1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* ethtool support for e1000 */
23 
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/ethtool.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pm_runtime.h>
32 
33 #include "e1000.h"
34 
35 enum { NETDEV_STATS, E1000_STATS };
36 
37 struct e1000_stats {
38 	char stat_string[ETH_GSTRING_LEN];
39 	int type;
40 	int sizeof_stat;
41 	int stat_offset;
42 };
43 
44 #define E1000_STAT(str, m) { \
45 		.stat_string = str, \
46 		.type = E1000_STATS, \
47 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48 		.stat_offset = offsetof(struct e1000_adapter, m) }
49 #define E1000_NETDEV_STAT(str, m) { \
50 		.stat_string = str, \
51 		.type = NETDEV_STATS, \
52 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
54 
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56 	E1000_STAT("rx_packets", stats.gprc),
57 	E1000_STAT("tx_packets", stats.gptc),
58 	E1000_STAT("rx_bytes", stats.gorc),
59 	E1000_STAT("tx_bytes", stats.gotc),
60 	E1000_STAT("rx_broadcast", stats.bprc),
61 	E1000_STAT("tx_broadcast", stats.bptc),
62 	E1000_STAT("rx_multicast", stats.mprc),
63 	E1000_STAT("tx_multicast", stats.mptc),
64 	E1000_NETDEV_STAT("rx_errors", rx_errors),
65 	E1000_NETDEV_STAT("tx_errors", tx_errors),
66 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67 	E1000_STAT("multicast", stats.mprc),
68 	E1000_STAT("collisions", stats.colc),
69 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71 	E1000_STAT("rx_crc_errors", stats.crcerrs),
72 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
74 	E1000_STAT("rx_missed_errors", stats.mpc),
75 	E1000_STAT("tx_aborted_errors", stats.ecol),
76 	E1000_STAT("tx_carrier_errors", stats.tncrs),
77 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79 	E1000_STAT("tx_window_errors", stats.latecol),
80 	E1000_STAT("tx_abort_late_coll", stats.latecol),
81 	E1000_STAT("tx_deferred_ok", stats.dc),
82 	E1000_STAT("tx_single_coll_ok", stats.scc),
83 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
84 	E1000_STAT("tx_timeout_count", tx_timeout_count),
85 	E1000_STAT("tx_restart_queue", restart_queue),
86 	E1000_STAT("rx_long_length_errors", stats.roc),
87 	E1000_STAT("rx_short_length_errors", stats.ruc),
88 	E1000_STAT("rx_align_errors", stats.algnerrc),
89 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
94 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
96 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97 	E1000_STAT("rx_header_split", rx_hdr_split),
98 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99 	E1000_STAT("tx_smbus", stats.mgptc),
100 	E1000_STAT("rx_smbus", stats.mgprc),
101 	E1000_STAT("dropped_smbus", stats.mgpdc),
102 	E1000_STAT("rx_dma_failed", rx_dma_failed),
103 	E1000_STAT("tx_dma_failed", tx_dma_failed),
104 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106 	E1000_STAT("corr_ecc_errors", corr_errors),
107 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108 };
109 
110 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113 	"Register test  (offline)", "Eeprom test    (offline)",
114 	"Interrupt test (offline)", "Loopback test  (offline)",
115 	"Link test   (on/offline)"
116 };
117 
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119 
120 static int e1000_get_settings(struct net_device *netdev,
121 			      struct ethtool_cmd *ecmd)
122 {
123 	struct e1000_adapter *adapter = netdev_priv(netdev);
124 	struct e1000_hw *hw = &adapter->hw;
125 	u32 speed;
126 
127 	if (hw->phy.media_type == e1000_media_type_copper) {
128 		ecmd->supported = (SUPPORTED_10baseT_Half |
129 				   SUPPORTED_10baseT_Full |
130 				   SUPPORTED_100baseT_Half |
131 				   SUPPORTED_100baseT_Full |
132 				   SUPPORTED_1000baseT_Full |
133 				   SUPPORTED_Autoneg |
134 				   SUPPORTED_TP);
135 		if (hw->phy.type == e1000_phy_ife)
136 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137 		ecmd->advertising = ADVERTISED_TP;
138 
139 		if (hw->mac.autoneg == 1) {
140 			ecmd->advertising |= ADVERTISED_Autoneg;
141 			/* the e1000 autoneg seems to match ethtool nicely */
142 			ecmd->advertising |= hw->phy.autoneg_advertised;
143 		}
144 
145 		ecmd->port = PORT_TP;
146 		ecmd->phy_address = hw->phy.addr;
147 		ecmd->transceiver = XCVR_INTERNAL;
148 
149 	} else {
150 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
151 				     SUPPORTED_FIBRE |
152 				     SUPPORTED_Autoneg);
153 
154 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
155 				     ADVERTISED_FIBRE |
156 				     ADVERTISED_Autoneg);
157 
158 		ecmd->port = PORT_FIBRE;
159 		ecmd->transceiver = XCVR_EXTERNAL;
160 	}
161 
162 	speed = SPEED_UNKNOWN;
163 	ecmd->duplex = DUPLEX_UNKNOWN;
164 
165 	if (netif_running(netdev)) {
166 		if (netif_carrier_ok(netdev)) {
167 			speed = adapter->link_speed;
168 			ecmd->duplex = adapter->link_duplex - 1;
169 		}
170 	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
171 		u32 status = er32(STATUS);
172 
173 		if (status & E1000_STATUS_LU) {
174 			if (status & E1000_STATUS_SPEED_1000)
175 				speed = SPEED_1000;
176 			else if (status & E1000_STATUS_SPEED_100)
177 				speed = SPEED_100;
178 			else
179 				speed = SPEED_10;
180 
181 			if (status & E1000_STATUS_FD)
182 				ecmd->duplex = DUPLEX_FULL;
183 			else
184 				ecmd->duplex = DUPLEX_HALF;
185 		}
186 	}
187 
188 	ethtool_cmd_speed_set(ecmd, speed);
189 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
190 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
191 
192 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
193 	if ((hw->phy.media_type == e1000_media_type_copper) &&
194 	    netif_carrier_ok(netdev))
195 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
196 	else
197 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
198 
199 	if (hw->phy.mdix == AUTO_ALL_MODES)
200 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201 	else
202 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
203 
204 	if (hw->phy.media_type != e1000_media_type_copper)
205 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
206 
207 	return 0;
208 }
209 
210 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
211 {
212 	struct e1000_mac_info *mac = &adapter->hw.mac;
213 
214 	mac->autoneg = 0;
215 
216 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
217 	 * for the switch() below to work
218 	 */
219 	if ((spd & 1) || (dplx & ~1))
220 		goto err_inval;
221 
222 	/* Fiber NICs only allow 1000 gbps Full duplex */
223 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
224 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
225 		goto err_inval;
226 	}
227 
228 	switch (spd + dplx) {
229 	case SPEED_10 + DUPLEX_HALF:
230 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
231 		break;
232 	case SPEED_10 + DUPLEX_FULL:
233 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
234 		break;
235 	case SPEED_100 + DUPLEX_HALF:
236 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
237 		break;
238 	case SPEED_100 + DUPLEX_FULL:
239 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
240 		break;
241 	case SPEED_1000 + DUPLEX_FULL:
242 		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
243 			mac->autoneg = 1;
244 			adapter->hw.phy.autoneg_advertised =
245 				ADVERTISE_1000_FULL;
246 		} else {
247 			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
248 		}
249 		break;
250 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
251 	default:
252 		goto err_inval;
253 	}
254 
255 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
256 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
257 
258 	return 0;
259 
260 err_inval:
261 	e_err("Unsupported Speed/Duplex configuration\n");
262 	return -EINVAL;
263 }
264 
265 static int e1000_set_settings(struct net_device *netdev,
266 			      struct ethtool_cmd *ecmd)
267 {
268 	struct e1000_adapter *adapter = netdev_priv(netdev);
269 	struct e1000_hw *hw = &adapter->hw;
270 	int ret_val = 0;
271 
272 	pm_runtime_get_sync(netdev->dev.parent);
273 
274 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
275 	 * cannot be changed
276 	 */
277 	if (hw->phy.ops.check_reset_block &&
278 	    hw->phy.ops.check_reset_block(hw)) {
279 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
280 		ret_val = -EINVAL;
281 		goto out;
282 	}
283 
284 	/* MDI setting is only allowed when autoneg enabled because
285 	 * some hardware doesn't allow MDI setting when speed or
286 	 * duplex is forced.
