1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 
39 #include "e1000.h"
40 
41 enum {NETDEV_STATS, E1000_STATS};
42 
43 struct e1000_stats {
44 	char stat_string[ETH_GSTRING_LEN];
45 	int type;
46 	int sizeof_stat;
47 	int stat_offset;
48 };
49 
50 #define E1000_STAT(str, m) { \
51 		.stat_string = str, \
52 		.type = E1000_STATS, \
53 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54 		.stat_offset = offsetof(struct e1000_adapter, m) }
55 #define E1000_NETDEV_STAT(str, m) { \
56 		.stat_string = str, \
57 		.type = NETDEV_STATS, \
58 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
60 
61 static const struct e1000_stats e1000_gstrings_stats[] = {
62 	E1000_STAT("rx_packets", stats.gprc),
63 	E1000_STAT("tx_packets", stats.gptc),
64 	E1000_STAT("rx_bytes", stats.gorc),
65 	E1000_STAT("tx_bytes", stats.gotc),
66 	E1000_STAT("rx_broadcast", stats.bprc),
67 	E1000_STAT("tx_broadcast", stats.bptc),
68 	E1000_STAT("rx_multicast", stats.mprc),
69 	E1000_STAT("tx_multicast", stats.mptc),
70 	E1000_NETDEV_STAT("rx_errors", rx_errors),
71 	E1000_NETDEV_STAT("tx_errors", tx_errors),
72 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
73 	E1000_STAT("multicast", stats.mprc),
74 	E1000_STAT("collisions", stats.colc),
75 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
76 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
77 	E1000_STAT("rx_crc_errors", stats.crcerrs),
78 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
79 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
80 	E1000_STAT("rx_missed_errors", stats.mpc),
81 	E1000_STAT("tx_aborted_errors", stats.ecol),
82 	E1000_STAT("tx_carrier_errors", stats.tncrs),
83 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
84 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
85 	E1000_STAT("tx_window_errors", stats.latecol),
86 	E1000_STAT("tx_abort_late_coll", stats.latecol),
87 	E1000_STAT("tx_deferred_ok", stats.dc),
88 	E1000_STAT("tx_single_coll_ok", stats.scc),
89 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
90 	E1000_STAT("tx_timeout_count", tx_timeout_count),
91 	E1000_STAT("tx_restart_queue", restart_queue),
92 	E1000_STAT("rx_long_length_errors", stats.roc),
93 	E1000_STAT("rx_short_length_errors", stats.ruc),
94 	E1000_STAT("rx_align_errors", stats.algnerrc),
95 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
96 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
97 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
98 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
99 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
100 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
101 	E1000_STAT("rx_long_byte_count", stats.gorc),
102 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
103 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104 	E1000_STAT("rx_header_split", rx_hdr_split),
105 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106 	E1000_STAT("tx_smbus", stats.mgptc),
107 	E1000_STAT("rx_smbus", stats.mgprc),
108 	E1000_STAT("dropped_smbus", stats.mgpdc),
109 	E1000_STAT("rx_dma_failed", rx_dma_failed),
110 	E1000_STAT("tx_dma_failed", tx_dma_failed),
111 };
112 
113 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
115 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
116 	"Register test  (offline)", "Eeprom test    (offline)",
117 	"Interrupt test (offline)", "Loopback test  (offline)",
118 	"Link test   (on/offline)"
119 };
120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121 
122 static int e1000_get_settings(struct net_device *netdev,
123 			      struct ethtool_cmd *ecmd)
124 {
125 	struct e1000_adapter *adapter = netdev_priv(netdev);
126 	struct e1000_hw *hw = &adapter->hw;
127 	u32 speed;
128 
129 	if (hw->phy.media_type == e1000_media_type_copper) {
130 
131 		ecmd->supported = (SUPPORTED_10baseT_Half |
132 				   SUPPORTED_10baseT_Full |
