1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/ethtool.h> 34 #include <linux/pci.h> 35 #include <linux/slab.h> 36 #include <linux/delay.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mdio.h> 39 #include <linux/pm_runtime.h> 40 41 #include "e1000.h" 42 43 enum {NETDEV_STATS, E1000_STATS}; 44 45 struct e1000_stats { 46 char stat_string[ETH_GSTRING_LEN]; 47 int type; 48 int sizeof_stat; 49 int stat_offset; 50 }; 51 52 #define E1000_STAT(str, m) { \ 53 .stat_string = str, \ 54 .type = E1000_STATS, \ 55 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 56 .stat_offset = offsetof(struct e1000_adapter, m) } 57 #define E1000_NETDEV_STAT(str, m) { \ 58 .stat_string = str, \ 59 .type = NETDEV_STATS, \ 60 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 61 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 62 63 static const struct e1000_stats e1000_gstrings_stats[] = { 64 E1000_STAT("rx_packets", stats.gprc), 65 E1000_STAT("tx_packets", stats.gptc), 66 E1000_STAT("rx_bytes", stats.gorc), 67 E1000_STAT("tx_bytes", stats.gotc), 68 E1000_STAT("rx_broadcast", stats.bprc), 69 E1000_STAT("tx_broadcast", stats.bptc), 70 E1000_STAT("rx_multicast", stats.mprc), 71 E1000_STAT("tx_multicast", stats.mptc), 72 E1000_NETDEV_STAT("rx_errors", rx_errors), 73 E1000_NETDEV_STAT("tx_errors", tx_errors), 74 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 75 E1000_STAT("multicast", stats.mprc), 76 E1000_STAT("collisions", stats.colc), 77 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 78 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 79 E1000_STAT("rx_crc_errors", stats.crcerrs), 80 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 81 E1000_STAT("rx_no_buffer_count", stats.rnbc), 82 E1000_STAT("rx_missed_errors", stats.mpc), 83 E1000_STAT("tx_aborted_errors", stats.ecol), 84 E1000_STAT("tx_carrier_errors", stats.tncrs), 85 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 86 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 87 E1000_STAT("tx_window_errors", stats.latecol), 88 E1000_STAT("tx_abort_late_coll", stats.latecol), 89 E1000_STAT("tx_deferred_ok", stats.dc), 90 E1000_STAT("tx_single_coll_ok", stats.scc), 91 E1000_STAT("tx_multi_coll_ok", stats.mcc), 92 E1000_STAT("tx_timeout_count", tx_timeout_count), 93 E1000_STAT("tx_restart_queue", restart_queue), 94 E1000_STAT("rx_long_length_errors", stats.roc), 95 E1000_STAT("rx_short_length_errors", stats.ruc), 96 E1000_STAT("rx_align_errors", stats.algnerrc), 97 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 98 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 99 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 100 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 101 E1000_STAT("tx_flow_control_xon", stats.xontxc), 102 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 103 E1000_STAT("rx_csum_offload_good", hw_csum_good), 104 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 105 E1000_STAT("rx_header_split", rx_hdr_split), 106 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 107 E1000_STAT("tx_smbus", stats.mgptc), 108 E1000_STAT("rx_smbus", stats.mgprc), 109 E1000_STAT("dropped_smbus", stats.mgpdc), 110 E1000_STAT("rx_dma_failed", rx_dma_failed), 111 E1000_STAT("tx_dma_failed", tx_dma_failed), 112 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 113 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 114 E1000_STAT("corr_ecc_errors", corr_errors), 115 }; 116 117 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 118 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 119 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 120 "Register test (offline)", "Eeprom test (offline)", 121 "Interrupt test (offline)", "Loopback test (offline)", 122 "Link test (on/offline)" 123 }; 124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 125 126 static int e1000_get_settings(struct net_device *netdev, 127 struct ethtool_cmd *ecmd) 128 { 129 struct e1000_adapter *adapter = netdev_priv(netdev); 130 struct e1000_hw *hw = &adapter->hw; 131 u32 speed; 132 133 if (hw->phy.media_type == e1000_media_type_copper) { 134 ecmd->supported = (SUPPORTED_10baseT_Half | 135 SUPPORTED_10baseT_Full | 136 SUPPORTED_100baseT_Half | 137 SUPPORTED_100baseT_Full | 138 SUPPORTED_1000baseT_Full | 139 SUPPORTED_Autoneg | 140 SUPPORTED_TP); 141 if (hw->phy.type == e1000_phy_ife) 142 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 143 ecmd->advertising = ADVERTISED_TP; 144 145 if (hw->mac.autoneg == 1) { 146 ecmd->advertising |= ADVERTISED_Autoneg; 147 /* the e1000 autoneg seems to match ethtool nicely */ 148 ecmd->advertising |= hw->phy.autoneg_advertised; 149 } 150 151 ecmd->port = PORT_TP; 152 ecmd->phy_address = hw->phy.addr; 153 ecmd->transceiver = XCVR_INTERNAL; 154 155 } else { 156 ecmd->supported = (SUPPORTED_1000baseT_Full | 157 SUPPORTED_FIBRE | 158 SUPPORTED_Autoneg); 159 160 ecmd->advertising = (ADVERTISED_1000baseT_Full | 161 ADVERTISED_FIBRE | 162 ADVERTISED_Autoneg); 163 164 ecmd->port = PORT_FIBRE; 165 ecmd->transceiver = XCVR_EXTERNAL; 166 } 167 168 speed = -1; 169 ecmd->duplex = -1; 170 171 if (netif_running(netdev)) { 172 if (netif_carrier_ok(netdev)) { 173 speed = adapter->link_speed; 174 ecmd->duplex = adapter->link_duplex - 1; 175 } 176 } else { 177 u32 status = er32(STATUS); 178 if (status & E1000_STATUS_LU) { 179 if (status & E1000_STATUS_SPEED_1000) 180 speed = SPEED_1000; 181 else if (status & E1000_STATUS_SPEED_100) 182 speed = SPEED_100; 183 else 184 speed = SPEED_10; 185 186 if (status & E1000_STATUS_FD) 187 ecmd->duplex = DUPLEX_FULL; 188 else 189 ecmd->duplex = DUPLEX_HALF; 190 } 191 } 192 193 ethtool_cmd_speed_set(ecmd, speed); 194 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 195 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 196 197 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 198 if ((hw->phy.media_type == e1000_media_type_copper) && 199 netif_carrier_ok(netdev)) 200 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 201 ETH_TP_MDI; 202 else 203 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 204 205 if (hw->phy.mdix == AUTO_ALL_MODES) 206 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 207 else 208 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 209 210 return 0; 211 } 212 213 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 214 { 215 struct e1000_mac_info *mac = &adapter->hw.mac; 216 217 mac->autoneg = 0; 218 219 /* Make sure dplx is at most 1 bit and lsb of speed is not set 220 * for the switch() below to work 221 */ 222 if ((spd & 1) || (dplx & ~1)) 223 goto err_inval; 224 225 /* Fiber NICs only allow 1000 gbps Full duplex */ 226 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 227 spd != SPEED_1000 && 228 dplx != DUPLEX_FULL) { 229 goto err_inval; 230 } 231 232 switch (spd + dplx) { 233 case SPEED_10 + DUPLEX_HALF: 234 mac->forced_speed_duplex = ADVERTISE_10_HALF; 235 break; 236 case SPEED_10 + DUPLEX_FULL: 237 mac->forced_speed_duplex = ADVERTISE_10_FULL; 238 break; 239 case SPEED_100 + DUPLEX_HALF: 240 mac->forced_speed_duplex = ADVERTISE_100_HALF; 241 break; 242 case SPEED_100 + DUPLEX_FULL: 243 mac->forced_speed_duplex = ADVERTISE_100_FULL; 244 break; 245 case SPEED_1000 + DUPLEX_FULL: 246 mac->autoneg = 1; 247 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 248 break; 249 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 250 default: 251 goto err_inval; 252 } 253 254 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 255 adapter->hw.phy.mdix = AUTO_ALL_MODES; 256 257 return 0; 258 259 err_inval: 260 e_err("Unsupported Speed/Duplex configuration\n"); 261 return -EINVAL; 262 } 263 264 static int e1000_set_settings(struct net_device *netdev, 265 struct ethtool_cmd *ecmd) 266 { 267 struct e1000_adapter *adapter = netdev_priv(netdev); 268 struct e1000_hw *hw = &adapter->hw; 269 270 /* When SoL/IDER sessions are active, autoneg/speed/duplex 271 * cannot be changed 272 */ 273 if (hw->phy.ops.check_reset_block && 274 hw->phy.ops.check_reset_block(hw)) { 275 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 276 return -EINVAL; 277 } 278 279 /* MDI setting is only allowed when autoneg enabled because 280 * some hardware doesn't allow MDI setting when speed or 281 * duplex is forced. 