1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2015 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 /* ethtool support for e1000 */ 23 24 #include <linux/netdevice.h> 25 #include <linux/interrupt.h> 26 #include <linux/ethtool.h> 27 #include <linux/pci.h> 28 #include <linux/slab.h> 29 #include <linux/delay.h> 30 #include <linux/vmalloc.h> 31 #include <linux/pm_runtime.h> 32 33 #include "e1000.h" 34 35 enum { NETDEV_STATS, E1000_STATS }; 36 37 struct e1000_stats { 38 char stat_string[ETH_GSTRING_LEN]; 39 int type; 40 int sizeof_stat; 41 int stat_offset; 42 }; 43 44 #define E1000_STAT(str, m) { \ 45 .stat_string = str, \ 46 .type = E1000_STATS, \ 47 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 48 .stat_offset = offsetof(struct e1000_adapter, m) } 49 #define E1000_NETDEV_STAT(str, m) { \ 50 .stat_string = str, \ 51 .type = NETDEV_STATS, \ 52 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 53 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 54 55 static const struct e1000_stats e1000_gstrings_stats[] = { 56 E1000_STAT("rx_packets", stats.gprc), 57 E1000_STAT("tx_packets", stats.gptc), 58 E1000_STAT("rx_bytes", stats.gorc), 59 E1000_STAT("tx_bytes", stats.gotc), 60 E1000_STAT("rx_broadcast", stats.bprc), 61 E1000_STAT("tx_broadcast", stats.bptc), 62 E1000_STAT("rx_multicast", stats.mprc), 63 E1000_STAT("tx_multicast", stats.mptc), 64 E1000_NETDEV_STAT("rx_errors", rx_errors), 65 E1000_NETDEV_STAT("tx_errors", tx_errors), 66 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 67 E1000_STAT("multicast", stats.mprc), 68 E1000_STAT("collisions", stats.colc), 69 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 70 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 71 E1000_STAT("rx_crc_errors", stats.crcerrs), 72 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 73 E1000_STAT("rx_no_buffer_count", stats.rnbc), 74 E1000_STAT("rx_missed_errors", stats.mpc), 75 E1000_STAT("tx_aborted_errors", stats.ecol), 76 E1000_STAT("tx_carrier_errors", stats.tncrs), 77 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 78 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 79 E1000_STAT("tx_window_errors", stats.latecol), 80 E1000_STAT("tx_abort_late_coll", stats.latecol), 81 E1000_STAT("tx_deferred_ok", stats.dc), 82 E1000_STAT("tx_single_coll_ok", stats.scc), 83 E1000_STAT("tx_multi_coll_ok", stats.mcc), 84 E1000_STAT("tx_timeout_count", tx_timeout_count), 85 E1000_STAT("tx_restart_queue", restart_queue), 86 E1000_STAT("rx_long_length_errors", stats.roc), 87 E1000_STAT("rx_short_length_errors", stats.ruc), 88 E1000_STAT("rx_align_errors", stats.algnerrc), 89 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 90 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 91 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 92 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 93 E1000_STAT("tx_flow_control_xon", stats.xontxc), 94 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 95 E1000_STAT("rx_csum_offload_good", hw_csum_good), 96 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 97 E1000_STAT("rx_header_split", rx_hdr_split), 98 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 99 E1000_STAT("tx_smbus", stats.mgptc), 100 E1000_STAT("rx_smbus", stats.mgprc), 101 E1000_STAT("dropped_smbus", stats.mgpdc), 102 E1000_STAT("rx_dma_failed", rx_dma_failed), 103 E1000_STAT("tx_dma_failed", tx_dma_failed), 104 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 105 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 106 E1000_STAT("corr_ecc_errors", corr_errors), 107 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 108 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 109 }; 110 111 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 112 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 113 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 114 "Register test (offline)", "Eeprom test (offline)", 115 "Interrupt test (offline)", "Loopback test (offline)", 116 "Link test (on/offline)" 117 }; 118 119 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 120 121 static int e1000_get_link_ksettings(struct net_device *netdev, 122 struct ethtool_link_ksettings *cmd) 123 { 124 struct e1000_adapter *adapter = netdev_priv(netdev); 125 struct e1000_hw *hw = &adapter->hw; 126 u32 speed, supported, advertising; 127 128 if (hw->phy.media_type == e1000_media_type_copper) { 129 supported = (SUPPORTED_10baseT_Half | 130 SUPPORTED_10baseT_Full | 131 SUPPORTED_100baseT_Half | 132 SUPPORTED_100baseT_Full | 133 SUPPORTED_1000baseT_Full | 134 SUPPORTED_Autoneg | 135 SUPPORTED_TP); 136 if (hw->phy.type == e1000_phy_ife) 137 supported &= ~SUPPORTED_1000baseT_Full; 138 advertising = ADVERTISED_TP; 139 140 if (hw->mac.autoneg == 1) { 141 advertising |= ADVERTISED_Autoneg; 142 /* the e1000 autoneg seems to match ethtool nicely */ 143 advertising |= hw->phy.autoneg_advertised; 144 } 145 146 cmd->base.port = PORT_TP; 147 cmd->base.phy_address = hw->phy.addr; 148 } else { 149 supported = (SUPPORTED_1000baseT_Full | 150 SUPPORTED_FIBRE | 151 SUPPORTED_Autoneg); 152 153 advertising = (ADVERTISED_1000baseT_Full | 154 ADVERTISED_FIBRE | 155 ADVERTISED_Autoneg); 156 157 cmd->base.port = PORT_FIBRE; 158 } 159 160 speed = SPEED_UNKNOWN; 161 cmd->base.duplex = DUPLEX_UNKNOWN; 162 163 if (netif_running(netdev)) { 164 if (netif_carrier_ok(netdev)) { 165 speed = adapter->link_speed; 166 cmd->base.duplex = adapter->link_duplex - 1; 167 } 168 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 169 u32 status = er32(STATUS); 170 171 if (status & E1000_STATUS_LU) { 172 if (status & E1000_STATUS_SPEED_1000) 173 speed = SPEED_1000; 174 else if (status & E1000_STATUS_SPEED_100) 175 speed = SPEED_100; 176 else 177 speed = SPEED_10; 178 179 if (status & E1000_STATUS_FD) 180 cmd->base.duplex = DUPLEX_FULL; 181 else 182 cmd->base.duplex = DUPLEX_HALF; 183 } 184 } 185 186 cmd->base.speed = speed; 187 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 188 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 189 190 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 191 if ((hw->phy.media_type == e1000_media_type_copper) && 192 netif_carrier_ok(netdev)) 193 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 194 ETH_TP_MDI_X : ETH_TP_MDI; 195 else 196 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 197 198 if (hw->phy.mdix == AUTO_ALL_MODES) 199 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 200 else 201 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 202 203 if (hw->phy.media_type != e1000_media_type_copper) 204 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 205 206 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 207 supported); 208 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 209 advertising); 210 211 return 0; 212 } 213 214 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 215 { 216 struct e1000_mac_info *mac = &adapter->hw.mac; 217 218 mac->autoneg = 0; 219 220 /* Make sure dplx is at most 1 bit and lsb of speed is not set 221 * for the switch() below to work 222 */ 223 if ((spd & 1) || (dplx & ~1)) 224 goto err_inval; 225 226 /* Fiber NICs only allow 1000 gbps Full duplex */ 227 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 228 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 229 goto err_inval; 230 } 231 232 switch (spd + dplx) { 233 case SPEED_10 + DUPLEX_HALF: 234 mac->forced_speed_duplex = ADVERTISE_10_HALF; 235 break; 236 case SPEED_10 + DUPLEX_FULL: 237 mac->forced_speed_duplex = ADVERTISE_10_FULL; 238 break; 239 case SPEED_100 + DUPLEX_HALF: 240 mac->forced_speed_duplex = ADVERTISE_100_HALF; 241 break; 242 case SPEED_100 + DUPLEX_FULL: 243 mac->forced_speed_duplex = ADVERTISE_100_FULL; 244 break; 245 case SPEED_1000 + DUPLEX_FULL: 246 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 247 mac->autoneg = 1; 248 adapter->hw.phy.autoneg_advertised = 249 ADVERTISE_1000_FULL; 250 } else { 251 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 252 } 253 break; 254 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 255 default: 256 goto err_inval; 257 } 258 259 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 260 adapter->hw.phy.mdix = AUTO_ALL_MODES; 261 262 return 0; 263 264 err_inval: 265 e_err("Unsupported Speed/Duplex configuration\n"); 266 return -EINVAL; 267 } 268 269 static int e1000_set_link_ksettings(struct net_device *netdev, 270 const struct ethtool_link_ksettings *cmd) 271 { 272 struct e1000_adapter *adapter = netdev_priv(netdev); 273 struct e1000_hw *hw = &adapter->hw; 274 int ret_val = 0; 275 u32 advertising; 276 277 ethtool_convert_link_mode_to_legacy_u32(&advertising, 278 cmd->link_modes.advertising); 279 280 pm_runtime_get_sync(netdev->dev.parent); 281 282 /* When SoL/IDER sessions are active, autoneg/speed/duplex 283 * cannot be changed 284 */ 285 if (hw->phy.ops.check_reset_block && 286 hw->phy.ops.check_reset_block(hw)) { 287 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 288 ret_val = -EINVAL; 289 goto out; 290 } 291 292 /* MDI setting is only allowed when autoneg enabled because 293 * some hardware doesn't allow MDI setting when speed or 294 * duplex is forced. 