1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = { 27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0) 28 "s0ix-enabled", 29 }; 30 31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings) 32 33 #define E1000_STAT(str, m) { \ 34 .stat_string = str, \ 35 .type = E1000_STATS, \ 36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 37 .stat_offset = offsetof(struct e1000_adapter, m) } 38 #define E1000_NETDEV_STAT(str, m) { \ 39 .stat_string = str, \ 40 .type = NETDEV_STATS, \ 41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 42 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 43 44 static const struct e1000_stats e1000_gstrings_stats[] = { 45 E1000_STAT("rx_packets", stats.gprc), 46 E1000_STAT("tx_packets", stats.gptc), 47 E1000_STAT("rx_bytes", stats.gorc), 48 E1000_STAT("tx_bytes", stats.gotc), 49 E1000_STAT("rx_broadcast", stats.bprc), 50 E1000_STAT("tx_broadcast", stats.bptc), 51 E1000_STAT("rx_multicast", stats.mprc), 52 E1000_STAT("tx_multicast", stats.mptc), 53 E1000_NETDEV_STAT("rx_errors", rx_errors), 54 E1000_NETDEV_STAT("tx_errors", tx_errors), 55 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 56 E1000_STAT("multicast", stats.mprc), 57 E1000_STAT("collisions", stats.colc), 58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 60 E1000_STAT("rx_crc_errors", stats.crcerrs), 61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 62 E1000_STAT("rx_no_buffer_count", stats.rnbc), 63 E1000_STAT("rx_missed_errors", stats.mpc), 64 E1000_STAT("tx_aborted_errors", stats.ecol), 65 E1000_STAT("tx_carrier_errors", stats.tncrs), 66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 68 E1000_STAT("tx_window_errors", stats.latecol), 69 E1000_STAT("tx_abort_late_coll", stats.latecol), 70 E1000_STAT("tx_deferred_ok", stats.dc), 71 E1000_STAT("tx_single_coll_ok", stats.scc), 72 E1000_STAT("tx_multi_coll_ok", stats.mcc), 73 E1000_STAT("tx_timeout_count", tx_timeout_count), 74 E1000_STAT("tx_restart_queue", restart_queue), 75 E1000_STAT("rx_long_length_errors", stats.roc), 76 E1000_STAT("rx_short_length_errors", stats.ruc), 77 E1000_STAT("rx_align_errors", stats.algnerrc), 78 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 80 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 82 E1000_STAT("tx_flow_control_xon", stats.xontxc), 83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 84 E1000_STAT("rx_csum_offload_good", hw_csum_good), 85 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 86 E1000_STAT("rx_header_split", rx_hdr_split), 87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 88 E1000_STAT("tx_smbus", stats.mgptc), 89 E1000_STAT("rx_smbus", stats.mgprc), 90 E1000_STAT("dropped_smbus", stats.mgpdc), 91 E1000_STAT("rx_dma_failed", rx_dma_failed), 92 E1000_STAT("tx_dma_failed", tx_dma_failed), 93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 94 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 95 E1000_STAT("corr_ecc_errors", corr_errors), 96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 98 }; 99 100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 103 "Register test (offline)", "Eeprom test (offline)", 104 "Interrupt test (offline)", "Loopback test (offline)", 105 "Link test (on/offline)" 106 }; 107 108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 109 110 static int e1000_get_link_ksettings(struct net_device *netdev, 111 struct ethtool_link_ksettings *cmd) 112 { 113 struct e1000_adapter *adapter = netdev_priv(netdev); 114 struct e1000_hw *hw = &adapter->hw; 115 u32 speed, supported, advertising; 116 117 if (hw->phy.media_type == e1000_media_type_copper) { 118 supported = (SUPPORTED_10baseT_Half | 119 SUPPORTED_10baseT_Full | 120 SUPPORTED_100baseT_Half | 121 SUPPORTED_100baseT_Full | 122 SUPPORTED_1000baseT_Full | 123 SUPPORTED_Autoneg | 124 SUPPORTED_TP); 125 if (hw->phy.type == e1000_phy_ife) 126 supported &= ~SUPPORTED_1000baseT_Full; 127 advertising = ADVERTISED_TP; 128 129 if (hw->mac.autoneg == 1) { 130 advertising |= ADVERTISED_Autoneg; 131 /* the e1000 autoneg seems to match ethtool nicely */ 132 advertising |= hw->phy.autoneg_advertised; 133 } 134 135 cmd->base.port = PORT_TP; 136 cmd->base.phy_address = hw->phy.addr; 137 } else { 138 supported = (SUPPORTED_1000baseT_Full | 139 SUPPORTED_FIBRE | 140 SUPPORTED_Autoneg); 141 142 advertising = (ADVERTISED_1000baseT_Full | 143 ADVERTISED_FIBRE | 144 ADVERTISED_Autoneg); 145 146 cmd->base.port = PORT_FIBRE; 147 } 148 149 speed = SPEED_UNKNOWN; 150 cmd->base.duplex = DUPLEX_UNKNOWN; 151 152 if (netif_running(netdev)) { 153 if (netif_carrier_ok(netdev)) { 154 speed = adapter->link_speed; 155 cmd->base.duplex = adapter->link_duplex - 1; 156 } 157 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 158 u32 status = er32(STATUS); 159 160 if (status & E1000_STATUS_LU) { 161 if (status & E1000_STATUS_SPEED_1000) 162 speed = SPEED_1000; 163 else if (status & E1000_STATUS_SPEED_100) 164 speed = SPEED_100; 165 else 166 speed = SPEED_10; 167 168 if (status & E1000_STATUS_FD) 169 cmd->base.duplex = DUPLEX_FULL; 170 else 171 cmd->base.duplex = DUPLEX_HALF; 172 } 173 } 174 175 cmd->base.speed = speed; 176 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 177 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 178 179 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 180 if ((hw->phy.media_type == e1000_media_type_copper) && 181 netif_carrier_ok(netdev)) 182 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 183 ETH_TP_MDI_X : ETH_TP_MDI; 184 else 185 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 186 187 if (hw->phy.mdix == AUTO_ALL_MODES) 188 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 189 else 190 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 191 192 if (hw->phy.media_type != e1000_media_type_copper) 193 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 194 195 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 196 supported); 197 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 198 advertising); 199 200 return 0; 201 } 202 203 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 204 { 205 struct e1000_mac_info *mac = &adapter->hw.mac; 206 207 mac->autoneg = 0; 208 209 /* Make sure dplx is at most 1 bit and lsb of speed is not set 210 * for the switch() below to work 211 */ 212 if ((spd & 1) || (dplx & ~1)) 213 goto err_inval; 214 215 /* Fiber NICs only allow 1000 gbps Full duplex */ 216 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 217 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 218 goto err_inval; 219 } 220 221 switch (spd + dplx) { 222 case SPEED_10 + DUPLEX_HALF: 223 mac->forced_speed_duplex = ADVERTISE_10_HALF; 224 break; 225 case SPEED_10 + DUPLEX_FULL: 226 mac->forced_speed_duplex = ADVERTISE_10_FULL; 227 break; 228 case SPEED_100 + DUPLEX_HALF: 229 mac->forced_speed_duplex = ADVERTISE_100_HALF; 230 break; 231 case SPEED_100 + DUPLEX_FULL: 232 mac->forced_speed_duplex = ADVERTISE_100_FULL; 233 break; 234 case SPEED_1000 + DUPLEX_FULL: 235 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 236 mac->autoneg = 1; 237 adapter->hw.phy.autoneg_advertised = 238 ADVERTISE_1000_FULL; 239 } else { 240 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 241 } 242 break; 243 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 244 default: 245 goto err_inval; 246 } 247 248 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 249 adapter->hw.phy.mdix = AUTO_ALL_MODES; 250 251 return 0; 252 253 err_inval: 254 e_err("Unsupported Speed/Duplex configuration\n"); 255 return -EINVAL; 256 } 257 258 static int e1000_set_link_ksettings(struct net_device *netdev, 259 const struct ethtool_link_ksettings *cmd) 260 { 261 struct e1000_adapter *adapter = netdev_priv(netdev); 262 struct e1000_hw *hw = &adapter->hw; 263 int ret_val = 0; 264 u32 advertising; 265 266 ethtool_convert_link_mode_to_legacy_u32(&advertising, 267 cmd->link_modes.advertising); 268 269 pm_runtime_get_sync(netdev->dev.parent); 270 271 /* When SoL/IDER sessions are active, autoneg/speed/duplex 272 * cannot be changed 273 */ 274 if (hw->phy.ops.check_reset_block && 275 hw->phy.ops.check_reset_block(hw)) { 276 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 277 ret_val = -EINVAL; 278 goto out; 279 } 280 281 /* MDI setting is only allowed when autoneg enabled because 282 * some hardware doesn't allow MDI setting when speed or 283 * duplex is forced. 