282 */ 283 if (ecmd->eth_tp_mdix_ctrl) { 284 if (hw->phy.media_type != e1000_media_type_copper) 285 return -EOPNOTSUPP; 286 287 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 288 (ecmd->autoneg != AUTONEG_ENABLE)) { 289 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 290 return -EINVAL; 291 } 292 } 293 294 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 295 usleep_range(1000, 2000); 296 297 if (ecmd->autoneg == AUTONEG_ENABLE) { 298 hw->mac.autoneg = 1; 299 if (hw->phy.media_type == e1000_media_type_fiber) 300 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 301 ADVERTISED_FIBRE | 302 ADVERTISED_Autoneg; 303 else 304 hw->phy.autoneg_advertised = ecmd->advertising | 305 ADVERTISED_TP | 306 ADVERTISED_Autoneg; 307 ecmd->advertising = hw->phy.autoneg_advertised; 308 if (adapter->fc_autoneg) 309 hw->fc.requested_mode = e1000_fc_default; 310 } else { 311 u32 speed = ethtool_cmd_speed(ecmd); 312 /* calling this overrides forced MDI setting */ 313 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 314 clear_bit(__E1000_RESETTING, &adapter->state); 315 return -EINVAL; 316 } 317 } 318 319 /* MDI-X => 2; MDI => 1; Auto => 3 */ 320 if (ecmd->eth_tp_mdix_ctrl) { 321 /* fix up the value for auto (3 => 0) as zero is mapped 322 * internally to auto 323 */ 324 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 325 hw->phy.mdix = AUTO_ALL_MODES; 326 else 327 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 328 } 329 330 /* reset the link */ 331 if (netif_running(adapter->netdev)) { 332 e1000e_down(adapter); 333 e1000e_up(adapter); 334 } else { 335 e1000e_reset(adapter); 336 } 337 338 clear_bit(__E1000_RESETTING, &adapter->state); 339 return 0; 340 } 341 342 static void e1000_get_pauseparam(struct net_device *netdev, 343 struct ethtool_pauseparam *pause) 344 { 345 struct e1000_adapter *adapter = netdev_priv(netdev); 346 struct e1000_hw *hw = &adapter->hw; 347 348 pause->autoneg = 349 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 350 351 if (hw->fc.current_mode == e1000_fc_rx_pause) { 352 pause->rx_pause = 1; 353 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 354 pause->tx_pause = 1; 355 } else if (hw->fc.current_mode == e1000_fc_full) { 356 pause->rx_pause = 1; 357 pause->tx_pause = 1; 358 } 359 } 360 361 static int e1000_set_pauseparam(struct net_device *netdev, 362 struct ethtool_pauseparam *pause) 363 { 364 struct e1000_adapter *adapter = netdev_priv(netdev); 365 struct e1000_hw *hw = &adapter->hw; 366 int retval = 0; 367 368 adapter->fc_autoneg = pause->autoneg; 369 370 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 371 usleep_range(1000, 2000); 372 373 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 374 hw->fc.requested_mode = e1000_fc_default; 375 if (netif_running(adapter->netdev)) { 376 e1000e_down(adapter); 377 e1000e_up(adapter); 378 } else { 379 e1000e_reset(adapter); 380 } 381 } else { 382 if (pause->rx_pause && pause->tx_pause) 383 hw->fc.requested_mode = e1000_fc_full; 384 else if (pause->rx_pause && !pause->tx_pause) 385 hw->fc.requested_mode = e1000_fc_rx_pause; 386 else if (!pause->rx_pause && pause->tx_pause) 387 hw->fc.requested_mode = e1000_fc_tx_pause; 388 else if (!pause->rx_pause && !pause->tx_pause) 389 hw->fc.requested_mode = e1000_fc_none; 390 391 hw->fc.current_mode = hw->fc.requested_mode; 392 393 if (hw->phy.media_type == e1000_media_type_fiber) { 394 retval = hw->mac.ops.setup_link(hw); 395 /* implicit goto out */ 396 } else { 397 retval = e1000e_force_mac_fc(hw); 398 if (retval) 399 goto out; 400 e1000e_set_fc_watermarks(hw); 401 } 402 } 403 404 out: 405 clear_bit(__E1000_RESETTING, &adapter->state); 406 return retval; 407 } 408 409 static u32 e1000_get_msglevel(struct net_device *netdev) 410 { 411 struct e1000_adapter *adapter = netdev_priv(netdev); 412 return adapter->msg_enable; 413 } 414 415 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 416 { 417 struct e1000_adapter *adapter = netdev_priv(netdev); 418 adapter->msg_enable = data; 419 } 420 421 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 422 { 423 #define E1000_REGS_LEN 32 /* overestimate */ 424 return E1000_REGS_LEN * sizeof(u32); 425 } 426 427 static void e1000_get_regs(struct net_device *netdev, 428 struct ethtool_regs *regs, void *p) 429 { 430 struct e1000_adapter *adapter = netdev_priv(netdev); 431 struct e1000_hw *hw = &adapter->hw; 432 u32 *regs_buff = p; 433 u16 phy_data; 434 435 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 436 437 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 438 adapter->pdev->device; 439 440 regs_buff[0] = er32(CTRL); 441 regs_buff[1] = er32(STATUS); 442 443 regs_buff[2] = er32(RCTL); 444 regs_buff[3] = er32(RDLEN(0)); 445 regs_buff[4] = er32(RDH(0)); 446 regs_buff[5] = er32(RDT(0)); 447 regs_buff[6] = er32(RDTR); 448 449 regs_buff[7] = er32(TCTL); 450 regs_buff[8] = er32(TDLEN(0)); 451 regs_buff[9] = er32(TDH(0)); 452 regs_buff[10] = er32(TDT(0)); 453 regs_buff[11] = er32(TIDV); 454 455 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 456 457 /* ethtool doesn't use anything past this point, so all this 458 * code is likely legacy junk for apps that may or may not exist 459 */ 460 if (hw->phy.type == e1000_phy_m88) { 461 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 462 regs_buff[13] = (u32)phy_data; /* cable length */ 463 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 464 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 465 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 466 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 467 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 468 regs_buff[18] = regs_buff[13]; /* cable polarity */ 469 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 470 regs_buff[20] = regs_buff[17]; /* polarity correction */ 471 /* phy receive errors */ 472 regs_buff[22] = adapter->phy_stats.receive_errors; 473 regs_buff[23] = regs_buff[13]; /* mdix mode */ 474 } 475 regs_buff[21] = 0; /* was idle_errors */ 476 e1e_rphy(hw, MII_STAT1000, &phy_data); 477 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 478 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 479 } 480 481 static int e1000_get_eeprom_len(struct net_device *netdev) 482 { 483 struct e1000_adapter *adapter = netdev_priv(netdev); 484 return adapter->hw.nvm.word_size * 2; 485 } 486 487 static int e1000_get_eeprom(struct net_device *netdev, 488 struct ethtool_eeprom *eeprom, u8 *bytes) 489 { 490 struct e1000_adapter *adapter = netdev_priv(netdev); 491 struct e1000_hw *hw = &adapter->hw; 492 u16 *eeprom_buff; 493 int first_word; 494 int last_word; 495 int ret_val = 0; 496 u16 i; 497 498 if (eeprom->len == 0) 499 return -EINVAL; 500 501 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 502 503 first_word = eeprom->offset >> 1; 504 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 505 506 eeprom_buff = kmalloc(sizeof(u16) * 507 (last_word - first_word + 1), GFP_KERNEL); 508 if (!eeprom_buff) 509 return -ENOMEM; 510 511 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 512 ret_val = e1000_read_nvm(hw, first_word, 513 last_word - first_word + 1, 514 eeprom_buff); 515 } else { 516 for (i = 0; i < last_word - first_word + 1; i++) { 517 ret_val = e1000_read_nvm(hw, first_word + i, 1, 518 &eeprom_buff[i]); 519 if (ret_val) 520 break; 521 } 522 } 523 524 if (ret_val) { 525 /* a read error occurred, throw away the result */ 526 memset(eeprom_buff, 0xff, sizeof(u16) * 527 (last_word - first_word + 1)); 528 } else { 529 /* Device's eeprom is always little-endian, word addressable */ 530 for (i = 0; i < last_word - first_word + 1; i++) 531 le16_to_cpus(&eeprom_buff[i]); 532 } 533 534 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 535 kfree(eeprom_buff); 536 537 return ret_val; 538 } 539 540 static int e1000_set_eeprom(struct net_device *netdev, 541 struct ethtool_eeprom *eeprom, u8 *bytes) 542 { 543 struct e1000_adapter *adapter = netdev_priv(netdev); 544 struct e1000_hw *hw = &adapter->hw; 545 u16 *eeprom_buff; 546 void *ptr; 547 int max_len; 548 int first_word; 549 int last_word; 550 int ret_val = 0; 551 u16 i; 552 553 if (eeprom->len == 0) 554 return -EOPNOTSUPP; 555 556 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) 557 return -EFAULT; 558 559 if (adapter->flags & FLAG_READ_ONLY_NVM) 560 return -EINVAL; 561 562 max_len = hw->nvm.word_size * 2; 563 564 first_word = eeprom->offset >> 1; 565 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 566 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 567 if (!eeprom_buff) 568 return -ENOMEM; 569 570 ptr = (void *)eeprom_buff; 571 572 if (eeprom->offset & 1) { 573 /* need read/modify/write of first changed EEPROM word */ 574 /* only the second byte of the word is being modified */ 575 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 576 ptr++; 577 } 578 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 579 /* need read/modify/write of last changed EEPROM word */ 580 /* only the first byte of the word is being modified */ 581 ret_val = e1000_read_nvm(hw, last_word, 1, 582 &eeprom_buff[last_word - first_word]); 583 584 if (ret_val) 585 goto out; 586 587 /* Device's eeprom is always little-endian, word addressable */ 588 for (i = 0; i < last_word - first_word + 1; i++) 589 le16_to_cpus(&eeprom_buff[i]); 590 591 memcpy(ptr, bytes, eeprom->len); 592 593 for (i = 0; i < last_word - first_word + 1; i++) 594 cpu_to_le16s(&eeprom_buff[i]); 595 596 ret_val = e1000_write_nvm(hw, first_word, 597 last_word - first_word + 1, eeprom_buff); 598 599 if (ret_val) 600 goto out; 601 602 /* Update the checksum over the first part of the EEPROM if needed 603 * and flush shadow RAM for applicable controllers 604 */ 605 if ((first_word <= NVM_CHECKSUM_REG) || 606 (hw->mac.type == e1000_82583) || 607 (hw->mac.type == e1000_82574) || 608 (hw->mac.type == e1000_82573)) 609 ret_val = e1000e_update_nvm_checksum(hw); 610 611 out: 612 kfree(eeprom_buff); 613 return ret_val; 614 } 615 616 static void e1000_get_drvinfo(struct net_device *netdev, 617 struct ethtool_drvinfo *drvinfo) 618 { 619 struct e1000_adapter *adapter = netdev_priv(netdev); 620 621 strlcpy(drvinfo->driver, e1000e_driver_name, 622 sizeof(drvinfo->driver)); 623 strlcpy(drvinfo->version, e1000e_driver_version, 624 sizeof(drvinfo->version)); 625 626 /* EEPROM image version # is reported as firmware version # for 627 * PCI-E controllers 628 */ 629 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 630 "%d.%d-%d", 631 (adapter->eeprom_vers & 0xF000) >> 12, 632 (adapter->eeprom_vers & 0x0FF0) >> 4, 633 (adapter->eeprom_vers & 0x000F)); 634 635 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 636 sizeof(drvinfo->bus_info)); 637 drvinfo->regdump_len = e1000_get_regs_len(netdev); 638 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 639 } 640 641 static void e1000_get_ringparam(struct net_device *netdev, 642 struct ethtool_ringparam *ring) 643 { 644 struct e1000_adapter *adapter = netdev_priv(netdev); 645 646 ring->rx_max_pending = E1000_MAX_RXD; 647 ring->tx_max_pending = E1000_MAX_TXD; 648 ring->rx_pending = adapter->rx_ring_count; 649 ring->tx_pending = adapter->tx_ring_count; 650 } 651 652 static int e1000_set_ringparam(struct net_device *netdev, 653 struct ethtool_ringparam *ring) 654 { 655 struct e1000_adapter *adapter = netdev_priv(netdev); 656 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 657 int err = 0, size = sizeof(struct e1000_ring); 658 bool set_tx = false, set_rx = false; 659 u16 new_rx_count, new_tx_count; 660 661 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 662 return -EINVAL; 663 664 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 665 E1000_MAX_RXD); 666 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 667 668 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 669 E1000_MAX_TXD); 670 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 671 672 if ((new_tx_count == adapter->tx_ring_count) && 673 (new_rx_count == adapter->rx_ring_count)) 674 /* nothing to do */ 675 return 0; 676 677 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 678 usleep_range(1000, 2000); 679 680 if (!netif_running(adapter->netdev)) { 681 /* Set counts now and allocate resources during open() */ 682 adapter->tx_ring->count = new_tx_count; 683 adapter->rx_ring->count = new_rx_count; 684 adapter->tx_ring_count = new_tx_count; 685 adapter->rx_ring_count = new_rx_count; 686 goto clear_reset; 687 } 688 689 set_tx = (new_tx_count != adapter->tx_ring_count); 690 set_rx = (new_rx_count != adapter->rx_ring_count); 691 692 /* Allocate temporary storage for ring updates */ 693 if (set_tx) { 694 temp_tx = vmalloc(size); 695 if (!temp_tx) { 696 err = -ENOMEM; 697 goto free_temp; 698 } 699 } 700 if (set_rx) { 701 temp_rx = vmalloc(size); 702 if (!temp_rx) { 703 err = -ENOMEM; 704 goto free_temp; 705 } 706 } 707 708 e1000e_down(adapter); 709 710 /* We can't just free everything and then setup again, because the 711 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 712 * structs. First, attempt to allocate new resources... 713 */ 714 if (set_tx) { 715 memcpy(temp_tx, adapter->tx_ring, size); 716 temp_tx->count = new_tx_count; 717 err = e1000e_setup_tx_resources(temp_tx); 718 if (err) 719 goto err_setup; 720 } 721 if (set_rx) { 722 memcpy(temp_rx, adapter->rx_ring, size); 723 temp_rx->count = new_rx_count; 724 err = e1000e_setup_rx_resources(temp_rx); 725 if (err) 726 goto err_setup_rx; 727 } 728 729 /* ...then free the old resources and copy back any new ring data */ 730 if (set_tx) { 731 e1000e_free_tx_resources(adapter->tx_ring); 732 memcpy(adapter->tx_ring, temp_tx, size); 733 adapter->tx_ring_count = new_tx_count; 734 } 735 if (set_rx) { 736 e1000e_free_rx_resources(adapter->rx_ring); 737 memcpy(adapter->rx_ring, temp_rx, size); 738 adapter->rx_ring_count = new_rx_count; 739 } 740 741 err_setup_rx: 742 if (err && set_tx) 743 e1000e_free_tx_resources(temp_tx); 744 err_setup: 745 e1000e_up(adapter); 746 free_temp: 747 vfree(temp_tx); 748 vfree(temp_rx); 749 clear_reset: 750 clear_bit(__E1000_RESETTING, &adapter->state); 751 return err; 752 } 753 754 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 755 int reg, int offset, u32 mask, u32 write) 756 { 757 u32 pat, val; 758 static const u32 test[] = { 759 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 760 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 761 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 762 (test[pat] & write)); 763 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 764 if (val != (test[pat] & write & mask)) { 765 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 766 reg + (offset << 2), val, 767 (test[pat] & write & mask)); 768 *data = reg; 769 return 1; 770 } 771 } 772 return 0; 773 } 774 775 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 776 int reg, u32 mask, u32 write) 777 { 778 u32 val; 779 __ew32(&adapter->hw, reg, write & mask); 780 val = __er32(&adapter->hw, reg); 781 if ((write & mask) != (val & mask)) { 782 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 783 reg, (val & mask), (write & mask)); 784 *data = reg; 785 return 1; 786 } 787 return 0; 788 } 789 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 790 do { \ 791 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 792 return 1; \ 793 } while (0) 794 #define REG_PATTERN_TEST(reg, mask, write) \ 795 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 796 797 #define REG_SET_AND_CHECK(reg, mask, write) \ 798 do { \ 799 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 800 return 1; \ 801 } while (0) 802 803 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 804 { 805 struct e1000_hw *hw = &adapter->hw; 806 struct e1000_mac_info *mac = &adapter->hw.mac; 807 u32 value; 808 u32 before; 809 u32 after; 810 u32 i; 811 u32 toggle; 812 u32 mask; 813 u32 wlock_mac = 0; 814 815 /* The status register is Read Only, so a write should fail. 816 * Some bits that get toggled are ignored. 817 */ 818 switch (mac->type) { 819 /* there are several bits on newer hardware that are r/w */ 820 case e1000_82571: 821 case e1000_82572: 822 case e1000_80003es2lan: 823 toggle = 0x7FFFF3FF; 824 break; 825 default: 826 toggle = 0x7FFFF033; 827 break; 828 } 829 830 before = er32(STATUS); 831 value = (er32(STATUS) & toggle); 832 ew32(STATUS, toggle); 833 after = er32(STATUS) & toggle; 834 if (value != after) { 835 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 836 after, value); 837 *data = 1; 838 return 1; 839 } 840 /* restore previous status */ 841 ew32(STATUS, before); 842 843 if (!