1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mdio.h>
39 #include <linux/pm_runtime.h>
40 
41 #include "e1000.h"
42 
43 enum {NETDEV_STATS, E1000_STATS};
44 
45 struct e1000_stats {
46 	char stat_string[ETH_GSTRING_LEN];
47 	int type;
48 	int sizeof_stat;
49 	int stat_offset;
50 };
51 
52 #define E1000_STAT(str, m) { \
53 		.stat_string = str, \
54 		.type = E1000_STATS, \
55 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
56 		.stat_offset = offsetof(struct e1000_adapter, m) }
57 #define E1000_NETDEV_STAT(str, m) { \
58 		.stat_string = str, \
59 		.type = NETDEV_STATS, \
60 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
61 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
62 
63 static const struct e1000_stats e1000_gstrings_stats[] = {
64 	E1000_STAT("rx_packets", stats.gprc),
65 	E1000_STAT("tx_packets", stats.gptc),
66 	E1000_STAT("rx_bytes", stats.gorc),
67 	E1000_STAT("tx_bytes", stats.gotc),
68 	E1000_STAT("rx_broadcast", stats.bprc),
69 	E1000_STAT("tx_broadcast", stats.bptc),
70 	E1000_STAT("rx_multicast", stats.mprc),
71 	E1000_STAT("tx_multicast", stats.mptc),
72 	E1000_NETDEV_STAT("rx_errors", rx_errors),
73 	E1000_NETDEV_STAT("tx_errors", tx_errors),
74 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
75 	E1000_STAT("multicast", stats.mprc),
76 	E1000_STAT("collisions", stats.colc),
77 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
78 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
79 	E1000_STAT("rx_crc_errors", stats.crcerrs),
80 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
81 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
82 	E1000_STAT("rx_missed_errors", stats.mpc),
83 	E1000_STAT("tx_aborted_errors", stats.ecol),
84 	E1000_STAT("tx_carrier_errors", stats.tncrs),
85 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
86 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
87 	E1000_STAT("tx_window_errors", stats.latecol),
88 	E1000_STAT("tx_abort_late_coll", stats.latecol),
89 	E1000_STAT("tx_deferred_ok", stats.dc),
90 	E1000_STAT("tx_single_coll_ok", stats.scc),
91 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
92 	E1000_STAT("tx_timeout_count", tx_timeout_count),
93 	E1000_STAT("tx_restart_queue", restart_queue),
94 	E1000_STAT("rx_long_length_errors", stats.roc),
95 	E1000_STAT("rx_short_length_errors", stats.ruc),
96 	E1000_STAT("rx_align_errors", stats.algnerrc),
97 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
98 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
99 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
100 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
101 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
102 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
103 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
104 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
105 	E1000_STAT("rx_header_split", rx_hdr_split),
106 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
107 	E1000_STAT("tx_smbus", stats.mgptc),
108 	E1000_STAT("rx_smbus", stats.mgprc),
109 	E1000_STAT("dropped_smbus", stats.mgpdc),
110 	E1000_STAT("rx_dma_failed", rx_dma_failed),
111 	E1000_STAT("tx_dma_failed", tx_dma_failed),
112 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
113 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
114 	E1000_STAT("corr_ecc_errors", corr_errors),
115 };
116 
117 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
118 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
119 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
120 	"Register test  (offline)", "Eeprom test    (offline)",
121 	"Interrupt test (offline)", "Loopback test  (offline)",
122 	"Link test   (on/offline)"
123 };
124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
125 
126 static int e1000_get_settings(struct net_device *netdev,
127 			      struct ethtool_cmd *ecmd)
128 {
129 	struct e1000_adapter *adapter = netdev_priv(netdev);
130 	struct e1000_hw *hw = &adapter->hw;
131 	u32 speed;
132 
133 	if (hw->phy.media_type == e1000_media_type_copper) {
134 		ecmd->supported = (SUPPORTED_10baseT_Half |
135 				   SUPPORTED_10baseT_Full |
136 				   SUPPORTED_100baseT_Half |
137 				   SUPPORTED_100baseT_Full |
138 				   SUPPORTED_1000baseT_Full |
139 				   SUPPORTED_Autoneg |
140 				   SUPPORTED_TP);
141 		if (hw->phy.type == e1000_phy_ife)
142 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
143 		ecmd->advertising = ADVERTISED_TP;
144 
145 		if (hw->mac.autoneg == 1) {
146 			ecmd->advertising |= ADVERTISED_Autoneg;
147 			/* the e1000 autoneg seems to match ethtool nicely */
148 			ecmd->advertising |= hw->phy.autoneg_advertised;
149 		}
150 
151 		ecmd->port = PORT_TP;
152 		ecmd->phy_address = hw->phy.addr;
153 		ecmd->transceiver = XCVR_INTERNAL;
154 
155 	} else {
156 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
157 				     SUPPORTED_FIBRE |
158 				     SUPPORTED_Autoneg);
159 
160 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
161 				     ADVERTISED_FIBRE |
162 				     ADVERTISED_Autoneg);
163 
164 		ecmd->port = PORT_FIBRE;
165 		ecmd->transceiver = XCVR_EXTERNAL;
166 	}
167 
168 	speed = -1;
169 	ecmd->duplex = -1;
170 
171 	if (netif_running(netdev)) {
172 		if (netif_carrier_ok(netdev)) {
173 			speed = adapter->link_speed;
174 			ecmd->duplex = adapter->link_duplex - 1;
175 		}
176 	} else {
177 		u32 status = er32(STATUS);
178 		if (status & E1000_STATUS_LU) {
179 			if (status & E1000_STATUS_SPEED_1000)
180 				speed = SPEED_1000;
181 			else if (status & E1000_STATUS_SPEED_100)
182 				speed = SPEED_100;
183 			else
184 				speed = SPEED_10;
185 
186 			if (status & E1000_STATUS_FD)
187 				ecmd->duplex = DUPLEX_FULL;
188 			else
189 				ecmd->duplex = DUPLEX_HALF;
190 		}
191 	}
192 
193 	ethtool_cmd_speed_set(ecmd, speed);
194 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
195 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
196 
197 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
198 	if ((hw->phy.media_type == e1000_media_type_copper) &&
199 	    netif_carrier_ok(netdev))
200 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
201 		                                      ETH_TP_MDI;
202 	else
203 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
204 
205 	if (hw->phy.mdix == AUTO_ALL_MODES)
206 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
207 	else
208 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
209 
210 	return 0;
211 }
212 
213 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
214 {
215 	struct e1000_mac_info *mac = &adapter->hw.mac;
216 
217 	mac->autoneg = 0;
218 
219 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
220 	 * for the switch() below to work
221 	 */
222 	if ((spd & 1) || (dplx & ~1))
223 		goto err_inval;
224 
225 	/* Fiber NICs only allow 1000 gbps Full duplex */
226 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
227 	    spd != SPEED_1000 &&
228 	    dplx != DUPLEX_FULL) {
229 		goto err_inval;
230 	}
231 
232 	switch (spd + dplx) {
233 	case SPEED_10 + DUPLEX_HALF:
234 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
235 		break;
236 	case SPEED_10 + DUPLEX_FULL:
237 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
238 		break;
239 	case SPEED_100 + DUPLEX_HALF:
240 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
241 		break;
242 	case SPEED_100 + DUPLEX_FULL:
243 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
244 		break;
245 	case SPEED_1000 + DUPLEX_FULL:
246 		mac->autoneg = 1;
247 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
248 		break;
249 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
250 	default:
251 		goto err_inval;
252 	}
253 
254 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
255 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
256 
257 	return 0;
258 
259 err_inval:
260 	e_err("Unsupported Speed/Duplex configuration\n");
261 	return -EINVAL;
262 }
263 
264 static int e1000_set_settings(struct net_device *netdev,
265 			      struct ethtool_cmd *ecmd)
266 {
267 	struct e1000_adapter *adapter = netdev_priv(netdev);
268 	struct e1000_hw *hw = &adapter->hw;
269 
270 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
271 	 * cannot be changed
272 	 */
273 	if (hw->phy.ops.check_reset_block &&
274 	    hw->phy.ops.check_reset_block(hw)) {
275 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
276 		return -EINVAL;
277 	}
278 
279 	/* MDI setting is only allowed when autoneg enabled because
280 	 * some hardware doesn't allow MDI setting when speed or
281 	 * duplex is forced.