295 */ 296 if (cmd->base.eth_tp_mdix_ctrl) { 297 if (hw->phy.media_type != e1000_media_type_copper) { 298 ret_val = -EOPNOTSUPP; 299 goto out; 300 } 301 302 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 303 (cmd->base.autoneg != AUTONEG_ENABLE)) { 304 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 305 ret_val = -EINVAL; 306 goto out; 307 } 308 } 309 310 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 311 usleep_range(1000, 2000); 312 313 if (cmd->base.autoneg == AUTONEG_ENABLE) { 314 hw->mac.autoneg = 1; 315 if (hw->phy.media_type == e1000_media_type_fiber) 316 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 317 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 318 else 319 hw->phy.autoneg_advertised = advertising | 320 ADVERTISED_TP | ADVERTISED_Autoneg; 321 advertising = hw->phy.autoneg_advertised; 322 if (adapter->fc_autoneg) 323 hw->fc.requested_mode = e1000_fc_default; 324 } else { 325 u32 speed = cmd->base.speed; 326 /* calling this overrides forced MDI setting */ 327 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 328 ret_val = -EINVAL; 329 goto out; 330 } 331 } 332 333 /* MDI-X => 2; MDI => 1; Auto => 3 */ 334 if (cmd->base.eth_tp_mdix_ctrl) { 335 /* fix up the value for auto (3 => 0) as zero is mapped 336 * internally to auto 337 */ 338 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 339 hw->phy.mdix = AUTO_ALL_MODES; 340 else 341 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 342 } 343 344 /* reset the link */ 345 if (netif_running(adapter->netdev)) { 346 e1000e_down(adapter, true); 347 e1000e_up(adapter); 348 } else { 349 e1000e_reset(adapter); 350 } 351 352 out: 353 pm_runtime_put_sync(netdev->dev.parent); 354 clear_bit(__E1000_RESETTING, &adapter->state); 355 return ret_val; 356 } 357 358 static void e1000_get_pauseparam(struct net_device *netdev, 359 struct ethtool_pauseparam *pause) 360 { 361 struct e1000_adapter *adapter = netdev_priv(netdev); 362 struct e1000_hw *hw = &adapter->hw; 363 364 pause->autoneg = 365 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 366 367 if (hw->fc.current_mode == e1000_fc_rx_pause) { 368 pause->rx_pause = 1; 369 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 370 pause->tx_pause = 1; 371 } else if (hw->fc.current_mode == e1000_fc_full) { 372 pause->rx_pause = 1; 373 pause->tx_pause = 1; 374 } 375 } 376 377 static int e1000_set_pauseparam(struct net_device *netdev, 378 struct ethtool_pauseparam *pause) 379 { 380 struct e1000_adapter *adapter = netdev_priv(netdev); 381 struct e1000_hw *hw = &adapter->hw; 382 int retval = 0; 383 384 adapter->fc_autoneg = pause->autoneg; 385 386 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 387 usleep_range(1000, 2000); 388 389 pm_runtime_get_sync(netdev->dev.parent); 390 391 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 392 hw->fc.requested_mode = e1000_fc_default; 393 if (netif_running(adapter->netdev)) { 394 e1000e_down(adapter, true); 395 e1000e_up(adapter); 396 } else { 397 e1000e_reset(adapter); 398 } 399 } else { 400 if (pause->rx_pause && pause->tx_pause) 401 hw->fc.requested_mode = e1000_fc_full; 402 else if (pause->rx_pause && !pause->tx_pause) 403 hw->fc.requested_mode = e1000_fc_rx_pause; 404 else if (!pause->rx_pause && pause->tx_pause) 405 hw->fc.requested_mode = e1000_fc_tx_pause; 406 else if (!pause->rx_pause && !pause->tx_pause) 407 hw->fc.requested_mode = e1000_fc_none; 408 409 hw->fc.current_mode = hw->fc.requested_mode; 410 411 if (hw->phy.media_type == e1000_media_type_fiber) { 412 retval = hw->mac.ops.setup_link(hw); 413 /* implicit goto out */ 414 } else { 415 retval = e1000e_force_mac_fc(hw); 416 if (retval) 417 goto out; 418 e1000e_set_fc_watermarks(hw); 419 } 420 } 421 422 out: 423 pm_runtime_put_sync(netdev->dev.parent); 424 clear_bit(__E1000_RESETTING, &adapter->state); 425 return retval; 426 } 427 428 static u32 e1000_get_msglevel(struct net_device *netdev) 429 { 430 struct e1000_adapter *adapter = netdev_priv(netdev); 431 return adapter->msg_enable; 432 } 433 434 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 435 { 436 struct e1000_adapter *adapter = netdev_priv(netdev); 437 adapter->msg_enable = data; 438 } 439 440 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 441 { 442 #define E1000_REGS_LEN 32 /* overestimate */ 443 return E1000_REGS_LEN * sizeof(u32); 444 } 445 446 static void e1000_get_regs(struct net_device *netdev, 447 struct ethtool_regs *regs, void *p) 448 { 449 struct e1000_adapter *adapter = netdev_priv(netdev); 450 struct e1000_hw *hw = &adapter->hw; 451 u32 *regs_buff = p; 452 u16 phy_data; 453 454 pm_runtime_get_sync(netdev->dev.parent); 455 456 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 457 458 regs->version = (1u << 24) | 459 (adapter->pdev->revision << 16) | 460 adapter->pdev->device; 461 462 regs_buff[0] = er32(CTRL); 463 regs_buff[1] = er32(STATUS); 464 465 regs_buff[2] = er32(RCTL); 466 regs_buff[3] = er32(RDLEN(0)); 467 regs_buff[4] = er32(RDH(0)); 468 regs_buff[5] = er32(RDT(0)); 469 regs_buff[6] = er32(RDTR); 470 471 regs_buff[7] = er32(TCTL); 472 regs_buff[8] = er32(TDLEN(0)); 473 regs_buff[9] = er32(TDH(0)); 474 regs_buff[10] = er32(TDT(0)); 475 regs_buff[11] = er32(TIDV); 476 477 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 478 479 /* ethtool doesn't use anything past this point, so all this 480 * code is likely legacy junk for apps that may or may not exist 481 */ 482 if (hw->phy.type == e1000_phy_m88) { 483 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 484 regs_buff[13] = (u32)phy_data; /* cable length */ 485 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 486 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 487 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 488 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 489 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 490 regs_buff[18] = regs_buff[13]; /* cable polarity */ 491 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 492 regs_buff[20] = regs_buff[17]; /* polarity correction */ 493 /* phy receive errors */ 494 regs_buff[22] = adapter->phy_stats.receive_errors; 495 regs_buff[23] = regs_buff[13]; /* mdix mode */ 496 } 497 regs_buff[21] = 0; /* was idle_errors */ 498 e1e_rphy(hw, MII_STAT1000, &phy_data); 499 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 500 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 501 502 pm_runtime_put_sync(netdev->dev.parent); 503 } 504 505 static int e1000_get_eeprom_len(struct net_device *netdev) 506 { 507 struct e1000_adapter *adapter = netdev_priv(netdev); 508 return adapter->hw.nvm.word_size * 2; 509 } 510 511 static int e1000_get_eeprom(struct net_device *netdev, 512 struct ethtool_eeprom *eeprom, u8 *bytes) 513 { 514 struct e1000_adapter *adapter = netdev_priv(netdev); 515 struct e1000_hw *hw = &adapter->hw; 516 u16 *eeprom_buff; 517 int first_word; 518 int last_word; 519 int ret_val = 0; 520 u16 i; 521 522 if (eeprom->len == 0) 523 return -EINVAL; 524 525 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 526 527 first_word = eeprom->offset >> 1; 528 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 529 530 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), 531 GFP_KERNEL); 532 if (!eeprom_buff) 533 return -ENOMEM; 534 535 pm_runtime_get_sync(netdev->dev.parent); 536 537 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 538 ret_val = e1000_read_nvm(hw, first_word, 539 last_word - first_word + 1, 540 eeprom_buff); 541 } else { 542 for (i = 0; i < last_word - first_word + 1; i++) { 543 ret_val = e1000_read_nvm(hw, first_word + i, 1, 544 &eeprom_buff[i]); 545 if (ret_val) 546 break; 547 } 548 } 549 550 pm_runtime_put_sync(netdev->dev.parent); 551 552 if (ret_val) { 553 /* a read error occurred, throw away the result */ 554 memset(eeprom_buff, 0xff, sizeof(u16) * 555 (last_word - first_word + 1)); 556 } else { 557 /* Device's eeprom is always little-endian, word addressable */ 558 for (i = 0; i < last_word - first_word + 1; i++) 559 le16_to_cpus(&eeprom_buff[i]); 560 } 561 562 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 563 kfree(eeprom_buff); 564 565 return ret_val; 566 } 567 568 static int e1000_set_eeprom(struct net_device *netdev, 569 struct ethtool_eeprom *eeprom, u8 *bytes) 570 { 571 struct e1000_adapter *adapter = netdev_priv(netdev); 572 struct e1000_hw *hw = &adapter->hw; 573 u16 *eeprom_buff; 574 void *ptr; 575 int max_len; 576 int first_word; 577 int last_word; 578 int ret_val = 0; 579 u16 i; 580 581 if (eeprom->len == 0) 582 return -EOPNOTSUPP; 583 584 if (eeprom->magic != 585 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 586 return -EFAULT; 587 588 if (adapter->flags & FLAG_READ_ONLY_NVM) 589 return -EINVAL; 590 591 max_len = hw->nvm.word_size * 2; 592 593 first_word = eeprom->offset >> 1; 594 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 595 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 596 if (!eeprom_buff) 597 return -ENOMEM; 598 599 ptr = (void *)eeprom_buff; 600 601 pm_runtime_get_sync(netdev->dev.parent); 602 603 if (eeprom->offset & 1) { 604 /* need read/modify/write of first changed EEPROM word */ 605 /* only the second byte of the word is being modified */ 606 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 607 ptr++; 608 } 609 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 610 /* need read/modify/write of last changed EEPROM word */ 611 /* only the first byte of the word is being modified */ 612 ret_val = e1000_read_nvm(hw, last_word, 1, 613 &eeprom_buff[last_word - first_word]); 614 615 if (ret_val) 616 goto out; 617 618 /* Device's eeprom is always little-endian, word addressable */ 619 for (i = 0; i < last_word - first_word + 1; i++) 620 le16_to_cpus(&eeprom_buff[i]); 621 622 memcpy(ptr, bytes, eeprom->len); 623 624 for (i = 0; i < last_word - first_word + 1; i++) 625 cpu_to_le16s(&eeprom_buff[i]); 626 627 ret_val = e1000_write_nvm(hw, first_word, 628 last_word - first_word + 1, eeprom_buff); 629 630 if (ret_val) 631 goto out; 632 633 /* Update the checksum over the first part of the EEPROM if needed 634 * and flush shadow RAM for applicable controllers 635 */ 636 if ((first_word <= NVM_CHECKSUM_REG) || 637 (hw->mac.type == e1000_82583) || 638 (hw->mac.type == e1000_82574) || 639 (hw->mac.type == e1000_82573)) 640 ret_val = e1000e_update_nvm_checksum(hw); 641 642 out: 643 pm_runtime_put_sync(netdev->dev.parent); 644 kfree(eeprom_buff); 645 return ret_val; 646 } 647 648 static void e1000_get_drvinfo(struct net_device *netdev, 649 struct ethtool_drvinfo *drvinfo) 650 { 651 struct e1000_adapter *adapter = netdev_priv(netdev); 652 653 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 654 strlcpy(drvinfo->version, e1000e_driver_version, 655 sizeof(drvinfo->version)); 656 657 /* EEPROM image version # is reported as firmware version # for 658 * PCI-E controllers 659 */ 660 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 661 "%d.%d-%d", 662 (adapter->eeprom_vers & 0xF000) >> 12, 663 (adapter->eeprom_vers & 0x0FF0) >> 4, 664 (adapter->eeprom_vers & 0x000F)); 665 666 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 667 sizeof(drvinfo->bus_info)); 668 } 669 670 static void e1000_get_ringparam(struct net_device *netdev, 671 struct ethtool_ringparam *ring) 672 { 673 struct e1000_adapter *adapter = netdev_priv(netdev); 674 675 ring->rx_max_pending = E1000_MAX_RXD; 676 ring->tx_max_pending = E1000_MAX_TXD; 677 ring->rx_pending = adapter->rx_ring_count; 678 ring->tx_pending = adapter->tx_ring_count; 679 } 680 681 static int e1000_set_ringparam(struct net_device *netdev, 682 struct ethtool_ringparam *ring) 683 { 684 struct e1000_adapter *adapter = netdev_priv(netdev); 685 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 686 int err = 0, size = sizeof(struct e1000_ring); 687 bool set_tx = false, set_rx = false; 688 u16 new_rx_count, new_tx_count; 689 690 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 691 return -EINVAL; 692 693 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 694 E1000_MAX_RXD); 695 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 696 697 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 698 E1000_MAX_TXD); 699 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 700 701 if ((new_tx_count == adapter->tx_ring_count) && 702 (new_rx_count == adapter->rx_ring_count)) 703 /* nothing to do */ 704 return 0; 705 706 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 707 usleep_range(1000, 2000); 708 709 if (!netif_running(adapter->netdev)) { 710 /* Set counts now and allocate resources during open() */ 711 adapter->tx_ring->count = new_tx_count; 712 adapter->rx_ring->count = new_rx_count; 713 adapter->tx_ring_count = new_tx_count; 714 adapter->rx_ring_count = new_rx_count; 715 goto clear_reset; 716 } 717 718 set_tx = (new_tx_count != adapter->tx_ring_count); 719 set_rx = (new_rx_count != adapter->rx_ring_count); 720 721 /* Allocate temporary storage for ring updates */ 722 if (set_tx) { 723 temp_tx = vmalloc(size); 724 if (!temp_tx) { 725 err = -ENOMEM; 726 goto free_temp; 727 } 728 } 729 if (set_rx) { 730 temp_rx = vmalloc(size); 731 if (!temp_rx) { 732 err = -ENOMEM; 733 goto free_temp; 734 } 735 } 736 737 pm_runtime_get_sync(netdev->dev.parent); 738 739 e1000e_down(adapter, true); 740 741 /* We can't just free everything and then setup again, because the 742 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 743 * structs. First, attempt to allocate new resources... 744 */ 745 if (set_tx) { 746 memcpy(temp_tx, adapter->tx_ring, size); 747 temp_tx->count = new_tx_count; 748 err = e1000e_setup_tx_resources(temp_tx); 749 if (err) 750 goto err_setup; 751 } 752 if (set_rx) { 753 memcpy(temp_rx, adapter->rx_ring, size); 754 temp_rx->count = new_rx_count; 755 err = e1000e_setup_rx_resources(temp_rx); 756 if (err) 757 goto err_setup_rx; 758 } 759 760 /* ...then free the old resources and copy back any new ring data */ 761 if (set_tx) { 762 e1000e_free_tx_resources(adapter->tx_ring); 763 memcpy(adapter->tx_ring, temp_tx, size); 764 adapter->tx_ring_count = new_tx_count; 765 } 766 if (set_rx) { 767 e1000e_free_rx_resources(adapter->rx_ring); 768 memcpy(adapter->rx_ring, temp_rx, size); 769 adapter->rx_ring_count = new_rx_count; 770 } 771 772 err_setup_rx: 773 if (err && set_tx) 774 e1000e_free_tx_resources(temp_tx); 775 err_setup: 776 e1000e_up(adapter); 777 pm_runtime_put_sync(netdev->dev.parent); 778 free_temp: 779 vfree(temp_tx); 780 vfree(temp_rx); 781 clear_reset: 782 clear_bit(__E1000_RESETTING, &adapter->state); 783 return err; 784 } 785 786 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 787 int reg, int offset, u32 mask, u32 write) 788 { 789 u32 pat, val; 790 static const u32 test[] = { 791 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 792 }; 793 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 794 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 795 (test[pat] & write)); 796 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 797 if (val != (test[pat] & write & mask)) { 798 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 799 reg + (offset << 2), val, 800 (test[pat] & write & mask)); 801 *data = reg; 802 return true; 803 } 804 } 805 return false; 806 } 807 808 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 809 int reg, u32 mask, u32 write) 810 { 811 u32 val; 812 813 __ew32(&adapter->hw, reg, write & mask); 814 val = __er32(&adapter->hw, reg); 815 if ((write & mask) != (val & mask)) { 816 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 817 reg, (val & mask), (write & mask)); 818 *data = reg; 819 return true; 820 } 821 return false; 822 } 823 824 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 825 do { \ 826 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 827 return 1; \ 828 } while (0) 829 #define REG_PATTERN_TEST(reg, mask, write) \ 830 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 831 832 #define REG_SET_AND_CHECK(reg, mask, write) \ 833 do { \ 834 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 835 return 1; \ 836 } while (0) 837 838 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 839 { 840 struct e1000_hw *hw = &adapter->hw; 841 struct e1000_mac_info *mac = &adapter->hw.mac; 842 u32 value; 843 u32 before; 844 u32 after; 845 u32 i; 846 u32 toggle; 847 u32 mask; 848 u32 wlock_mac = 0; 849 850 /* The status register is Read Only, so a write should fail. 851 * Some bits that get toggled are ignored. There are several bits 852 * on newer hardware that are r/w. 853 */ 854 switch (mac->type) { 855 case e1000_82571: 856 case e1000_82572: 857 case e1000_80003es2lan: 858 toggle = 0x7FFFF3FF; 859 break; 860 default: 861 toggle = 0x7FFFF033; 862 break; 863 } 864 865 before = er32(STATUS); 866 value = (er32(STATUS) & toggle); 867 ew32(STATUS, toggle); 868 after = er32(STATUS) & toggle; 869 if (value != after) { 870 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 871 after, value); 872 *data = 1; 873 return 1; 874 } 875 /* restore previous status */ 876 ew32(STATUS, before); 877 878 if (!