1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/ethtool.h> 34 #include <linux/pci.h> 35 #include <linux/slab.h> 36 #include <linux/delay.h> 37 #include <linux/vmalloc.h> 38 39 #include "e1000.h" 40 41 enum {NETDEV_STATS, E1000_STATS}; 42 43 struct e1000_stats { 44 char stat_string[ETH_GSTRING_LEN]; 45 int type; 46 int sizeof_stat; 47 int stat_offset; 48 }; 49 50 #define E1000_STAT(str, m) { \ 51 .stat_string = str, \ 52 .type = E1000_STATS, \ 53 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 54 .stat_offset = offsetof(struct e1000_adapter, m) } 55 #define E1000_NETDEV_STAT(str, m) { \ 56 .stat_string = str, \ 57 .type = NETDEV_STATS, \ 58 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 59 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 60 61 static const struct e1000_stats e1000_gstrings_stats[] = { 62 E1000_STAT("rx_packets", stats.gprc), 63 E1000_STAT("tx_packets", stats.gptc), 64 E1000_STAT("rx_bytes", stats.gorc), 65 E1000_STAT("tx_bytes", stats.gotc), 66 E1000_STAT("rx_broadcast", stats.bprc), 67 E1000_STAT("tx_broadcast", stats.bptc), 68 E1000_STAT("rx_multicast", stats.mprc), 69 E1000_STAT("tx_multicast", stats.mptc), 70 E1000_NETDEV_STAT("rx_errors", rx_errors), 71 E1000_NETDEV_STAT("tx_errors", tx_errors), 72 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 73 E1000_STAT("multicast", stats.mprc), 74 E1000_STAT("collisions", stats.colc), 75 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 76 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 77 E1000_STAT("rx_crc_errors", stats.crcerrs), 78 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 79 E1000_STAT("rx_no_buffer_count", stats.rnbc), 80 E1000_STAT("rx_missed_errors", stats.mpc), 81 E1000_STAT("tx_aborted_errors", stats.ecol), 82 E1000_STAT("tx_carrier_errors", stats.tncrs), 83 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 84 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 85 E1000_STAT("tx_window_errors", stats.latecol), 86 E1000_STAT("tx_abort_late_coll", stats.latecol), 87 E1000_STAT("tx_deferred_ok", stats.dc), 88 E1000_STAT("tx_single_coll_ok", stats.scc), 89 E1000_STAT("tx_multi_coll_ok", stats.mcc), 90 E1000_STAT("tx_timeout_count", tx_timeout_count), 91 E1000_STAT("tx_restart_queue", restart_queue), 92 E1000_STAT("rx_long_length_errors", stats.roc), 93 E1000_STAT("rx_short_length_errors", stats.ruc), 94 E1000_STAT("rx_align_errors", stats.algnerrc), 95 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 96 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 97 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 98 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 99 E1000_STAT("tx_flow_control_xon", stats.xontxc), 100 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 101 E1000_STAT("rx_long_byte_count", stats.gorc), 102 E1000_STAT("rx_csum_offload_good", hw_csum_good), 103 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 104 E1000_STAT("rx_header_split", rx_hdr_split), 105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 106 E1000_STAT("tx_smbus", stats.mgptc), 107 E1000_STAT("rx_smbus", stats.mgprc), 108 E1000_STAT("dropped_smbus", stats.mgpdc), 109 E1000_STAT("rx_dma_failed", rx_dma_failed), 110 E1000_STAT("tx_dma_failed", tx_dma_failed), 111 }; 112 113 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 115 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 116 "Register test (offline)", "Eeprom test (offline)", 117 "Interrupt test (offline)", "Loopback test (offline)", 118 "Link test (on/offline)" 119 }; 120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 121 122 static int e1000_get_settings(struct net_device *netdev, 123 struct ethtool_cmd *ecmd) 124 { 125 struct e1000_adapter *adapter = netdev_priv(netdev); 126 struct e1000_hw *hw = &adapter->hw; 127 u32 speed; 128 129 if (hw->phy.media_type == e1000_media_type_copper) { 130 131 ecmd->supported = (SUPPORTED_10baseT_Half | 132 SUPPORTED_10baseT_Full | 133 SUPPORTED_100baseT_Half | 134 SUPPORTED_100baseT_Full | 135 SUPPORTED_1000baseT_Full | 136 SUPPORTED_Autoneg | 137 SUPPORTED_TP); 138 if (hw->phy.type == e1000_phy_ife) 139 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 140 ecmd->advertising = ADVERTISED_TP; 141 142 if (hw->mac.autoneg == 1) { 143 ecmd->advertising |= ADVERTISED_Autoneg; 144 /* the e1000 autoneg seems to match ethtool nicely */ 145 ecmd->advertising |= hw->phy.autoneg_advertised; 146 } 147 148 ecmd->port = PORT_TP; 149 ecmd->phy_address = hw->phy.addr; 150 ecmd->transceiver = XCVR_INTERNAL; 151 152 } else { 153 ecmd->supported = (SUPPORTED_1000baseT_Full | 154 SUPPORTED_FIBRE | 155 SUPPORTED_Autoneg); 156 157 ecmd->advertising = (ADVERTISED_1000baseT_Full | 158 ADVERTISED_FIBRE | 159 ADVERTISED_Autoneg); 160 161 ecmd->port = PORT_FIBRE; 162 ecmd->transceiver = XCVR_EXTERNAL; 163 } 164 165 speed = -1; 166 ecmd->duplex = -1; 167 168 if (netif_running(netdev)) { 169 if (netif_carrier_ok(netdev)) { 170 speed = adapter->link_speed; 171 ecmd->duplex = adapter->link_duplex - 1; 172 } 173 } else { 174 u32 status = er32(STATUS); 175 if (status & E1000_STATUS_LU) { 176 if (status & E1000_STATUS_SPEED_1000) 177 speed = SPEED_1000; 178 else if (status & E1000_STATUS_SPEED_100) 179 speed = SPEED_100; 180 else 181 speed = SPEED_10; 182 183 if (status & E1000_STATUS_FD) 184 ecmd->duplex = DUPLEX_FULL; 185 else 186 ecmd->duplex = DUPLEX_HALF; 187 } 188 } 189 190 ethtool_cmd_speed_set(ecmd, speed); 191 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 192 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 193 194 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 195 if ((hw->phy.media_type == e1000_media_type_copper) && 196 netif_carrier_ok(netdev)) 197 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 198 ETH_TP_MDI; 199 else 200 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 201 202 return 0; 203 } 204 205 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 206 { 207 struct e1000_mac_info *mac = &adapter->hw.mac; 208 209 mac->autoneg = 0; 210 211 /* Make sure dplx is at most 1 bit and lsb of speed is not set 212 * for the switch() below to work */ 213 if ((spd & 1) || (dplx & ~1)) 214 goto err_inval; 215 216 /* Fiber NICs only allow 1000 gbps Full duplex */ 217 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 218 spd != SPEED_1000 && 219 dplx != DUPLEX_FULL) { 220 goto err_inval; 221 } 222 223 switch (spd + dplx) { 224 case SPEED_10 + DUPLEX_HALF: 225 mac->forced_speed_duplex = ADVERTISE_10_HALF; 226 break; 227 case SPEED_10 + DUPLEX_FULL: 228 mac->forced_speed_duplex = ADVERTISE_10_FULL; 229 break; 230 case SPEED_100 + DUPLEX_HALF: 231 mac->forced_speed_duplex = ADVERTISE_100_HALF; 232 break; 233 case SPEED_100 + DUPLEX_FULL: 234 mac->forced_speed_duplex = ADVERTISE_100_FULL; 235 break; 236 case SPEED_1000 + DUPLEX_FULL: 237 mac->autoneg = 1; 238 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 239 break; 240 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 241 default: 242 goto err_inval; 243 } 244 return 0; 245 246 err_inval: 247 e_err("Unsupported Speed/Duplex configuration\n"); 248 return -EINVAL; 249 } 250 251 static int e1000_set_settings(struct net_device *netdev, 252 struct ethtool_cmd *ecmd) 253 { 254 struct e1000_adapter *adapter = netdev_priv(netdev); 255 struct e1000_hw *hw = &adapter->hw; 256 257 /* 258 * When SoL/IDER sessions are active, autoneg/speed/duplex 259 * cannot be changed 260 */ 261 if (hw->phy.ops.check_reset_block(hw)) { 262 