287 	 */
288 	if (ecmd->eth_tp_mdix_ctrl) {
289 		if (hw->phy.media_type != e1000_media_type_copper) {
290 			ret_val = -EOPNOTSUPP;
291 			goto out;
292 		}
293 
294 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
295 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
296 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
297 			ret_val = -EINVAL;
298 			goto out;
299 		}
300 	}
301 
302 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
303 		usleep_range(1000, 2000);
304 
305 	if (ecmd->autoneg == AUTONEG_ENABLE) {
306 		hw->mac.autoneg = 1;
307 		if (hw->phy.media_type == e1000_media_type_fiber)
308 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
309 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
310 		else
311 			hw->phy.autoneg_advertised = ecmd->advertising |
312 			    ADVERTISED_TP | ADVERTISED_Autoneg;
313 		ecmd->advertising = hw->phy.autoneg_advertised;
314 		if (adapter->fc_autoneg)
315 			hw->fc.requested_mode = e1000_fc_default;
316 	} else {
317 		u32 speed = ethtool_cmd_speed(ecmd);
318 		/* calling this overrides forced MDI setting */
319 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
320 			ret_val = -EINVAL;
321 			goto out;
322 		}
323 	}
324 
325 	/* MDI-X => 2; MDI => 1; Auto => 3 */
326 	if (ecmd->eth_tp_mdix_ctrl) {
327 		/* fix up the value for auto (3 => 0) as zero is mapped
328 		 * internally to auto
329 		 */
330 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
331 			hw->phy.mdix = AUTO_ALL_MODES;
332 		else
333 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
334 	}
335 
336 	/* reset the link */
337 	if (netif_running(adapter->netdev)) {
338 		e1000e_down(adapter, true);
339 		e1000e_up(adapter);
340 	} else {
341 		e1000e_reset(adapter);
342 	}
343 
344 out:
345 	pm_runtime_put_sync(netdev->dev.parent);
346 	clear_bit(__E1000_RESETTING, &adapter->state);
347 	return ret_val;
348 }
349 
350 static void e1000_get_pauseparam(struct net_device *netdev,
351 				 struct ethtool_pauseparam *pause)
352 {
353 	struct e1000_adapter *adapter = netdev_priv(netdev);
354 	struct e1000_hw *hw = &adapter->hw;
355 
356 	pause->autoneg =
357 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
358 
359 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
360 		pause->rx_pause = 1;
361 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
362 		pause->tx_pause = 1;
363 	} else if (hw->fc.current_mode == e1000_fc_full) {
364 		pause->rx_pause = 1;
365 		pause->tx_pause = 1;
366 	}
367 }
368 
369 static int e1000_set_pauseparam(struct net_device *netdev,
370 				struct ethtool_pauseparam *pause)
371 {
372 	struct e1000_adapter *adapter = netdev_priv(netdev);
373 	struct e1000_hw *hw = &adapter->hw;
374 	int retval = 0;
375 
376 	adapter->fc_autoneg = pause->autoneg;
377 
378 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
379 		usleep_range(1000, 2000);
380 
381 	pm_runtime_get_sync(netdev->dev.parent);
382 
383 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
384 		hw->fc.requested_mode = e1000_fc_default;
385 		if (netif_running(adapter->netdev)) {
386 			e1000e_down(adapter, true);
387 			e1000e_up(adapter);
388 		} else {
389 			e1000e_reset(adapter);
390 		}
391 	} else {
392 		if (pause->rx_pause && pause->tx_pause)
393 			hw->fc.requested_mode = e1000_fc_full;
394 		else if (pause->rx_pause && !pause->tx_pause)
395 			hw->fc.requested_mode = e1000_fc_rx_pause;
396 		else if (!pause->rx_pause && pause->tx_pause)
397 			hw->fc.requested_mode = e1000_fc_tx_pause;
398 		else if (!pause->rx_pause && !pause->tx_pause)
399 			hw->fc.requested_mode = e1000_fc_none;
400 
401 		hw->fc.current_mode = hw->fc.requested_mode;
402 
403 		if (hw->phy.media_type == e1000_media_type_fiber) {
404 			retval = hw->mac.ops.setup_link(hw);
405 			/* implicit goto out */
406 		} else {
407 			retval = e1000e_force_mac_fc(hw);
408 			if (retval)
409 				goto out;
410 			e1000e_set_fc_watermarks(hw);
411 		}
412 	}
413 
414 out:
415 	pm_runtime_put_sync(netdev->dev.parent);
416 	clear_bit(__E1000_RESETTING, &adapter->state);
417 	return retval;
418 }
419 
420 static u32 e1000_get_msglevel(struct net_device *netdev)
421 {
422 	struct e1000_adapter *adapter = netdev_priv(netdev);
423 	return adapter->msg_enable;
424 }
425 
426 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
427 {
428 	struct e1000_adapter *adapter = netdev_priv(netdev);
429 	adapter->msg_enable = data;
430 }
431 
432 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
433 {
434 #define E1000_REGS_LEN 32	/* overestimate */
435 	return E1000_REGS_LEN * sizeof(u32);
436 }
437 
438 static void e1000_get_regs(struct net_device *netdev,
439 			   struct ethtool_regs *regs, void *p)
440 {
441 	struct e1000_adapter *adapter = netdev_priv(netdev);
442 	struct e1000_hw *hw = &adapter->hw;
443 	u32 *regs_buff = p;
444 	u16 phy_data;
445 
446 	pm_runtime_get_sync(netdev->dev.parent);
447 
448 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
449 
450 	regs->version = (1u << 24) |
451 			(adapter->pdev->revision << 16) |
452 			adapter->pdev->device;
453 
454 	regs_buff[0] = er32(CTRL);
455 	regs_buff[1] = er32(STATUS);
456 
457 	regs_buff[2] = er32(RCTL);
458 	regs_buff[3] = er32(RDLEN(0));
459 	regs_buff[4] = er32(RDH(0));
460 	regs_buff[5] = er32(RDT(0));
461 	regs_buff[6] = er32(RDTR);
462 
463 	regs_buff[7] = er32(TCTL);
464 	regs_buff[8] = er32(TDLEN(0));
465 	regs_buff[9] = er32(TDH(0));
466 	regs_buff[10] = er32(TDT(0));
467 	regs_buff[11] = er32(TIDV);
468 
469 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
470 
471 	/* ethtool doesn't use anything past this point, so all this
472 	 * code is likely legacy junk for apps that may or may not exist
473 	 */
474 	if (hw->phy.type == e1000_phy_m88) {
475 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
476 		regs_buff[13] = (u32)phy_data; /* cable length */
477 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
478 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
479 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
480 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
481 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
482 		regs_buff[18] = regs_buff[13]; /* cable polarity */
483 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
484 		regs_buff[20] = regs_buff[17]; /* polarity correction */
485 		/* phy receive errors */
486 		regs_buff[22] = adapter->phy_stats.receive_errors;
487 		regs_buff[23] = regs_buff[13]; /* mdix mode */
488 	}
489 	regs_buff[21] = 0;	/* was idle_errors */
490 	e1e_rphy(hw, MII_STAT1000, &phy_data);
491 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
492 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
493 
494 	pm_runtime_put_sync(netdev->dev.parent);
495 }
496 
497 static int e1000_get_eeprom_len(struct net_device *netdev)
498 {
499 	struct e1000_adapter *adapter = netdev_priv(netdev);
500 	return adapter->hw.nvm.word_size * 2;
501 }
502 
503 static int e1000_get_eeprom(struct net_device *netdev,
504 			    struct ethtool_eeprom *eeprom, u8 *bytes)
505 {
506 	struct e1000_adapter *adapter = netdev_priv(netdev);
507 	struct e1000_hw *hw = &adapter->hw;
508 	u16 *eeprom_buff;
509 	int first_word;
510 	int last_word;
511 	int ret_val = 0;
512 	u16 i;
513 
514 	if (eeprom->len == 0)
515 		return -EINVAL;
516 
517 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
518 
519 	first_word = eeprom->offset >> 1;
520 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
521 
522 	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
523 			      GFP_KERNEL);
524 	if (!eeprom_buff)
525 		return -ENOMEM;
526 
527 	pm_runtime_get_sync(netdev->dev.parent);
528 
529 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
530 		ret_val = e1000_read_nvm(hw, first_word,
531 					 last_word - first_word + 1,
532 					 eeprom_buff);
533 	} else {
534 		for (i = 0; i < last_word - first_word + 1; i++) {
535 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
536 						 &eeprom_buff[i]);
537 			if (ret_val)
538 				break;
539 		}
540 	}
541 
542 	pm_runtime_put_sync(netdev->dev.parent);
543 
544 	if (ret_val) {
545 		/* a read error occurred, throw away the result */
546 		memset(eeprom_buff, 0xff, sizeof(u16) *
547 		       (last_word - first_word + 1));
548 	} else {
549 		/* Device's eeprom is always little-endian, word addressable */
550 		for (i = 0; i < last_word - first_word + 1; i++)
551 			le16_to_cpus(&eeprom_buff[i]);
552 	}
553 
554 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
555 	kfree(eeprom_buff);
556 
557 	return ret_val;
558 }
559 
560 static int e1000_set_eeprom(struct net_device *netdev,
561 			    struct ethtool_eeprom *eeprom, u8 *bytes)
562 {
563 	struct e1000_adapter *adapter = netdev_priv(netdev);
564 	struct e1000_hw *hw = &adapter->hw;
565 	u16 *eeprom_buff;