(adapter->flags & FLAG_IS_ICH)) { 879 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 880 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 881 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 882 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 883 } 884 885 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 886 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 887 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 888 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 889 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 890 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 891 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 892 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 893 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 894 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 895 896 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 897 898 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 899 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 900 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 901 902 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 903 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 904 if (!(adapter->flags & FLAG_IS_ICH)) 905 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 906 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 907 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 908 mask = 0x8003FFFF; 909 switch (mac->type) { 910 case e1000_ich10lan: 911 case e1000_pchlan: 912 case e1000_pch2lan: 913 case e1000_pch_lpt: 914 case e1000_pch_spt: 915 /* fall through */ 916 case e1000_pch_cnp: 917 mask |= BIT(18); 918 break; 919 default: 920 break; 921 } 922 923 if (mac->type >= e1000_pch_lpt) 924 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 925 E1000_FWSM_WLOCK_MAC_SHIFT; 926 927 for (i = 0; i < mac->rar_entry_count; i++) { 928 if (mac->type >= e1000_pch_lpt) { 929 /* Cannot test write-protected SHRAL[n] registers */ 930 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 931 continue; 932 933 /* SHRAH[9] different than the others */ 934 if (i == 10) 935 mask |= BIT(30); 936 else 937 mask &= ~BIT(30); 938 } 939 if (mac->type == e1000_pch2lan) { 940 /* SHRAH[0,1,2] different than previous */ 941 if (i == 1) 942 mask &= 0xFFF4FFFF; 943 /* SHRAH[3] different than SHRAH[0,1,2] */ 944 if (i == 4) 945 mask |= BIT(30); 946 /* RAR[1-6] owned by management engine - skipping */ 947 if (i > 0) 948 i += 6; 949 } 950 951 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 952 0xFFFFFFFF); 953 /* reset index to actual value */ 954 if ((mac->type == e1000_pch2lan) && (i > 6)) 955 i -= 6; 956 } 957 958 for (i = 0; i < mac->mta_reg_count; i++) 959 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 960 961 *data = 0; 962 963 return 0; 964 } 965 966 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 967 { 968 u16 temp; 969 u16 checksum = 0; 970 u16 i; 971 972 *data = 0; 973 /* Read and add up the contents of the EEPROM */ 974 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 975 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 976 *data = 1; 977 return *data; 978 } 979 checksum += temp; 980 } 981 982 /* If Checksum is not Correct return error else test passed */ 983 if ((checksum != (u16)NVM_SUM) && !(*data)) 984 *data = 2; 985 986 return *data; 987 } 988 989 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 990 { 991 struct net_device *netdev = (struct net_device *)data; 992 struct e1000_adapter *adapter = netdev_priv(netdev); 993 struct e1000_hw *hw = &adapter->hw; 994 995 adapter->test_icr |= er32(ICR); 996 997 return IRQ_HANDLED; 998 } 999 1000 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 1001 { 1002 struct net_device *netdev = adapter->netdev; 1003 struct e1000_hw *hw = &adapter->hw; 1004 u32 mask; 1005 u32 shared_int = 1; 1006 u32 irq = adapter->pdev->irq; 1007 int i; 1008 int ret_val = 0; 1009 int int_mode = E1000E_INT_MODE_LEGACY; 1010 1011 *data = 0; 1012 1013 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 1014 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 1015 int_mode = adapter->int_mode; 1016 e1000e_reset_interrupt_capability(adapter); 1017 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1018 e1000e_set_interrupt_capability(adapter); 1019 } 1020 /* Hook up test interrupt handler just for this test */ 1021 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1022 netdev)) { 1023 shared_int = 0; 1024 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1025 netdev)) { 1026 *data = 1; 1027 ret_val = -1; 1028 goto out; 1029 } 1030 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1031 1032 /* Disable all the interrupts */ 1033 ew32(IMC, 0xFFFFFFFF); 1034 e1e_flush(); 1035 usleep_range(10000, 20000); 1036 1037 /* Test each interrupt */ 1038 for (i = 0; i < 10; i++) { 1039 /* Interrupt to test */ 1040 mask = BIT(i); 1041 1042 if (adapter->flags & FLAG_IS_ICH) { 1043 switch (mask) { 1044 case E1000_ICR_RXSEQ: 1045 continue; 1046 case 0x00000100: 1047 if (adapter->hw.mac.type == e1000_ich8lan || 1048 adapter->hw.mac.type == e1000_ich9lan) 1049 continue; 1050 break; 1051 default: 1052 break; 1053 } 1054 } 1055 1056 if (!shared_int) { 1057 /* Disable the interrupt to be reported in 1058 * the cause register and then force the same 1059 * interrupt and see if one gets posted. If 1060 * an interrupt was posted to the bus, the 1061 * test failed. 1062 */ 1063 adapter->test_icr = 0; 1064 ew32(IMC, mask); 1065 ew32(ICS, mask); 1066 e1e_flush(); 1067 usleep_range(10000, 20000); 1068 1069 if (adapter->test_icr & mask) { 1070 *data = 3; 1071 break; 1072 } 1073 } 1074 1075 /* Enable the interrupt to be reported in 1076 * the cause register and then force the same 1077 * interrupt and see if one gets posted. If 1078 * an interrupt was not posted to the bus, the 1079 * test failed. 1080 */ 1081 adapter->test_icr = 0; 1082 ew32(IMS, mask); 1083 ew32(ICS, mask); 1084 e1e_flush(); 1085 usleep_range(10000, 20000); 1086 1087 if (!(adapter->test_icr & mask)) { 1088 *data = 4; 1089 break; 1090 } 1091 1092 if (!shared_int) { 1093 /* Disable the other interrupts to be reported in 1094 * the cause register and then force the other 1095 * interrupts and see if any get posted. If 1096 * an interrupt was posted to the bus, the 1097 * test failed. 1098 */ 1099 adapter->test_icr = 0; 1100 ew32(IMC, ~mask & 0x00007FFF); 1101 ew32(ICS, ~mask & 0x00007FFF); 1102 e1e_flush(); 1103 usleep_range(10000, 20000); 1104 1105 if (adapter->test_icr) { 1106 *data = 5; 1107 break; 1108 } 1109 } 1110 } 1111 1112 /* Disable all the interrupts */ 1113 ew32(IMC, 0xFFFFFFFF); 1114 e1e_flush(); 1115 usleep_range(10000, 20000); 1116 1117 /* Unhook test interrupt handler */ 1118 free_irq(irq, netdev); 1119 1120 out: 1121 if (int_mode == E1000E_INT_MODE_MSIX) { 1122 e1000e_reset_interrupt_capability(adapter); 1123 adapter->int_mode = int_mode; 1124 e1000e_set_interrupt_capability(adapter); 1125 } 1126 1127 return ret_val; 1128 } 1129 1130 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1131 { 1132 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1133 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1134 struct pci_dev *pdev = adapter->pdev; 1135 struct e1000_buffer *buffer_info; 1136 int i; 1137 1138 if (tx_ring->desc && tx_ring->buffer_info) { 1139 for (i = 0; i < tx_ring->count; i++) { 1140 buffer_info = &tx_ring->buffer_info[i]; 1141 1142 if (buffer_info->dma) 1143 dma_unmap_single(&pdev->dev, 1144 buffer_info->dma, 1145 buffer_info->length, 1146 DMA_TO_DEVICE); 1147 if (buffer_info->skb) 1148 dev_kfree_skb(buffer_info->skb); 1149 } 1150 } 1151 1152 if (rx_ring->desc && rx_ring->buffer_info) { 1153 for (i = 0; i < rx_ring->count; i++) { 1154 buffer_info = &rx_ring->buffer_info[i]; 1155 1156 if (buffer_info->dma) 1157 dma_unmap_single(&pdev->dev, 1158 buffer_info->dma, 1159 2048, DMA_FROM_DEVICE); 1160 if (buffer_info->skb) 1161 dev_kfree_skb(buffer_info->skb); 1162 } 1163 } 1164 1165 if (tx_ring->desc) { 1166 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1167 tx_ring->dma); 1168 tx_ring->desc = NULL; 1169 } 1170 if (rx_ring->desc) { 1171 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1172 rx_ring->dma); 1173 rx_ring->desc = NULL; 1174 } 1175 1176 kfree(tx_ring->buffer_info); 1177 tx_ring->buffer_info = NULL; 1178 kfree(rx_ring->buffer_info); 1179 rx_ring->buffer_info = NULL; 1180 } 1181 1182 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1183 { 1184 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1185 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1186 struct pci_dev *pdev = adapter->pdev; 