1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = { 27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0) 28 "s0ix-enabled", 29 }; 30 31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings) 32 33 #define E1000_STAT(str, m) { \ 34 .stat_string = str, \ 35 .type = E1000_STATS, \ 36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 37 .stat_offset = offsetof(struct e1000_adapter, m) } 38 #define E1000_NETDEV_STAT(str, m) { \ 39 .stat_string = str, \ 40 .type = NETDEV_STATS, \ 41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 42 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 43 44 static const struct e1000_stats e1000_gstrings_stats[] = { 45 E1000_STAT("rx_packets", stats.gprc), 46 E1000_STAT("tx_packets", stats.gptc), 47 E1000_STAT("rx_bytes", stats.gorc), 48 E1000_STAT("tx_bytes", stats.gotc), 49 E1000_STAT("rx_broadcast", stats.bprc), 50 E1000_STAT("tx_broadcast", stats.bptc), 51 E1000_STAT("rx_multicast", stats.mprc), 52 E1000_STAT("tx_multicast", stats.mptc), 53 E1000_NETDEV_STAT("rx_errors", rx_errors), 54 E1000_NETDEV_STAT("tx_errors", tx_errors), 55 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 56 E1000_STAT("multicast", stats.mprc), 57 E1000_STAT("collisions", stats.colc), 58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 60 E1000_STAT("rx_crc_errors", stats.crcerrs), 61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 62 E1000_STAT("rx_no_buffer_count", stats.rnbc), 63 E1000_STAT("rx_missed_errors", stats.mpc), 64 E1000_STAT("tx_aborted_errors", stats.ecol), 65 E1000_STAT("tx_carrier_errors", stats.tncrs), 66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 68 E1000_STAT("tx_window_errors", stats.latecol), 69 E1000_STAT("tx_abort_late_coll", stats.latecol), 70 E1000_STAT("tx_deferred_ok", stats.dc), 71 E1000_STAT("tx_single_coll_ok", stats.scc), 72 E1000_STAT("tx_multi_coll_ok", stats.mcc), 73 E1000_STAT("tx_timeout_count", tx_timeout_count), 74 E1000_STAT("tx_restart_queue", restart_queue), 75 E1000_STAT("rx_long_length_errors", stats.roc), 76 E1000_STAT("rx_short_length_errors", stats.ruc), 77 E1000_STAT("rx_align_errors", stats.algnerrc), 78 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 80 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 82 E1000_STAT("tx_flow_control_xon", stats.xontxc), 83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 84 E1000_STAT("rx_csum_offload_good", hw_csum_good), 85 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 86 E1000_STAT("rx_header_split", rx_hdr_split), 87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 88 E1000_STAT("tx_smbus", stats.mgptc), 89 E1000_STAT("rx_smbus", stats.mgprc), 90 E1000_STAT("dropped_smbus", stats.mgpdc), 91 E1000_STAT("rx_dma_failed", rx_dma_failed), 92 E1000_STAT("tx_dma_failed", tx_dma_failed), 93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 94 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 95 E1000_STAT("corr_ecc_errors", corr_errors), 96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 98 }; 99 100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 103 "Register test (offline)", "Eeprom test (offline)", 104 "Interrupt test (offline)", "Loopback test (offline)", 105 "Link test (on/offline)" 106 }; 107 108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 109 110 static int e1000_get_link_ksettings(struct net_device *netdev, 111 struct ethtool_link_ksettings *cmd) 112 { 113 struct e1000_adapter *adapter = netdev_priv(netdev); 114 struct e1000_hw *hw = &adapter->hw; 115 u32 speed, supported, advertising; 116 117 if (hw->phy.media_type == e1000_media_type_copper) { 118 supported = (SUPPORTED_10baseT_Half | 119 SUPPORTED_10baseT_Full | 120 SUPPORTED_100baseT_Half | 121 SUPPORTED_100baseT_Full | 122 SUPPORTED_1000baseT_Full | 123 SUPPORTED_Autoneg | 124 SUPPORTED_TP); 125 if (hw->phy.type == e1000_phy_ife) 126 supported &= ~SUPPORTED_1000baseT_Full; 127 advertising = ADVERTISED_TP; 128 129 if (hw->mac.autoneg == 1) { 130 advertising |= ADVERTISED_Autoneg; 131 /* the e1000 autoneg seems to match ethtool nicely */ 132 advertising |= hw->phy.autoneg_advertised; 133 } 134 135 cmd->base.port = PORT_TP; 136 cmd->base.phy_address = hw->phy.addr; 137 } else { 138 supported = (SUPPORTED_1000baseT_Full | 139 SUPPORTED_FIBRE | 140 SUPPORTED_Autoneg); 141 142 advertising = (ADVERTISED_1000baseT_Full | 143 ADVERTISED_FIBRE | 144 ADVERTISED_Autoneg); 145 146 cmd->base.port = PORT_FIBRE; 147 } 148 149 speed = SPEED_UNKNOWN; 150 cmd->base.duplex = DUPLEX_UNKNOWN; 151 152 if (netif_running(netdev)) { 153 if (netif_carrier_ok(netdev)) { 154 speed = adapter->link_speed; 155 cmd->base.duplex = adapter->link_duplex - 1; 156 } 157 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 158 u32 status = er32(STATUS); 159 160 if (status & E1000_STATUS_LU) { 161 if (status & E1000_STATUS_SPEED_1000) 162 speed = SPEED_1000; 163 else if (status & E1000_STATUS_SPEED_100) 164 speed = SPEED_100; 165 else 166 speed = SPEED_10; 167 168 if (status & E1000_STATUS_FD) 169 cmd->base.duplex = DUPLEX_FULL; 170 else 171 cmd->base.duplex = DUPLEX_HALF; 172 } 173 } 174 175 cmd->base.speed = speed; 176 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 177 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 178 179 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 180 if ((hw->phy.media_type == e1000_media_type_copper) && 181 netif_carrier_ok(netdev)) 182 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 183 ETH_TP_MDI_X : ETH_TP_MDI; 184 else 185 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 186 187 if (hw->phy.mdix == AUTO_ALL_MODES) 188 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 189 else 190 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 191 192 if (hw->phy.media_type != e1000_media_type_copper) 193 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 194 195 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 196 supported); 197 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 198 advertising); 199 200 return 0; 201 } 202 203 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 204 { 205 struct e1000_mac_info *mac = &adapter->hw.mac; 206 207 mac->autoneg = 0; 208 209 /* Make sure dplx is at most 1 bit and lsb of speed is not set 210 * for the switch() below to work 211 */ 212 if ((spd & 1) || (dplx & ~1)) 213 goto err_inval; 214 215 /* Fiber NICs only allow 1000 gbps Full duplex */ 216 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 217 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 218 goto err_inval; 219 } 220 221 switch (spd + dplx) { 222 case SPEED_10 + DUPLEX_HALF: 223 mac->forced_speed_duplex = ADVERTISE_10_HALF; 224 break; 225 case SPEED_10 + DUPLEX_FULL: 226 mac->forced_speed_duplex = ADVERTISE_10_FULL; 227 break; 228 case SPEED_100 + DUPLEX_HALF: 229 mac->forced_speed_duplex = ADVERTISE_100_HALF; 230 break; 231 case SPEED_100 + DUPLEX_FULL: 232 mac->forced_speed_duplex = ADVERTISE_100_FULL; 233 break; 234 case SPEED_1000 + DUPLEX_FULL: 235 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 236 mac->autoneg = 1; 237 adapter->hw.phy.autoneg_advertised = 238 ADVERTISE_1000_FULL; 239 } else { 240 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 241 } 242 break; 243 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 244 default: 245 goto err_inval; 246 } 247 248 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 249 adapter->hw.phy.mdix = AUTO_ALL_MODES; 250 251 return 0; 252 253 err_inval: 254 e_err("Unsupported Speed/Duplex configuration\n"); 255 return -EINVAL; 256 } 257 258 static int e1000_set_link_ksettings(struct net_device *netdev, 259 const struct ethtool_link_ksettings *cmd) 260 { 261 struct e1000_adapter *adapter = netdev_priv(netdev); 262 struct e1000_hw *hw = &adapter->hw; 263 int ret_val = 0; 264 u32 advertising; 265 266 ethtool_convert_link_mode_to_legacy_u32(&advertising, 267 cmd->link_modes.advertising); 268 269 pm_runtime_get_sync(netdev->dev.parent); 270 271 /* When SoL/IDER sessions are active, autoneg/speed/duplex 272 * cannot be changed 273 */ 274 if (hw->phy.ops.check_reset_block && 275 hw->phy.ops.check_reset_block(hw)) { 276 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 277 ret_val = -EINVAL; 278 goto out; 279 } 280 281 /* MDI setting is only allowed when autoneg enabled because 282 * some hardware doesn't allow MDI setting when speed or 283 * duplex is forced. 