1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* ethtool support for e1000 */
23 
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/ethtool.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pm_runtime.h>
32 
33 #include "e1000.h"
34 
35 enum { NETDEV_STATS, E1000_STATS };
36 
37 struct e1000_stats {
38 	char stat_string[ETH_GSTRING_LEN];
39 	int type;
40 	int sizeof_stat;
41 	int stat_offset;
42 };
43 
44 #define E1000_STAT(str, m) { \
45 		.stat_string = str, \
46 		.type = E1000_STATS, \
47 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48 		.stat_offset = offsetof(struct e1000_adapter, m) }
49 #define E1000_NETDEV_STAT(str, m) { \
50 		.stat_string = str, \
51 		.type = NETDEV_STATS, \
52 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
54 
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56 	E1000_STAT("rx_packets", stats.gprc),
57 	E1000_STAT("tx_packets", stats.gptc),
58 	E1000_STAT("rx_bytes", stats.gorc),
59 	E1000_STAT("tx_bytes", stats.gotc),
60 	E1000_STAT("rx_broadcast", stats.bprc),
61 	E1000_STAT("tx_broadcast", stats.bptc),
62 	E1000_STAT("rx_multicast", stats.mprc),
63 	E1000_STAT("tx_multicast", stats.mptc),
64 	E1000_NETDEV_STAT("rx_errors", rx_errors),
65 	E1000_NETDEV_STAT("tx_errors", tx_errors),
66 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67 	E1000_STAT("multicast", stats.mprc),
68 	E1000_STAT("collisions", stats.colc),
69 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71 	E1000_STAT("rx_crc_errors", stats.crcerrs),
72 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
74 	E1000_STAT("rx_missed_errors", stats.mpc),
75 	E1000_STAT("tx_aborted_errors", stats.ecol),
76 	E1000_STAT("tx_carrier_errors", stats.tncrs),
77 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79 	E1000_STAT("tx_window_errors", stats.latecol),
80 	E1000_STAT("tx_abort_late_coll", stats.latecol),
81 	E1000_STAT("tx_deferred_ok", stats.dc),
82 	E1000_STAT("tx_single_coll_ok", stats.scc),
83 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
84 	E1000_STAT("tx_timeout_count", tx_timeout_count),
85 	E1000_STAT("tx_restart_queue", restart_queue),
86 	E1000_STAT("rx_long_length_errors", stats.roc),
87 	E1000_STAT("rx_short_length_errors", stats.ruc),
88 	E1000_STAT("rx_align_errors", stats.algnerrc),
89 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
94 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
96 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97 	E1000_STAT("rx_header_split", rx_hdr_split),
98 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99 	E1000_STAT("tx_smbus", stats.mgptc),
100 	E1000_STAT("rx_smbus", stats.mgprc),
101 	E1000_STAT("dropped_smbus", stats.mgpdc),
102 	E1000_STAT("rx_dma_failed", rx_dma_failed),
103 	E1000_STAT("tx_dma_failed", tx_dma_failed),
104 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106 	E1000_STAT("corr_ecc_errors", corr_errors),
107 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108 };
109 
110 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113 	"Register test  (offline)", "Eeprom test    (offline)",
114 	"Interrupt test (offline)", "Loopback test  (offline)",
115 	"Link test   (on/offline)"
116 };
117 
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119 
120 static int e1000_get_settings(struct net_device *netdev,
121 			      struct ethtool_cmd *ecmd)
122 {
123 	struct e1000_adapter *adapter = netdev_priv(netdev);
124 	struct e1000_hw *hw = &adapter->hw;
125 	u32 speed;
126 
127 	if (hw->phy.media_type == e1000_media_type_copper) {
128 		ecmd->supported = (SUPPORTED_10baseT_Half |
129 				   SUPPORTED_10baseT_Full |
130 				   SUPPORTED_100baseT_Half |
131 				   SUPPORTED_100baseT_Full |
132 				   SUPPORTED_1000baseT_Full |
133 				   SUPPORTED_Autoneg |
134 				   SUPPORTED_TP);
135 		if (hw->phy.type == e1000_phy_ife)
136 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137 		ecmd->advertising = ADVERTISED_TP;
138 
139 		if (hw->mac.autoneg == 1) {
140 			ecmd->advertising |= ADVERTISED_Autoneg;
141 			/* the e1000 autoneg seems to match ethtool nicely */
142 			ecmd->advertising |= hw->phy.autoneg_advertised;
143 		}
144 
145 		ecmd->port = PORT_TP;
146 		ecmd->phy_address = hw->phy.addr;
147 		ecmd->transceiver = XCVR_INTERNAL;
148 
149 	} else {
150 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
151 				     SUPPORTED_FIBRE |
152 				     SUPPORTED_Autoneg);
153 
154 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
155 				     ADVERTISED_FIBRE |
156 				     ADVERTISED_Autoneg);
157 
158 		ecmd->port = PORT_FIBRE;
159 		ecmd->transceiver = XCVR_EXTERNAL;
160 	}
161 
162 	speed = SPEED_UNKNOWN;
163 	ecmd->duplex = DUPLEX_UNKNOWN;
164 
165 	if (netif_running(netdev)) {
166 		if (netif_carrier_ok(netdev)) {
167 			speed = adapter->link_speed;
168 			ecmd->duplex = adapter->link_duplex - 1;
169 		}
170 	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
171 		u32 status = er32(STATUS);
172 
173 		if (status & E1000_STATUS_LU) {
174 			if (status & E1000_STATUS_SPEED_1000)
175 				speed = SPEED_1000;
176 			else if (status & E1000_STATUS_SPEED_100)
177 				speed = SPEED_100;
178 			else
179 				speed = SPEED_10;
180 
181 			if (status & E1000_STATUS_FD)
182 				ecmd->duplex = DUPLEX_FULL;
183 			else
184 				ecmd->duplex = DUPLEX_HALF;
185 		}
186 	}
187 
188 	ethtool_cmd_speed_set(ecmd, speed);
189 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
190 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
191 
192 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
193 	if ((hw->phy.media_type == e1000_media_type_copper) &&
194 	    netif_carrier_ok(netdev))
195 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
196 	else
197 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
198 
199 	if (hw->phy.mdix == AUTO_ALL_MODES)
200 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201 	else
202 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
203 
204 	return 0;
205 }
206 
207 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
208 {
209 	struct e1000_mac_info *mac = &adapter->hw.mac;
210 
211 	mac->autoneg = 0;
212 
213 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
214 	 * for the switch() below to work
215 	 */
216 	if ((spd & 1) || (dplx & ~1))
217 		goto err_inval;
218 
219 	/* Fiber NICs only allow 1000 gbps Full duplex */
220 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
221 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
222 		goto err_inval;
223 	}
224 
225 	switch (spd + dplx) {
226 	case SPEED_10 + DUPLEX_HALF:
227 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
228 		break;
229 	case SPEED_10 + DUPLEX_FULL:
230 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
231 		break;
232 	case SPEED_100 + DUPLEX_HALF:
233 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
234 		break;
235 	case SPEED_100 + DUPLEX_FULL:
236 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
237 		break;
238 	case SPEED_1000 + DUPLEX_FULL:
239 		mac->autoneg = 1;
240 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
241 		break;
242 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
243 	default:
244 		goto err_inval;
245 	}
246 
247 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
248 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
249 
250 	return 0;
251 
252 err_inval:
253 	e_err("Unsupported Speed/Duplex configuration\n");
254 	return -EINVAL;
255 }
256 
257 static int e1000_set_settings(struct net_device *netdev,
258 			      struct ethtool_cmd *ecmd)
259 {
260 	struct e1000_adapter *adapter = netdev_priv(netdev);
261 	struct e1000_hw *hw = &adapter->hw;
262 	int ret_val = 0;
263 
264 	pm_runtime_get_sync(netdev->dev.parent);
265 
266 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
267 	 * cannot be changed
268 	 */
269 	if (hw->phy.ops.check_reset_block &&
270 	    hw->phy.ops.check_reset_block(hw)) {
271 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
272 		ret_val = -EINVAL;
273 		goto out;
274 	}
275 
276 	/* MDI setting is only allowed when autoneg enabled because
277 	 * some hardware doesn't allow MDI setting when speed or
278 	 * duplex is forced.