1187 struct e1000_hw *hw = &adapter->hw; 1188 u32 rctl; 1189 int i; 1190 int ret_val; 1191 1192 /* Setup Tx descriptor ring and Tx buffers */ 1193 1194 if (!tx_ring->count) 1195 tx_ring->count = E1000_DEFAULT_TXD; 1196 1197 tx_ring->buffer_info = kcalloc(tx_ring->count, 1198 sizeof(struct e1000_buffer), GFP_KERNEL); 1199 if (!tx_ring->buffer_info) { 1200 ret_val = 1; 1201 goto err_nomem; 1202 } 1203 1204 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1205 tx_ring->size = ALIGN(tx_ring->size, 4096); 1206 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1207 &tx_ring->dma, GFP_KERNEL); 1208 if (!tx_ring->desc) { 1209 ret_val = 2; 1210 goto err_nomem; 1211 } 1212 tx_ring->next_to_use = 0; 1213 tx_ring->next_to_clean = 0; 1214 1215 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1216 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1217 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1218 ew32(TDH(0), 0); 1219 ew32(TDT(0), 0); 1220 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1221 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1222 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1223 1224 for (i = 0; i < tx_ring->count; i++) { 1225 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1226 struct sk_buff *skb; 1227 unsigned int skb_size = 1024; 1228 1229 skb = alloc_skb(skb_size, GFP_KERNEL); 1230 if (!skb) { 1231 ret_val = 3; 1232 goto err_nomem; 1233 } 1234 skb_put(skb, skb_size); 1235 tx_ring->buffer_info[i].skb = skb; 1236 tx_ring->buffer_info[i].length = skb->len; 1237 tx_ring->buffer_info[i].dma = 1238 dma_map_single(&pdev->dev, skb->data, skb->len, 1239 DMA_TO_DEVICE); 1240 if (dma_mapping_error(&pdev->dev, 1241 tx_ring->buffer_info[i].dma)) { 1242 ret_val = 4; 1243 goto err_nomem; 1244 } 1245 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1246 tx_desc->lower.data = cpu_to_le32(skb->len); 1247 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1248 E1000_TXD_CMD_IFCS | 1249 E1000_TXD_CMD_RS); 1250 tx_desc->upper.data = 0; 1251 } 1252 1253 /* Setup Rx descriptor ring and Rx buffers */ 1254 1255 if (!rx_ring->count) 1256 rx_ring->count = E1000_DEFAULT_RXD; 1257 1258 rx_ring->buffer_info = kcalloc(rx_ring->count, 1259 sizeof(struct e1000_buffer), GFP_KERNEL); 1260 if (!rx_ring->buffer_info) { 1261 ret_val = 5; 1262 goto err_nomem; 1263 } 1264 1265 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1266 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1267 &rx_ring->dma, GFP_KERNEL); 1268 if (!rx_ring->desc) { 1269 ret_val = 6; 1270 goto err_nomem; 1271 } 1272 rx_ring->next_to_use = 0; 1273 rx_ring->next_to_clean = 0; 1274 1275 rctl = er32(RCTL); 1276 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1277 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1278 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1279 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1280 ew32(RDLEN(0), rx_ring->size); 1281 ew32(RDH(0), 0); 1282 ew32(RDT(0), 0); 1283 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1284 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1285 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1286 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1287 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1288 ew32(RCTL, rctl); 1289 1290 for (i = 0; i < rx_ring->count; i++) { 1291 union e1000_rx_desc_extended *rx_desc; 1292 struct sk_buff *skb; 1293 1294 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1295 if (!skb) { 1296 ret_val = 7; 1297 goto err_nomem; 1298 } 1299 skb_reserve(skb, NET_IP_ALIGN); 1300 rx_ring->buffer_info[i].skb = skb; 1301 rx_ring->buffer_info[i].dma = 1302 dma_map_single(&pdev->dev, skb->data, 2048, 1303 DMA_FROM_DEVICE); 1304 if (dma_mapping_error(&pdev->dev, 1305 rx_ring->buffer_info[i].dma)) { 1306 ret_val = 8; 1307 goto err_nomem; 1308 } 1309 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1310 rx_desc->read.buffer_addr = 1311 cpu_to_le64(rx_ring->buffer_info[i].dma); 1312 memset(skb->data, 0x00, skb->len); 1313 } 1314 1315 return 0; 1316 1317 err_nomem: 1318 e1000_free_desc_rings(adapter); 1319 return ret_val; 1320 } 1321 1322 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1323 { 1324 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1325 e1e_wphy(&adapter->hw, 29, 0x001F); 1326 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1327 e1e_wphy(&adapter->hw, 29, 0x001A); 1328 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1329 } 1330 1331 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1332 { 1333 struct e1000_hw *hw = &adapter->hw; 1334 u32 ctrl_reg = 0; 1335 u16 phy_reg = 0; 1336 s32 ret_val = 0; 1337 1338 hw->mac.autoneg = 0; 1339 1340 if (hw->phy.type == e1000_phy_ife) { 1341 /* force 100, set loopback */ 1342 e1e_wphy(hw, MII_BMCR, 0x6100); 1343 1344 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1345 ctrl_reg = er32(CTRL); 1346 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1347 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1348 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1349 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1350 E1000_CTRL_FD); /* Force Duplex to FULL */ 1351 1352 ew32(CTRL, ctrl_reg); 1353 e1e_flush(); 1354 usleep_range(500, 1000); 1355 1356 return 0; 1357 } 1358 1359 /* Specific PHY configuration for loopback */ 1360 switch (hw->phy.type) { 1361 case e1000_phy_m88: 1362 /* Auto-MDI/MDIX Off */ 1363 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1364 /* reset to update Auto-MDI/MDIX */ 1365 e1e_wphy(hw, MII_BMCR, 0x9140); 1366 /* autoneg off */ 1367 e1e_wphy(hw, MII_BMCR, 0x8140); 1368 break; 1369 case e1000_phy_gg82563: 1370 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1371 break; 1372 case e1000_phy_bm: 1373 /* Set Default MAC Interface speed to 1GB */ 1374 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1375 phy_reg &= ~0x0007; 1376 phy_reg |= 0x006; 1377 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1378 /* Assert SW reset for above settings to take effect */ 1379 hw->phy.ops.commit(hw); 1380 usleep_range(1000, 2000); 1381 /* Force Full Duplex */ 1382 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1383 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1384 /* Set Link Up (in force link) */ 1385 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1386 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1387 /* Force Link */ 1388 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1389 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1390 /* Set Early Link Enable */ 1391 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1392 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1393 break; 1394 case e1000_phy_82577: 1395 case e1000_phy_82578: 1396 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1397 ret_val = hw->phy.ops.acquire(hw); 1398 if (ret_val) { 1399 e_err("Cannot setup 1Gbps loopback.\n"); 1400 return ret_val; 1401 } 1402 e1000_configure_k1_ich8lan(hw, false); 1403 hw->phy.ops.release(hw); 1404 break; 1405 case e1000_phy_82579: 1406 /* Disable PHY energy detect power down */ 1407 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1408 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1409 /* Disable full chip energy detect */ 1410 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1411 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1412 /* Enable loopback on the PHY */ 1413 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1414 break; 1415 default: 1416 break; 1417 } 1418 1419 /* force 1000, set loopback */ 1420 e1e_wphy(hw, MII_BMCR, 0x4140); 1421 msleep(250); 1422 1423 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1424 ctrl_reg = er32(CTRL); 1425 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1426 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1427 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1428 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1429 E1000_CTRL_FD); /* Force Duplex to FULL */ 1430 1431 if (adapter->flags & FLAG_IS_ICH) 1432 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1433 1434 if (hw->phy.media_type == e1000_media_type_copper && 1435 hw->phy.type == e1000_phy_m88) { 1436 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1437 } else { 1438 /* Set the ILOS bit on the fiber Nic if half duplex link is 1439 * detected. 