1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = { 27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0) 28 "s0ix-enabled", 29 }; 30 31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings) 32 33 #define E1000_STAT(str, m) { \ 34 .stat_string = str, \ 35 .type = E1000_STATS, \ 36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 37 .stat_offset = offsetof(struct e1000_adapter, m) } 38 #define E1000_NETDEV_STAT(str, m) { \ 39 .stat_string = str, \ 40 .type = NETDEV_STATS, \ 41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 42 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 43 44 static const struct e1000_stats e1000_gstrings_stats[] = { 45 E1000_STAT("rx_packets", stats.gprc), 46 E1000_STAT("tx_packets", stats.gptc), 47 E1000_STAT("rx_bytes", stats.gorc), 48 E1000_STAT("tx_bytes", stats.gotc), 49 E1000_STAT("rx_broadcast", stats.bprc), 50 E1000_STAT("tx_broadcast", stats.bptc), 51 E1000_STAT("rx_multicast", stats.mprc), 52 E1000_STAT("tx_multicast", stats.mptc), 53 E1000_NETDEV_STAT("rx_errors", rx_errors), 54 E1000_NETDEV_STAT("tx_errors", tx_errors), 55 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 56 E1000_STAT("multicast", stats.mprc), 57 E1000_STAT("collisions", stats.colc), 58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 60 E1000_STAT("rx_crc_errors", stats.crcerrs), 61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 62 E1000_STAT("rx_no_buffer_count", stats.rnbc), 63 E1000_STAT("rx_missed_errors", stats.mpc), 64 E1000_STAT("tx_aborted_errors", stats.ecol), 65 E1000_STAT("tx_carrier_errors", stats.tncrs), 66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 68 E1000_STAT("tx_window_errors", stats.latecol), 69 E1000_STAT("tx_abort_late_coll", stats.latecol), 70 E1000_STAT("tx_deferred_ok", stats.dc), 71 E1000_STAT("tx_single_coll_ok", stats.scc), 72 E1000_STAT("tx_multi_coll_ok", stats.mcc), 73 E1000_STAT("tx_timeout_count", tx_timeout_count), 74 E1000_STAT("tx_restart_queue", restart_queue), 75 E1000_STAT("rx_long_length_errors", stats.roc), 76 E1000_STAT("rx_short_length_errors", stats.ruc), 77 E1000_STAT("rx_align_errors", stats.algnerrc), 78 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 80 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 82 E1000_STAT("tx_flow_control_xon", stats.xontxc), 83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 84 E1000_STAT("rx_csum_offload_good", hw_csum_good), 85 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 86 E1000_STAT("rx_header_split", rx_hdr_split), 87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 88 E1000_STAT("tx_smbus", stats.mgptc), 89 E1000_STAT("rx_smbus", stats.mgprc), 90 E1000_STAT("dropped_smbus", stats.mgpdc), 91 E1000_STAT("rx_dma_failed", rx_dma_failed), 92 E1000_STAT("tx_dma_failed", tx_dma_failed), 93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 94 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 95 E1000_STAT("corr_ecc_errors", corr_errors), 96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 98 }; 99 100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 103 "Register test (offline)", "Eeprom test (offline)", 104 "Interrupt test (offline)", "Loopback test (offline)", 105 "Link test (on/offline)" 106 }; 107 108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 109 110 static int e1000_get_link_ksettings(struct net_device *netdev, 111 struct ethtool_link_ksettings *cmd) 112 { 113 u32 speed, supported, advertising, lp_advertising, lpa_t; 114 struct e1000_adapter *adapter = netdev_priv(netdev); 115 struct e1000_hw *hw = &adapter->hw; 116 117 if (hw->phy.media_type == e1000_media_type_copper) { 118 supported = (SUPPORTED_10baseT_Half | 119 SUPPORTED_10baseT_Full | 120 SUPPORTED_100baseT_Half | 121 SUPPORTED_100baseT_Full | 122 SUPPORTED_1000baseT_Full | 123 SUPPORTED_Asym_Pause | 124 SUPPORTED_Autoneg | 125 SUPPORTED_Pause | 126 SUPPORTED_TP); 127 if (hw->phy.type == e1000_phy_ife) 128 supported &= ~SUPPORTED_1000baseT_Full; 129 advertising = ADVERTISED_TP; 130 131 if (hw->mac.autoneg == 1) { 132 advertising |= ADVERTISED_Autoneg; 133 /* the e1000 autoneg seems to match ethtool nicely */ 134 advertising |= hw->phy.autoneg_advertised; 135 } 136 137 cmd->base.port = PORT_TP; 138 cmd->base.phy_address = hw->phy.addr; 139 } else { 140 supported = (SUPPORTED_1000baseT_Full | 141 SUPPORTED_FIBRE | 142 SUPPORTED_Autoneg); 143 144 advertising = (ADVERTISED_1000baseT_Full | 145 ADVERTISED_FIBRE | 146 ADVERTISED_Autoneg); 147 148 cmd->base.port = PORT_FIBRE; 149 } 150 151 speed = SPEED_UNKNOWN; 152 cmd->base.duplex = DUPLEX_UNKNOWN; 153 154 if (netif_running(netdev)) { 155 if (netif_carrier_ok(netdev)) { 156 speed = adapter->link_speed; 157 cmd->base.duplex = adapter->link_duplex - 1; 158 } 159 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 160 u32 status = er32(STATUS); 161 162 if (status & E1000_STATUS_LU) { 163 if (status & E1000_STATUS_SPEED_1000) 164 speed = SPEED_1000; 165 else if (status & E1000_STATUS_SPEED_100) 166 speed = SPEED_100; 167 else 168 speed = SPEED_10; 169 170 if (status & E1000_STATUS_FD) 171 cmd->base.duplex = DUPLEX_FULL; 172 else 173 cmd->base.duplex = DUPLEX_HALF; 174 } 175 } 176 177 cmd->base.speed = speed; 178 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 179 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 180 181 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 182 if ((hw->phy.media_type == e1000_media_type_copper) && 183 netif_carrier_ok(netdev)) 184 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 185 ETH_TP_MDI_X : ETH_TP_MDI; 186 else 187 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 188 189 if (hw->phy.mdix == AUTO_ALL_MODES) 190 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 191 else 192 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 193 194 if (hw->phy.media_type != e1000_media_type_copper) 195 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 196 197 lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000); 198 lp_advertising = lpa_t | 199 mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa); 200 201 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 202 supported); 203 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 204 advertising); 205 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, 206 lp_advertising); 207 208 return 0; 209 } 210 211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 212 { 213 struct e1000_mac_info *mac = &adapter->hw.mac; 214 215 mac->autoneg = 0; 216 217 /* Make sure dplx is at most 1 bit and lsb of speed is not set 218 * for the switch() below to work 219 */ 220 if ((spd & 1) || (dplx & ~1)) 221 goto err_inval; 222 223 /* Fiber NICs only allow 1000 gbps Full duplex */ 224 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 225 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 226 goto err_inval; 227 } 228 229 switch (spd + dplx) { 230 case SPEED_10 + DUPLEX_HALF: 231 mac->forced_speed_duplex = ADVERTISE_10_HALF; 232 break; 233 case SPEED_10 + DUPLEX_FULL: 234 mac->forced_speed_duplex = ADVERTISE_10_FULL; 235 break; 236 case SPEED_100 + DUPLEX_HALF: 237 mac->forced_speed_duplex = ADVERTISE_100_HALF; 238 break; 239 case SPEED_100 + DUPLEX_FULL: 240 mac->forced_speed_duplex = ADVERTISE_100_FULL; 241 break; 242 case SPEED_1000 + DUPLEX_FULL: 243 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 244 mac->autoneg = 1; 245 adapter->hw.phy.autoneg_advertised = 246 ADVERTISE_1000_FULL; 247 } else { 248 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 249 } 250 break; 251 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 252 default: 253 goto err_inval; 254 } 255 256 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 257 adapter->hw.phy.mdix = AUTO_ALL_MODES; 258 259 return 0; 260 261 err_inval: 262 e_err("Unsupported Speed/Duplex configuration\n"); 263 return -EINVAL; 264 } 265 266 static int e1000_set_link_ksettings(struct net_device *netdev, 267 const struct ethtool_link_ksettings *cmd) 268 { 269 struct e1000_adapter *adapter = netdev_priv(netdev); 270 struct e1000_hw *hw = &adapter->hw; 271 int ret_val = 0; 272 u32 advertising; 273 274 ethtool_convert_link_mode_to_legacy_u32(&advertising, 275 cmd->link_modes.advertising); 276 277 pm_runtime_get_sync(netdev->dev.parent); 278 279 /* When SoL/IDER sessions are active, autoneg/speed/duplex 280 * cannot be changed 281 */ 282 if (hw->phy.ops.check_reset_block && 283 hw->phy.ops.check_reset_block(hw)) { 284 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 285 ret_val = -EINVAL; 286 goto out; 287 } 288 289 /* MDI setting is only allowed when autoneg enabled because 290 * some hardware doesn't allow MDI setting when speed or 291 * duplex is forced. 