566 	void *ptr;
567 	int max_len;
568 	int first_word;
569 	int last_word;
570 	int ret_val = 0;
571 	u16 i;
572 
573 	if (eeprom->len == 0)
574 		return -EOPNOTSUPP;
575 
576 	if (eeprom->magic !=
577 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
578 		return -EFAULT;
579 
580 	if (adapter->flags & FLAG_READ_ONLY_NVM)
581 		return -EINVAL;
582 
583 	max_len = hw->nvm.word_size * 2;
584 
585 	first_word = eeprom->offset >> 1;
586 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
587 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
588 	if (!eeprom_buff)
589 		return -ENOMEM;
590 
591 	ptr = (void *)eeprom_buff;
592 
593 	pm_runtime_get_sync(netdev->dev.parent);
594 
595 	if (eeprom->offset & 1) {
596 		/* need read/modify/write of first changed EEPROM word */
597 		/* only the second byte of the word is being modified */
598 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
599 		ptr++;
600 	}
601 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
602 		/* need read/modify/write of last changed EEPROM word */
603 		/* only the first byte of the word is being modified */
604 		ret_val = e1000_read_nvm(hw, last_word, 1,
605 					 &eeprom_buff[last_word - first_word]);
606 
607 	if (ret_val)
608 		goto out;
609 
610 	/* Device's eeprom is always little-endian, word addressable */
611 	for (i = 0; i < last_word - first_word + 1; i++)
612 		le16_to_cpus(&eeprom_buff[i]);
613 
614 	memcpy(ptr, bytes, eeprom->len);
615 
616 	for (i = 0; i < last_word - first_word + 1; i++)
617 		cpu_to_le16s(&eeprom_buff[i]);
618 
619 	ret_val = e1000_write_nvm(hw, first_word,
620 				  last_word - first_word + 1, eeprom_buff);
621 
622 	if (ret_val)
623 		goto out;
624 
625 	/* Update the checksum over the first part of the EEPROM if needed
626 	 * and flush shadow RAM for applicable controllers
627 	 */
628 	if ((first_word <= NVM_CHECKSUM_REG) ||
629 	    (hw->mac.type == e1000_82583) ||
630 	    (hw->mac.type == e1000_82574) ||
631 	    (hw->mac.type == e1000_82573))
632 		ret_val = e1000e_update_nvm_checksum(hw);
633 
634 out:
635 	pm_runtime_put_sync(netdev->dev.parent);
636 	kfree(eeprom_buff);
637 	return ret_val;
638 }
639 
640 static void e1000_get_drvinfo(struct net_device *netdev,
641 			      struct ethtool_drvinfo *drvinfo)
642 {
643 	struct e1000_adapter *adapter = netdev_priv(netdev);
644 
645 	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
646 	strlcpy(drvinfo->version, e1000e_driver_version,
647 		sizeof(drvinfo->version));
648 
649 	/* EEPROM image version # is reported as firmware version # for
650 	 * PCI-E controllers
651 	 */
652 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
653 		 "%d.%d-%d",
654 		 (adapter->eeprom_vers & 0xF000) >> 12,
655 		 (adapter->eeprom_vers & 0x0FF0) >> 4,
656 		 (adapter->eeprom_vers & 0x000F));
657 
658 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
659 		sizeof(drvinfo->bus_info));
660 }
661 
662 static void e1000_get_ringparam(struct net_device *netdev,
663 				struct ethtool_ringparam *ring)
664 {
665 	struct e1000_adapter *adapter = netdev_priv(netdev);
666 
667 	ring->rx_max_pending = E1000_MAX_RXD;
668 	ring->tx_max_pending = E1000_MAX_TXD;
669 	ring->rx_pending = adapter->rx_ring_count;
670 	ring->tx_pending = adapter->tx_ring_count;
671 }
672 
673 static int e1000_set_ringparam(struct net_device *netdev,
674 			       struct ethtool_ringparam *ring)
675 {
676 	struct e1000_adapter *adapter = netdev_priv(netdev);
677 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
678 	int err = 0, size = sizeof(struct e1000_ring);
679 	bool set_tx = false, set_rx = false;
680 	u16 new_rx_count, new_tx_count;
681 
682 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
683 		return -EINVAL;
684 
685 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
686 			       E1000_MAX_RXD);
687 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
688 
689 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
690 			       E1000_MAX_TXD);
691 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
692 
693 	if ((new_tx_count == adapter->tx_ring_count) &&
694 	    (new_rx_count == adapter->rx_ring_count))
695 		/* nothing to do */
696 		return 0;
697 
698 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
699 		usleep_range(1000, 2000);
700 
701 	if (!netif_running(adapter->netdev)) {
702 		/* Set counts now and allocate resources during open() */
703 		adapter->tx_ring->count = new_tx_count;
704 		adapter->rx_ring->count = new_rx_count;
705 		adapter->tx_ring_count = new_tx_count;
706 		adapter->rx_ring_count = new_rx_count;
707 		goto clear_reset;
708 	}
709 
710 	set_tx = (new_tx_count != adapter->tx_ring_count);
711 	set_rx = (new_rx_count != adapter->rx_ring_count);
712 
713 	/* Allocate temporary storage for ring updates */
714 	if (set_tx) {
715 		temp_tx = vmalloc(size);
716 		if (!temp_tx) {
717 			err = -ENOMEM;
718 			goto free_temp;
719 		}
720 	}
721 	if (set_rx) {
722 		temp_rx = vmalloc(size);
723 		if (!temp_rx) {
724 			err = -ENOMEM;
725 			goto free_temp;
726 		}
727 	}
728 
729 	pm_runtime_get_sync(netdev->dev.parent);
730 
731 	e1000e_down(adapter, true);
732 
733 	/* We can't just free everything and then setup again, because the
734 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
735 	 * structs.  First, attempt to allocate new resources...
736 	 */
737 	if (set_tx) {
738 		memcpy(temp_tx, adapter->tx_ring, size);
739 		temp_tx->count = new_tx_count;
740 		err = e1000e_setup_tx_resources(temp_tx);
741 		if (err)
742 			goto err_setup;
743 	}
744 	if (set_rx) {
745 		memcpy(temp_rx, adapter->rx_ring, size);
746 		temp_rx->count = new_rx_count;
747 		err = e1000e_setup_rx_resources(temp_rx);
748 		if (err)
749 			goto err_setup_rx;
750 	}
751 
752 	/* ...then free the old resources and copy back any new ring data */
753 	if (set_tx) {
754 		e1000e_free_tx_resources(adapter->tx_ring);
755 		memcpy(adapter->tx_ring, temp_tx, size);
756 		adapter->tx_ring_count = new_tx_count;
757 	}
758 	if (set_rx) {
759 		e1000e_free_rx_resources(adapter->rx_ring);
760 		memcpy(adapter->rx_ring, temp_rx, size);
761 		adapter->rx_ring_count = new_rx_count;
762 	}
763 
764 err_setup_rx:
765 	if (err && set_tx)
766 		e1000e_free_tx_resources(temp_tx);
767 err_setup:
768 	e1000e_up(adapter);
769 	pm_runtime_put_sync(netdev->dev.parent);
770 free_temp:
771 	vfree(temp_tx);
772 	vfree(temp_rx);
773 clear_reset:
774 	clear_bit(__E1000_RESETTING, &adapter->state);
775 	return err;
776 }
777 
778 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
779 			     int reg, int offset, u32 mask, u32 write)
780 {
781 	u32 pat, val;
782 	static const u32 test[] = {
783 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
784 	};
785 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
786 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
787 				      (test[pat] & write));
788 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
789 		if (val != (test[pat] & write & mask)) {
790 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
791 			      reg + (offset << 2), val,
792 			      (test[pat] & write & mask));
793 			*data = reg;
794 			return true;
795 		}
796 	}
797 	return false;
798 }
799 
800 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
801 			      int reg, u32 mask, u32 write)
802 {
803 	u32 val;
804 
805 	__ew32(&adapter->hw, reg, write & mask);
806 	val = __er32(&adapter->hw, reg);
807 	if ((write & mask) != (val & mask)) {
808 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
809 		      reg, (val & mask), (write & mask));
810 		*data = reg;
811 		return true;
812 	}
813 	return false;
814 }
815 
816 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
817 	do {                                                                   \
818 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
819 			return 1;                                              \
820 	} while (0)
821 #define REG_PATTERN_TEST(reg, mask, write)                                     \
822 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
823 
824 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
825 	do {                                                                   \
826 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
827 			return 1;                                              \
828 	} while (0)
829 
830 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
831 {
832 	struct e1000_hw *hw = &adapter->hw;
833 	struct e1000_mac_info *mac = &adapter->hw.mac;
834 	u32 value;
835 	u32 before;
836 	u32 after;
837 	u32 i;
838 	u32 toggle;
839 	u32 mask;
840 	u32 wlock_mac = 0;
841 
842 	/* The status register is Read Only, so a write should fail.
843 	 * Some bits that get toggled are ignored.  There are several bits
844 	 * on newer hardware that are r/w.