282 	 */
283 	if (ecmd->eth_tp_mdix_ctrl) {
284 		if (hw->phy.media_type != e1000_media_type_copper)
285 			return -EOPNOTSUPP;
286 
287 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
288 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
289 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
290 			return -EINVAL;
291 		}
292 	}
293 
294 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
295 		usleep_range(1000, 2000);
296 
297 	if (ecmd->autoneg == AUTONEG_ENABLE) {
298 		hw->mac.autoneg = 1;
299 		if (hw->phy.media_type == e1000_media_type_fiber)
300 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
301 						     ADVERTISED_FIBRE |
302 						     ADVERTISED_Autoneg;
303 		else
304 			hw->phy.autoneg_advertised = ecmd->advertising |
305 						     ADVERTISED_TP |
306 						     ADVERTISED_Autoneg;
307 		ecmd->advertising = hw->phy.autoneg_advertised;
308 		if (adapter->fc_autoneg)
309 			hw->fc.requested_mode = e1000_fc_default;
310 	} else {
311 		u32 speed = ethtool_cmd_speed(ecmd);
312 		/* calling this overrides forced MDI setting */
313 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
314 			clear_bit(__E1000_RESETTING, &adapter->state);
315 			return -EINVAL;
316 		}
317 	}
318 
319 	/* MDI-X => 2; MDI => 1; Auto => 3 */
320 	if (ecmd->eth_tp_mdix_ctrl) {
321 		/* fix up the value for auto (3 => 0) as zero is mapped
322 		 * internally to auto
323 		 */
324 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
325 			hw->phy.mdix = AUTO_ALL_MODES;
326 		else
327 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
328 	}
329 
330 	/* reset the link */
331 	if (netif_running(adapter->netdev)) {
332 		e1000e_down(adapter);
333 		e1000e_up(adapter);
334 	} else {
335 		e1000e_reset(adapter);
336 	}
337 
338 	clear_bit(__E1000_RESETTING, &adapter->state);
339 	return 0;
340 }
341 
342 static void e1000_get_pauseparam(struct net_device *netdev,
343 				 struct ethtool_pauseparam *pause)
344 {
345 	struct e1000_adapter *adapter = netdev_priv(netdev);
346 	struct e1000_hw *hw = &adapter->hw;
347 
348 	pause->autoneg =
349 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
350 
351 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
352 		pause->rx_pause = 1;
353 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
354 		pause->tx_pause = 1;
355 	} else if (hw->fc.current_mode == e1000_fc_full) {
356 		pause->rx_pause = 1;
357 		pause->tx_pause = 1;
358 	}
359 }
360 
361 static int e1000_set_pauseparam(struct net_device *netdev,
362 				struct ethtool_pauseparam *pause)
363 {
364 	struct e1000_adapter *adapter = netdev_priv(netdev);
365 	struct e1000_hw *hw = &adapter->hw;
366 	int retval = 0;
367 
368 	adapter->fc_autoneg = pause->autoneg;
369 
370 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
371 		usleep_range(1000, 2000);
372 
373 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
374 		hw->fc.requested_mode = e1000_fc_default;
375 		if (netif_running(adapter->netdev)) {
376 			e1000e_down(adapter);
377 			e1000e_up(adapter);
378 		} else {
379 			e1000e_reset(adapter);
380 		}
381 	} else {
382 		if (pause->rx_pause && pause->tx_pause)
383 			hw->fc.requested_mode = e1000_fc_full;
384 		else if (pause->rx_pause && !pause->tx_pause)
385 			hw->fc.requested_mode = e1000_fc_rx_pause;
386 		else if (!pause->rx_pause && pause->tx_pause)
387 			hw->fc.requested_mode = e1000_fc_tx_pause;
388 		else if (!pause->rx_pause && !pause->tx_pause)
389 			hw->fc.requested_mode = e1000_fc_none;
390 
391 		hw->fc.current_mode = hw->fc.requested_mode;
392 
393 		if (hw->phy.media_type == e1000_media_type_fiber) {
394 			retval = hw->mac.ops.setup_link(hw);
395 			/* implicit goto out */
396 		} else {
397 			retval = e1000e_force_mac_fc(hw);
398 			if (retval)
399 				goto out;
400 			e1000e_set_fc_watermarks(hw);
401 		}
402 	}
403 
404 out:
405 	clear_bit(__E1000_RESETTING, &adapter->state);
406 	return retval;
407 }
408 
409 static u32 e1000_get_msglevel(struct net_device *netdev)
410 {
411 	struct e1000_adapter *adapter = netdev_priv(netdev);
412 	return adapter->msg_enable;
413 }
414 
415 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
416 {
417 	struct e1000_adapter *adapter = netdev_priv(netdev);
418 	adapter->msg_enable = data;
419 }
420 
421 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
422 {
423 #define E1000_REGS_LEN 32 /* overestimate */
424 	return E1000_REGS_LEN * sizeof(u32);
425 }
426 
427 static void e1000_get_regs(struct net_device *netdev,
428 			   struct ethtool_regs *regs, void *p)
429 {
430 	struct e1000_adapter *adapter = netdev_priv(netdev);
431 	struct e1000_hw *hw = &adapter->hw;
432 	u32 *regs_buff = p;
433 	u16 phy_data;
434 
435 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
436 
437 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
438 			adapter->pdev->device;
439 
440 	regs_buff[0]  = er32(CTRL);
441 	regs_buff[1]  = er32(STATUS);
442 
443 	regs_buff[2]  = er32(RCTL);
444 	regs_buff[3]  = er32(RDLEN(0));
445 	regs_buff[4]  = er32(RDH(0));
446 	regs_buff[5]  = er32(RDT(0));
447 	regs_buff[6]  = er32(RDTR);
448 
449 	regs_buff[7]  = er32(TCTL);
450 	regs_buff[8]  = er32(TDLEN(0));
451 	regs_buff[9]  = er32(TDH(0));
452 	regs_buff[10] = er32(TDT(0));
453 	regs_buff[11] = er32(TIDV);
454 
455 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
456 
457 	/* ethtool doesn't use anything past this point, so all this
458 	 * code is likely legacy junk for apps that may or may not exist
459 	 */
460 	if (hw->phy.type == e1000_phy_m88) {
461 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
462 		regs_buff[13] = (u32)phy_data; /* cable length */
463 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
464 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
465 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
466 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
467 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
468 		regs_buff[18] = regs_buff[13]; /* cable polarity */
469 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
470 		regs_buff[20] = regs_buff[17]; /* polarity correction */
471 		/* phy receive errors */
472 		regs_buff[22] = adapter->phy_stats.receive_errors;
473 		regs_buff[23] = regs_buff[13]; /* mdix mode */
474 	}
475 	regs_buff[21] = 0;	/* was idle_errors */
476 	e1e_rphy(hw, MII_STAT1000, &phy_data);
477 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
478 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
479 }
480 
481 static int e1000_get_eeprom_len(struct net_device *netdev)
482 {
483 	struct e1000_adapter *adapter = netdev_priv(netdev);
484 	return adapter->hw.nvm.word_size * 2;
485 }
486 
487 static int e1000_get_eeprom(struct net_device *netdev,
488 			    struct ethtool_eeprom *eeprom, u8 *bytes)
489 {
490 	struct e1000_adapter *adapter = netdev_priv(netdev);
491 	struct e1000_hw *hw = &adapter->hw;
492 	u16 *eeprom_buff;
493 	int first_word;
494 	int last_word;
495 	int ret_val = 0;
496 	u16 i;
497 
498 	if (eeprom->len == 0)
499 		return -EINVAL;
500 
501 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
502 
503 	first_word = eeprom->offset >> 1;
504 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
505 
506 	eeprom_buff = kmalloc(sizeof(u16) *
507 			(last_word - first_word + 1), GFP_KERNEL);
508 	if (!eeprom_buff)
509 		return -ENOMEM;
510 
511 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
512 		ret_val = e1000_read_nvm(hw, first_word,
513 					 last_word - first_word + 1,
514 					 eeprom_buff);
515 	} else {
516 		for (i = 0; i < last_word - first_word + 1; i++) {
517 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
518 						      &eeprom_buff[i]);
519 			if (ret_val)
520 				break;
521 		}
522 	}
523 
524 	if (ret_val) {
525 		/* a read error occurred, throw away the result */
526 		memset(eeprom_buff, 0xff, sizeof(u16) *
527 		       (last_word - first_word + 1));
528 	} else {
529 		/* Device's eeprom is always little-endian, word addressable */
530 		for (i = 0; i < last_word - first_word + 1; i++)
531 			le16_to_cpus(&eeprom_buff[i]);
532 	}
533 
534 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
535 	kfree(eeprom_buff);
536 
537 	return ret_val;
538 }
539 
540 static int e1000_set_eeprom(struct net_device *netdev,
541 			    struct ethtool_eeprom *eeprom, u8 *bytes)
542 {
543 	struct e1000_adapter *adapter = netdev_priv(netdev);
544 	struct e1000_hw *hw = &adapter->hw;
545 	u16 *eeprom_buff;
546 	void *ptr;
547 	int max_len;
548 	int first_word;
549 	int last_word;
550 	int ret_val = 0;