284 */ 285 if (cmd->base.eth_tp_mdix_ctrl) { 286 if (hw->phy.media_type != e1000_media_type_copper) { 287 ret_val = -EOPNOTSUPP; 288 goto out; 289 } 290 291 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 292 (cmd->base.autoneg != AUTONEG_ENABLE)) { 293 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 294 ret_val = -EINVAL; 295 goto out; 296 } 297 } 298 299 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 300 usleep_range(1000, 2000); 301 302 if (cmd->base.autoneg == AUTONEG_ENABLE) { 303 hw->mac.autoneg = 1; 304 if (hw->phy.media_type == e1000_media_type_fiber) 305 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 306 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 307 else 308 hw->phy.autoneg_advertised = advertising | 309 ADVERTISED_TP | ADVERTISED_Autoneg; 310 advertising = hw->phy.autoneg_advertised; 311 if (adapter->fc_autoneg) 312 hw->fc.requested_mode = e1000_fc_default; 313 } else { 314 u32 speed = cmd->base.speed; 315 /* calling this overrides forced MDI setting */ 316 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 317 ret_val = -EINVAL; 318 goto out; 319 } 320 } 321 322 /* MDI-X => 2; MDI => 1; Auto => 3 */ 323 if (cmd->base.eth_tp_mdix_ctrl) { 324 /* fix up the value for auto (3 => 0) as zero is mapped 325 * internally to auto 326 */ 327 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 328 hw->phy.mdix = AUTO_ALL_MODES; 329 else 330 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 331 } 332 333 /* reset the link */ 334 if (netif_running(adapter->netdev)) { 335 e1000e_down(adapter, true); 336 e1000e_up(adapter); 337 } else { 338 e1000e_reset(adapter); 339 } 340 341 out: 342 pm_runtime_put_sync(netdev->dev.parent); 343 clear_bit(__E1000_RESETTING, &adapter->state); 344 return ret_val; 345 } 346 347 static void e1000_get_pauseparam(struct net_device *netdev, 348 struct ethtool_pauseparam *pause) 349 { 350 struct e1000_adapter *adapter = netdev_priv(netdev); 351 struct e1000_hw *hw = &adapter->hw; 352 353 pause->autoneg = 354 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 355 356 if (hw->fc.current_mode == e1000_fc_rx_pause) { 357 pause->rx_pause = 1; 358 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 359 pause->tx_pause = 1; 360 } else if (hw->fc.current_mode == e1000_fc_full) { 361 pause->rx_pause = 1; 362 pause->tx_pause = 1; 363 } 364 } 365 366 static int e1000_set_pauseparam(struct net_device *netdev, 367 struct ethtool_pauseparam *pause) 368 { 369 struct e1000_adapter *adapter = netdev_priv(netdev); 370 struct e1000_hw *hw = &adapter->hw; 371 int retval = 0; 372 373 adapter->fc_autoneg = pause->autoneg; 374 375 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 376 usleep_range(1000, 2000); 377 378 pm_runtime_get_sync(netdev->dev.parent); 379 380 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 381 hw->fc.requested_mode = e1000_fc_default; 382 if (netif_running(adapter->netdev)) { 383 e1000e_down(adapter, true); 384 e1000e_up(adapter); 385 } else { 386 e1000e_reset(adapter); 387 } 388 } else { 389 if (pause->rx_pause && pause->tx_pause) 390 hw->fc.requested_mode = e1000_fc_full; 391 else if (pause->rx_pause && !pause->tx_pause) 392 hw->fc.requested_mode = e1000_fc_rx_pause; 393 else if (!pause->rx_pause && pause->tx_pause) 394 hw->fc.requested_mode = e1000_fc_tx_pause; 395 else if (!pause->rx_pause && !pause->tx_pause) 396 hw->fc.requested_mode = e1000_fc_none; 397 398 hw->fc.current_mode = hw->fc.requested_mode; 399 400 if (hw->phy.media_type == e1000_media_type_fiber) { 401 retval = hw->mac.ops.setup_link(hw); 402 /* implicit goto out */ 403 } else { 404 retval = e1000e_force_mac_fc(hw); 405 if (retval) 406 goto out; 407 e1000e_set_fc_watermarks(hw); 408 } 409 } 410 411 out: 412 pm_runtime_put_sync(netdev->dev.parent); 413 clear_bit(__E1000_RESETTING, &adapter->state); 414 return retval; 415 } 416 417 static u32 e1000_get_msglevel(struct net_device *netdev) 418 { 419 struct e1000_adapter *adapter = netdev_priv(netdev); 420 return adapter->msg_enable; 421 } 422 423 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 424 { 425 struct e1000_adapter *adapter = netdev_priv(netdev); 426 adapter->msg_enable = data; 427 } 428 429 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 430 { 431 #define E1000_REGS_LEN 32 /* overestimate */ 432 return E1000_REGS_LEN * sizeof(u32); 433 } 434 435 static void e1000_get_regs(struct net_device *netdev, 436 struct ethtool_regs *regs, void *p) 437 { 438 struct e1000_adapter *adapter = netdev_priv(netdev); 439 struct e1000_hw *hw = &adapter->hw; 440 u32 *regs_buff = p; 441 u16 phy_data; 442 443 pm_runtime_get_sync(netdev->dev.parent); 444 445 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 446 447 regs->version = (1u << 24) | 448 (adapter->pdev->revision << 16) | 449 adapter->pdev->device; 450 451 regs_buff[0] = er32(CTRL); 452 regs_buff[1] = er32(STATUS); 453 454 regs_buff[2] = er32(RCTL); 455 regs_buff[3] = er32(RDLEN(0)); 456 regs_buff[4] = er32(RDH(0)); 457 regs_buff[5] = er32(RDT(0)); 458 regs_buff[6] = er32(RDTR); 459 460 regs_buff[7] = er32(TCTL); 461 regs_buff[8] = er32(TDLEN(0)); 462 regs_buff[9] = er32(TDH(0)); 463 regs_buff[10] = er32(TDT(0)); 464 regs_buff[11] = er32(TIDV); 465 466 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 467 468 /* ethtool doesn't use anything past this point, so all this 469 * code is likely legacy junk for apps that may or may not exist 470 */ 471 if (hw->phy.type == e1000_phy_m88) { 472 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 473 regs_buff[13] = (u32)phy_data; /* cable length */ 474 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 475 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 476 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 477 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 478 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 479 regs_buff[18] = regs_buff[13]; /* cable polarity */ 480 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 481 regs_buff[20] = regs_buff[17]; /* polarity correction */ 482 /* phy receive errors */ 483 regs_buff[22] = adapter->phy_stats.receive_errors; 484 regs_buff[23] = regs_buff[13]; /* mdix mode */ 485 } 486 regs_buff[21] = 0; /* was idle_errors */ 487 e1e_rphy(hw, MII_STAT1000, &phy_data); 488 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 489 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 490 491 pm_runtime_put_sync(netdev->dev.parent); 492 } 493 494 static int e1000_get_eeprom_len(struct net_device *netdev) 495 { 496 struct e1000_adapter *adapter = netdev_priv(netdev); 497 return adapter->hw.nvm.word_size * 2; 498 } 499 500 static int e1000_get_eeprom(struct net_device *netdev, 501 struct ethtool_eeprom *eeprom, u8 *bytes) 502 { 503 struct e1000_adapter *adapter = netdev_priv(netdev); 504 struct e1000_hw *hw = &adapter->hw; 505 u16 *eeprom_buff; 506 int first_word; 507 int last_word; 508 int ret_val = 0; 509 u16 i; 510 511 if (eeprom->len == 0) 512 return -EINVAL; 513 514 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 515 516 first_word = eeprom->offset >> 1; 517 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 518 519 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 520 GFP_KERNEL); 521 if (!eeprom_buff) 522 return -ENOMEM; 523 524 pm_runtime_get_sync(netdev->dev.parent); 525 526 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 527 ret_val = e1000_read_nvm(hw, first_word, 528 last_word - first_word + 1, 529 eeprom_buff); 530 } else { 531 for (i = 0; i < last_word - first_word + 1; i++) { 532 ret_val = e1000_read_nvm(hw, first_word + i, 1, 533 &eeprom_buff[i]); 534 if (ret_val) 535 break; 536 } 537 } 538 539 pm_runtime_put_sync(netdev->dev.parent); 540 541 if (ret_val) { 542 /* a read error occurred, throw away the result */ 543 memset(eeprom_buff, 0xff, sizeof(u16) * 544 (last_word - first_word + 1)); 545 } else { 546 /* Device's eeprom is always little-endian, word addressable */ 547 for (i = 0; i < last_word - first_word + 1; i++) 548 le16_to_cpus(&eeprom_buff[i]); 549 } 550 551 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 552 kfree(eeprom_buff); 553 554 return ret_val; 555 } 556 557 static int e1000_set_eeprom(struct net_device *netdev, 558 struct ethtool_eeprom *eeprom, u8 *bytes) 559 { 560 struct e1000_adapter *adapter = netdev_priv(netdev); 561 struct e1000_hw *hw = &adapter->hw; 562 u16 *eeprom_buff; 563 void *ptr; 564 int max_len; 565 int first_word; 566 int last_word; 567 int ret_val = 0; 568 u16 i; 569 570 if (eeprom->len == 0) 571 return -EOPNOTSUPP; 572 573 if (eeprom->magic != 574 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 575 return -EFAULT; 576 577 if (adapter->flags & FLAG_READ_ONLY_NVM) 578 return -EINVAL; 579 580 max_len = hw->nvm.word_size * 2; 581 582 first_word = eeprom->offset >> 1; 583 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 584 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 585 if (!eeprom_buff) 586 return -ENOMEM; 587 588 ptr = (void *)eeprom_buff; 589 590 pm_runtime_get_sync(netdev->dev.parent); 591 592 if (eeprom->offset & 1) { 593 /* need read/modify/write of first changed EEPROM word */ 594 /* only the second byte of the word is being modified */ 595 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 