284 */ 285 if (cmd->base.eth_tp_mdix_ctrl) { 286 if (hw->phy.media_type != e1000_media_type_copper) { 287 ret_val = -EOPNOTSUPP; 288 goto out; 289 } 290 291 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 292 (cmd->base.autoneg != AUTONEG_ENABLE)) { 293 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 294 ret_val = -EINVAL; 295 goto out; 296 } 297 } 298 299 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 300 usleep_range(1000, 2000); 301 302 if (cmd->base.autoneg == AUTONEG_ENABLE) { 303 hw->mac.autoneg = 1; 304 if (hw->phy.media_type == e1000_media_type_fiber) 305 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 306 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 307 else 308 hw->phy.autoneg_advertised = advertising | 309 ADVERTISED_TP | ADVERTISED_Autoneg; 310 advertising = hw->phy.autoneg_advertised; 311 if (adapter->fc_autoneg) 312 hw->fc.requested_mode = e1000_fc_default; 313 } else { 314 u32 speed = cmd->base.speed; 315 /* calling this overrides forced MDI setting */ 316 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 317 ret_val = -EINVAL; 318 goto out; 319 } 320 } 321 322 /* MDI-X => 2; MDI => 1; Auto => 3 */ 323 if (cmd->base.eth_tp_mdix_ctrl) { 324 /* fix up the value for auto (3 => 0) as zero is mapped 325 * internally to auto 326 */ 327 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 328 hw->phy.mdix = AUTO_ALL_MODES; 329 else 330 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 331 } 332 333 /* reset the link */ 334 if (netif_running(adapter->netdev)) { 335 e1000e_down(adapter, true); 336 e1000e_up(adapter); 337 } else { 338 e1000e_reset(adapter); 339 } 340 341 out: 342 pm_runtime_put_sync(netdev->dev.parent); 343 clear_bit(__E1000_RESETTING, &adapter->state); 344 return ret_val; 345 } 346 347 static void e1000_get_pauseparam(struct net_device *netdev, 348 struct ethtool_pauseparam *pause) 349 { 350 struct e1000_adapter *adapter = netdev_priv(netdev); 351 struct e1000_hw *hw = &adapter->hw; 352 353 pause->autoneg = 354 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 355 356 if (hw->fc.current_mode == e1000_fc_rx_pause) { 357 pause->rx_pause = 1; 358 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 359 pause->tx_pause = 1; 360 } else if (hw->fc.current_mode == e1000_fc_full) { 361 pause->rx_pause = 1; 362 pause->tx_pause = 1; 363 } 364 } 365 366 static int e1000_set_pauseparam(struct net_device *netdev, 367 struct ethtool_pauseparam *pause) 368 { 369 struct e1000_adapter *adapter = netdev_priv(netdev); 370 struct e1000_hw *hw = &adapter->hw; 371 int retval = 0; 372 373 adapter->fc_autoneg = pause->autoneg; 374 375 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 376 usleep_range(1000, 2000); 377 378 pm_runtime_get_sync(netdev->dev.parent); 379 380 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 381 hw->fc.requested_mode = e1000_fc_default; 382 if (netif_running(adapter->netdev)) { 383 e1000e_down(adapter, true); 384 e1000e_up(adapter); 385 } else { 386 e1000e_reset(adapter); 387 } 388 } else { 389 if (pause->rx_pause && pause->tx_pause) 390 hw->fc.requested_mode = e1000_fc_full; 391 else if (pause->rx_pause && !pause->tx_pause) 392 hw->fc.requested_mode = e1000_fc_rx_pause; 393 else if (!pause->rx_pause && pause->tx_pause) 394 hw->fc.requested_mode = e1000_fc_tx_pause; 395 else if (!pause->rx_pause && !pause->tx_pause) 396 hw->fc.requested_mode = e1000_fc_none; 397 398 hw->fc.current_mode = hw->fc.requested_mode; 399 400 if (hw->phy.media_type == e1000_media_type_fiber) { 401 retval = hw->mac.ops.setup_link(hw); 402 /* implicit goto out */ 403 } else { 404 retval = e1000e_force_mac_fc(hw); 405 if (retval) 406 goto out; 407 e1000e_set_fc_watermarks(hw); 408 } 409 } 410 411 out: 412 pm_runtime_put_sync(netdev->dev.parent); 413 clear_bit(__E1000_RESETTING, &adapter->state); 414 return retval; 415 } 416 417 static u32 e1000_get_msglevel(struct net_device *netdev) 418 { 419 struct e1000_adapter *adapter = netdev_priv(netdev); 420 return adapter->msg_enable; 421 } 422 423 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 424 { 425 struct e1000_adapter *adapter = netdev_priv(netdev); 426 adapter->msg_enable = data; 427 } 428 429 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 430 { 431 #define E1000_REGS_LEN 32 /* overestimate */ 432 return E1000_REGS_LEN * sizeof(u32); 433 } 434 435 static void e1000_get_regs(struct net_device *netdev, 436 struct ethtool_regs *regs, void *p) 437 { 438 struct e1000_adapter *adapter = netdev_priv(netdev); 439 struct e1000_hw *hw = &adapter->hw; 440 u32 *regs_buff = p; 441 u16 phy_data; 442 443 pm_runtime_get_sync(netdev->dev.parent); 444 445 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 446 447 regs->version = (1u << 24) | 448 (adapter->pdev->revision << 16) | 449 adapter->pdev->device; 450 451 regs_buff[0] = er32(CTRL); 452 regs_buff[1] = er32(STATUS); 453 454 regs_buff[2] = er32(RCTL); 455 regs_buff[3] = er32(RDLEN(0)); 456 regs_buff[4] = er32(RDH(0)); 457 regs_buff[5] = er32(RDT(0)); 458 regs_buff[6] = er32(RDTR); 459 460 regs_buff[7] = er32(TCTL); 461 regs_buff[8] = er32(TDLEN(0)); 462 regs_buff[9] = er32(TDH(0)); 463 regs_buff[10] = er32(TDT(0)); 464 regs_buff[11] = er32(TIDV); 465 466 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 467 468 /* ethtool doesn't use anything past this point, so all this 469 * code is likely legacy junk for apps that may or may not exist 470 */ 471 if (hw->phy.type == e1000_phy_m88) { 472 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 473 regs_buff[13] = (u32)phy_data; /* cable length */ 474 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 475 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 476 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 477 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 478 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 479 regs_buff[18] = regs_buff[13]; /* cable polarity */ 480 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 481 regs_buff[20] = regs_buff[17]; /* polarity correction */ 482 /* phy receive errors */ 483 regs_buff[22] = adapter->phy_stats.receive_errors; 484 regs_buff[23] = regs_buff[13]; /* mdix mode */ 485 } 486 regs_buff[21] = 0; /* was idle_errors */ 487 e1e_rphy(hw, MII_STAT1000, &phy_data); 488 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 489 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 490 491 pm_runtime_put_sync(netdev->dev.parent); 492 } 493 494 static int e1000_get_eeprom_len(struct net_device *netdev) 495 { 496 struct e1000_adapter *adapter = netdev_priv(netdev); 497 return adapter->hw.nvm.word_size * 2; 498 } 499 500 static int e1000_get_eeprom(struct net_device *netdev, 501 struct ethtool_eeprom *eeprom, u8 *bytes) 502 { 503 struct e1000_adapter *adapter = netdev_priv(netdev); 504 struct e1000_hw *hw = &adapter->hw; 505 u16 *eeprom_buff; 506 int first_word; 507 int last_word; 508 int ret_val = 0; 509 u16 i; 510 511 if (eeprom->len == 0) 512 return -EINVAL; 513 514 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 515 516 first_word = eeprom->offset >> 1; 517 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 518 519 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 520 GFP_KERNEL); 521 if (!eeprom_buff) 522 return -ENOMEM; 523 524 pm_runtime_get_sync(netdev->dev.parent); 525 526 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 527 ret_val = e1000_read_nvm(hw, first_word, 528 last_word - first_word + 1, 529 eeprom_buff); 530 } else { 531 for (i = 0; i < last_word - first_word + 1; i++) { 532 ret_val = e1000_read_nvm(hw, first_word + i, 1, 533 &eeprom_buff[i]); 534 if (ret_val) 535 break; 536 } 537 } 538 539 pm_runtime_put_sync(netdev->dev.parent); 540 541 if (ret_val) { 542 /* a read error occurred, throw away the result */ 543 memset(eeprom_buff, 0xff, sizeof(u16) * 544 (last_word - first_word + 1)); 545 } else { 546 /* Device's eeprom is always little-endian, word addressable */ 547 for (i = 0; i < last_word - first_word + 1; i++) 548 le16_to_cpus(&eeprom_buff[i]); 549 } 550 551 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 552 kfree(eeprom_buff); 553 554 return ret_val; 555 } 556 557 static int e1000_set_eeprom(struct net_device *netdev, 558 struct ethtool_eeprom *eeprom, u8 *bytes) 559 { 560 struct e1000_adapter *adapter = netdev_priv(netdev); 561 struct e1000_hw *hw = &adapter->hw; 562 u16 *eeprom_buff; 563 void *ptr; 564 int max_len; 565 int first_word; 566 int last_word; 567 int ret_val = 0; 568 u16 i; 569 570 if (eeprom->len == 0) 571 return -EOPNOTSUPP; 572 573 if (eeprom->magic != 574 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 575 return -EFAULT; 576 577 if (adapter->flags & FLAG_READ_ONLY_NVM) 578 return -EINVAL; 579 580 max_len = hw->nvm.word_size * 2; 581 582 first_word = eeprom->offset >> 1; 583 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 584 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 585 if (!eeprom_buff) 586 return -ENOMEM; 587 588 ptr = (void *)eeprom_buff; 589 590 pm_runtime_get_sync(netdev->dev.parent); 591 592 if (eeprom->offset & 1) { 593 /* need read/modify/write of first changed EEPROM word */ 594 /* only the second byte of the word is being modified */ 595 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 596 ptr++; 597 } 598 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 599 /* need read/modify/write of last changed EEPROM word */ 600 /* only the first byte of the word is being modified */ 601 ret_val = e1000_read_nvm(hw, last_word, 1, 602 &eeprom_buff[last_word - first_word]); 603 604 if (ret_val) 605 goto out; 606 607 /* Device's eeprom is always little-endian, word addressable */ 608 for (i = 0; i < last_word - first_word + 1; i++) 609 le16_to_cpus(&eeprom_buff[i]); 610 611 memcpy(ptr, bytes, eeprom->len); 612 613 for (i = 0; i < last_word - first_word + 1; i++) 614 cpu_to_le16s(&eeprom_buff[i]); 615 616 ret_val = e1000_write_nvm(hw, first_word, 617 last_word - first_word + 1, eeprom_buff); 618 619 if (ret_val) 620 goto out; 621 622 /* Update the checksum over the first part of the EEPROM if needed 623 * and flush shadow RAM for applicable controllers 624 */ 625 if ((first_word <= NVM_CHECKSUM_REG) || 626 (hw->mac.type == e1000_82583) || 627 (hw->mac.type == e1000_82574) || 628 (hw->mac.type == e1000_82573)) 629 ret_val = e1000e_update_nvm_checksum(hw); 630 631 out: 632 pm_runtime_put_sync(netdev->dev.parent); 633 kfree(eeprom_buff); 634 return ret_val; 635 } 636 637 static void e1000_get_drvinfo(struct net_device *netdev, 638 struct ethtool_drvinfo *drvinfo) 639 { 640 struct e1000_adapter *adapter = netdev_priv(netdev); 641 642 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 643 644 /* EEPROM image version # is reported as firmware version # for 645 * PCI-E controllers 646 */ 647 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 648 "%d.%d-%d", 649 (adapter->eeprom_vers & 0xF000) >> 12, 650 (adapter->eeprom_vers & 0x0FF0) >> 4, 651 (adapter->eeprom_vers & 0x000F)); 652 653 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 654 sizeof(drvinfo->bus_info)); 655 } 656 657 static void e1000_get_ringparam(struct net_device *netdev, 658 struct ethtool_ringparam *ring) 659 { 660 struct e1000_adapter *adapter = netdev_priv(netdev); 661 662 ring->rx_max_pending = E1000_MAX_RXD; 663 ring->tx_max_pending = E1000_MAX_TXD; 664 ring->rx_pending = adapter->rx_ring_count; 665 ring->tx_pending = adapter->tx_ring_count; 666 } 667 668 static int e1000_set_ringparam(struct net_device *netdev, 669 struct ethtool_ringparam *ring) 670 { 671 struct e1000_adapter *adapter = netdev_priv(netdev); 672 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 673 int err = 0, size = sizeof(struct e1000_ring); 674 bool set_tx = false, set_rx = false; 675 u16 new_rx_count, new_tx_count; 676 677 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 678 return -EINVAL; 679 680 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 681 E1000_MAX_RXD); 682 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 683 684 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 685 E1000_MAX_TXD); 686 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 687 688 if ((new_tx_count == adapter->tx_ring_count) && 689 (new_rx_count == adapter->rx_ring_count)) 690 /* nothing to do */ 691 return 0; 692 693 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 694 usleep_range(1000, 2000); 695 696 if (!netif_running(adapter->netdev)) { 697 /* Set counts now and allocate resources during open() */ 698 adapter->tx_ring->count = new_tx_count; 699 adapter->rx_ring->count = new_rx_count; 700 adapter->tx_ring_count = new_tx_count; 701 adapter->rx_ring_count = new_rx_count; 702 goto clear_reset; 703 } 704 705 set_tx = (new_tx_count != adapter->tx_ring_count); 706 set_rx = (new_rx_count != adapter->rx_ring_count); 707 708 /* Allocate temporary storage for ring updates */ 709 if (set_tx) { 710 temp_tx = vmalloc(size); 711 if (!temp_tx) { 712 err = -ENOMEM; 713 goto free_temp; 714 } 715 } 716 if (set_rx) { 717 temp_rx = vmalloc(size); 718 if (!temp_rx) { 719 err = -ENOMEM; 720 goto free_temp; 721 } 722 } 723 724 pm_runtime_get_sync(netdev->dev.parent); 725 726 e1000e_down(adapter, true); 727 728 /* We can't just free everything and then setup again, because the 729 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 730 * structs. First, attempt to allocate new resources... 731 */ 732 if (set_tx) { 733 memcpy(temp_tx, adapter->tx_ring, size); 734 temp_tx->count = new_tx_count; 735 err = e1000e_setup_tx_resources(temp_tx); 736 if (err) 737 goto err_setup; 738 } 739 if (set_rx) { 740 memcpy(temp_rx, adapter->rx_ring, size); 741 temp_rx->count = new_rx_count; 742 err = e1000e_setup_rx_resources(temp_rx); 743 if (err) 744 goto err_setup_rx; 745 } 746 747 /* ...then free the old resources and copy back any new ring data */ 748 if (set_tx) { 749 e1000e_free_tx_resources(adapter->tx_ring); 750 memcpy(adapter->tx_ring, temp_tx, size); 751 adapter->tx_ring_count = new_tx_count; 752 } 753 if (set_rx) { 754 e1000e_free_rx_resources(adapter->rx_ring); 755 memcpy(adapter->rx_ring, temp_rx, size); 756 adapter->rx_ring_count = new_rx_count; 757 } 758 759 err_setup_rx: 760 if (err && set_tx) 761 e1000e_free_tx_resources(temp_tx); 762 err_setup: 763 e1000e_up(adapter); 764 pm_runtime_put_sync(netdev->dev.parent); 765 free_temp: 766 vfree(temp_tx); 767 vfree(temp_rx); 768 clear_reset: 769 clear_bit(__E1000_RESETTING, &adapter->state); 770 return err; 771 } 772 773 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 774 int reg, int offset, u32 mask, u32 write) 775 { 776 u32 pat, val; 777 static const u32 test[] = { 778 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 779 }; 780 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 781 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 782 (test[pat] & write)); 783 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 784 if (val != (test[pat] & write & mask)) { 785 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 786 reg + (offset << 2), val, 787 (test[pat] & write & mask)); 788 *data = reg; 789 return true; 790 } 791 } 792 return false; 793 } 794 795 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 796 int reg, u32 mask, u32 write) 797 { 798 u32 val; 799 800 __ew32(&adapter->hw, reg, write & mask); 801 val = __er32(&adapter->hw, reg); 802 if ((write & mask) != (val & mask)) { 803 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 804 reg, (val & mask), (write & mask)); 805 *data = reg; 806 return true; 807 } 808 return false; 809 } 810 811 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 812 do { \ 813 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 814 return 1; \ 815 } while (0) 816 #define REG_PATTERN_TEST(reg, mask, write) \ 817 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 818 819 #define REG_SET_AND_CHECK(reg, mask, write) \ 820 do { \ 821 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 822 return 1; \ 823 } while (0) 824 825 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 826 { 827 struct e1000_hw *hw = &adapter->hw; 828 struct e1000_mac_info *mac = &adapter->hw.mac; 829 u32 value; 830 u32 before; 831 u32 after; 832 u32 i; 833 u32 toggle; 834 u32 mask; 835 u32 wlock_mac = 0; 836 837 /* The status register is Read Only, so a write should fail. 838 * Some bits that get toggled are ignored. There are several bits 839 * on newer hardware that are r/w. 840 */ 841 switch (mac->type) { 842 case e1000_82571: 843 case e1000_82572: 844 case e1000_80003es2lan: 845 toggle = 0x7FFFF3FF; 846 break; 847 default: 848 toggle = 0x7FFFF033; 849 break; 850 } 851 852 before = er32(STATUS); 853 value = (er32(STATUS) & toggle); 854 ew32(STATUS, toggle); 855 after = er32(STATUS) & toggle; 856 if (value != after) { 857 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 858 after, value); 859 *data = 1; 860 return 1; 861 } 862 /* restore previous status */ 863 ew32(STATUS, before); 864 865 if (!(adapter->flags & FLAG_IS_ICH)) { 866 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 867 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 868 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 869 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 870 } 871 872 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 873 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 874 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 875 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 876 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 877 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 878 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 879 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 880 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 881 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 882 883 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 884 885 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 886 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 887 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 888 889 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 890 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 891 if (!