133 				   SUPPORTED_100baseT_Half |
134 				   SUPPORTED_100baseT_Full |
135 				   SUPPORTED_1000baseT_Full |
136 				   SUPPORTED_Autoneg |
137 				   SUPPORTED_TP);
138 		if (hw->phy.type == e1000_phy_ife)
139 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
140 		ecmd->advertising = ADVERTISED_TP;
141 
142 		if (hw->mac.autoneg == 1) {
143 			ecmd->advertising |= ADVERTISED_Autoneg;
144 			/* the e1000 autoneg seems to match ethtool nicely */
145 			ecmd->advertising |= hw->phy.autoneg_advertised;
146 		}
147 
148 		ecmd->port = PORT_TP;
149 		ecmd->phy_address = hw->phy.addr;
150 		ecmd->transceiver = XCVR_INTERNAL;
151 
152 	} else {
153 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
154 				     SUPPORTED_FIBRE |
155 				     SUPPORTED_Autoneg);
156 
157 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
158 				     ADVERTISED_FIBRE |
159 				     ADVERTISED_Autoneg);
160 
161 		ecmd->port = PORT_FIBRE;
162 		ecmd->transceiver = XCVR_EXTERNAL;
163 	}
164 
165 	speed = -1;
166 	ecmd->duplex = -1;
167 
168 	if (netif_running(netdev)) {
169 		if (netif_carrier_ok(netdev)) {
170 			speed = adapter->link_speed;
171 			ecmd->duplex = adapter->link_duplex - 1;
172 		}
173 	} else {
174 		u32 status = er32(STATUS);
175 		if (status & E1000_STATUS_LU) {
176 			if (status & E1000_STATUS_SPEED_1000)
177 				speed = SPEED_1000;
178 			else if (status & E1000_STATUS_SPEED_100)
179 				speed = SPEED_100;
180 			else
181 				speed = SPEED_10;
182 
183 			if (status & E1000_STATUS_FD)
184 				ecmd->duplex = DUPLEX_FULL;
185 			else
186 				ecmd->duplex = DUPLEX_HALF;
187 		}
188 	}
189 
190 	ethtool_cmd_speed_set(ecmd, speed);
191 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
192 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
193 
194 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
195 	if ((hw->phy.media_type == e1000_media_type_copper) &&
196 	    netif_carrier_ok(netdev))
197 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
198 		                                      ETH_TP_MDI;
199 	else
200 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
201 
202 	return 0;
203 }
204 
205 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
206 {
207 	struct e1000_mac_info *mac = &adapter->hw.mac;
208 
209 	mac->autoneg = 0;
210 
211 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
212 	 * for the switch() below to work */
213 	if ((spd & 1) || (dplx & ~1))
214 		goto err_inval;
215 
216 	/* Fiber NICs only allow 1000 gbps Full duplex */
217 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
218 	    spd != SPEED_1000 &&
219 	    dplx != DUPLEX_FULL) {
220 		goto err_inval;
221 	}
222 
223 	switch (spd + dplx) {
224 	case SPEED_10 + DUPLEX_HALF:
225 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
226 		break;
227 	case SPEED_10 + DUPLEX_FULL:
228 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
229 		break;
230 	case SPEED_100 + DUPLEX_HALF:
231 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
232 		break;
233 	case SPEED_100 + DUPLEX_FULL:
234 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
235 		break;
236 	case SPEED_1000 + DUPLEX_FULL:
237 		mac->autoneg = 1;
238 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
239 		break;
240 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
241 	default:
242 		goto err_inval;
243 	}
244 	return 0;
245 
246 err_inval:
247 	e_err("Unsupported Speed/Duplex configuration\n");
248 	return -EINVAL;
249 }
250 
251 static int e1000_set_settings(struct net_device *netdev,
252 			      struct ethtool_cmd *ecmd)
253 {
254 	struct e1000_adapter *adapter = netdev_priv(netdev);
255 	struct e1000_hw *hw = &adapter->hw;
256 
257 	/*
258 	 * When SoL/IDER sessions are active, autoneg/speed/duplex
259 	 * cannot be changed
260 	 */
261 	if (hw->phy.ops.check_reset_block(hw)) {
262 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