596 ptr++; 597 } 598 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 599 /* need read/modify/write of last changed EEPROM word */ 600 /* only the first byte of the word is being modified */ 601 ret_val = e1000_read_nvm(hw, last_word, 1, 602 &eeprom_buff[last_word - first_word]); 603 604 if (ret_val) 605 goto out; 606 607 /* Device's eeprom is always little-endian, word addressable */ 608 for (i = 0; i < last_word - first_word + 1; i++) 609 le16_to_cpus(&eeprom_buff[i]); 610 611 memcpy(ptr, bytes, eeprom->len); 612 613 for (i = 0; i < last_word - first_word + 1; i++) 614 cpu_to_le16s(&eeprom_buff[i]); 615 616 ret_val = e1000_write_nvm(hw, first_word, 617 last_word - first_word + 1, eeprom_buff); 618 619 if (ret_val) 620 goto out; 621 622 /* Update the checksum over the first part of the EEPROM if needed 623 * and flush shadow RAM for applicable controllers 624 */ 625 if ((first_word <= NVM_CHECKSUM_REG) || 626 (hw->mac.type == e1000_82583) || 627 (hw->mac.type == e1000_82574) || 628 (hw->mac.type == e1000_82573)) 629 ret_val = e1000e_update_nvm_checksum(hw); 630 631 out: 632 pm_runtime_put_sync(netdev->dev.parent); 633 kfree(eeprom_buff); 634 return ret_val; 635 } 636 637 static void e1000_get_drvinfo(struct net_device *netdev, 638 struct ethtool_drvinfo *drvinfo) 639 { 640 struct e1000_adapter *adapter = netdev_priv(netdev); 641 642 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 643 644 /* EEPROM image version # is reported as firmware version # for 645 * PCI-E controllers 646 */ 647 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 648 "%d.%d-%d", 649 (adapter->eeprom_vers & 0xF000) >> 12, 650 (adapter->eeprom_vers & 0x0FF0) >> 4, 651 (adapter->eeprom_vers & 0x000F)); 652 653 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 654 sizeof(drvinfo->bus_info)); 655 } 656 657 static void e1000_get_ringparam(struct net_device *netdev, 658 struct ethtool_ringparam *ring, 659 struct kernel_ethtool_ringparam *kernel_ring, 660 struct netlink_ext_ack *extack) 661 { 662 struct e1000_adapter *adapter = netdev_priv(netdev); 663 664 ring->rx_max_pending = E1000_MAX_RXD; 665 ring->tx_max_pending = E1000_MAX_TXD; 666 ring->rx_pending = adapter->rx_ring_count; 667 ring->tx_pending = adapter->tx_ring_count; 668 } 669 670 static int e1000_set_ringparam(struct net_device *netdev, 671 struct ethtool_ringparam *ring, 672 struct kernel_ethtool_ringparam *kernel_ring, 673 struct netlink_ext_ack *extack) 674 { 675 struct e1000_adapter *adapter = netdev_priv(netdev); 676 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 677 int err = 0, size = sizeof(struct e1000_ring); 678 bool set_tx = false, set_rx = false; 679 u16 new_rx_count, new_tx_count; 680 681 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 682 return -EINVAL; 683 684 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 685 E1000_MAX_RXD); 686 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 687 688 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 689 E1000_MAX_TXD); 690 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 691 692 if ((new_tx_count == adapter->tx_ring_count) && 693 (new_rx_count == adapter->rx_ring_count)) 694 /* nothing to do */ 695 return 0; 696 697 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 698 usleep_range(1000, 2000); 699 700 if (!netif_running(adapter->netdev)) { 701 /* Set counts now and allocate resources during open() */ 702 adapter->tx_ring->count = new_tx_count; 703 adapter->rx_ring->count = new_rx_count; 704 adapter->tx_ring_count = new_tx_count; 705 adapter->rx_ring_count = new_rx_count; 706 goto clear_reset; 707 } 708 709 set_tx = (new_tx_count != adapter->tx_ring_count); 710 set_rx = (new_rx_count != adapter->rx_ring_count); 711 712 /* Allocate temporary storage for ring updates */ 713 if (set_tx) { 714 temp_tx = vmalloc(size); 715 if (!temp_tx) { 716 err = -ENOMEM; 717 goto free_temp; 718 } 719 } 720 if (set_rx) { 721 temp_rx = vmalloc(size); 722 if (!temp_rx) { 723 err = -ENOMEM; 724 goto free_temp; 725 } 726 } 727 728 pm_runtime_get_sync(netdev->dev.parent); 729 730 e1000e_down(adapter, true); 731 732 /* We can't just free everything and then setup again, because the 733 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 734 * structs. First, attempt to allocate new resources... 735 */ 736 if (set_tx) { 737 memcpy(temp_tx, adapter->tx_ring, size); 738 temp_tx->count = new_tx_count; 739 err = e1000e_setup_tx_resources(temp_tx); 740 if (err) 741 goto err_setup; 742 } 743 if (set_rx) { 744 memcpy(temp_rx, adapter->rx_ring, size); 745 temp_rx->count = new_rx_count; 746 err = e1000e_setup_rx_resources(temp_rx); 747 if (err) 748 goto err_setup_rx; 749 } 750 751 /* ...then free the old resources and copy back any new ring data */ 752 if (set_tx) { 753 e1000e_free_tx_resources(adapter->tx_ring); 754 memcpy(adapter->tx_ring, temp_tx, size); 755 adapter->tx_ring_count = new_tx_count; 756 } 757 if (set_rx) { 758 e1000e_free_rx_resources(adapter->rx_ring); 759 memcpy(adapter->rx_ring, temp_rx, size); 760 adapter->rx_ring_count = new_rx_count; 761 } 762 763 err_setup_rx: 764 if (err && set_tx) 765 e1000e_free_tx_resources(temp_tx); 766 err_setup: 767 e1000e_up(adapter); 768 pm_runtime_put_sync(netdev->dev.parent); 769 free_temp: 770 vfree(temp_tx); 771 vfree(temp_rx); 772 clear_reset: 773 clear_bit(__E1000_RESETTING, &adapter->state); 774 return err; 775 } 776 777 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 778 int reg, int offset, u32 mask, u32 write) 779 { 780 u32 pat, val; 781 static const u32 test[] = { 782 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 783 }; 784 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 785 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 786 (test[pat] & write)); 787 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 788 if (val != (test[pat] & write & mask)) { 789 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 790 reg + (offset << 2), val, 791 (test[pat] & write & mask)); 792 *data = reg; 793 return true; 794 } 795 } 796 return false; 797 } 798 799 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 800 int reg, u32 mask, u32 write) 801 { 802 u32 val; 803 804 __ew32(&adapter->hw, reg, write & mask); 805 val = __er32(&adapter->hw, reg); 806 if ((write & mask) != (val & mask)) { 807 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 808 reg, (val & mask), (write & mask)); 809 *data = reg; 810 return true; 811 } 812 return false; 813 } 814 815 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 816 do { \ 817 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 818 return 1; \ 819 } while (0) 820 #define REG_PATTERN_TEST(reg, mask, write) \ 821 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 822 823 #define REG_SET_AND_CHECK(reg, mask, write) \ 824 do { \ 825 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 826 return 1; \ 827 } while (0) 828 829 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 830 { 831 struct e1000_hw *hw = &adapter->hw; 832 struct e1000_mac_info *mac = &adapter->hw.mac; 833 u32 value; 834 u32 before; 835 u32 after; 836 u32 i; 837 u32 toggle; 838 u32 mask; 839 u32 wlock_mac = 0; 840 841 /* The status register is Read Only, so a write should fail. 842 * Some bits that get toggled are ignored. There are several bits 843 * on newer hardware that are r/w. 844 */ 845 switch (mac->type) { 846 case e1000_82571: 847 case e1000_82572: 848 case e1000_80003es2lan: 849 toggle = 0x7FFFF3FF; 850 break; 851 default: 852 toggle = 0x7FFFF033; 853 break; 854 } 855 856 before = er32(STATUS); 857 value = (er32(STATUS) & toggle); 858 ew32(STATUS, toggle); 859 after = er32(STATUS) & toggle; 860 if (value != after) { 861 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 862 after, value); 863 *data = 1; 864 return 1; 865 } 866 /* restore previous status */ 867 ew32(STATUS, before); 868 869 if (!(adapter->flags & FLAG_IS_ICH)) { 870 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 871 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 872 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 873 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 874 } 875 876 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 877 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 878 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 879 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 880 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 881 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 882 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 883 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 884 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 885 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 886 887 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 888 889 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 890 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 891 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 892 893 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 894 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 895 if (!