292 */ 293 if (cmd->base.eth_tp_mdix_ctrl) { 294 if (hw->phy.media_type != e1000_media_type_copper) { 295 ret_val = -EOPNOTSUPP; 296 goto out; 297 } 298 299 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 300 (cmd->base.autoneg != AUTONEG_ENABLE)) { 301 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 302 ret_val = -EINVAL; 303 goto out; 304 } 305 } 306 307 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 308 usleep_range(1000, 2000); 309 310 if (cmd->base.autoneg == AUTONEG_ENABLE) { 311 hw->mac.autoneg = 1; 312 if (hw->phy.media_type == e1000_media_type_fiber) 313 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 314 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 315 else 316 hw->phy.autoneg_advertised = advertising | 317 ADVERTISED_TP | ADVERTISED_Autoneg; 318 advertising = hw->phy.autoneg_advertised; 319 if (adapter->fc_autoneg) 320 hw->fc.requested_mode = e1000_fc_default; 321 } else { 322 u32 speed = cmd->base.speed; 323 /* calling this overrides forced MDI setting */ 324 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 325 ret_val = -EINVAL; 326 goto out; 327 } 328 } 329 330 /* MDI-X => 2; MDI => 1; Auto => 3 */ 331 if (cmd->base.eth_tp_mdix_ctrl) { 332 /* fix up the value for auto (3 => 0) as zero is mapped 333 * internally to auto 334 */ 335 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 336 hw->phy.mdix = AUTO_ALL_MODES; 337 else 338 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 339 } 340 341 /* reset the link */ 342 if (netif_running(adapter->netdev)) { 343 e1000e_down(adapter, true); 344 e1000e_up(adapter); 345 } else { 346 e1000e_reset(adapter); 347 } 348 349 out: 350 pm_runtime_put_sync(netdev->dev.parent); 351 clear_bit(__E1000_RESETTING, &adapter->state); 352 return ret_val; 353 } 354 355 static void e1000_get_pauseparam(struct net_device *netdev, 356 struct ethtool_pauseparam *pause) 357 { 358 struct e1000_adapter *adapter = netdev_priv(netdev); 359 struct e1000_hw *hw = &adapter->hw; 360 361 pause->autoneg = 362 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 363 364 if (hw->fc.current_mode == e1000_fc_rx_pause) { 365 pause->rx_pause = 1; 366 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 367 pause->tx_pause = 1; 368 } else if (hw->fc.current_mode == e1000_fc_full) { 369 pause->rx_pause = 1; 370 pause->tx_pause = 1; 371 } 372 } 373 374 static int e1000_set_pauseparam(struct net_device *netdev, 375 struct ethtool_pauseparam *pause) 376 { 377 struct e1000_adapter *adapter = netdev_priv(netdev); 378 struct e1000_hw *hw = &adapter->hw; 379 int retval = 0; 380 381 adapter->fc_autoneg = pause->autoneg; 382 383 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 384 usleep_range(1000, 2000); 385 386 pm_runtime_get_sync(netdev->dev.parent); 387 388 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 389 hw->fc.requested_mode = e1000_fc_default; 390 if (netif_running(adapter->netdev)) { 391 e1000e_down(adapter, true); 392 e1000e_up(adapter); 393 } else { 394 e1000e_reset(adapter); 395 } 396 } else { 397 if (pause->rx_pause && pause->tx_pause) 398 hw->fc.requested_mode = e1000_fc_full; 399 else if (pause->rx_pause && !pause->tx_pause) 400 hw->fc.requested_mode = e1000_fc_rx_pause; 401 else if (!pause->rx_pause && pause->tx_pause) 402 hw->fc.requested_mode = e1000_fc_tx_pause; 403 else if (!pause->rx_pause && !pause->tx_pause) 404 hw->fc.requested_mode = e1000_fc_none; 405 406 hw->fc.current_mode = hw->fc.requested_mode; 407 408 if (hw->phy.media_type == e1000_media_type_fiber) { 409 retval = hw->mac.ops.setup_link(hw); 410 /* implicit goto out */ 411 } else { 412 retval = e1000e_force_mac_fc(hw); 413 if (retval) 414 goto out; 415 e1000e_set_fc_watermarks(hw); 416 } 417 } 418 419 out: 420 pm_runtime_put_sync(netdev->dev.parent); 421 clear_bit(__E1000_RESETTING, &adapter->state); 422 return retval; 423 } 424 425 static u32 e1000_get_msglevel(struct net_device *netdev) 426 { 427 struct e1000_adapter *adapter = netdev_priv(netdev); 428 return adapter->msg_enable; 429 } 430 431 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 432 { 433 struct e1000_adapter *adapter = netdev_priv(netdev); 434 adapter->msg_enable = data; 435 } 436 437 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 438 { 439 #define E1000_REGS_LEN 32 /* overestimate */ 440 return E1000_REGS_LEN * sizeof(u32); 441 } 442 443 static void e1000_get_regs(struct net_device *netdev, 444 struct ethtool_regs *regs, void *p) 445 { 446 struct e1000_adapter *adapter = netdev_priv(netdev); 447 struct e1000_hw *hw = &adapter->hw; 448 u32 *regs_buff = p; 449 u16 phy_data; 450 451 pm_runtime_get_sync(netdev->dev.parent); 452 453 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 454 455 regs->version = (1u << 24) | 456 (adapter->pdev->revision << 16) | 457 adapter->pdev->device; 458 459 regs_buff[0] = er32(CTRL); 460 regs_buff[1] = er32(STATUS); 461 462 regs_buff[2] = er32(RCTL); 463 regs_buff[3] = er32(RDLEN(0)); 464 regs_buff[4] = er32(RDH(0)); 465 regs_buff[5] = er32(RDT(0)); 466 regs_buff[6] = er32(RDTR); 467 468 regs_buff[7] = er32(TCTL); 469 regs_buff[8] = er32(TDLEN(0)); 470 regs_buff[9] = er32(TDH(0)); 471 regs_buff[10] = er32(TDT(0)); 472 regs_buff[11] = er32(TIDV); 473 474 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 475 476 /* ethtool doesn't use anything past this point, so all this 477 * code is likely legacy junk for apps that may or may not exist 478 */ 479 if (hw->phy.type == e1000_phy_m88) { 480 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 481 regs_buff[13] = (u32)phy_data; /* cable length */ 482 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 483 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 484 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 485 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 486 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 487 regs_buff[18] = regs_buff[13]; /* cable polarity */ 488 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 489 regs_buff[20] = regs_buff[17]; /* polarity correction */ 490 /* phy receive errors */ 491 regs_buff[22] = adapter->phy_stats.receive_errors; 492 regs_buff[23] = regs_buff[13]; /* mdix mode */ 493 } 494 regs_buff[21] = 0; /* was idle_errors */ 495 e1e_rphy(hw, MII_STAT1000, &phy_data); 496 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 497 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 498 499 pm_runtime_put_sync(netdev->dev.parent); 500 } 501 502 static int e1000_get_eeprom_len(struct net_device *netdev) 503 { 504 struct e1000_adapter *adapter = netdev_priv(netdev); 505 return adapter->hw.nvm.word_size * 2; 506 } 507 508 static int e1000_get_eeprom(struct net_device *netdev, 509 struct ethtool_eeprom *eeprom, u8 *bytes) 510 { 511 struct e1000_adapter *adapter = netdev_priv(netdev); 512 struct e1000_hw *hw = &adapter->hw; 513 u16 *eeprom_buff; 514 int first_word; 515 int last_word; 516 int ret_val = 0; 517 u16 i; 518 519 if (eeprom->len == 0) 520 return -EINVAL; 521 522 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 523 524 first_word = eeprom->offset >> 1; 525 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 526 527 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 528 GFP_KERNEL); 529 if (!eeprom_buff) 530 return -ENOMEM; 531 532 pm_runtime_get_sync(netdev->dev.parent); 533 534 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 535 ret_val = e1000_read_nvm(hw, first_word, 536 last_word - first_word + 1, 537 eeprom_buff); 538 } else { 539 for (i = 0; i < last_word - first_word + 1; i++) { 540 ret_val = e1000_read_nvm(hw, first_word + i, 1, 541 &eeprom_buff[i]); 542 if (ret_val) 543 break; 544 } 545 } 546 547 pm_runtime_put_sync(netdev->dev.parent); 548 549 if (ret_val) { 550 /* a read error occurred, throw away the result */ 551 memset(eeprom_buff, 0xff, sizeof(u16) * 552 (last_word - first_word + 1)); 553 } else { 554 /* Device's eeprom is always little-endian, word addressable */ 555 for (i = 0; i < last_word - first_word + 1; i++) 556 le16_to_cpus(&eeprom_buff[i]); 557 } 558 559 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 560 kfree(eeprom_buff); 561 562 return ret_val; 563 } 564 565 static int e1000_set_eeprom(struct net_device *netdev, 566 struct ethtool_eeprom *eeprom, u8 *bytes) 567 { 568 struct e1000_adapter *adapter = netdev_priv(netdev); 569 struct e1000_hw *hw = &adapter->hw; 570 u16 *eeprom_buff; 571 void *ptr; 572 int max_len; 573 int first_word; 574 int last_word; 575 int ret_val = 0; 576 u16 i; 577 578 if (eeprom->len == 0) 579 return -EOPNOTSUPP; 580 581 if (eeprom->magic != 582 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 583 return -EFAULT; 584 585 if (adapter->flags & FLAG_READ_ONLY_NVM) 586 return -EINVAL; 587 588 max_len = hw->nvm.word_size * 2; 589 590 first_word = eeprom->offset >> 1; 591 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 592 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 593 if (!eeprom_buff) 594 return -ENOMEM; 595 596 ptr = (void *)eeprom_buff; 597 598 