263 		return -EINVAL;
264 	}
265 
266 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
267 		usleep_range(1000, 2000);
268 
269 	if (ecmd->autoneg == AUTONEG_ENABLE) {
270 		hw->mac.autoneg = 1;
271 		if (hw->phy.media_type == e1000_media_type_fiber)
272 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
273 						     ADVERTISED_FIBRE |
274 						     ADVERTISED_Autoneg;
275 		else
276 			hw->phy.autoneg_advertised = ecmd->advertising |
277 						     ADVERTISED_TP |
278 						     ADVERTISED_Autoneg;
279 		ecmd->advertising = hw->phy.autoneg_advertised;
280 		if (adapter->fc_autoneg)
281 			hw->fc.requested_mode = e1000_fc_default;
282 	} else {
283 		u32 speed = ethtool_cmd_speed(ecmd);
284 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
285 			clear_bit(__E1000_RESETTING, &adapter->state);
286 			return -EINVAL;
287 		}
288 	}
289 
290 	/* reset the link */
291 
292 	if (netif_running(adapter->netdev)) {
293 		e1000e_down(adapter);
294 		e1000e_up(adapter);
295 	} else {
296 		e1000e_reset(adapter);
297 	}
298 
299 	clear_bit(__E1000_RESETTING, &adapter->state);
300 	return 0;
301 }
302 
303 static void e1000_get_pauseparam(struct net_device *netdev,
304 				 struct ethtool_pauseparam *pause)
305 {
306 	struct e1000_adapter *adapter = netdev_priv(netdev);
307 	struct e1000_hw *hw = &adapter->hw;
308 
309 	pause->autoneg =
310 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
311 
312 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
313 		pause->rx_pause = 1;
314 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
315 		pause->tx_pause = 1;
316 	} else if (hw->fc.current_mode == e1000_fc_full) {
317 		pause->rx_pause = 1;
318 		pause->tx_pause = 1;
319 	}
320 }
321 
322 static int e1000_set_pauseparam(struct net_device *netdev,
323 				struct ethtool_pauseparam *pause)
324 {
325 	struct e1000_adapter *adapter = netdev_priv(netdev);
326 	struct e1000_hw *hw = &adapter->hw;
327 	int retval = 0;
328 
329 	adapter->fc_autoneg = pause->autoneg;
330 
331 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
332 		usleep_range(1000, 2000);
333 
334 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
335 		hw->fc.requested_mode = e1000_fc_default;
336 		if (netif_running(adapter->netdev)) {
337 			e1000e_down(adapter);
338 			e1000e_up(adapter);
339 		} else {
340 			e1000e_reset(adapter);
341 		}
342 	} else {
343 		if (pause->rx_pause && pause->tx_pause)
344 			hw->fc.requested_mode = e1000_fc_full;
345 		else if (pause->rx_pause && !pause->tx_pause)
346 			hw->fc.requested_mode = e1000_fc_rx_pause;
347 		else if (!pause->rx_pause && pause->tx_pause)
348 			hw->fc.requested_mode = e1000_fc_tx_pause;
349 		else if (!pause->rx_pause && !pause->tx_pause)
350 			hw->fc.requested_mode = e1000_fc_none;
351 
352 		hw->fc.current_mode = hw->fc.requested_mode;
353 
354 		if (hw->phy.media_type == e1000_media_type_fiber) {
355 			retval = hw->mac.ops.setup_link(hw);
356 			/* implicit goto out */
357 		} else {
358 			retval = e1000e_force_mac_fc(hw);
359 			if (retval)
360 				goto out;
361 			e1000e_set_fc_watermarks(hw);
362 		}
363 	}
364 
365 out:
366 	clear_bit(__E1000_RESETTING, &adapter->state);
367 	return retval;
368 }
369 
370 static u32 e1000_get_msglevel(struct net_device *netdev)
371 {
372 	struct e1000_adapter *adapter = netdev_priv(netdev);
373 	return adapter->msg_enable;
374 }
375 
376 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
377 {
378 	struct e1000_adapter *adapter = netdev_priv(netdev);
379 	adapter->msg_enable = data;
380 }
381 
382 static int e1000_get_regs_len(struct net_device *netdev)
383 {
384 #define E1000_REGS_LEN 32 /* overestimate */
385 	return E1000_REGS_LEN * sizeof(u32);
386 }
387 
388 static void e1000_get_regs(struct net_device *netdev,
389 			   struct ethtool_regs *regs, void *p)
390 {