(adapter->flags & FLAG_IS_ICH)) 896 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 897 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 898 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 899 mask = 0x8003FFFF; 900 switch (mac->type) { 901 case e1000_ich10lan: 902 case e1000_pchlan: 903 case e1000_pch2lan: 904 case e1000_pch_lpt: 905 case e1000_pch_spt: 906 case e1000_pch_cnp: 907 case e1000_pch_tgp: 908 case e1000_pch_adp: 909 case e1000_pch_mtp: 910 case e1000_pch_lnp: 911 mask |= BIT(18); 912 break; 913 default: 914 break; 915 } 916 917 if (mac->type >= e1000_pch_lpt) 918 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 919 E1000_FWSM_WLOCK_MAC_SHIFT; 920 921 for (i = 0; i < mac->rar_entry_count; i++) { 922 if (mac->type >= e1000_pch_lpt) { 923 /* Cannot test write-protected SHRAL[n] registers */ 924 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 925 continue; 926 927 /* SHRAH[9] different than the others */ 928 if (i == 10) 929 mask |= BIT(30); 930 else 931 mask &= ~BIT(30); 932 } 933 if (mac->type == e1000_pch2lan) { 934 /* SHRAH[0,1,2] different than previous */ 935 if (i == 1) 936 mask &= 0xFFF4FFFF; 937 /* SHRAH[3] different than SHRAH[0,1,2] */ 938 if (i == 4) 939 mask |= BIT(30); 940 /* RAR[1-6] owned by management engine - skipping */ 941 if (i > 0) 942 i += 6; 943 } 944 945 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 946 0xFFFFFFFF); 947 /* reset index to actual value */ 948 if ((mac->type == e1000_pch2lan) && (i > 6)) 949 i -= 6; 950 } 951 952 for (i = 0; i < mac->mta_reg_count; i++) 953 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 954 955 *data = 0; 956 957 return 0; 958 } 959 960 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 961 { 962 u16 temp; 963 u16 checksum = 0; 964 u16 i; 965 966 *data = 0; 967 /* Read and add up the contents of the EEPROM */ 968 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 969 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 970 *data = 1; 971 return *data; 972 } 973 checksum += temp; 974 } 975 976 /* If Checksum is not Correct return error else test passed */ 977 if ((checksum != (u16)NVM_SUM) && !(*data)) 978 *data = 2; 979 980 return *data; 981 } 982 983 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 984 { 985 struct net_device *netdev = (struct net_device *)data; 986 struct e1000_adapter *adapter = netdev_priv(netdev); 987 struct e1000_hw *hw = &adapter->hw; 988 989 adapter->test_icr |= er32(ICR); 990 991 return IRQ_HANDLED; 992 } 993 994 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 995 { 996 struct net_device *netdev = adapter->netdev; 997 struct e1000_hw *hw = &adapter->hw; 998 u32 mask; 999 u32 shared_int = 1; 1000 u32 irq = adapter->pdev->irq; 1001 int i; 1002 int ret_val = 0; 1003 int int_mode = E1000E_INT_MODE_LEGACY; 1004 1005 *data = 0; 1006 1007 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 1008 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 1009 int_mode = adapter->int_mode; 1010 e1000e_reset_interrupt_capability(adapter); 1011 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1012 e1000e_set_interrupt_capability(adapter); 1013 } 1014 /* Hook up test interrupt handler just for this test */ 1015 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1016 netdev)) { 1017 shared_int = 0; 1018 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1019 netdev)) { 1020 *data = 1; 1021 ret_val = -1; 1022 goto out; 1023 } 1024 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1025 1026 /* Disable all the interrupts */ 1027 ew32(IMC, 0xFFFFFFFF); 1028 e1e_flush(); 1029 usleep_range(10000, 11000); 1030 1031 /* Test each interrupt */ 1032 for (i = 0; i < 10; i++) { 1033 /* Interrupt to test */ 1034 mask = BIT(i); 1035 1036 if (adapter->flags & FLAG_IS_ICH) { 1037 switch (mask) { 1038 case E1000_ICR_RXSEQ: 1039 continue; 1040 case 0x00000100: 1041 if (adapter->hw.mac.type == e1000_ich8lan || 1042 adapter->hw.mac.type == e1000_ich9lan) 1043 continue; 1044 break; 1045 default: 1046 break; 1047 } 1048 } 1049 1050 if (!shared_int) { 1051 /* Disable the interrupt to be reported in 1052 * the cause register and then force the same 1053 * interrupt and see if one gets posted. If 1054 * an interrupt was posted to the bus, the 1055 * test failed. 1056 */ 1057 adapter->test_icr = 0; 1058 ew32(IMC, mask); 1059 ew32(ICS, mask); 1060 e1e_flush(); 1061 usleep_range(10000, 11000); 1062 1063 if (adapter->test_icr & mask) { 1064 *data = 3; 1065 break; 1066 } 1067 } 1068 1069 /* Enable the interrupt to be reported in 1070 * the cause register and then force the same 1071 * interrupt and see if one gets posted. If 1072 * an interrupt was not posted to the bus, the 1073 * test failed. 1074 */ 1075 adapter->test_icr = 0; 1076 ew32(IMS, mask); 1077 ew32(ICS, mask); 1078 e1e_flush(); 1079 usleep_range(10000, 11000); 1080 1081 if (!(adapter->test_icr & mask)) { 1082 *data = 4; 1083 break; 1084 } 1085 1086 if (!shared_int) { 1087 /* Disable the other interrupts to be reported in 1088 * the cause register and then force the other 1089 * interrupts and see if any get posted. If 1090 * an interrupt was posted to the bus, the 1091 * test failed. 1092 */ 1093 adapter->test_icr = 0; 1094 ew32(IMC, ~mask & 0x00007FFF); 1095 ew32(ICS, ~mask & 0x00007FFF); 1096 e1e_flush(); 1097 usleep_range(10000, 11000); 1098 1099 if (adapter->test_icr) { 1100 *data = 5; 1101 break; 1102 } 1103 } 1104 } 1105 1106 /* Disable all the interrupts */ 1107 ew32(IMC, 0xFFFFFFFF); 1108 e1e_flush(); 1109 usleep_range(10000, 11000); 1110 1111 /* Unhook test interrupt handler */ 1112 free_irq(irq, netdev); 1113 1114 out: 1115 if (int_mode == E1000E_INT_MODE_MSIX) { 1116 e1000e_reset_interrupt_capability(adapter); 1117 adapter->int_mode = int_mode; 1118 e1000e_set_interrupt_capability(adapter); 1119 } 1120 1121 return ret_val; 1122 } 1123 1124 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1125 { 1126 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1127 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1128 struct pci_dev *pdev = adapter->pdev; 1129 struct e1000_buffer *buffer_info; 1130 int i; 1131 1132 if (tx_ring->desc && tx_ring->buffer_info) { 1133 for (i = 0; i < tx_ring->count; i++) { 1134 buffer_info = &tx_ring->buffer_info[i]; 1135 1136 if (buffer_info->dma) 1137 dma_unmap_single(&pdev->dev, 1138 buffer_info->dma, 1139 buffer_info->length, 1140 DMA_TO_DEVICE); 1141 dev_kfree_skb(buffer_info->skb); 1142 } 1143 } 1144 1145 if (rx_ring->desc && rx_ring->buffer_info) { 1146 for (i = 0; i < rx_ring->count; i++) { 1147 buffer_info = &rx_ring->buffer_info[i]; 1148 1149 if (buffer_info->dma) 1150 dma_unmap_single(&pdev->dev, 1151 buffer_info->dma, 1152 2048, DMA_FROM_DEVICE); 1153 dev_kfree_skb(buffer_info->skb); 1154 } 1155 } 1156 1157 if (tx_ring->desc) { 1158 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1159 tx_ring->dma); 1160 tx_ring->desc = NULL; 1161 } 1162 if (rx_ring->desc) { 1163 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1164 rx_ring->dma); 1165 rx_ring->desc = NULL; 1166 } 1167 1168 kfree(tx_ring->buffer_info); 1169 tx_ring->buffer_info = NULL; 1170 kfree(rx_ring->buffer_info); 1171 rx_ring->buffer_info = NULL; 1172 } 1173 1174 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1175 { 1176 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1177 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1178 struct pci_dev *pdev = adapter->pdev; 1179 struct e1000_hw *hw = &adapter->hw; 1180 u32 rctl; 1181 int i; 1182 int ret_val; 1183 1184 /* Setup Tx descriptor ring and Tx buffers */ 1185 1186 if (!tx_ring->count) 1187 tx_ring->count = E1000_DEFAULT_TXD; 1188 1189 tx_ring->buffer_info = kcalloc(tx_ring->count, 1190 sizeof(struct e1000_buffer), GFP_KERNEL); 1191 if (!tx_ring->buffer_info) { 1192 ret_val = 1; 1193 goto err_nomem; 1194 } 1195 1196 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1197 tx_ring->size = ALIGN(tx_ring->size, 4096); 1198 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1199 &tx_ring->dma, GFP_KERNEL); 1200 if (!tx_ring->desc) { 1201 ret_val = 2; 1202 goto err_nomem; 1203 } 1204 tx_ring->next_to_use = 0; 1205 tx_ring->next_to_clean = 0; 1206 1207 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1208 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1209 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1210 ew32(TDH(0), 0); 1211 ew32(TDT(0), 0); 1212 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1213 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1214 