(adapter->flags & FLAG_IS_ICH)) 892 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 893 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 894 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 895 mask = 0x8003FFFF; 896 switch (mac->type) { 897 case e1000_ich10lan: 898 case e1000_pchlan: 899 case e1000_pch2lan: 900 case e1000_pch_lpt: 901 case e1000_pch_spt: 902 case e1000_pch_cnp: 903 case e1000_pch_tgp: 904 case e1000_pch_adp: 905 case e1000_pch_mtp: 906 mask |= BIT(18); 907 break; 908 default: 909 break; 910 } 911 912 if (mac->type >= e1000_pch_lpt) 913 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 914 E1000_FWSM_WLOCK_MAC_SHIFT; 915 916 for (i = 0; i < mac->rar_entry_count; i++) { 917 if (mac->type >= e1000_pch_lpt) { 918 /* Cannot test write-protected SHRAL[n] registers */ 919 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 920 continue; 921 922 /* SHRAH[9] different than the others */ 923 if (i == 10) 924 mask |= BIT(30); 925 else 926 mask &= ~BIT(30); 927 } 928 if (mac->type == e1000_pch2lan) { 929 /* SHRAH[0,1,2] different than previous */ 930 if (i == 1) 931 mask &= 0xFFF4FFFF; 932 /* SHRAH[3] different than SHRAH[0,1,2] */ 933 if (i == 4) 934 mask |= BIT(30); 935 /* RAR[1-6] owned by management engine - skipping */ 936 if (i > 0) 937 i += 6; 938 } 939 940 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 941 0xFFFFFFFF); 942 /* reset index to actual value */ 943 if ((mac->type == e1000_pch2lan) && (i > 6)) 944 i -= 6; 945 } 946 947 for (i = 0; i < mac->mta_reg_count; i++) 948 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 949 950 *data = 0; 951 952 return 0; 953 } 954 955 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 956 { 957 u16 temp; 958 u16 checksum = 0; 959 u16 i; 960 961 *data = 0; 962 /* Read and add up the contents of the EEPROM */ 963 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 964 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 965 *data = 1; 966 return *data; 967 } 968 checksum += temp; 969 } 970 971 /* If Checksum is not Correct return error else test passed */ 972 if ((checksum != (u16)NVM_SUM) && !(*data)) 973 *data = 2; 974 975 return *data; 976 } 977 978 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 979 { 980 struct net_device *netdev = (struct net_device *)data; 981 struct e1000_adapter *adapter = netdev_priv(netdev); 982 struct e1000_hw *hw = &adapter->hw; 983 984 adapter->test_icr |= er32(ICR); 985 986 return IRQ_HANDLED; 987 } 988 989 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 990 { 991 struct net_device *netdev = adapter->netdev; 992 struct e1000_hw *hw = &adapter->hw; 993 u32 mask; 994 u32 shared_int = 1; 995 u32 irq = adapter->pdev->irq; 996 int i; 997 int ret_val = 0; 998 int int_mode = E1000E_INT_MODE_LEGACY; 999 1000 *data = 0; 1001 1002 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 1003 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 1004 int_mode = adapter->int_mode; 1005 e1000e_reset_interrupt_capability(adapter); 1006 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1007 e1000e_set_interrupt_capability(adapter); 1008 } 1009 /* Hook up test interrupt handler just for this test */ 1010 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1011 netdev)) { 1012 shared_int = 0; 1013 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1014 netdev)) { 1015 *data = 1; 1016 ret_val = -1; 1017 goto out; 1018 } 1019 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1020 1021 /* Disable all the interrupts */ 1022 ew32(IMC, 0xFFFFFFFF); 1023 e1e_flush(); 1024 usleep_range(10000, 11000); 1025 1026 /* Test each interrupt */ 1027 for (i = 0; i < 10; i++) { 1028 /* Interrupt to test */ 1029 mask = BIT(i); 1030 1031 if (adapter->flags & FLAG_IS_ICH) { 1032 switch (mask) { 1033 case E1000_ICR_RXSEQ: 1034 continue; 1035 case 0x00000100: 1036 if (adapter->hw.mac.type == e1000_ich8lan || 1037 adapter->hw.mac.type == e1000_ich9lan) 1038 continue; 1039 break; 1040 default: 1041 break; 1042 } 1043 } 1044 1045 if (!shared_int) { 1046 /* Disable the interrupt to be reported in 1047 * the cause register and then force the same 1048 * interrupt and see if one gets posted. If 1049 * an interrupt was posted to the bus, the 1050 * test failed. 1051 */ 1052 adapter->test_icr = 0; 1053 ew32(IMC, mask); 1054 ew32(ICS, mask); 1055 e1e_flush(); 1056 usleep_range(10000, 11000); 1057 1058 if (adapter->test_icr & mask) { 1059 *data = 3; 1060 break; 1061 } 1062 } 1063 1064 /* Enable the interrupt to be reported in 1065 * the cause register and then force the same 1066 * interrupt and see if one gets posted. If 1067 * an interrupt was not posted to the bus, the 1068 * test failed. 1069 */ 1070 adapter->test_icr = 0; 1071 ew32(IMS, mask); 1072 ew32(ICS, mask); 1073 e1e_flush(); 1074 usleep_range(10000, 11000); 1075 1076 if (!(adapter->test_icr & mask)) { 1077 *data = 4; 1078 break; 1079 } 1080 1081 if (!shared_int) { 1082 /* Disable the other interrupts to be reported in 1083 * the cause register and then force the other 1084 * interrupts and see if any get posted. If 1085 * an interrupt was posted to the bus, the 1086 * test failed. 1087 */ 1088 adapter->test_icr = 0; 1089 ew32(IMC, ~mask & 0x00007FFF); 1090 ew32(ICS, ~mask & 0x00007FFF); 1091 e1e_flush(); 1092 usleep_range(10000, 11000); 1093 1094 if (adapter->test_icr) { 1095 *data = 5; 1096 break; 1097 } 1098 } 1099 } 1100 1101 /* Disable all the interrupts */ 1102 ew32(IMC, 0xFFFFFFFF); 1103 e1e_flush(); 1104 usleep_range(10000, 11000); 1105 1106 /* Unhook test interrupt handler */ 1107 free_irq(irq, netdev); 1108 1109 out: 1110 if (int_mode == E1000E_INT_MODE_MSIX) { 1111 e1000e_reset_interrupt_capability(adapter); 1112 adapter->int_mode = int_mode; 1113 e1000e_set_interrupt_capability(adapter); 1114 } 1115 1116 return ret_val; 1117 } 1118 1119 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1120 { 1121 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1122 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1123 struct pci_dev *pdev = adapter->pdev; 1124 struct e1000_buffer *buffer_info; 1125 int i; 1126 1127 if (tx_ring->desc && tx_ring->buffer_info) { 1128 for (i = 0; i < tx_ring->count; i++) { 1129 buffer_info = &tx_ring->buffer_info[i]; 1130 1131 if (buffer_info->dma) 1132 dma_unmap_single(&pdev->dev, 1133 buffer_info->dma, 1134 buffer_info->length, 1135 DMA_TO_DEVICE); 1136 dev_kfree_skb(buffer_info->skb); 1137 } 1138 } 1139 1140 if (rx_ring->desc && rx_ring->buffer_info) { 1141 for (i = 0; i < rx_ring->count; i++) { 1142 buffer_info = &rx_ring->buffer_info[i]; 1143 1144 if (buffer_info->dma) 1145 dma_unmap_single(&pdev->dev, 1146 buffer_info->dma, 1147 2048, DMA_FROM_DEVICE); 1148 dev_kfree_skb(buffer_info->skb); 1149 } 1150 } 1151 1152 if (tx_ring->desc) { 1153 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1154 tx_ring->dma); 1155 tx_ring->desc = NULL; 1156 } 1157 if (rx_ring->desc) { 1158 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1159 rx_ring->dma); 1160 rx_ring->desc = NULL; 1161 } 1162 1163 kfree(tx_ring->buffer_info); 1164 tx_ring->buffer_info = NULL; 1165 kfree(rx_ring->buffer_info); 1166 rx_ring->buffer_info = NULL; 1167 } 1168 1169 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1170 { 1171 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1172 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1173 struct pci_dev *pdev = adapter->pdev; 1174 struct e1000_hw *hw = &adapter->hw; 1175 u32 rctl; 1176 int i; 1177 int ret_val; 1178 1179 /* Setup Tx descriptor ring and Tx buffers */ 1180 1181 if (!tx_ring->count) 1182 tx_ring->count = E1000_DEFAULT_TXD; 1183 1184 tx_ring->buffer_info = kcalloc(tx_ring->count, 1185 sizeof(struct e1000_buffer), GFP_KERNEL); 1186 if (!tx_ring->buffer_info) { 1187 ret_val = 1; 1188 goto err_nomem; 1189 } 1190 1191 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1192 tx_ring->size = ALIGN(tx_ring->size, 4096); 1193 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1194 &tx_ring->dma, GFP_KERNEL); 1195 if (!tx_ring->desc) { 1196 ret_val = 2; 1197 goto err_nomem; 1198 } 1199 tx_ring->next_to_use = 0; 1200 tx_ring->next_to_clean = 0; 1201 1202 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1203 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1204 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1205 ew32(TDH(0), 0); 1206 ew32(TDT(0), 0); 1207 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1208 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1209 