551 	u16 i;
552 
553 	if (eeprom->len == 0)
554 		return -EOPNOTSUPP;
555 
556 	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
557 		return -EFAULT;
558 
559 	if (adapter->flags & FLAG_READ_ONLY_NVM)
560 		return -EINVAL;
561 
562 	max_len = hw->nvm.word_size * 2;
563 
564 	first_word = eeprom->offset >> 1;
565 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
566 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
567 	if (!eeprom_buff)
568 		return -ENOMEM;
569 
570 	ptr = (void *)eeprom_buff;
571 
572 	if (eeprom->offset & 1) {
573 		/* need read/modify/write of first changed EEPROM word */
574 		/* only the second byte of the word is being modified */
575 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
576 		ptr++;
577 	}
578 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
579 		/* need read/modify/write of last changed EEPROM word */
580 		/* only the first byte of the word is being modified */
581 		ret_val = e1000_read_nvm(hw, last_word, 1,
582 				  &eeprom_buff[last_word - first_word]);
583 
584 	if (ret_val)
585 		goto out;
586 
587 	/* Device's eeprom is always little-endian, word addressable */
588 	for (i = 0; i < last_word - first_word + 1; i++)
589 		le16_to_cpus(&eeprom_buff[i]);
590 
591 	memcpy(ptr, bytes, eeprom->len);
592 
593 	for (i = 0; i < last_word - first_word + 1; i++)
594 		cpu_to_le16s(&eeprom_buff[i]);
595 
596 	ret_val = e1000_write_nvm(hw, first_word,
597 				  last_word - first_word + 1, eeprom_buff);
598 
599 	if (ret_val)
600 		goto out;
601 
602 	/* Update the checksum over the first part of the EEPROM if needed
603 	 * and flush shadow RAM for applicable controllers
604 	 */
605 	if ((first_word <= NVM_CHECKSUM_REG) ||
606 	    (hw->mac.type == e1000_82583) ||
607 	    (hw->mac.type == e1000_82574) ||
608 	    (hw->mac.type == e1000_82573))
609 		ret_val = e1000e_update_nvm_checksum(hw);
610 
611 out:
612 	kfree(eeprom_buff);
613 	return ret_val;
614 }
615 
616 static void e1000_get_drvinfo(struct net_device *netdev,
617 			      struct ethtool_drvinfo *drvinfo)
618 {
619 	struct e1000_adapter *adapter = netdev_priv(netdev);
620 
621 	strlcpy(drvinfo->driver,  e1000e_driver_name,
622 		sizeof(drvinfo->driver));
623 	strlcpy(drvinfo->version, e1000e_driver_version,
624 		sizeof(drvinfo->version));
625 
626 	/* EEPROM image version # is reported as firmware version # for
627 	 * PCI-E controllers
628 	 */
629 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
630 		"%d.%d-%d",
631 		(adapter->eeprom_vers & 0xF000) >> 12,
632 		(adapter->eeprom_vers & 0x0FF0) >> 4,
633 		(adapter->eeprom_vers & 0x000F));
634 
635 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
636 		sizeof(drvinfo->bus_info));
637 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
638 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
639 }
640 
641 static void e1000_get_ringparam(struct net_device *netdev,
642 				struct ethtool_ringparam *ring)
643 {
644 	struct e1000_adapter *adapter = netdev_priv(netdev);
645 
646 	ring->rx_max_pending = E1000_MAX_RXD;
647 	ring->tx_max_pending = E1000_MAX_TXD;
648 	ring->rx_pending = adapter->rx_ring_count;
649 	ring->tx_pending = adapter->tx_ring_count;
650 }
651 
652 static int e1000_set_ringparam(struct net_device *netdev,
653 			       struct ethtool_ringparam *ring)
654 {
655 	struct e1000_adapter *adapter = netdev_priv(netdev);
656 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
657 	int err = 0, size = sizeof(struct e1000_ring);
658 	bool set_tx = false, set_rx = false;
659 	u16 new_rx_count, new_tx_count;
660 
661 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
662 		return -EINVAL;
663 
664 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
665 			       E1000_MAX_RXD);
666 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
667 
668 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
669 			       E1000_MAX_TXD);
670 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
671 
672 	if ((new_tx_count == adapter->tx_ring_count) &&
673 	    (new_rx_count == adapter->rx_ring_count))
674 		/* nothing to do */
675 		return 0;
676 
677 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
678 		usleep_range(1000, 2000);
679 
680 	if (!netif_running(adapter->netdev)) {
681 		/* Set counts now and allocate resources during open() */
682 		adapter->tx_ring->count = new_tx_count;
683 		adapter->rx_ring->count = new_rx_count;
684 		adapter->tx_ring_count = new_tx_count;
685 		adapter->rx_ring_count = new_rx_count;
686 		goto clear_reset;
687 	}
688 
689 	set_tx = (new_tx_count != adapter->tx_ring_count);
690 	set_rx = (new_rx_count != adapter->rx_ring_count);
691 
692 	/* Allocate temporary storage for ring updates */
693 	if (set_tx) {
694 		temp_tx = vmalloc(size);
695 		if (!temp_tx) {
696 			err = -ENOMEM;
697 			goto free_temp;
698 		}
699 	}
700 	if (set_rx) {
701 		temp_rx = vmalloc(size);
702 		if (!temp_rx) {
703 			err = -ENOMEM;
704 			goto free_temp;
705 		}
706 	}
707 
708 	e1000e_down(adapter);
709 
710 	/* We can't just free everything and then setup again, because the
711 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
712 	 * structs.  First, attempt to allocate new resources...
713 	 */
714 	if (set_tx) {
715 		memcpy(temp_tx, adapter->tx_ring, size);
716 		temp_tx->count = new_tx_count;
717 		err = e1000e_setup_tx_resources(temp_tx);
718 		if (err)
719 			goto err_setup;
720 	}
721 	if (set_rx) {
722 		memcpy(temp_rx, adapter->rx_ring, size);
723 		temp_rx->count = new_rx_count;
724 		err = e1000e_setup_rx_resources(temp_rx);
725 		if (err)
726 			goto err_setup_rx;
727 	}
728 
729 	/* ...then free the old resources and copy back any new ring data */
730 	if (set_tx) {
731 		e1000e_free_tx_resources(adapter->tx_ring);
732 		memcpy(adapter->tx_ring, temp_tx, size);
733 		adapter->tx_ring_count = new_tx_count;
734 	}
735 	if (set_rx) {
736 		e1000e_free_rx_resources(adapter->rx_ring);
737 		memcpy(adapter->rx_ring, temp_rx, size);
738 		adapter->rx_ring_count = new_rx_count;
739 	}
740 
741 err_setup_rx:
742 	if (err && set_tx)
743 		e1000e_free_tx_resources(temp_tx);
744 err_setup:
745 	e1000e_up(adapter);
746 free_temp:
747 	vfree(temp_tx);
748 	vfree(temp_rx);
749 clear_reset:
750 	clear_bit(__E1000_RESETTING, &adapter->state);
751 	return err;
752 }
753 
754 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
755 			     int reg, int offset, u32 mask, u32 write)
756 {
757 	u32 pat, val;
758 	static const u32 test[] = {
759 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
760 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
761 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
762 				      (test[pat] & write));
763 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
764 		if (val != (test[pat] & write & mask)) {
765 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
766 			      reg + (offset << 2), val,
767 			      (test[pat] & write & mask));
768 			*data = reg;
769 			return 1;
770 		}
771 	}
772 	return 0;
773 }
774 
775 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
776 			      int reg, u32 mask, u32 write)
777 {
778 	u32 val;
779 	__ew32(&adapter->hw, reg, write & mask);
780 	val = __er32(&adapter->hw, reg);
781 	if ((write & mask) != (val & mask)) {
782 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
783 		      reg, (val & mask), (write & mask));
784 		*data = reg;
785 		return 1;
786 	}
787 	return 0;
788 }
789 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
790 	do {                                                                   \
791 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
792 			return 1;                                              \
793 	} while (0)
794 #define REG_PATTERN_TEST(reg, mask, write)                                     \
795 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
796 
797 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
798 	do {                                                                   \
799 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
800 			return 1;                                              \
801 	} while (0)
802 
803 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
804 {
805 	struct e1000_hw *hw = &adapter->hw;
806 	struct e1000_mac_info *mac = &adapter->hw.mac;
807 	u32 value;
808 	u32 before;
809 	u32 after;
810 	u32 i;
811 	u32 toggle;
812 	u32 mask;
813 	u32 wlock_mac = 0;
814 
815 	/* The status register is Read Only, so a write should fail.
816 	 * Some bits that get toggled are ignored.