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1215 1216 for (i = 0; i < tx_ring->count; i++) { 1217 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1218 struct sk_buff *skb; 1219 unsigned int skb_size = 1024; 1220 1221 skb = alloc_skb(skb_size, GFP_KERNEL); 1222 if (!skb) { 1223 ret_val = 3; 1224 goto err_nomem; 1225 } 1226 skb_put(skb, skb_size); 1227 tx_ring->buffer_info[i].skb = skb; 1228 tx_ring->buffer_info[i].length = skb->len; 1229 tx_ring->buffer_info[i].dma = 1230 dma_map_single(&pdev->dev, skb->data, skb->len, 1231 DMA_TO_DEVICE); 1232 if (dma_mapping_error(&pdev->dev, 1233 tx_ring->buffer_info[i].dma)) { 1234 ret_val = 4; 1235 goto err_nomem; 1236 } 1237 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1238 tx_desc->lower.data = cpu_to_le32(skb->len); 1239 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1240 E1000_TXD_CMD_IFCS | 1241 E1000_TXD_CMD_RS); 1242 tx_desc->upper.data = 0; 1243 } 1244 1245 /* Setup Rx descriptor ring and Rx buffers */ 1246 1247 if (!rx_ring->count) 1248 rx_ring->count = E1000_DEFAULT_RXD; 1249 1250 rx_ring->buffer_info = kcalloc(rx_ring->count, 1251 sizeof(struct e1000_buffer), GFP_KERNEL); 1252 if (!rx_ring->buffer_info) { 1253 ret_val = 5; 1254 goto err_nomem; 1255 } 1256 1257 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1258 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1259 &rx_ring->dma, GFP_KERNEL); 1260 if (!rx_ring->desc) { 1261 ret_val = 6; 1262 goto err_nomem; 1263 } 1264 rx_ring->next_to_use = 0; 1265 rx_ring->next_to_clean = 0; 1266 1267 rctl = er32(RCTL); 1268 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1269 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1270 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1271 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1272 ew32(RDLEN(0), rx_ring->size); 1273 ew32(RDH(0), 0); 1274 ew32(RDT(0), 0); 1275 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1276 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1277 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1278 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1279 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1280 ew32(RCTL, rctl); 1281 1282 for (i = 0; i < rx_ring->count; i++) { 1283 union e1000_rx_desc_extended *rx_desc; 1284 struct sk_buff *skb; 1285 1286 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1287 if (!skb) { 1288 ret_val = 7; 1289 goto err_nomem; 1290 } 1291 skb_reserve(skb, NET_IP_ALIGN); 1292 rx_ring->buffer_info[i].skb = skb; 1293 rx_ring->buffer_info[i].dma = 1294 dma_map_single(&pdev->dev, skb->data, 2048, 1295 DMA_FROM_DEVICE); 1296 if (dma_mapping_error(&pdev->dev, 1297 rx_ring->buffer_info[i].dma)) { 1298 ret_val = 8; 1299 goto err_nomem; 1300 } 1301 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1302 rx_desc->read.buffer_addr = 1303 cpu_to_le64(rx_ring->buffer_info[i].dma); 1304 memset(skb->data, 0x00, skb->len); 1305 } 1306 1307 return 0; 1308 1309 err_nomem: 1310 e1000_free_desc_rings(adapter); 1311 return ret_val; 1312 } 1313 1314 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1315 { 1316 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1317 e1e_wphy(&adapter->hw, 29, 0x001F); 1318 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1319 e1e_wphy(&adapter->hw, 29, 0x001A); 1320 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1321 } 1322 1323 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1324 { 1325 struct e1000_hw *hw = &adapter->hw; 1326 u32 ctrl_reg = 0; 1327 u16 phy_reg = 0; 1328 s32 ret_val = 0; 1329 1330 hw->mac.autoneg = 0; 1331 1332 if (hw->phy.type == e1000_phy_ife) { 1333 /* force 100, set loopback */ 1334 e1e_wphy(hw, MII_BMCR, 0x6100); 1335 1336 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1337 ctrl_reg = er32(CTRL); 1338 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1339 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1340 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1341 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1342 E1000_CTRL_FD); /* Force Duplex to FULL */ 1343 1344 ew32(CTRL, ctrl_reg); 1345 e1e_flush(); 1346 usleep_range(500, 1000); 1347 1348 return 0; 1349 } 1350 1351 /* Specific PHY configuration for loopback */ 1352 switch (hw->phy.type) { 1353 case e1000_phy_m88: 1354 /* Auto-MDI/MDIX Off */ 1355 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1356 /* reset to update Auto-MDI/MDIX */ 1357 e1e_wphy(hw, MII_BMCR, 0x9140); 1358 /* autoneg off */ 1359 e1e_wphy(hw, MII_BMCR, 0x8140); 1360 break; 1361 case e1000_phy_gg82563: 1362 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1363 break; 1364 case e1000_phy_bm: 1365 /* Set Default MAC Interface speed to 1GB */ 1366 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1367 phy_reg &= ~0x0007; 1368 phy_reg |= 0x006; 1369 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1370 /* Assert SW reset for above settings to take effect */ 1371 hw->phy.ops.commit(hw); 1372 usleep_range(1000, 2000); 1373 /* Force Full Duplex */ 1374 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1375 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1376 /* Set Link Up (in force link) */ 1377 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1378 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1379 /* Force Link */ 1380 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1381 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1382 /* Set Early Link Enable */ 1383 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1384 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1385 break; 1386 case e1000_phy_82577: 1387 case e1000_phy_82578: 1388 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1389 ret_val = hw->phy.ops.acquire(hw); 1390 if (ret_val) { 1391 e_err("Cannot setup 1Gbps loopback.\n"); 1392 return ret_val; 1393 } 1394 e1000_configure_k1_ich8lan(hw, false); 1395 hw->phy.ops.release(hw); 1396 break; 1397 case e1000_phy_82579: 1398 /* Disable PHY energy detect power down */ 1399 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1400 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1401 /* Disable full chip energy detect */ 1402 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1403 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1404 /* Enable loopback on the PHY */ 1405 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1406 break; 1407 default: 1408 break; 1409 } 1410 1411 /* force 1000, set loopback */ 1412 e1e_wphy(hw, MII_BMCR, 0x4140); 1413 msleep(250); 1414 1415 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1416 ctrl_reg = er32(CTRL); 1417 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1418 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1419 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1420 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1421 E1000_CTRL_FD); /* Force Duplex to FULL */ 1422 1423 if (adapter->flags & FLAG_IS_ICH) 1424 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1425 1426 if (hw->phy.media_type == e1000_media_type_copper && 1427 hw->phy.type == e1000_phy_m88) { 1428 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1429 } else { 1430 /* Set the ILOS bit on the fiber Nic if half duplex link is 1431 * detected. 1432 */ 1433 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1434 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1435 } 1436 1437 ew32(CTRL, ctrl_reg); 1438 1439 /* Disable the receiver on the PHY so when a cable is plugged in, the 1440 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1441 */ 1442 if (hw->phy.type == e1000_phy_m88) 1443 e1000_phy_disable_receiver(adapter); 1444 1445 usleep_range(500, 1000); 1446 1447 return 0; 1448 } 1449 1450 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1451 { 1452 struct e1000_hw *hw = &adapter->hw; 1453 u32 ctrl = er32(CTRL); 1454 int link; 1455 1456 /* special requirements for 82571/82572 fiber adapters */ 1457 1458 /* jump through hoops to make sure link is up because serdes 1459 * link is hardwired up 1460 */ 1461 ctrl |= E1000_CTRL_SLU; 1462 ew32(CTRL, ctrl); 1463 1464 /* disable autoneg */ 1465 ctrl = er32(TXCW); 1466 ctrl &= ~BIT(31); 1467 ew32(TXCW, ctrl); 1468 1469 link = (er32(STATUS) & E1000_STATUS_LU); 1470 1471 if (!link) { 1472 /* set invert loss of signal */ 1473 ctrl = er32(CTRL); 1474 ctrl |= E1000_CTRL_ILOS; 1475 ew32(CTRL, ctrl); 1476 } 1477 1478 /* special write to serdes control register to enable SerDes analog 1479 * loopback 1480 */ 1481 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1482 e1e_flush(); 1483 usleep_range(10000, 11000); 1484 1485 return 0; 1486 } 1487 1488 /* only call this for fiber/serdes connections to es2lan */ 1489 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1490 { 1491 struct e1000_hw *hw = &adapter->hw; 1492 