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 263 return -EINVAL; 264 } 265 266 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 267 usleep_range(1000, 2000); 268 269 if (ecmd->autoneg == AUTONEG_ENABLE) { 270 hw->mac.autoneg = 1; 271 if (hw->phy.media_type == e1000_media_type_fiber) 272 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 273 ADVERTISED_FIBRE | 274 ADVERTISED_Autoneg; 275 else 276 hw->phy.autoneg_advertised = ecmd->advertising | 277 ADVERTISED_TP | 278 ADVERTISED_Autoneg; 279 ecmd->advertising = hw->phy.autoneg_advertised; 280 if (adapter->fc_autoneg) 281 hw->fc.requested_mode = e1000_fc_default; 282 } else { 283 u32 speed = ethtool_cmd_speed(ecmd); 284 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 285 clear_bit(__E1000_RESETTING, &adapter->state); 286 return -EINVAL; 287 } 288 } 289 290 /* reset the link */ 291 292 if (netif_running(adapter->netdev)) { 293 e1000e_down(adapter); 294 e1000e_up(adapter); 295 } else { 296 e1000e_reset(adapter); 297 } 298 299 clear_bit(__E1000_RESETTING, &adapter->state); 300 return 0; 301 } 302 303 static void e1000_get_pauseparam(struct net_device *netdev, 304 struct ethtool_pauseparam *pause) 305 { 306 struct e1000_adapter *adapter = netdev_priv(netdev); 307 struct e1000_hw *hw = &adapter->hw; 308 309 pause->autoneg = 310 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 311 312 if (hw->fc.current_mode == e1000_fc_rx_pause) { 313 pause->rx_pause = 1; 314 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 315 pause->tx_pause = 1; 316 } else if (hw->fc.current_mode == e1000_fc_full) { 317 pause->rx_pause = 1; 318 pause->tx_pause = 1; 319 } 320 } 321 322 static int e1000_set_pauseparam(struct net_device *netdev, 323 struct ethtool_pauseparam *pause) 324 { 325 struct e1000_adapter *adapter = netdev_priv(netdev); 326 struct e1000_hw *hw = &adapter->hw; 327 int retval = 0; 328 329 adapter->fc_autoneg = pause->autoneg; 330 331 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 332 usleep_range(1000, 2000); 333 334 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 335 hw->fc.requested_mode = e1000_fc_default; 336 if (netif_running(adapter->netdev)) { 337 e1000e_down(adapter); 338 e1000e_up(adapter); 339 } else { 340 e1000e_reset(adapter); 341 } 342 } else { 343 if (pause->rx_pause && pause->tx_pause) 344 hw->fc.requested_mode = e1000_fc_full; 345 else if (pause->rx_pause && !pause->tx_pause) 346 hw->fc.requested_mode = e1000_fc_rx_pause; 347 else if (!pause->rx_pause && pause->tx_pause) 348 hw->fc.requested_mode = e1000_fc_tx_pause; 349 else if (!pause->rx_pause && !pause->tx_pause) 350 hw->fc.requested_mode = e1000_fc_none; 351 352 hw->fc.current_mode = hw->fc.requested_mode; 353 354 if (hw->phy.media_type == e1000_media_type_fiber) { 355 retval = hw->mac.ops.setup_link(hw); 356 /* implicit goto out */ 357 } else { 358 retval = e1000e_force_mac_fc(hw); 359 if (retval) 360 goto out; 361 e1000e_set_fc_watermarks(hw); 362 } 363 } 364 365 out: 366 clear_bit(__E1000_RESETTING, &adapter->state); 367 return retval; 368 } 369 370 static u32 e1000_get_msglevel(struct net_device *netdev) 371 { 372 struct e1000_adapter *adapter = netdev_priv(netdev); 373 return adapter->msg_enable; 374 } 375 376 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 377 { 378 struct e1000_adapter *adapter = netdev_priv(netdev); 379 adapter->msg_enable = data; 380 } 381 382 static int e1000_get_regs_len(struct net_device *netdev) 383 { 384 #define E1000_REGS_LEN 32 /* overestimate */ 385 return E1000_REGS_LEN * sizeof(u32); 386 } 387 388 static void e1000_get_regs(struct net_device *netdev, 389 struct ethtool_regs *regs, void *p) 390 { 391 struct e1000_adapter *adapter = netdev_priv(netdev); 392 struct e1000_hw *hw = &adapter->hw; 393 u32 *regs_buff = p; 394 u16 phy_data; 395 396 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 397 398 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 399 adapter->pdev->device; 400 401 regs_buff[0] = er32(CTRL); 402 regs_buff[1] = er32(STATUS); 403 404 regs_buff[2] = er32(RCTL); 405 regs_buff[3] = er32(RDLEN(0)); 406 regs_buff[4] = er32(RDH(0)); 407 regs_buff[5] = er32(RDT(0)); 408 regs_buff[6] = er32(RDTR); 409 410 regs_buff[7] = er32(TCTL); 411 regs_buff[8] = er32(TDLEN(0)); 412 regs_buff[9] = er32(TDH(0)); 413 regs_buff[10] = er32(TDT(0)); 414 regs_buff[11] = er32(TIDV); 415 416 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 417 418 /* ethtool doesn't use anything past this point, so all this 419 * code is likely legacy junk for apps that may or may not 420 * exist */ 421 if (hw->phy.type == e1000_phy_m88) { 422 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 423 regs_buff[13] = (u32)phy_data; /* cable length */ 424 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 425 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 426 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 427 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 428 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 429 regs_buff[18] = regs_buff[13]; /* cable polarity */ 430 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 431 regs_buff[20] = regs_buff[17]; /* polarity correction */ 432 /* phy receive errors */ 433 regs_buff[22] = adapter->phy_stats.receive_errors; 434 regs_buff[23] = regs_buff[13]; /* mdix mode */ 435 } 436 regs_buff[21] = 0; /* was idle_errors */ 437 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); 438 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 439 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 440 } 441 442 static int e1000_get_eeprom_len(struct net_device *netdev) 443 { 444 struct e1000_adapter *adapter = netdev_priv(netdev); 445 return adapter->hw.nvm.word_size * 2; 446 } 447 448 static int e1000_get_eeprom(struct net_device *netdev, 449 struct ethtool_eeprom *eeprom, u8 *bytes) 450 { 451 struct e1000_adapter *adapter = netdev_priv(netdev); 452 struct e1000_hw *hw = &adapter->hw; 453 u16 *eeprom_buff; 454 int first_word; 455 int last_word; 456 int ret_val = 0; 457 u16 i; 458 459 if (eeprom->len == 0) 460 return -EINVAL; 461 462 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 463 464 first_word = eeprom->offset >> 1; 465 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 466 467 eeprom_buff = kmalloc(sizeof(u16) * 468 (last_word - first_word + 1), GFP_KERNEL); 469 if (!eeprom_buff) 470 return -ENOMEM; 471 472 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 473 ret_val = e1000_read_nvm(hw, first_word, 474 last_word - first_word + 1, 475 eeprom_buff); 476 } else { 477 for (i = 0; i < last_word - first_word + 1; i++) { 478 ret_val = e1000_read_nvm(hw, first_word + i, 1, 479 &eeprom_buff[i]); 480 if (ret_val) 481 break; 482 } 483 } 484 485 if (ret_val) { 486 /* a read error occurred, throw away the result */ 487 memset(eeprom_buff, 0xff, sizeof(u16) * 488 (last_word - first_word + 1)); 489 } else { 490 /* Device's eeprom is always little-endian, word addressable */ 491 for (i = 0; i < last_word - first_word + 1; i++) 492 le16_to_cpus(&eeprom_buff[i]); 493 } 494 495 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 496 kfree(eeprom_buff); 497 498 return ret_val; 499 } 500 501 static int e1000_set_eeprom(struct net_device *netdev, 502 struct ethtool_eeprom *eeprom, u8 *bytes) 503 { 504 struct e1000_adapter *adapter = netdev_priv(netdev); 505 struct e1000_hw *hw = &adapter->hw; 506 u16 *eeprom_buff; 507 void *ptr; 508 int max_len; 509 int first_word; 510 int last_word; 511 int ret_val = 0; 512 u16 i; 513 514 if (eeprom->len == 0) 515 return -EOPNOTSUPP; 516 517 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) 518 return -EFAULT; 519 520 if (adapter->flags & FLAG_READ_ONLY_NVM) 521 return -EINVAL; 522 523 max_len = hw->nvm.word_size * 2; 524 525 first_word = eeprom->offset >> 1; 526 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 527 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 528 if (!eeprom_buff) 529 return -ENOMEM; 530 531 ptr = (void *)eeprom_buff; 532 533 if (eeprom->offset & 1) { 534 /* need read/modify/write of first changed EEPROM word */ 535 /* only the second byte of the word is being modified */ 536 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 537 ptr++; 538 } 539 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 540 /* need read/modify/write of last changed EEPROM word */ 541 /* only the first byte of the word is being modified */ 542 ret_val = e1000_read_nvm(hw, last_word, 1, 543 &eeprom_buff[last_word - first_word]); 544 545 if (ret_val) 546 goto out; 547 548 /* Device's eeprom is always little-endian, word addressable */ 549 for (i = 0; i < last_word - first_word + 1; i++) 550 le16_to_cpus(&eeprom_buff[i]); 551 552 memcpy(ptr, bytes, eeprom->len); 553 554 for (i = 0; i < last_word - first_word + 1; i++) 555 cpu_to_le16s(&eeprom_buff[i]); 556 557 ret_val = e1000_write_nvm(hw, first_word, 558 last_word - first_word + 1, eeprom_buff); 559 560 if (ret_val) 561 goto out; 562 563 /* 564 * Update the checksum over the first part of the EEPROM if needed 565 * and flush shadow RAM for applicable controllers 566 */ 567 if ((first_word <= NVM_CHECKSUM_REG) || 568 (hw->mac.type == e1000_82583) || 569 (hw->mac.type == e1000_82574) || 570 (hw->mac.type == e1000_82573)) 571 ret_val = e1000e_update_nvm_checksum(hw); 572 573 out: 574 kfree(eeprom_buff); 575 return ret_val; 576 } 577 578 static void e1000_get_drvinfo(struct net_device *netdev, 579 struct ethtool_drvinfo *drvinfo) 580 { 581 struct e1000_adapter *adapter = netdev_priv(netdev); 582 583 strlcpy(drvinfo->driver, e1000e_driver_name, 584 sizeof(drvinfo->driver)); 585 strlcpy(drvinfo->version, e1000e_driver_version, 586 sizeof(drvinfo->version)); 587 588 /* 589 * EEPROM image version # is reported as firmware version # for 590 * PCI-E controllers 591 */ 592 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 593 "%d.%d-%d", 594 (adapter->eeprom_vers & 0xF000) >> 12, 595 (adapter->eeprom_vers & 0x0FF0) >> 4, 596 (adapter->eeprom_vers & 0x000F)); 597 598 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 599 sizeof(drvinfo->bus_info)); 600 drvinfo->regdump_len = e1000_get_regs_len(netdev); 601 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 602 } 603 604 static void e1000_get_ringparam(struct net_device *netdev, 605 struct ethtool_ringparam *ring) 606 { 607 struct e1000_adapter *adapter = netdev_priv(netdev); 608 609 ring->rx_max_pending = E1000_MAX_RXD; 610 ring->tx_max_pending = E1000_MAX_TXD; 611 ring->rx_pending = adapter->rx_ring_count; 612 ring->tx_pending = adapter->tx_ring_count; 613 } 614 615 static int e1000_set_ringparam(struct net_device *netdev, 616 struct ethtool_ringparam *ring) 617 { 618 struct e1000_adapter *adapter = netdev_priv(netdev); 619 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 620 int err = 0, size = sizeof(struct e1000_ring); 621 bool set_tx = false, set_rx = false; 622 u16 new_rx_count, new_tx_count; 623 624 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 625 return -EINVAL; 626 627 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 628 E1000_MAX_RXD); 629 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 630 631 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 632 E1000_MAX_TXD); 633 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 634 635 if ((new_tx_count == adapter->tx_ring_count) && 636 (new_rx_count == adapter->rx_ring_count)) 637 /* nothing to do */ 638 return 0; 639 640 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 641 usleep_range(1000, 2000); 642 643 if (!netif_running(adapter->netdev)) { 644 /* Set counts now and allocate resources during open() */ 645 adapter->tx_ring->count = new_tx_count; 646 adapter->rx_ring->count = new_rx_count; 647 adapter->tx_ring_count = new_tx_count; 648 adapter->rx_ring_count = new_rx_count; 649 goto clear_reset; 650 } 651 652 set_tx = (new_tx_count != adapter->tx_ring_count); 653 set_rx = (new_rx_count != adapter->rx_ring_count); 654 655 /* Allocate temporary storage for ring updates */ 656 if (set_tx) { 657 temp_tx = vmalloc(size); 658 if (!temp_tx) { 659 err = -ENOMEM; 660 goto free_temp; 661 } 662 } 663 if (set_rx) { 664 temp_rx = vmalloc(size); 665 if (!temp_rx) { 666 err = -ENOMEM; 667 goto free_temp; 668 } 669 } 670 671 e1000e_down(adapter); 672 673 /* 674 * We can't just free everything and then setup again, because the 675 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 676 * structs. First, attempt to allocate new resources... 677 */ 678 if (set_tx) { 679 memcpy(temp_tx, adapter->tx_ring, size); 680 temp_tx->count = new_tx_count; 681 err = e1000e_setup_tx_resources(temp_tx); 682 if (err) 683 goto err_setup; 684 } 685 if (set_rx) { 686 memcpy(temp_rx, adapter->rx_ring, size); 687 temp_rx->count = new_rx_count; 688 err = e1000e_setup_rx_resources(temp_rx); 689 if (err) 690 goto err_setup_rx; 691 } 692 693 /* ...then free the old resources and copy back any new ring data */ 694 if (set_tx) { 695 e1000e_free_tx_resources(adapter->tx_ring); 696 memcpy(adapter->tx_ring, temp_tx, size); 697 adapter->tx_ring_count = new_tx_count; 698 } 699 if (set_rx) { 700 e1000e_free_rx_resources(adapter->rx_ring); 701 memcpy(adapter->rx_ring, temp_rx, size); 702 adapter->rx_ring_count = new_rx_count; 703 } 704 705 err_setup_rx: 706 if (err && set_tx) 707 e1000e_free_tx_resources(temp_tx); 708 err_setup: 709 e1000e_up(adapter); 710 free_temp: 711 vfree(temp_tx); 712 vfree(temp_rx); 713 clear_reset: 714 clear_bit(__E1000_RESETTING, &adapter->state); 715 return err; 716 } 717 718 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 719 int reg, int offset, u32 mask, u32 write) 720 { 721 u32 pat, val; 722 static const u32 test[] = { 723 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 724 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 725 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 726 (test[pat] & write)); 727 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 728 if (val != (test[pat] & write & mask)) { 729 e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 730 reg + offset, val, (test[pat] & write & mask)); 731 *data = reg; 732 return 1; 733 } 734 } 735 return 0; 736 } 737 738 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 739 int reg, u32 mask, u32 write) 740 { 741 u32 val; 742 __ew32(&adapter->hw, reg, write & mask); 743 val = __er32(&adapter->hw, reg); 744 if ((write & mask) != (val & mask)) { 745 e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", 746 reg, (val & mask), (write & mask)); 747 *data = reg; 748 return 1; 749 } 750 return 0; 751 } 752 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 753 do { \ 754 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 755 return 1; \ 756 } while (0) 757 #define REG_PATTERN_TEST(reg, mask, write) \ 758 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 759 760 #define REG_SET_AND_CHECK(reg, mask, write) \ 761 do { \ 762 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 763 return 1; \ 764 } while (0) 765 766 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 767 { 768 struct e1000_hw *hw = &adapter->hw; 769 struct e1000_mac_info *mac = &adapter->hw.mac; 770 u32 value; 771 u32 before; 772 u32 after; 773 u32 i; 774 u32 toggle; 775 u32 mask; 776 u32 wlock_mac = 0; 777 778 /* 779 * The status register is Read Only, so a write should fail. 780 * Some bits that get toggled are ignored. 