(adapter->flags & FLAG_IS_ICH)) { 844 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 845 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 846 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 847 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 848 } 849 850 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 851 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 852 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 853 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 854 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 855 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 856 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 857 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 858 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 859 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 860 861 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 862 863 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 864 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 865 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 866 867 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 868 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 869 if (!(adapter->flags & FLAG_IS_ICH)) 870 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 871 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 872 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 873 mask = 0x8003FFFF; 874 switch (mac->type) { 875 case e1000_ich10lan: 876 case e1000_pchlan: 877 case e1000_pch2lan: 878 case e1000_pch_lpt: 879 mask |= (1 << 18); 880 break; 881 default: 882 break; 883 } 884 885 if (mac->type == e1000_pch_lpt) 886 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 887 E1000_FWSM_WLOCK_MAC_SHIFT; 888 889 for (i = 0; i < mac->rar_entry_count; i++) { 890 if (mac->type == e1000_pch_lpt) { 891 /* Cannot test write-protected SHRAL[n] registers */ 892 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 893 continue; 894 895 /* SHRAH[9] different than the others */ 896 if (i == 10) 897 mask |= (1 << 30); 898 else 899 mask &= ~(1 << 30); 900 } 901 902 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 903 0xFFFFFFFF); 904 } 905 906 for (i = 0; i < mac->mta_reg_count; i++) 907 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 908 909 *data = 0; 910 911 return 0; 912 } 913 914 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 915 { 916 u16 temp; 917 u16 checksum = 0; 918 u16 i; 919 920 *data = 0; 921 /* Read and add up the contents of the EEPROM */ 922 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 923 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 924 *data = 1; 925 return *data; 926 } 927 checksum += temp; 928 } 929 930 /* If Checksum is not Correct return error else test passed */ 931 if ((checksum != (u16) NVM_SUM) && !(*data)) 932 *data = 2; 933 934 return *data; 935 } 936 937 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 938 { 939 struct net_device *netdev = (struct net_device *) data; 940 struct e1000_adapter *adapter = netdev_priv(netdev); 941 struct e1000_hw *hw = &adapter->hw; 942 943 adapter->test_icr |= er32(ICR); 944 945 return IRQ_HANDLED; 946 } 947 948 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 949 { 950 struct net_device *netdev = adapter->netdev; 951 struct e1000_hw *hw = &adapter->hw; 952 u32 mask; 953 u32 shared_int = 1; 954 u32 irq = adapter->pdev->irq; 955 int i; 956 int ret_val = 0; 957 int int_mode = E1000E_INT_MODE_LEGACY; 958 959 *data = 0; 960 961 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 962 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 963 int_mode = adapter->int_mode; 964 e1000e_reset_interrupt_capability(adapter); 965 adapter->int_mode = E1000E_INT_MODE_LEGACY; 966 e1000e_set_interrupt_capability(adapter); 967 } 968 /* Hook up test interrupt handler just for this test */ 969 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 970 netdev)) { 971 shared_int = 0; 972 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 973 netdev->name, netdev)) { 974 *data = 1; 975 ret_val = -1; 976 goto out; 977 } 978 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 979 980 /* Disable all the interrupts */ 981 ew32(IMC, 0xFFFFFFFF); 982 e1e_flush(); 983 usleep_range(10000, 20000); 984 985 /* Test each interrupt */ 986 for (i = 0; i < 10; i++) { 987 /* Interrupt to test */ 988 mask = 1 << i; 989 990 if (adapter->flags & FLAG_IS_ICH) { 991 switch (mask) { 992 case E1000_ICR_RXSEQ: 993 continue; 994 case 0x00000100: 995 if (adapter->hw.mac.type == e1000_ich8lan || 996 adapter->hw.mac.type == e1000_ich9lan) 997 continue; 998 break; 999 default: 1000 break; 1001 } 1002 } 1003 1004 if (!shared_int) { 1005 /* Disable the interrupt to be reported in 1006 * the cause register and then force the same 1007 * interrupt and see if one gets posted. If 1008 * an interrupt was posted to the bus, the 1009 * test failed. 1010 */ 1011 adapter->test_icr = 0; 1012 ew32(IMC, mask); 1013 ew32(ICS, mask); 1014 e1e_flush(); 1015 usleep_range(10000, 20000); 1016 1017 if (adapter->test_icr & mask) { 1018 *data = 3; 1019 break; 1020 } 1021 } 1022 1023 /* Enable the interrupt to be reported in 1024 * the cause register and then force the same 1025 * interrupt and see if one gets posted. If 1026 * an interrupt was not posted to the bus, the 1027 * test failed. 1028 */ 1029 adapter->test_icr = 0; 1030 ew32(IMS, mask); 1031 ew32(ICS, mask); 1032 e1e_flush(); 1033 usleep_range(10000, 20000); 1034 1035 if (!(adapter->test_icr & mask)) { 1036 *data = 4; 1037 break; 1038 } 1039 1040 if (!shared_int) { 1041 /* Disable the other interrupts to be reported in 1042 * the cause register and then force the other 1043 * interrupts and see if any get posted. If 1044 * an interrupt was posted to the bus, the 1045 * test failed. 1046 */ 1047 adapter->test_icr = 0; 1048 ew32(IMC, ~mask & 0x00007FFF); 1049 ew32(ICS, ~mask & 0x00007FFF); 1050 e1e_flush(); 1051 usleep_range(10000, 20000); 1052 1053 if (adapter->test_icr) { 1054 *data = 5; 1055 break; 1056 } 1057 } 1058 } 1059 1060 /* Disable all the interrupts */ 1061 ew32(IMC, 0xFFFFFFFF); 1062 e1e_flush(); 1063 usleep_range(10000, 20000); 1064 1065 /* Unhook test interrupt handler */ 1066 free_irq(irq, netdev); 1067 1068 out: 1069 if (int_mode == E1000E_INT_MODE_MSIX) { 1070 e1000e_reset_interrupt_capability(adapter); 1071 adapter->int_mode = int_mode; 1072 e1000e_set_interrupt_capability(adapter); 1073 } 1074 1075 return ret_val; 1076 } 1077 1078 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1079 { 1080 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1081 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1082 struct pci_dev *pdev = adapter->pdev; 1083 int i; 1084 1085 if (tx_ring->desc && tx_ring->buffer_info) { 1086 for (i = 0; i < tx_ring->count; i++) { 1087 if (tx_ring->buffer_info[i].dma) 1088 dma_unmap_single(&pdev->dev, 1089 tx_ring->buffer_info[i].dma, 1090 tx_ring->buffer_info[i].length, 1091 DMA_TO_DEVICE); 1092 if (tx_ring->buffer_info[i].skb) 1093 dev_kfree_skb(tx_ring->buffer_info[i].skb); 1094 } 1095 } 1096 1097 if (rx_ring->desc && rx_ring->buffer_info) { 1098 for (i = 0; i < rx_ring->count; i++) { 1099 if (rx_ring->buffer_info[i].dma) 1100 dma_unmap_single(&pdev->dev, 1101 rx_ring->buffer_info[i].dma, 1102 2048, DMA_FROM_DEVICE); 1103 if (rx_ring->buffer_info[i].skb) 1104 dev_kfree_skb(rx_ring->buffer_info[i].skb); 1105 } 1106 } 1107 1108 if (tx_ring->desc) { 1109 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1110 tx_ring->dma); 1111 tx_ring->desc = NULL; 1112 } 1113 if (rx_ring->desc) { 1114 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1115 rx_ring->dma); 1116 rx_ring->desc = NULL; 1117 } 1118 1119 kfree(tx_ring->buffer_info); 1120 tx_ring->buffer_info = NULL; 1121 kfree(rx_ring->buffer_info); 1122 rx_ring->buffer_info = NULL; 1123 } 1124 1125 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1126 { 1127 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1128 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1129 struct pci_dev *pdev = adapter->pdev; 1130 struct e1000_hw *hw = &adapter->hw; 1131 u32 rctl; 1132 int i; 1133 int ret_val; 1134 1135 /* Setup Tx descriptor ring and Tx buffers */ 1136 1137 if (!tx_ring->count) 1138 tx_ring->count = E1000_DEFAULT_TXD; 1139 1140 tx_ring->buffer_info = kcalloc(tx_ring->count, 1141 sizeof(struct e1000_buffer), 1142 GFP_KERNEL); 1143 if (!tx_ring->buffer_info) { 1144 ret_val = 1; 1145 goto err_nomem; 1146 } 1147 1148 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1149 tx_ring->size = ALIGN(tx_ring->size, 4096); 1150 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1151 &tx_ring->dma, GFP_KERNEL); 1152 if (!tx_ring->desc) { 1153 ret_val = 2; 1154 goto err_nomem; 1155 } 1156 tx_ring->next_to_use = 0; 1157 tx_ring->next_to_clean = 0; 1158 1159 ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); 1160 ew32(TDBAH(0), ((u64) tx_ring->dma >> 32)); 1161 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1162 ew32(TDH(0), 0); 1163 ew32(TDT(0), 0); 1164 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1165 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1166 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1167 1168 for (i = 0; i < tx_ring->count; i++) { 1169 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1170 struct sk_buff *skb; 1171 unsigned int skb_size = 1024; 1172 1173 skb = alloc_skb(skb_size, GFP_KERNEL); 1174 if (!skb) { 1175 ret_val = 3; 1176 goto err_nomem; 1177 } 1178 skb_put(skb, skb_size); 1179 tx_ring->buffer_info[i].skb = skb; 1180 tx_ring->buffer_info[i].length = skb->len; 1181 tx_ring->buffer_info[i].dma = 1182 dma_map_single(&pdev->dev, skb->data, skb->len, 1183 DMA_TO_DEVICE); 1184 if (dma_mapping_error(&pdev->dev, 1185 tx_ring->buffer_info[i].dma)) { 1186 ret_val = 4; 1187 goto err_nomem; 1188 } 1189 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1190 tx_desc->lower.data = cpu_to_le32(skb->len); 1191 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1192 E1000_TXD_CMD_IFCS | 1193 E1000_TXD_CMD_RS); 1194 tx_desc->upper.data = 0; 1195 } 1196 1197 /* Setup Rx descriptor ring and Rx buffers */ 1198 1199 if (!rx_ring->count) 1200 rx_ring->count = E1000_DEFAULT_RXD; 1201 1202 rx_ring->buffer_info = kcalloc(rx_ring->count, 1203 sizeof(struct e1000_buffer), 1204 GFP_KERNEL); 1205 if (!rx_ring->buffer_info) { 1206 ret_val = 5; 1207 goto err_nomem; 1208 } 1209 1210 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1211 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1212 &rx_ring->dma, GFP_KERNEL); 1213 if (!rx_ring->desc) { 1214 ret_val = 6; 1215 goto err_nomem; 1216 } 1217 rx_ring->next_to_use = 0; 1218 rx_ring->next_to_clean = 0; 1219 1220 rctl = er32(RCTL); 1221 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1222 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1223 ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF)); 1224 ew32(RDBAH(0), ((u64) rx_ring->dma >> 32)); 1225 ew32(RDLEN(0), rx_ring->size); 1226 ew32(RDH(0), 0); 1227 ew32(RDT(0), 0); 1228 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1229 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1230 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1231 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1232 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1233 ew32(RCTL, rctl); 1234 1235 for (i = 0; i < rx_ring->count; i++) { 1236 union e1000_rx_desc_extended *rx_desc; 1237 struct sk_buff *skb; 1238 1239 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1240 if (!skb) { 1241 ret_val = 7; 1242 goto err_nomem; 1243 } 1244 skb_reserve(skb, NET_IP_ALIGN); 1245 rx_ring->buffer_info[i].skb = skb; 1246 rx_ring->buffer_info[i].dma = 1247 dma_map_single(&pdev->dev, skb->data, 2048, 1248 DMA_FROM_DEVICE); 1249 if (dma_mapping_error(&pdev->dev, 1250 rx_ring->buffer_info[i].dma)) { 1251 ret_val = 8; 1252 goto err_nomem; 1253 } 1254 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1255 rx_desc->read.buffer_addr = 1256 cpu_to_le64(rx_ring->buffer_info[i].dma); 1257 memset(skb->data, 0x00, skb->len); 1258 } 1259 1260 return 0; 1261 1262 err_nomem: 1263 e1000_free_desc_rings(adapter); 1264 return ret_val; 1265 } 1266 1267 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1268 { 1269 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1270 e1e_wphy(&adapter->hw, 29, 0x001F); 1271 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1272 e1e_wphy(&adapter->hw, 29, 0x001A); 1273 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1274 } 1275 1276 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1277 { 1278 struct e1000_hw *hw = &adapter->hw; 1279 u32 ctrl_reg = 0; 1280 u16 phy_reg = 0; 1281 s32 ret_val = 0; 1282 1283 hw->mac.autoneg = 0; 1284 1285 if (hw->phy.type == e1000_phy_ife) { 1286 /* force 100, set loopback */ 1287 e1e_wphy(hw, MII_BMCR, 0x6100); 1288 1289 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1290 ctrl_reg = er32(CTRL); 1291 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1292 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1293 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1294 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1295 E1000_CTRL_FD); /* Force Duplex to FULL */ 1296 1297 ew32(CTRL, ctrl_reg); 1298 e1e_flush(); 1299 udelay(500); 1300 1301 return 0; 1302 } 1303 1304 /* Specific PHY configuration for loopback */ 1305 switch (hw->phy.type) { 1306 case e1000_phy_m88: 1307 /* Auto-MDI/MDIX Off */ 1308 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1309 /* reset to update Auto-MDI/MDIX */ 1310 e1e_wphy(hw, MII_BMCR, 0x9140); 1311 /* autoneg off */ 1312 e1e_wphy(hw, MII_BMCR, 0x8140); 1313 break; 1314 case e1000_phy_gg82563: 1315 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1316 break; 1317 case e1000_phy_bm: 1318 /* Set Default MAC Interface speed to 1GB */ 1319 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1320 phy_reg &= ~0x0007; 1321 phy_reg |= 0x006; 1322 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1323 /* Assert SW reset for above settings to take effect */ 1324 hw->phy.ops.commit(hw); 1325 mdelay(1); 1326 /* Force Full Duplex */ 1327 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1328 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1329 /* Set Link Up (in force link) */ 1330 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1331 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1332 /* Force Link */ 1333 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1334 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1335 /* Set Early Link Enable */ 1336 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1337 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1338 break; 1339 case e1000_phy_82577: 1340 case e1000_phy_82578: 1341 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1342 ret_val = hw->phy.ops.acquire(hw); 1343 if (ret_val) { 1344 e_err("Cannot setup 1Gbps loopback.\n"); 1345 return ret_val; 1346 } 1347 e1000_configure_k1_ich8lan(hw, false); 1348 hw->phy.ops.release(hw); 1349 break; 1350 case e1000_phy_82579: 1351 /* Disable PHY energy detect power down */ 1352 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1353 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); 1354 /* Disable full chip energy detect */ 1355 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1356 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1357 /* Enable loopback on the PHY */ 1358 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1359 break; 1360 default: 1361 break; 1362 } 1363 1364 /* force 1000, set loopback */ 1365 e1e_wphy(hw, MII_BMCR, 0x4140); 1366 mdelay(250); 1367 1368 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1369 ctrl_reg = er32(CTRL); 1370 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1371 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1372 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1373 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1374 E1000_CTRL_FD); /* Force Duplex to FULL */ 1375 1376 if (adapter->flags & FLAG_IS_ICH) 1377 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1378 1379 if (hw->phy.media_type == e1000_media_type_copper && 1380 hw->phy.type == e1000_phy_m88) { 1381 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1382 } else { 1383 /* Set the ILOS bit on the fiber Nic if half duplex link is 1384 * detected. 