1440 */ 1441 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1442 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1443 } 1444 1445 ew32(CTRL, ctrl_reg); 1446 1447 /* Disable the receiver on the PHY so when a cable is plugged in, the 1448 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1449 */ 1450 if (hw->phy.type == e1000_phy_m88) 1451 e1000_phy_disable_receiver(adapter); 1452 1453 usleep_range(500, 1000); 1454 1455 return 0; 1456 } 1457 1458 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1459 { 1460 struct e1000_hw *hw = &adapter->hw; 1461 u32 ctrl = er32(CTRL); 1462 int link; 1463 1464 /* special requirements for 82571/82572 fiber adapters */ 1465 1466 /* jump through hoops to make sure link is up because serdes 1467 * link is hardwired up 1468 */ 1469 ctrl |= E1000_CTRL_SLU; 1470 ew32(CTRL, ctrl); 1471 1472 /* disable autoneg */ 1473 ctrl = er32(TXCW); 1474 ctrl &= ~BIT(31); 1475 ew32(TXCW, ctrl); 1476 1477 link = (er32(STATUS) & E1000_STATUS_LU); 1478 1479 if (!link) { 1480 /* set invert loss of signal */ 1481 ctrl = er32(CTRL); 1482 ctrl |= E1000_CTRL_ILOS; 1483 ew32(CTRL, ctrl); 1484 } 1485 1486 /* special write to serdes control register to enable SerDes analog 1487 * loopback 1488 */ 1489 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1490 e1e_flush(); 1491 usleep_range(10000, 20000); 1492 1493 return 0; 1494 } 1495 1496 /* only call this for fiber/serdes connections to es2lan */ 1497 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1498 { 1499 struct e1000_hw *hw = &adapter->hw; 1500 u32 ctrlext = er32(CTRL_EXT); 1501 u32 ctrl = er32(CTRL); 1502 1503 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1504 * on mac_type 80003es2lan) 1505 */ 1506 adapter->tx_fifo_head = ctrlext; 1507 1508 /* clear the serdes mode bits, putting the device into mac loopback */ 1509 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1510 ew32(CTRL_EXT, ctrlext); 1511 1512 /* force speed to 1000/FD, link up */ 1513 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1514 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1515 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1516 ew32(CTRL, ctrl); 1517 1518 /* set mac loopback */ 1519 ctrl = er32(RCTL); 1520 ctrl |= E1000_RCTL_LBM_MAC; 1521 ew32(RCTL, ctrl); 1522 1523 /* set testing mode parameters (no need to reset later) */ 1524 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1525 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1526 ew32(KMRNCTRLSTA, 1527 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1528 1529 return 0; 1530 } 1531 1532 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1533 { 1534 struct e1000_hw *hw = &adapter->hw; 1535 u32 rctl, fext_nvm11, tarc0; 1536 1537 if (hw->mac.type >= e1000_pch_spt) { 1538 fext_nvm11 = er32(FEXTNVM11); 1539 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1540 ew32(FEXTNVM11, fext_nvm11); 1541 tarc0 = er32(TARC(0)); 1542 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1543 tarc0 &= 0xcfffffff; 1544 /* set bit 29 (value of MULR requests is now 2) */ 1545 tarc0 |= 0x20000000; 1546 ew32(TARC(0), tarc0); 1547 } 1548 if (hw->phy.media_type == e1000_media_type_fiber || 1549 hw->phy.media_type == e1000_media_type_internal_serdes) { 1550 switch (hw->mac.type) { 1551 case e1000_80003es2lan: 1552 return e1000_set_es2lan_mac_loopback(adapter); 1553 case e1000_82571: 1554 case e1000_82572: 1555 return e1000_set_82571_fiber_loopback(adapter); 1556 default: 1557 rctl = er32(RCTL); 1558 rctl |= E1000_RCTL_LBM_TCVR; 1559 ew32(RCTL, rctl); 1560 return 0; 1561 } 1562 } else if (hw->phy.media_type == e1000_media_type_copper) { 1563 return e1000_integrated_phy_loopback(adapter); 1564 } 1565 1566 return 7; 1567 } 1568 1569 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1570 { 1571 struct e1000_hw *hw = &adapter->hw; 1572 u32 rctl, fext_nvm11, tarc0; 1573 u16 phy_reg; 1574 1575 rctl = er32(RCTL); 1576 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1577 ew32(RCTL, rctl); 1578 1579 switch (hw->mac.type) { 1580 case e1000_pch_spt: 1581 case e1000_pch_cnp: 1582 fext_nvm11 = er32(FEXTNVM11); 1583 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1584 ew32(FEXTNVM11, fext_nvm11); 1585 tarc0 = er32(TARC(0)); 1586 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1587 /* set bit 29 (value of MULR requests is now 0) */ 1588 tarc0 &= 0xcfffffff; 1589 ew32(TARC(0), tarc0); 1590 /* fall through */ 1591 case e1000_80003es2lan: 1592 if (hw->phy.media_type == e1000_media_type_fiber || 1593 hw->phy.media_type == e1000_media_type_internal_serdes) { 1594 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1595 ew32(CTRL_EXT, adapter->tx_fifo_head); 1596 adapter->tx_fifo_head = 0; 1597 } 1598 /* fall through */ 1599 case e1000_82571: 1600 case e1000_82572: 1601 if (hw->phy.media_type == e1000_media_type_fiber || 1602 hw->phy.media_type == e1000_media_type_internal_serdes) { 1603 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1604 e1e_flush(); 1605 usleep_range(10000, 20000); 1606 break; 1607 } 1608 /* Fall Through */ 1609 default: 1610 hw->mac.autoneg = 1; 1611 if (hw->phy.type == e1000_phy_gg82563) 1612 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1613 e1e_rphy(hw, MII_BMCR, &phy_reg); 1614 if (phy_reg & BMCR_LOOPBACK) { 1615 phy_reg &= ~BMCR_LOOPBACK; 1616 e1e_wphy(hw, MII_BMCR, phy_reg); 1617 if (hw->phy.ops.commit) 1618 hw->phy.ops.commit(hw); 1619 } 1620 break; 1621 } 1622 } 1623 1624 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1625 unsigned int frame_size) 1626 { 1627 memset(skb->data, 0xFF, frame_size); 1628 frame_size &= ~1; 1629 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1630 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1631 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1632 } 1633 1634 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1635 unsigned int frame_size) 1636 { 1637 frame_size &= ~1; 1638 if (*(skb->data + 3) == 0xFF) 1639 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1640 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1641 return 0; 1642 return 13; 1643 } 1644 1645 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1646 { 1647 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1648 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1649 struct pci_dev *pdev = adapter->pdev; 1650 struct e1000_hw *hw = &adapter->hw; 1651 struct e1000_buffer *buffer_info; 1652 int i, j, k, l; 1653 int lc; 1654 int good_cnt; 1655 int ret_val = 0; 1656 unsigned long time; 1657 1658 ew32(RDT(0), rx_ring->count - 1); 1659 1660 /* Calculate the loop count based on the largest descriptor ring 1661 * The idea is to wrap the largest ring a number of times using 64 1662 * send/receive pairs during each loop 1663 */ 1664 1665 if (rx_ring->count <= tx_ring->count) 1666 lc = ((tx_ring->count / 64) * 2) + 1; 1667 else 1668 lc = ((rx_ring->count / 64) * 2) + 1; 1669 1670 k = 0; 1671 l = 0; 1672 /* loop count loop */ 1673 for (j = 0; j <= lc; j++) { 1674 /* send the packets */ 1675 for (i = 0; i < 64; i++) { 1676 buffer_info = &tx_ring->buffer_info[k]; 1677 1678 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1679 dma_sync_single_for_device(&pdev->dev, 1680 buffer_info->dma, 1681 buffer_info->length, 1682 DMA_TO_DEVICE); 1683 k++; 1684 if (k == tx_ring->count) 1685 k = 0; 1686 } 1687 ew32(TDT(0), k); 1688 e1e_flush(); 1689 msleep(200); 1690 time = jiffies; /* set the start time for the receive */ 1691 good_cnt = 0; 1692 /* receive the sent packets */ 1693 do { 1694 buffer_info = &rx_ring->buffer_info[l]; 1695 1696 dma_sync_single_for_cpu(&pdev->dev, 1697 buffer_info->dma, 2048, 1698 DMA_FROM_DEVICE); 1699 1700 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1701 1024); 1702 if (!ret_val) 1703 good_cnt++; 1704 l++; 1705 if (l == rx_ring->count) 1706 l = 0; 1707 /* time + 20 msecs (200 msecs on 2.4) is more than 1708 * enough time to complete the receives, if it's 1709 * exceeded, break and error off 1710 */ 1711 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1712 if (good_cnt != 64) { 1713 ret_val = 13; /* ret_val is the same as mis-compare */ 1714 break; 1715 } 1716 if (time_after(jiffies, time + 20)) { 1717 ret_val = 14; /* error code for time out error */ 1718 break; 1719 } 1720 } 1721 return ret_val; 1722 } 1723 1724 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1725 { 1726 struct e1000_hw *hw = &adapter->hw; 1727 1728 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1729 if (hw->phy.ops.check_reset_block && 1730 hw->phy.ops.check_reset_block(hw)) { 1731 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1732 *data = 0; 1733 goto out; 1734 } 1735 1736 *data = e1000_setup_desc_rings(adapter); 1737 if (*data) 1738 goto out; 1739 1740 *data = e1000_setup_loopback_test(adapter); 1741 if (*data) 1742 goto err_loopback; 1743 1744 *data = e1000_run_loopback_test(adapter); 1745 e1000_loopback_cleanup(adapter); 1746 1747 err_loopback: 1748 e1000_free_desc_rings(adapter); 1749 out: 1750 return *data; 1751 } 1752 1753 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1754 { 1755 struct e1000_hw *hw = &adapter->hw; 1756 1757 *data = 0; 1758 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1759 int i = 0; 1760 1761 hw->mac.serdes_has_link = false; 1762 1763 /* On some blade server designs, link establishment 1764 * could take as long as 2-3 minutes 1765 */ 1766 do { 1767 hw->mac.ops.check_for_link(hw); 1768 if (hw->mac.serdes_has_link) 1769 return *data; 1770 msleep(20); 1771 } while (i++ < 3750); 1772 1773 *data = 1; 1774 } else { 1775 hw->mac.ops.check_for_link(hw); 1776 if (hw->mac.autoneg) 1777 /* On some Phy/switch combinations, link establishment 1778 * can take a few seconds more than expected. 