391 	struct e1000_adapter *adapter = netdev_priv(netdev);
392 	struct e1000_hw *hw = &adapter->hw;
393 	u32 *regs_buff = p;
394 	u16 phy_data;
395 
396 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
397 
398 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
399 			adapter->pdev->device;
400 
401 	regs_buff[0]  = er32(CTRL);
402 	regs_buff[1]  = er32(STATUS);
403 
404 	regs_buff[2]  = er32(RCTL);
405 	regs_buff[3]  = er32(RDLEN(0));
406 	regs_buff[4]  = er32(RDH(0));
407 	regs_buff[5]  = er32(RDT(0));
408 	regs_buff[6]  = er32(RDTR);
409 
410 	regs_buff[7]  = er32(TCTL);
411 	regs_buff[8]  = er32(TDLEN(0));
412 	regs_buff[9]  = er32(TDH(0));
413 	regs_buff[10] = er32(TDT(0));
414 	regs_buff[11] = er32(TIDV);
415 
416 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
417 
418 	/* ethtool doesn't use anything past this point, so all this
419 	 * code is likely legacy junk for apps that may or may not
420 	 * exist */
421 	if (hw->phy.type == e1000_phy_m88) {
422 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
423 		regs_buff[13] = (u32)phy_data; /* cable length */
424 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
425 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
426 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
427 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
428 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
429 		regs_buff[18] = regs_buff[13]; /* cable polarity */
430 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
431 		regs_buff[20] = regs_buff[17]; /* polarity correction */
432 		/* phy receive errors */
433 		regs_buff[22] = adapter->phy_stats.receive_errors;
434 		regs_buff[23] = regs_buff[13]; /* mdix mode */
435 	}
436 	regs_buff[21] = 0; /* was idle_errors */
437 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
438 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
439 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
440 }
441 
442 static int e1000_get_eeprom_len(struct net_device *netdev)
443 {
444 	struct e1000_adapter *adapter = netdev_priv(netdev);
445 	return adapter->hw.nvm.word_size * 2;
446 }
447 
448 static int e1000_get_eeprom(struct net_device *netdev,
449 			    struct ethtool_eeprom *eeprom, u8 *bytes)
450 {
451 	struct e1000_adapter *adapter = netdev_priv(netdev);
452 	struct e1000_hw *hw = &adapter->hw;
453 	u16 *eeprom_buff;
454 	int first_word;
455 	int last_word;
456 	int ret_val = 0;
457 	u16 i;
458 
459 	if (eeprom->len == 0)
460 		return -EINVAL;
461 
462 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
463 
464 	first_word = eeprom->offset >> 1;
465 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
466 
467 	eeprom_buff = kmalloc(sizeof(u16) *
468 			(last_word - first_word + 1), GFP_KERNEL);
469 	if (!eeprom_buff)
470 		return -ENOMEM;
471 
472 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
473 		ret_val = e1000_read_nvm(hw, first_word,
474 					 last_word - first_word + 1,
475 					 eeprom_buff);
476 	} else {
477 		for (i = 0; i < last_word - first_word + 1; i++) {
478 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
479 						      &eeprom_buff[i]);
480 			if (ret_val)
481 				break;
482 		}
483 	}
484 
485 	if (ret_val) {
486 		/* a read error occurred, throw away the result */
487 		memset(eeprom_buff, 0xff, sizeof(u16) *
488 		       (last_word - first_word + 1));
489 	} else {
490 		/* Device's eeprom is always little-endian, word addressable */
491 		for (i = 0; i < last_word - first_word + 1; i++)
492 			le16_to_cpus(&eeprom_buff[i]);
493 	}
494 
495 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
496 	kfree(eeprom_buff);
497 
498 	return ret_val;
499 }
500 
501 static int e1000_set_eeprom(struct net_device *netdev,
502 			    struct ethtool_eeprom *eeprom, u8 *bytes)
503 {
504 	struct e1000_adapter *adapter = netdev_priv(netdev);
505 	struct e1000_hw *hw = &adapter->hw;