817 	 */
818 	switch (mac->type) {
819 	/* there are several bits on newer hardware that are r/w */
820 	case e1000_82571:
821 	case e1000_82572:
822 	case e1000_80003es2lan:
823 		toggle = 0x7FFFF3FF;
824 		break;
825         default:
826 		toggle = 0x7FFFF033;
827 		break;
828 	}
829 
830 	before = er32(STATUS);
831 	value = (er32(STATUS) & toggle);
832 	ew32(STATUS, toggle);
833 	after = er32(STATUS) & toggle;
834 	if (value != after) {
835 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
836 		      after, value);
837 		*data = 1;
838 		return 1;
839 	}
840 	/* restore previous status */
841 	ew32(STATUS, before);
842 
843 	if (!(adapter->flags & FLAG_IS_ICH)) {
844 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
845 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
846 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
847 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
848 	}
849 
850 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
851 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
852 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
853 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
854 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
855 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
856 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
857 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
858 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
859 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
860 
861 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
862 
863 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
864 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
865 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
866 
867 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
868 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
869 	if (!(adapter->flags & FLAG_IS_ICH))
870 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
871 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
872 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
873 	mask = 0x8003FFFF;
874 	switch (mac->type) {
875 	case e1000_ich10lan:
876 	case e1000_pchlan:
877 	case e1000_pch2lan:
878 	case e1000_pch_lpt:
879 		mask |= (1 << 18);
880 		break;
881 	default:
882 		break;
883 	}
884 
885 	if (mac->type == e1000_pch_lpt)
886 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
887 		    E1000_FWSM_WLOCK_MAC_SHIFT;
888 
889 	for (i = 0; i < mac->rar_entry_count; i++) {
890 		if (mac->type == e1000_pch_lpt) {
891 			/* Cannot test write-protected SHRAL[n] registers */
892 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
893 				continue;
894 
895 			/* SHRAH[9] different than the others */
896 			if (i == 10)
897 				mask |= (1 << 30);
898 			else
899 				mask &= ~(1 << 30);
900 		}
901 
902 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
903 				       0xFFFFFFFF);
904 	}
905 
906 	for (i = 0; i < mac->mta_reg_count; i++)
907 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
908 
909 	*data = 0;
910 
911 	return 0;
912 }
913 
914 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
915 {
916 	u16 temp;
917 	u16 checksum = 0;
918 	u16 i;
919 
920 	*data = 0;
921 	/* Read and add up the contents of the EEPROM */
922 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
923 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
924 			*data = 1;
925 			return *data;
926 		}
927 		checksum += temp;
928 	}
929 
930 	/* If Checksum is not Correct return error else test passed */
931 	if ((checksum != (u16) NVM_SUM) && !(*data))
932 		*data = 2;
933 
934 	return *data;
935 }
936 
937 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
938 {
939 	struct net_device *netdev = (struct net_device *) data;
940 	struct e1000_adapter *adapter = netdev_priv(netdev);
941 	struct e1000_hw *hw = &adapter->hw;
942 
943 	adapter->test_icr |= er32(ICR);
944 
945 	return IRQ_HANDLED;
946 }
947 
948 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
949 {
950 	struct net_device *netdev = adapter->netdev;
951 	struct e1000_hw *hw = &adapter->hw;
952 	u32 mask;
953 	u32 shared_int = 1;
954 	u32 irq = adapter->pdev->irq;
955 	int i;
956 	int ret_val = 0;
957 	int int_mode = E1000E_INT_MODE_LEGACY;
958 
959 	*data = 0;
960 
961 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
962 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
963 		int_mode = adapter->int_mode;
964 		e1000e_reset_interrupt_capability(adapter);
965 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
966 		e1000e_set_interrupt_capability(adapter);
967 	}
968 	/* Hook up test interrupt handler just for this test */
969 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
970 			 netdev)) {
971 		shared_int = 0;
972 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
973 		 netdev->name, netdev)) {
974 		*data = 1;
975 		ret_val = -1;
976 		goto out;
977 	}
978 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
979 
980 	/* Disable all the interrupts */
981 	ew32(IMC, 0xFFFFFFFF);
982 	e1e_flush();
983 	usleep_range(10000, 20000);
984 
985 	/* Test each interrupt */
986 	for (i = 0; i < 10; i++) {
987 		/* Interrupt to test */
988 		mask = 1 << i;
989 
990 		if (adapter->flags & FLAG_IS_ICH) {
991 			switch (mask) {
992 			case E1000_ICR_RXSEQ:
993 				continue;
994 			case 0x00000100:
995 				if (adapter->hw.mac.type == e1000_ich8lan ||
996 				    adapter->hw.mac.type == e1000_ich9lan)
997 					continue;
998 				break;
999 			default:
1000 				break;
1001 			}
1002 		}
1003 
1004 		if (!shared_int) {
1005 			/* Disable the interrupt to be reported in
1006 			 * the cause register and then force the same
1007 			 * interrupt and see if one gets posted.  If
1008 			 * an interrupt was posted to the bus, the
1009 			 * test failed.
1010 			 */
1011 			adapter->test_icr = 0;
1012 			ew32(IMC, mask);
1013 			ew32(ICS, mask);
1014 			e1e_flush();
1015 			usleep_range(10000, 20000);
1016 
1017 			if (adapter->test_icr & mask) {
1018 				*data = 3;
1019 				break;
1020 			}
1021 		}
1022 
1023 		/* Enable the interrupt to be reported in
1024 		 * the cause register and then force the same
1025 		 * interrupt and see if one gets posted.  If
1026 		 * an interrupt was not posted to the bus, the
1027 		 * test failed.
1028 		 */
1029 		adapter->test_icr = 0;
1030 		ew32(IMS, mask);
1031 		ew32(ICS, mask);
1032 		e1e_flush();
1033 		usleep_range(10000, 20000);
1034 
1035 		if (!(adapter->test_icr & mask)) {
1036 			*data = 4;
1037 			break;
1038 		}
1039 
1040 		if (!shared_int) {
1041 			/* Disable the other interrupts to be reported in
1042 			 * the cause register and then force the other
1043 			 * interrupts and see if any get posted.  If
1044 			 * an interrupt was posted to the bus, the
1045 			 * test failed.
1046 			 */
1047 			adapter->test_icr = 0;
1048 			ew32(IMC, ~mask & 0x00007FFF);
1049 			ew32(ICS, ~mask & 0x00007FFF);
1050 			e1e_flush();
1051 			usleep_range(10000, 20000);
1052 
1053 			if (adapter->test_icr) {
1054 				*data = 5;
1055 				break;
1056 			}
1057 		}
1058 	}
1059 
1060 	/* Disable all the interrupts */
1061 	ew32(IMC, 0xFFFFFFFF);
1062 	e1e_flush();
1063 	usleep_range(10000, 20000);
1064 
1065 	/* Unhook test interrupt handler */
1066 	free_irq(irq, netdev);
1067 
1068 out:
1069 	if (int_mode == E1000E_INT_MODE_MSIX) {
1070 		e1000e_reset_interrupt_capability(adapter);
1071 		adapter->int_mode = int_mode;
1072 		e1000e_set_interrupt_capability(adapter);
1073 	}
1074 
1075 	return ret_val;
1076 }
1077 
1078 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1079 {
1080 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1081 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1082 	struct pci_dev *pdev = adapter->pdev;
1083 	int i;
1084 
1085 	if (tx_ring->desc && tx_ring->buffer_info) {
1086 		for (i = 0; i < tx_ring->count; i++) {
1087 			if (tx_ring->buffer_info[i].dma)
1088 				dma_unmap_single(&pdev->dev,
1089 					tx_ring->buffer_info[i].dma,
1090 					tx_ring->buffer_info[i].length,
1091 					DMA_TO_DEVICE);
1092 			if (tx_ring->buffer_info[i].skb)
1093 				dev_kfree_skb(tx_ring->buffer_info[i].skb);
1094 		}
1095 	}
1096 
1097 	if (rx_ring->desc && rx_ring->buffer_info) {
1098 		for (i = 0; i < rx_ring->count; i++) {
1099 			if (rx_ring->buffer_info[i].dma)
1100 				dma_unmap_single(&pdev->dev,
1101 					rx_ring->buffer_info[i].dma,
1102 					2048, DMA_FROM_DEVICE);
1103 			if (rx_ring->buffer_info[i].skb)
1104 				dev_kfree_skb(rx_ring->buffer_info[i].skb);
1105 		}
1106 	}
1107 
1108 	if (tx_ring->desc) {
1109 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1110 				  tx_ring->dma);
1111 		tx_ring->desc = NULL;
1112 	}
1113 	if (rx_ring->desc) {
1114 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1115 				  rx_ring->dma);
1116 		rx_ring->desc = NULL;
1117 	}
1118 
1119 	kfree(tx_ring->buffer_info);
1120 	tx_ring->buffer_info = NULL;
1121 	kfree(rx_ring->buffer_info);
1122 	rx_ring->buffer_info = NULL;
1123 }
1124 
1125 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1126 {