1779 */ 1780 msleep_interruptible(5000); 1781 1782 if (!(er32(STATUS) & E1000_STATUS_LU)) 1783 *data = 1; 1784 } 1785 return *data; 1786 } 1787 1788 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1789 int sset) 1790 { 1791 switch (sset) { 1792 case ETH_SS_TEST: 1793 return E1000_TEST_LEN; 1794 case ETH_SS_STATS: 1795 return E1000_STATS_LEN; 1796 default: 1797 return -EOPNOTSUPP; 1798 } 1799 } 1800 1801 static void e1000_diag_test(struct net_device *netdev, 1802 struct ethtool_test *eth_test, u64 *data) 1803 { 1804 struct e1000_adapter *adapter = netdev_priv(netdev); 1805 u16 autoneg_advertised; 1806 u8 forced_speed_duplex; 1807 u8 autoneg; 1808 bool if_running = netif_running(netdev); 1809 1810 pm_runtime_get_sync(netdev->dev.parent); 1811 1812 set_bit(__E1000_TESTING, &adapter->state); 1813 1814 if (!if_running) { 1815 /* Get control of and reset hardware */ 1816 if (adapter->flags & FLAG_HAS_AMT) 1817 e1000e_get_hw_control(adapter); 1818 1819 e1000e_power_up_phy(adapter); 1820 1821 adapter->hw.phy.autoneg_wait_to_complete = 1; 1822 e1000e_reset(adapter); 1823 adapter->hw.phy.autoneg_wait_to_complete = 0; 1824 } 1825 1826 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1827 /* Offline tests */ 1828 1829 /* save speed, duplex, autoneg settings */ 1830 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1831 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1832 autoneg = adapter->hw.mac.autoneg; 1833 1834 e_info("offline testing starting\n"); 1835 1836 if (if_running) 1837 /* indicate we're in test mode */ 1838 e1000e_close(netdev); 1839 1840 if (e1000_reg_test(adapter, &data[0])) 1841 eth_test->flags |= ETH_TEST_FL_FAILED; 1842 1843 e1000e_reset(adapter); 1844 if (e1000_eeprom_test(adapter, &data[1])) 1845 eth_test->flags |= ETH_TEST_FL_FAILED; 1846 1847 e1000e_reset(adapter); 1848 if (e1000_intr_test(adapter, &data[2])) 1849 eth_test->flags |= ETH_TEST_FL_FAILED; 1850 1851 e1000e_reset(adapter); 1852 if (e1000_loopback_test(adapter, &data[3])) 1853 eth_test->flags |= ETH_TEST_FL_FAILED; 1854 1855 /* force this routine to wait until autoneg complete/timeout */ 1856 adapter->hw.phy.autoneg_wait_to_complete = 1; 1857 e1000e_reset(adapter); 1858 adapter->hw.phy.autoneg_wait_to_complete = 0; 1859 1860 if (e1000_link_test(adapter, &data[4])) 1861 eth_test->flags |= ETH_TEST_FL_FAILED; 1862 1863 /* restore speed, duplex, autoneg settings */ 1864 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1865 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1866 adapter->hw.mac.autoneg = autoneg; 1867 e1000e_reset(adapter); 1868 1869 clear_bit(__E1000_TESTING, &adapter->state); 1870 if (if_running) 1871 e1000e_open(netdev); 1872 } else { 1873 /* Online tests */ 1874 1875 e_info("online testing starting\n"); 1876 1877 /* register, eeprom, intr and loopback tests not run online */ 1878 data[0] = 0; 1879 data[1] = 0; 1880 data[2] = 0; 1881 data[3] = 0; 1882 1883 if (e1000_link_test(adapter, &data[4])) 1884 eth_test->flags |= ETH_TEST_FL_FAILED; 1885 1886 clear_bit(__E1000_TESTING, &adapter->state); 1887 } 1888 1889 if (!if_running) { 1890 e1000e_reset(adapter); 1891 1892 if (adapter->flags & FLAG_HAS_AMT) 1893 e1000e_release_hw_control(adapter); 1894 } 1895 1896 msleep_interruptible(4 * 1000); 1897 1898 pm_runtime_put_sync(netdev->dev.parent); 1899 } 1900 1901 static void e1000_get_wol(struct net_device *netdev, 1902 struct ethtool_wolinfo *wol) 1903 { 1904 struct e1000_adapter *adapter = netdev_priv(netdev); 1905 1906 wol->supported = 0; 1907 wol->wolopts = 0; 1908 1909 if (!(adapter->flags & FLAG_HAS_WOL) || 1910 !device_can_wakeup(&adapter->pdev->dev)) 1911 return; 1912 1913 wol->supported = WAKE_UCAST | WAKE_MCAST | 1914 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1915 1916 /* apply any specific unsupported masks here */ 1917 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1918 wol->supported &= ~WAKE_UCAST; 1919 1920 if (adapter->wol & E1000_WUFC_EX) 1921 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1922 } 1923 1924 if (adapter->wol & E1000_WUFC_EX) 1925 wol->wolopts |= WAKE_UCAST; 1926 if (adapter->wol & E1000_WUFC_MC) 1927 wol->wolopts |= WAKE_MCAST; 1928 if (adapter->wol & E1000_WUFC_BC) 1929 wol->wolopts |= WAKE_BCAST; 1930 if (adapter->wol & E1000_WUFC_MAG) 1931 wol->wolopts |= WAKE_MAGIC; 1932 if (adapter->wol & E1000_WUFC_LNKC) 1933 wol->wolopts |= WAKE_PHY; 1934 } 1935 1936 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1937 { 1938 struct e1000_adapter *adapter = netdev_priv(netdev); 1939 1940 if (!(adapter->flags & FLAG_HAS_WOL) || 1941 !device_can_wakeup(&adapter->pdev->dev) || 1942 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1943 WAKE_MAGIC | WAKE_PHY))) 1944 return -EOPNOTSUPP; 1945 1946 /* these settings will always override what we currently have */ 1947 adapter->wol = 0; 1948 1949 if (wol->wolopts & WAKE_UCAST) 1950 adapter->wol |= E1000_WUFC_EX; 1951 if (wol->wolopts & WAKE_MCAST) 1952 adapter->wol |= E1000_WUFC_MC; 1953 if (wol->wolopts & WAKE_BCAST) 1954 adapter->wol |= E1000_WUFC_BC; 1955 if (wol->wolopts & WAKE_MAGIC) 1956 adapter->wol |= E1000_WUFC_MAG; 1957 if (wol->wolopts & WAKE_PHY) 1958 adapter->wol |= E1000_WUFC_LNKC; 1959 1960 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1961 1962 return 0; 1963 } 1964 1965 static int e1000_set_phys_id(struct net_device *netdev, 1966 enum ethtool_phys_id_state state) 1967 { 1968 struct e1000_adapter *adapter = netdev_priv(netdev); 1969 struct e1000_hw *hw = &adapter->hw; 1970 1971 switch (state) { 1972 case ETHTOOL_ID_ACTIVE: 1973 pm_runtime_get_sync(netdev->dev.parent); 1974 1975 if (!hw->mac.ops.blink_led) 1976 return 2; /* cycle on/off twice per second */ 1977 1978 hw->mac.ops.blink_led(hw); 1979 break; 1980 1981 case ETHTOOL_ID_INACTIVE: 1982 if (hw->phy.type == e1000_phy_ife) 1983 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1984 hw->mac.ops.led_off(hw); 1985 hw->mac.ops.cleanup_led(hw); 1986 pm_runtime_put_sync(netdev->dev.parent); 1987 break; 1988 1989 case ETHTOOL_ID_ON: 1990 hw->mac.ops.led_on(hw); 1991 break; 1992 1993 case ETHTOOL_ID_OFF: 1994 hw->mac.ops.led_off(hw); 1995 break; 1996 } 1997 1998 return 0; 1999 } 2000 2001 static int e1000_get_coalesce(struct net_device *netdev, 2002 struct ethtool_coalesce *ec) 2003 { 2004 struct e1000_adapter *adapter = netdev_priv(netdev); 2005 2006 if (adapter->itr_setting <= 4) 2007 ec->rx_coalesce_usecs = adapter->itr_setting; 2008 else 2009 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 2010 2011 return 0; 2012 } 2013 2014 static int e1000_set_coalesce(struct net_device *netdev, 2015 struct ethtool_coalesce *ec) 2016 { 2017 struct e1000_adapter *adapter = netdev_priv(netdev); 2018 2019 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2020 ((ec->rx_coalesce_usecs > 4) && 2021 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2022 (ec->rx_coalesce_usecs == 2)) 2023 return -EINVAL; 2024 2025 if (ec->rx_coalesce_usecs == 4) { 2026 adapter->itr_setting = 4; 2027 adapter->itr = adapter->itr_setting; 2028 } else if (ec->rx_coalesce_usecs <= 3) { 2029 adapter->itr = 20000; 2030 adapter->itr_setting = ec->rx_coalesce_usecs; 2031 } else { 2032 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2033 adapter->itr_setting = adapter->itr & ~3; 2034 } 2035 2036 pm_runtime_get_sync(netdev->dev.parent); 2037 2038 if (adapter->itr_setting != 0) 2039 e1000e_write_itr(adapter, adapter->itr); 2040 else 2041 e1000e_write_itr(adapter, 0); 2042 2043 pm_runtime_put_sync(netdev->dev.parent); 2044 2045 return 0; 2046 } 2047 2048 static int e1000_nway_reset(struct net_device *netdev) 2049 { 2050 struct e1000_adapter *adapter = netdev_priv(netdev); 2051 2052 if (!netif_running(netdev)) 2053 return -EAGAIN; 2054 2055 if (!adapter->hw.mac.autoneg) 2056 return -EINVAL; 2057 2058 pm_runtime_get_sync(netdev->dev.parent); 2059 e1000e_reinit_locked(adapter); 2060 pm_runtime_put_sync(netdev->dev.parent); 2061 2062 return 0; 2063 } 2064 2065 static void e1000_get_ethtool_stats(struct net_device *netdev, 2066 struct ethtool_stats __always_unused *stats, 2067 