845 	 */
846 	switch (mac->type) {
847 	case e1000_82571:
848 	case e1000_82572:
849 	case e1000_80003es2lan:
850 		toggle = 0x7FFFF3FF;
851 		break;
852 	default:
853 		toggle = 0x7FFFF033;
854 		break;
855 	}
856 
857 	before = er32(STATUS);
858 	value = (er32(STATUS) & toggle);
859 	ew32(STATUS, toggle);
860 	after = er32(STATUS) & toggle;
861 	if (value != after) {
862 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
863 		      after, value);
864 		*data = 1;
865 		return 1;
866 	}
867 	/* restore previous status */
868 	ew32(STATUS, before);
869 
870 	if (!(adapter->flags & FLAG_IS_ICH)) {
871 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
872 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
873 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
874 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
875 	}
876 
877 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
878 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
879 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
880 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
881 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
882 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
883 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
884 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
885 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
886 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
887 
888 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
889 
890 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
891 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
892 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
893 
894 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
895 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
896 	if (!(adapter->flags & FLAG_IS_ICH))
897 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
898 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
899 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
900 	mask = 0x8003FFFF;
901 	switch (mac->type) {
902 	case e1000_ich10lan:
903 	case e1000_pchlan:
904 	case e1000_pch2lan:
905 	case e1000_pch_lpt:
906 	case e1000_pch_spt:
907 		mask |= BIT(18);
908 		break;
909 	default:
910 		break;
911 	}
912 
913 	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt))
914 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
915 		    E1000_FWSM_WLOCK_MAC_SHIFT;
916 
917 	for (i = 0; i < mac->rar_entry_count; i++) {
918 		if ((mac->type == e1000_pch_lpt) ||
919 		    (mac->type == e1000_pch_spt)) {
920 			/* Cannot test write-protected SHRAL[n] registers */
921 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
922 				continue;
923 
924 			/* SHRAH[9] different than the others */
925 			if (i == 10)
926 				mask |= BIT(30);
927 			else
928 				mask &= ~BIT(30);
929 		}
930 		if (mac->type == e1000_pch2lan) {
931 			/* SHRAH[0,1,2] different than previous */
932 			if (i == 1)
933 				mask &= 0xFFF4FFFF;
934 			/* SHRAH[3] different than SHRAH[0,1,2] */
935 			if (i == 4)
936 				mask |= BIT(30);
937 			/* RAR[1-6] owned by management engine - skipping */
938 			if (i > 0)
939 				i += 6;
940 		}
941 
942 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
943 				       0xFFFFFFFF);
944 		/* reset index to actual value */
945 		if ((mac->type == e1000_pch2lan) && (i > 6))
946 			i -= 6;
947 	}
948 
949 	for (i = 0; i < mac->mta_reg_count; i++)
950 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
951 
952 	*data = 0;
953 
954 	return 0;
955 }
956 
957 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
958 {
959 	u16 temp;
960 	u16 checksum = 0;
961 	u16 i;
962 
963 	*data = 0;
964 	/* Read and add up the contents of the EEPROM */
965 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
966 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
967 			*data = 1;
968 			return *data;
969 		}
970 		checksum += temp;
971 	}
972 
973 	/* If Checksum is not Correct return error else test passed */
974 	if ((checksum != (u16)NVM_SUM) && !(*data))
975 		*data = 2;
976 
977 	return *data;
978 }
979 
980 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
981 {
982 	struct net_device *netdev = (struct net_device *)data;
983 	struct e1000_adapter *adapter = netdev_priv(netdev);
984 	struct e1000_hw *hw = &adapter->hw;
985 
986 	adapter->test_icr |= er32(ICR);
987 
988 	return IRQ_HANDLED;
989 }
990 
991 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
992 {
993 	struct net_device *netdev = adapter->netdev;
994 	struct e1000_hw *hw = &adapter->hw;
995 	u32 mask;
996 	u32 shared_int = 1;
997 	u32 irq = adapter->pdev->irq;
998 	int i;
999 	int ret_val = 0;
1000 	int int_mode = E1000E_INT_MODE_LEGACY;
1001 
1002 	*data = 0;
1003 
1004 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1005 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1006 		int_mode = adapter->int_mode;
1007 		e1000e_reset_interrupt_capability(adapter);
1008 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1009 		e1000e_set_interrupt_capability(adapter);
1010 	}
1011 	/* Hook up test interrupt handler just for this test */
1012 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1013 			 netdev)) {
1014 		shared_int = 0;
1015 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1016 			       netdev)) {
1017 		*data = 1;
1018 		ret_val = -1;
1019 		goto out;
1020 	}
1021 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1022 
1023 	/* Disable all the interrupts */
1024 	ew32(IMC, 0xFFFFFFFF);
1025 	e1e_flush();
1026 	usleep_range(10000, 20000);
1027 
1028 	/* Test each interrupt */
1029 	for (i = 0; i < 10; i++) {
1030 		/* Interrupt to test */
1031 		mask = BIT(i);
1032 
1033 		if (adapter->flags & FLAG_IS_ICH) {
1034 			switch (mask) {
1035 			case E1000_ICR_RXSEQ:
1036 				continue;
1037 			case 0x00000100:
1038 				if (adapter->hw.mac.type == e1000_ich8lan ||
1039 				    adapter->hw.mac.type == e1000_ich9lan)
1040 					continue;
1041 				break;
1042 			default:
1043 				break;
1044 			}
1045 		}
1046 
1047 		if (!shared_int) {
1048 			/* Disable the interrupt to be reported in
1049 			 * the cause register and then force the same
1050 			 * interrupt and see if one gets posted.  If
1051 			 * an interrupt was posted to the bus, the
1052 			 * test failed.
1053 			 */
1054 			adapter->test_icr = 0;
1055 			ew32(IMC, mask);
1056 			ew32(ICS, mask);
1057 			e1e_flush();
1058 			usleep_range(10000, 20000);
1059 
1060 			if (adapter->test_icr & mask) {
1061 				*data = 3;
1062 				break;
1063 			}
1064 		}
1065 
1066 		/* Enable the interrupt to be reported in
1067 		 * the cause register and then force the same
1068 		 * interrupt and see if one gets posted.  If
1069 		 * an interrupt was not posted to the bus, the
1070 		 * test failed.
1071 		 */
1072 		adapter->test_icr = 0;
1073 		ew32(IMS, mask);
1074 		ew32(ICS, mask);
1075 		e1e_flush();
1076 		usleep_range(10000, 20000);
1077 
1078 		if (!(adapter->test_icr & mask)) {
1079 			*data = 4;
1080 			break;
1081 		}
1082 
1083 		if (!shared_int) {
1084 			/* Disable the other interrupts to be reported in
1085 			 * the cause register and then force the other
1086 			 * interrupts and see if any get posted.  If
1087 			 * an interrupt was posted to the bus, the
1088 			 * test failed.
1089 			 */
1090 			adapter->test_icr = 0;
1091 			ew32(IMC, ~mask & 0x00007FFF);
1092 			ew32(ICS, ~mask & 0x00007FFF);
1093 			e1e_flush();
1094 			usleep_range(10000, 20000);
1095 
1096 			if (adapter->test_icr) {
1097 				*data = 5;
1098 				break;
1099 			}
1100 		}
1101 	}
1102 
1103 	/* Disable all the interrupts */
1104 	ew32(IMC, 0xFFFFFFFF);
1105 	e1e_flush();
1106 	usleep_range(10000, 20000);
1107 
1108 	/* Unhook test interrupt handler */
1109 	free_irq(irq, netdev);
1110 
1111 out:
1112 	if (int_mode == E1000E_INT_MODE_MSIX) {
1113 		e1000e_reset_interrupt_capability(adapter);
1114 		adapter->int_mode = int_mode;
1115 		e1000e_set_interrupt_capability(adapter);
1116 	}
1117 
1118 	return ret_val;
1119 }
1120 
1121 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1122 {
1123 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1124 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1125 	struct pci_dev *pdev = adapter->pdev;
1126 	struct e1000_buffer *buffer_info;
1127 	int i;
1128 
1129 	if (tx_ring->desc && tx_ring->buffer_info) {
1130 		for (i = 0; i < tx_ring->count; i++) {
1131 			buffer_info = &tx_ring->buffer_info[i];
1132 
1133 			if (buffer_info->dma)
1134 				dma_unmap_single(&pdev->dev,
1135 						 buffer_info->dma,
1136 						 buffer_info->length,
1137 						 DMA_TO_DEVICE);
1138 			if (buffer_info->skb)
1139 				dev_kfree_skb(buffer_info->skb);
1140 		}
1141 	}
1142 
1143 	if (rx_ring->desc && rx_ring->buffer_info) {
1144 		for (i = 0; i < rx_ring->count; i++) {
1145 			buffer_info = &rx_ring->buffer_info[i];
1146 
1147 			if (buffer_info->dma)
1148 				dma_unmap_single(&pdev->dev,
1149 						 buffer_info->dma,
1150 						 2048, DMA_FROM_DEVICE);
1151 			if (buffer_info->skb)
1152 				dev_kfree_skb(buffer_info->skb);
1153 		}
1154 	}
1155 
1156 	if (tx_ring->desc) {
1157 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1158 				  tx_ring->dma);
1159 		tx_ring->desc = NULL;
1160 	}