781 */ 782 switch (mac->type) { 783 /* there are several bits on newer hardware that are r/w */ 784 case e1000_82571: 785 case e1000_82572: 786 case e1000_80003es2lan: 787 toggle = 0x7FFFF3FF; 788 break; 789 default: 790 toggle = 0x7FFFF033; 791 break; 792 } 793 794 before = er32(STATUS); 795 value = (er32(STATUS) & toggle); 796 ew32(STATUS, toggle); 797 after = er32(STATUS) & toggle; 798 if (value != after) { 799 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 800 after, value); 801 *data = 1; 802 return 1; 803 } 804 /* restore previous status */ 805 ew32(STATUS, before); 806 807 if (!(adapter->flags & FLAG_IS_ICH)) { 808 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 809 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 810 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 811 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 812 } 813 814 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 815 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 816 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 817 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 818 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 819 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 820 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 821 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 822 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 823 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 824 825 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 826 827 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 828 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 829 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 830 831 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 832 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 833 if (!(adapter->flags & FLAG_IS_ICH)) 834 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 835 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 836 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 837 mask = 0x8003FFFF; 838 switch (mac->type) { 839 case e1000_ich10lan: 840 case e1000_pchlan: 841 case e1000_pch2lan: 842 case e1000_pch_lpt: 843 mask |= (1 << 18); 844 break; 845 default: 846 break; 847 } 848 849 if (mac->type == e1000_pch_lpt) 850 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 851 E1000_FWSM_WLOCK_MAC_SHIFT; 852 853 for (i = 0; i < mac->rar_entry_count; i++) { 854 /* Cannot test write-protected SHRAL[n] registers */ 855 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 856 continue; 857 858 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), 859 mask, 0xFFFFFFFF); 860 } 861 862 for (i = 0; i < mac->mta_reg_count; i++) 863 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 864 865 *data = 0; 866 867 return 0; 868 } 869 870 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 871 { 872 u16 temp; 873 u16 checksum = 0; 874 u16 i; 875 876 *data = 0; 877 /* Read and add up the contents of the EEPROM */ 878 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 879 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 880 *data = 1; 881 return *data; 882 } 883 checksum += temp; 884 } 885 886 /* If Checksum is not Correct return error else test passed */ 887 if ((checksum != (u16) NVM_SUM) && !(*data)) 888 *data = 2; 889 890 return *data; 891 } 892 893 static irqreturn_t e1000_test_intr(int irq, void *data) 894 { 895 struct net_device *netdev = (struct net_device *) data; 896 struct e1000_adapter *adapter = netdev_priv(netdev); 897 struct e1000_hw *hw = &adapter->hw; 898 899 adapter->test_icr |= er32(ICR); 900 901 return IRQ_HANDLED; 902 } 903 904 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 905 { 906 struct net_device *netdev = adapter->netdev; 907 struct e1000_hw *hw = &adapter->hw; 908 u32 mask; 909 u32 shared_int = 1; 910 u32 irq = adapter->pdev->irq; 911 int i; 912 int ret_val = 0; 913 int int_mode = E1000E_INT_MODE_LEGACY; 914 915 *data = 0; 916 917 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 918 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 919 int_mode = adapter->int_mode; 920 e1000e_reset_interrupt_capability(adapter); 921 adapter->int_mode = E1000E_INT_MODE_LEGACY; 922 e1000e_set_interrupt_capability(adapter); 923 } 924 /* Hook up test interrupt handler just for this test */ 925 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 926 netdev)) { 927 shared_int = 0; 928 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 929 netdev->name, netdev)) { 930 *data = 1; 931 ret_val = -1; 932 goto out; 933 } 934 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 935 936 /* Disable all the interrupts */ 937 ew32(IMC, 0xFFFFFFFF); 938 e1e_flush(); 939 usleep_range(10000, 20000); 940 941 /* Test each interrupt */ 942 for (i = 0; i < 10; i++) { 943 /* Interrupt to test */ 944 mask = 1 << i; 945 946 if (adapter->flags & FLAG_IS_ICH) { 947 switch (mask) { 948 case E1000_ICR_RXSEQ: 949 continue; 950 case 0x00000100: 951 if (adapter->hw.mac.type == e1000_ich8lan || 952 adapter->hw.mac.type == e1000_ich9lan) 953 continue; 954 break; 955 default: 956 break; 957 } 958 } 959 960 if (!shared_int) { 961 /* 962 * Disable the interrupt to be reported in 963 * the cause register and then force the same 964 * interrupt and see if one gets posted. If 965 * an interrupt was posted to the bus, the 966 * test failed. 967 */ 968 adapter->test_icr = 0; 969 ew32(IMC, mask); 970 ew32(ICS, mask); 971 e1e_flush(); 972 usleep_range(10000, 20000); 973 974 if (adapter->test_icr & mask) { 975 *data = 3; 976 break; 977 } 978 } 979 980 /* 981 * Enable the interrupt to be reported in 982 * the cause register and then force the same 983 * interrupt and see if one gets posted. If 984 * an interrupt was not posted to the bus, the 985 * test failed. 986 */ 987 adapter->test_icr = 0; 988 ew32(IMS, mask); 989 ew32(ICS, mask); 990 e1e_flush(); 991 usleep_range(10000, 20000); 992 993 if (!(adapter->test_icr & mask)) { 994 *data = 4; 995 break; 996 } 997 998 if (!shared_int) { 999 /* 1000 * Disable the other interrupts to be reported in 1001 * the cause register and then force the other 1002 * interrupts and see if any get posted. If 1003 * an interrupt was posted to the bus, the 1004 * test failed. 