u32 ctrlext = er32(CTRL_EXT); 1493 u32 ctrl = er32(CTRL); 1494 1495 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1496 * on mac_type 80003es2lan) 1497 */ 1498 adapter->tx_fifo_head = ctrlext; 1499 1500 /* clear the serdes mode bits, putting the device into mac loopback */ 1501 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1502 ew32(CTRL_EXT, ctrlext); 1503 1504 /* force speed to 1000/FD, link up */ 1505 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1506 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1507 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1508 ew32(CTRL, ctrl); 1509 1510 /* set mac loopback */ 1511 ctrl = er32(RCTL); 1512 ctrl |= E1000_RCTL_LBM_MAC; 1513 ew32(RCTL, ctrl); 1514 1515 /* set testing mode parameters (no need to reset later) */ 1516 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1517 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1518 ew32(KMRNCTRLSTA, 1519 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1520 1521 return 0; 1522 } 1523 1524 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1525 { 1526 struct e1000_hw *hw = &adapter->hw; 1527 u32 rctl, fext_nvm11, tarc0; 1528 1529 if (hw->mac.type >= e1000_pch_spt) { 1530 fext_nvm11 = er32(FEXTNVM11); 1531 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1532 ew32(FEXTNVM11, fext_nvm11); 1533 tarc0 = er32(TARC(0)); 1534 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1535 tarc0 &= 0xcfffffff; 1536 /* set bit 29 (value of MULR requests is now 2) */ 1537 tarc0 |= 0x20000000; 1538 ew32(TARC(0), tarc0); 1539 } 1540 if (hw->phy.media_type == e1000_media_type_fiber || 1541 hw->phy.media_type == e1000_media_type_internal_serdes) { 1542 switch (hw->mac.type) { 1543 case e1000_80003es2lan: 1544 return e1000_set_es2lan_mac_loopback(adapter); 1545 case e1000_82571: 1546 case e1000_82572: 1547 return e1000_set_82571_fiber_loopback(adapter); 1548 default: 1549 rctl = er32(RCTL); 1550 rctl |= E1000_RCTL_LBM_TCVR; 1551 ew32(RCTL, rctl); 1552 return 0; 1553 } 1554 } else if (hw->phy.media_type == e1000_media_type_copper) { 1555 return e1000_integrated_phy_loopback(adapter); 1556 } 1557 1558 return 7; 1559 } 1560 1561 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1562 { 1563 struct e1000_hw *hw = &adapter->hw; 1564 u32 rctl, fext_nvm11, tarc0; 1565 u16 phy_reg; 1566 1567 rctl = er32(RCTL); 1568 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1569 ew32(RCTL, rctl); 1570 1571 switch (hw->mac.type) { 1572 case e1000_pch_spt: 1573 case e1000_pch_cnp: 1574 case e1000_pch_tgp: 1575 case e1000_pch_adp: 1576 case e1000_pch_mtp: 1577 case e1000_pch_lnp: 1578 fext_nvm11 = er32(FEXTNVM11); 1579 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1580 ew32(FEXTNVM11, fext_nvm11); 1581 tarc0 = er32(TARC(0)); 1582 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1583 /* set bit 29 (value of MULR requests is now 0) */ 1584 tarc0 &= 0xcfffffff; 1585 ew32(TARC(0), tarc0); 1586 fallthrough; 1587 case e1000_80003es2lan: 1588 if (hw->phy.media_type == e1000_media_type_fiber || 1589 hw->phy.media_type == e1000_media_type_internal_serdes) { 1590 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1591 ew32(CTRL_EXT, adapter->tx_fifo_head); 1592 adapter->tx_fifo_head = 0; 1593 } 1594 fallthrough; 1595 case e1000_82571: 1596 case e1000_82572: 1597 if (hw->phy.media_type == e1000_media_type_fiber || 1598 hw->phy.media_type == e1000_media_type_internal_serdes) { 1599 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1600 e1e_flush(); 1601 usleep_range(10000, 11000); 1602 break; 1603 } 1604 fallthrough; 1605 default: 1606 hw->mac.autoneg = 1; 1607 if (hw->phy.type == e1000_phy_gg82563) 1608 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1609 e1e_rphy(hw, MII_BMCR, &phy_reg); 1610 if (phy_reg & BMCR_LOOPBACK) { 1611 phy_reg &= ~BMCR_LOOPBACK; 1612 e1e_wphy(hw, MII_BMCR, phy_reg); 1613 if (hw->phy.ops.commit) 1614 hw->phy.ops.commit(hw); 1615 } 1616 break; 1617 } 1618 } 1619 1620 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1621 unsigned int frame_size) 1622 { 1623 memset(skb->data, 0xFF, frame_size); 1624 frame_size &= ~1; 1625 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1626 skb->data[frame_size / 2 + 10] = 0xBE; 1627 skb->data[frame_size / 2 + 12] = 0xAF; 1628 } 1629 1630 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1631 unsigned int frame_size) 1632 { 1633 frame_size &= ~1; 1634 if (*(skb->data + 3) == 0xFF) 1635 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1636 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1637 return 0; 1638 return 13; 1639 } 1640 1641 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1642 { 1643 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1644 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1645 struct pci_dev *pdev = adapter->pdev; 1646 struct e1000_hw *hw = &adapter->hw; 1647 struct e1000_buffer *buffer_info; 1648 int i, j, k, l; 1649 int lc; 1650 int good_cnt; 1651 int ret_val = 0; 1652 unsigned long time; 1653 1654 ew32(RDT(0), rx_ring->count - 1); 1655 1656 /* Calculate the loop count based on the largest descriptor ring 1657 * The idea is to wrap the largest ring a number of times using 64 1658 * send/receive pairs during each loop 1659 */ 1660 1661 if (rx_ring->count <= tx_ring->count) 1662 lc = ((tx_ring->count / 64) * 2) + 1; 1663 else 1664 lc = ((rx_ring->count / 64) * 2) + 1; 1665 1666 k = 0; 1667 l = 0; 1668 /* loop count loop */ 1669 for (j = 0; j <= lc; j++) { 1670 /* send the packets */ 1671 for (i = 0; i < 64; i++) { 1672 buffer_info = &tx_ring->buffer_info[k]; 1673 1674 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1675 dma_sync_single_for_device(&pdev->dev, 1676 buffer_info->dma, 1677 buffer_info->length, 1678 DMA_TO_DEVICE); 1679 k++; 1680 if (k == tx_ring->count) 1681 k = 0; 1682 } 1683 ew32(TDT(0), k); 1684 e1e_flush(); 1685 msleep(200); 1686 time = jiffies; /* set the start time for the receive */ 1687 good_cnt = 0; 1688 /* receive the sent packets */ 1689 do { 1690 buffer_info = &rx_ring->buffer_info[l]; 1691 1692 dma_sync_single_for_cpu(&pdev->dev, 1693 buffer_info->dma, 2048, 1694 DMA_FROM_DEVICE); 1695 1696 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1697 1024); 1698 if (!ret_val) 1699 good_cnt++; 1700 l++; 1701 if (l == rx_ring->count) 1702 l = 0; 1703 /* time + 20 msecs (200 msecs on 2.4) is more than 1704 * enough time to complete the receives, if it's 1705 * exceeded, break and error off 1706 */ 1707 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1708 if (good_cnt != 64) { 1709 ret_val = 13; /* ret_val is the same as mis-compare */ 1710 break; 1711 } 1712 if (time_after(jiffies, time + 20)) { 1713 ret_val = 14; /* error code for time out error */ 1714 break; 1715 } 1716 } 1717 return ret_val; 1718 } 1719 1720 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1721 { 1722 struct e1000_hw *hw = &adapter->hw; 1723 1724 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1725 if (hw->phy.ops.check_reset_block && 1726 hw->phy.ops.check_reset_block(hw)) { 1727 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1728 *data = 0; 1729 goto out; 1730 } 1731 1732 *data = e1000_setup_desc_rings(adapter); 1733 if (*data) 1734 goto out; 1735 1736 *data = e1000_setup_loopback_test(adapter); 1737 if (*data) 1738 goto err_loopback; 1739 1740 *data = e1000_run_loopback_test(adapter); 1741 e1000_loopback_cleanup(adapter); 1742 1743 err_loopback: 1744 e1000_free_desc_rings(adapter); 1745 out: 1746 return *data; 1747 } 1748 1749 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1750 { 1751 struct e1000_hw *hw = &adapter->hw; 1752 1753 *data = 0; 1754 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1755 int i = 0; 1756 1757 hw->mac.serdes_has_link = false; 1758 1759 /* On some blade server designs, link establishment 1760 * could take as long as 2-3 minutes 1761 */ 1762 do { 1763 hw->mac.ops.check_for_link(hw); 1764 if (hw->mac.serdes_has_link) 1765 return *data; 1766 msleep(20); 1767 } while (i++ < 3750); 1768 1769 *data = 1; 1770 } else { 1771 hw->mac.ops.check_for_link(hw); 1772 if (hw->mac.autoneg) 1773 /* On some Phy/switch combinations, link establishment 1774 * can take a few seconds more than expected. 1775 */ 1776 msleep_interruptible(5000); 1777 1778 if (!