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1210 1211 for (i = 0; i < tx_ring->count; i++) { 1212 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1213 struct sk_buff *skb; 1214 unsigned int skb_size = 1024; 1215 1216 skb = alloc_skb(skb_size, GFP_KERNEL); 1217 if (!skb) { 1218 ret_val = 3; 1219 goto err_nomem; 1220 } 1221 skb_put(skb, skb_size); 1222 tx_ring->buffer_info[i].skb = skb; 1223 tx_ring->buffer_info[i].length = skb->len; 1224 tx_ring->buffer_info[i].dma = 1225 dma_map_single(&pdev->dev, skb->data, skb->len, 1226 DMA_TO_DEVICE); 1227 if (dma_mapping_error(&pdev->dev, 1228 tx_ring->buffer_info[i].dma)) { 1229 ret_val = 4; 1230 goto err_nomem; 1231 } 1232 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1233 tx_desc->lower.data = cpu_to_le32(skb->len); 1234 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1235 E1000_TXD_CMD_IFCS | 1236 E1000_TXD_CMD_RS); 1237 tx_desc->upper.data = 0; 1238 } 1239 1240 /* Setup Rx descriptor ring and Rx buffers */ 1241 1242 if (!rx_ring->count) 1243 rx_ring->count = E1000_DEFAULT_RXD; 1244 1245 rx_ring->buffer_info = kcalloc(rx_ring->count, 1246 sizeof(struct e1000_buffer), GFP_KERNEL); 1247 if (!rx_ring->buffer_info) { 1248 ret_val = 5; 1249 goto err_nomem; 1250 } 1251 1252 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1253 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1254 &rx_ring->dma, GFP_KERNEL); 1255 if (!rx_ring->desc) { 1256 ret_val = 6; 1257 goto err_nomem; 1258 } 1259 rx_ring->next_to_use = 0; 1260 rx_ring->next_to_clean = 0; 1261 1262 rctl = er32(RCTL); 1263 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1264 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1265 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1266 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1267 ew32(RDLEN(0), rx_ring->size); 1268 ew32(RDH(0), 0); 1269 ew32(RDT(0), 0); 1270 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1271 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1272 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1273 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1274 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1275 ew32(RCTL, rctl); 1276 1277 for (i = 0; i < rx_ring->count; i++) { 1278 union e1000_rx_desc_extended *rx_desc; 1279 struct sk_buff *skb; 1280 1281 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1282 if (!skb) { 1283 ret_val = 7; 1284 goto err_nomem; 1285 } 1286 skb_reserve(skb, NET_IP_ALIGN); 1287 rx_ring->buffer_info[i].skb = skb; 1288 rx_ring->buffer_info[i].dma = 1289 dma_map_single(&pdev->dev, skb->data, 2048, 1290 DMA_FROM_DEVICE); 1291 if (dma_mapping_error(&pdev->dev, 1292 rx_ring->buffer_info[i].dma)) { 1293 ret_val = 8; 1294 goto err_nomem; 1295 } 1296 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1297 rx_desc->read.buffer_addr = 1298 cpu_to_le64(rx_ring->buffer_info[i].dma); 1299 memset(skb->data, 0x00, skb->len); 1300 } 1301 1302 return 0; 1303 1304 err_nomem: 1305 e1000_free_desc_rings(adapter); 1306 return ret_val; 1307 } 1308 1309 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1310 { 1311 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1312 e1e_wphy(&adapter->hw, 29, 0x001F); 1313 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1314 e1e_wphy(&adapter->hw, 29, 0x001A); 1315 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1316 } 1317 1318 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1319 { 1320 struct e1000_hw *hw = &adapter->hw; 1321 u32 ctrl_reg = 0; 1322 u16 phy_reg = 0; 1323 s32 ret_val = 0; 1324 1325 hw->mac.autoneg = 0; 1326 1327 if (hw->phy.type == e1000_phy_ife) { 1328 /* force 100, set loopback */ 1329 e1e_wphy(hw, MII_BMCR, 0x6100); 1330 1331 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1332 ctrl_reg = er32(CTRL); 1333 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1334 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1335 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1336 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1337 E1000_CTRL_FD); /* Force Duplex to FULL */ 1338 1339 ew32(CTRL, ctrl_reg); 1340 e1e_flush(); 1341 usleep_range(500, 1000); 1342 1343 return 0; 1344 } 1345 1346 /* Specific PHY configuration for loopback */ 1347 switch (hw->phy.type) { 1348 case e1000_phy_m88: 1349 /* Auto-MDI/MDIX Off */ 1350 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1351 /* reset to update Auto-MDI/MDIX */ 1352 e1e_wphy(hw, MII_BMCR, 0x9140); 1353 /* autoneg off */ 1354 e1e_wphy(hw, MII_BMCR, 0x8140); 1355 break; 1356 case e1000_phy_gg82563: 1357 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1358 break; 1359 case e1000_phy_bm: 1360 /* Set Default MAC Interface speed to 1GB */ 1361 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1362 phy_reg &= ~0x0007; 1363 phy_reg |= 0x006; 1364 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1365 /* Assert SW reset for above settings to take effect */ 1366 hw->phy.ops.commit(hw); 1367 usleep_range(1000, 2000); 1368 /* Force Full Duplex */ 1369 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1370 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1371 /* Set Link Up (in force link) */ 1372 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1373 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1374 /* Force Link */ 1375 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1376 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1377 /* Set Early Link Enable */ 1378 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1379 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1380 break; 1381 case e1000_phy_82577: 1382 case e1000_phy_82578: 1383 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1384 ret_val = hw->phy.ops.acquire(hw); 1385 if (ret_val) { 1386 e_err("Cannot setup 1Gbps loopback.\n"); 1387 return ret_val; 1388 } 1389 e1000_configure_k1_ich8lan(hw, false); 1390 hw->phy.ops.release(hw); 1391 break; 1392 case e1000_phy_82579: 1393 /* Disable PHY energy detect power down */ 1394 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1395 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1396 /* Disable full chip energy detect */ 1397 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1398 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1399 /* Enable loopback on the PHY */ 1400 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1401 break; 1402 default: 1403 break; 1404 } 1405 1406 /* force 1000, set loopback */ 1407 e1e_wphy(hw, MII_BMCR, 0x4140); 1408 msleep(250); 1409 1410 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1411 ctrl_reg = er32(CTRL); 1412 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1413 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1414 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1415 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1416 E1000_CTRL_FD); /* Force Duplex to FULL */ 1417 1418 if (adapter->flags & FLAG_IS_ICH) 1419 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1420 1421 if (hw->phy.media_type == e1000_media_type_copper && 1422 hw->phy.type == e1000_phy_m88) { 1423 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1424 } else { 1425 /* Set the ILOS bit on the fiber Nic if half duplex link is 1426 * detected. 1427 */ 1428 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1429 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1430 } 1431 1432 ew32(CTRL, ctrl_reg); 1433 1434 /* Disable the receiver on the PHY so when a cable is plugged in, the 1435 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1436 */ 1437 if (hw->phy.type == e1000_phy_m88) 1438 e1000_phy_disable_receiver(adapter); 1439 1440 usleep_range(500, 1000); 1441 1442 return 0; 1443 } 1444 1445 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1446 { 1447 struct e1000_hw *hw = &adapter->hw; 1448 u32 ctrl = er32(CTRL); 1449 int link; 1450 1451 /* special requirements for 82571/82572 fiber adapters */ 1452 1453 /* jump through hoops to make sure link is up because serdes 1454 * link is hardwired up 1455 */ 1456 ctrl |= E1000_CTRL_SLU; 1457 ew32(CTRL, ctrl); 1458 1459 /* disable autoneg */ 1460 ctrl = er32(TXCW); 1461 ctrl &= ~BIT(31); 1462 ew32(TXCW, ctrl); 1463 1464 link = (er32(STATUS) & E1000_STATUS_LU); 1465 1466 if (!link) { 1467 /* set invert loss of signal */ 1468 ctrl = er32(CTRL); 1469 ctrl |= E1000_CTRL_ILOS; 1470 ew32(CTRL, ctrl); 1471 } 1472 1473 /* special write to serdes control register to enable SerDes analog 1474 * loopback 1475 */ 1476 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1477 e1e_flush(); 1478 usleep_range(10000, 11000); 1479 1480 return 0; 1481 } 1482 1483 /* only call this for fiber/serdes connections to es2lan */ 1484 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1485 { 1486 struct e1000_hw *hw = &adapter->hw; 1487 u32 ctrlext = er32(CTRL_EXT); 1488 u32 ctrl = er32(CTRL); 1489 1490 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1491 * on mac_type 80003es2lan) 1492 */ 1493 adapter->tx_fifo_head = ctrlext; 1494 1495 /* clear the serdes mode bits, putting the device into mac loopback */ 1496 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1497 ew32(CTRL_EXT, ctrlext); 1498 1499 /* force speed to 1000/FD, link up */ 1500 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1501 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1502 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1503 ew32(CTRL, ctrl); 1504 1505 /* set mac loopback */ 1506 ctrl = er32(RCTL); 1507 ctrl |= E1000_RCTL_LBM_MAC; 1508 ew32(RCTL, ctrl); 1509 1510 /* set testing mode parameters (no need to reset later) */ 1511 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1512 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1513 ew32(KMRNCTRLSTA, 1514 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1515 1516 return 0; 1517 } 1518 1519 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1520 { 1521 struct e1000_hw *hw = &adapter->hw; 1522 u32 rctl, fext_nvm11, tarc0; 1523 1524 if (hw->mac.type >= e1000_pch_spt) { 1525 fext_nvm11 = er32(FEXTNVM11); 1526 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1527 ew32(FEXTNVM11, fext_nvm11); 1528 tarc0 = er32(TARC(0)); 1529 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1530 tarc0 &= 0xcfffffff; 1531 /* set bit 29 (value of MULR requests is now 2) */ 1532 tarc0 |= 0x20000000; 1533 ew32(TARC(0), tarc0); 1534 } 1535 if (hw->phy.media_type == e1000_media_type_fiber || 1536 hw->phy.media_type == e1000_media_type_internal_serdes) { 1537 switch (hw->mac.type) { 1538 case e1000_80003es2lan: 1539 return e1000_set_es2lan_mac_loopback(adapter); 1540 case e1000_82571: 1541 case e1000_82572: 1542 return e1000_set_82571_fiber_loopback(adapter); 1543 default: 1544 rctl = er32(RCTL); 1545 rctl |= E1000_RCTL_LBM_TCVR; 1546 ew32(RCTL, rctl); 1547 return 0; 1548 } 1549 } else if (hw->phy.media_type == e1000_media_type_copper) { 1550 return e1000_integrated_phy_loopback(adapter); 1551 } 1552 1553 return 7; 1554 } 1555 1556 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1557 { 1558 struct e1000_hw *hw = &adapter->hw; 1559 u32 rctl, fext_nvm11, tarc0; 1560 u16 phy_reg; 1561 1562 rctl = er32(RCTL); 1563 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1564 ew32(RCTL, rctl); 1565 1566 switch (hw->mac.type) { 1567 case e1000_pch_spt: 1568 case e1000_pch_cnp: 1569 case e1000_pch_tgp: 1570 case e1000_pch_adp: 1571 case e1000_pch_mtp: 1572 fext_nvm11 = er32(FEXTNVM11); 1573 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1574 ew32(FEXTNVM11, fext_nvm11); 1575 tarc0 = er32(TARC(0)); 1576 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1577 /* set bit 29 (value of MULR requests is now 0) */ 1578 tarc0 &= 0xcfffffff; 1579 ew32(TARC(0), tarc0); 1580 fallthrough; 1581 case e1000_80003es2lan: 1582 if (hw->phy.media_type == e1000_media_type_fiber || 1583 hw->phy.media_type == e1000_media_type_internal_serdes) { 1584 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1585 ew32(CTRL_EXT, adapter->tx_fifo_head); 1586 adapter->tx_fifo_head = 0; 1587 } 1588 fallthrough; 1589 case e1000_82571: 1590 case e1000_82572: 1591 if (hw->phy.media_type == e1000_media_type_fiber || 1592 hw->phy.media_type == e1000_media_type_internal_serdes) { 1593 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1594 e1e_flush(); 1595 usleep_range(10000, 11000); 1596 break; 1597 } 1598 fallthrough; 1599 default: 1600 hw->mac.autoneg = 1; 1601 if (hw->phy.type == e1000_phy_gg82563) 1602 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1603 e1e_rphy(hw, MII_BMCR, &phy_reg); 1604 if (phy_reg & BMCR_LOOPBACK) { 1605 phy_reg &= ~BMCR_LOOPBACK; 1606 e1e_wphy(hw, MII_BMCR, phy_reg); 1607 if (hw->phy.ops.commit) 1608 hw->phy.ops.commit(hw); 1609 } 1610 break; 1611 } 1612 } 1613 1614 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1615 unsigned int frame_size) 1616 { 1617 memset(skb->data, 0xFF, frame_size); 1618 frame_size &= ~1; 1619 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1620 skb->data[frame_size / 2 + 10] = 0xBE; 1621 skb->data[frame_size / 2 + 12] = 0xAF; 1622 } 1623 1624 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1625 unsigned int frame_size) 1626 { 1627 frame_size &= ~1; 1628 if (*(skb->data + 3) == 0xFF) 1629 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1630 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1631 return 0; 1632 return 13; 1633 } 1634 1635 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1636 { 1637 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1638 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1639 struct pci_dev *pdev = adapter->pdev; 1640 struct e1000_hw *hw = &adapter->hw; 1641 struct e1000_buffer *buffer_info; 1642 int i, j, k, l; 1643 int lc; 1644 int good_cnt; 1645 int ret_val = 0; 1646 unsigned long time; 1647 1648 ew32(RDT(0), rx_ring->count - 1); 1649 1650 /* Calculate the loop count based on the largest descriptor ring 1651 * The idea is to wrap the largest ring a number of times using 64 1652 * send/receive pairs during each loop 1653 */ 1654 1655 if (rx_ring->count <= tx_ring->count) 1656 lc = ((tx_ring->count / 64) * 2) + 1; 1657 else 1658 lc = ((rx_ring->count / 64) * 2) + 1; 1659 1660 k = 0; 1661 l = 0; 1662 /* loop count loop */ 1663 for (j = 0; j <= lc; j++) { 1664 /* send the packets */ 1665 for (i = 0; i < 64; i++) { 1666 buffer_info = &tx_ring->buffer_info[k]; 1667 1668 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1669 dma_sync_single_for_device(&pdev->dev, 1670 buffer_info->dma, 1671 buffer_info->length, 1672 DMA_TO_DEVICE); 1673 k++; 1674 if (k == tx_ring->count) 1675 k = 0; 1676 } 1677 ew32(TDT(0), k); 1678 e1e_flush(); 1679 msleep(200); 1680 time = jiffies; /* set the start time for the receive */ 1681 good_cnt = 0; 1682 /* receive the sent packets */ 1683 do { 1684 buffer_info = &rx_ring->buffer_info[l]; 1685 1686 dma_sync_single_for_cpu(&pdev->dev, 1687 buffer_info->dma, 2048, 1688 DMA_FROM_DEVICE); 1689 1690 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1691 1024); 1692 if (!ret_val) 1693 good_cnt++; 1694 l++; 1695 if (l == rx_ring->count) 1696 l = 0; 1697 /* time + 20 msecs (200 msecs on 2.4) is more than 1698 * enough time to complete the receives, if it's 1699 * exceeded, break and error off 1700 */ 1701 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1702 if (good_cnt != 64) { 1703 ret_val = 13; /* ret_val is the same as mis-compare */ 1704 break; 1705 } 1706 if (time_after(jiffies, time + 20)) { 1707 ret_val = 14; /* error code for time out error */ 1708 break; 1709 } 1710 } 1711 return ret_val; 1712 } 1713 1714 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1715 { 1716 struct e1000_hw *hw = &adapter->hw; 1717 1718 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1719 if (hw->phy.ops.check_reset_block && 1720 hw->phy.ops.check_reset_block(hw)) { 1721 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1722 *data = 0; 1723 goto out; 1724 } 1725 1726 *data = e1000_setup_desc_rings(adapter); 1727 if (*data) 1728 goto out; 1729 1730 *data = e1000_setup_loopback_test(adapter); 1731 if (*data) 1732 goto err_loopback; 1733 1734 *data = e1000_run_loopback_test(adapter); 1735 e1000_loopback_cleanup(adapter); 1736 1737 err_loopback: 1738 e1000_free_desc_rings(adapter); 1739 out: 1740 return *data; 1741 } 1742 1743 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1744 { 1745 struct e1000_hw *hw = &adapter->hw; 1746 1747 *data = 0; 1748 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1749 int i = 0; 1750 1751 hw->mac.serdes_has_link = false; 1752 1753 /* On some blade server designs, link establishment 1754 * could take as long as 2-3 minutes 1755 */ 1756 do { 1757 hw->mac.ops.check_for_link(hw); 1758 if (hw->mac.serdes_has_link) 1759 return *data; 1760 msleep(20); 1761 } while (i++ < 3750); 1762 1763 *data = 1; 1764 } else { 1765 hw->mac.ops.check_for_link(hw); 1766 if (hw->mac.autoneg) 1767 /* On some Phy/switch combinations, link establishment 1768 * can take a few seconds more than expected. 1769 */ 1770 msleep_interruptible(5000); 1771 1772 if (!