1005 */ 1006 adapter->test_icr = 0; 1007 ew32(IMC, ~mask & 0x00007FFF); 1008 ew32(ICS, ~mask & 0x00007FFF); 1009 e1e_flush(); 1010 usleep_range(10000, 20000); 1011 1012 if (adapter->test_icr) { 1013 *data = 5; 1014 break; 1015 } 1016 } 1017 } 1018 1019 /* Disable all the interrupts */ 1020 ew32(IMC, 0xFFFFFFFF); 1021 e1e_flush(); 1022 usleep_range(10000, 20000); 1023 1024 /* Unhook test interrupt handler */ 1025 free_irq(irq, netdev); 1026 1027 out: 1028 if (int_mode == E1000E_INT_MODE_MSIX) { 1029 e1000e_reset_interrupt_capability(adapter); 1030 adapter->int_mode = int_mode; 1031 e1000e_set_interrupt_capability(adapter); 1032 } 1033 1034 return ret_val; 1035 } 1036 1037 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1038 { 1039 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1040 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1041 struct pci_dev *pdev = adapter->pdev; 1042 int i; 1043 1044 if (tx_ring->desc && tx_ring->buffer_info) { 1045 for (i = 0; i < tx_ring->count; i++) { 1046 if (tx_ring->buffer_info[i].dma) 1047 dma_unmap_single(&pdev->dev, 1048 tx_ring->buffer_info[i].dma, 1049 tx_ring->buffer_info[i].length, 1050 DMA_TO_DEVICE); 1051 if (tx_ring->buffer_info[i].skb) 1052 dev_kfree_skb(tx_ring->buffer_info[i].skb); 1053 } 1054 } 1055 1056 if (rx_ring->desc && rx_ring->buffer_info) { 1057 for (i = 0; i < rx_ring->count; i++) { 1058 if (rx_ring->buffer_info[i].dma) 1059 dma_unmap_single(&pdev->dev, 1060 rx_ring->buffer_info[i].dma, 1061 2048, DMA_FROM_DEVICE); 1062 if (rx_ring->buffer_info[i].skb) 1063 dev_kfree_skb(rx_ring->buffer_info[i].skb); 1064 } 1065 } 1066 1067 if (tx_ring->desc) { 1068 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1069 tx_ring->dma); 1070 tx_ring->desc = NULL; 1071 } 1072 if (rx_ring->desc) { 1073 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1074 rx_ring->dma); 1075 rx_ring->desc = NULL; 1076 } 1077 1078 kfree(tx_ring->buffer_info); 1079 tx_ring->buffer_info = NULL; 1080 kfree(rx_ring->buffer_info); 1081 rx_ring->buffer_info = NULL; 1082 } 1083 1084 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1085 { 1086 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1087 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1088 struct pci_dev *pdev = adapter->pdev; 1089 struct e1000_hw *hw = &adapter->hw; 1090 u32 rctl; 1091 int i; 1092 int ret_val; 1093 1094 /* Setup Tx descriptor ring and Tx buffers */ 1095 1096 if (!tx_ring->count) 1097 tx_ring->count = E1000_DEFAULT_TXD; 1098 1099 tx_ring->buffer_info = kcalloc(tx_ring->count, 1100 sizeof(struct e1000_buffer), 1101 GFP_KERNEL); 1102 if (!tx_ring->buffer_info) { 1103 ret_val = 1; 1104 goto err_nomem; 1105 } 1106 1107 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1108 tx_ring->size = ALIGN(tx_ring->size, 4096); 1109 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1110 &tx_ring->dma, GFP_KERNEL); 1111 if (!tx_ring->desc) { 1112 ret_val = 2; 1113 goto err_nomem; 1114 } 1115 tx_ring->next_to_use = 0; 1116 tx_ring->next_to_clean = 0; 1117 1118 ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); 1119 ew32(TDBAH(0), ((u64) tx_ring->dma >> 32)); 1120 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1121 ew32(TDH(0), 0); 1122 ew32(TDT(0), 0); 1123 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1124 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1125 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1126 1127 for (i = 0; i < tx_ring->count; i++) { 1128 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1129 struct sk_buff *skb; 1130 unsigned int skb_size = 1024; 1131 1132 skb = alloc_skb(skb_size, GFP_KERNEL); 1133 if (!skb) { 1134 ret_val = 3; 1135 goto err_nomem; 1136 } 1137 skb_put(skb, skb_size); 1138 tx_ring->buffer_info[i].skb = skb; 1139 tx_ring->buffer_info[i].length = skb->len; 1140 tx_ring->buffer_info[i].dma = 1141 dma_map_single(&pdev->dev, skb->data, skb->len, 1142 DMA_TO_DEVICE); 1143 if (dma_mapping_error(&pdev->dev, 1144 tx_ring->buffer_info[i].dma)) { 1145 ret_val = 4; 1146 goto err_nomem; 1147 } 1148 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1149 tx_desc->lower.data = cpu_to_le32(skb->len); 1150 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1151 E1000_TXD_CMD_IFCS | 1152 E1000_TXD_CMD_RS); 1153 tx_desc->upper.data = 0; 1154 } 1155 1156 /* Setup Rx descriptor ring and Rx buffers */ 1157 1158 if (!rx_ring->count) 1159 rx_ring->count = E1000_DEFAULT_RXD; 1160 1161 rx_ring->buffer_info = kcalloc(rx_ring->count, 1162 sizeof(struct e1000_buffer), 1163 GFP_KERNEL); 1164 if (!rx_ring->buffer_info) { 1165 ret_val = 5; 1166 goto err_nomem; 1167 } 1168 1169 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1170 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1171 &rx_ring->dma, GFP_KERNEL); 1172 if (!rx_ring->desc) { 1173 ret_val = 6; 1174 goto err_nomem; 1175 } 1176 rx_ring->next_to_use = 0; 1177 rx_ring->next_to_clean = 0; 1178 1179 rctl = er32(RCTL); 1180 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1181 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1182 ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF)); 1183 ew32(RDBAH(0), ((u64) rx_ring->dma >> 32)); 1184 ew32(RDLEN(0), rx_ring->size); 1185 ew32(RDH(0), 0); 1186 ew32(RDT(0), 0); 1187 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1188 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1189 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1190 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1191 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1192 ew32(RCTL, rctl); 1193 1194 for (i = 0; i < rx_ring->count; i++) { 1195 union e1000_rx_desc_extended *rx_desc; 1196 struct sk_buff *skb; 1197 1198 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1199 if (!skb) { 1200 ret_val = 7; 1201 goto err_nomem; 1202 } 1203 skb_reserve(skb, NET_IP_ALIGN); 1204 rx_ring->buffer_info[i].skb = skb; 1205 rx_ring->buffer_info[i].dma = 1206 dma_map_single(&pdev->dev, skb->data, 2048, 1207 DMA_FROM_DEVICE); 1208 if (dma_mapping_error(&pdev->dev, 1209 rx_ring->buffer_info[i].dma)) { 1210 ret_val = 8; 1211 goto err_nomem; 1212 } 1213 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1214 rx_desc->read.buffer_addr = 1215 cpu_to_le64(rx_ring->buffer_info[i].dma); 1216 memset(skb->data, 0x00, skb->len); 1217 } 1218 1219 return 0; 1220 1221 err_nomem: 1222 e1000_free_desc_rings(adapter); 1223 return ret_val; 1224 } 1225 1226 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1227 { 1228 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1229 e1e_wphy(&adapter->hw, 29, 0x001F); 1230 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1231 e1e_wphy(&adapter->hw, 29, 0x001A); 1232 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1233 } 1234 1235 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1236 { 1237 struct e1000_hw *hw = &adapter->hw; 1238 u32 ctrl_reg = 0; 1239 u16 phy_reg = 0; 1240 s32 ret_val = 0; 1241 1242 hw->mac.autoneg = 0; 1243 1244 if (hw->phy.type == e1000_phy_ife) { 1245 /* force 100, set loopback */ 1246 e1e_wphy(hw, PHY_CONTROL, 0x6100); 1247 1248 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1249 ctrl_reg = er32(CTRL); 1250 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1251 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1252 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1253 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1254 E1000_CTRL_FD); /* Force Duplex to FULL */ 1255 1256 ew32(CTRL, ctrl_reg); 1257 e1e_flush(); 1258 udelay(500); 1259 1260 return 0; 1261 } 1262 1263 /* Specific PHY configuration for loopback */ 1264 switch (hw->phy.type) { 1265 case e1000_phy_m88: 1266 /* Auto-MDI/MDIX Off */ 1267 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1268 /* reset to update Auto-MDI/MDIX */ 1269 e1e_wphy(hw, PHY_CONTROL, 0x9140); 1270 /* autoneg off */ 1271 e1e_wphy(hw, PHY_CONTROL, 0x8140); 1272 break; 1273 case e1000_phy_gg82563: 1274 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1275 break; 1276 case e1000_phy_bm: 1277 /* Set Default MAC Interface speed to 1GB */ 1278 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1279 phy_reg &= ~0x0007; 1280 phy_reg |= 0x006; 1281 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1282 /* Assert SW reset for above settings to take effect */ 1283 e1000e_commit_phy(hw); 1284 mdelay(1); 1285 /* Force Full Duplex */ 1286 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1287 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1288 /* Set Link Up (in force link) */ 1289 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1290 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1291 /* Force Link */ 1292 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1293 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1294 /* Set Early Link Enable */ 1295 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1296 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1297 break; 1298 case e1000_phy_82577: 1299 case e1000_phy_82578: 1300 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1301 ret_val = hw->phy.ops.acquire(hw); 1302 if (ret_val) { 1303 e_err("Cannot setup 1Gbps loopback.