(er32(STATUS) & E1000_STATUS_LU)) 1779 *data = 1; 1780 } 1781 return *data; 1782 } 1783 1784 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1785 int sset) 1786 { 1787 switch (sset) { 1788 case ETH_SS_TEST: 1789 return E1000_TEST_LEN; 1790 case ETH_SS_STATS: 1791 return E1000_STATS_LEN; 1792 case ETH_SS_PRIV_FLAGS: 1793 return E1000E_PRIV_FLAGS_STR_LEN; 1794 default: 1795 return -EOPNOTSUPP; 1796 } 1797 } 1798 1799 static void e1000_diag_test(struct net_device *netdev, 1800 struct ethtool_test *eth_test, u64 *data) 1801 { 1802 struct e1000_adapter *adapter = netdev_priv(netdev); 1803 u16 autoneg_advertised; 1804 u8 forced_speed_duplex; 1805 u8 autoneg; 1806 bool if_running = netif_running(netdev); 1807 1808 pm_runtime_get_sync(netdev->dev.parent); 1809 1810 set_bit(__E1000_TESTING, &adapter->state); 1811 1812 if (!if_running) { 1813 /* Get control of and reset hardware */ 1814 if (adapter->flags & FLAG_HAS_AMT) 1815 e1000e_get_hw_control(adapter); 1816 1817 e1000e_power_up_phy(adapter); 1818 1819 adapter->hw.phy.autoneg_wait_to_complete = 1; 1820 e1000e_reset(adapter); 1821 adapter->hw.phy.autoneg_wait_to_complete = 0; 1822 } 1823 1824 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1825 /* Offline tests */ 1826 1827 /* save speed, duplex, autoneg settings */ 1828 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1829 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1830 autoneg = adapter->hw.mac.autoneg; 1831 1832 e_info("offline testing starting\n"); 1833 1834 if (if_running) 1835 /* indicate we're in test mode */ 1836 e1000e_close(netdev); 1837 1838 if (e1000_reg_test(adapter, &data[0])) 1839 eth_test->flags |= ETH_TEST_FL_FAILED; 1840 1841 e1000e_reset(adapter); 1842 if (e1000_eeprom_test(adapter, &data[1])) 1843 eth_test->flags |= ETH_TEST_FL_FAILED; 1844 1845 e1000e_reset(adapter); 1846 if (e1000_intr_test(adapter, &data[2])) 1847 eth_test->flags |= ETH_TEST_FL_FAILED; 1848 1849 e1000e_reset(adapter); 1850 if (e1000_loopback_test(adapter, &data[3])) 1851 eth_test->flags |= ETH_TEST_FL_FAILED; 1852 1853 /* force this routine to wait until autoneg complete/timeout */ 1854 adapter->hw.phy.autoneg_wait_to_complete = 1; 1855 e1000e_reset(adapter); 1856 adapter->hw.phy.autoneg_wait_to_complete = 0; 1857 1858 if (e1000_link_test(adapter, &data[4])) 1859 eth_test->flags |= ETH_TEST_FL_FAILED; 1860 1861 /* restore speed, duplex, autoneg settings */ 1862 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1863 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1864 adapter->hw.mac.autoneg = autoneg; 1865 e1000e_reset(adapter); 1866 1867 clear_bit(__E1000_TESTING, &adapter->state); 1868 if (if_running) 1869 e1000e_open(netdev); 1870 } else { 1871 /* Online tests */ 1872 1873 e_info("online testing starting\n"); 1874 1875 /* register, eeprom, intr and loopback tests not run online */ 1876 data[0] = 0; 1877 data[1] = 0; 1878 data[2] = 0; 1879 data[3] = 0; 1880 1881 if (e1000_link_test(adapter, &data[4])) 1882 eth_test->flags |= ETH_TEST_FL_FAILED; 1883 1884 clear_bit(__E1000_TESTING, &adapter->state); 1885 } 1886 1887 if (!if_running) { 1888 e1000e_reset(adapter); 1889 1890 if (adapter->flags & FLAG_HAS_AMT) 1891 e1000e_release_hw_control(adapter); 1892 } 1893 1894 msleep_interruptible(4 * 1000); 1895 1896 pm_runtime_put_sync(netdev->dev.parent); 1897 } 1898 1899 static void e1000_get_wol(struct net_device *netdev, 1900 struct ethtool_wolinfo *wol) 1901 { 1902 struct e1000_adapter *adapter = netdev_priv(netdev); 1903 1904 wol->supported = 0; 1905 wol->wolopts = 0; 1906 1907 if (!(adapter->flags & FLAG_HAS_WOL) || 1908 !device_can_wakeup(&adapter->pdev->dev)) 1909 return; 1910 1911 wol->supported = WAKE_UCAST | WAKE_MCAST | 1912 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1913 1914 /* apply any specific unsupported masks here */ 1915 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1916 wol->supported &= ~WAKE_UCAST; 1917 1918 if (adapter->wol & E1000_WUFC_EX) 1919 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1920 } 1921 1922 if (adapter->wol & E1000_WUFC_EX) 1923 wol->wolopts |= WAKE_UCAST; 1924 if (adapter->wol & E1000_WUFC_MC) 1925 wol->wolopts |= WAKE_MCAST; 1926 if (adapter->wol & E1000_WUFC_BC) 1927 wol->wolopts |= WAKE_BCAST; 1928 if (adapter->wol & E1000_WUFC_MAG) 1929 wol->wolopts |= WAKE_MAGIC; 1930 if (adapter->wol & E1000_WUFC_LNKC) 1931 wol->wolopts |= WAKE_PHY; 1932 } 1933 1934 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1935 { 1936 struct e1000_adapter *adapter = netdev_priv(netdev); 1937 1938 if (!(adapter->flags & FLAG_HAS_WOL) || 1939 !device_can_wakeup(&adapter->pdev->dev) || 1940 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1941 WAKE_MAGIC | WAKE_PHY))) 1942 return -EOPNOTSUPP; 1943 1944 /* these settings will always override what we currently have */ 1945 adapter->wol = 0; 1946 1947 if (wol->wolopts & WAKE_UCAST) 1948 adapter->wol |= E1000_WUFC_EX; 1949 if (wol->wolopts & WAKE_MCAST) 1950 adapter->wol |= E1000_WUFC_MC; 1951 if (wol->wolopts & WAKE_BCAST) 1952 adapter->wol |= E1000_WUFC_BC; 1953 if (wol->wolopts & WAKE_MAGIC) 1954 adapter->wol |= E1000_WUFC_MAG; 1955 if (wol->wolopts & WAKE_PHY) 1956 adapter->wol |= E1000_WUFC_LNKC; 1957 1958 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1959 1960 return 0; 1961 } 1962 1963 static int e1000_set_phys_id(struct net_device *netdev, 1964 enum ethtool_phys_id_state state) 1965 { 1966 struct e1000_adapter *adapter = netdev_priv(netdev); 1967 struct e1000_hw *hw = &adapter->hw; 1968 1969 switch (state) { 1970 case ETHTOOL_ID_ACTIVE: 1971 pm_runtime_get_sync(netdev->dev.parent); 1972 1973 if (!hw->mac.ops.blink_led) 1974 return 2; /* cycle on/off twice per second */ 1975 1976 hw->mac.ops.blink_led(hw); 1977 break; 1978 1979 case ETHTOOL_ID_INACTIVE: 1980 if (hw->phy.type == e1000_phy_ife) 1981 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1982 hw->mac.ops.led_off(hw); 1983 hw->mac.ops.cleanup_led(hw); 1984 pm_runtime_put_sync(netdev->dev.parent); 1985 break; 1986 1987 case ETHTOOL_ID_ON: 1988 hw->mac.ops.led_on(hw); 1989 break; 1990 1991 case ETHTOOL_ID_OFF: 1992 hw->mac.ops.led_off(hw); 1993 break; 1994 } 1995 1996 return 0; 1997 } 1998 1999 static int e1000_get_coalesce(struct net_device *netdev, 2000 struct ethtool_coalesce *ec, 2001 struct kernel_ethtool_coalesce *kernel_coal, 2002 struct netlink_ext_ack *extack) 2003 { 2004 struct e1000_adapter *adapter = netdev_priv(netdev); 2005 2006 if (adapter->itr_setting <= 4) 2007 ec->rx_coalesce_usecs = adapter->itr_setting; 2008 else 2009 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 2010 2011 return 0; 2012 } 2013 2014 static int e1000_set_coalesce(struct net_device *netdev, 2015 struct ethtool_coalesce *ec, 2016 struct kernel_ethtool_coalesce *kernel_coal, 2017 struct netlink_ext_ack *extack) 2018 { 2019 struct e1000_adapter *adapter = netdev_priv(netdev); 2020 2021 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2022 ((ec->rx_coalesce_usecs > 4) && 2023 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2024 (ec->rx_coalesce_usecs == 2)) 2025 return -EINVAL; 2026 2027 if (ec->rx_coalesce_usecs == 4) { 2028 adapter->itr_setting = 4; 2029 adapter->itr = adapter->itr_setting; 2030 } else if (ec->rx_coalesce_usecs <= 3) { 2031 adapter->itr = 20000; 2032 adapter->itr_setting = ec->rx_coalesce_usecs; 2033 } else { 2034 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2035 adapter->itr_setting = adapter->itr & ~3; 2036 } 2037 2038 pm_runtime_get_sync(netdev->dev.parent); 2039 2040 if (adapter->itr_setting != 0) 2041 e1000e_write_itr(adapter, adapter->itr); 2042 else 2043 e1000e_write_itr(adapter, 0); 2044 2045 pm_runtime_put_sync(netdev->dev.parent); 2046 2047 return 0; 2048 } 2049 2050 static int e1000_nway_reset(struct net_device *netdev) 2051 { 2052 struct e1000_adapter *adapter = netdev_priv(netdev); 2053 2054 if (!netif_running(netdev)) 2055 return -EAGAIN; 2056 2057 if (!adapter->hw.mac.autoneg) 2058 return -EINVAL; 2059 2060 pm_runtime_get_sync(netdev->dev.parent); 2061 e1000e_reinit_locked(adapter); 2062 pm_runtime_put_sync(netdev->dev.parent); 2063 2064 return 0; 2065 } 2066 2067 static void e1000_get_ethtool_stats(struct net_device *netdev, 2068 struct ethtool_stats __always_unused *stats, 2069 u64 *data) 2070 { 2071 struct e1000_adapter *adapter = netdev_priv(netdev); 2072 struct rtnl_link_stats64 net_stats; 2073 int i; 2074 char *p = NULL; 2075 2076 pm_runtime_get_sync(netdev->dev.parent); 2077 2078 dev_get_stats(netdev, &net_stats); 2079 2080 pm_runtime_put_sync(netdev->dev.parent); 2081 2082 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2083 switch (e1000_gstrings_stats[i].type) { 2084 case NETDEV_STATS: 2085 p = (char *)&net_stats + 2086 e1000_gstrings_stats[i].stat_offset; 2087 break; 2088 case E1000_STATS: 2089 p = (char *)adapter + 2090 e1000_gstrings_stats[i].stat_offset; 2091 break; 2092 default: 2093 data[i] = 0; 2094 continue; 2095 } 2096 2097 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2098 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2099 } 2100 } 2101 2102 static void e1000_get_strings(struct net_device __always_unused *netdev, 2103 u32 stringset, u8 *data) 2104 { 2105 u8 *p = data; 2106 int i; 2107 2108 switch (stringset) { 2109 case ETH_SS_TEST: 2110 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2111 