279 	 */
280 	if (ecmd->eth_tp_mdix_ctrl) {
281 		if (hw->phy.media_type != e1000_media_type_copper) {
282 			ret_val = -EOPNOTSUPP;
283 			goto out;
284 		}
285 
286 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
287 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
288 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
289 			ret_val = -EINVAL;
290 			goto out;
291 		}
292 	}
293 
294 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
295 		usleep_range(1000, 2000);
296 
297 	if (ecmd->autoneg == AUTONEG_ENABLE) {
298 		hw->mac.autoneg = 1;
299 		if (hw->phy.media_type == e1000_media_type_fiber)
300 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
301 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
302 		else
303 			hw->phy.autoneg_advertised = ecmd->advertising |
304 			    ADVERTISED_TP | ADVERTISED_Autoneg;
305 		ecmd->advertising = hw->phy.autoneg_advertised;
306 		if (adapter->fc_autoneg)
307 			hw->fc.requested_mode = e1000_fc_default;
308 	} else {
309 		u32 speed = ethtool_cmd_speed(ecmd);
310 		/* calling this overrides forced MDI setting */
311 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
312 			ret_val = -EINVAL;
313 			goto out;
314 		}
315 	}
316 
317 	/* MDI-X => 2; MDI => 1; Auto => 3 */
318 	if (ecmd->eth_tp_mdix_ctrl) {
319 		/* fix up the value for auto (3 => 0) as zero is mapped
320 		 * internally to auto
321 		 */
322 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
323 			hw->phy.mdix = AUTO_ALL_MODES;
324 		else
325 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
326 	}
327 
328 	/* reset the link */
329 	if (netif_running(adapter->netdev)) {
330 		e1000e_down(adapter, true);
331 		e1000e_up(adapter);
332 	} else {
333 		e1000e_reset(adapter);
334 	}
335 
336 out:
337 	pm_runtime_put_sync(netdev->dev.parent);
338 	clear_bit(__E1000_RESETTING, &adapter->state);
339 	return ret_val;
340 }
341 
342 static void e1000_get_pauseparam(struct net_device *netdev,
343 				 struct ethtool_pauseparam *pause)
344 {
345 	struct e1000_adapter *adapter = netdev_priv(netdev);
346 	struct e1000_hw *hw = &adapter->hw;
347 
348 	pause->autoneg =
349 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
350 
351 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
352 		pause->rx_pause = 1;
353 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
354 		pause->tx_pause = 1;
355 	} else if (hw->fc.current_mode == e1000_fc_full) {
356 		pause->rx_pause = 1;
357 		pause->tx_pause = 1;
358 	}
359 }
360 
361 static int e1000_set_pauseparam(struct net_device *netdev,
362 				struct ethtool_pauseparam *pause)
363 {
364 	struct e1000_adapter *adapter = netdev_priv(netdev);
365 	struct e1000_hw *hw = &adapter->hw;
366 	int retval = 0;
367 
368 	adapter->fc_autoneg = pause->autoneg;
369 
370 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
371 		usleep_range(1000, 2000);
372 
373 	pm_runtime_get_sync(netdev->dev.parent);
374 
375 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
376 		hw->fc.requested_mode = e1000_fc_default;
377 		if (netif_running(adapter->netdev)) {
378 			e1000e_down(adapter, true);
379 			e1000e_up(adapter);
380 		} else {
381 			e1000e_reset(adapter);
382 		}
383 	} else {
384 		if (pause->rx_pause && pause->tx_pause)
385 			hw->fc.requested_mode = e1000_fc_full;
386 		else if (pause->rx_pause && !pause->tx_pause)
387 			hw->fc.requested_mode = e1000_fc_rx_pause;
388 		else if (!pause->rx_pause && pause->tx_pause)
389 			hw->fc.requested_mode = e1000_fc_tx_pause;
390 		else if (!pause->rx_pause && !pause->tx_pause)
391 			hw->fc.requested_mode = e1000_fc_none;
392 
393 		hw->fc.current_mode = hw->fc.requested_mode;
394 
395 		if (hw->phy.media_type == e1000_media_type_fiber) {
396 			retval = hw->mac.ops.setup_link(hw);
397 			/* implicit goto out */
398 		} else {
399 			retval = e1000e_force_mac_fc(hw);
400 			if (retval)
401 				goto out;
402 			e1000e_set_fc_watermarks(hw);
403 		}
404 	}
405 
406 out:
407 	pm_runtime_put_sync(netdev->dev.parent);
408 	clear_bit(__E1000_RESETTING, &adapter->state);
409 	return retval;
410 }
411 
412 static u32 e1000_get_msglevel(struct net_device *netdev)
413 {
414 	struct e1000_adapter *adapter = netdev_priv(netdev);
415 	return adapter->msg_enable;
416 }
417 
418 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
419 {
420 	struct e1000_adapter *adapter = netdev_priv(netdev);
421 	adapter->msg_enable = data;
422 }
423 
424 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
425 {
426 #define E1000_REGS_LEN 32	/* overestimate */
427 	return E1000_REGS_LEN * sizeof(u32);
428 }
429 
430 static void e1000_get_regs(struct net_device *netdev,
431 			   struct ethtool_regs *regs, void *p)
432 {
433 	struct e1000_adapter *adapter = netdev_priv(netdev);
434 	struct e1000_hw *hw = &adapter->hw;
435 	u32 *regs_buff = p;
436 	u16 phy_data;
437 
438 	pm_runtime_get_sync(netdev->dev.parent);
439 
440 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
441 
442 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
443 	    adapter->pdev->device;
444 
445 	regs_buff[0] = er32(CTRL);
446 	regs_buff[1] = er32(STATUS);
447 
448 	regs_buff[2] = er32(RCTL);
449 	regs_buff[3] = er32(RDLEN(0));
450 	regs_buff[4] = er32(RDH(0));
451 	regs_buff[5] = er32(RDT(0));
452 	regs_buff[6] = er32(RDTR);
453 
454 	regs_buff[7] = er32(TCTL);
455 	regs_buff[8] = er32(TDLEN(0));
456 	regs_buff[9] = er32(TDH(0));
457 	regs_buff[10] = er32(TDT(0));
458 	regs_buff[11] = er32(TIDV);
459 
460 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
461 
462 	/* ethtool doesn't use anything past this point, so all this
463 	 * code is likely legacy junk for apps that may or may not exist
464 	 */
465 	if (hw->phy.type == e1000_phy_m88) {
466 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
467 		regs_buff[13] = (u32)phy_data; /* cable length */
468 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
469 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
470 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
471 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
472 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
473 		regs_buff[18] = regs_buff[13]; /* cable polarity */
474 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
475 		regs_buff[20] = regs_buff[17]; /* polarity correction */
476 		/* phy receive errors */
477 		regs_buff[22] = adapter->phy_stats.receive_errors;
478 		regs_buff[23] = regs_buff[13]; /* mdix mode */
479 	}
480 	regs_buff[21] = 0;	/* was idle_errors */
481 	e1e_rphy(hw, MII_STAT1000, &phy_data);
482 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
483 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
484 
485 	pm_runtime_put_sync(netdev->dev.parent);
486 }
487 
488 static int e1000_get_eeprom_len(struct net_device *netdev)
489 {
490 	struct e1000_adapter *adapter = netdev_priv(netdev);
491 	return adapter->hw.nvm.word_size * 2;
492 }
493 
494 static int e1000_get_eeprom(struct net_device *netdev,
495 			    struct ethtool_eeprom *eeprom, u8 *bytes)
496 {
497 	struct e1000_adapter *adapter = netdev_priv(netdev);
498 	struct e1000_hw *hw = &adapter->hw;
499 	u16 *eeprom_buff;
500 	int first_word;
501 	int last_word;
502 	int ret_val = 0;
503 	u16 i;
504 
505 	if (eeprom->len == 0)
506 		return -EINVAL;
507 
508 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
509 
510 	first_word = eeprom->offset >> 1;
511 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
512 
513 	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
514 			      GFP_KERNEL);
515 	if (!eeprom_buff)
516 		return -ENOMEM;
517 
518 	pm_runtime_get_sync(netdev->dev.parent);
519 
520 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
521 		ret_val = e1000_read_nvm(hw, first_word,
522 					 last_word - first_word + 1,
523 					 eeprom_buff);
524 	} else {
525 		for (i = 0; i < last_word - first_word + 1; i++) {
526 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
527 						 &eeprom_buff[i]);
528 			if (ret_val)
529 				break;
530 		}
531 	}
532 
533 	pm_runtime_put_sync(netdev->dev.parent);
534 
535 	if (ret_val) {
536 		/* a read error occurred, throw away the result */
537 		memset(eeprom_buff, 0xff, sizeof(u16) *
538 		       (last_word - first_word + 1));
539 	} else {
540 		/* Device's eeprom is always little-endian, word addressable */
541 		for (i = 0; i < last_word - first_word + 1; i++)
542 			le16_to_cpus(&eeprom_buff[i]);
543 	}
544 
545 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
546 	kfree(eeprom_buff);
547 
548 	return ret_val;
549 }
550 
551 static int e1000_set_eeprom(struct net_device *netdev,
552 			    struct ethtool_eeprom *eeprom, u8 *bytes)
553 {
554 	struct e1000_adapter *adapter = netdev_priv(netdev);
555 	struct e1000_hw *hw = &adapter->hw;
556 	u16 *eeprom_buff;
557 	void *ptr;
558 	int max_len;
559 	int first_word;
560 	int last_word;