1161 	if (rx_ring->desc) {
1162 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1163 				  rx_ring->dma);
1164 		rx_ring->desc = NULL;
1165 	}
1166 
1167 	kfree(tx_ring->buffer_info);
1168 	tx_ring->buffer_info = NULL;
1169 	kfree(rx_ring->buffer_info);
1170 	rx_ring->buffer_info = NULL;
1171 }
1172 
1173 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1174 {
1175 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1176 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1177 	struct pci_dev *pdev = adapter->pdev;
1178 	struct e1000_hw *hw = &adapter->hw;
1179 	u32 rctl;
1180 	int i;
1181 	int ret_val;
1182 
1183 	/* Setup Tx descriptor ring and Tx buffers */
1184 
1185 	if (!tx_ring->count)
1186 		tx_ring->count = E1000_DEFAULT_TXD;
1187 
1188 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1189 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1190 	if (!tx_ring->buffer_info) {
1191 		ret_val = 1;
1192 		goto err_nomem;
1193 	}
1194 
1195 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1196 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1197 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1198 					   &tx_ring->dma, GFP_KERNEL);
1199 	if (!tx_ring->desc) {
1200 		ret_val = 2;
1201 		goto err_nomem;
1202 	}
1203 	tx_ring->next_to_use = 0;
1204 	tx_ring->next_to_clean = 0;
1205 
1206 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1207 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1208 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1209 	ew32(TDH(0), 0);
1210 	ew32(TDT(0), 0);
1211 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1212 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1213 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1214 
1215 	for (i = 0; i < tx_ring->count; i++) {
1216 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1217 		struct sk_buff *skb;
1218 		unsigned int skb_size = 1024;
1219 
1220 		skb = alloc_skb(skb_size, GFP_KERNEL);
1221 		if (!skb) {
1222 			ret_val = 3;
1223 			goto err_nomem;
1224 		}
1225 		skb_put(skb, skb_size);
1226 		tx_ring->buffer_info[i].skb = skb;
1227 		tx_ring->buffer_info[i].length = skb->len;
1228 		tx_ring->buffer_info[i].dma =
1229 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1230 				   DMA_TO_DEVICE);
1231 		if (dma_mapping_error(&pdev->dev,
1232 				      tx_ring->buffer_info[i].dma)) {
1233 			ret_val = 4;
1234 			goto err_nomem;
1235 		}
1236 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1237 		tx_desc->lower.data = cpu_to_le32(skb->len);
1238 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1239 						   E1000_TXD_CMD_IFCS |
1240 						   E1000_TXD_CMD_RS);
1241 		tx_desc->upper.data = 0;
1242 	}
1243 
1244 	/* Setup Rx descriptor ring and Rx buffers */
1245 
1246 	if (!rx_ring->count)
1247 		rx_ring->count = E1000_DEFAULT_RXD;
1248 
1249 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1250 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1251 	if (!rx_ring->buffer_info) {
1252 		ret_val = 5;
1253 		goto err_nomem;
1254 	}
1255 
1256 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1257 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1258 					   &rx_ring->dma, GFP_KERNEL);
1259 	if (!rx_ring->desc) {
1260 		ret_val = 6;
1261 		goto err_nomem;
1262 	}
1263 	rx_ring->next_to_use = 0;
1264 	rx_ring->next_to_clean = 0;
1265 
1266 	rctl = er32(RCTL);
1267 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1268 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1269 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1270 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1271 	ew32(RDLEN(0), rx_ring->size);
1272 	ew32(RDH(0), 0);
1273 	ew32(RDT(0), 0);
1274 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1275 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1276 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1277 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1278 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1279 	ew32(RCTL, rctl);
1280 
1281 	for (i = 0; i < rx_ring->count; i++) {
1282 		union e1000_rx_desc_extended *rx_desc;
1283 		struct sk_buff *skb;
1284 
1285 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1286 		if (!skb) {
1287 			ret_val = 7;
1288 			goto err_nomem;
1289 		}
1290 		skb_reserve(skb, NET_IP_ALIGN);
1291 		rx_ring->buffer_info[i].skb = skb;
1292 		rx_ring->buffer_info[i].dma =
1293 		    dma_map_single(&pdev->dev, skb->data, 2048,
1294 				   DMA_FROM_DEVICE);
1295 		if (dma_mapping_error(&pdev->dev,
1296 				      rx_ring->buffer_info[i].dma)) {
1297 			ret_val = 8;
1298 			goto err_nomem;
1299 		}
1300 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1301 		rx_desc->read.buffer_addr =
1302 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1303 		memset(skb->data, 0x00, skb->len);
1304 	}
1305 
1306 	return 0;
1307 
1308 err_nomem:
1309 	e1000_free_desc_rings(adapter);
1310 	return ret_val;
1311 }
1312 
1313 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1314 {
1315 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1316 	e1e_wphy(&adapter->hw, 29, 0x001F);
1317 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1318 	e1e_wphy(&adapter->hw, 29, 0x001A);
1319 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1320 }
1321 
1322 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1323 {
1324 	struct e1000_hw *hw = &adapter->hw;
1325 	u32 ctrl_reg = 0;
1326 	u16 phy_reg = 0;
1327 	s32 ret_val = 0;
1328 
1329 	hw->mac.autoneg = 0;
1330 
1331 	if (hw->phy.type == e1000_phy_ife) {
1332 		/* force 100, set loopback */
1333 		e1e_wphy(hw, MII_BMCR, 0x6100);
1334 
1335 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1336 		ctrl_reg = er32(CTRL);
1337 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1338 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1339 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1340 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1341 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1342 
1343 		ew32(CTRL, ctrl_reg);
1344 		e1e_flush();
1345 		usleep_range(500, 1000);
1346 
1347 		return 0;
1348 	}
1349 
1350 	/* Specific PHY configuration for loopback */
1351 	switch (hw->phy.type) {
1352 	case e1000_phy_m88:
1353 		/* Auto-MDI/MDIX Off */
1354 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1355 		/* reset to update Auto-MDI/MDIX */
1356 		e1e_wphy(hw, MII_BMCR, 0x9140);
1357 		/* autoneg off */
1358 		e1e_wphy(hw, MII_BMCR, 0x8140);
1359 		break;
1360 	case e1000_phy_gg82563:
1361 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1362 		break;
1363 	case e1000_phy_bm:
1364 		/* Set Default MAC Interface speed to 1GB */
1365 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1366 		phy_reg &= ~0x0007;
1367 		phy_reg |= 0x006;
1368 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1369 		/* Assert SW reset for above settings to take effect */
1370 		hw->phy.ops.commit(hw);
1371 		usleep_range(1000, 2000);
1372 		/* Force Full Duplex */
1373 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1374 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1375 		/* Set Link Up (in force link) */
1376 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1377 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1378 		/* Force Link */
1379 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1380 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1381 		/* Set Early Link Enable */
1382 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1383 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1384 		break;
1385 	case e1000_phy_82577:
1386 	case e1000_phy_82578:
1387 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1388 		ret_val = hw->phy.ops.acquire(hw);
1389 		if (ret_val) {
1390 			e_err("Cannot setup 1Gbps loopback.\n");
1391 			return ret_val;
1392 		}
1393 		e1000_configure_k1_ich8lan(hw, false);
1394 		hw->phy.ops.release(hw);
1395 		break;
1396 	case e1000_phy_82579:
1397 		/* Disable PHY energy detect power down */
1398 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1399 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1400 		/* Disable full chip energy detect */
1401 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1402 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1403 		/* Enable loopback on the PHY */
1404 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1405 		break;
1406 	default:
1407 		break;
1408 	}
1409 
1410 	/* force 1000, set loopback */
1411 	e1e_wphy(hw, MII_BMCR, 0x4140);
1412 	msleep(250);
1413 
1414 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1415 	ctrl_reg = er32(CTRL);
1416 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1417 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1418 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1419 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1420 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1421 
1422 	if (adapter->flags & FLAG_IS_ICH)
1423 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1424 
1425 	if (hw->phy.media_type == e1000_media_type_copper &&
1426 	    hw->phy.type == e1000_phy_m88) {
1427 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1428 	} else {
1429 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1430 		 * detected.