1385 */ 1386 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1387 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1388 } 1389 1390 ew32(CTRL, ctrl_reg); 1391 1392 /* Disable the receiver on the PHY so when a cable is plugged in, the 1393 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1394 */ 1395 if (hw->phy.type == e1000_phy_m88) 1396 e1000_phy_disable_receiver(adapter); 1397 1398 udelay(500); 1399 1400 return 0; 1401 } 1402 1403 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1404 { 1405 struct e1000_hw *hw = &adapter->hw; 1406 u32 ctrl = er32(CTRL); 1407 int link; 1408 1409 /* special requirements for 82571/82572 fiber adapters */ 1410 1411 /* jump through hoops to make sure link is up because serdes 1412 * link is hardwired up 1413 */ 1414 ctrl |= E1000_CTRL_SLU; 1415 ew32(CTRL, ctrl); 1416 1417 /* disable autoneg */ 1418 ctrl = er32(TXCW); 1419 ctrl &= ~(1 << 31); 1420 ew32(TXCW, ctrl); 1421 1422 link = (er32(STATUS) & E1000_STATUS_LU); 1423 1424 if (!link) { 1425 /* set invert loss of signal */ 1426 ctrl = er32(CTRL); 1427 ctrl |= E1000_CTRL_ILOS; 1428 ew32(CTRL, ctrl); 1429 } 1430 1431 /* special write to serdes control register to enable SerDes analog 1432 * loopback 1433 */ 1434 #define E1000_SERDES_LB_ON 0x410 1435 ew32(SCTL, E1000_SERDES_LB_ON); 1436 e1e_flush(); 1437 usleep_range(10000, 20000); 1438 1439 return 0; 1440 } 1441 1442 /* only call this for fiber/serdes connections to es2lan */ 1443 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1444 { 1445 struct e1000_hw *hw = &adapter->hw; 1446 u32 ctrlext = er32(CTRL_EXT); 1447 u32 ctrl = er32(CTRL); 1448 1449 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1450 * on mac_type 80003es2lan) 1451 */ 1452 adapter->tx_fifo_head = ctrlext; 1453 1454 /* clear the serdes mode bits, putting the device into mac loopback */ 1455 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1456 ew32(CTRL_EXT, ctrlext); 1457 1458 /* force speed to 1000/FD, link up */ 1459 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1460 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1461 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1462 ew32(CTRL, ctrl); 1463 1464 /* set mac loopback */ 1465 ctrl = er32(RCTL); 1466 ctrl |= E1000_RCTL_LBM_MAC; 1467 ew32(RCTL, ctrl); 1468 1469 /* set testing mode parameters (no need to reset later) */ 1470 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1471 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1472 ew32(KMRNCTRLSTA, 1473 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1474 1475 return 0; 1476 } 1477 1478 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1479 { 1480 struct e1000_hw *hw = &adapter->hw; 1481 u32 rctl; 1482 1483 if (hw->phy.media_type == e1000_media_type_fiber || 1484 hw->phy.media_type == e1000_media_type_internal_serdes) { 1485 switch (hw->mac.type) { 1486 case e1000_80003es2lan: 1487 return e1000_set_es2lan_mac_loopback(adapter); 1488 break; 1489 case e1000_82571: 1490 case e1000_82572: 1491 return e1000_set_82571_fiber_loopback(adapter); 1492 break; 1493 default: 1494 rctl = er32(RCTL); 1495 rctl |= E1000_RCTL_LBM_TCVR; 1496 ew32(RCTL, rctl); 1497 return 0; 1498 } 1499 } else if (hw->phy.media_type == e1000_media_type_copper) { 1500 return e1000_integrated_phy_loopback(adapter); 1501 } 1502 1503 return 7; 1504 } 1505 1506 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1507 { 1508 struct e1000_hw *hw = &adapter->hw; 1509 u32 rctl; 1510 u16 phy_reg; 1511 1512 rctl = er32(RCTL); 1513 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1514 ew32(RCTL, rctl); 1515 1516 switch (hw->mac.type) { 1517 case e1000_80003es2lan: 1518 if (hw->phy.media_type == e1000_media_type_fiber || 1519 hw->phy.media_type == e1000_media_type_internal_serdes) { 1520 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1521 ew32(CTRL_EXT, adapter->tx_fifo_head); 1522 adapter->tx_fifo_head = 0; 1523 } 1524 /* fall through */ 1525 case e1000_82571: 1526 case e1000_82572: 1527 if (hw->phy.media_type == e1000_media_type_fiber || 1528 hw->phy.media_type == e1000_media_type_internal_serdes) { 1529 #define E1000_SERDES_LB_OFF 0x400 1530 ew32(SCTL, E1000_SERDES_LB_OFF); 1531 e1e_flush(); 1532 usleep_range(10000, 20000); 1533 break; 1534 } 1535 /* Fall Through */ 1536 default: 1537 hw->mac.autoneg = 1; 1538 if (hw->phy.type == e1000_phy_gg82563) 1539 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1540 e1e_rphy(hw, MII_BMCR, &phy_reg); 1541 if (phy_reg & BMCR_LOOPBACK) { 1542 phy_reg &= ~BMCR_LOOPBACK; 1543 e1e_wphy(hw, MII_BMCR, phy_reg); 1544 if (hw->phy.ops.commit) 1545 hw->phy.ops.commit(hw); 1546 } 1547 break; 1548 } 1549 } 1550 1551 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1552 unsigned int frame_size) 1553 { 1554 memset(skb->data, 0xFF, frame_size); 1555 frame_size &= ~1; 1556 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1557 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1558 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1559 } 1560 1561 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1562 unsigned int frame_size) 1563 { 1564 frame_size &= ~1; 1565 if (*(skb->data + 3) == 0xFF) 1566 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1567 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1568 return 0; 1569 return 13; 1570 } 1571 1572 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1573 { 1574 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1575 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1576 struct pci_dev *pdev = adapter->pdev; 1577 struct e1000_hw *hw = &adapter->hw; 1578 int i, j, k, l; 1579 int lc; 1580 int good_cnt; 1581 int ret_val = 0; 1582 unsigned long time; 1583 1584 ew32(RDT(0), rx_ring->count - 1); 1585 1586 /* Calculate the loop count based on the largest descriptor ring 1587 * The idea is to wrap the largest ring a number of times using 64 1588 * send/receive pairs during each loop 1589 */ 1590 1591 if (rx_ring->count <= tx_ring->count) 1592 lc = ((tx_ring->count / 64) * 2) + 1; 1593 else 1594 lc = ((rx_ring->count / 64) * 2) + 1; 1595 1596 k = 0; 1597 l = 0; 1598 for (j = 0; j <= lc; j++) { /* loop count loop */ 1599 for (i = 0; i < 64; i++) { /* send the packets */ 1600 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb, 1601 1024); 1602 dma_sync_single_for_device(&pdev->dev, 1603 tx_ring->buffer_info[k].dma, 1604 tx_ring->buffer_info[k].length, 1605 DMA_TO_DEVICE); 1606 k++; 1607 if (k == tx_ring->count) 1608 k = 0; 1609 } 1610 ew32(TDT(0), k); 1611 e1e_flush(); 1612 msleep(200); 1613 time = jiffies; /* set the start time for the receive */ 1614 good_cnt = 0; 1615 do { /* receive the sent packets */ 1616 dma_sync_single_for_cpu(&pdev->dev, 1617 rx_ring->buffer_info[l].dma, 2048, 1618 DMA_FROM_DEVICE); 1619 1620 ret_val = e1000_check_lbtest_frame( 1621 rx_ring->buffer_info[l].skb, 1024); 1622 if (!ret_val) 1623 good_cnt++; 1624 l++; 1625 if (l == rx_ring->count) 1626 l = 0; 1627 /* time + 20 msecs (200 msecs on 2.4) is more than 1628 * enough time to complete the receives, if it's 1629 * exceeded, break and error off 1630 */ 1631 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1632 if (good_cnt != 64) { 1633 ret_val = 13; /* ret_val is the same as mis-compare */ 1634 break; 1635 } 1636 if (jiffies >= (time + 20)) { 1637 ret_val = 14; /* error code for time out error */ 1638 break; 1639 } 1640 } /* end loop count loop */ 1641 return ret_val; 1642 } 1643 1644 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1645 { 1646 struct e1000_hw *hw = &adapter->hw; 1647 1648 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1649 if (hw->phy.ops.check_reset_block && 1650 hw->phy.ops.check_reset_block(hw)) { 1651 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1652 *data = 0; 1653 goto out; 1654 } 1655 1656 *data = e1000_setup_desc_rings(adapter); 1657 if (*data) 1658 goto out; 1659 1660 *data = e1000_setup_loopback_test(adapter); 1661 if (*data) 1662 goto err_loopback; 1663 1664 *data = e1000_run_loopback_test(adapter); 1665 e1000_loopback_cleanup(adapter); 1666 1667 err_loopback: 1668 e1000_free_desc_rings(adapter); 1669 out: 1670 return *data; 1671 } 1672 1673 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1674 { 1675 struct e1000_hw *hw = &adapter->hw; 1676 1677 *data = 0; 1678 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1679 int i = 0; 1680 hw->mac.serdes_has_link = false; 1681 1682 /* On some blade server designs, link establishment 1683 * could take as long as 2-3 minutes 1684 */ 1685 do { 1686 hw->mac.ops.check_for_link(hw); 1687 if (hw->mac.serdes_has_link) 1688 return *data; 1689 msleep(20); 1690 } while (i++ < 3750); 1691 1692 *data = 1; 1693 } else { 1694 hw->mac.ops.check_for_link(hw); 1695 if (hw->mac.autoneg) 1696 /* On some Phy/switch combinations, link establishment 1697 * can take a few seconds more than expected. 1698 */ 1699 msleep(5000); 1700 1701 if (!