561 	int ret_val = 0;
562 	u16 i;
563 
564 	if (eeprom->len == 0)
565 		return -EOPNOTSUPP;
566 
567 	if (eeprom->magic !=
568 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
569 		return -EFAULT;
570 
571 	if (adapter->flags & FLAG_READ_ONLY_NVM)
572 		return -EINVAL;
573 
574 	max_len = hw->nvm.word_size * 2;
575 
576 	first_word = eeprom->offset >> 1;
577 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
578 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
579 	if (!eeprom_buff)
580 		return -ENOMEM;
581 
582 	ptr = (void *)eeprom_buff;
583 
584 	pm_runtime_get_sync(netdev->dev.parent);
585 
586 	if (eeprom->offset & 1) {
587 		/* need read/modify/write of first changed EEPROM word */
588 		/* only the second byte of the word is being modified */
589 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
590 		ptr++;
591 	}
592 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
593 		/* need read/modify/write of last changed EEPROM word */
594 		/* only the first byte of the word is being modified */
595 		ret_val = e1000_read_nvm(hw, last_word, 1,
596 					 &eeprom_buff[last_word - first_word]);
597 
598 	if (ret_val)
599 		goto out;
600 
601 	/* Device's eeprom is always little-endian, word addressable */
602 	for (i = 0; i < last_word - first_word + 1; i++)
603 		le16_to_cpus(&eeprom_buff[i]);
604 
605 	memcpy(ptr, bytes, eeprom->len);
606 
607 	for (i = 0; i < last_word - first_word + 1; i++)
608 		cpu_to_le16s(&eeprom_buff[i]);
609 
610 	ret_val = e1000_write_nvm(hw, first_word,
611 				  last_word - first_word + 1, eeprom_buff);
612 
613 	if (ret_val)
614 		goto out;
615 
616 	/* Update the checksum over the first part of the EEPROM if needed
617 	 * and flush shadow RAM for applicable controllers
618 	 */
619 	if ((first_word <= NVM_CHECKSUM_REG) ||
620 	    (hw->mac.type == e1000_82583) ||
621 	    (hw->mac.type == e1000_82574) ||
622 	    (hw->mac.type == e1000_82573))
623 		ret_val = e1000e_update_nvm_checksum(hw);
624 
625 out:
626 	pm_runtime_put_sync(netdev->dev.parent);
627 	kfree(eeprom_buff);
628 	return ret_val;
629 }
630 
631 static void e1000_get_drvinfo(struct net_device *netdev,
632 			      struct ethtool_drvinfo *drvinfo)
633 {
634 	struct e1000_adapter *adapter = netdev_priv(netdev);
635 
636 	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
637 	strlcpy(drvinfo->version, e1000e_driver_version,
638 		sizeof(drvinfo->version));
639 
640 	/* EEPROM image version # is reported as firmware version # for
641 	 * PCI-E controllers
642 	 */
643 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
644 		 "%d.%d-%d",
645 		 (adapter->eeprom_vers & 0xF000) >> 12,
646 		 (adapter->eeprom_vers & 0x0FF0) >> 4,
647 		 (adapter->eeprom_vers & 0x000F));
648 
649 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
650 		sizeof(drvinfo->bus_info));
651 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
652 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
653 }
654 
655 static void e1000_get_ringparam(struct net_device *netdev,
656 				struct ethtool_ringparam *ring)
657 {
658 	struct e1000_adapter *adapter = netdev_priv(netdev);
659 
660 	ring->rx_max_pending = E1000_MAX_RXD;
661 	ring->tx_max_pending = E1000_MAX_TXD;
662 	ring->rx_pending = adapter->rx_ring_count;
663 	ring->tx_pending = adapter->tx_ring_count;
664 }
665 
666 static int e1000_set_ringparam(struct net_device *netdev,
667 			       struct ethtool_ringparam *ring)
668 {
669 	struct e1000_adapter *adapter = netdev_priv(netdev);
670 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
671 	int err = 0, size = sizeof(struct e1000_ring);
672 	bool set_tx = false, set_rx = false;
673 	u16 new_rx_count, new_tx_count;
674 
675 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
676 		return -EINVAL;
677 
678 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
679 			       E1000_MAX_RXD);
680 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
681 
682 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
683 			       E1000_MAX_TXD);
684 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
685 
686 	if ((new_tx_count == adapter->tx_ring_count) &&
687 	    (new_rx_count == adapter->rx_ring_count))
688 		/* nothing to do */
689 		return 0;
690 
691 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
692 		usleep_range(1000, 2000);
693 
694 	if (!netif_running(adapter->netdev)) {
695 		/* Set counts now and allocate resources during open() */
696 		adapter->tx_ring->count = new_tx_count;
697 		adapter->rx_ring->count = new_rx_count;
698 		adapter->tx_ring_count = new_tx_count;
699 		adapter->rx_ring_count = new_rx_count;
700 		goto clear_reset;
701 	}
702 
703 	set_tx = (new_tx_count != adapter->tx_ring_count);
704 	set_rx = (new_rx_count != adapter->rx_ring_count);
705 
706 	/* Allocate temporary storage for ring updates */
707 	if (set_tx) {
708 		temp_tx = vmalloc(size);
709 		if (!temp_tx) {
710 			err = -ENOMEM;
711 			goto free_temp;
712 		}
713 	}
714 	if (set_rx) {
715 		temp_rx = vmalloc(size);
716 		if (!temp_rx) {
717 			err = -ENOMEM;
718 			goto free_temp;
719 		}
720 	}
721 
722 	pm_runtime_get_sync(netdev->dev.parent);
723 
724 	e1000e_down(adapter, true);
725 
726 	/* We can't just free everything and then setup again, because the
727 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
728 	 * structs.  First, attempt to allocate new resources...
729 	 */
730 	if (set_tx) {
731 		memcpy(temp_tx, adapter->tx_ring, size);
732 		temp_tx->count = new_tx_count;
733 		err = e1000e_setup_tx_resources(temp_tx);
734 		if (err)
735 			goto err_setup;
736 	}
737 	if (set_rx) {
738 		memcpy(temp_rx, adapter->rx_ring, size);
739 		temp_rx->count = new_rx_count;
740 		err = e1000e_setup_rx_resources(temp_rx);
741 		if (err)
742 			goto err_setup_rx;
743 	}
744 
745 	/* ...then free the old resources and copy back any new ring data */
746 	if (set_tx) {
747 		e1000e_free_tx_resources(adapter->tx_ring);
748 		memcpy(adapter->tx_ring, temp_tx, size);
749 		adapter->tx_ring_count = new_tx_count;
750 	}
751 	if (set_rx) {
752 		e1000e_free_rx_resources(adapter->rx_ring);
753 		memcpy(adapter->rx_ring, temp_rx, size);
754 		adapter->rx_ring_count = new_rx_count;
755 	}
756 
757 err_setup_rx:
758 	if (err && set_tx)
759 		e1000e_free_tx_resources(temp_tx);
760 err_setup:
761 	e1000e_up(adapter);
762 	pm_runtime_put_sync(netdev->dev.parent);
763 free_temp:
764 	vfree(temp_tx);
765 	vfree(temp_rx);
766 clear_reset:
767 	clear_bit(__E1000_RESETTING, &adapter->state);
768 	return err;
769 }
770 
771 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
772 			     int reg, int offset, u32 mask, u32 write)
773 {
774 	u32 pat, val;
775 	static const u32 test[] = {
776 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
777 	};
778 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
779 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
780 				      (test[pat] & write));
781 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
782 		if (val != (test[pat] & write & mask)) {
783 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
784 			      reg + (offset << 2), val,
785 			      (test[pat] & write & mask));
786 			*data = reg;
787 			return true;
788 		}
789 	}
790 	return false;
791 }
792 
793 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
794 			      int reg, u32 mask, u32 write)
795 {
796 	u32 val;
797 
798 	__ew32(&adapter->hw, reg, write & mask);
799 	val = __er32(&adapter->hw, reg);
800 	if ((write & mask) != (val & mask)) {
801 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
802 		      reg, (val & mask), (write & mask));
803 		*data = reg;
804 		return true;
805 	}
806 	return false;
807 }
808 
809 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
810 	do {                                                                   \
811 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
812 			return 1;                                              \
813 	} while (0)
814 #define REG_PATTERN_TEST(reg, mask, write)                                     \
815 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
816 
817 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
818 	do {                                                                   \
819 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
820 			return 1;                                              \
821 	} while (0)
822 
823 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
824 {
825 	struct e1000_hw *hw = &adapter->hw;
826 	struct e1000_mac_info *mac = &adapter->hw.mac;
827 	u32 value;
828 	u32 before;
829 	u32 after;
830 	u32 i;
831 	u32 toggle;
832 	u32 mask;
833 	u32 wlock_mac = 0;
834 
835 	/* The status register is Read Only, so a write should fail.
836 	 * Some bits that get toggled are ignored.  There are several bits
837 	 * on newer hardware that are r/w.