pm_runtime_get_sync(netdev->dev.parent); 599 600 if (eeprom->offset & 1) { 601 /* need read/modify/write of first changed EEPROM word */ 602 /* only the second byte of the word is being modified */ 603 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 604 ptr++; 605 } 606 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 607 /* need read/modify/write of last changed EEPROM word */ 608 /* only the first byte of the word is being modified */ 609 ret_val = e1000_read_nvm(hw, last_word, 1, 610 &eeprom_buff[last_word - first_word]); 611 612 if (ret_val) 613 goto out; 614 615 /* Device's eeprom is always little-endian, word addressable */ 616 for (i = 0; i < last_word - first_word + 1; i++) 617 le16_to_cpus(&eeprom_buff[i]); 618 619 memcpy(ptr, bytes, eeprom->len); 620 621 for (i = 0; i < last_word - first_word + 1; i++) 622 cpu_to_le16s(&eeprom_buff[i]); 623 624 ret_val = e1000_write_nvm(hw, first_word, 625 last_word - first_word + 1, eeprom_buff); 626 627 if (ret_val) 628 goto out; 629 630 /* Update the checksum over the first part of the EEPROM if needed 631 * and flush shadow RAM for applicable controllers 632 */ 633 if ((first_word <= NVM_CHECKSUM_REG) || 634 (hw->mac.type == e1000_82583) || 635 (hw->mac.type == e1000_82574) || 636 (hw->mac.type == e1000_82573)) 637 ret_val = e1000e_update_nvm_checksum(hw); 638 639 out: 640 pm_runtime_put_sync(netdev->dev.parent); 641 kfree(eeprom_buff); 642 return ret_val; 643 } 644 645 static void e1000_get_drvinfo(struct net_device *netdev, 646 struct ethtool_drvinfo *drvinfo) 647 { 648 struct e1000_adapter *adapter = netdev_priv(netdev); 649 650 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 651 652 /* EEPROM image version # is reported as firmware version # for 653 * PCI-E controllers 654 */ 655 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 656 "%d.%d-%d", 657 (adapter->eeprom_vers & 0xF000) >> 12, 658 (adapter->eeprom_vers & 0x0FF0) >> 4, 659 (adapter->eeprom_vers & 0x000F)); 660 661 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 662 sizeof(drvinfo->bus_info)); 663 } 664 665 static void e1000_get_ringparam(struct net_device *netdev, 666 struct ethtool_ringparam *ring, 667 struct kernel_ethtool_ringparam *kernel_ring, 668 struct netlink_ext_ack *extack) 669 { 670 struct e1000_adapter *adapter = netdev_priv(netdev); 671 672 ring->rx_max_pending = E1000_MAX_RXD; 673 ring->tx_max_pending = E1000_MAX_TXD; 674 ring->rx_pending = adapter->rx_ring_count; 675 ring->tx_pending = adapter->tx_ring_count; 676 } 677 678 static int e1000_set_ringparam(struct net_device *netdev, 679 struct ethtool_ringparam *ring, 680 struct kernel_ethtool_ringparam *kernel_ring, 681 struct netlink_ext_ack *extack) 682 { 683 struct e1000_adapter *adapter = netdev_priv(netdev); 684 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 685 int err = 0, size = sizeof(struct e1000_ring); 686 bool set_tx = false, set_rx = false; 687 u16 new_rx_count, new_tx_count; 688 689 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 690 return -EINVAL; 691 692 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 693 E1000_MAX_RXD); 694 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 695 696 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 697 E1000_MAX_TXD); 698 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 699 700 if ((new_tx_count == adapter->tx_ring_count) && 701 (new_rx_count == adapter->rx_ring_count)) 702 /* nothing to do */ 703 return 0; 704 705 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 706 usleep_range(1000, 2000); 707 708 if (!netif_running(adapter->netdev)) { 709 /* Set counts now and allocate resources during open() */ 710 adapter->tx_ring->count = new_tx_count; 711 adapter->rx_ring->count = new_rx_count; 712 adapter->tx_ring_count = new_tx_count; 713 adapter->rx_ring_count = new_rx_count; 714 goto clear_reset; 715 } 716 717 set_tx = (new_tx_count != adapter->tx_ring_count); 718 set_rx = (new_rx_count != adapter->rx_ring_count); 719 720 /* Allocate temporary storage for ring updates */ 721 if (set_tx) { 722 temp_tx = vmalloc(size); 723 if (!temp_tx) { 724 err = -ENOMEM; 725 goto free_temp; 726 } 727 } 728 if (set_rx) { 729 temp_rx = vmalloc(size); 730 if (!temp_rx) { 731 err = -ENOMEM; 732 goto free_temp; 733 } 734 } 735 736 pm_runtime_get_sync(netdev->dev.parent); 737 738 e1000e_down(adapter, true); 739 740 /* We can't just free everything and then setup again, because the 741 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 742 * structs. First, attempt to allocate new resources... 743 */ 744 if (set_tx) { 745 memcpy(temp_tx, adapter->tx_ring, size); 746 temp_tx->count = new_tx_count; 747 err = e1000e_setup_tx_resources(temp_tx); 748 if (err) 749 goto err_setup; 750 } 751 if (set_rx) { 752 memcpy(temp_rx, adapter->rx_ring, size); 753 temp_rx->count = new_rx_count; 754 err = e1000e_setup_rx_resources(temp_rx); 755 if (err) 756 goto err_setup_rx; 757 } 758 759 /* ...then free the old resources and copy back any new ring data */ 760 if (set_tx) { 761 e1000e_free_tx_resources(adapter->tx_ring); 762 memcpy(adapter->tx_ring, temp_tx, size); 763 adapter->tx_ring_count = new_tx_count; 764 } 765 if (set_rx) { 766 e1000e_free_rx_resources(adapter->rx_ring); 767 memcpy(adapter->rx_ring, temp_rx, size); 768 adapter->rx_ring_count = new_rx_count; 769 } 770 771 err_setup_rx: 772 if (err && set_tx) 773 e1000e_free_tx_resources(temp_tx); 774 err_setup: 775 e1000e_up(adapter); 776 pm_runtime_put_sync(netdev->dev.parent); 777 free_temp: 778 vfree(temp_tx); 779 vfree(temp_rx); 780 clear_reset: 781 clear_bit(__E1000_RESETTING, &adapter->state); 782 return err; 783 } 784 785 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 786 int reg, int offset, u32 mask, u32 write) 787 { 788 u32 pat, val; 789 static const u32 test[] = { 790 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 791 }; 792 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 793 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 794 (test[pat] & write)); 795 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 796 if (val != (test[pat] & write & mask)) { 797 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 798 reg + (offset << 2), val, 799 (test[pat] & write & mask)); 800 *data = reg; 801 return true; 802 } 803 } 804 return false; 805 } 806 807 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 808 int reg, u32 mask, u32 write) 809 { 810 u32 val; 811 812 __ew32(&adapter->hw, reg, write & mask); 813 val = __er32(&adapter->hw, reg); 814 if ((write & mask) != (val & mask)) { 815 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 816 reg, (val & mask), (write & mask)); 817 *data = reg; 818 return true; 819 } 820 return false; 821 } 822 823 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 824 do { \ 825 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 826 return 1; \ 827 } while (0) 828 #define REG_PATTERN_TEST(reg, mask, write) \ 829 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 830 831 #define REG_SET_AND_CHECK(reg, mask, write) \ 832 do { \ 833 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 834 return 1; \ 835 } while (0) 836 837 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 838 { 839 struct e1000_hw *hw = &adapter->hw; 840 struct e1000_mac_info *mac = &adapter->hw.mac; 841 u32 value; 842 u32 before; 843 u32 after; 844 u32 i; 845 u32 toggle; 846 u32 mask; 847 u32 wlock_mac = 0; 848 849 /* The status register is Read Only, so a write should fail. 850 * Some bits that get toggled are ignored. There are several bits 851 * on newer hardware that are r/w. 852 */ 853 switch (mac->type) { 854 case e1000_82571: 855 case e1000_82572: 856 case e1000_80003es2lan: 857 toggle = 0x7FFFF3FF; 858 break; 859 default: 860 toggle = 0x7FFFF033; 861 break; 862 } 863 864 before = er32(STATUS); 865 value = (er32(STATUS) & toggle); 866 ew32(STATUS, toggle); 867 after = er32(STATUS) & toggle; 868 if (value != after) { 869 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 870 after, value); 871 *data = 1; 872 return 1; 873 } 874 /* restore previous status */ 875 ew32(STATUS, before); 876 877 if (!(adapter->flags & FLAG_IS_ICH)) { 878 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 879 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 880 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 881 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 882 } 883 884 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 885 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 886 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 887 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 888 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 889 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 890 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 891 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 892 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 893 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 894 895 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 896 897 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 898 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 899 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 900 901 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 902 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 903 if (!