break; 2112 case ETH_SS_STATS: 2113 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2114 memcpy(p, e1000_gstrings_stats[i].stat_string, 2115 ETH_GSTRING_LEN); 2116 p += ETH_GSTRING_LEN; 2117 } 2118 break; 2119 case ETH_SS_PRIV_FLAGS: 2120 memcpy(data, e1000e_priv_flags_strings, 2121 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2122 break; 2123 } 2124 } 2125 2126 static int e1000_get_rxnfc(struct net_device *netdev, 2127 struct ethtool_rxnfc *info, 2128 u32 __always_unused *rule_locs) 2129 { 2130 info->data = 0; 2131 2132 switch (info->cmd) { 2133 case ETHTOOL_GRXFH: { 2134 struct e1000_adapter *adapter = netdev_priv(netdev); 2135 struct e1000_hw *hw = &adapter->hw; 2136 u32 mrqc; 2137 2138 pm_runtime_get_sync(netdev->dev.parent); 2139 mrqc = er32(MRQC); 2140 pm_runtime_put_sync(netdev->dev.parent); 2141 2142 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2143 return 0; 2144 2145 switch (info->flow_type) { 2146 case TCP_V4_FLOW: 2147 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2148 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2149 fallthrough; 2150 case UDP_V4_FLOW: 2151 case SCTP_V4_FLOW: 2152 case AH_ESP_V4_FLOW: 2153 case IPV4_FLOW: 2154 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2155 info->data |= RXH_IP_SRC | RXH_IP_DST; 2156 break; 2157 case TCP_V6_FLOW: 2158 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2159 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2160 fallthrough; 2161 case UDP_V6_FLOW: 2162 case SCTP_V6_FLOW: 2163 case AH_ESP_V6_FLOW: 2164 case IPV6_FLOW: 2165 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2166 info->data |= RXH_IP_SRC | RXH_IP_DST; 2167 break; 2168 default: 2169 break; 2170 } 2171 return 0; 2172 } 2173 default: 2174 return -EOPNOTSUPP; 2175 } 2176 } 2177 2178 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2179 { 2180 struct e1000_adapter *adapter = netdev_priv(netdev); 2181 struct e1000_hw *hw = &adapter->hw; 2182 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2183 u32 ret_val; 2184 2185 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2186 return -EOPNOTSUPP; 2187 2188 switch (hw->phy.type) { 2189 case e1000_phy_82579: 2190 cap_addr = I82579_EEE_CAPABILITY; 2191 lpa_addr = I82579_EEE_LP_ABILITY; 2192 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2193 break; 2194 case e1000_phy_i217: 2195 cap_addr = I217_EEE_CAPABILITY; 2196 lpa_addr = I217_EEE_LP_ABILITY; 2197 pcs_stat_addr = I217_EEE_PCS_STATUS; 2198 break; 2199 default: 2200 return -EOPNOTSUPP; 2201 } 2202 2203 pm_runtime_get_sync(netdev->dev.parent); 2204 2205 ret_val = hw->phy.ops.acquire(hw); 2206 if (ret_val) { 2207 pm_runtime_put_sync(netdev->dev.parent); 2208 return -EBUSY; 2209 } 2210 2211 /* EEE Capability */ 2212 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2213 if (ret_val) 2214 goto release; 2215 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2216 2217 /* EEE Advertised */ 2218 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2219 2220 /* EEE Link Partner Advertised */ 2221 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2222 if (ret_val) 2223 goto release; 2224 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2225 2226 /* EEE PCS Status */ 2227 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2228 if (ret_val) 2229 goto release; 2230 if (hw->phy.type == e1000_phy_82579) 2231 phy_data <<= 8; 2232 2233 /* Result of the EEE auto negotiation - there is no register that 2234 * has the status of the EEE negotiation so do a best-guess based 2235 * on whether Tx or Rx LPI indications have been received. 2236 */ 2237 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2238 edata->eee_active = true; 2239 2240 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2241 edata->tx_lpi_enabled = true; 2242 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2243 2244 release: 2245 hw->phy.ops.release(hw); 2246 if (ret_val) 2247 ret_val = -ENODATA; 2248 2249 pm_runtime_put_sync(netdev->dev.parent); 2250 2251 return ret_val; 2252 } 2253 2254 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2255 { 2256 struct e1000_adapter *adapter = netdev_priv(netdev); 2257 struct e1000_hw *hw = &adapter->hw; 2258 struct ethtool_eee eee_curr; 2259 s32 ret_val; 2260 2261 ret_val = e1000e_get_eee(netdev, &eee_curr); 2262 if (ret_val) 2263 return ret_val; 2264 2265 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2266 e_err("Setting EEE tx-lpi is not supported\n"); 2267 return -EINVAL; 2268 } 2269 2270 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2271 e_err("Setting EEE Tx LPI timer is not supported\n"); 2272 return -EINVAL; 2273 } 2274 2275 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2276 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2277 return -EINVAL; 2278 } 2279 2280 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2281 2282 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2283 2284 pm_runtime_get_sync(netdev->dev.parent); 2285 2286 /* reset the link */ 2287 if (netif_running(netdev)) 2288 e1000e_reinit_locked(adapter); 2289 else 2290 e1000e_reset(adapter); 2291 2292 pm_runtime_put_sync(netdev->dev.parent); 2293 2294 return 0; 2295 } 2296 2297 static int e1000e_get_ts_info(struct net_device *netdev, 2298 struct ethtool_ts_info *info) 2299 { 2300 struct e1000_adapter *adapter = netdev_priv(netdev); 2301 2302 ethtool_op_get_ts_info(netdev, info); 2303 2304 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2305 return 0; 2306 2307 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2308 SOF_TIMESTAMPING_RX_HARDWARE | 2309 SOF_TIMESTAMPING_RAW_HARDWARE); 2310 2311 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2312 2313 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2314 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2315 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2316 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2317 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2318 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2319 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2320 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2321 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2322 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2323 BIT(HWTSTAMP_FILTER_ALL)); 2324 2325 if (adapter->ptp_clock) 2326 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2327 2328 return 0; 2329 } 2330 2331 static u32 e1000e_get_priv_flags(struct net_device *netdev) 2332 { 2333 struct e1000_adapter *adapter = netdev_priv(netdev); 2334 u32 priv_flags = 0; 2335 2336 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 2337 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED; 2338 2339 return priv_flags; 2340 } 2341 2342 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags) 2343 { 2344 struct e1000_adapter *adapter = netdev_priv(netdev); 2345 unsigned int flags2 = adapter->flags2; 2346 2347 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS; 2348 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) { 2349 struct e1000_hw *hw = &adapter->hw; 2350 2351 if (hw->mac.type < e1000_pch_cnp) 2352 return -EINVAL; 2353 flags2 |= FLAG2_ENABLE_S0IX_FLOWS; 2354 } 2355 2356 if (flags2 != adapter->flags2) 2357 adapter->flags2 = flags2; 2358 2359 return 0; 2360 } 2361 2362 static const struct ethtool_ops e1000_ethtool_ops = { 2363 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2364 .get_drvinfo = e1000_get_drvinfo, 2365 .get_regs_len = e1000_get_regs_len, 2366 .get_regs = e1000_get_regs, 2367 .get_wol = e1000_get_wol, 2368 .set_wol = e1000_set_wol, 2369 .get_msglevel = e1000_get_msglevel, 2370 .set_msglevel = e1000_set_msglevel, 2371 .nway_reset = e1000_nway_reset, 2372 .get_link = ethtool_op_get_link, 2373 .get_eeprom_len = e1000_get_eeprom_len, 2374 .get_eeprom = e1000_get_eeprom, 2375 .set_eeprom = e1000_set_eeprom, 2376 .get_ringparam = e1000_get_ringparam, 2377 .set_ringparam = e1000_set_ringparam, 2378 .get_pauseparam = e1000_get_pauseparam, 2379 .set_pauseparam = e1000_set_pauseparam, 2380 .self_test = e1000_diag_test, 2381 .get_strings = e1000_get_strings, 2382 .set_phys_id = e1000_set_phys_id, 2383 .get_ethtool_stats = e1000_get_ethtool_stats, 2384 .get_sset_count = e1000e_get_sset_count, 2385 .get_coalesce = e1000_get_coalesce, 2386 .set_coalesce = e1000_set_coalesce, 2387 .get_rxnfc = e1000_get_rxnfc, 2388 .get_ts_info = e1000e_get_ts_info, 2389 .get_eee = e1000e_get_eee, 2390 .set_eee = e1000e_set_eee, 2391 .get_link_ksettings = e1000_get_link_ksettings, 2392 .set_link_ksettings = e1000_set_link_ksettings, 2393 .get_priv_flags = e1000e_get_priv_flags, 2394 .set_priv_flags = e1000e_set_priv_flags, 2395 }; 2396 2397 void e1000e_set_ethtool_ops(struct net_device *netdev) 2398 { 2399 netdev->ethtool_ops = &e1000_ethtool_ops; 2400 } 2401