.set_coalesce		= e1000_set_coalesce,
2377 	.get_rxnfc		= e1000_get_rxnfc,
2378 	.get_ts_info		= e1000e_get_ts_info,
2379 	.get_eee		= e1000e_get_eee,
2380 	.set_eee		= e1000e_set_eee,
2381 	.get_link_ksettings	= e1000_get_link_ksettings,
2382 	.set_link_ksettings	= e1000_set_link_ksettings,
2383 	.get_priv_flags		= e1000e_get_priv_flags,
2384 	.set_priv_flags		= e1000e_set_priv_flags,
2385 };
2386 
2387 void e1000e_set_ethtool_ops(struct net_device *netdev)
2388 {
2389 	netdev->ethtool_ops = &e1000_ethtool_ops;
2390 }
2391