(adapter->flags & FLAG_IS_ICH)) 904 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 905 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 906 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 907 mask = 0x8003FFFF; 908 switch (mac->type) { 909 case e1000_ich10lan: 910 case e1000_pchlan: 911 case e1000_pch2lan: 912 case e1000_pch_lpt: 913 case e1000_pch_spt: 914 case e1000_pch_cnp: 915 case e1000_pch_tgp: 916 case e1000_pch_adp: 917 case e1000_pch_mtp: 918 case e1000_pch_lnp: 919 case e1000_pch_ptp: 920 mask |= BIT(18); 921 break; 922 default: 923 break; 924 } 925 926 if (mac->type >= e1000_pch_lpt) 927 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 928 E1000_FWSM_WLOCK_MAC_SHIFT; 929 930 for (i = 0; i < mac->rar_entry_count; i++) { 931 if (mac->type >= e1000_pch_lpt) { 932 /* Cannot test write-protected SHRAL[n] registers */ 933 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 934 continue; 935 936 /* SHRAH[9] different than the others */ 937 if (i == 10) 938 mask |= BIT(30); 939 else 940 mask &= ~BIT(30); 941 } 942 if (mac->type == e1000_pch2lan) { 943 /* SHRAH[0,1,2] different than previous */ 944 if (i == 1) 945 mask &= 0xFFF4FFFF; 946 /* SHRAH[3] different than SHRAH[0,1,2] */ 947 if (i == 4) 948 mask |= BIT(30); 949 /* RAR[1-6] owned by management engine - skipping */ 950 if (i > 0) 951 i += 6; 952 } 953 954 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 955 0xFFFFFFFF); 956 /* reset index to actual value */ 957 if ((mac->type == e1000_pch2lan) && (i > 6)) 958 i -= 6; 959 } 960 961 for (i = 0; i < mac->mta_reg_count; i++) 962 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 963 964 *data = 0; 965 966 return 0; 967 } 968 969 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 970 { 971 u16 temp; 972 u16 checksum = 0; 973 u16 i; 974 975 *data = 0; 976 /* Read and add up the contents of the EEPROM */ 977 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 978 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 979 *data = 1; 980 return *data; 981 } 982 checksum += temp; 983 } 984 985 /* If Checksum is not Correct return error else test passed */ 986 if ((checksum != (u16)NVM_SUM) && !(*data)) 987 *data = 2; 988 989 return *data; 990 } 991 992 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 993 { 994 struct net_device *netdev = (struct net_device *)data; 995 struct e1000_adapter *adapter = netdev_priv(netdev); 996 struct e1000_hw *hw = &adapter->hw; 997 998 adapter->test_icr |= er32(ICR); 999 1000 return IRQ_HANDLED; 1001 } 1002 1003 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 1004 { 1005 struct net_device *netdev = adapter->netdev; 1006 struct e1000_hw *hw = &adapter->hw; 1007 u32 mask; 1008 u32 shared_int = 1; 1009 u32 irq = adapter->pdev->irq; 1010 int i; 1011 int ret_val = 0; 1012 int int_mode = E1000E_INT_MODE_LEGACY; 1013 1014 *data = 0; 1015 1016 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 1017 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 1018 int_mode = adapter->int_mode; 1019 e1000e_reset_interrupt_capability(adapter); 1020 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1021 e1000e_set_interrupt_capability(adapter); 1022 } 1023 /* Hook up test interrupt handler just for this test */ 1024 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1025 netdev)) { 1026 shared_int = 0; 1027 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1028 netdev)) { 1029 *data = 1; 1030 ret_val = -1; 1031 goto out; 1032 } 1033 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1034 1035 /* Disable all the interrupts */ 1036 ew32(IMC, 0xFFFFFFFF); 1037 e1e_flush(); 1038 usleep_range(10000, 11000); 1039 1040 /* Test each interrupt */ 1041 for (i = 0; i < 10; i++) { 1042 /* Interrupt to test */ 1043 mask = BIT(i); 1044 1045 if (adapter->flags & FLAG_IS_ICH) { 1046 switch (mask) { 1047 case E1000_ICR_RXSEQ: 1048 continue; 1049 case 0x00000100: 1050 if (adapter->hw.mac.type == e1000_ich8lan || 1051 adapter->hw.mac.type == e1000_ich9lan) 1052 continue; 1053 break; 1054 default: 1055 break; 1056 } 1057 } 1058 1059 if (!shared_int) { 1060 /* Disable the interrupt to be reported in 1061 * the cause register and then force the same 1062 * interrupt and see if one gets posted. If 1063 * an interrupt was posted to the bus, the 1064 * test failed. 1065 */ 1066 adapter->test_icr = 0; 1067 ew32(IMC, mask); 1068 ew32(ICS, mask); 1069 e1e_flush(); 1070 usleep_range(10000, 11000); 1071 1072 if (adapter->test_icr & mask) { 1073 *data = 3; 1074 break; 1075 } 1076 } 1077 1078 /* Enable the interrupt to be reported in 1079 * the cause register and then force the same 1080 * interrupt and see if one gets posted. If 1081 * an interrupt was not posted to the bus, the 1082 * test failed. 1083 */ 1084 adapter->test_icr = 0; 1085 ew32(IMS, mask); 1086 ew32(ICS, mask); 1087 e1e_flush(); 1088 usleep_range(10000, 11000); 1089 1090 if (!(adapter->test_icr & mask)) { 1091 *data = 4; 1092 break; 1093 } 1094 1095 if (!shared_int) { 1096 /* Disable the other interrupts to be reported in 1097 * the cause register and then force the other 1098 * interrupts and see if any get posted. If 1099 * an interrupt was posted to the bus, the 1100 * test failed. 1101 */ 1102 adapter->test_icr = 0; 1103 ew32(IMC, ~mask & 0x00007FFF); 1104 ew32(ICS, ~mask & 0x00007FFF); 1105 e1e_flush(); 1106 usleep_range(10000, 11000); 1107 1108 if (adapter->test_icr) { 1109 *data = 5; 1110 break; 1111 } 1112 } 1113 } 1114 1115 /* Disable all the interrupts */ 1116 ew32(IMC, 0xFFFFFFFF); 1117 e1e_flush(); 1118 usleep_range(10000, 11000); 1119 1120 /* Unhook test interrupt handler */ 1121 free_irq(irq, netdev); 1122 1123 out: 1124 if (int_mode == E1000E_INT_MODE_MSIX) { 1125 e1000e_reset_interrupt_capability(adapter); 1126 adapter->int_mode = int_mode; 1127 e1000e_set_interrupt_capability(adapter); 1128 } 1129 1130 return ret_val; 1131 } 1132 1133 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1134 { 1135 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1136 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1137 struct pci_dev *pdev = adapter->pdev; 1138 struct e1000_buffer *buffer_info; 1139 int i; 1140 1141 if (tx_ring->desc && tx_ring->buffer_info) { 1142 for (i = 0; i < tx_ring->count; i++) { 1143 buffer_info = &tx_ring->buffer_info[i]; 1144 1145 if (buffer_info->dma) 1146 dma_unmap_single(&pdev->dev, 1147 buffer_info->dma, 1148 buffer_info->length, 1149 DMA_TO_DEVICE); 1150 dev_kfree_skb(buffer_info->skb); 1151 } 1152 } 1153 1154 if (rx_ring->desc && rx_ring->buffer_info) { 1155 for (i = 0; i < rx_ring->count; i++) { 1156 buffer_info = &rx_ring->buffer_info[i]; 1157 1158 if (buffer_info->dma) 1159 dma_unmap_single(&pdev->dev, 1160 buffer_info->dma, 1161 2048, DMA_FROM_DEVICE); 1162 dev_kfree_skb(buffer_info->skb); 1163 } 1164 } 1165 1166 if (tx_ring->desc) { 1167 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1168 tx_ring->dma); 1169 tx_ring->desc = NULL; 1170 } 1171 if (rx_ring->desc) { 1172 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1173 rx_ring->dma); 1174 rx_ring->desc = NULL; 1175 } 1176 1177 kfree(tx_ring->buffer_info); 1178 tx_ring->buffer_info = NULL; 1179 kfree(rx_ring->buffer_info); 1180 rx_ring->buffer_info = NULL; 1181 } 1182 1183 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1184 { 1185 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1186 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1187 struct pci_dev *pdev = adapter->pdev; 1188 struct e1000_hw *hw = &adapter->hw; 1189 u32 rctl; 1190 int i; 1191 int ret_val; 1192 1193 /* Setup Tx descriptor ring and Tx buffers */ 1194 1195 if (!tx_ring->count) 1196 tx_ring->count = E1000_DEFAULT_TXD; 1197 1198 tx_ring->buffer_info = kcalloc(tx_ring->count, 1199 sizeof(struct e1000_buffer), GFP_KERNEL); 1200 if (!tx_ring->buffer_info) { 1201 ret_val = 1; 1202 goto err_nomem; 1203 } 1204 1205 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1206 tx_ring->size = ALIGN(tx_ring->size, 4096); 1207 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1208 &tx_ring->dma, GFP_KERNEL); 1209 if (!tx_ring->desc) { 1210 ret_val = 2; 1211 goto err_nomem; 1212 } 1213 tx_ring->next_to_use = 0; 1214 tx_ring->next_to_clean = 0; 1215 1216 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1217 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1218 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1219 