1127 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1128 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1129 	struct pci_dev *pdev = adapter->pdev;
1130 	struct e1000_hw *hw = &adapter->hw;
1131 	u32 rctl;
1132 	int i;
1133 	int ret_val;
1134 
1135 	/* Setup Tx descriptor ring and Tx buffers */
1136 
1137 	if (!tx_ring->count)
1138 		tx_ring->count = E1000_DEFAULT_TXD;
1139 
1140 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1141 				       sizeof(struct e1000_buffer),
1142 				       GFP_KERNEL);
1143 	if (!tx_ring->buffer_info) {
1144 		ret_val = 1;
1145 		goto err_nomem;
1146 	}
1147 
1148 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1149 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1150 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1151 					   &tx_ring->dma, GFP_KERNEL);
1152 	if (!tx_ring->desc) {
1153 		ret_val = 2;
1154 		goto err_nomem;
1155 	}
1156 	tx_ring->next_to_use = 0;
1157 	tx_ring->next_to_clean = 0;
1158 
1159 	ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1160 	ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1161 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1162 	ew32(TDH(0), 0);
1163 	ew32(TDT(0), 0);
1164 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1165 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1166 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1167 
1168 	for (i = 0; i < tx_ring->count; i++) {
1169 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1170 		struct sk_buff *skb;
1171 		unsigned int skb_size = 1024;
1172 
1173 		skb = alloc_skb(skb_size, GFP_KERNEL);
1174 		if (!skb) {
1175 			ret_val = 3;
1176 			goto err_nomem;
1177 		}
1178 		skb_put(skb, skb_size);
1179 		tx_ring->buffer_info[i].skb = skb;
1180 		tx_ring->buffer_info[i].length = skb->len;
1181 		tx_ring->buffer_info[i].dma =
1182 			dma_map_single(&pdev->dev, skb->data, skb->len,
1183 				       DMA_TO_DEVICE);
1184 		if (dma_mapping_error(&pdev->dev,
1185 				      tx_ring->buffer_info[i].dma)) {
1186 			ret_val = 4;
1187 			goto err_nomem;
1188 		}
1189 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1190 		tx_desc->lower.data = cpu_to_le32(skb->len);
1191 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1192 						   E1000_TXD_CMD_IFCS |
1193 						   E1000_TXD_CMD_RS);
1194 		tx_desc->upper.data = 0;
1195 	}
1196 
1197 	/* Setup Rx descriptor ring and Rx buffers */
1198 
1199 	if (!rx_ring->count)
1200 		rx_ring->count = E1000_DEFAULT_RXD;
1201 
1202 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1203 				       sizeof(struct e1000_buffer),
1204 				       GFP_KERNEL);
1205 	if (!rx_ring->buffer_info) {
1206 		ret_val = 5;
1207 		goto err_nomem;
1208 	}
1209 
1210 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1211 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1212 					   &rx_ring->dma, GFP_KERNEL);
1213 	if (!rx_ring->desc) {
1214 		ret_val = 6;
1215 		goto err_nomem;
1216 	}
1217 	rx_ring->next_to_use = 0;
1218 	rx_ring->next_to_clean = 0;
1219 
1220 	rctl = er32(RCTL);
1221 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1222 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1223 	ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1224 	ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1225 	ew32(RDLEN(0), rx_ring->size);
1226 	ew32(RDH(0), 0);
1227 	ew32(RDT(0), 0);
1228 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1229 		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1230 		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1231 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1232 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1233 	ew32(RCTL, rctl);
1234 
1235 	for (i = 0; i < rx_ring->count; i++) {
1236 		union e1000_rx_desc_extended *rx_desc;
1237 		struct sk_buff *skb;
1238 
1239 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1240 		if (!skb) {
1241 			ret_val = 7;
1242 			goto err_nomem;
1243 		}
1244 		skb_reserve(skb, NET_IP_ALIGN);
1245 		rx_ring->buffer_info[i].skb = skb;
1246 		rx_ring->buffer_info[i].dma =
1247 			dma_map_single(&pdev->dev, skb->data, 2048,
1248 				       DMA_FROM_DEVICE);
1249 		if (dma_mapping_error(&pdev->dev,
1250 				      rx_ring->buffer_info[i].dma)) {
1251 			ret_val = 8;
1252 			goto err_nomem;
1253 		}
1254 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1255 		rx_desc->read.buffer_addr =
1256 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1257 		memset(skb->data, 0x00, skb->len);
1258 	}
1259 
1260 	return 0;
1261 
1262 err_nomem:
1263 	e1000_free_desc_rings(adapter);
1264 	return ret_val;
1265 }
1266 
1267 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1268 {
1269 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1270 	e1e_wphy(&adapter->hw, 29, 0x001F);
1271 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1272 	e1e_wphy(&adapter->hw, 29, 0x001A);
1273 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1274 }
1275 
1276 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1277 {
1278 	struct e1000_hw *hw = &adapter->hw;
1279 	u32 ctrl_reg = 0;
1280 	u16 phy_reg = 0;
1281 	s32 ret_val = 0;
1282 
1283 	hw->mac.autoneg = 0;
1284 
1285 	if (hw->phy.type == e1000_phy_ife) {
1286 		/* force 100, set loopback */
1287 		e1e_wphy(hw, MII_BMCR, 0x6100);
1288 
1289 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1290 		ctrl_reg = er32(CTRL);
1291 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1292 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1293 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1294 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1295 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1296 
1297 		ew32(CTRL, ctrl_reg);
1298 		e1e_flush();
1299 		udelay(500);
1300 
1301 		return 0;
1302 	}
1303 
1304 	/* Specific PHY configuration for loopback */
1305 	switch (hw->phy.type) {
1306 	case e1000_phy_m88:
1307 		/* Auto-MDI/MDIX Off */
1308 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1309 		/* reset to update Auto-MDI/MDIX */
1310 		e1e_wphy(hw, MII_BMCR, 0x9140);
1311 		/* autoneg off */
1312 		e1e_wphy(hw, MII_BMCR, 0x8140);
1313 		break;
1314 	case e1000_phy_gg82563:
1315 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1316 		break;
1317 	case e1000_phy_bm:
1318 		/* Set Default MAC Interface speed to 1GB */
1319 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1320 		phy_reg &= ~0x0007;
1321 		phy_reg |= 0x006;
1322 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1323 		/* Assert SW reset for above settings to take effect */
1324 		hw->phy.ops.commit(hw);
1325 		mdelay(1);
1326 		/* Force Full Duplex */
1327 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1328 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1329 		/* Set Link Up (in force link) */
1330 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1331 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1332 		/* Force Link */
1333 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1334 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1335 		/* Set Early Link Enable */
1336 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1337 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1338 		break;
1339 	case e1000_phy_82577:
1340 	case e1000_phy_82578:
1341 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1342 		ret_val = hw->phy.ops.acquire(hw);
1343 		if (ret_val) {
1344 			e_err("Cannot setup 1Gbps loopback.\n");
1345 			return ret_val;
1346 		}
1347 		e1000_configure_k1_ich8lan(hw, false);
1348 		hw->phy.ops.release(hw);
1349 		break;
1350 	case e1000_phy_82579:
1351 		/* Disable PHY energy detect power down */
1352 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1353 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1354 		/* Disable full chip energy detect */
1355 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1356 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1357 		/* Enable loopback on the PHY */
1358 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1359 		break;
1360 	default:
1361 		break;
1362 	}
1363 
1364 	/* force 1000, set loopback */
1365 	e1e_wphy(hw, MII_BMCR, 0x4140);
1366 	mdelay(250);
1367 
1368 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1369 	ctrl_reg = er32(CTRL);
1370 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1371 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1372 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1373 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1374 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1375 
1376 	if (adapter->flags & FLAG_IS_ICH)
1377 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1378 
1379 	if (hw->phy.media_type == e1000_media_type_copper &&
1380 	    hw->phy.type == e1000_phy_m88) {
1381 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1382 	} else {
1383 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1384 		 * detected.
1385 		 */
1386 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1387 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1388 	}
1389 
1390 	ew32(CTRL, ctrl_reg);
1391 