u64 *data) 2068 { 2069 struct e1000_adapter *adapter = netdev_priv(netdev); 2070 struct rtnl_link_stats64 net_stats; 2071 int i; 2072 char *p = NULL; 2073 2074 pm_runtime_get_sync(netdev->dev.parent); 2075 2076 dev_get_stats(netdev, &net_stats); 2077 2078 pm_runtime_put_sync(netdev->dev.parent); 2079 2080 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2081 switch (e1000_gstrings_stats[i].type) { 2082 case NETDEV_STATS: 2083 p = (char *)&net_stats + 2084 e1000_gstrings_stats[i].stat_offset; 2085 break; 2086 case E1000_STATS: 2087 p = (char *)adapter + 2088 e1000_gstrings_stats[i].stat_offset; 2089 break; 2090 default: 2091 data[i] = 0; 2092 continue; 2093 } 2094 2095 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2096 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2097 } 2098 } 2099 2100 static void e1000_get_strings(struct net_device __always_unused *netdev, 2101 u32 stringset, u8 *data) 2102 { 2103 u8 *p = data; 2104 int i; 2105 2106 switch (stringset) { 2107 case ETH_SS_TEST: 2108 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2109 break; 2110 case ETH_SS_STATS: 2111 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2112 memcpy(p, e1000_gstrings_stats[i].stat_string, 2113 ETH_GSTRING_LEN); 2114 p += ETH_GSTRING_LEN; 2115 } 2116 break; 2117 } 2118 } 2119 2120 static int e1000_get_rxnfc(struct net_device *netdev, 2121 struct ethtool_rxnfc *info, 2122 u32 __always_unused *rule_locs) 2123 { 2124 info->data = 0; 2125 2126 switch (info->cmd) { 2127 case ETHTOOL_GRXFH: { 2128 struct e1000_adapter *adapter = netdev_priv(netdev); 2129 struct e1000_hw *hw = &adapter->hw; 2130 u32 mrqc; 2131 2132 pm_runtime_get_sync(netdev->dev.parent); 2133 mrqc = er32(MRQC); 2134 pm_runtime_put_sync(netdev->dev.parent); 2135 2136 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2137 return 0; 2138 2139 switch (info->flow_type) { 2140 case TCP_V4_FLOW: 2141 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2142 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2143 /* fall through */ 2144 case UDP_V4_FLOW: 2145 case SCTP_V4_FLOW: 2146 case AH_ESP_V4_FLOW: 2147 case IPV4_FLOW: 2148 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2149 info->data |= RXH_IP_SRC | RXH_IP_DST; 2150 break; 2151 case TCP_V6_FLOW: 2152 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2153 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2154 /* fall through */ 2155 case UDP_V6_FLOW: 2156 case SCTP_V6_FLOW: 2157 case AH_ESP_V6_FLOW: 2158 case IPV6_FLOW: 2159 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2160 info->data |= RXH_IP_SRC | RXH_IP_DST; 2161 break; 2162 default: 2163 break; 2164 } 2165 return 0; 2166 } 2167 default: 2168 return -EOPNOTSUPP; 2169 } 2170 } 2171 2172 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2173 { 2174 struct e1000_adapter *adapter = netdev_priv(netdev); 2175 struct e1000_hw *hw = &adapter->hw; 2176 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2177 u32 ret_val; 2178 2179 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2180 return -EOPNOTSUPP; 2181 2182 switch (hw->phy.type) { 2183 case e1000_phy_82579: 2184 cap_addr = I82579_EEE_CAPABILITY; 2185 lpa_addr = I82579_EEE_LP_ABILITY; 2186 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2187 break; 2188 case e1000_phy_i217: 2189 cap_addr = I217_EEE_CAPABILITY; 2190 lpa_addr = I217_EEE_LP_ABILITY; 2191 pcs_stat_addr = I217_EEE_PCS_STATUS; 2192 break; 2193 default: 2194 return -EOPNOTSUPP; 2195 } 2196 2197 pm_runtime_get_sync(netdev->dev.parent); 2198 2199 ret_val = hw->phy.ops.acquire(hw); 2200 if (ret_val) { 2201 pm_runtime_put_sync(netdev->dev.parent); 2202 return -EBUSY; 2203 } 2204 2205 /* EEE Capability */ 2206 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2207 if (ret_val) 2208 goto release; 2209 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2210 2211 /* EEE Advertised */ 2212 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2213 2214 /* EEE Link Partner Advertised */ 2215 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2216 if (ret_val) 2217 goto release; 2218 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2219 2220 /* EEE PCS Status */ 2221 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2222 if (ret_val) 2223 goto release; 2224 if (hw->phy.type == e1000_phy_82579) 2225 phy_data <<= 8; 2226 2227 /* Result of the EEE auto negotiation - there is no register that 2228 * has the status of the EEE negotiation so do a best-guess based 2229 * on whether Tx or Rx LPI indications have been received. 2230 */ 2231 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2232 edata->eee_active = true; 2233 2234 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2235 edata->tx_lpi_enabled = true; 2236 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2237 2238 release: 2239 hw->phy.ops.release(hw); 2240 if (ret_val) 2241 ret_val = -ENODATA; 2242 2243 pm_runtime_put_sync(netdev->dev.parent); 2244 2245 return ret_val; 2246 } 2247 2248 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2249 { 2250 struct e1000_adapter *adapter = netdev_priv(netdev); 2251 struct e1000_hw *hw = &adapter->hw; 2252 struct ethtool_eee eee_curr; 2253 s32 ret_val; 2254 2255 ret_val = e1000e_get_eee(netdev, &eee_curr); 2256 if (ret_val) 2257 return ret_val; 2258 2259 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2260 e_err("Setting EEE tx-lpi is not supported\n"); 2261 return -EINVAL; 2262 } 2263 2264 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2265 e_err("Setting EEE Tx LPI timer is not supported\n"); 2266 return -EINVAL; 2267 } 2268 2269 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2270 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2271 return -EINVAL; 2272 } 2273 2274 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2275 2276 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2277 2278 pm_runtime_get_sync(netdev->dev.parent); 2279 2280 /* reset the link */ 2281 if (netif_running(netdev)) 2282 e1000e_reinit_locked(adapter); 2283 else 2284 e1000e_reset(adapter); 2285 2286 pm_runtime_put_sync(netdev->dev.parent); 2287 2288 return 0; 2289 } 2290 2291 static int e1000e_get_ts_info(struct net_device *netdev, 2292 struct ethtool_ts_info *info) 2293 { 2294 struct e1000_adapter *adapter = netdev_priv(netdev); 2295 2296 ethtool_op_get_ts_info(netdev, info); 2297 2298 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2299 return 0; 2300 2301 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2302 SOF_TIMESTAMPING_RX_HARDWARE | 2303 SOF_TIMESTAMPING_RAW_HARDWARE); 2304 2305 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2306 2307 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2308 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2309 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2310 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2311 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2312 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2313 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2314 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2315 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2316 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2317 BIT(HWTSTAMP_FILTER_ALL)); 2318 2319 if (adapter->ptp_clock) 2320 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2321 2322 return 0; 2323 } 2324 2325 static const struct ethtool_ops e1000_ethtool_ops = { 2326 .get_drvinfo = e1000_get_drvinfo, 2327 .get_regs_len = e1000_get_regs_len, 2328 .get_regs = e1000_get_regs, 2329 .get_wol = e1000_get_wol, 2330 .set_wol = e1000_set_wol, 2331 .get_msglevel = e1000_get_msglevel, 2332 .set_msglevel = e1000_set_msglevel, 2333 .nway_reset = e1000_nway_reset, 2334 .get_link = ethtool_op_get_link, 2335 .get_eeprom_len = e1000_get_eeprom_len, 2336 .get_eeprom = e1000_get_eeprom, 2337 .set_eeprom = e1000_set_eeprom, 2338 .get_ringparam = e1000_get_ringparam, 2339 .set_ringparam = e1000_set_ringparam, 2340 .get_pauseparam = e1000_get_pauseparam, 2341 .set_pauseparam = e1000_set_pauseparam, 2342 .self_test = e1000_diag_test, 2343 .get_strings = e1000_get_strings, 2344 .set_phys_id = e1000_set_phys_id, 2345 .get_ethtool_stats = e1000_get_ethtool_stats, 2346 .get_sset_count = e1000e_get_sset_count, 2347 .get_coalesce = e1000_get_coalesce, 2348 .set_coalesce = e1000_set_coalesce, 2349 .get_rxnfc = e1000_get_rxnfc, 2350 .get_ts_info = e1000e_get_ts_info, 2351 .get_eee = e1000e_get_eee, 2352 .set_eee = e1000e_set_eee, 2353 .get_link_ksettings = e1000_get_link_ksettings, 2354 .set_link_ksettings = e1000_set_link_ksettings, 2355 }; 2356 2357 void e1000e_set_ethtool_ops(struct net_device *netdev) 2358 { 2359 netdev->ethtool_ops = &e1000_ethtool_ops; 2360 } 2361