838 	 */
839 	switch (mac->type) {
840 	case e1000_82571:
841 	case e1000_82572:
842 	case e1000_80003es2lan:
843 		toggle = 0x7FFFF3FF;
844 		break;
845 	default:
846 		toggle = 0x7FFFF033;
847 		break;
848 	}
849 
850 	before = er32(STATUS);
851 	value = (er32(STATUS) & toggle);
852 	ew32(STATUS, toggle);
853 	after = er32(STATUS) & toggle;
854 	if (value != after) {
855 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
856 		      after, value);
857 		*data = 1;
858 		return 1;
859 	}
860 	/* restore previous status */
861 	ew32(STATUS, before);
862 
863 	if (!(adapter->flags & FLAG_IS_ICH)) {
864 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
865 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
866 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
867 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
868 	}
869 
870 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
871 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
872 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
873 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
874 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
875 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
876 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
877 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
878 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
879 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
880 
881 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
882 
883 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
884 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
885 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
886 
887 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
888 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
889 	if (!(adapter->flags & FLAG_IS_ICH))
890 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
891 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
892 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
893 	mask = 0x8003FFFF;
894 	switch (mac->type) {
895 	case e1000_ich10lan:
896 	case e1000_pchlan:
897 	case e1000_pch2lan:
898 	case e1000_pch_lpt:
899 	case e1000_pch_spt:
900 		mask |= (1 << 18);
901 		break;
902 	default:
903 		break;
904 	}
905 
906 	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt))
907 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
908 		    E1000_FWSM_WLOCK_MAC_SHIFT;
909 
910 	for (i = 0; i < mac->rar_entry_count; i++) {
911 		if ((mac->type == e1000_pch_lpt) ||
912 		    (mac->type == e1000_pch_spt)) {
913 			/* Cannot test write-protected SHRAL[n] registers */
914 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
915 				continue;
916 
917 			/* SHRAH[9] different than the others */
918 			if (i == 10)
919 				mask |= (1 << 30);
920 			else
921 				mask &= ~(1 << 30);
922 		}
923 		if (mac->type == e1000_pch2lan) {
924 			/* SHRAH[0,1,2] different than previous */
925 			if (i == 1)
926 				mask &= 0xFFF4FFFF;
927 			/* SHRAH[3] different than SHRAH[0,1,2] */
928 			if (i == 4)
929 				mask |= (1 << 30);
930 			/* RAR[1-6] owned by management engine - skipping */
931 			if (i > 0)
932 				i += 6;
933 		}
934 
935 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
936 				       0xFFFFFFFF);
937 		/* reset index to actual value */
938 		if ((mac->type == e1000_pch2lan) && (i > 6))
939 			i -= 6;
940 	}
941 
942 	for (i = 0; i < mac->mta_reg_count; i++)
943 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
944 
945 	*data = 0;
946 
947 	return 0;
948 }
949 
950 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
951 {
952 	u16 temp;
953 	u16 checksum = 0;
954 	u16 i;
955 
956 	*data = 0;
957 	/* Read and add up the contents of the EEPROM */
958 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
959 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
960 			*data = 1;
961 			return *data;
962 		}
963 		checksum += temp;
964 	}
965 
966 	/* If Checksum is not Correct return error else test passed */
967 	if ((checksum != (u16)NVM_SUM) && !(*data))
968 		*data = 2;
969 
970 	return *data;
971 }
972 
973 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
974 {
975 	struct net_device *netdev = (struct net_device *)data;
976 	struct e1000_adapter *adapter = netdev_priv(netdev);
977 	struct e1000_hw *hw = &adapter->hw;
978 
979 	adapter->test_icr |= er32(ICR);
980 
981 	return IRQ_HANDLED;
982 }
983 
984 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
985 {
986 	struct net_device *netdev = adapter->netdev;
987 	struct e1000_hw *hw = &adapter->hw;
988 	u32 mask;
989 	u32 shared_int = 1;
990 	u32 irq = adapter->pdev->irq;
991 	int i;
992 	int ret_val = 0;
993 	int int_mode = E1000E_INT_MODE_LEGACY;
994 
995 	*data = 0;
996 
997 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
998 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
999 		int_mode = adapter->int_mode;
1000 		e1000e_reset_interrupt_capability(adapter);
1001 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1002 		e1000e_set_interrupt_capability(adapter);
1003 	}
1004 	/* Hook up test interrupt handler just for this test */
1005 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1006 			 netdev)) {
1007 		shared_int = 0;
1008 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1009 			       netdev)) {
1010 		*data = 1;
1011 		ret_val = -1;
1012 		goto out;
1013 	}
1014 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1015 
1016 	/* Disable all the interrupts */
1017 	ew32(IMC, 0xFFFFFFFF);
1018 	e1e_flush();
1019 	usleep_range(10000, 20000);
1020 
1021 	/* Test each interrupt */
1022 	for (i = 0; i < 10; i++) {
1023 		/* Interrupt to test */
1024 		mask = 1 << i;
1025 
1026 		if (adapter->flags & FLAG_IS_ICH) {
1027 			switch (mask) {
1028 			case E1000_ICR_RXSEQ:
1029 				continue;
1030 			case 0x00000100:
1031 				if (adapter->hw.mac.type == e1000_ich8lan ||
1032 				    adapter->hw.mac.type == e1000_ich9lan)
1033 					continue;
1034 				break;
1035 			default:
1036 				break;
1037 			}
1038 		}
1039 
1040 		if (!shared_int) {
1041 			/* Disable the interrupt to be reported in
1042 			 * the cause register and then force the same
1043 			 * interrupt and see if one gets posted.  If
1044 			 * an interrupt was posted to the bus, the
1045 			 * test failed.
1046 			 */
1047 			adapter->test_icr = 0;
1048 			ew32(IMC, mask);
1049 			ew32(ICS, mask);
1050 			e1e_flush();
1051 			usleep_range(10000, 20000);
1052 
1053 			if (adapter->test_icr & mask) {
1054 				*data = 3;
1055 				break;
1056 			}
1057 		}
1058 
1059 		/* Enable the interrupt to be reported in
1060 		 * the cause register and then force the same
1061 		 * interrupt and see if one gets posted.  If
1062 		 * an interrupt was not posted to the bus, the
1063 		 * test failed.
1064 		 */
1065 		adapter->test_icr = 0;
1066 		ew32(IMS, mask);
1067 		ew32(ICS, mask);
1068 		e1e_flush();
1069 		usleep_range(10000, 20000);
1070 
1071 		if (!(adapter->test_icr & mask)) {
1072 			*data = 4;
1073 			break;
1074 		}
1075 
1076 		if (!shared_int) {
1077 			/* Disable the other interrupts to be reported in
1078 			 * the cause register and then force the other
1079 			 * interrupts and see if any get posted.  If
1080 			 * an interrupt was posted to the bus, the
1081 			 * test failed.
1082 			 */
1083 			adapter->test_icr = 0;
1084 			ew32(IMC, ~mask & 0x00007FFF);
1085 			ew32(ICS, ~mask & 0x00007FFF);
1086 			e1e_flush();
1087 			usleep_range(10000, 20000);
1088 
1089 			if (adapter->test_icr) {
1090 				*data = 5;
1091 				break;
1092 			}
1093 		}
1094 	}
1095 
1096 	/* Disable all the interrupts */
1097 	ew32(IMC, 0xFFFFFFFF);
1098 	e1e_flush();
1099 	usleep_range(10000, 20000);
1100 
1101 	/* Unhook test interrupt handler */
1102 	free_irq(irq, netdev);
1103 
1104 out:
1105 	if (int_mode == E1000E_INT_MODE_MSIX) {
1106 		e1000e_reset_interrupt_capability(adapter);
1107 		adapter->int_mode = int_mode;
1108 		e1000e_set_interrupt_capability(adapter);
1109 	}
1110 
1111 	return ret_val;
1112 }
1113 
1114 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1115 {
1116 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1117 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1118 	struct pci_dev *pdev = adapter->pdev;
1119 	struct e1000_buffer *buffer_info;
1120 	int i;
1121 
1122 	if (tx_ring->desc && tx_ring->buffer_info) {
1123 		for (i = 0; i < tx_ring->count; i++) {
1124 			buffer_info = &tx_ring->buffer_info[i];
1125 
1126 			if (buffer_info->dma)
1127 				dma_unmap_single(&pdev->dev,
1128 						 buffer_info->dma,
1129 						 buffer_info->length,
1130 						 DMA_TO_DEVICE);
1131 			if (buffer_info->skb)
1132 				dev_kfree_skb(buffer_info->skb);
1133 		}
1134 	}
1135 
1136 	if (rx_ring->desc && rx_ring->buffer_info) {
1137 		for (i = 0; i < rx_ring->count; i++) {
1138 			buffer_info = &rx_ring->buffer_info[i];
1139 
1140 			if (buffer_info->dma)
1141 				dma_unmap_single(&pdev->dev,
1142 						 buffer_info->dma,
1143 						 2048, DMA_FROM_DEVICE);
1144 			if (buffer_info->skb)
1145 				dev_kfree_skb(buffer_info->skb);
1146 		}
1147 	}
1148 
1149 	if (tx_ring->desc) {
1150 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1151 				  tx_ring->dma);
1152 		tx_ring->desc = NULL;
1153 	}