ew32(TDH(0), 0); 1220 ew32(TDT(0), 0); 1221 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1222 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1223 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1224 1225 for (i = 0; i < tx_ring->count; i++) { 1226 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1227 struct sk_buff *skb; 1228 unsigned int skb_size = 1024; 1229 1230 skb = alloc_skb(skb_size, GFP_KERNEL); 1231 if (!skb) { 1232 ret_val = 3; 1233 goto err_nomem; 1234 } 1235 skb_put(skb, skb_size); 1236 tx_ring->buffer_info[i].skb = skb; 1237 tx_ring->buffer_info[i].length = skb->len; 1238 tx_ring->buffer_info[i].dma = 1239 dma_map_single(&pdev->dev, skb->data, skb->len, 1240 DMA_TO_DEVICE); 1241 if (dma_mapping_error(&pdev->dev, 1242 tx_ring->buffer_info[i].dma)) { 1243 ret_val = 4; 1244 goto err_nomem; 1245 } 1246 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1247 tx_desc->lower.data = cpu_to_le32(skb->len); 1248 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1249 E1000_TXD_CMD_IFCS | 1250 E1000_TXD_CMD_RS); 1251 tx_desc->upper.data = 0; 1252 } 1253 1254 /* Setup Rx descriptor ring and Rx buffers */ 1255 1256 if (!rx_ring->count) 1257 rx_ring->count = E1000_DEFAULT_RXD; 1258 1259 rx_ring->buffer_info = kcalloc(rx_ring->count, 1260 sizeof(struct e1000_buffer), GFP_KERNEL); 1261 if (!rx_ring->buffer_info) { 1262 ret_val = 5; 1263 goto err_nomem; 1264 } 1265 1266 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1267 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1268 &rx_ring->dma, GFP_KERNEL); 1269 if (!rx_ring->desc) { 1270 ret_val = 6; 1271 goto err_nomem; 1272 } 1273 rx_ring->next_to_use = 0; 1274 rx_ring->next_to_clean = 0; 1275 1276 rctl = er32(RCTL); 1277 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1278 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1279 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1280 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1281 ew32(RDLEN(0), rx_ring->size); 1282 ew32(RDH(0), 0); 1283 ew32(RDT(0), 0); 1284 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1285 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1286 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1287 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1288 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1289 ew32(RCTL, rctl); 1290 1291 for (i = 0; i < rx_ring->count; i++) { 1292 union e1000_rx_desc_extended *rx_desc; 1293 struct sk_buff *skb; 1294 1295 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1296 if (!skb) { 1297 ret_val = 7; 1298 goto err_nomem; 1299 } 1300 skb_reserve(skb, NET_IP_ALIGN); 1301 rx_ring->buffer_info[i].skb = skb; 1302 rx_ring->buffer_info[i].dma = 1303 dma_map_single(&pdev->dev, skb->data, 2048, 1304 DMA_FROM_DEVICE); 1305 if (dma_mapping_error(&pdev->dev, 1306 rx_ring->buffer_info[i].dma)) { 1307 ret_val = 8; 1308 goto err_nomem; 1309 } 1310 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1311 rx_desc->read.buffer_addr = 1312 cpu_to_le64(rx_ring->buffer_info[i].dma); 1313 memset(skb->data, 0x00, skb->len); 1314 } 1315 1316 return 0; 1317 1318 err_nomem: 1319 e1000_free_desc_rings(adapter); 1320 return ret_val; 1321 } 1322 1323 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1324 { 1325 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1326 e1e_wphy(&adapter->hw, 29, 0x001F); 1327 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1328 e1e_wphy(&adapter->hw, 29, 0x001A); 1329 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1330 } 1331 1332 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1333 { 1334 struct e1000_hw *hw = &adapter->hw; 1335 u32 ctrl_reg = 0; 1336 u16 phy_reg = 0; 1337 s32 ret_val = 0; 1338 1339 hw->mac.autoneg = 0; 1340 1341 if (hw->phy.type == e1000_phy_ife) { 1342 /* force 100, set loopback */ 1343 e1e_wphy(hw, MII_BMCR, 0x6100); 1344 1345 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1346 ctrl_reg = er32(CTRL); 1347 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1348 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1349 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1350 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1351 E1000_CTRL_FD); /* Force Duplex to FULL */ 1352 1353 ew32(CTRL, ctrl_reg); 1354 e1e_flush(); 1355 usleep_range(500, 1000); 1356 1357 return 0; 1358 } 1359 1360 /* Specific PHY configuration for loopback */ 1361 switch (hw->phy.type) { 1362 case e1000_phy_m88: 1363 /* Auto-MDI/MDIX Off */ 1364 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1365 /* reset to update Auto-MDI/MDIX */ 1366 e1e_wphy(hw, MII_BMCR, 0x9140); 1367 /* autoneg off */ 1368 e1e_wphy(hw, MII_BMCR, 0x8140); 1369 break; 1370 case e1000_phy_gg82563: 1371 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1372 break; 1373 case e1000_phy_bm: 1374 /* Set Default MAC Interface speed to 1GB */ 1375 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1376 phy_reg &= ~0x0007; 1377 phy_reg |= 0x006; 1378 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1379 /* Assert SW reset for above settings to take effect */ 1380 hw->phy.ops.commit(hw); 1381 usleep_range(1000, 2000); 1382 /* Force Full Duplex */ 1383 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1384 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1385 /* Set Link Up (in force link) */ 1386 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1387 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1388 /* Force Link */ 1389 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1390 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1391 /* Set Early Link Enable */ 1392 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1393 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1394 break; 1395 case e1000_phy_82577: 1396 case e1000_phy_82578: 1397 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1398 ret_val = hw->phy.ops.acquire(hw); 1399 if (ret_val) { 1400 e_err("Cannot setup 1Gbps loopback.\n"); 1401 return ret_val; 1402 } 1403 e1000_configure_k1_ich8lan(hw, false); 1404 hw->phy.ops.release(hw); 1405 break; 1406 case e1000_phy_82579: 1407 /* Disable PHY energy detect power down */ 1408 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1409 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1410 /* Disable full chip energy detect */ 1411 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1412 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1413 /* Enable loopback on the PHY */ 1414 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1415 break; 1416 default: 1417 break; 1418 } 1419 1420 /* force 1000, set loopback */ 1421 e1e_wphy(hw, MII_BMCR, 0x4140); 1422 msleep(250); 1423 1424 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1425 ctrl_reg = er32(CTRL); 1426 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1427 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1428 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1429 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1430 E1000_CTRL_FD); /* Force Duplex to FULL */ 1431 1432 if (adapter->flags & FLAG_IS_ICH) 1433 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1434 1435 if (hw->phy.media_type == e1000_media_type_copper && 1436 hw->phy.type == e1000_phy_m88) { 1437 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1438 } else { 1439 /* Set the ILOS bit on the fiber Nic if half duplex link is 1440 * detected. 1441 */ 1442 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1443 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1444 } 1445 1446 ew32(CTRL, ctrl_reg); 1447 1448 /* Disable the receiver on the PHY so when a cable is plugged in, the 1449 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1450 */ 1451 if (hw->phy.type == e1000_phy_m88) 1452 e1000_phy_disable_receiver(adapter); 1453 1454 usleep_range(500, 1000); 1455 1456 return 0; 1457 } 1458 1459 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1460 { 1461 struct e1000_hw *hw = &adapter->hw; 1462 u32 ctrl = er32(CTRL); 1463 int link; 1464 1465 /* special requirements for 82571/82572 fiber adapters */ 1466 1467 /* jump through hoops to make sure link is up because serdes 1468 * link is hardwired up 1469 */ 1470 ctrl |= E1000_CTRL_SLU; 1471 ew32(CTRL, ctrl); 1472 1473 /* disable autoneg */ 1474 ctrl = er32(TXCW); 1475 ctrl &= ~BIT(31); 1476 ew32(TXCW, ctrl); 1477 1478 link = (er32(STATUS) & E1000_STATUS_LU); 1479 1480 if (!link) { 1481 /* set invert loss of signal */ 1482 ctrl = er32(CTRL); 1483 ctrl |= E1000_CTRL_ILOS; 1484 ew32(CTRL, ctrl); 1485 } 1486 1487 /* special write to serdes control register to enable SerDes analog 1488 * loopback 1489 */ 1490 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1491 e1e_flush(); 1492 usleep_range(10000, 11000); 1493 1494 return 0; 1495 } 1496 1497 /* only call this for fiber/serdes connections to es2lan */ 