506 	u16 *eeprom_buff;
507 	void *ptr;
508 	int max_len;
509 	int first_word;
510 	int last_word;
511 	int ret_val = 0;
512 	u16 i;
513 
514 	if (eeprom->len == 0)
515 		return -EOPNOTSUPP;
516 
517 	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
518 		return -EFAULT;
519 
520 	if (adapter->flags & FLAG_READ_ONLY_NVM)
521 		return -EINVAL;
522 
523 	max_len = hw->nvm.word_size * 2;
524 
525 	first_word = eeprom->offset >> 1;
526 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
527 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
528 	if (!eeprom_buff)
529 		return -ENOMEM;
530 
531 	ptr = (void *)eeprom_buff;
532 
533 	if (eeprom->offset & 1) {
534 		/* need read/modify/write of first changed EEPROM word */
535 		/* only the second byte of the word is being modified */
536 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
537 		ptr++;
538 	}
539 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
540 		/* need read/modify/write of last changed EEPROM word */
541 		/* only the first byte of the word is being modified */
542 		ret_val = e1000_read_nvm(hw, last_word, 1,
543 				  &eeprom_buff[last_word - first_word]);
544 
545 	if (ret_val)
546 		goto out;
547 
548 	/* Device's eeprom is always little-endian, word addressable */
549 	for (i = 0; i < last_word - first_word + 1; i++)
550 		le16_to_cpus(&eeprom_buff[i]);
551 
552 	memcpy(ptr, bytes, eeprom->len);
553 
554 	for (i = 0; i < last_word - first_word + 1; i++)
555 		cpu_to_le16s(&eeprom_buff[i]);
556 
557 	ret_val = e1000_write_nvm(hw, first_word,
558 				  last_word - first_word + 1, eeprom_buff);
559 
560 	if (ret_val)
561 		goto out;
562 
563 	/*
564 	 * Update the checksum over the first part of the EEPROM if needed
565 	 * and flush shadow RAM for applicable controllers
566 	 */
567 	if ((first_word <= NVM_CHECKSUM_REG) ||
568 	    (hw->mac.type == e1000_82583) ||
569 	    (hw->mac.type == e1000_82574) ||
570 	    (hw->mac.type == e1000_82573))
571 		ret_val = e1000e_update_nvm_checksum(hw);
572 
573 out:
574 	kfree(eeprom_buff);
575 	return ret_val;
576 }
577 
578 static void e1000_get_drvinfo(struct net_device *netdev,
579 			      struct ethtool_drvinfo *drvinfo)
580 {
581 	struct e1000_adapter *adapter = netdev_priv(netdev);
582 
583 	strlcpy(drvinfo->driver,  e1000e_driver_name,
584 		sizeof(drvinfo->driver));
585 	strlcpy(drvinfo->version, e1000e_driver_version,
586 		sizeof(drvinfo->version));
587 
588 	/*
589 	 * EEPROM image version # is reported as firmware version # for
590 	 * PCI-E controllers
591 	 */
592 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
593 		"%d.%d-%d",
594 		(adapter->eeprom_vers & 0xF000) >> 12,
595 		(adapter->eeprom_vers & 0x0FF0) >> 4,
596 		(adapter->eeprom_vers & 0x000F));
597 
598 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
599 		sizeof(drvinfo->bus_info));
600 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
601 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
602 }
603 
604 static void e1000_get_ringparam(struct net_device *netdev,
605 				struct ethtool_ringparam *ring)
606 {
607 	struct e1000_adapter *adapter = netdev_priv(netdev);
608 
609 	ring->rx_max_pending = E1000_MAX_RXD;
610 	ring->tx_max_pending = E1000_MAX_TXD;
611 	ring->rx_pending = adapter->rx_ring_count;
612 	ring->tx_pending = adapter->tx_ring_count;
613 }
614 
615 static int e1000_set_ringparam(struct net_device *netdev,
616 			       struct ethtool_ringparam *ring)
617 {
618 	struct e1000_adapter *adapter = netdev_priv(netdev);
619 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
620 	int err = 0, size = sizeof(struct e1000_ring);
621 	bool set_tx = false, set_rx = false;
622 	u16 new_rx_count, new_tx_count;
623 
624 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
625 		return -EINVAL;
626 
627 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
628 			       E1000_MAX_RXD);