1154 	if (rx_ring->desc) {
1155 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1156 				  rx_ring->dma);
1157 		rx_ring->desc = NULL;
1158 	}
1159 
1160 	kfree(tx_ring->buffer_info);
1161 	tx_ring->buffer_info = NULL;
1162 	kfree(rx_ring->buffer_info);
1163 	rx_ring->buffer_info = NULL;
1164 }
1165 
1166 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1167 {
1168 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1169 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1170 	struct pci_dev *pdev = adapter->pdev;
1171 	struct e1000_hw *hw = &adapter->hw;
1172 	u32 rctl;
1173 	int i;
1174 	int ret_val;
1175 
1176 	/* Setup Tx descriptor ring and Tx buffers */
1177 
1178 	if (!tx_ring->count)
1179 		tx_ring->count = E1000_DEFAULT_TXD;
1180 
1181 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1182 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1183 	if (!tx_ring->buffer_info) {
1184 		ret_val = 1;
1185 		goto err_nomem;
1186 	}
1187 
1188 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1189 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1190 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1191 					   &tx_ring->dma, GFP_KERNEL);
1192 	if (!tx_ring->desc) {
1193 		ret_val = 2;
1194 		goto err_nomem;
1195 	}
1196 	tx_ring->next_to_use = 0;
1197 	tx_ring->next_to_clean = 0;
1198 
1199 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1200 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1201 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1202 	ew32(TDH(0), 0);
1203 	ew32(TDT(0), 0);
1204 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1205 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1206 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1207 
1208 	for (i = 0; i < tx_ring->count; i++) {
1209 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1210 		struct sk_buff *skb;
1211 		unsigned int skb_size = 1024;
1212 
1213 		skb = alloc_skb(skb_size, GFP_KERNEL);
1214 		if (!skb) {
1215 			ret_val = 3;
1216 			goto err_nomem;
1217 		}
1218 		skb_put(skb, skb_size);
1219 		tx_ring->buffer_info[i].skb = skb;
1220 		tx_ring->buffer_info[i].length = skb->len;
1221 		tx_ring->buffer_info[i].dma =
1222 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1223 				   DMA_TO_DEVICE);
1224 		if (dma_mapping_error(&pdev->dev,
1225 				      tx_ring->buffer_info[i].dma)) {
1226 			ret_val = 4;
1227 			goto err_nomem;
1228 		}
1229 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1230 		tx_desc->lower.data = cpu_to_le32(skb->len);
1231 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1232 						   E1000_TXD_CMD_IFCS |
1233 						   E1000_TXD_CMD_RS);
1234 		tx_desc->upper.data = 0;
1235 	}
1236 
1237 	/* Setup Rx descriptor ring and Rx buffers */
1238 
1239 	if (!rx_ring->count)
1240 		rx_ring->count = E1000_DEFAULT_RXD;
1241 
1242 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1243 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1244 	if (!rx_ring->buffer_info) {
1245 		ret_val = 5;
1246 		goto err_nomem;
1247 	}
1248 
1249 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1250 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1251 					   &rx_ring->dma, GFP_KERNEL);
1252 	if (!rx_ring->desc) {
1253 		ret_val = 6;
1254 		goto err_nomem;
1255 	}
1256 	rx_ring->next_to_use = 0;
1257 	rx_ring->next_to_clean = 0;
1258 
1259 	rctl = er32(RCTL);
1260 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1261 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1262 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1263 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1264 	ew32(RDLEN(0), rx_ring->size);
1265 	ew32(RDH(0), 0);
1266 	ew32(RDT(0), 0);
1267 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1268 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1269 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1270 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1271 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1272 	ew32(RCTL, rctl);
1273 
1274 	for (i = 0; i < rx_ring->count; i++) {
1275 		union e1000_rx_desc_extended *rx_desc;
1276 		struct sk_buff *skb;
1277 
1278 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1279 		if (!skb) {
1280 			ret_val = 7;
1281 			goto err_nomem;
1282 		}
1283 		skb_reserve(skb, NET_IP_ALIGN);
1284 		rx_ring->buffer_info[i].skb = skb;
1285 		rx_ring->buffer_info[i].dma =
1286 		    dma_map_single(&pdev->dev, skb->data, 2048,
1287 				   DMA_FROM_DEVICE);
1288 		if (dma_mapping_error(&pdev->dev,
1289 				      rx_ring->buffer_info[i].dma)) {
1290 			ret_val = 8;
1291 			goto err_nomem;
1292 		}
1293 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1294 		rx_desc->read.buffer_addr =
1295 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1296 		memset(skb->data, 0x00, skb->len);
1297 	}
1298 
1299 	return 0;
1300 
1301 err_nomem:
1302 	e1000_free_desc_rings(adapter);
1303 	return ret_val;
1304 }
1305 
1306 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1307 {
1308 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1309 	e1e_wphy(&adapter->hw, 29, 0x001F);
1310 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1311 	e1e_wphy(&adapter->hw, 29, 0x001A);
1312 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1313 }
1314 
1315 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1316 {
1317 	struct e1000_hw *hw = &adapter->hw;
1318 	u32 ctrl_reg = 0;
1319 	u16 phy_reg = 0;
1320 	s32 ret_val = 0;
1321 
1322 	hw->mac.autoneg = 0;
1323 
1324 	if (hw->phy.type == e1000_phy_ife) {
1325 		/* force 100, set loopback */
1326 		e1e_wphy(hw, MII_BMCR, 0x6100);
1327 
1328 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1329 		ctrl_reg = er32(CTRL);
1330 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1331 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1332 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1333 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1334 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1335 
1336 		ew32(CTRL, ctrl_reg);
1337 		e1e_flush();
1338 		usleep_range(500, 1000);
1339 
1340 		return 0;
1341 	}
1342 
1343 	/* Specific PHY configuration for loopback */
1344 	switch (hw->phy.type) {
1345 	case e1000_phy_m88:
1346 		/* Auto-MDI/MDIX Off */
1347 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1348 		/* reset to update Auto-MDI/MDIX */
1349 		e1e_wphy(hw, MII_BMCR, 0x9140);
1350 		/* autoneg off */
1351 		e1e_wphy(hw, MII_BMCR, 0x8140);
1352 		break;
1353 	case e1000_phy_gg82563:
1354 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1355 		break;
1356 	case e1000_phy_bm:
1357 		/* Set Default MAC Interface speed to 1GB */
1358 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1359 		phy_reg &= ~0x0007;
1360 		phy_reg |= 0x006;
1361 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1362 		/* Assert SW reset for above settings to take effect */
1363 		hw->phy.ops.commit(hw);
1364 		usleep_range(1000, 2000);
1365 		/* Force Full Duplex */
1366 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1367 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1368 		/* Set Link Up (in force link) */
1369 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1370 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1371 		/* Force Link */
1372 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1373 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1374 		/* Set Early Link Enable */
1375 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1376 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1377 		break;
1378 	case e1000_phy_82577:
1379 	case e1000_phy_82578:
1380 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1381 		ret_val = hw->phy.ops.acquire(hw);
1382 		if (ret_val) {
1383 			e_err("Cannot setup 1Gbps loopback.\n");
1384 			return ret_val;
1385 		}
1386 		e1000_configure_k1_ich8lan(hw, false);
1387 		hw->phy.ops.release(hw);
1388 		break;
1389 	case e1000_phy_82579:
1390 		/* Disable PHY energy detect power down */
1391 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1392 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1393 		/* Disable full chip energy detect */
1394 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1395 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1396 		/* Enable loopback on the PHY */
1397 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1398 		break;
1399 	default:
1400 		break;
1401 	}
1402 
1403 	/* force 1000, set loopback */
1404 	e1e_wphy(hw, MII_BMCR, 0x4140);
1405 	msleep(250);
1406 
1407 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1408 	ctrl_reg = er32(CTRL);
1409 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1410 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1411 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1412 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1413 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1414 
1415 	if (adapter->flags & FLAG_IS_ICH)
1416 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1417 
1418 	if (hw->phy.media_type == e1000_media_type_copper &&
1419 	    hw->phy.type == e1000_phy_m88) {
1420 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1421 	} else {
1422 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1423 		 * detected.