\n"); 1304 return ret_val; 1305 } 1306 e1000_configure_k1_ich8lan(hw, false); 1307 hw->phy.ops.release(hw); 1308 break; 1309 case e1000_phy_82579: 1310 /* Disable PHY energy detect power down */ 1311 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1312 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); 1313 /* Disable full chip energy detect */ 1314 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1315 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1316 /* Enable loopback on the PHY */ 1317 #define I82577_PHY_LBK_CTRL 19 1318 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1319 break; 1320 default: 1321 break; 1322 } 1323 1324 /* force 1000, set loopback */ 1325 e1e_wphy(hw, PHY_CONTROL, 0x4140); 1326 mdelay(250); 1327 1328 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1329 ctrl_reg = er32(CTRL); 1330 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1331 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1332 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1333 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1334 E1000_CTRL_FD); /* Force Duplex to FULL */ 1335 1336 if (adapter->flags & FLAG_IS_ICH) 1337 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1338 1339 if (hw->phy.media_type == e1000_media_type_copper && 1340 hw->phy.type == e1000_phy_m88) { 1341 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1342 } else { 1343 /* 1344 * Set the ILOS bit on the fiber Nic if half duplex link is 1345 * detected. 1346 */ 1347 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1348 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1349 } 1350 1351 ew32(CTRL, ctrl_reg); 1352 1353 /* 1354 * Disable the receiver on the PHY so when a cable is plugged in, the 1355 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1356 */ 1357 if (hw->phy.type == e1000_phy_m88) 1358 e1000_phy_disable_receiver(adapter); 1359 1360 udelay(500); 1361 1362 return 0; 1363 } 1364 1365 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1366 { 1367 struct e1000_hw *hw = &adapter->hw; 1368 u32 ctrl = er32(CTRL); 1369 int link = 0; 1370 1371 /* special requirements for 82571/82572 fiber adapters */ 1372 1373 /* 1374 * jump through hoops to make sure link is up because serdes 1375 * link is hardwired up 1376 */ 1377 ctrl |= E1000_CTRL_SLU; 1378 ew32(CTRL, ctrl); 1379 1380 /* disable autoneg */ 1381 ctrl = er32(TXCW); 1382 ctrl &= ~(1 << 31); 1383 ew32(TXCW, ctrl); 1384 1385 link = (er32(STATUS) & E1000_STATUS_LU); 1386 1387 if (!link) { 1388 /* set invert loss of signal */ 1389 ctrl = er32(CTRL); 1390 ctrl |= E1000_CTRL_ILOS; 1391 ew32(CTRL, ctrl); 1392 } 1393 1394 /* 1395 * special write to serdes control register to enable SerDes analog 1396 * loopback 1397 */ 1398 #define E1000_SERDES_LB_ON 0x410 1399 ew32(SCTL, E1000_SERDES_LB_ON); 1400 e1e_flush(); 1401 usleep_range(10000, 20000); 1402 1403 return 0; 1404 } 1405 1406 /* only call this for fiber/serdes connections to es2lan */ 1407 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1408 { 1409 struct e1000_hw *hw = &adapter->hw; 1410 u32 ctrlext = er32(CTRL_EXT); 1411 u32 ctrl = er32(CTRL); 1412 1413 /* 1414 * save CTRL_EXT to restore later, reuse an empty variable (unused 1415 * on mac_type 80003es2lan) 1416 */ 1417 adapter->tx_fifo_head = ctrlext; 1418 1419 /* clear the serdes mode bits, putting the device into mac loopback */ 1420 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1421 ew32(CTRL_EXT, ctrlext); 1422 1423 /* force speed to 1000/FD, link up */ 1424 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1425 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1426 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1427 ew32(CTRL, ctrl); 1428 1429 /* set mac loopback */ 1430 ctrl = er32(RCTL); 1431 ctrl |= E1000_RCTL_LBM_MAC; 1432 ew32(RCTL, ctrl); 1433 1434 /* set testing mode parameters (no need to reset later) */ 1435 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1436 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1437 ew32(KMRNCTRLSTA, 1438 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1439 1440 return 0; 1441 } 1442 1443 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1444 { 1445 struct e1000_hw *hw = &adapter->hw; 1446 u32 rctl; 1447 1448 if (hw->phy.media_type == e1000_media_type_fiber || 1449 hw->phy.media_type == e1000_media_type_internal_serdes) { 1450 switch (hw->mac.type) { 1451 case e1000_80003es2lan: 1452 return e1000_set_es2lan_mac_loopback(adapter); 1453 break; 1454 case e1000_82571: 1455 case e1000_82572: 1456 return e1000_set_82571_fiber_loopback(adapter); 1457 break; 1458 default: 1459 rctl = er32(RCTL); 1460 rctl |= E1000_RCTL_LBM_TCVR; 1461 ew32(RCTL, rctl); 1462 return 0; 1463 } 1464 } else if (hw->phy.media_type == e1000_media_type_copper) { 1465 return e1000_integrated_phy_loopback(adapter); 1466 } 1467 1468 return 7; 1469 } 1470 1471 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1472 { 1473 struct e1000_hw *hw = &adapter->hw; 1474 u32 rctl; 1475 u16 phy_reg; 1476 1477 rctl = er32(RCTL); 1478 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1479 ew32(RCTL, rctl); 1480 1481 switch (hw->mac.type) { 1482 case e1000_80003es2lan: 1483 if (hw->phy.media_type == e1000_media_type_fiber || 1484 hw->phy.media_type == e1000_media_type_internal_serdes) { 1485 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1486 ew32(CTRL_EXT, adapter->tx_fifo_head); 1487 adapter->tx_fifo_head = 0; 1488 } 1489 /* fall through */ 1490 case e1000_82571: 1491 case e1000_82572: 1492 if (hw->phy.media_type == e1000_media_type_fiber || 1493 hw->phy.media_type == e1000_media_type_internal_serdes) { 1494 #define E1000_SERDES_LB_OFF 0x400 1495 ew32(SCTL, E1000_SERDES_LB_OFF); 1496 e1e_flush(); 1497 usleep_range(10000, 20000); 1498 break; 1499 } 1500 /* Fall Through */ 1501 default: 1502 hw->mac.autoneg = 1; 1503 if (hw->phy.type == e1000_phy_gg82563) 1504 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1505 e1e_rphy(hw, PHY_CONTROL, &phy_reg); 1506 if (phy_reg & MII_CR_LOOPBACK) { 1507 phy_reg &= ~MII_CR_LOOPBACK; 1508 e1e_wphy(hw, PHY_CONTROL, phy_reg); 1509 e1000e_commit_phy(hw); 1510 } 1511 break; 1512 } 1513 } 1514 1515 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1516 unsigned int frame_size) 1517 { 1518 memset(skb->data, 0xFF, frame_size); 1519 frame_size &= ~1; 1520 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1521 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1522 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1523 } 1524 1525 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1526 unsigned int frame_size) 1527 { 1528 frame_size &= ~1; 1529 if (*(skb->data + 3) == 0xFF) 1530 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1531 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1532 