1431 		 */
1432 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1433 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1434 	}
1435 
1436 	ew32(CTRL, ctrl_reg);
1437 
1438 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1439 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1440 	 */
1441 	if (hw->phy.type == e1000_phy_m88)
1442 		e1000_phy_disable_receiver(adapter);
1443 
1444 	usleep_range(500, 1000);
1445 
1446 	return 0;
1447 }
1448 
1449 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1450 {
1451 	struct e1000_hw *hw = &adapter->hw;
1452 	u32 ctrl = er32(CTRL);
1453 	int link;
1454 
1455 	/* special requirements for 82571/82572 fiber adapters */
1456 
1457 	/* jump through hoops to make sure link is up because serdes
1458 	 * link is hardwired up
1459 	 */
1460 	ctrl |= E1000_CTRL_SLU;
1461 	ew32(CTRL, ctrl);
1462 
1463 	/* disable autoneg */
1464 	ctrl = er32(TXCW);
1465 	ctrl &= ~BIT(31);
1466 	ew32(TXCW, ctrl);
1467 
1468 	link = (er32(STATUS) & E1000_STATUS_LU);
1469 
1470 	if (!link) {
1471 		/* set invert loss of signal */
1472 		ctrl = er32(CTRL);
1473 		ctrl |= E1000_CTRL_ILOS;
1474 		ew32(CTRL, ctrl);
1475 	}
1476 
1477 	/* special write to serdes control register to enable SerDes analog
1478 	 * loopback
1479 	 */
1480 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1481 	e1e_flush();
1482 	usleep_range(10000, 20000);
1483 
1484 	return 0;
1485 }
1486 
1487 /* only call this for fiber/serdes connections to es2lan */
1488 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1489 {
1490 	struct e1000_hw *hw = &adapter->hw;
1491 	u32 ctrlext = er32(CTRL_EXT);
1492 	u32 ctrl = er32(CTRL);
1493 
1494 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1495 	 * on mac_type 80003es2lan)
1496 	 */
1497 	adapter->tx_fifo_head = ctrlext;
1498 
1499 	/* clear the serdes mode bits, putting the device into mac loopback */
1500 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1501 	ew32(CTRL_EXT, ctrlext);
1502 
1503 	/* force speed to 1000/FD, link up */
1504 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1505 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1506 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1507 	ew32(CTRL, ctrl);
1508 
1509 	/* set mac loopback */
1510 	ctrl = er32(RCTL);
1511 	ctrl |= E1000_RCTL_LBM_MAC;
1512 	ew32(RCTL, ctrl);
1513 
1514 	/* set testing mode parameters (no need to reset later) */
1515 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1516 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1517 	ew32(KMRNCTRLSTA,
1518 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1519 
1520 	return 0;
1521 }
1522 
1523 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1524 {
1525 	struct e1000_hw *hw = &adapter->hw;
1526 	u32 rctl, fext_nvm11, tarc0;
1527 
1528 	if (hw->mac.type == e1000_pch_spt) {
1529 		fext_nvm11 = er32(FEXTNVM11);
1530 		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1531 		ew32(FEXTNVM11, fext_nvm11);
1532 		tarc0 = er32(TARC(0));
1533 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1534 		tarc0 &= 0xcfffffff;
1535 		/* set bit 29 (value of MULR requests is now 2) */
1536 		tarc0 |= 0x20000000;
1537 		ew32(TARC(0), tarc0);
1538 	}
1539 	if (hw->phy.media_type == e1000_media_type_fiber ||
1540 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1541 		switch (hw->mac.type) {
1542 		case e1000_80003es2lan:
1543 			return e1000_set_es2lan_mac_loopback(adapter);
1544 		case e1000_82571:
1545 		case e1000_82572:
1546 			return e1000_set_82571_fiber_loopback(adapter);
1547 		default:
1548 			rctl = er32(RCTL);
1549 			rctl |= E1000_RCTL_LBM_TCVR;
1550 			ew32(RCTL, rctl);
1551 			return 0;
1552 		}
1553 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1554 		return e1000_integrated_phy_loopback(adapter);
1555 	}
1556 
1557 	return 7;
1558 }
1559 
1560 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1561 {
1562 	struct e1000_hw *hw = &adapter->hw;
1563 	u32 rctl, fext_nvm11, tarc0;
1564 	u16 phy_reg;
1565 
1566 	rctl = er32(RCTL);
1567 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1568 	ew32(RCTL, rctl);
1569 
1570 	switch (hw->mac.type) {
1571 	case e1000_pch_spt:
1572 		fext_nvm11 = er32(FEXTNVM11);
1573 		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1574 		ew32(FEXTNVM11, fext_nvm11);
1575 		tarc0 = er32(TARC(0));
1576 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1577 		/* set bit 29 (value of MULR requests is now 0) */
1578 		tarc0 &= 0xcfffffff;
1579 		ew32(TARC(0), tarc0);
1580 		/* fall through */
1581 	case e1000_80003es2lan:
1582 		if (hw->phy.media_type == e1000_media_type_fiber ||
1583 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1584 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1585 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1586 			adapter->tx_fifo_head = 0;
1587 		}
1588 		/* fall through */
1589 	case e1000_82571:
1590 	case e1000_82572:
1591 		if (hw->phy.media_type == e1000_media_type_fiber ||
1592 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1593 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1594 			e1e_flush();
1595 			usleep_range(10000, 20000);
1596 			break;
1597 		}
1598 		/* Fall Through */
1599 	default:
1600 		hw->mac.autoneg = 1;
1601 		if (hw->phy.type == e1000_phy_gg82563)
1602 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1603 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1604 		if (phy_reg & BMCR_LOOPBACK) {
1605 			phy_reg &= ~BMCR_LOOPBACK;
1606 			e1e_wphy(hw, MII_BMCR, phy_reg);
1607 			if (hw->phy.ops.commit)
1608 				hw->phy.ops.commit(hw);
1609 		}
1610 		break;
1611 	}
1612 }
1613 
1614 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1615 				      unsigned int frame_size)
1616 {
1617 	memset(skb->data, 0xFF, frame_size);
1618 	frame_size &= ~1;
1619 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1620 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1621 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1622 }
1623 
1624 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1625 				    unsigned int frame_size)
1626 {
1627 	frame_size &= ~1;
1628 	if (*(skb->data + 3) == 0xFF)
1629 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1630 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1631 			return 0;
1632 	return 13;
1633 }
1634 
1635 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1636 {
1637 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1638 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1639 	struct pci_dev *pdev = adapter->pdev;
1640 	struct e1000_hw *hw = &adapter->hw;
1641 	struct e1000_buffer *buffer_info;
1642 	int i, j, k, l;
1643 	int lc;
1644 	int good_cnt;
1645 	int ret_val = 0;
1646 	unsigned long time;
1647 
1648 	ew32(RDT(0), rx_ring->count - 1);
1649 
1650 	/* Calculate the loop count based on the largest descriptor ring
1651 	 * The idea is to wrap the largest ring a number of times using 64
1652 	 * send/receive pairs during each loop
1653 	 */
1654 
1655 	if (rx_ring->count <= tx_ring->count)
1656 		lc = ((tx_ring->count / 64) * 2) + 1;
1657 	else
1658 		lc = ((rx_ring->count / 64) * 2) + 1;
1659 
1660 	k = 0;
1661 	l = 0;
1662 	/* loop count loop */
1663 	for (j = 0; j <= lc; j++) {
1664 		/* send the packets */
1665 		for (i = 0; i < 64; i++) {
1666 			buffer_info = &tx_ring->buffer_info[k];
1667 
1668 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1669 			dma_sync_single_for_device(&pdev->dev,
1670 						   buffer_info->dma,
1671 						   buffer_info->length,
1672 						   DMA_TO_DEVICE);
1673 			k++;
1674 			if (k == tx_ring->count)
1675 				k = 0;
1676 		}
1677 		ew32(TDT(0), k);
1678 		e1e_flush();
1679 		msleep(200);
1680 		time = jiffies;	/* set the start time for the receive */
1681 		good_cnt = 0;
1682 		/* receive the sent packets */
1683 		do {
1684 			buffer_info = &rx_ring->buffer_info[l];
1685 
1686 			dma_sync_single_for_cpu(&pdev->dev,
1687 						buffer_info->dma, 2048,
1688 						DMA_FROM_DEVICE);
1689 
1690 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1691 							   1024);
1692 			if (!ret_val)
1693 				good_cnt++;
1694 			l++;
1695 			if (l == rx_ring->count)
1696 				l = 0;
1697 			/* time + 20 msecs (200 msecs on 2.4) is more than
1698 			 * enough time to complete the receives, if it's
1699 			 * exceeded, break and error off
1700 			 */
1701 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1702 		if (good_cnt != 64) {
1703 			ret_val = 13;	/* ret_val is the same as mis-compare */
1704 			break;
1705 		}
1706 		if (time_after(jiffies, time + 20)) {
1707 			ret_val = 14;	/* error code for time out error */
1708 			break;
1709 		}
1710 	}
1711 	return ret_val;
1712 }
1713 
1714 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1715 {
1716 	struct e1000_hw *hw = &adapter->hw;
1717 
1718 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1719 	if (hw->phy.ops.check_reset_block &&
1720 	    hw->phy.ops.check_reset_block(hw)) {
1721 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1722 		*data = 0;
1723 		goto out;
1724 	}
1725 
1726 	*data = e1000_setup_desc_rings(adapter);
1727 	if (*data)
1728 		goto out;
1729 
1730 	*data = e1000_setup_loopback_test(adapter);
1731 	if (*data)
1732 		goto err_loopback;
1733 
1734 	*data = e1000_run_loopback_test(adapter);
1735 	e1000_loopback_cleanup(adapter);
1736 
1737 err_loopback:
1738 	e1000_free_desc_rings(adapter);
1739 out:
1740 	return *data;
1741 }
1742 
1743 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1744 {
1745 	struct e1000_hw *hw = &adapter->hw;
1746 
1747 	*data = 0;
1748 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1749 		int i = 0;
1750 
1751 		hw->mac.serdes_has_link = false;
1752 
1753 		/* On some blade server designs, link establishment
1754 		 * could take as long as 2-3 minutes
1755 		 */
1756 		do {
1757 			hw->mac.ops.check_for_link(hw);
1758 			if (hw->mac.serdes_has_link)
1759 				return *data;
1760 			msleep(20);
1761 		} while (i++ < 3750);
1762 
1763 		*data = 1;
1764 	} else {
1765 		hw->mac.ops.check_for_link(hw);
1766 		if (hw->mac.autoneg)
1767 			/* On some Phy/switch combinations, link establishment
1768 			 * can take a few seconds more than expected.