1498 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1499 { 1500 struct e1000_hw *hw = &adapter->hw; 1501 u32 ctrlext = er32(CTRL_EXT); 1502 u32 ctrl = er32(CTRL); 1503 1504 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1505 * on mac_type 80003es2lan) 1506 */ 1507 adapter->tx_fifo_head = ctrlext; 1508 1509 /* clear the serdes mode bits, putting the device into mac loopback */ 1510 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1511 ew32(CTRL_EXT, ctrlext); 1512 1513 /* force speed to 1000/FD, link up */ 1514 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1515 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1516 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1517 ew32(CTRL, ctrl); 1518 1519 /* set mac loopback */ 1520 ctrl = er32(RCTL); 1521 ctrl |= E1000_RCTL_LBM_MAC; 1522 ew32(RCTL, ctrl); 1523 1524 /* set testing mode parameters (no need to reset later) */ 1525 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1526 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1527 ew32(KMRNCTRLSTA, 1528 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1529 1530 return 0; 1531 } 1532 1533 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1534 { 1535 struct e1000_hw *hw = &adapter->hw; 1536 u32 rctl, fext_nvm11, tarc0; 1537 1538 if (hw->mac.type >= e1000_pch_spt) { 1539 fext_nvm11 = er32(FEXTNVM11); 1540 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1541 ew32(FEXTNVM11, fext_nvm11); 1542 tarc0 = er32(TARC(0)); 1543 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1544 tarc0 &= 0xcfffffff; 1545 /* set bit 29 (value of MULR requests is now 2) */ 1546 tarc0 |= 0x20000000; 1547 ew32(TARC(0), tarc0); 1548 } 1549 if (hw->phy.media_type == e1000_media_type_fiber || 1550 hw->phy.media_type == e1000_media_type_internal_serdes) { 1551 switch (hw->mac.type) { 1552 case e1000_80003es2lan: 1553 return e1000_set_es2lan_mac_loopback(adapter); 1554 case e1000_82571: 1555 case e1000_82572: 1556 return e1000_set_82571_fiber_loopback(adapter); 1557 default: 1558 rctl = er32(RCTL); 1559 rctl |= E1000_RCTL_LBM_TCVR; 1560 ew32(RCTL, rctl); 1561 return 0; 1562 } 1563 } else if (hw->phy.media_type == e1000_media_type_copper) { 1564 return e1000_integrated_phy_loopback(adapter); 1565 } 1566 1567 return 7; 1568 } 1569 1570 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1571 { 1572 struct e1000_hw *hw = &adapter->hw; 1573 u32 rctl, fext_nvm11, tarc0; 1574 u16 phy_reg; 1575 1576 rctl = er32(RCTL); 1577 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1578 ew32(RCTL, rctl); 1579 1580 switch (hw->mac.type) { 1581 case e1000_pch_spt: 1582 case e1000_pch_cnp: 1583 case e1000_pch_tgp: 1584 case e1000_pch_adp: 1585 case e1000_pch_mtp: 1586 case e1000_pch_lnp: 1587 case e1000_pch_ptp: 1588 fext_nvm11 = er32(FEXTNVM11); 1589 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1590 ew32(FEXTNVM11, fext_nvm11); 1591 tarc0 = er32(TARC(0)); 1592 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1593 /* set bit 29 (value of MULR requests is now 0) */ 1594 tarc0 &= 0xcfffffff; 1595 ew32(TARC(0), tarc0); 1596 fallthrough; 1597 case e1000_80003es2lan: 1598 if (hw->phy.media_type == e1000_media_type_fiber || 1599 hw->phy.media_type == e1000_media_type_internal_serdes) { 1600 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1601 ew32(CTRL_EXT, adapter->tx_fifo_head); 1602 adapter->tx_fifo_head = 0; 1603 } 1604 fallthrough; 1605 case e1000_82571: 1606 case e1000_82572: 1607 if (hw->phy.media_type == e1000_media_type_fiber || 1608 hw->phy.media_type == e1000_media_type_internal_serdes) { 1609 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1610 e1e_flush(); 1611 usleep_range(10000, 11000); 1612 break; 1613 } 1614 fallthrough; 1615 default: 1616 hw->mac.autoneg = 1; 1617 if (hw->phy.type == e1000_phy_gg82563) 1618 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1619 e1e_rphy(hw, MII_BMCR, &phy_reg); 1620 if (phy_reg & BMCR_LOOPBACK) { 1621 phy_reg &= ~BMCR_LOOPBACK; 1622 e1e_wphy(hw, MII_BMCR, phy_reg); 1623 if (hw->phy.ops.commit) 1624 hw->phy.ops.commit(hw); 1625 } 1626 break; 1627 } 1628 } 1629 1630 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1631 unsigned int frame_size) 1632 { 1633 memset(skb->data, 0xFF, frame_size); 1634 frame_size &= ~1; 1635 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1636 skb->data[frame_size / 2 + 10] = 0xBE; 1637 skb->data[frame_size / 2 + 12] = 0xAF; 1638 } 1639 1640 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1641 unsigned int frame_size) 1642 { 1643 frame_size &= ~1; 1644 if (*(skb->data + 3) == 0xFF) 1645 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1646 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1647 return 0; 1648 return 13; 1649 } 1650 1651 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1652 { 1653 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1654 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1655 struct pci_dev *pdev = adapter->pdev; 1656 struct e1000_hw *hw = &adapter->hw; 1657 struct e1000_buffer *buffer_info; 1658 int i, j, k, l; 1659 int lc; 1660 int good_cnt; 1661 int ret_val = 0; 1662 unsigned long time; 1663 1664 ew32(RDT(0), rx_ring->count - 1); 1665 1666 /* Calculate the loop count based on the largest descriptor ring 1667 * The idea is to wrap the largest ring a number of times using 64 1668 * send/receive pairs during each loop 1669 */ 1670 1671 if (rx_ring->count <= tx_ring->count) 1672 lc = ((tx_ring->count / 64) * 2) + 1; 1673 else 1674 lc = ((rx_ring->count / 64) * 2) + 1; 1675 1676 k = 0; 1677 l = 0; 1678 /* loop count loop */ 1679 for (j = 0; j <= lc; j++) { 1680 /* send the packets */ 1681 for (i = 0; i < 64; i++) { 1682 buffer_info = &tx_ring->buffer_info[k]; 1683 1684 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1685 dma_sync_single_for_device(&pdev->dev, 1686 buffer_info->dma, 1687 buffer_info->length, 1688 DMA_TO_DEVICE); 1689 k++; 1690 if (k == tx_ring->count) 1691 k = 0; 1692 } 1693 ew32(TDT(0), k); 1694 e1e_flush(); 1695 msleep(200); 1696 time = jiffies; /* set the start time for the receive */ 1697 good_cnt = 0; 1698 /* receive the sent packets */ 1699 do { 1700 buffer_info = &rx_ring->buffer_info[l]; 1701 1702 dma_sync_single_for_cpu(&pdev->dev, 1703 buffer_info->dma, 2048, 1704 DMA_FROM_DEVICE); 1705 1706 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1707 1024); 1708 if (!ret_val) 1709 good_cnt++; 1710 l++; 1711 if (l == rx_ring->count) 1712 l = 0; 1713 /* time + 20 msecs (200 msecs on 2.4) is more than 1714 * enough time to complete the receives, if it's 1715 * exceeded, break and error off 1716 */ 1717 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1718 if (good_cnt != 64) { 1719 ret_val = 13; /* ret_val is the same as mis-compare */ 1720 break; 1721 } 1722 if (time_after(jiffies, time + 20)) { 1723 ret_val = 14; /* error code for time out error */ 1724 break; 1725 } 1726 } 1727 return ret_val; 1728 } 1729 1730 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1731 { 1732 struct e1000_hw *hw = &adapter->hw; 1733 1734 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1735 if (hw->phy.ops.check_reset_block && 1736 hw->phy.ops.check_reset_block(hw)) { 1737 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1738 *data = 0; 1739 goto out; 1740 } 1741 1742 *data = e1000_setup_desc_rings(adapter); 1743 if (*data) 1744 goto out; 1745 1746 *data = e1000_setup_loopback_test(adapter); 1747 if (*data) 1748 goto err_loopback; 1749 1750 *data = e1000_run_loopback_test(adapter); 1751 e1000_loopback_cleanup(adapter); 1752 1753 err_loopback: 1754 e1000_free_desc_rings(adapter); 1755 out: 1756 return *data; 1757 } 1758 1759 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1760 { 1761 struct e1000_hw *hw = &adapter->hw; 1762 1763 *data = 0; 1764 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1765 int i = 0; 1766 1767 hw->mac.serdes_has_link = false; 1768 1769 /* On some blade server designs, link establishment 1770 * could take as long as 2-3 minutes 1771 */ 1772 do { 1773 hw->mac.ops.check_for_link(hw); 1774 if (hw->mac.serdes_has_link) 1775 return *data; 1776 msleep(20); 1777 } while (i++ < 3750); 1778 1779 *data = 1; 1780 } else { 1781 hw->mac.ops.check_for_link(hw); 1782 if (hw->mac.autoneg) 1783 /* On some Phy/switch combinations, link establishment 1784 * can take a few seconds more than expected. 1785 */ 1786 msleep_interruptible(5000); 1787 1788 if (!