(er32(STATUS) & E1000_STATUS_LU)) 1702 *data = 1; 1703 } 1704 return *data; 1705 } 1706 1707 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1708 int sset) 1709 { 1710 switch (sset) { 1711 case ETH_SS_TEST: 1712 return E1000_TEST_LEN; 1713 case ETH_SS_STATS: 1714 return E1000_STATS_LEN; 1715 default: 1716 return -EOPNOTSUPP; 1717 } 1718 } 1719 1720 static void e1000_diag_test(struct net_device *netdev, 1721 struct ethtool_test *eth_test, u64 *data) 1722 { 1723 struct e1000_adapter *adapter = netdev_priv(netdev); 1724 u16 autoneg_advertised; 1725 u8 forced_speed_duplex; 1726 u8 autoneg; 1727 bool if_running = netif_running(netdev); 1728 1729 set_bit(__E1000_TESTING, &adapter->state); 1730 1731 if (!if_running) { 1732 /* Get control of and reset hardware */ 1733 if (adapter->flags & FLAG_HAS_AMT) 1734 e1000e_get_hw_control(adapter); 1735 1736 e1000e_power_up_phy(adapter); 1737 1738 adapter->hw.phy.autoneg_wait_to_complete = 1; 1739 e1000e_reset(adapter); 1740 adapter->hw.phy.autoneg_wait_to_complete = 0; 1741 } 1742 1743 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1744 /* Offline tests */ 1745 1746 /* save speed, duplex, autoneg settings */ 1747 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1748 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1749 autoneg = adapter->hw.mac.autoneg; 1750 1751 e_info("offline testing starting\n"); 1752 1753 if (if_running) 1754 /* indicate we're in test mode */ 1755 dev_close(netdev); 1756 1757 if (e1000_reg_test(adapter, &data[0])) 1758 eth_test->flags |= ETH_TEST_FL_FAILED; 1759 1760 e1000e_reset(adapter); 1761 if (e1000_eeprom_test(adapter, &data[1])) 1762 eth_test->flags |= ETH_TEST_FL_FAILED; 1763 1764 e1000e_reset(adapter); 1765 if (e1000_intr_test(adapter, &data[2])) 1766 eth_test->flags |= ETH_TEST_FL_FAILED; 1767 1768 e1000e_reset(adapter); 1769 if (e1000_loopback_test(adapter, &data[3])) 1770 eth_test->flags |= ETH_TEST_FL_FAILED; 1771 1772 /* force this routine to wait until autoneg complete/timeout */ 1773 adapter->hw.phy.autoneg_wait_to_complete = 1; 1774 e1000e_reset(adapter); 1775 adapter->hw.phy.autoneg_wait_to_complete = 0; 1776 1777 if (e1000_link_test(adapter, &data[4])) 1778 eth_test->flags |= ETH_TEST_FL_FAILED; 1779 1780 /* restore speed, duplex, autoneg settings */ 1781 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1782 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1783 adapter->hw.mac.autoneg = autoneg; 1784 e1000e_reset(adapter); 1785 1786 clear_bit(__E1000_TESTING, &adapter->state); 1787 if (if_running) 1788 dev_open(netdev); 1789 } else { 1790 /* Online tests */ 1791 1792 e_info("online testing starting\n"); 1793 1794 /* register, eeprom, intr and loopback tests not run online */ 1795 data[0] = 0; 1796 data[1] = 0; 1797 data[2] = 0; 1798 data[3] = 0; 1799 1800 if (e1000_link_test(adapter, &data[4])) 1801 eth_test->flags |= ETH_TEST_FL_FAILED; 1802 1803 clear_bit(__E1000_TESTING, &adapter->state); 1804 } 1805 1806 if (!if_running) { 1807 e1000e_reset(adapter); 1808 1809 if (adapter->flags & FLAG_HAS_AMT) 1810 e1000e_release_hw_control(adapter); 1811 } 1812 1813 msleep_interruptible(4 * 1000); 1814 } 1815 1816 static void e1000_get_wol(struct net_device *netdev, 1817 struct ethtool_wolinfo *wol) 1818 { 1819 struct e1000_adapter *adapter = netdev_priv(netdev); 1820 1821 wol->supported = 0; 1822 wol->wolopts = 0; 1823 1824 if (!(adapter->flags & FLAG_HAS_WOL) || 1825 !device_can_wakeup(&adapter->pdev->dev)) 1826 return; 1827 1828 wol->supported = WAKE_UCAST | WAKE_MCAST | 1829 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1830 1831 /* apply any specific unsupported masks here */ 1832 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1833 wol->supported &= ~WAKE_UCAST; 1834 1835 if (adapter->wol & E1000_WUFC_EX) 1836 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1837 } 1838 1839 if (adapter->wol & E1000_WUFC_EX) 1840 wol->wolopts |= WAKE_UCAST; 1841 if (adapter->wol & E1000_WUFC_MC) 1842 wol->wolopts |= WAKE_MCAST; 1843 if (adapter->wol & E1000_WUFC_BC) 1844 wol->wolopts |= WAKE_BCAST; 1845 if (adapter->wol & E1000_WUFC_MAG) 1846 wol->wolopts |= WAKE_MAGIC; 1847 if (adapter->wol & E1000_WUFC_LNKC) 1848 wol->wolopts |= WAKE_PHY; 1849 } 1850 1851 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1852 { 1853 struct e1000_adapter *adapter = netdev_priv(netdev); 1854 1855 if (!(adapter->flags & FLAG_HAS_WOL) || 1856 !device_can_wakeup(&adapter->pdev->dev) || 1857 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1858 WAKE_MAGIC | WAKE_PHY))) 1859 return -EOPNOTSUPP; 1860 1861 /* these settings will always override what we currently have */ 1862 adapter->wol = 0; 1863 1864 if (wol->wolopts & WAKE_UCAST) 1865 adapter->wol |= E1000_WUFC_EX; 1866 if (wol->wolopts & WAKE_MCAST) 1867 adapter->wol |= E1000_WUFC_MC; 1868 if (wol->wolopts & WAKE_BCAST) 1869 adapter->wol |= E1000_WUFC_BC; 1870 if (wol->wolopts & WAKE_MAGIC) 1871 adapter->wol |= E1000_WUFC_MAG; 1872 if (wol->wolopts & WAKE_PHY) 1873 adapter->wol |= E1000_WUFC_LNKC; 1874 1875 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1876 1877 return 0; 1878 } 1879 1880 static int e1000_set_phys_id(struct net_device *netdev, 1881 enum ethtool_phys_id_state state) 1882 { 1883 struct e1000_adapter *adapter = netdev_priv(netdev); 1884 struct e1000_hw *hw = &adapter->hw; 1885 1886 switch (state) { 1887 case ETHTOOL_ID_ACTIVE: 1888 if (!hw->mac.ops.blink_led) 1889 return 2; /* cycle on/off twice per second */ 1890 1891 hw->mac.ops.blink_led(hw); 1892 break; 1893 1894 case ETHTOOL_ID_INACTIVE: 1895 if (hw->phy.type == e1000_phy_ife) 1896 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1897 hw->mac.ops.led_off(hw); 1898 hw->mac.ops.cleanup_led(hw); 1899 break; 1900 1901 case ETHTOOL_ID_ON: 1902 hw->mac.ops.led_on(hw); 1903 break; 1904 1905 case ETHTOOL_ID_OFF: 1906 hw->mac.ops.led_off(hw); 1907 break; 1908 } 1909 return 0; 1910 } 1911 1912 static int e1000_get_coalesce(struct net_device *netdev, 1913 struct ethtool_coalesce *ec) 1914 { 1915 struct e1000_adapter *adapter = netdev_priv(netdev); 1916 1917 if (adapter->itr_setting <= 4) 1918 ec->rx_coalesce_usecs = adapter->itr_setting; 1919 else 1920 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1921 1922 return 0; 1923 } 1924 1925 static int e1000_set_coalesce(struct net_device *netdev, 1926 struct ethtool_coalesce *ec) 1927 { 1928 struct e1000_adapter *adapter = netdev_priv(netdev); 1929 1930 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1931 ((ec->rx_coalesce_usecs > 4) && 1932 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1933 (ec->rx_coalesce_usecs == 2)) 1934 return -EINVAL; 1935 1936 if (ec->rx_coalesce_usecs == 4) { 1937 adapter->itr_setting = 4; 1938 adapter->itr = adapter->itr_setting; 1939 } else if (ec->rx_coalesce_usecs <= 3) { 1940 adapter->itr = 20000; 1941 adapter->itr_setting = ec->rx_coalesce_usecs; 1942 } else { 1943 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1944 adapter->itr_setting = adapter->itr & ~3; 1945 } 1946 1947 if (adapter->itr_setting != 0) 1948 e1000e_write_itr(adapter, adapter->itr); 1949 else 1950 e1000e_write_itr(adapter, 0); 1951 1952 return 0; 1953 } 1954 1955 static int e1000_nway_reset(struct net_device *netdev) 1956 { 1957 struct e1000_adapter *adapter = netdev_priv(netdev); 1958 1959 if (!netif_running(netdev)) 1960 return -EAGAIN; 1961 1962 if (!adapter->hw.mac.autoneg) 1963 return -EINVAL; 1964 1965 e1000e_reinit_locked(adapter); 1966 1967 return 0; 1968 } 1969 1970 static void e1000_get_ethtool_stats(struct net_device *netdev, 1971 struct ethtool_stats __always_unused *stats, 1972 u64 *data) 1973 { 1974 struct e1000_adapter *adapter = netdev_priv(netdev); 1975 struct rtnl_link_stats64 net_stats; 1976 int i; 1977 char *p = NULL; 1978 1979 e1000e_get_stats64(netdev, &net_stats); 1980 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1981 switch (e1000_gstrings_stats[i].type) { 1982 case NETDEV_STATS: 1983 p = (char *) &net_stats + 1984 e1000_gstrings_stats[i].stat_offset; 1985 break; 1986 case E1000_STATS: 1987 p = (char *) adapter + 1988 e1000_gstrings_stats[i].stat_offset; 1989 break; 1990 default: 1991 data[i] = 0; 1992 continue; 1993 } 1994 1995 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 1996 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1997 } 1998 } 1999 2000 static void e1000_get_strings(struct net_device __always_unused *netdev, 2001 u32 stringset, u8 *data) 2002 { 2003 u8 *p = data; 2004 int i; 2005 2006 switch (stringset) { 2007 case ETH_SS_TEST: 2008 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2009 break; 2010 case ETH_SS_STATS: 2011 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2012 memcpy(p, e1000_gstrings_stats[i].stat_string, 2013 ETH_GSTRING_LEN); 2014 p += ETH_GSTRING_LEN; 