return 0; 1533 return 13; 1534 } 1535 1536 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1537 { 1538 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1539 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1540 struct pci_dev *pdev = adapter->pdev; 1541 struct e1000_hw *hw = &adapter->hw; 1542 int i, j, k, l; 1543 int lc; 1544 int good_cnt; 1545 int ret_val = 0; 1546 unsigned long time; 1547 1548 ew32(RDT(0), rx_ring->count - 1); 1549 1550 /* 1551 * Calculate the loop count based on the largest descriptor ring 1552 * The idea is to wrap the largest ring a number of times using 64 1553 * send/receive pairs during each loop 1554 */ 1555 1556 if (rx_ring->count <= tx_ring->count) 1557 lc = ((tx_ring->count / 64) * 2) + 1; 1558 else 1559 lc = ((rx_ring->count / 64) * 2) + 1; 1560 1561 k = 0; 1562 l = 0; 1563 for (j = 0; j <= lc; j++) { /* loop count loop */ 1564 for (i = 0; i < 64; i++) { /* send the packets */ 1565 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb, 1566 1024); 1567 dma_sync_single_for_device(&pdev->dev, 1568 tx_ring->buffer_info[k].dma, 1569 tx_ring->buffer_info[k].length, 1570 DMA_TO_DEVICE); 1571 k++; 1572 if (k == tx_ring->count) 1573 k = 0; 1574 } 1575 ew32(TDT(0), k); 1576 e1e_flush(); 1577 msleep(200); 1578 time = jiffies; /* set the start time for the receive */ 1579 good_cnt = 0; 1580 do { /* receive the sent packets */ 1581 dma_sync_single_for_cpu(&pdev->dev, 1582 rx_ring->buffer_info[l].dma, 2048, 1583 DMA_FROM_DEVICE); 1584 1585 ret_val = e1000_check_lbtest_frame( 1586 rx_ring->buffer_info[l].skb, 1024); 1587 if (!ret_val) 1588 good_cnt++; 1589 l++; 1590 if (l == rx_ring->count) 1591 l = 0; 1592 /* 1593 * time + 20 msecs (200 msecs on 2.4) is more than 1594 * enough time to complete the receives, if it's 1595 * exceeded, break and error off 1596 */ 1597 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1598 if (good_cnt != 64) { 1599 ret_val = 13; /* ret_val is the same as mis-compare */ 1600 break; 1601 } 1602 if (jiffies >= (time + 20)) { 1603 ret_val = 14; /* error code for time out error */ 1604 break; 1605 } 1606 } /* end loop count loop */ 1607 return ret_val; 1608 } 1609 1610 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1611 { 1612 struct e1000_hw *hw = &adapter->hw; 1613 1614 /* 1615 * PHY loopback cannot be performed if SoL/IDER 1616 * sessions are active 1617 */ 1618 if (hw->phy.ops.check_reset_block(hw)) { 1619 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1620 *data = 0; 1621 goto out; 1622 } 1623 1624 *data = e1000_setup_desc_rings(adapter); 1625 if (*data) 1626 goto out; 1627 1628 *data = e1000_setup_loopback_test(adapter); 1629 if (*data) 1630 goto err_loopback; 1631 1632 *data = e1000_run_loopback_test(adapter); 1633 e1000_loopback_cleanup(adapter); 1634 1635 err_loopback: 1636 e1000_free_desc_rings(adapter); 1637 out: 1638 return *data; 1639 } 1640 1641 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1642 { 1643 struct e1000_hw *hw = &adapter->hw; 1644 1645 *data = 0; 1646 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1647 int i = 0; 1648 hw->mac.serdes_has_link = false; 1649 1650 /* 1651 * On some blade server designs, link establishment 1652 * could take as long as 2-3 minutes 1653 */ 1654 do { 1655 hw->mac.ops.check_for_link(hw); 1656 if (hw->mac.serdes_has_link) 1657 return *data; 1658 msleep(20); 1659 } while (i++ < 3750); 1660 1661 *data = 1; 1662 } else { 1663 hw->mac.ops.check_for_link(hw); 1664 if (hw->mac.autoneg) 1665 /* 1666 * On some Phy/switch combinations, link establishment 1667 * can take a few seconds more than expected. 1668 */ 1669 msleep(5000); 1670 1671 if (!(er32(STATUS) & E1000_STATUS_LU)) 1672 *data = 1; 1673 } 1674 return *data; 1675 } 1676 1677 static int e1000e_get_sset_count(struct net_device *netdev, int sset) 1678 { 1679 switch (sset) { 1680 case ETH_SS_TEST: 1681 return E1000_TEST_LEN; 1682 case ETH_SS_STATS: 1683 return E1000_STATS_LEN; 1684 default: 1685 return -EOPNOTSUPP; 1686 } 1687 } 1688 1689 static void e1000_diag_test(struct net_device *netdev, 1690 struct ethtool_test *eth_test, u64 *data) 1691 { 1692 struct e1000_adapter *adapter = netdev_priv(netdev); 1693 u16 autoneg_advertised; 1694 u8 forced_speed_duplex; 1695 u8 autoneg; 1696 bool if_running = netif_running(netdev); 1697 1698 set_bit(__E1000_TESTING, &adapter->state); 1699 1700 if (!if_running) { 1701 /* Get control of and reset hardware */ 1702 if (adapter->flags & FLAG_HAS_AMT) 1703 e1000e_get_hw_control(adapter); 1704 1705 e1000e_power_up_phy(adapter); 1706 1707 adapter->hw.phy.autoneg_wait_to_complete = 1; 1708 e1000e_reset(adapter); 1709 adapter->hw.phy.autoneg_wait_to_complete = 0; 1710 } 1711 1712 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1713 /* Offline tests */ 1714 1715 /* save speed, duplex, autoneg settings */ 1716 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1717 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1718 autoneg = adapter->hw.mac.autoneg; 1719 1720 e_info("offline testing starting\n"); 1721 1722 if (if_running) 1723 /* indicate we're in test mode */ 1724 dev_close(netdev); 1725 1726 if (e1000_reg_test(adapter, &data[0])) 1727 eth_test->flags |= ETH_TEST_FL_FAILED; 1728 1729 e1000e_reset(adapter); 1730 if (e1000_eeprom_test(adapter, &data[1])) 1731 eth_test->flags |= ETH_TEST_FL_FAILED; 1732 1733 e1000e_reset(adapter); 1734 if (e1000_intr_test(adapter, &data[2])) 1735 eth_test->flags |= ETH_TEST_FL_FAILED; 1736 1737 e1000e_reset(adapter); 1738 if (e1000_loopback_test(adapter, &data[3])) 1739 eth_test->flags |= ETH_TEST_FL_FAILED; 1740 1741 /* force this routine to wait until autoneg complete/timeout */ 1742 adapter->hw.phy.autoneg_wait_to_complete = 1; 1743 e1000e_reset(adapter); 1744 adapter->hw.phy.autoneg_wait_to_complete = 0; 1745 1746 if (e1000_link_test(adapter, &data[4])) 1747 eth_test->flags |= ETH_TEST_FL_FAILED; 1748 1749 /* restore speed, duplex, autoneg settings */ 1750 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1751 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1752 adapter->hw.mac.autoneg = autoneg; 1753 e1000e_reset(adapter); 1754 1755 clear_bit(__E1000_TESTING, &adapter->state); 1756 if (if_running) 1757 dev_open(netdev); 1758 } else { 1759 /* Online tests */ 1760 1761 e_info("online testing starting\n"); 1762 1763 /* register, eeprom, intr and loopback tests not run online */ 1764 data[0] = 0; 1765 data[1] = 0; 1766 data[2] = 0; 1767 data[3] = 0; 1768 1769 if (e1000_link_test(adapter, &data[4])) 1770 eth_test->flags |= ETH_TEST_FL_FAILED; 1771 1772 clear_bit(__E1000_TESTING, &adapter->state); 1773 } 1774 1775 if (!if_running) { 1776 e1000e_reset(adapter); 1777 1778 if (adapter->flags & FLAG_HAS_AMT) 1779 e1000e_release_hw_control(adapter); 1780 } 1781 1782 msleep_interruptible(4 * 1000); 1783 } 1784 1785 static void e1000_get_wol(struct net_device *netdev, 1786 struct ethtool_wolinfo *wol) 1787 { 1788 struct e1000_adapter *adapter = netdev_priv(netdev); 1789 1790 wol->supported = 0; 1791 wol->wolopts = 0; 1792 1793 if (!