629 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
630 
631 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
632 			       E1000_MAX_TXD);
633 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
634 
635 	if ((new_tx_count == adapter->tx_ring_count) &&
636 	    (new_rx_count == adapter->rx_ring_count))
637 		/* nothing to do */
638 		return 0;
639 
640 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
641 		usleep_range(1000, 2000);
642 
643 	if (!netif_running(adapter->netdev)) {
644 		/* Set counts now and allocate resources during open() */
645 		adapter->tx_ring->count = new_tx_count;
646 		adapter->rx_ring->count = new_rx_count;
647 		adapter->tx_ring_count = new_tx_count;
648 		adapter->rx_ring_count = new_rx_count;
649 		goto clear_reset;
650 	}
651 
652 	set_tx = (new_tx_count != adapter->tx_ring_count);
653 	set_rx = (new_rx_count != adapter->rx_ring_count);
654 
655 	/* Allocate temporary storage for ring updates */
656 	if (set_tx) {
657 		temp_tx = vmalloc(size);
658 		if (!temp_tx) {
659 			err = -ENOMEM;
660 			goto free_temp;
661 		}
662 	}
663 	if (set_rx) {
664 		temp_rx = vmalloc(size);
665 		if (!temp_rx) {
666 			err = -ENOMEM;
667 			goto free_temp;
668 		}
669 	}
670 
671 	e1000e_down(adapter);
672 
673 	/*
674 	 * We can't just free everything and then setup again, because the
675 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
676 	 * structs.  First, attempt to allocate new resources...
677 	 */
678 	if (set_tx) {
679 		memcpy(temp_tx, adapter->tx_ring, size);
680 		temp_tx->count = new_tx_count;
681 		err = e1000e_setup_tx_resources(temp_tx);
682 		if (err)
683 			goto err_setup;
684 	}
685 	if (set_rx) {
686 		memcpy(temp_rx, adapter->rx_ring, size);
687 		temp_rx->count = new_rx_count;
688 		err = e1000e_setup_rx_resources(temp_rx);
689 		if (err)
690 			goto err_setup_rx;
691 	}
692 
693 	/* ...then free the old resources and copy back any new ring data */
694 	if (set_tx) {
695 		e1000e_free_tx_resources(adapter->tx_ring);
696 		memcpy(adapter->tx_ring, temp_tx, size);
697 		adapter->tx_ring_count = new_tx_count;
698 	}
699 	if (set_rx) {
700 		e1000e_free_rx_resources(adapter->rx_ring);
701 		memcpy(adapter->rx_ring, temp_rx, size);
702 		adapter->rx_ring_count = new_rx_count;
703 	}
704 
705 err_setup_rx:
706 	if (err && set_tx)
707 		e1000e_free_tx_resources(temp_tx);
708 err_setup:
709 	e1000e_up(adapter);
710 free_temp:
711 	vfree(temp_tx);
712 	vfree(temp_rx);
713 clear_reset:
714 	clear_bit(__E1000_RESETTING, &adapter->state);
715 	return err;
716 }
717 
718 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
719 			     int reg, int offset, u32 mask, u32 write)
720 {
721 	u32 pat, val;
722 	static const u32 test[] = {
723 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
724 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
725 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
726 				      (test[pat] & write));
727 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
728 		if (val != (test[pat] & write & mask)) {
729 			e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
730 			      reg + offset, val, (test[pat] & write & mask));
731 			*data = reg;
732 			return 1;
733 		}
734 	}
735 	return 0;
736 }
737 
738 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
739 			      int reg, u32 mask, u32 write)
740 {
741 	u32 val;
742 	__ew32(&adapter->hw, reg, write & mask);
743 	val = __er32(&adapter->hw, reg);
744 	if ((write & mask) != (val & mask)) {
745 		e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
746 		      reg, (val & mask), (write & mask));
747 		*data = reg;
748 		return 1;
749 	}
750 	return 0;
751 }
752 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
753 	do {                                                                   \
754 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