(er32(STATUS) & E1000_STATUS_LU)) 1789 *data = 1; 1790 } 1791 return *data; 1792 } 1793 1794 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1795 int sset) 1796 { 1797 switch (sset) { 1798 case ETH_SS_TEST: 1799 return E1000_TEST_LEN; 1800 case ETH_SS_STATS: 1801 return E1000_STATS_LEN; 1802 case ETH_SS_PRIV_FLAGS: 1803 return E1000E_PRIV_FLAGS_STR_LEN; 1804 default: 1805 return -EOPNOTSUPP; 1806 } 1807 } 1808 1809 static void e1000_diag_test(struct net_device *netdev, 1810 struct ethtool_test *eth_test, u64 *data) 1811 { 1812 struct e1000_adapter *adapter = netdev_priv(netdev); 1813 u16 autoneg_advertised; 1814 u8 forced_speed_duplex; 1815 u8 autoneg; 1816 bool if_running = netif_running(netdev); 1817 1818 pm_runtime_get_sync(netdev->dev.parent); 1819 1820 set_bit(__E1000_TESTING, &adapter->state); 1821 1822 if (!if_running) { 1823 /* Get control of and reset hardware */ 1824 if (adapter->flags & FLAG_HAS_AMT) 1825 e1000e_get_hw_control(adapter); 1826 1827 e1000e_power_up_phy(adapter); 1828 1829 adapter->hw.phy.autoneg_wait_to_complete = 1; 1830 e1000e_reset(adapter); 1831 adapter->hw.phy.autoneg_wait_to_complete = 0; 1832 } 1833 1834 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1835 /* Offline tests */ 1836 1837 /* save speed, duplex, autoneg settings */ 1838 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1839 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1840 autoneg = adapter->hw.mac.autoneg; 1841 1842 e_info("offline testing starting\n"); 1843 1844 if (if_running) 1845 /* indicate we're in test mode */ 1846 e1000e_close(netdev); 1847 1848 if (e1000_reg_test(adapter, &data[0])) 1849 eth_test->flags |= ETH_TEST_FL_FAILED; 1850 1851 e1000e_reset(adapter); 1852 if (e1000_eeprom_test(adapter, &data[1])) 1853 eth_test->flags |= ETH_TEST_FL_FAILED; 1854 1855 e1000e_reset(adapter); 1856 if (e1000_intr_test(adapter, &data[2])) 1857 eth_test->flags |= ETH_TEST_FL_FAILED; 1858 1859 e1000e_reset(adapter); 1860 if (e1000_loopback_test(adapter, &data[3])) 1861 eth_test->flags |= ETH_TEST_FL_FAILED; 1862 1863 /* force this routine to wait until autoneg complete/timeout */ 1864 adapter->hw.phy.autoneg_wait_to_complete = 1; 1865 e1000e_reset(adapter); 1866 adapter->hw.phy.autoneg_wait_to_complete = 0; 1867 1868 if (e1000_link_test(adapter, &data[4])) 1869 eth_test->flags |= ETH_TEST_FL_FAILED; 1870 1871 /* restore speed, duplex, autoneg settings */ 1872 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1873 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1874 adapter->hw.mac.autoneg = autoneg; 1875 e1000e_reset(adapter); 1876 1877 clear_bit(__E1000_TESTING, &adapter->state); 1878 if (if_running) 1879 e1000e_open(netdev); 1880 } else { 1881 /* Online tests */ 1882 1883 e_info("online testing starting\n"); 1884 1885 /* register, eeprom, intr and loopback tests not run online */ 1886 data[0] = 0; 1887 data[1] = 0; 1888 data[2] = 0; 1889 data[3] = 0; 1890 1891 if (e1000_link_test(adapter, &data[4])) 1892 eth_test->flags |= ETH_TEST_FL_FAILED; 1893 1894 clear_bit(__E1000_TESTING, &adapter->state); 1895 } 1896 1897 if (!if_running) { 1898 e1000e_reset(adapter); 1899 1900 if (adapter->flags & FLAG_HAS_AMT) 1901 e1000e_release_hw_control(adapter); 1902 } 1903 1904 msleep_interruptible(4 * 1000); 1905 1906 pm_runtime_put_sync(netdev->dev.parent); 1907 } 1908 1909 static void e1000_get_wol(struct net_device *netdev, 1910 struct ethtool_wolinfo *wol) 1911 { 1912 struct e1000_adapter *adapter = netdev_priv(netdev); 1913 1914 wol->supported = 0; 1915 wol->wolopts = 0; 1916 1917 if (!(adapter->flags & FLAG_HAS_WOL) || 1918 !device_can_wakeup(&adapter->pdev->dev)) 1919 return; 1920 1921 wol->supported = WAKE_UCAST | WAKE_MCAST | 1922 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1923 1924 /* apply any specific unsupported masks here */ 1925 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1926 wol->supported &= ~WAKE_UCAST; 1927 1928 if (adapter->wol & E1000_WUFC_EX) 1929 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1930 } 1931 1932 if (adapter->wol & E1000_WUFC_EX) 1933 wol->wolopts |= WAKE_UCAST; 1934 if (adapter->wol & E1000_WUFC_MC) 1935 wol->wolopts |= WAKE_MCAST; 1936 if (adapter->wol & E1000_WUFC_BC) 1937 wol->wolopts |= WAKE_BCAST; 1938 if (adapter->wol & E1000_WUFC_MAG) 1939 wol->wolopts |= WAKE_MAGIC; 1940 if (adapter->wol & E1000_WUFC_LNKC) 1941 wol->wolopts |= WAKE_PHY; 1942 } 1943 1944 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1945 { 1946 struct e1000_adapter *adapter = netdev_priv(netdev); 1947 1948 if (!(adapter->flags & FLAG_HAS_WOL) || 1949 !device_can_wakeup(&adapter->pdev->dev) || 1950 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1951 WAKE_MAGIC | WAKE_PHY))) 1952 return -EOPNOTSUPP; 1953 1954 /* these settings will always override what we currently have */ 1955 adapter->wol = 0; 1956 1957 if (wol->wolopts & WAKE_UCAST) 1958 adapter->wol |= E1000_WUFC_EX; 1959 if (wol->wolopts & WAKE_MCAST) 1960 adapter->wol |= E1000_WUFC_MC; 1961 if (wol->wolopts & WAKE_BCAST) 1962 adapter->wol |= E1000_WUFC_BC; 1963 if (wol->wolopts & WAKE_MAGIC) 1964 adapter->wol |= E1000_WUFC_MAG; 1965 if (wol->wolopts & WAKE_PHY) 1966 adapter->wol |= E1000_WUFC_LNKC; 1967 1968 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1969 1970 return 0; 1971 } 1972 1973 static int e1000_set_phys_id(struct net_device *netdev, 1974 enum ethtool_phys_id_state state) 1975 { 1976 struct e1000_adapter *adapter = netdev_priv(netdev); 1977 struct e1000_hw *hw = &adapter->hw; 1978 1979 switch (state) { 1980 case ETHTOOL_ID_ACTIVE: 1981 pm_runtime_get_sync(netdev->dev.parent); 1982 1983 if (!hw->mac.ops.blink_led) 1984 return 2; /* cycle on/off twice per second */ 1985 1986 hw->mac.ops.blink_led(hw); 1987 break; 1988 1989 case ETHTOOL_ID_INACTIVE: 1990 if (hw->phy.type == e1000_phy_ife) 1991 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1992 hw->mac.ops.led_off(hw); 1993 hw->mac.ops.cleanup_led(hw); 1994 pm_runtime_put_sync(netdev->dev.parent); 1995 break; 1996 1997 case ETHTOOL_ID_ON: 1998 hw->mac.ops.led_on(hw); 1999 break; 2000 2001 case ETHTOOL_ID_OFF: 2002 hw->mac.ops.led_off(hw); 2003 break; 2004 } 2005 2006 return 0; 2007 } 2008 2009 static int e1000_get_coalesce(struct net_device *netdev, 2010 struct ethtool_coalesce *ec, 2011 struct kernel_ethtool_coalesce *kernel_coal, 2012 struct netlink_ext_ack *extack) 2013 { 2014 struct e1000_adapter *adapter = netdev_priv(netdev); 2015 2016 if (adapter->itr_setting <= 4) 2017 ec->rx_coalesce_usecs = adapter->itr_setting; 2018 else 2019 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 2020 2021 return 0; 2022 } 2023 2024 static int e1000_set_coalesce(struct net_device *netdev, 2025 struct ethtool_coalesce *ec, 2026 struct kernel_ethtool_coalesce *kernel_coal, 2027 struct netlink_ext_ack *extack) 2028 { 2029 struct e1000_adapter *adapter = netdev_priv(netdev); 2030 2031 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2032 ((ec->rx_coalesce_usecs > 4) && 2033 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2034 (ec->rx_coalesce_usecs == 2)) 2035 return -EINVAL; 2036 2037 if (ec->rx_coalesce_usecs == 4) { 2038 adapter->itr_setting = 4; 2039 adapter->itr = adapter->itr_setting; 2040 } else if (ec->rx_coalesce_usecs <= 3) { 2041 adapter->itr = 20000; 2042 adapter->itr_setting = ec->rx_coalesce_usecs; 2043 } else { 2044 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2045 adapter->itr_setting = adapter->itr & ~3; 2046 } 2047 2048 pm_runtime_get_sync(netdev->dev.parent); 2049 2050 if (adapter->itr_setting != 0) 2051 e1000e_write_itr(adapter, adapter->itr); 2052 else 2053 e1000e_write_itr(adapter, 0); 2054 2055 pm_runtime_put_sync(netdev->dev.parent); 2056 2057 return 0; 2058 } 2059 2060 static int e1000_nway_reset(struct net_device *netdev) 2061 { 2062 struct e1000_adapter *adapter = netdev_priv(netdev); 2063 2064 if (!netif_running(netdev)) 2065 return -EAGAIN; 2066 2067 if (!adapter->hw.mac.autoneg) 2068 return -EINVAL; 2069 2070 pm_runtime_get_sync(netdev->dev.parent); 2071 e1000e_reinit_locked(adapter); 2072 pm_runtime_put_sync(netdev->dev.parent); 2073 2074 return 0; 2075 } 2076 2077 static void e1000_get_ethtool_stats(struct net_device *netdev, 2078 struct ethtool_stats __always_unused *stats, 2079 u64 *data) 2080 { 2081 struct e1000_adapter *adapter = netdev_priv(netdev); 2082 struct rtnl_link_stats64 net_stats; 2083 int i; 2084 char *p = NULL; 2085 2086 pm_runtime_get_sync(netdev->dev.parent); 2087 2088 dev_get_stats(netdev, &net_stats); 2089 2090 pm_runtime_put_sync(netdev->dev.parent); 2091 2092 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2093 switch (e1000_gstrings_stats[i].type) { 2094 case NETDEV_STATS: 2095 p = (char *)&net_stats + 2096 e1000_gstrings_stats[i].stat_offset; 2097 break; 2098 case E1000_STATS: 2099 p = (char *)adapter + 2100 e1000_gstrings_stats[i].stat_offset; 2101 break; 2102 default: 2103 data[i] = 0; 2104 continue; 2105 } 2106 2107 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2108 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2109 } 2110 } 2111 2112 static void e1000_get_strings(struct net_device __always_unused *netdev, 2113 u32 stringset, u8 *data) 2114 { 2115 u8 *p = data; 2116 int i; 2117 2118 switch (stringset) { 2119 case ETH_SS_TEST: 2120 