1769 			 */
1770 			msleep_interruptible(5000);
1771 
1772 		if (!(er32(STATUS) & E1000_STATUS_LU))
1773 			*data = 1;
1774 	}
1775 	return *data;
1776 }
1777 
1778 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1779 				 int sset)
1780 {
1781 	switch (sset) {
1782 	case ETH_SS_TEST:
1783 		return E1000_TEST_LEN;
1784 	case ETH_SS_STATS:
1785 		return E1000_STATS_LEN;
1786 	default:
1787 		return -EOPNOTSUPP;
1788 	}
1789 }
1790 
1791 static void e1000_diag_test(struct net_device *netdev,
1792 			    struct ethtool_test *eth_test, u64 *data)
1793 {
1794 	struct e1000_adapter *adapter = netdev_priv(netdev);
1795 	u16 autoneg_advertised;
1796 	u8 forced_speed_duplex;
1797 	u8 autoneg;
1798 	bool if_running = netif_running(netdev);
1799 
1800 	pm_runtime_get_sync(netdev->dev.parent);
1801 
1802 	set_bit(__E1000_TESTING, &adapter->state);
1803 
1804 	if (!if_running) {
1805 		/* Get control of and reset hardware */
1806 		if (adapter->flags & FLAG_HAS_AMT)
1807 			e1000e_get_hw_control(adapter);
1808 
1809 		e1000e_power_up_phy(adapter);
1810 
1811 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1812 		e1000e_reset(adapter);
1813 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1814 	}
1815 
1816 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1817 		/* Offline tests */
1818 
1819 		/* save speed, duplex, autoneg settings */
1820 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1821 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1822 		autoneg = adapter->hw.mac.autoneg;
1823 
1824 		e_info("offline testing starting\n");
1825 
1826 		if (if_running)
1827 			/* indicate we're in test mode */
1828 			e1000e_close(netdev);
1829 
1830 		if (e1000_reg_test(adapter, &data[0]))
1831 			eth_test->flags |= ETH_TEST_FL_FAILED;
1832 
1833 		e1000e_reset(adapter);
1834 		if (e1000_eeprom_test(adapter, &data[1]))
1835 			eth_test->flags |= ETH_TEST_FL_FAILED;
1836 
1837 		e1000e_reset(adapter);
1838 		if (e1000_intr_test(adapter, &data[2]))
1839 			eth_test->flags |= ETH_TEST_FL_FAILED;
1840 
1841 		e1000e_reset(adapter);
1842 		if (e1000_loopback_test(adapter, &data[3]))
1843 			eth_test->flags |= ETH_TEST_FL_FAILED;
1844 
1845 		/* force this routine to wait until autoneg complete/timeout */
1846 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1847 		e1000e_reset(adapter);
1848 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1849 
1850 		if (e1000_link_test(adapter, &data[4]))
1851 			eth_test->flags |= ETH_TEST_FL_FAILED;
1852 
1853 		/* restore speed, duplex, autoneg settings */
1854 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1855 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1856 		adapter->hw.mac.autoneg = autoneg;
1857 		e1000e_reset(adapter);
1858 
1859 		clear_bit(__E1000_TESTING, &adapter->state);
1860 		if (if_running)
1861 			e1000e_open(netdev);
1862 	} else {
1863 		/* Online tests */
1864 
1865 		e_info("online testing starting\n");
1866 
1867 		/* register, eeprom, intr and loopback tests not run online */
1868 		data[0] = 0;
1869 		data[1] = 0;
1870 		data[2] = 0;
1871 		data[3] = 0;
1872 
1873 		if (e1000_link_test(adapter, &data[4]))
1874 			eth_test->flags |= ETH_TEST_FL_FAILED;
1875 
1876 		clear_bit(__E1000_TESTING, &adapter->state);
1877 	}
1878 
1879 	if (!if_running) {
1880 		e1000e_reset(adapter);
1881 
1882 		if (adapter->flags & FLAG_HAS_AMT)
1883 			e1000e_release_hw_control(adapter);
1884 	}
1885 
1886 	msleep_interruptible(4 * 1000);
1887 
1888 	pm_runtime_put_sync(netdev->dev.parent);
1889 }
1890 
1891 static void e1000_get_wol(struct net_device *netdev,
1892 			  struct ethtool_wolinfo *wol)
1893 {
1894 	struct e1000_adapter *adapter = netdev_priv(netdev);
1895 
1896 	wol->supported = 0;
1897 	wol->wolopts = 0;
1898 
1899 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1900 	    !device_can_wakeup(&adapter->pdev->dev))
1901 		return;
1902 
1903 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1904 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1905 
1906 	/* apply any specific unsupported masks here */
1907 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1908 		wol->supported &= ~WAKE_UCAST;
1909 
1910 		if (adapter->wol & E1000_WUFC_EX)
1911 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1912 	}
1913 
1914 	if (adapter->wol & E1000_WUFC_EX)
1915 		wol->wolopts |= WAKE_UCAST;
1916 	if (adapter->wol & E1000_WUFC_MC)
1917 		wol->wolopts |= WAKE_MCAST;
1918 	if (adapter->wol & E1000_WUFC_BC)
1919 		wol->wolopts |= WAKE_BCAST;
1920 	if (adapter->wol & E1000_WUFC_MAG)
1921 		wol->wolopts |= WAKE_MAGIC;
1922 	if (adapter->wol & E1000_WUFC_LNKC)
1923 		wol->wolopts |= WAKE_PHY;
1924 }
1925 
1926 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1927 {
1928 	struct e1000_adapter *adapter = netdev_priv(netdev);
1929 
1930 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1931 	    !device_can_wakeup(&adapter->pdev->dev) ||
1932 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1933 			      WAKE_MAGIC | WAKE_PHY)))
1934 		return -EOPNOTSUPP;
1935 
1936 	/* these settings will always override what we currently have */
1937 	adapter->wol = 0;
1938 
1939 	if (wol->wolopts & WAKE_UCAST)
1940 		adapter->wol |= E1000_WUFC_EX;
1941 	if (wol->wolopts & WAKE_MCAST)
1942 		adapter->wol |= E1000_WUFC_MC;
1943 	if (wol->wolopts & WAKE_BCAST)
1944 		adapter->wol |= E1000_WUFC_BC;
1945 	if (wol->wolopts & WAKE_MAGIC)
1946 		adapter->wol |= E1000_WUFC_MAG;
1947 	if (wol->wolopts & WAKE_PHY)
1948 		adapter->wol |= E1000_WUFC_LNKC;
1949 
1950 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1951 
1952 	return 0;
1953 }
1954 
1955 static int e1000_set_phys_id(struct net_device *netdev,
1956 			     enum ethtool_phys_id_state state)
1957 {
1958 	struct e1000_adapter *adapter = netdev_priv(netdev);
1959 	struct e1000_hw *hw = &adapter->hw;
1960 
1961 	switch (state) {
1962 	case ETHTOOL_ID_ACTIVE:
1963 		pm_runtime_get_sync(netdev->dev.parent);
1964 
1965 		if (!hw->mac.ops.blink_led)
1966 			return 2;	/* cycle on/off twice per second */
1967 
1968 		hw->mac.ops.blink_led(hw);
1969 		break;
1970 
1971 	case ETHTOOL_ID_INACTIVE:
1972 		if (hw->phy.type == e1000_phy_ife)
1973 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1974 		hw->mac.ops.led_off(hw);
1975 		hw->mac.ops.cleanup_led(hw);
1976 		pm_runtime_put_sync(netdev->dev.parent);
1977 		break;
1978 
1979 	case ETHTOOL_ID_ON:
1980 		hw->mac.ops.led_on(hw);
1981 		break;
1982 
1983 	case ETHTOOL_ID_OFF:
1984 		hw->mac.ops.led_off(hw);
1985 		break;
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 static int e1000_get_coalesce(struct net_device *netdev,
1992 			      struct ethtool_coalesce *ec)
1993 {
1994 	struct e1000_adapter *adapter = netdev_priv(netdev);
1995 
1996 	if (adapter->itr_setting <= 4)
1997 		ec->rx_coalesce_usecs = adapter->itr_setting;
1998 	else
1999 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2000 
2001 	return 0;
2002 }
2003 
2004 static int e1000_set_coalesce(struct net_device *netdev,
2005 			      struct ethtool_coalesce *ec)
2006 {
2007 	struct e1000_adapter *adapter = netdev_priv(netdev);
2008 
2009 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2010 	    ((ec->rx_coalesce_usecs > 4) &&
2011 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2012 	    (ec->rx_coalesce_usecs == 2))
2013 		return -EINVAL;
2014 
2015 	if (ec->rx_coalesce_usecs == 4) {
2016 		adapter->itr_setting = 4;
2017 		adapter->itr = adapter->itr_setting;
2018 	} else if (ec->rx_coalesce_usecs <= 3) {
2019 		adapter->itr = 20000;
2020 		adapter->itr_setting = ec->rx_coalesce_usecs;
2021 	} else {
2022 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2023 		adapter->itr_setting = adapter->itr & ~3;
2024 	}
2025 
2026 	pm_runtime_get_sync(netdev->dev.parent);
2027 
2028 	if (adapter->itr_setting != 0)
2029 		e1000e_write_itr(adapter, adapter->itr);
2030 	else
2031 		e1000e_write_itr(adapter, 0);
2032 
2033 	pm_runtime_put_sync(netdev->dev.parent);
2034 
2035 	return 0;
2036 }
2037 
2038 static int e1000_nway_reset(struct net_device *netdev)
2039 {
2040 	struct e1000_adapter *adapter = netdev_priv(netdev);
2041 
2042 	if (!netif_running(netdev))
2043 		return -EAGAIN;
2044 
2045 	if (!adapter->hw.mac.autoneg)
2046 		return -EINVAL;
2047 
2048 	pm_runtime_get_sync(netdev->dev.parent);
2049 	e1000e_reinit_locked(adapter);
2050 	pm_runtime_put_sync(netdev->dev.parent);
2051 
2052 	return 0;
2053 }
2054 
2055 static void e1000_get_ethtool_stats(struct net_device *netdev,
2056 				    struct ethtool_stats __always_unused *stats,
2057 				    u64 *data)
2058 {
2059 	struct e1000_adapter *adapter = netdev_priv(netdev);
2060 	struct rtnl_link_stats64 net_stats;
2061 	int i;
2062 	char *p = NULL;
2063 
2064 	pm_runtime_get_sync(netdev->dev.parent);
2065 
2066 	e1000e_get_stats64(netdev, &net_stats);
2067 
2068 	pm_runtime_put_sync(netdev->dev.parent);