1392 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1393 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1394 	 */
1395 	if (hw->phy.type == e1000_phy_m88)
1396 		e1000_phy_disable_receiver(adapter);
1397 
1398 	udelay(500);
1399 
1400 	return 0;
1401 }
1402 
1403 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1404 {
1405 	struct e1000_hw *hw = &adapter->hw;
1406 	u32 ctrl = er32(CTRL);
1407 	int link;
1408 
1409 	/* special requirements for 82571/82572 fiber adapters */
1410 
1411 	/* jump through hoops to make sure link is up because serdes
1412 	 * link is hardwired up
1413 	 */
1414 	ctrl |= E1000_CTRL_SLU;
1415 	ew32(CTRL, ctrl);
1416 
1417 	/* disable autoneg */
1418 	ctrl = er32(TXCW);
1419 	ctrl &= ~(1 << 31);
1420 	ew32(TXCW, ctrl);
1421 
1422 	link = (er32(STATUS) & E1000_STATUS_LU);
1423 
1424 	if (!link) {
1425 		/* set invert loss of signal */
1426 		ctrl = er32(CTRL);
1427 		ctrl |= E1000_CTRL_ILOS;
1428 		ew32(CTRL, ctrl);
1429 	}
1430 
1431 	/* special write to serdes control register to enable SerDes analog
1432 	 * loopback
1433 	 */
1434 #define E1000_SERDES_LB_ON 0x410
1435 	ew32(SCTL, E1000_SERDES_LB_ON);
1436 	e1e_flush();
1437 	usleep_range(10000, 20000);
1438 
1439 	return 0;
1440 }
1441 
1442 /* only call this for fiber/serdes connections to es2lan */
1443 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1444 {
1445 	struct e1000_hw *hw = &adapter->hw;
1446 	u32 ctrlext = er32(CTRL_EXT);
1447 	u32 ctrl = er32(CTRL);
1448 
1449 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1450 	 * on mac_type 80003es2lan)
1451 	 */
1452 	adapter->tx_fifo_head = ctrlext;
1453 
1454 	/* clear the serdes mode bits, putting the device into mac loopback */
1455 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1456 	ew32(CTRL_EXT, ctrlext);
1457 
1458 	/* force speed to 1000/FD, link up */
1459 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1460 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1461 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1462 	ew32(CTRL, ctrl);
1463 
1464 	/* set mac loopback */
1465 	ctrl = er32(RCTL);
1466 	ctrl |= E1000_RCTL_LBM_MAC;
1467 	ew32(RCTL, ctrl);
1468 
1469 	/* set testing mode parameters (no need to reset later) */
1470 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1471 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1472 	ew32(KMRNCTRLSTA,
1473 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1474 
1475 	return 0;
1476 }
1477 
1478 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1479 {
1480 	struct e1000_hw *hw = &adapter->hw;
1481 	u32 rctl;
1482 
1483 	if (hw->phy.media_type == e1000_media_type_fiber ||
1484 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1485 		switch (hw->mac.type) {
1486 		case e1000_80003es2lan:
1487 			return e1000_set_es2lan_mac_loopback(adapter);
1488 			break;
1489 		case e1000_82571:
1490 		case e1000_82572:
1491 			return e1000_set_82571_fiber_loopback(adapter);
1492 			break;
1493 		default:
1494 			rctl = er32(RCTL);
1495 			rctl |= E1000_RCTL_LBM_TCVR;
1496 			ew32(RCTL, rctl);
1497 			return 0;
1498 		}
1499 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1500 		return e1000_integrated_phy_loopback(adapter);
1501 	}
1502 
1503 	return 7;
1504 }
1505 
1506 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1507 {
1508 	struct e1000_hw *hw = &adapter->hw;
1509 	u32 rctl;
1510 	u16 phy_reg;
1511 
1512 	rctl = er32(RCTL);
1513 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1514 	ew32(RCTL, rctl);
1515 
1516 	switch (hw->mac.type) {
1517 	case e1000_80003es2lan:
1518 		if (hw->phy.media_type == e1000_media_type_fiber ||
1519 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1520 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1521 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1522 			adapter->tx_fifo_head = 0;
1523 		}
1524 		/* fall through */
1525 	case e1000_82571:
1526 	case e1000_82572:
1527 		if (hw->phy.media_type == e1000_media_type_fiber ||
1528 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1529 #define E1000_SERDES_LB_OFF 0x400
1530 			ew32(SCTL, E1000_SERDES_LB_OFF);
1531 			e1e_flush();
1532 			usleep_range(10000, 20000);
1533 			break;
1534 		}
1535 		/* Fall Through */
1536 	default:
1537 		hw->mac.autoneg = 1;
1538 		if (hw->phy.type == e1000_phy_gg82563)
1539 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1540 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1541 		if (phy_reg & BMCR_LOOPBACK) {
1542 			phy_reg &= ~BMCR_LOOPBACK;
1543 			e1e_wphy(hw, MII_BMCR, phy_reg);
1544 			if (hw->phy.ops.commit)
1545 				hw->phy.ops.commit(hw);
1546 		}
1547 		break;
1548 	}
1549 }
1550 
1551 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1552 				      unsigned int frame_size)
1553 {
1554 	memset(skb->data, 0xFF, frame_size);
1555 	frame_size &= ~1;
1556 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1557 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1558 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1559 }
1560 
1561 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1562 				    unsigned int frame_size)
1563 {
1564 	frame_size &= ~1;
1565 	if (*(skb->data + 3) == 0xFF)
1566 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1567 		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
1568 			return 0;
1569 	return 13;
1570 }
1571 
1572 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1573 {
1574 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1575 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1576 	struct pci_dev *pdev = adapter->pdev;
1577 	struct e1000_hw *hw = &adapter->hw;
1578 	int i, j, k, l;
1579 	int lc;
1580 	int good_cnt;
1581 	int ret_val = 0;
1582 	unsigned long time;
1583 
1584 	ew32(RDT(0), rx_ring->count - 1);
1585 
1586 	/* Calculate the loop count based on the largest descriptor ring
1587 	 * The idea is to wrap the largest ring a number of times using 64
1588 	 * send/receive pairs during each loop
1589 	 */
1590 
1591 	if (rx_ring->count <= tx_ring->count)
1592 		lc = ((tx_ring->count / 64) * 2) + 1;
1593 	else
1594 		lc = ((rx_ring->count / 64) * 2) + 1;
1595 
1596 	k = 0;
1597 	l = 0;
1598 	for (j = 0; j <= lc; j++) { /* loop count loop */
1599 		for (i = 0; i < 64; i++) { /* send the packets */
1600 			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1601 						  1024);
1602 			dma_sync_single_for_device(&pdev->dev,
1603 					tx_ring->buffer_info[k].dma,
1604 					tx_ring->buffer_info[k].length,
1605 					DMA_TO_DEVICE);
1606 			k++;
1607 			if (k == tx_ring->count)
1608 				k = 0;
1609 		}
1610 		ew32(TDT(0), k);
1611 		e1e_flush();
1612 		msleep(200);
1613 		time = jiffies; /* set the start time for the receive */
1614 		good_cnt = 0;
1615 		do { /* receive the sent packets */
1616 			dma_sync_single_for_cpu(&pdev->dev,
1617 					rx_ring->buffer_info[l].dma, 2048,
1618 					DMA_FROM_DEVICE);
1619 
1620 			ret_val = e1000_check_lbtest_frame(
1621 					rx_ring->buffer_info[l].skb, 1024);
1622 			if (!ret_val)
1623 				good_cnt++;
1624 			l++;
1625 			if (l == rx_ring->count)
1626 				l = 0;
1627 			/* time + 20 msecs (200 msecs on 2.4) is more than
1628 			 * enough time to complete the receives, if it's
1629 			 * exceeded, break and error off
1630 			 */
1631 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1632 		if (good_cnt != 64) {
1633 			ret_val = 13; /* ret_val is the same as mis-compare */
1634 			break;
1635 		}
1636 		if (jiffies >= (time + 20)) {
1637 			ret_val = 14; /* error code for time out error */
1638 			break;
1639 		}
1640 	} /* end loop count loop */
1641 	return ret_val;
1642 }
1643 
1644 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1645 {
1646 	struct e1000_hw *hw = &adapter->hw;
1647 
1648 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1649 	if (hw->phy.ops.check_reset_block &&
1650 	    hw->phy.ops.check_reset_block(hw)) {
1651 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1652 		*data = 0;
1653 		goto out;
1654 	}
1655 
1656 	*data = e1000_setup_desc_rings(adapter);
1657 	if (*data)
1658 		goto out;
1659 
1660 	*data = e1000_setup_loopback_test(adapter);
1661 	if (*data)
1662 		goto err_loopback;
1663 
1664 	*data = e1000_run_loopback_test(adapter);
1665 	e1000_loopback_cleanup(adapter);
1666 
1667 err_loopback:
1668 	e1000_free_desc_rings(adapter);
1669 out:
1670 	return *data;
1671 }
1672 
1673 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1674 {
1675 	struct e1000_hw *hw = &adapter->hw;
1676 
1677 	*data = 0;
1678 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1679 		int i = 0;
1680 		hw->mac.serdes_has_link = false;
1681 
1682 		/* On some blade server designs, link establishment
1683 		 * could take as long as 2-3 minutes
1684 		 */
1685 		do {
1686 			hw->mac.ops.check_for_link(hw);
1687 			if (hw->mac.serdes_has_link)
1688 				return *data;
1689 			msleep(20);
1690 		} while (i++ < 3750);
1691 
1692 		*data = 1;
1693 	} else {
1694 		hw->mac.ops.check_for_link(hw);
1695 		if (hw->mac.autoneg)
1696 			/* On some Phy/switch combinations, link establishment
1697 			 * can take a few seconds more than expected.