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2121 break; 2122 case ETH_SS_STATS: 2123 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2124 memcpy(p, e1000_gstrings_stats[i].stat_string, 2125 ETH_GSTRING_LEN); 2126 p += ETH_GSTRING_LEN; 2127 } 2128 break; 2129 case ETH_SS_PRIV_FLAGS: 2130 memcpy(data, e1000e_priv_flags_strings, 2131 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2132 break; 2133 } 2134 } 2135 2136 static int e1000_get_rxnfc(struct net_device *netdev, 2137 struct ethtool_rxnfc *info, 2138 u32 __always_unused *rule_locs) 2139 { 2140 info->data = 0; 2141 2142 switch (info->cmd) { 2143 case ETHTOOL_GRXFH: { 2144 struct e1000_adapter *adapter = netdev_priv(netdev); 2145 struct e1000_hw *hw = &adapter->hw; 2146 u32 mrqc; 2147 2148 pm_runtime_get_sync(netdev->dev.parent); 2149 mrqc = er32(MRQC); 2150 pm_runtime_put_sync(netdev->dev.parent); 2151 2152 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2153 return 0; 2154 2155 switch (info->flow_type) { 2156 case TCP_V4_FLOW: 2157 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2158 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2159 fallthrough; 2160 case UDP_V4_FLOW: 2161 case SCTP_V4_FLOW: 2162 case AH_ESP_V4_FLOW: 2163 case IPV4_FLOW: 2164 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2165 info->data |= RXH_IP_SRC | RXH_IP_DST; 2166 break; 2167 case TCP_V6_FLOW: 2168 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2169 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2170 fallthrough; 2171 case UDP_V6_FLOW: 2172 case SCTP_V6_FLOW: 2173 case AH_ESP_V6_FLOW: 2174 case IPV6_FLOW: 2175 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2176 info->data |= RXH_IP_SRC | RXH_IP_DST; 2177 break; 2178 default: 2179 break; 2180 } 2181 return 0; 2182 } 2183 default: 2184 return -EOPNOTSUPP; 2185 } 2186 } 2187 2188 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2189 { 2190 struct e1000_adapter *adapter = netdev_priv(netdev); 2191 struct e1000_hw *hw = &adapter->hw; 2192 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2193 u32 ret_val; 2194 2195 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2196 return -EOPNOTSUPP; 2197 2198 switch (hw->phy.type) { 2199 case e1000_phy_82579: 2200 cap_addr = I82579_EEE_CAPABILITY; 2201 lpa_addr = I82579_EEE_LP_ABILITY; 2202 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2203 break; 2204 case e1000_phy_i217: 2205 cap_addr = I217_EEE_CAPABILITY; 2206 lpa_addr = I217_EEE_LP_ABILITY; 2207 pcs_stat_addr = I217_EEE_PCS_STATUS; 2208 break; 2209 default: 2210 return -EOPNOTSUPP; 2211 } 2212 2213 pm_runtime_get_sync(netdev->dev.parent); 2214 2215 ret_val = hw->phy.ops.acquire(hw); 2216 if (ret_val) { 2217 pm_runtime_put_sync(netdev->dev.parent); 2218 return -EBUSY; 2219 } 2220 2221 /* EEE Capability */ 2222 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2223 if (ret_val) 2224 goto release; 2225 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2226 2227 /* EEE Advertised */ 2228 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2229 2230 /* EEE Link Partner Advertised */ 2231 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2232 if (ret_val) 2233 goto release; 2234 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2235 2236 /* EEE PCS Status */ 2237 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2238 if (ret_val) 2239 goto release; 2240 if (hw->phy.type == e1000_phy_82579) 2241 phy_data <<= 8; 2242 2243 /* Result of the EEE auto negotiation - there is no register that 2244 * has the status of the EEE negotiation so do a best-guess based 2245 * on whether Tx or Rx LPI indications have been received. 2246 */ 2247 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2248 edata->eee_active = true; 2249 2250 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2251 edata->tx_lpi_enabled = true; 2252 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2253 2254 release: 2255 hw->phy.ops.release(hw); 2256 if (ret_val) 2257 ret_val = -ENODATA; 2258 2259 pm_runtime_put_sync(netdev->dev.parent); 2260 2261 return ret_val; 2262 } 2263 2264 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2265 { 2266 struct e1000_adapter *adapter = netdev_priv(netdev); 2267 struct e1000_hw *hw = &adapter->hw; 2268 struct ethtool_eee eee_curr; 2269 s32 ret_val; 2270 2271 ret_val = e1000e_get_eee(netdev, &eee_curr); 2272 if (ret_val) 2273 return ret_val; 2274 2275 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2276 e_err("Setting EEE tx-lpi is not supported\n"); 2277 return -EINVAL; 2278 } 2279 2280 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2281 e_err("Setting EEE Tx LPI timer is not supported\n"); 2282 return -EINVAL; 2283 } 2284 2285 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2286 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2287 return -EINVAL; 2288 } 2289 2290 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2291 2292 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2293 2294 pm_runtime_get_sync(netdev->dev.parent); 2295 2296 /* reset the link */ 2297 if (netif_running(netdev)) 2298 e1000e_reinit_locked(adapter); 2299 else 2300 e1000e_reset(adapter); 2301 2302 pm_runtime_put_sync(netdev->dev.parent); 2303 2304 return 0; 2305 } 2306 2307 static int e1000e_get_ts_info(struct net_device *netdev, 2308 struct ethtool_ts_info *info) 2309 { 2310 struct e1000_adapter *adapter = netdev_priv(netdev); 2311 2312 ethtool_op_get_ts_info(netdev, info); 2313 2314 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2315 return 0; 2316 2317 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2318 SOF_TIMESTAMPING_RX_HARDWARE | 2319 SOF_TIMESTAMPING_RAW_HARDWARE); 2320 2321 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2322 2323 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2324 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2325 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2326 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2327 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2328 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2329 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2330 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2331 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2332 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2333 BIT(HWTSTAMP_FILTER_ALL)); 2334 2335 if (adapter->ptp_clock) 2336 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2337 2338 return 0; 2339 } 2340 2341 static u32 e1000e_get_priv_flags(struct net_device *netdev) 2342 { 2343 struct e1000_adapter *adapter = netdev_priv(netdev); 2344 u32 priv_flags = 0; 2345 2346 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 2347 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED; 2348 2349 return priv_flags; 2350 } 2351 2352 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags) 2353 { 2354 struct e1000_adapter *adapter = netdev_priv(netdev); 2355 unsigned int flags2 = adapter->flags2; 2356 2357 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS; 2358 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) { 2359 struct e1000_hw *hw = &adapter->hw; 2360 2361 if (hw->mac.type < e1000_pch_cnp) 2362 return -EINVAL; 2363 flags2 |= FLAG2_ENABLE_S0IX_FLOWS; 2364 } 2365 2366 if (flags2 != adapter->flags2) 2367 adapter->flags2 = flags2; 2368 2369 return 0; 2370 } 2371 2372 static const struct ethtool_ops e1000_ethtool_ops = { 2373 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2374 .get_drvinfo = e1000_get_drvinfo, 2375 .get_regs_len = e1000_get_regs_len, 2376 .get_regs = e1000_get_regs, 2377 .get_wol = e1000_get_wol, 2378 .set_wol = e1000_set_wol, 2379 .get_msglevel = e1000_get_msglevel, 2380 .set_msglevel = e1000_set_msglevel, 2381 .nway_reset = e1000_nway_reset, 2382 .get_link = ethtool_op_get_link, 2383 .get_eeprom_len = e1000_get_eeprom_len, 2384 .get_eeprom = e1000_get_eeprom, 2385 .set_eeprom = e1000_set_eeprom, 2386 .get_ringparam = e1000_get_ringparam, 2387 .set_ringparam = e1000_set_ringparam, 2388 .get_pauseparam = e1000_get_pauseparam, 2389 .set_pauseparam = e1000_set_pauseparam, 2390 .self_test = e1000_diag_test, 2391 .get_strings = e1000_get_strings, 2392 .set_phys_id = e1000_set_phys_id, 2393 .get_ethtool_stats = e1000_get_ethtool_stats, 2394 .get_sset_count = e1000e_get_sset_count, 2395 .get_coalesce = e1000_get_coalesce, 2396 .set_coalesce = e1000_set_coalesce, 2397 .get_rxnfc = e1000_get_rxnfc, 2398 .get_ts_info = e1000e_get_ts_info, 2399 .get_eee = e1000e_get_eee, 2400 .set_eee = e1000e_set_eee, 2401 .get_link_ksettings = e1000_get_link_ksettings, 2402 .set_link_ksettings = e1000_set_link_ksettings, 2403 .get_priv_flags = e1000e_get_priv_flags, 2404 .set_priv_flags = e1000e_set_priv_flags, 2405 }; 2406 2407 void e1000e_set_ethtool_ops(struct net_device *netdev) 2408 { 2409 netdev->ethtool_ops = &e1000_ethtool_ops; 2410 } 2411