755 			return 1;                                              \
756 	} while (0)
757 #define REG_PATTERN_TEST(reg, mask, write)                                     \
758 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
759 
760 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
761 	do {                                                                   \
762 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
763 			return 1;                                              \
764 	} while (0)
765 
766 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
767 {
768 	struct e1000_hw *hw = &adapter->hw;
769 	struct e1000_mac_info *mac = &adapter->hw.mac;
770 	u32 value;
771 	u32 before;
772 	u32 after;
773 	u32 i;
774 	u32 toggle;
775 	u32 mask;
776 	u32 wlock_mac = 0;
777 
778 	/*
779 	 * The status register is Read Only, so a write should fail.
780 	 * Some bits that get toggled are ignored.
781 	 */
782 	switch (mac->type) {
783 	/* there are several bits on newer hardware that are r/w */
784 	case e1000_82571:
785 	case e1000_82572:
786 	case e1000_80003es2lan:
787 		toggle = 0x7FFFF3FF;
788 		break;
789         default:
790 		toggle = 0x7FFFF033;
791 		break;
792 	}
793 
794 	before = er32(STATUS);
795 	value = (er32(STATUS) & toggle);
796 	ew32(STATUS, toggle);
797 	after = er32(STATUS) & toggle;
798 	if (value != after) {
799 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
800 		      after, value);
801 		*data = 1;
802 		return 1;
803 	}
804 	/* restore previous status */
805 	ew32(STATUS, before);
806 
807 	if (!(adapter->flags & FLAG_IS_ICH)) {
808 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
809 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
810 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
811 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
812 	}
813 
814 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
815 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
816 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
817 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
818 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
819 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
820 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
821 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
822 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
823 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
824 
825 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
826 
827 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
828 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
829 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
830 
831 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
832 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
833 	if (!(adapter->flags & FLAG_IS_ICH))
834 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
835 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
836 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
837 	mask = 0x8003FFFF;
838 	switch (mac->type) {
839 	case e1000_ich10lan:
840 	case e1000_pchlan:
841 	case e1000_pch2lan:
842 	case e1000_pch_lpt:
843 		mask |= (1 << 18);
844 		break;
845 	default:
846 		break;
847 	}
848 
849 	if (mac->type == e1000_pch_lpt)
850 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
851 		    E1000_FWSM_WLOCK_MAC_SHIFT;
852 
853 	for (i = 0; i < mac->rar_entry_count; i++) {
854 		/* Cannot test write-protected SHRAL[n] registers */
855 		if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
856 			continue;
857 
858 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
859 				       mask, 0xFFFFFFFF);
860 	}
861 
862 	for (i = 0; i < mac->mta_reg_count; i++)
863 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
864 
865 	*data = 0;
866 
867 	return 0;
868 }
869 
870 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