(adapter->flags & FLAG_HAS_WOL) || 1794 !device_can_wakeup(&adapter->pdev->dev)) 1795 return; 1796 1797 wol->supported = WAKE_UCAST | WAKE_MCAST | 1798 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1799 1800 /* apply any specific unsupported masks here */ 1801 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1802 wol->supported &= ~WAKE_UCAST; 1803 1804 if (adapter->wol & E1000_WUFC_EX) 1805 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1806 } 1807 1808 if (adapter->wol & E1000_WUFC_EX) 1809 wol->wolopts |= WAKE_UCAST; 1810 if (adapter->wol & E1000_WUFC_MC) 1811 wol->wolopts |= WAKE_MCAST; 1812 if (adapter->wol & E1000_WUFC_BC) 1813 wol->wolopts |= WAKE_BCAST; 1814 if (adapter->wol & E1000_WUFC_MAG) 1815 wol->wolopts |= WAKE_MAGIC; 1816 if (adapter->wol & E1000_WUFC_LNKC) 1817 wol->wolopts |= WAKE_PHY; 1818 } 1819 1820 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1821 { 1822 struct e1000_adapter *adapter = netdev_priv(netdev); 1823 1824 if (!(adapter->flags & FLAG_HAS_WOL) || 1825 !device_can_wakeup(&adapter->pdev->dev) || 1826 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1827 WAKE_MAGIC | WAKE_PHY))) 1828 return -EOPNOTSUPP; 1829 1830 /* these settings will always override what we currently have */ 1831 adapter->wol = 0; 1832 1833 if (wol->wolopts & WAKE_UCAST) 1834 adapter->wol |= E1000_WUFC_EX; 1835 if (wol->wolopts & WAKE_MCAST) 1836 adapter->wol |= E1000_WUFC_MC; 1837 if (wol->wolopts & WAKE_BCAST) 1838 adapter->wol |= E1000_WUFC_BC; 1839 if (wol->wolopts & WAKE_MAGIC) 1840 adapter->wol |= E1000_WUFC_MAG; 1841 if (wol->wolopts & WAKE_PHY) 1842 adapter->wol |= E1000_WUFC_LNKC; 1843 1844 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1845 1846 return 0; 1847 } 1848 1849 static int e1000_set_phys_id(struct net_device *netdev, 1850 enum ethtool_phys_id_state state) 1851 { 1852 struct e1000_adapter *adapter = netdev_priv(netdev); 1853 struct e1000_hw *hw = &adapter->hw; 1854 1855 switch (state) { 1856 case ETHTOOL_ID_ACTIVE: 1857 if (!hw->mac.ops.blink_led) 1858 return 2; /* cycle on/off twice per second */ 1859 1860 hw->mac.ops.blink_led(hw); 1861 break; 1862 1863 case ETHTOOL_ID_INACTIVE: 1864 if (hw->phy.type == e1000_phy_ife) 1865 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1866 hw->mac.ops.led_off(hw); 1867 hw->mac.ops.cleanup_led(hw); 1868 break; 1869 1870 case ETHTOOL_ID_ON: 1871 hw->mac.ops.led_on(hw); 1872 break; 1873 1874 case ETHTOOL_ID_OFF: 1875 hw->mac.ops.led_off(hw); 1876 break; 1877 } 1878 return 0; 1879 } 1880 1881 static int e1000_get_coalesce(struct net_device *netdev, 1882 struct ethtool_coalesce *ec) 1883 { 1884 struct e1000_adapter *adapter = netdev_priv(netdev); 1885 1886 if (adapter->itr_setting <= 4) 1887 ec->rx_coalesce_usecs = adapter->itr_setting; 1888 else 1889 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1890 1891 return 0; 1892 } 1893 1894 static int e1000_set_coalesce(struct net_device *netdev, 1895 struct ethtool_coalesce *ec) 1896 { 1897 struct e1000_adapter *adapter = netdev_priv(netdev); 1898 struct e1000_hw *hw = &adapter->hw; 1899 1900 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1901 ((ec->rx_coalesce_usecs > 4) && 1902 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1903 (ec->rx_coalesce_usecs == 2)) 1904 return -EINVAL; 1905 1906 if (ec->rx_coalesce_usecs == 4) { 1907 adapter->itr = adapter->itr_setting = 4; 1908 } else if (ec->rx_coalesce_usecs <= 3) { 1909 adapter->itr = 20000; 1910 adapter->itr_setting = ec->rx_coalesce_usecs; 1911 } else { 1912 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1913 adapter->itr_setting = adapter->itr & ~3; 1914 } 1915 1916 if (adapter->itr_setting != 0) 1917 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1918 else 1919 ew32(ITR, 0); 1920 1921 return 0; 1922 } 1923 1924 static int e1000_nway_reset(struct net_device *netdev) 1925 { 1926 struct e1000_adapter *adapter = netdev_priv(netdev); 1927 1928 if (!netif_running(netdev)) 1929 return -EAGAIN; 1930 1931 if (!adapter->hw.mac.autoneg) 1932 return -EINVAL; 1933 1934 e1000e_reinit_locked(adapter); 1935 1936 return 0; 1937 } 1938 1939 static void e1000_get_ethtool_stats(struct net_device *netdev, 1940 struct ethtool_stats *stats, 1941 u64 *data) 1942 { 1943 struct e1000_adapter *adapter = netdev_priv(netdev); 1944 struct rtnl_link_stats64 net_stats; 1945 int i; 1946 char *p = NULL; 1947 1948 e1000e_get_stats64(netdev, &net_stats); 1949 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1950 switch (e1000_gstrings_stats[i].type) { 1951 case NETDEV_STATS: 1952 p = (char *) &net_stats + 1953 e1000_gstrings_stats[i].stat_offset; 1954 break; 1955 case E1000_STATS: 1956 p = (char *) adapter + 1957 e1000_gstrings_stats[i].stat_offset; 1958 break; 1959 default: 1960 data[i] = 0; 1961 continue; 1962 } 1963 1964 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 1965 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1966 } 1967 } 1968 1969 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1970 u8 *data) 1971 { 1972 u8 *p = data; 1973 int i; 1974 1975 switch (stringset) { 1976 case ETH_SS_TEST: 1977 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 1978 break; 1979 case ETH_SS_STATS: 1980 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1981 memcpy(p, e1000_gstrings_stats[i].stat_string, 1982 ETH_GSTRING_LEN); 1983 p += ETH_GSTRING_LEN; 1984 } 1985 break; 1986 } 1987 } 1988 1989 static int e1000_get_rxnfc(struct net_device *netdev, 1990 struct ethtool_rxnfc *info, u32 *rule_locs) 1991 { 1992 info->data = 0; 1993 1994 switch (info->cmd) { 1995 case ETHTOOL_GRXFH: { 1996 struct e1000_adapter *adapter = netdev_priv(netdev); 1997 struct e1000_hw *hw = &adapter->hw; 1998 u32 mrqc = er32(MRQC); 1999 2000 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2001 return 0; 2002 2003 switch (info->flow_type) { 2004 case TCP_V4_FLOW: 2005 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2006 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2007 /* fall through */ 2008 case UDP_V4_FLOW: 2009 case SCTP_V4_FLOW: 2010 case AH_ESP_V4_FLOW: 2011 case IPV4_FLOW: 2012 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2013 info->data |= RXH_IP_SRC | RXH_IP_DST; 2014 break; 2015 case TCP_V6_FLOW: 2016 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2017 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2018 /* fall through */ 2019 case UDP_V6_FLOW: 2020 case SCTP_V6_FLOW: 2021 case AH_ESP_V6_FLOW: 2022 case IPV6_FLOW: 2023 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2024 info->data |= RXH_IP_SRC | RXH_IP_DST; 2025 break; 2026 default: 2027 break; 2028 } 2029 return 0; 2030 } 2031 default: 2032 return -EOPNOTSUPP; 2033 } 2034 } 2035 2036 static const struct ethtool_ops e1000_ethtool_ops = { 2037 .get_settings = e1000_get_settings, 2038 .set_settings = e1000_set_settings, 2039 .get_drvinfo = e1000_get_drvinfo, 2040 .get_regs_len = e1000_get_regs_len, 2041 .get_regs = e1000_get_regs, 2042 .get_wol = e1000_get_wol, 2043 .set_wol = e1000_set_wol, 2044 .get_msglevel = e1000_get_msglevel, 2045 .set_msglevel = e1000_set_msglevel, 2046 .nway_reset = e1000_nway_reset, 2047 .get_link = ethtool_op_get_link, 2048 .get_eeprom_len = e1000_get_eeprom_len, 2049 .get_eeprom = e1000_get_eeprom, 2050 .set_eeprom = e1000_set_eeprom, 2051 .get_ringparam = e1000_get_ringparam, 2052 .set_ringparam = e1000_set_ringparam, 2053 .get_pauseparam = e1000_get_pauseparam, 2054 .set_pauseparam = e1000_set_pauseparam, 2055 .self_test = e1000_diag_test, 2056 .get_strings = e1000_get_strings, 2057 .set_phys_id = e1000_set_phys_id, 2058 .get_ethtool_stats = e1000_get_ethtool_stats, 2059 .get_sset_count = e1000e_get_sset_count, 2060 .get_coalesce = e1000_get_coalesce, 2061 .set_coalesce = e1000_set_coalesce, 2062 .get_rxnfc = e1000_get_rxnfc, 2063 }; 2064 2065 void e1000e_set_ethtool_ops(struct net_device *netdev) 2066 { 2067 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 2068 } 2069