(er32(STATUS) & E1000_STATUS_LU)) 1773 *data = 1; 1774 } 1775 return *data; 1776 } 1777 1778 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1779 int sset) 1780 { 1781 switch (sset) { 1782 case ETH_SS_TEST: 1783 return E1000_TEST_LEN; 1784 case ETH_SS_STATS: 1785 return E1000_STATS_LEN; 1786 case ETH_SS_PRIV_FLAGS: 1787 return E1000E_PRIV_FLAGS_STR_LEN; 1788 default: 1789 return -EOPNOTSUPP; 1790 } 1791 } 1792 1793 static void e1000_diag_test(struct net_device *netdev, 1794 struct ethtool_test *eth_test, u64 *data) 1795 { 1796 struct e1000_adapter *adapter = netdev_priv(netdev); 1797 u16 autoneg_advertised; 1798 u8 forced_speed_duplex; 1799 u8 autoneg; 1800 bool if_running = netif_running(netdev); 1801 1802 pm_runtime_get_sync(netdev->dev.parent); 1803 1804 set_bit(__E1000_TESTING, &adapter->state); 1805 1806 if (!if_running) { 1807 /* Get control of and reset hardware */ 1808 if (adapter->flags & FLAG_HAS_AMT) 1809 e1000e_get_hw_control(adapter); 1810 1811 e1000e_power_up_phy(adapter); 1812 1813 adapter->hw.phy.autoneg_wait_to_complete = 1; 1814 e1000e_reset(adapter); 1815 adapter->hw.phy.autoneg_wait_to_complete = 0; 1816 } 1817 1818 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1819 /* Offline tests */ 1820 1821 /* save speed, duplex, autoneg settings */ 1822 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1823 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1824 autoneg = adapter->hw.mac.autoneg; 1825 1826 e_info("offline testing starting\n"); 1827 1828 if (if_running) 1829 /* indicate we're in test mode */ 1830 e1000e_close(netdev); 1831 1832 if (e1000_reg_test(adapter, &data[0])) 1833 eth_test->flags |= ETH_TEST_FL_FAILED; 1834 1835 e1000e_reset(adapter); 1836 if (e1000_eeprom_test(adapter, &data[1])) 1837 eth_test->flags |= ETH_TEST_FL_FAILED; 1838 1839 e1000e_reset(adapter); 1840 if (e1000_intr_test(adapter, &data[2])) 1841 eth_test->flags |= ETH_TEST_FL_FAILED; 1842 1843 e1000e_reset(adapter); 1844 if (e1000_loopback_test(adapter, &data[3])) 1845 eth_test->flags |= ETH_TEST_FL_FAILED; 1846 1847 /* force this routine to wait until autoneg complete/timeout */ 1848 adapter->hw.phy.autoneg_wait_to_complete = 1; 1849 e1000e_reset(adapter); 1850 adapter->hw.phy.autoneg_wait_to_complete = 0; 1851 1852 if (e1000_link_test(adapter, &data[4])) 1853 eth_test->flags |= ETH_TEST_FL_FAILED; 1854 1855 /* restore speed, duplex, autoneg settings */ 1856 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1857 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1858 adapter->hw.mac.autoneg = autoneg; 1859 e1000e_reset(adapter); 1860 1861 clear_bit(__E1000_TESTING, &adapter->state); 1862 if (if_running) 1863 e1000e_open(netdev); 1864 } else { 1865 /* Online tests */ 1866 1867 e_info("online testing starting\n"); 1868 1869 /* register, eeprom, intr and loopback tests not run online */ 1870 data[0] = 0; 1871 data[1] = 0; 1872 data[2] = 0; 1873 data[3] = 0; 1874 1875 if (e1000_link_test(adapter, &data[4])) 1876 eth_test->flags |= ETH_TEST_FL_FAILED; 1877 1878 clear_bit(__E1000_TESTING, &adapter->state); 1879 } 1880 1881 if (!if_running) { 1882 e1000e_reset(adapter); 1883 1884 if (adapter->flags & FLAG_HAS_AMT) 1885 e1000e_release_hw_control(adapter); 1886 } 1887 1888 msleep_interruptible(4 * 1000); 1889 1890 pm_runtime_put_sync(netdev->dev.parent); 1891 } 1892 1893 static void e1000_get_wol(struct net_device *netdev, 1894 struct ethtool_wolinfo *wol) 1895 { 1896 struct e1000_adapter *adapter = netdev_priv(netdev); 1897 1898 wol->supported = 0; 1899 wol->wolopts = 0; 1900 1901 if (!(adapter->flags & FLAG_HAS_WOL) || 1902 !device_can_wakeup(&adapter->pdev->dev)) 1903 return; 1904 1905 wol->supported = WAKE_UCAST | WAKE_MCAST | 1906 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1907 1908 /* apply any specific unsupported masks here */ 1909 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1910 wol->supported &= ~WAKE_UCAST; 1911 1912 if (adapter->wol & E1000_WUFC_EX) 1913 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1914 } 1915 1916 if (adapter->wol & E1000_WUFC_EX) 1917 wol->wolopts |= WAKE_UCAST; 1918 if (adapter->wol & E1000_WUFC_MC) 1919 wol->wolopts |= WAKE_MCAST; 1920 if (adapter->wol & E1000_WUFC_BC) 1921 wol->wolopts |= WAKE_BCAST; 1922 if (adapter->wol & E1000_WUFC_MAG) 1923 wol->wolopts |= WAKE_MAGIC; 1924 if (adapter->wol & E1000_WUFC_LNKC) 1925 wol->wolopts |= WAKE_PHY; 1926 } 1927 1928 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1929 { 1930 struct e1000_adapter *adapter = netdev_priv(netdev); 1931 1932 if (!(adapter->flags & FLAG_HAS_WOL) || 1933 !device_can_wakeup(&adapter->pdev->dev) || 1934 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1935 WAKE_MAGIC | WAKE_PHY))) 1936 return -EOPNOTSUPP; 1937 1938 /* these settings will always override what we currently have */ 1939 adapter->wol = 0; 1940 1941 if (wol->wolopts & WAKE_UCAST) 1942 adapter->wol |= E1000_WUFC_EX; 1943 if (wol->wolopts & WAKE_MCAST) 1944 adapter->wol |= E1000_WUFC_MC; 1945 if (wol->wolopts & WAKE_BCAST) 1946 adapter->wol |= E1000_WUFC_BC; 1947 if (wol->wolopts & WAKE_MAGIC) 1948 adapter->wol |= E1000_WUFC_MAG; 1949 if (wol->wolopts & WAKE_PHY) 1950 adapter->wol |= E1000_WUFC_LNKC; 1951 1952 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1953 1954 return 0; 1955 } 1956 1957 static int e1000_set_phys_id(struct net_device *netdev, 1958 enum ethtool_phys_id_state state) 1959 { 1960 struct e1000_adapter *adapter = netdev_priv(netdev); 1961 struct e1000_hw *hw = &adapter->hw; 1962 1963 switch (state) { 1964 case ETHTOOL_ID_ACTIVE: 1965 pm_runtime_get_sync(netdev->dev.parent); 1966 1967 if (!hw->mac.ops.blink_led) 1968 return 2; /* cycle on/off twice per second */ 1969 1970 hw->mac.ops.blink_led(hw); 1971 break; 1972 1973 case ETHTOOL_ID_INACTIVE: 1974 if (hw->phy.type == e1000_phy_ife) 1975 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1976 hw->mac.ops.led_off(hw); 1977 hw->mac.ops.cleanup_led(hw); 1978 pm_runtime_put_sync(netdev->dev.parent); 1979 break; 1980 1981 case ETHTOOL_ID_ON: 1982 hw->mac.ops.led_on(hw); 1983 break; 1984 1985 case ETHTOOL_ID_OFF: 1986 hw->mac.ops.led_off(hw); 1987 break; 1988 } 1989 1990 return 0; 1991 } 1992 1993 static int e1000_get_coalesce(struct net_device *netdev, 1994 struct ethtool_coalesce *ec) 1995 { 1996 struct e1000_adapter *adapter = netdev_priv(netdev); 1997 1998 if (adapter->itr_setting <= 4) 1999 ec->rx_coalesce_usecs = adapter->itr_setting; 2000 else 2001 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 2002 2003 return 0; 2004 } 2005 2006 static int e1000_set_coalesce(struct net_device *netdev, 2007 struct ethtool_coalesce *ec) 2008 { 2009 struct e1000_adapter *adapter = netdev_priv(netdev); 2010 2011 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2012 ((ec->rx_coalesce_usecs > 4) && 2013 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2014 (ec->rx_coalesce_usecs == 2)) 2015 return -EINVAL; 2016 2017 if (ec->rx_coalesce_usecs == 4) { 2018 adapter->itr_setting = 4; 2019 adapter->itr = adapter->itr_setting; 2020 } else if (ec->rx_coalesce_usecs <= 3) { 2021 adapter->itr = 20000; 2022 adapter->itr_setting = ec->rx_coalesce_usecs; 2023 } else { 2024 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2025 adapter->itr_setting = adapter->itr & ~3; 2026 } 2027 2028 pm_runtime_get_sync(netdev->dev.parent); 2029 2030 if (adapter->itr_setting != 0) 2031 e1000e_write_itr(adapter, adapter->itr); 2032 else 2033 e1000e_write_itr(adapter, 0); 2034 2035 pm_runtime_put_sync(netdev->dev.parent); 2036 2037 return 0; 2038 } 2039 2040 static int e1000_nway_reset(struct net_device *netdev) 2041 { 2042 struct e1000_adapter *adapter = netdev_priv(netdev); 2043 2044 if (!netif_running(netdev)) 2045 return -EAGAIN; 2046 2047 if (!adapter->hw.mac.autoneg) 2048 return -EINVAL; 2049 2050 pm_runtime_get_sync(netdev->dev.parent); 2051 e1000e_reinit_locked(adapter); 2052 pm_runtime_put_sync(netdev->dev.parent); 2053 2054 return 0; 2055 } 2056 2057 static void e1000_get_ethtool_stats(struct net_device *netdev, 2058 struct ethtool_stats __always_unused *stats, 2059 u64 *data) 2060 { 2061 struct e1000_adapter *adapter = netdev_priv(netdev); 2062 struct rtnl_link_stats64 net_stats; 2063 int i; 2064 char *p = NULL; 2065 2066 pm_runtime_get_sync(netdev->dev.parent); 2067 2068 dev_get_stats(netdev, &net_stats); 2069 2070 pm_runtime_put_sync(netdev->dev.parent); 2071 2072 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2073 switch (e1000_gstrings_stats[i].type) { 2074 case NETDEV_STATS: 2075 p = (char *)&net_stats + 2076 e1000_gstrings_stats[i].stat_offset; 2077 break; 2078 case E1000_STATS: 2079 p = (char *)adapter + 2080 e1000_gstrings_stats[i].stat_offset; 2081 break; 2082 default: 2083 data[i] = 0; 2084 continue; 2085 } 2086 2087 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2088 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2089 } 2090 } 2091 2092 static void e1000_get_strings(struct net_device __always_unused *netdev, 2093 u32 stringset, u8 *data) 2094 { 2095 u8 *p = data; 2096 int i; 2097 2098 switch (stringset) { 2099 case ETH_SS_TEST: 2100 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2101 break; 2102 case ETH_SS_STATS: 2103 