1424 		 */
1425 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1426 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1427 	}
1428 
1429 	ew32(CTRL, ctrl_reg);
1430 
1431 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1432 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1433 	 */
1434 	if (hw->phy.type == e1000_phy_m88)
1435 		e1000_phy_disable_receiver(adapter);
1436 
1437 	usleep_range(500, 1000);
1438 
1439 	return 0;
1440 }
1441 
1442 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1443 {
1444 	struct e1000_hw *hw = &adapter->hw;
1445 	u32 ctrl = er32(CTRL);
1446 	int link;
1447 
1448 	/* special requirements for 82571/82572 fiber adapters */
1449 
1450 	/* jump through hoops to make sure link is up because serdes
1451 	 * link is hardwired up
1452 	 */
1453 	ctrl |= E1000_CTRL_SLU;
1454 	ew32(CTRL, ctrl);
1455 
1456 	/* disable autoneg */
1457 	ctrl = er32(TXCW);
1458 	ctrl &= ~(1 << 31);
1459 	ew32(TXCW, ctrl);
1460 
1461 	link = (er32(STATUS) & E1000_STATUS_LU);
1462 
1463 	if (!link) {
1464 		/* set invert loss of signal */
1465 		ctrl = er32(CTRL);
1466 		ctrl |= E1000_CTRL_ILOS;
1467 		ew32(CTRL, ctrl);
1468 	}
1469 
1470 	/* special write to serdes control register to enable SerDes analog
1471 	 * loopback
1472 	 */
1473 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1474 	e1e_flush();
1475 	usleep_range(10000, 20000);
1476 
1477 	return 0;
1478 }
1479 
1480 /* only call this for fiber/serdes connections to es2lan */
1481 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1482 {
1483 	struct e1000_hw *hw = &adapter->hw;
1484 	u32 ctrlext = er32(CTRL_EXT);
1485 	u32 ctrl = er32(CTRL);
1486 
1487 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1488 	 * on mac_type 80003es2lan)
1489 	 */
1490 	adapter->tx_fifo_head = ctrlext;
1491 
1492 	/* clear the serdes mode bits, putting the device into mac loopback */
1493 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1494 	ew32(CTRL_EXT, ctrlext);
1495 
1496 	/* force speed to 1000/FD, link up */
1497 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1498 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1499 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1500 	ew32(CTRL, ctrl);
1501 
1502 	/* set mac loopback */
1503 	ctrl = er32(RCTL);
1504 	ctrl |= E1000_RCTL_LBM_MAC;
1505 	ew32(RCTL, ctrl);
1506 
1507 	/* set testing mode parameters (no need to reset later) */
1508 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1509 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1510 	ew32(KMRNCTRLSTA,
1511 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1512 
1513 	return 0;
1514 }
1515 
1516 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1517 {
1518 	struct e1000_hw *hw = &adapter->hw;
1519 	u32 rctl, fext_nvm11, tarc0;
1520 
1521 	if (hw->mac.type == e1000_pch_spt) {
1522 		fext_nvm11 = er32(FEXTNVM11);
1523 		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1524 		ew32(FEXTNVM11, fext_nvm11);
1525 		tarc0 = er32(TARC(0));
1526 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1527 		tarc0 &= 0xcfffffff;
1528 		/* set bit 29 (value of MULR requests is now 2) */
1529 		tarc0 |= 0x20000000;
1530 		ew32(TARC(0), tarc0);
1531 	}
1532 	if (hw->phy.media_type == e1000_media_type_fiber ||
1533 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1534 		switch (hw->mac.type) {
1535 		case e1000_80003es2lan:
1536 			return e1000_set_es2lan_mac_loopback(adapter);
1537 		case e1000_82571:
1538 		case e1000_82572:
1539 			return e1000_set_82571_fiber_loopback(adapter);
1540 		default:
1541 			rctl = er32(RCTL);
1542 			rctl |= E1000_RCTL_LBM_TCVR;
1543 			ew32(RCTL, rctl);
1544 			return 0;
1545 		}
1546 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1547 		return e1000_integrated_phy_loopback(adapter);
1548 	}
1549 
1550 	return 7;
1551 }
1552 
1553 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1554 {
1555 	struct e1000_hw *hw = &adapter->hw;
1556 	u32 rctl, fext_nvm11, tarc0;
1557 	u16 phy_reg;
1558 
1559 	rctl = er32(RCTL);
1560 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1561 	ew32(RCTL, rctl);
1562 
1563 	switch (hw->mac.type) {
1564 	case e1000_pch_spt:
1565 		fext_nvm11 = er32(FEXTNVM11);
1566 		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1567 		ew32(FEXTNVM11, fext_nvm11);
1568 		tarc0 = er32(TARC(0));
1569 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1570 		/* set bit 29 (value of MULR requests is now 0) */
1571 		tarc0 &= 0xcfffffff;
1572 		ew32(TARC(0), tarc0);
1573 		/* fall through */
1574 	case e1000_80003es2lan:
1575 		if (hw->phy.media_type == e1000_media_type_fiber ||
1576 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1577 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1578 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1579 			adapter->tx_fifo_head = 0;
1580 		}
1581 		/* fall through */
1582 	case e1000_82571:
1583 	case e1000_82572:
1584 		if (hw->phy.media_type == e1000_media_type_fiber ||
1585 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1586 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1587 			e1e_flush();
1588 			usleep_range(10000, 20000);
1589 			break;
1590 		}
1591 		/* Fall Through */
1592 	default:
1593 		hw->mac.autoneg = 1;
1594 		if (hw->phy.type == e1000_phy_gg82563)
1595 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1596 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1597 		if (phy_reg & BMCR_LOOPBACK) {
1598 			phy_reg &= ~BMCR_LOOPBACK;
1599 			e1e_wphy(hw, MII_BMCR, phy_reg);
1600 			if (hw->phy.ops.commit)
1601 				hw->phy.ops.commit(hw);
1602 		}
1603 		break;
1604 	}
1605 }
1606 
1607 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1608 				      unsigned int frame_size)
1609 {
1610 	memset(skb->data, 0xFF, frame_size);
1611 	frame_size &= ~1;
1612 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1613 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1614 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1615 }
1616 
1617 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1618 				    unsigned int frame_size)
1619 {
1620 	frame_size &= ~1;
1621 	if (*(skb->data + 3) == 0xFF)
1622 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1623 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1624 			return 0;
1625 	return 13;
1626 }
1627 
1628 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1629 {
1630 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1631 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1632 	struct pci_dev *pdev = adapter->pdev;
1633 	struct e1000_hw *hw = &adapter->hw;
1634 	struct e1000_buffer *buffer_info;
1635 	int i, j, k, l;
1636 	int lc;
1637 	int good_cnt;
1638 	int ret_val = 0;
1639 	unsigned long time;
1640 
1641 	ew32(RDT(0), rx_ring->count - 1);
1642 
1643 	/* Calculate the loop count based on the largest descriptor ring
1644 	 * The idea is to wrap the largest ring a number of times using 64
1645 	 * send/receive pairs during each loop
1646 	 */
1647 
1648 	if (rx_ring->count <= tx_ring->count)
1649 		lc = ((tx_ring->count / 64) * 2) + 1;
1650 	else
1651 		lc = ((rx_ring->count / 64) * 2) + 1;
1652 
1653 	k = 0;
1654 	l = 0;
1655 	/* loop count loop */
1656 	for (j = 0; j <= lc; j++) {
1657 		/* send the packets */
1658 		for (i = 0; i < 64; i++) {
1659 			buffer_info = &tx_ring->buffer_info[k];
1660 
1661 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1662 			dma_sync_single_for_device(&pdev->dev,
1663 						   buffer_info->dma,
1664 						   buffer_info->length,
1665 						   DMA_TO_DEVICE);
1666 			k++;
1667 			if (k == tx_ring->count)
1668 				k = 0;
1669 		}
1670 		ew32(TDT(0), k);
1671 		e1e_flush();
1672 		msleep(200);
1673 		time = jiffies;	/* set the start time for the receive */
1674 		good_cnt = 0;
1675 		/* receive the sent packets */
1676 		do {
1677 			buffer_info = &rx_ring->buffer_info[l];
1678 
1679 			dma_sync_single_for_cpu(&pdev->dev,
1680 						buffer_info->dma, 2048,
1681 						DMA_FROM_DEVICE);
1682 
1683 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1684 							   1024);
1685 			if (!ret_val)
1686 				good_cnt++;
1687 			l++;
1688 			if (l == rx_ring->count)
1689 				l = 0;
1690 			/* time + 20 msecs (200 msecs on 2.4) is more than
1691 			 * enough time to complete the receives, if it's
1692 			 * exceeded, break and error off
1693 			 */
1694 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1695 		if (good_cnt != 64) {
1696 			ret_val = 13;	/* ret_val is the same as mis-compare */
1697 			break;
1698 		}
1699 		if (time_after(jiffies, time + 20)) {
1700 			ret_val = 14;	/* error code for time out error */
1701 			break;
1702 		}
1703 	}
1704 	return ret_val;
1705 }
1706 
1707 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1708 {
1709 	struct e1000_hw *hw = &adapter->hw;
1710 
1711 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1712 	if (hw->phy.ops.check_reset_block &&
1713 	    hw->phy.ops.check_reset_block(hw)) {
1714 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1715 		*data = 0;
1716 		goto out;
1717 	}
1718 
1719 	*data = e1000_setup_desc_rings(adapter);
1720 	if (*data)
1721 		goto out;
1722 
1723 	*data = e1000_setup_loopback_test(adapter);
1724 	if (*data)
1725 		goto err_loopback;
1726 
1727 	*data = e1000_run_loopback_test(adapter);
1728 	e1000_loopback_cleanup(adapter);
1729 
1730 err_loopback:
1731 	e1000_free_desc_rings(adapter);
1732 out:
1733 	return *data;
1734 }
1735 
1736 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1737 {
1738 	struct e1000_hw *hw = &adapter->hw;
1739 
1740 	*data = 0;
1741 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1742 		int i = 0;
1743 
1744 		hw->mac.serdes_has_link = false;
1745 
1746 		/* On some blade server designs, link establishment
1747 		 * could take as long as 2-3 minutes
1748 		 */
1749 		do {
1750 			hw->mac.ops.check_for_link(hw);
1751 			if (hw->mac.serdes_has_link)
1752 				return *data;
1753 			msleep(20);
1754 		} while (i++ < 3750);
1755 
1756 		*data = 1;
1757 	} else {
1758 		hw->mac.ops.check_for_link(hw);
1759 		if (hw->mac.autoneg)
1760 			/* On some Phy/switch combinations, link establishment
1761 			 * can take a few seconds more than expected.