2015 } 2016 break; 2017 } 2018 } 2019 2020 static int e1000_get_rxnfc(struct net_device *netdev, 2021 struct ethtool_rxnfc *info, 2022 u32 __always_unused *rule_locs) 2023 { 2024 info->data = 0; 2025 2026 switch (info->cmd) { 2027 case ETHTOOL_GRXFH: { 2028 struct e1000_adapter *adapter = netdev_priv(netdev); 2029 struct e1000_hw *hw = &adapter->hw; 2030 u32 mrqc = er32(MRQC); 2031 2032 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2033 return 0; 2034 2035 switch (info->flow_type) { 2036 case TCP_V4_FLOW: 2037 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2038 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2039 /* fall through */ 2040 case UDP_V4_FLOW: 2041 case SCTP_V4_FLOW: 2042 case AH_ESP_V4_FLOW: 2043 case IPV4_FLOW: 2044 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2045 info->data |= RXH_IP_SRC | RXH_IP_DST; 2046 break; 2047 case TCP_V6_FLOW: 2048 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2049 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2050 /* fall through */ 2051 case UDP_V6_FLOW: 2052 case SCTP_V6_FLOW: 2053 case AH_ESP_V6_FLOW: 2054 case IPV6_FLOW: 2055 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2056 info->data |= RXH_IP_SRC | RXH_IP_DST; 2057 break; 2058 default: 2059 break; 2060 } 2061 return 0; 2062 } 2063 default: 2064 return -EOPNOTSUPP; 2065 } 2066 } 2067 2068 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2069 { 2070 struct e1000_adapter *adapter = netdev_priv(netdev); 2071 struct e1000_hw *hw = &adapter->hw; 2072 u16 cap_addr, adv_addr, lpa_addr, pcs_stat_addr, phy_data, lpi_ctrl; 2073 u32 status, ret_val; 2074 2075 if (!(adapter->flags & FLAG_IS_ICH) || 2076 !(adapter->flags2 & FLAG2_HAS_EEE)) 2077 return -EOPNOTSUPP; 2078 2079 switch (hw->phy.type) { 2080 case e1000_phy_82579: 2081 cap_addr = I82579_EEE_CAPABILITY; 2082 adv_addr = I82579_EEE_ADVERTISEMENT; 2083 lpa_addr = I82579_EEE_LP_ABILITY; 2084 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2085 break; 2086 case e1000_phy_i217: 2087 cap_addr = I217_EEE_CAPABILITY; 2088 adv_addr = I217_EEE_ADVERTISEMENT; 2089 lpa_addr = I217_EEE_LP_ABILITY; 2090 pcs_stat_addr = I217_EEE_PCS_STATUS; 2091 break; 2092 default: 2093 return -EOPNOTSUPP; 2094 } 2095 2096 ret_val = hw->phy.ops.acquire(hw); 2097 if (ret_val) 2098 return -EBUSY; 2099 2100 /* EEE Capability */ 2101 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2102 if (ret_val) 2103 goto release; 2104 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2105 2106 /* EEE Advertised */ 2107 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &phy_data); 2108 if (ret_val) 2109 goto release; 2110 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2111 2112 /* EEE Link Partner Advertised */ 2113 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2114 if (ret_val) 2115 goto release; 2116 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2117 2118 /* EEE PCS Status */ 2119 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2120 if (hw->phy.type == e1000_phy_82579) 2121 phy_data <<= 8; 2122 2123 release: 2124 hw->phy.ops.release(hw); 2125 if (ret_val) 2126 return -ENODATA; 2127 2128 e1e_rphy(hw, I82579_LPI_CTRL, &lpi_ctrl); 2129 status = er32(STATUS); 2130 2131 /* Result of the EEE auto negotiation - there is no register that 2132 * has the status of the EEE negotiation so do a best-guess based 2133 * on whether both Tx and Rx LPI indications have been received or 2134 * base it on the link speed, the EEE advertised speeds on both ends 2135 * and the speeds on which EEE is enabled locally. 2136 */ 2137 if (((phy_data & E1000_EEE_TX_LPI_RCVD) && 2138 (phy_data & E1000_EEE_RX_LPI_RCVD)) || 2139 ((status & E1000_STATUS_SPEED_100) && 2140 (edata->advertised & ADVERTISED_100baseT_Full) && 2141 (edata->lp_advertised & ADVERTISED_100baseT_Full) && 2142 (lpi_ctrl & I82579_LPI_CTRL_100_ENABLE)) || 2143 ((status & E1000_STATUS_SPEED_1000) && 2144 (edata->advertised & ADVERTISED_1000baseT_Full) && 2145 (edata->lp_advertised & ADVERTISED_1000baseT_Full) && 2146 (lpi_ctrl & I82579_LPI_CTRL_1000_ENABLE))) 2147 edata->eee_active = true; 2148 2149 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2150 edata->tx_lpi_enabled = true; 2151 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2152 2153 return 0; 2154 } 2155 2156 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2157 { 2158 struct e1000_adapter *adapter = netdev_priv(netdev); 2159 struct e1000_hw *hw = &adapter->hw; 2160 struct ethtool_eee eee_curr; 2161 s32 ret_val; 2162 2163 if (!(adapter->flags & FLAG_IS_ICH) || 2164 !(adapter->flags2 & FLAG2_HAS_EEE)) 2165 return -EOPNOTSUPP; 2166 2167 ret_val = e1000e_get_eee(netdev, &eee_curr); 2168 if (ret_val) 2169 return ret_val; 2170 2171 if (eee_curr.advertised != edata->advertised) { 2172 e_err("Setting EEE advertisement is not supported\n"); 2173 return -EINVAL; 2174 } 2175 2176 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2177 e_err("Setting EEE tx-lpi is not supported\n"); 2178 return -EINVAL; 2179 } 2180 2181 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2182 e_err("Setting EEE Tx LPI timer is not supported\n"); 2183 return -EINVAL; 2184 } 2185 2186 if (hw->dev_spec.ich8lan.eee_disable != !edata->eee_enabled) { 2187 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2188 2189 /* reset the link */ 2190 if (netif_running(netdev)) 2191 e1000e_reinit_locked(adapter); 2192 else 2193 e1000e_reset(adapter); 2194 } 2195 2196 return 0; 2197 } 2198 2199 static int e1000e_get_ts_info(struct net_device *netdev, 2200 struct ethtool_ts_info *info) 2201 { 2202 struct e1000_adapter *adapter = netdev_priv(netdev); 2203 2204 ethtool_op_get_ts_info(netdev, info); 2205 2206 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2207 return 0; 2208 2209 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2210 SOF_TIMESTAMPING_RX_HARDWARE | 2211 SOF_TIMESTAMPING_RAW_HARDWARE); 2212 2213 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); 2214 2215 info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) | 2216 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2217 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2218 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2219 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2220 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2221 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2222 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) | 2223 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) | 2224 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2225 (1 << HWTSTAMP_FILTER_ALL)); 2226 2227 if (adapter->ptp_clock) 2228 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2229 2230 return 0; 2231 } 2232 2233 static int e1000e_ethtool_begin(struct net_device *netdev) 2234 { 2235 return pm_runtime_get_sync(netdev->dev.parent); 2236 } 2237 2238 static void e1000e_ethtool_complete(struct net_device *netdev) 2239 { 2240 pm_runtime_put_sync(netdev->dev.parent); 2241 } 2242 2243 static const struct ethtool_ops e1000_ethtool_ops = { 2244 .begin = e1000e_ethtool_begin, 2245 .complete = e1000e_ethtool_complete, 2246 .get_settings = e1000_get_settings, 2247 .set_settings = e1000_set_settings, 2248 .get_drvinfo = e1000_get_drvinfo, 2249 .get_regs_len = e1000_get_regs_len, 2250 .get_regs = e1000_get_regs, 2251 .get_wol = e1000_get_wol, 2252 .set_wol = e1000_set_wol, 2253 .get_msglevel = e1000_get_msglevel, 2254 .set_msglevel = e1000_set_msglevel, 2255 .nway_reset = e1000_nway_reset, 2256 .get_link = ethtool_op_get_link, 2257 .get_eeprom_len = e1000_get_eeprom_len, 2258 .get_eeprom = e1000_get_eeprom, 2259 .set_eeprom = e1000_set_eeprom, 2260 .get_ringparam = e1000_get_ringparam, 2261 .set_ringparam = e1000_set_ringparam, 2262 .get_pauseparam = e1000_get_pauseparam, 2263 .set_pauseparam = e1000_set_pauseparam, 2264 .self_test = e1000_diag_test, 2265 .get_strings = e1000_get_strings, 2266 .set_phys_id = e1000_set_phys_id, 2267 .get_ethtool_stats = e1000_get_ethtool_stats, 2268 .get_sset_count = e1000e_get_sset_count, 2269 .get_coalesce = e1000_get_coalesce, 2270 .set_coalesce = e1000_set_coalesce, 2271 .get_rxnfc = e1000_get_rxnfc, 2272 .get_ts_info = e1000e_get_ts_info, 2273 .get_eee = e1000e_get_eee, 2274 .set_eee = e1000e_set_eee, 2275 }; 2276 2277 void e1000e_set_ethtool_ops(struct net_device *netdev) 2278 { 2279 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 2280 } 2281