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2104 memcpy(p, e1000_gstrings_stats[i].stat_string, 2105 ETH_GSTRING_LEN); 2106 p += ETH_GSTRING_LEN; 2107 } 2108 break; 2109 case ETH_SS_PRIV_FLAGS: 2110 memcpy(data, e1000e_priv_flags_strings, 2111 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2112 break; 2113 } 2114 } 2115 2116 static int e1000_get_rxnfc(struct net_device *netdev, 2117 struct ethtool_rxnfc *info, 2118 u32 __always_unused *rule_locs) 2119 { 2120 info->data = 0; 2121 2122 switch (info->cmd) { 2123 case ETHTOOL_GRXFH: { 2124 struct e1000_adapter *adapter = netdev_priv(netdev); 2125 struct e1000_hw *hw = &adapter->hw; 2126 u32 mrqc; 2127 2128 pm_runtime_get_sync(netdev->dev.parent); 2129 mrqc = er32(MRQC); 2130 pm_runtime_put_sync(netdev->dev.parent); 2131 2132 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2133 return 0; 2134 2135 switch (info->flow_type) { 2136 case TCP_V4_FLOW: 2137 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2138 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2139 fallthrough; 2140 case UDP_V4_FLOW: 2141 case SCTP_V4_FLOW: 2142 case AH_ESP_V4_FLOW: 2143 case IPV4_FLOW: 2144 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2145 info->data |= RXH_IP_SRC | RXH_IP_DST; 2146 break; 2147 case TCP_V6_FLOW: 2148 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2149 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2150 fallthrough; 2151 case UDP_V6_FLOW: 2152 case SCTP_V6_FLOW: 2153 case AH_ESP_V6_FLOW: 2154 case IPV6_FLOW: 2155 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2156 info->data |= RXH_IP_SRC | RXH_IP_DST; 2157 break; 2158 default: 2159 break; 2160 } 2161 return 0; 2162 } 2163 default: 2164 return -EOPNOTSUPP; 2165 } 2166 } 2167 2168 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2169 { 2170 struct e1000_adapter *adapter = netdev_priv(netdev); 2171 struct e1000_hw *hw = &adapter->hw; 2172 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2173 u32 ret_val; 2174 2175 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2176 return -EOPNOTSUPP; 2177 2178 switch (hw->phy.type) { 2179 case e1000_phy_82579: 2180 cap_addr = I82579_EEE_CAPABILITY; 2181 lpa_addr = I82579_EEE_LP_ABILITY; 2182 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2183 break; 2184 case e1000_phy_i217: 2185 cap_addr = I217_EEE_CAPABILITY; 2186 lpa_addr = I217_EEE_LP_ABILITY; 2187 pcs_stat_addr = I217_EEE_PCS_STATUS; 2188 break; 2189 default: 2190 return -EOPNOTSUPP; 2191 } 2192 2193 pm_runtime_get_sync(netdev->dev.parent); 2194 2195 ret_val = hw->phy.ops.acquire(hw); 2196 if (ret_val) { 2197 pm_runtime_put_sync(netdev->dev.parent); 2198 return -EBUSY; 2199 } 2200 2201 /* EEE Capability */ 2202 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2203 if (ret_val) 2204 goto release; 2205 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2206 2207 /* EEE Advertised */ 2208 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2209 2210 /* EEE Link Partner Advertised */ 2211 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2212 if (ret_val) 2213 goto release; 2214 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2215 2216 /* EEE PCS Status */ 2217 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2218 if (ret_val) 2219 goto release; 2220 if (hw->phy.type == e1000_phy_82579) 2221 phy_data <<= 8; 2222 2223 /* Result of the EEE auto negotiation - there is no register that 2224 * has the status of the EEE negotiation so do a best-guess based 2225 * on whether Tx or Rx LPI indications have been received. 2226 */ 2227 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2228 edata->eee_active = true; 2229 2230 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2231 edata->tx_lpi_enabled = true; 2232 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2233 2234 release: 2235 hw->phy.ops.release(hw); 2236 if (ret_val) 2237 ret_val = -ENODATA; 2238 2239 pm_runtime_put_sync(netdev->dev.parent); 2240 2241 return ret_val; 2242 } 2243 2244 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2245 { 2246 struct e1000_adapter *adapter = netdev_priv(netdev); 2247 struct e1000_hw *hw = &adapter->hw; 2248 struct ethtool_eee eee_curr; 2249 s32 ret_val; 2250 2251 ret_val = e1000e_get_eee(netdev, &eee_curr); 2252 if (ret_val) 2253 return ret_val; 2254 2255 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2256 e_err("Setting EEE tx-lpi is not supported\n"); 2257 return -EINVAL; 2258 } 2259 2260 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2261 e_err("Setting EEE Tx LPI timer is not supported\n"); 2262 return -EINVAL; 2263 } 2264 2265 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2266 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2267 return -EINVAL; 2268 } 2269 2270 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2271 2272 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2273 2274 pm_runtime_get_sync(netdev->dev.parent); 2275 2276 /* reset the link */ 2277 if (netif_running(netdev)) 2278 e1000e_reinit_locked(adapter); 2279 else 2280 e1000e_reset(adapter); 2281 2282 pm_runtime_put_sync(netdev->dev.parent); 2283 2284 return 0; 2285 } 2286 2287 static int e1000e_get_ts_info(struct net_device *netdev, 2288 struct ethtool_ts_info *info) 2289 { 2290 struct e1000_adapter *adapter = netdev_priv(netdev); 2291 2292 ethtool_op_get_ts_info(netdev, info); 2293 2294 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2295 return 0; 2296 2297 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2298 SOF_TIMESTAMPING_RX_HARDWARE | 2299 SOF_TIMESTAMPING_RAW_HARDWARE); 2300 2301 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2302 2303 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2304 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2305 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2306 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2307 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2308 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2309 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2310 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2311 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2312 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2313 BIT(HWTSTAMP_FILTER_ALL)); 2314 2315 if (adapter->ptp_clock) 2316 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2317 2318 return 0; 2319 } 2320 2321 static u32 e1000e_get_priv_flags(struct net_device *netdev) 2322 { 2323 struct e1000_adapter *adapter = netdev_priv(netdev); 2324 u32 priv_flags = 0; 2325 2326 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 2327 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED; 2328 2329 return priv_flags; 2330 } 2331 2332 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags) 2333 { 2334 struct e1000_adapter *adapter = netdev_priv(netdev); 2335 unsigned int flags2 = adapter->flags2; 2336 2337 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS; 2338 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) { 2339 struct e1000_hw *hw = &adapter->hw; 2340 2341 if (hw->mac.type < e1000_pch_cnp) 2342 return -EINVAL; 2343 flags2 |= FLAG2_ENABLE_S0IX_FLOWS; 2344 } 2345 2346 if (flags2 != adapter->flags2) 2347 adapter->flags2 = flags2; 2348 2349 return 0; 2350 } 2351 2352 static const struct ethtool_ops e1000_ethtool_ops = { 2353 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2354 .get_drvinfo = e1000_get_drvinfo, 2355 .get_regs_len = e1000_get_regs_len, 2356 .get_regs = e1000_get_regs, 2357 .get_wol = e1000_get_wol, 2358 .set_wol = e1000_set_wol, 2359 .get_msglevel = e1000_get_msglevel, 2360 .set_msglevel = e1000_set_msglevel, 2361 .nway_reset = e1000_nway_reset, 2362 .get_link = ethtool_op_get_link, 2363 .get_eeprom_len = e1000_get_eeprom_len, 2364 .get_eeprom = e1000_get_eeprom, 2365 .set_eeprom = e1000_set_eeprom, 2366 .get_ringparam = e1000_get_ringparam, 2367 .set_ringparam = e1000_set_ringparam, 2368 .get_pauseparam = e1000_get_pauseparam, 2369 .set_pauseparam = e1000_set_pauseparam, 2370 .self_test = e1000_diag_test, 2371 .get_strings = e1000_get_strings, 2372 .set_phys_id = e1000_set_phys_id, 2373 .get_ethtool_stats = e1000_get_ethtool_stats, 2374 .get_sset_count = e1000e_get_sset_count, 2375 .get_coalesce = e1000_get_coalesce, 2376 .set_coalesce = e1000_set_coalesce, 2377 .get_rxnfc = e1000_get_rxnfc, 2378 .get_ts_info = e1000e_get_ts_info, 2379 .get_eee = e1000e_get_eee, 2380 .set_eee = e1000e_set_eee, 2381 .get_link_ksettings = e1000_get_link_ksettings, 2382 .set_link_ksettings = e1000_set_link_ksettings, 2383 .get_priv_flags = e1000e_get_priv_flags, 2384 .set_priv_flags = e1000e_set_priv_flags, 2385 }; 2386 2387 void e1000e_set_ethtool_ops(struct net_device *netdev) 2388 { 2389 netdev->ethtool_ops = &e1000_ethtool_ops; 2390 } 2391