1762 			 */
1763 			msleep_interruptible(5000);
1764 
1765 		if (!(er32(STATUS) & E1000_STATUS_LU))
1766 			*data = 1;
1767 	}
1768 	return *data;
1769 }
1770 
1771 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1772 				 int sset)
1773 {
1774 	switch (sset) {
1775 	case ETH_SS_TEST:
1776 		return E1000_TEST_LEN;
1777 	case ETH_SS_STATS:
1778 		return E1000_STATS_LEN;
1779 	default:
1780 		return -EOPNOTSUPP;
1781 	}
1782 }
1783 
1784 static void e1000_diag_test(struct net_device *netdev,
1785 			    struct ethtool_test *eth_test, u64 *data)
1786 {
1787 	struct e1000_adapter *adapter = netdev_priv(netdev);
1788 	u16 autoneg_advertised;
1789 	u8 forced_speed_duplex;
1790 	u8 autoneg;
1791 	bool if_running = netif_running(netdev);
1792 
1793 	pm_runtime_get_sync(netdev->dev.parent);
1794 
1795 	set_bit(__E1000_TESTING, &adapter->state);
1796 
1797 	if (!if_running) {
1798 		/* Get control of and reset hardware */
1799 		if (adapter->flags & FLAG_HAS_AMT)
1800 			e1000e_get_hw_control(adapter);
1801 
1802 		e1000e_power_up_phy(adapter);
1803 
1804 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1805 		e1000e_reset(adapter);
1806 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1807 	}
1808 
1809 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1810 		/* Offline tests */
1811 
1812 		/* save speed, duplex, autoneg settings */
1813 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1814 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1815 		autoneg = adapter->hw.mac.autoneg;
1816 
1817 		e_info("offline testing starting\n");
1818 
1819 		if (if_running)
1820 			/* indicate we're in test mode */
1821 			dev_close(netdev);
1822 
1823 		if (e1000_reg_test(adapter, &data[0]))
1824 			eth_test->flags |= ETH_TEST_FL_FAILED;
1825 
1826 		e1000e_reset(adapter);
1827 		if (e1000_eeprom_test(adapter, &data[1]))
1828 			eth_test->flags |= ETH_TEST_FL_FAILED;
1829 
1830 		e1000e_reset(adapter);
1831 		if (e1000_intr_test(adapter, &data[2]))
1832 			eth_test->flags |= ETH_TEST_FL_FAILED;
1833 
1834 		e1000e_reset(adapter);
1835 		if (e1000_loopback_test(adapter, &data[3]))
1836 			eth_test->flags |= ETH_TEST_FL_FAILED;
1837 
1838 		/* force this routine to wait until autoneg complete/timeout */
1839 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1840 		e1000e_reset(adapter);
1841 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1842 
1843 		if (e1000_link_test(adapter, &data[4]))
1844 			eth_test->flags |= ETH_TEST_FL_FAILED;
1845 
1846 		/* restore speed, duplex, autoneg settings */
1847 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1848 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1849 		adapter->hw.mac.autoneg = autoneg;
1850 		e1000e_reset(adapter);
1851 
1852 		clear_bit(__E1000_TESTING, &adapter->state);
1853 		if (if_running)
1854 			dev_open(netdev);
1855 	} else {
1856 		/* Online tests */
1857 
1858 		e_info("online testing starting\n");
1859 
1860 		/* register, eeprom, intr and loopback tests not run online */
1861 		data[0] = 0;
1862 		data[1] = 0;
1863 		data[2] = 0;
1864 		data[3] = 0;
1865 
1866 		if (e1000_link_test(adapter, &data[4]))
1867 			eth_test->flags |= ETH_TEST_FL_FAILED;
1868 
1869 		clear_bit(__E1000_TESTING, &adapter->state);
1870 	}
1871 
1872 	if (!if_running) {
1873 		e1000e_reset(adapter);
1874 
1875 		if (adapter->flags & FLAG_HAS_AMT)
1876 			e1000e_release_hw_control(adapter);
1877 	}
1878 
1879 	msleep_interruptible(4 * 1000);
1880 
1881 	pm_runtime_put_sync(netdev->dev.parent);
1882 }
1883 
1884 static void e1000_get_wol(struct net_device *netdev,
1885 			  struct ethtool_wolinfo *wol)
1886 {
1887 	struct e1000_adapter *adapter = netdev_priv(netdev);
1888 
1889 	wol->supported = 0;
1890 	wol->wolopts = 0;
1891 
1892 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1893 	    !device_can_wakeup(&adapter->pdev->dev))
1894 		return;
1895 
1896 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1897 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1898 
1899 	/* apply any specific unsupported masks here */
1900 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1901 		wol->supported &= ~WAKE_UCAST;
1902 
1903 		if (adapter->wol & E1000_WUFC_EX)
1904 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1905 	}
1906 
1907 	if (adapter->wol & E1000_WUFC_EX)
1908 		wol->wolopts |= WAKE_UCAST;
1909 	if (adapter->wol & E1000_WUFC_MC)
1910 		wol->wolopts |= WAKE_MCAST;
1911 	if (adapter->wol & E1000_WUFC_BC)
1912 		wol->wolopts |= WAKE_BCAST;
1913 	if (adapter->wol & E1000_WUFC_MAG)
1914 		wol->wolopts |= WAKE_MAGIC;
1915 	if (adapter->wol & E1000_WUFC_LNKC)
1916 		wol->wolopts |= WAKE_PHY;
1917 }
1918 
1919 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1920 {
1921 	struct e1000_adapter *adapter = netdev_priv(netdev);
1922 
1923 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1924 	    !device_can_wakeup(&adapter->pdev->dev) ||
1925 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1926 			      WAKE_MAGIC | WAKE_PHY)))
1927 		return -EOPNOTSUPP;
1928 
1929 	/* these settings will always override what we currently have */
1930 	adapter->wol = 0;
1931 
1932 	if (wol->wolopts & WAKE_UCAST)
1933 		adapter->wol |= E1000_WUFC_EX;
1934 	if (wol->wolopts & WAKE_MCAST)
1935 		adapter->wol |= E1000_WUFC_MC;
1936 	if (wol->wolopts & WAKE_BCAST)
1937 		adapter->wol |= E1000_WUFC_BC;
1938 	if (wol->wolopts & WAKE_MAGIC)
1939 		adapter->wol |= E1000_WUFC_MAG;
1940 	if (wol->wolopts & WAKE_PHY)
1941 		adapter->wol |= E1000_WUFC_LNKC;
1942 
1943 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1944 
1945 	return 0;
1946 }
1947 
1948 static int e1000_set_phys_id(struct net_device *netdev,
1949 			     enum ethtool_phys_id_state state)
1950 {
1951 	struct e1000_adapter *adapter = netdev_priv(netdev);
1952 	struct e1000_hw *hw = &adapter->hw;
1953 
1954 	switch (state) {
1955 	case ETHTOOL_ID_ACTIVE:
1956 		pm_runtime_get_sync(netdev->dev.parent);
1957 
1958 		if (!hw->mac.ops.blink_led)
1959 			return 2;	/* cycle on/off twice per second */
1960 
1961 		hw->mac.ops.blink_led(hw);
1962 		break;
1963 
1964 	case ETHTOOL_ID_INACTIVE:
1965 		if (hw->phy.type == e1000_phy_ife)
1966 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1967 		hw->mac.ops.led_off(hw);
1968 		hw->mac.ops.cleanup_led(hw);
1969 		pm_runtime_put_sync(netdev->dev.parent);
1970 		break;
1971 
1972 	case ETHTOOL_ID_ON:
1973 		hw->mac.ops.led_on(hw);
1974 		break;
1975 
1976 	case ETHTOOL_ID_OFF:
1977 		hw->mac.ops.led_off(hw);
1978 		break;
1979 	}
1980 
1981 	return 0;
1982 }
1983 
1984 static int e1000_get_coalesce(struct net_device *netdev,
1985 			      struct ethtool_coalesce *ec)
1986 {
1987 	struct e1000_adapter *adapter = netdev_priv(netdev);
1988 
1989 	if (adapter->itr_setting <= 4)
1990 		ec->rx_coalesce_usecs = adapter->itr_setting;
1991 	else
1992 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1993 
1994 	return 0;
1995 }
1996 
1997 static int e1000_set_coalesce(struct net_device *netdev,
1998 			      struct ethtool_coalesce *ec)
1999 {
2000 	struct e1000_adapter *adapter = netdev_priv(netdev);
2001 
2002 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2003 	    ((ec->rx_coalesce_usecs > 4) &&
2004 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2005 	    (ec->rx_coalesce_usecs == 2))
2006 		return -EINVAL;
2007 
2008 	if (ec->rx_coalesce_usecs == 4) {
2009 		adapter->itr_setting = 4;
2010 		adapter->itr = adapter->itr_setting;
2011 	} else if (ec->rx_coalesce_usecs <= 3) {
2012 		adapter->itr = 20000;
2013 		adapter->itr_setting = ec->rx_coalesce_usecs;
2014 	} else {
2015 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2016 		adapter->itr_setting = adapter->itr & ~3;
2017 	}
2018 
2019 	pm_runtime_get_sync(netdev->dev.parent);
2020 
2021 	if (adapter->itr_setting != 0)
2022 		e1000e_write_itr(adapter, adapter->itr);
2023 	else
2024 		e1000e_write_itr(adapter, 0);
2025 
2026 	pm_runtime_put_sync(netdev->dev.parent);
2027 
2028 	return 0;
2029 }
2030 
2031 static int e1000_nway_reset(struct net_device *netdev)
2032 {
2033 	struct e1000_adapter *adapter = netdev_priv(netdev);
2034 
2035 	if (!netif_running(netdev))
2036 		return -EAGAIN;
2037 
2038 	if (!adapter->hw.mac.autoneg)
2039 		return -EINVAL;
2040 
2041 	pm_runtime_get_sync(netdev->dev.parent);
2042 	e1000e_reinit_locked(adapter);
2043 	pm_runtime_put_sync(netdev->dev.parent);
2044 
2045 	return 0;
2046 }
2047 
2048 static void e1000_get_ethtool_stats(struct net_device *netdev,
2049 				    struct ethtool_stats __always_unused *stats,
2050 				    u64 *data)
2051 {
2052 	struct e1000_adapter *adapter = netdev_priv(netdev);
2053 	struct rtnl_link_stats64 net_stats;
2054 	int i;
2055 	char *p = NULL;
2056 
2057 	pm_runtime_get_sync(netdev->dev.parent);
2058 
2059 	e1000e_get_stats64(netdev, &net_stats);
2060 
2061 	pm_runtime_put_sync(netdev->dev.parent);
2062 