2069 
2070 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2071 		switch (e1000_gstrings_stats[i].type) {
2072 		case NETDEV_STATS:
2073 			p = (char *)&net_stats +
2074 			    e1000_gstrings_stats[i].stat_offset;
2075 			break;
2076 		case E1000_STATS:
2077 			p = (char *)adapter +
2078 			    e1000_gstrings_stats[i].stat_offset;
2079 			break;
2080 		default:
2081 			data[i] = 0;
2082 			continue;
2083 		}
2084 
2085 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2086 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2087 	}
2088 }
2089 
2090 static void e1000_get_strings(struct net_device __always_unused *netdev,
2091 			      u32 stringset, u8 *data)
2092 {
2093 	u8 *p = data;
2094 	int i;
2095 
2096 	switch (stringset) {
2097 	case ETH_SS_TEST:
2098 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2099 		break;
2100 	case ETH_SS_STATS:
2101 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2102 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2103 			       ETH_GSTRING_LEN);
2104 			p += ETH_GSTRING_LEN;
2105 		}
2106 		break;
2107 	}
2108 }
2109 
2110 static int e1000_get_rxnfc(struct net_device *netdev,
2111 			   struct ethtool_rxnfc *info,
2112 			   u32 __always_unused *rule_locs)
2113 {
2114 	info->data = 0;
2115 
2116 	switch (info->cmd) {
2117 	case ETHTOOL_GRXFH: {
2118 		struct e1000_adapter *adapter = netdev_priv(netdev);
2119 		struct e1000_hw *hw = &adapter->hw;
2120 		u32 mrqc;
2121 
2122 		pm_runtime_get_sync(netdev->dev.parent);
2123 		mrqc = er32(MRQC);
2124 		pm_runtime_put_sync(netdev->dev.parent);
2125 
2126 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2127 			return 0;
2128 
2129 		switch (info->flow_type) {
2130 		case TCP_V4_FLOW:
2131 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2132 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2133 			/* fall through */
2134 		case UDP_V4_FLOW:
2135 		case SCTP_V4_FLOW:
2136 		case AH_ESP_V4_FLOW:
2137 		case IPV4_FLOW:
2138 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2139 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2140 			break;
2141 		case TCP_V6_FLOW:
2142 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2143 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2144 			/* fall through */
2145 		case UDP_V6_FLOW:
2146 		case SCTP_V6_FLOW:
2147 		case AH_ESP_V6_FLOW:
2148 		case IPV6_FLOW:
2149 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2150 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2151 			break;
2152 		default:
2153 			break;
2154 		}
2155 		return 0;
2156 	}
2157 	default:
2158 		return -EOPNOTSUPP;
2159 	}
2160 }
2161 
2162 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2163 {
2164 	struct e1000_adapter *adapter = netdev_priv(netdev);
2165 	struct e1000_hw *hw = &adapter->hw;
2166 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2167 	u32 ret_val;
2168 
2169 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2170 		return -EOPNOTSUPP;
2171 
2172 	switch (hw->phy.type) {
2173 	case e1000_phy_82579:
2174 		cap_addr = I82579_EEE_CAPABILITY;
2175 		lpa_addr = I82579_EEE_LP_ABILITY;
2176 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2177 		break;
2178 	case e1000_phy_i217:
2179 		cap_addr = I217_EEE_CAPABILITY;
2180 		lpa_addr = I217_EEE_LP_ABILITY;
2181 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2182 		break;
2183 	default:
2184 		return -EOPNOTSUPP;
2185 	}
2186 
2187 	pm_runtime_get_sync(netdev->dev.parent);
2188 
2189 	ret_val = hw->phy.ops.acquire(hw);
2190 	if (ret_val) {
2191 		pm_runtime_put_sync(netdev->dev.parent);
2192 		return -EBUSY;
2193 	}
2194 
2195 	/* EEE Capability */
2196 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2197 	if (ret_val)
2198 		goto release;
2199 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2200 
2201 	/* EEE Advertised */
2202 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2203 
2204 	/* EEE Link Partner Advertised */
2205 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2206 	if (ret_val)
2207 		goto release;
2208 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2209 
2210 	/* EEE PCS Status */
2211 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2212 	if (ret_val)
2213 		goto release;
2214 	if (hw->phy.type == e1000_phy_82579)
2215 		phy_data <<= 8;
2216 
2217 	/* Result of the EEE auto negotiation - there is no register that
2218 	 * has the status of the EEE negotiation so do a best-guess based
2219 	 * on whether Tx or Rx LPI indications have been received.
2220 	 */
2221 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2222 		edata->eee_active = true;
2223 
2224 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2225 	edata->tx_lpi_enabled = true;
2226 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2227 
2228 release:
2229 	hw->phy.ops.release(hw);
2230 	if (ret_val)
2231 		ret_val = -ENODATA;
2232 
2233 	pm_runtime_put_sync(netdev->dev.parent);
2234 
2235 	return ret_val;
2236 }
2237 
2238 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2239 {
2240 	struct e1000_adapter *adapter = netdev_priv(netdev);
2241 	struct e1000_hw *hw = &adapter->hw;
2242 	struct ethtool_eee eee_curr;
2243 	s32 ret_val;
2244 
2245 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2246 	if (ret_val)
2247 		return ret_val;
2248 
2249 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2250 		e_err("Setting EEE tx-lpi is not supported\n");
2251 		return -EINVAL;
2252 	}
2253 
2254 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2255 		e_err("Setting EEE Tx LPI timer is not supported\n");
2256 		return -EINVAL;
2257 	}
2258 
2259 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2260 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2261 		return -EINVAL;
2262 	}
2263 
2264 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2265 
2266 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2267 
2268 	pm_runtime_get_sync(netdev->dev.parent);
2269 
2270 	/* reset the link */
2271 	if (netif_running(netdev))
2272 		e1000e_reinit_locked(adapter);
2273 	else
2274 		e1000e_reset(adapter);
2275 
2276 	pm_runtime_put_sync(netdev->dev.parent);
2277 
2278 	return 0;
2279 }
2280 
2281 static int e1000e_get_ts_info(struct net_device *netdev,
2282 			      struct ethtool_ts_info *info)
2283 {
2284 	struct e1000_adapter *adapter = netdev_priv(netdev);
2285 
2286 	ethtool_op_get_ts_info(netdev, info);
2287 
2288 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2289 		return 0;
2290 
2291 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2292 				  SOF_TIMESTAMPING_RX_HARDWARE |
2293 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2294 
2295 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2296 
2297 	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2298 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2299 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2300 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2301 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2302 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2303 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2304 			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2305 			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2306 			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2307 			    BIT(HWTSTAMP_FILTER_ALL));
2308 
2309 	if (adapter->ptp_clock)
2310 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2311 
2312 	return 0;
2313 }
2314 
2315 static const struct ethtool_ops e1000_ethtool_ops = {
2316 	.get_settings		= e1000_get_settings,
2317 	.set_settings		= e1000_set_settings,
2318 	.get_drvinfo		= e1000_get_drvinfo,
2319 	.get_regs_len		= e1000_get_regs_len,
2320 	.get_regs		= e1000_get_regs,
2321 	.get_wol		= e1000_get_wol,
2322 	.set_wol		= e1000_set_wol,
2323 	.get_msglevel		= e1000_get_msglevel,
2324 	.set_msglevel		= e1000_set_msglevel,
2325 	.nway_reset		= e1000_nway_reset,
2326 	.get_link		= ethtool_op_get_link,
2327 	.get_eeprom_len		= e1000_get_eeprom_len,
2328 	.get_eeprom		= e1000_get_eeprom,
2329 	.set_eeprom		= e1000_set_eeprom,
2330 	.get_ringparam		= e1000_get_ringparam,
2331 	.set_ringparam		= e1000_set_ringparam,
2332 	.get_pauseparam		= e1000_get_pauseparam,
2333 	.set_pauseparam		= e1000_set_pauseparam,
2334 	.self_test		= e1000_diag_test,
2335 	.get_strings		= e1000_get_strings,
2336 	.set_phys_id		= e1000_set_phys_id,
2337 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2338 	.get_sset_count		= e1000e_get_sset_count,
2339 	.get_coalesce		= e1000_get_coalesce,
2340 	.set_coalesce		= e1000_set_coalesce,
2341 	.get_rxnfc		= e1000_get_rxnfc,
2342 	.get_ts_info		= e1000e_get_ts_info,
2343 	.get_eee		= e1000e_get_eee,
2344 	.set_eee		= e1000e_set_eee,
2345 };
2346 
2347 void e1000e_set_ethtool_ops(struct net_device *netdev)
2348 {
2349 	netdev->ethtool_ops = &e1000_ethtool_ops;
2350 }
2351