1698 			 */
1699 			msleep(5000);
1700 
1701 		if (!(er32(STATUS) & E1000_STATUS_LU))
1702 			*data = 1;
1703 	}
1704 	return *data;
1705 }
1706 
1707 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1708 				 int sset)
1709 {
1710 	switch (sset) {
1711 	case ETH_SS_TEST:
1712 		return E1000_TEST_LEN;
1713 	case ETH_SS_STATS:
1714 		return E1000_STATS_LEN;
1715 	default:
1716 		return -EOPNOTSUPP;
1717 	}
1718 }
1719 
1720 static void e1000_diag_test(struct net_device *netdev,
1721 			    struct ethtool_test *eth_test, u64 *data)
1722 {
1723 	struct e1000_adapter *adapter = netdev_priv(netdev);
1724 	u16 autoneg_advertised;
1725 	u8 forced_speed_duplex;
1726 	u8 autoneg;
1727 	bool if_running = netif_running(netdev);
1728 
1729 	set_bit(__E1000_TESTING, &adapter->state);
1730 
1731 	if (!if_running) {
1732 		/* Get control of and reset hardware */
1733 		if (adapter->flags & FLAG_HAS_AMT)
1734 			e1000e_get_hw_control(adapter);
1735 
1736 		e1000e_power_up_phy(adapter);
1737 
1738 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1739 		e1000e_reset(adapter);
1740 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1741 	}
1742 
1743 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1744 		/* Offline tests */
1745 
1746 		/* save speed, duplex, autoneg settings */
1747 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1748 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1749 		autoneg = adapter->hw.mac.autoneg;
1750 
1751 		e_info("offline testing starting\n");
1752 
1753 		if (if_running)
1754 			/* indicate we're in test mode */
1755 			dev_close(netdev);
1756 
1757 		if (e1000_reg_test(adapter, &data[0]))
1758 			eth_test->flags |= ETH_TEST_FL_FAILED;
1759 
1760 		e1000e_reset(adapter);
1761 		if (e1000_eeprom_test(adapter, &data[1]))
1762 			eth_test->flags |= ETH_TEST_FL_FAILED;
1763 
1764 		e1000e_reset(adapter);
1765 		if (e1000_intr_test(adapter, &data[2]))
1766 			eth_test->flags |= ETH_TEST_FL_FAILED;
1767 
1768 		e1000e_reset(adapter);
1769 		if (e1000_loopback_test(adapter, &data[3]))
1770 			eth_test->flags |= ETH_TEST_FL_FAILED;
1771 
1772 		/* force this routine to wait until autoneg complete/timeout */
1773 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1774 		e1000e_reset(adapter);
1775 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1776 
1777 		if (e1000_link_test(adapter, &data[4]))
1778 			eth_test->flags |= ETH_TEST_FL_FAILED;
1779 
1780 		/* restore speed, duplex, autoneg settings */
1781 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1782 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1783 		adapter->hw.mac.autoneg = autoneg;
1784 		e1000e_reset(adapter);
1785 
1786 		clear_bit(__E1000_TESTING, &adapter->state);
1787 		if (if_running)
1788 			dev_open(netdev);
1789 	} else {
1790 		/* Online tests */
1791 
1792 		e_info("online testing starting\n");
1793 
1794 		/* register, eeprom, intr and loopback tests not run online */
1795 		data[0] = 0;
1796 		data[1] = 0;
1797 		data[2] = 0;
1798 		data[3] = 0;
1799 
1800 		if (e1000_link_test(adapter, &data[4]))
1801 			eth_test->flags |= ETH_TEST_FL_FAILED;
1802 
1803 		clear_bit(__E1000_TESTING, &adapter->state);
1804 	}
1805 
1806 	if (!if_running) {
1807 		e1000e_reset(adapter);
1808 
1809 		if (adapter->flags & FLAG_HAS_AMT)
1810 			e1000e_release_hw_control(adapter);
1811 	}
1812 
1813 	msleep_interruptible(4 * 1000);
1814 }
1815 
1816 static void e1000_get_wol(struct net_device *netdev,
1817 			  struct ethtool_wolinfo *wol)
1818 {
1819 	struct e1000_adapter *adapter = netdev_priv(netdev);
1820 
1821 	wol->supported = 0;
1822 	wol->wolopts = 0;
1823 
1824 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1825 	    !device_can_wakeup(&adapter->pdev->dev))
1826 		return;
1827 
1828 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1829 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1830 
1831 	/* apply any specific unsupported masks here */
1832 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1833 		wol->supported &= ~WAKE_UCAST;
1834 
1835 		if (adapter->wol & E1000_WUFC_EX)
1836 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1837 	}
1838 
1839 	if (adapter->wol & E1000_WUFC_EX)
1840 		wol->wolopts |= WAKE_UCAST;
1841 	if (adapter->wol & E1000_WUFC_MC)
1842 		wol->wolopts |= WAKE_MCAST;
1843 	if (adapter->wol & E1000_WUFC_BC)
1844 		wol->wolopts |= WAKE_BCAST;
1845 	if (adapter->wol & E1000_WUFC_MAG)
1846 		wol->wolopts |= WAKE_MAGIC;
1847 	if (adapter->wol & E1000_WUFC_LNKC)
1848 		wol->wolopts |= WAKE_PHY;
1849 }
1850 
1851 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1852 {
1853 	struct e1000_adapter *adapter = netdev_priv(netdev);
1854 
1855 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1856 	    !device_can_wakeup(&adapter->pdev->dev) ||
1857 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1858 			      WAKE_MAGIC | WAKE_PHY)))
1859 		return -EOPNOTSUPP;
1860 
1861 	/* these settings will always override what we currently have */
1862 	adapter->wol = 0;
1863 
1864 	if (wol->wolopts & WAKE_UCAST)
1865 		adapter->wol |= E1000_WUFC_EX;
1866 	if (wol->wolopts & WAKE_MCAST)
1867 		adapter->wol |= E1000_WUFC_MC;
1868 	if (wol->wolopts & WAKE_BCAST)
1869 		adapter->wol |= E1000_WUFC_BC;
1870 	if (wol->wolopts & WAKE_MAGIC)
1871 		adapter->wol |= E1000_WUFC_MAG;
1872 	if (wol->wolopts & WAKE_PHY)
1873 		adapter->wol |= E1000_WUFC_LNKC;
1874 
1875 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1876 
1877 	return 0;
1878 }
1879 
1880 static int e1000_set_phys_id(struct net_device *netdev,
1881 			     enum ethtool_phys_id_state state)
1882 {
1883 	struct e1000_adapter *adapter = netdev_priv(netdev);
1884 	struct e1000_hw *hw = &adapter->hw;
1885 
1886 	switch (state) {
1887 	case ETHTOOL_ID_ACTIVE:
1888 		if (!hw->mac.ops.blink_led)
1889 			return 2;	/* cycle on/off twice per second */
1890 
1891 		hw->mac.ops.blink_led(hw);
1892 		break;
1893 
1894 	case ETHTOOL_ID_INACTIVE:
1895 		if (hw->phy.type == e1000_phy_ife)
1896 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1897 		hw->mac.ops.led_off(hw);
1898 		hw->mac.ops.cleanup_led(hw);
1899 		break;
1900 
1901 	case ETHTOOL_ID_ON:
1902 		hw->mac.ops.led_on(hw);
1903 		break;
1904 
1905 	case ETHTOOL_ID_OFF:
1906 		hw->mac.ops.led_off(hw);
1907 		break;
1908 	}
1909 	return 0;
1910 }
1911 
1912 static int e1000_get_coalesce(struct net_device *netdev,
1913 			      struct ethtool_coalesce *ec)
1914 {
1915 	struct e1000_adapter *adapter = netdev_priv(netdev);
1916 
1917 	if (adapter->itr_setting <= 4)
1918 		ec->rx_coalesce_usecs = adapter->itr_setting;
1919 	else
1920 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1921 
1922 	return 0;
1923 }
1924 
1925 static int e1000_set_coalesce(struct net_device *netdev,
1926 			      struct ethtool_coalesce *ec)
1927 {
1928 	struct e1000_adapter *adapter = netdev_priv(netdev);
1929 
1930 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1931 	    ((ec->rx_coalesce_usecs > 4) &&
1932 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1933 	    (ec->rx_coalesce_usecs == 2))
1934 		return -EINVAL;
1935 
1936 	if (ec->rx_coalesce_usecs == 4) {
1937 		adapter->itr_setting = 4;
1938 		adapter->itr = adapter->itr_setting;
1939 	} else if (ec->rx_coalesce_usecs <= 3) {
1940 		adapter->itr = 20000;
1941 		adapter->itr_setting = ec->rx_coalesce_usecs;
1942 	} else {
1943 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1944 		adapter->itr_setting = adapter->itr & ~3;
1945 	}
1946 
1947 	if (adapter->itr_setting != 0)
1948 		e1000e_write_itr(adapter, adapter->itr);
1949 	else
1950 		e1000e_write_itr(adapter, 0);
1951 
1952 	return 0;
1953 }
1954 
1955 static int e1000_nway_reset(struct net_device *netdev)
1956 {
1957 	struct e1000_adapter *adapter = netdev_priv(netdev);
1958 
1959 	if (!netif_running(netdev))
1960 		return -EAGAIN;
1961 
1962 	if (!adapter->hw.mac.autoneg)
1963 		return -EINVAL;
1964 
1965 	e1000e_reinit_locked(adapter);
1966 
1967 	return 0;
1968 }
1969 
1970 static void e1000_get_ethtool_stats(struct net_device *netdev,
1971 				    struct ethtool_stats __always_unused *stats,
1972 				    u64 *data)
1973 {
1974 	struct e1000_adapter *adapter = netdev_priv(netdev);
1975 	struct rtnl_link_stats64 net_stats;
1976 	int i;
1977 	char *p = NULL;
1978 
1979 	e1000e_get_stats64(netdev, &net_stats);
1980 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1981 		switch (e1000_gstrings_stats[i].type) {
1982 		case NETDEV_STATS:
1983 			p = (char *) &net_stats +
1984 					e1000_gstrings_stats[i].stat_offset;
1985 			break;
1986 		case E1000_STATS:
1987 			p = (char *) adapter +
1988 					e1000_gstrings_stats[i].stat_offset;
1989 			break;
1990 		default:
1991 			data[i] = 0;
1992 			continue;
1993 		}
1994 
1995 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1996 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1997 	}
1998 }
1999 
2000 static void e1000_get_strings(struct net_device __always_unused *netdev,
2001 			      u32 stringset, u8 *data)
2002 {
2003 	u8 *p = data;
2004 	int i;
2005 
2006 	switch (stringset) {
2007 	case ETH_SS_TEST:
2008 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2009 		break;
2010 	case ETH_SS_STATS:
2011 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2012 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2013 			       ETH_GSTRING_LEN);
2014 			p += ETH_GSTRING_LEN;
2015 		}
2016 		break;
2017 	}
2018 }
2019 
2020 static int e1000_get_rxnfc(struct net_device *netdev,
2021 			   struct ethtool_rxnfc *info,
2022 			   u32 __always_unused *rule_locs)
2023 {
2024 	info->data = 0;
2025 
2026 	switch (info->cmd) {
2027 	case ETHTOOL_GRXFH: {
2028 		struct e1000_adapter *adapter = netdev_priv(netdev);
2029 		struct e1000_hw *hw = &adapter->hw;
2030 		u32 mrqc = er32(MRQC);
2031 
2032 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2033 			return 0;
2034 
2035 		switch (info->flow_type) {
2036 		case TCP_V4_FLOW:
2037 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2038 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2039 			/* fall through */
2040 		case UDP_V4_FLOW:
2041 		case SCTP_V4_FLOW:
2042 		case AH_ESP_V4_FLOW:
2043 		case IPV4_FLOW:
2044 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2045 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2046 			break;
2047 		case TCP_V6_FLOW:
2048 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2049 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2050 			/* fall through */
2051 		case UDP_V6_FLOW:
2052 		case SCTP_V6_FLOW:
2053 		case AH_ESP_V6_FLOW:
2054 		case IPV6_FLOW:
2055 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2056 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2057 			break;
2058 		default:
2059 			break;
2060 		}
2061 		return 0;
2062 	}
2063 	default:
2064 		return -EOPNOTSUPP;
2065 	}
2066 }
2067 
2068 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2069 {
2070 	struct e1000_adapter *adapter = netdev_priv(netdev);
2071 	struct e1000_hw *hw = &adapter->hw;
2072 	u16 cap_addr, adv_addr, lpa_addr, pcs_stat_addr, phy_data, lpi_ctrl;
2073 	u32 status, ret_val;
2074 
2075 	if (!(adapter->flags & FLAG_IS_ICH) ||
2076 	    !(adapter->flags2 & FLAG2_HAS_EEE))
2077 		return -EOPNOTSUPP;
2078 
2079 	switch (hw->phy.type) {
2080 	case e1000_phy_82579:
2081 		cap_addr = I82579_EEE_CAPABILITY;
2082 		adv_addr = I82579_EEE_ADVERTISEMENT;
2083 		lpa_addr = I82579_EEE_LP_ABILITY;
2084 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2085 		break;
2086 	case e1000_phy_i217:
2087 		cap_addr = I217_EEE_CAPABILITY;
2088 		adv_addr = I217_EEE_ADVERTISEMENT;
2089 		lpa_addr = I217_EEE_LP_ABILITY;
2090 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2091 		break;
2092 	default:
2093 		return -EOPNOTSUPP;
2094 	}
2095 
2096 	ret_val = hw->phy.ops.acquire(hw);
2097 	if (ret_val)
2098 		return -EBUSY;
2099 
2100 	/* EEE Capability */
2101 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2102 	if (ret_val)
2103 		goto release;
2104 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2105 
2106 	/* EEE Advertised */
2107 	ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &phy_data);
2108 	if (ret_val)
2109 		goto release;
2110 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2111 
2112 	/* EEE Link Partner Advertised */
2113 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2114 	if (ret_val)
2115 		goto release;
2116 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2117 
2118 	/* EEE PCS Status */
2119 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2120 	if (hw->phy.type == e1000_phy_82579)
2121 		phy_data <<= 8;
2122 
2123 release:
2124 	hw->phy.ops.release(hw);
2125 	if (ret_val)
2126 		return -ENODATA;
2127 
2128 	e1e_rphy(hw, I82579_LPI_CTRL, &lpi_ctrl);
2129 	status = er32(STATUS);
2130 
2131 	/* Result of the EEE auto negotiation - there is no register that
2132 	 * has the status of the EEE negotiation so do a best-guess based
2133 	 * on whether both Tx and Rx LPI indications have been received or
2134 	 * base it on the link speed, the EEE advertised speeds on both ends
2135 	 * and the speeds on which EEE is enabled locally.
2136 	 */
2137 	if (((phy_data & E1000_EEE_TX_LPI_RCVD) &&
2138 	     (phy_data & E1000_EEE_RX_LPI_RCVD)) ||
2139 	    ((status & E1000_STATUS_SPEED_100) &&
2140 	     (edata->advertised & ADVERTISED_100baseT_Full) &&
2141 	     (edata->lp_advertised & ADVERTISED_100baseT_Full) &&
2142 	     (lpi_ctrl & I82579_LPI_CTRL_100_ENABLE)) ||
2143 	    ((status & E1000_STATUS_SPEED_1000) &&
2144 	     (edata->advertised & ADVERTISED_1000baseT_Full) &&
2145 	     (edata->lp_advertised & ADVERTISED_1000baseT_Full) &&
2146 	     (lpi_ctrl & I82579_LPI_CTRL_1000_ENABLE)))
2147 		edata->eee_active = true;
2148 
2149 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2150 	edata->tx_lpi_enabled = true;
2151 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2152 
2153 	return 0;
2154 }
2155 
2156 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2157 {
2158 	struct e1000_adapter *adapter = netdev_priv(netdev);
2159 	struct e1000_hw *hw = &adapter->hw;
2160 	struct ethtool_eee eee_curr;
2161 	s32 ret_val;
2162 
2163 	if (!(adapter->flags & FLAG_IS_ICH) ||
2164 	    !(adapter->flags2 & FLAG2_HAS_EEE))
2165 		return -EOPNOTSUPP;
2166 
2167 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2168 	if (ret_val)
2169 		return ret_val;
2170 
2171 	if (eee_curr.advertised != edata->advertised) {
2172 		e_err("Setting EEE advertisement is not supported\n");
2173 		return -EINVAL;
2174 	}
2175 
2176 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2177 		e_err("Setting EEE tx-lpi is not supported\n");
2178 		return -EINVAL;
2179 	}
2180 
2181 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2182 		e_err("Setting EEE Tx LPI timer is not supported\n");
2183 		return -EINVAL;
2184 	}
2185 
2186 	if (hw->dev_spec.ich8lan.eee_disable != !edata->eee_enabled) {
2187 		hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2188 
2189 		/* reset the link */
2190 		if (netif_running(netdev))
2191 			e1000e_reinit_locked(adapter);
2192 		else
2193 			e1000e_reset(adapter);
2194 	}
2195 
2196 	return 0;
2197 }
2198 
2199 static int e1000e_get_ts_info(struct net_device *netdev,
2200 			      struct ethtool_ts_info *info)
2201 {
2202 	struct e1000_adapter *adapter = netdev_priv(netdev);
2203 
2204 	ethtool_op_get_ts_info(netdev, info);
2205 
2206 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2207 		return 0;
2208 
2209 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2210 				  SOF_TIMESTAMPING_RX_HARDWARE |
2211 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2212 
2213 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2214 
2215 	info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2216 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2217 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2218 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2219 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2220 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2221 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2222 			    (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2223 			    (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2224 			    (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2225 			    (1 << HWTSTAMP_FILTER_ALL));
2226 
2227 	if (adapter->ptp_clock)
2228 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2229 
2230 	return 0;
2231 }
2232 
2233 static int e1000e_ethtool_begin(struct net_device *netdev)
2234 {
2235 	return pm_runtime_get_sync(netdev->dev.parent);
2236 }
2237 
2238 static void e1000e_ethtool_complete(struct net_device *netdev)
2239 {
2240 	pm_runtime_put_sync(netdev->dev.parent);
2241 }
2242 
2243 static const struct ethtool_ops e1000_ethtool_ops = {
2244 	.begin			= e1000e_ethtool_begin,
2245 	.complete		= e1000e_ethtool_complete,
2246 	.get_settings		= e1000_get_settings,
2247 	.set_settings		= e1000_set_settings,
2248 	.get_drvinfo		= e1000_get_drvinfo,
2249 	.get_regs_len		= e1000_get_regs_len,
2250 	.get_regs		= e1000_get_regs,
2251 	.get_wol		= e1000_get_wol,
2252 	.set_wol		= e1000_set_wol,
2253 	.get_msglevel		= e1000_get_msglevel,
2254 	.set_msglevel		= e1000_set_msglevel,
2255 	.nway_reset		= e1000_nway_reset,
2256 	.get_link		= ethtool_op_get_link,
2257 	.get_eeprom_len		= e1000_get_eeprom_len,
2258 	.get_eeprom		= e1000_get_eeprom,
2259 	.set_eeprom		= e1000_set_eeprom,
2260 	.get_ringparam		= e1000_get_ringparam,
2261 	.set_ringparam		= e1000_set_ringparam,
2262 	.get_pauseparam		= e1000_get_pauseparam,
2263 	.set_pauseparam		= e1000_set_pauseparam,
2264 	.self_test		= e1000_diag_test,
2265 	.get_strings		= e1000_get_strings,
2266 	.set_phys_id		= e1000_set_phys_id,
2267 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2268 	.get_sset_count		= e1000e_get_sset_count,
2269 	.get_coalesce		= e1000_get_coalesce,
2270 	.set_coalesce		= e1000_set_coalesce,
2271 	.get_rxnfc		= e1000_get_rxnfc,
2272 	.get_ts_info		= e1000e_get_ts_info,
2273 	.get_eee		= e1000e_get_eee,
2274 	.set_eee		= e1000e_set_eee,
2275 };
2276 
2277 void e1000e_set_ethtool_ops(struct net_device *netdev)
2278 {
2279 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2280 }
2281