2063 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2064 		switch (e1000_gstrings_stats[i].type) {
2065 		case NETDEV_STATS:
2066 			p = (char *)&net_stats +
2067 			    e1000_gstrings_stats[i].stat_offset;
2068 			break;
2069 		case E1000_STATS:
2070 			p = (char *)adapter +
2071 			    e1000_gstrings_stats[i].stat_offset;
2072 			break;
2073 		default:
2074 			data[i] = 0;
2075 			continue;
2076 		}
2077 
2078 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2079 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2080 	}
2081 }
2082 
2083 static void e1000_get_strings(struct net_device __always_unused *netdev,
2084 			      u32 stringset, u8 *data)
2085 {
2086 	u8 *p = data;
2087 	int i;
2088 
2089 	switch (stringset) {
2090 	case ETH_SS_TEST:
2091 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2092 		break;
2093 	case ETH_SS_STATS:
2094 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2095 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2096 			       ETH_GSTRING_LEN);
2097 			p += ETH_GSTRING_LEN;
2098 		}
2099 		break;
2100 	}
2101 }
2102 
2103 static int e1000_get_rxnfc(struct net_device *netdev,
2104 			   struct ethtool_rxnfc *info,
2105 			   u32 __always_unused *rule_locs)
2106 {
2107 	info->data = 0;
2108 
2109 	switch (info->cmd) {
2110 	case ETHTOOL_GRXFH: {
2111 		struct e1000_adapter *adapter = netdev_priv(netdev);
2112 		struct e1000_hw *hw = &adapter->hw;
2113 		u32 mrqc;
2114 
2115 		pm_runtime_get_sync(netdev->dev.parent);
2116 		mrqc = er32(MRQC);
2117 		pm_runtime_put_sync(netdev->dev.parent);
2118 
2119 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2120 			return 0;
2121 
2122 		switch (info->flow_type) {
2123 		case TCP_V4_FLOW:
2124 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2125 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2126 			/* fall through */
2127 		case UDP_V4_FLOW:
2128 		case SCTP_V4_FLOW:
2129 		case AH_ESP_V4_FLOW:
2130 		case IPV4_FLOW:
2131 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2132 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2133 			break;
2134 		case TCP_V6_FLOW:
2135 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2136 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2137 			/* fall through */
2138 		case UDP_V6_FLOW:
2139 		case SCTP_V6_FLOW:
2140 		case AH_ESP_V6_FLOW:
2141 		case IPV6_FLOW:
2142 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2143 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2144 			break;
2145 		default:
2146 			break;
2147 		}
2148 		return 0;
2149 	}
2150 	default:
2151 		return -EOPNOTSUPP;
2152 	}
2153 }
2154 
2155 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2156 {
2157 	struct e1000_adapter *adapter = netdev_priv(netdev);
2158 	struct e1000_hw *hw = &adapter->hw;
2159 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2160 	u32 ret_val;
2161 
2162 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2163 		return -EOPNOTSUPP;
2164 
2165 	switch (hw->phy.type) {
2166 	case e1000_phy_82579:
2167 		cap_addr = I82579_EEE_CAPABILITY;
2168 		lpa_addr = I82579_EEE_LP_ABILITY;
2169 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2170 		break;
2171 	case e1000_phy_i217:
2172 		cap_addr = I217_EEE_CAPABILITY;
2173 		lpa_addr = I217_EEE_LP_ABILITY;
2174 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2175 		break;
2176 	default:
2177 		return -EOPNOTSUPP;
2178 	}
2179 
2180 	pm_runtime_get_sync(netdev->dev.parent);
2181 
2182 	ret_val = hw->phy.ops.acquire(hw);
2183 	if (ret_val) {
2184 		pm_runtime_put_sync(netdev->dev.parent);
2185 		return -EBUSY;
2186 	}
2187 
2188 	/* EEE Capability */
2189 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2190 	if (ret_val)
2191 		goto release;
2192 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2193 
2194 	/* EEE Advertised */
2195 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2196 
2197 	/* EEE Link Partner Advertised */
2198 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2199 	if (ret_val)
2200 		goto release;
2201 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2202 
2203 	/* EEE PCS Status */
2204 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2205 	if (ret_val)
2206 		goto release;
2207 	if (hw->phy.type == e1000_phy_82579)
2208 		phy_data <<= 8;
2209 
2210 	/* Result of the EEE auto negotiation - there is no register that
2211 	 * has the status of the EEE negotiation so do a best-guess based
2212 	 * on whether Tx or Rx LPI indications have been received.
2213 	 */
2214 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2215 		edata->eee_active = true;
2216 
2217 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2218 	edata->tx_lpi_enabled = true;
2219 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2220 
2221 release:
2222 	hw->phy.ops.release(hw);
2223 	if (ret_val)
2224 		ret_val = -ENODATA;
2225 
2226 	pm_runtime_put_sync(netdev->dev.parent);
2227 
2228 	return ret_val;
2229 }
2230 
2231 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2232 {
2233 	struct e1000_adapter *adapter = netdev_priv(netdev);
2234 	struct e1000_hw *hw = &adapter->hw;
2235 	struct ethtool_eee eee_curr;
2236 	s32 ret_val;
2237 
2238 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2239 	if (ret_val)
2240 		return ret_val;
2241 
2242 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2243 		e_err("Setting EEE tx-lpi is not supported\n");
2244 		return -EINVAL;
2245 	}
2246 
2247 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2248 		e_err("Setting EEE Tx LPI timer is not supported\n");
2249 		return -EINVAL;
2250 	}
2251 
2252 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2253 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2254 		return -EINVAL;
2255 	}
2256 
2257 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2258 
2259 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2260 
2261 	pm_runtime_get_sync(netdev->dev.parent);
2262 
2263 	/* reset the link */
2264 	if (netif_running(netdev))
2265 		e1000e_reinit_locked(adapter);
2266 	else
2267 		e1000e_reset(adapter);
2268 
2269 	pm_runtime_put_sync(netdev->dev.parent);
2270 
2271 	return 0;
2272 }
2273 
2274 static int e1000e_get_ts_info(struct net_device *netdev,
2275 			      struct ethtool_ts_info *info)
2276 {
2277 	struct e1000_adapter *adapter = netdev_priv(netdev);
2278 
2279 	ethtool_op_get_ts_info(netdev, info);
2280 
2281 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2282 		return 0;
2283 
2284 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2285 				  SOF_TIMESTAMPING_RX_HARDWARE |
2286 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2287 
2288 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2289 
2290 	info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2291 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2292 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2293 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2294 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2295 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2296 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2297 			    (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2298 			    (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2299 			    (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2300 			    (1 << HWTSTAMP_FILTER_ALL));
2301 
2302 	if (adapter->ptp_clock)
2303 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2304 
2305 	return 0;
2306 }
2307 
2308 static const struct ethtool_ops e1000_ethtool_ops = {
2309 	.get_settings		= e1000_get_settings,
2310 	.set_settings		= e1000_set_settings,
2311 	.get_drvinfo		= e1000_get_drvinfo,
2312 	.get_regs_len		= e1000_get_regs_len,
2313 	.get_regs		= e1000_get_regs,
2314 	.get_wol		= e1000_get_wol,
2315 	.set_wol		= e1000_set_wol,
2316 	.get_msglevel		= e1000_get_msglevel,
2317 	.set_msglevel		= e1000_set_msglevel,
2318 	.nway_reset		= e1000_nway_reset,
2319 	.get_link		= ethtool_op_get_link,
2320 	.get_eeprom_len		= e1000_get_eeprom_len,
2321 	.get_eeprom		= e1000_get_eeprom,
2322 	.set_eeprom		= e1000_set_eeprom,
2323 	.get_ringparam		= e1000_get_ringparam,
2324 	.set_ringparam		= e1000_set_ringparam,
2325 	.get_pauseparam		= e1000_get_pauseparam,
2326 	.set_pauseparam		= e1000_set_pauseparam,
2327 	.self_test		= e1000_diag_test,
2328 	.get_strings		= e1000_get_strings,
2329 	.set_phys_id		= e1000_set_phys_id,
2330 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2331 	.get_sset_count		= e1000e_get_sset_count,
2332 	.get_coalesce		= e1000_get_coalesce,
2333 	.set_coalesce		= e1000_set_coalesce,
2334 	.get_rxnfc		= e1000_get_rxnfc,
2335 	.get_ts_info		= e1000e_get_ts_info,
2336 	.get_eee		= e1000e_get_eee,
2337 	.set_eee		= e1000e_set_eee,
2338 };
2339 
2340 void e1000e_set_ethtool_ops(struct net_device *netdev)
2341 {
2342 	netdev->ethtool_ops = &e1000_ethtool_ops;
2343 }
2344