871 {
872 	u16 temp;
873 	u16 checksum = 0;
874 	u16 i;
875 
876 	*data = 0;
877 	/* Read and add up the contents of the EEPROM */
878 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
879 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
880 			*data = 1;
881 			return *data;
882 		}
883 		checksum += temp;
884 	}
885 
886 	/* If Checksum is not Correct return error else test passed */
887 	if ((checksum != (u16) NVM_SUM) && !(*data))
888 		*data = 2;
889 
890 	return *data;
891 }
892 
893 static irqreturn_t e1000_test_intr(int irq, void *data)
894 {
895 	struct net_device *netdev = (struct net_device *) data;
896 	struct e1000_adapter *adapter = netdev_priv(netdev);
897 	struct e1000_hw *hw = &adapter->hw;
898 
899 	adapter->test_icr |= er32(ICR);
900 
901 	return IRQ_HANDLED;
902 }
903 
904 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
905 {
906 	struct net_device *netdev = adapter->netdev;
907 	struct e1000_hw *hw = &adapter->hw;
908 	u32 mask;
909 	u32 shared_int = 1;
910 	u32 irq = adapter->pdev->irq;
911 	int i;
912 	int ret_val = 0;
913 	int int_mode = E1000E_INT_MODE_LEGACY;
914 
915 	*data = 0;
916 
917 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
918 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
919 		int_mode = adapter->int_mode;
920 		e1000e_reset_interrupt_capability(adapter);
921 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
922 		e1000e_set_interrupt_capability(adapter);
923 	}
924 	/* Hook up test interrupt handler just for this test */
925 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
926 			 netdev)) {
927 		shared_int = 0;
928 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
929 		 netdev->name, netdev)) {
930 		*data = 1;
931 		ret_val = -1;
932 		goto out;
933 	}
934 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
935 
936 	/* Disable all the interrupts */
937 	ew32(IMC, 0xFFFFFFFF);
938 	e1e_flush();
939 	usleep_range(10000, 20000);
940 
941 	/* Test each interrupt */
942 	for (i = 0; i < 10; i++) {
943 		/* Interrupt to test */
944 		mask = 1 << i;
945 
946 		if (adapter->flags & FLAG_IS_ICH) {
947 			switch (mask) {
948 			case E1000_ICR_RXSEQ:
949 				continue;
950 			case 0x00000100:
951 				if (adapter->hw.mac.type == e1000_ich8lan ||
952 				    adapter->hw.mac.type == e1000_ich9lan)
953 					continue;
954 				break;
955 			default:
956 				break;
957 			}
958 		}
959 
960 		if (!shared_int) {
961 			/*
962 			 * Disable the interrupt to be reported in
963 			 * the cause register and then force the same
964 			 * interrupt and see if one gets posted.  If
965 			 * an interrupt was posted to the bus, the
966 			 * test failed.
967 			 */
968 			adapter->test_icr = 0;
969 			ew32(IMC, mask);
970 			ew32(ICS, mask);
971 			e1e_flush();
972 			usleep_range(10000, 20000);
973 
974 			if (adapter->test_icr & mask) {
975 				*data = 3;
976 				break;
977 			}
978 		}
979 
980 		/*
981 		 * Enable the interrupt to be reported in
982 		 * the cause register and then force the same
983 		 * interrupt and see if one gets posted.  If
984 		 * an interrupt was not posted to the bus, the
985 		 * test failed.
986 		 */
987 		adapter->test_icr = 0;
988 		ew32(IMS, mask);
989 		ew32(ICS, mask);
990 		e1e_flush();
991 		usleep_range(10000, 20000);
992 
993 		if (!(adapter->test_icr & mask)) {
994 			*data = 4;
995 			break;
996 		}
997 
998 		if (!shared_int) {
999 			/*
1000 			 * Disable the other interrupts to be reported in
1001 			 * the cause register and then force the other
1002 			 * interrupts and see if any get posted.  If
1003 			 * an interrupt was posted to the bus, the
1004 			 * test failed.
1005 			 */
1006 			adapter->test_icr = 0;
1007 			ew32(IMC, ~mask & 0x00007FFF);
1008 			ew32(ICS, ~mask & 0x00007FFF);
1009 			e1e_flush();
1010 			usleep_range(10000, 20000);
1011 
1012 			if (adapter->test_icr) {
1013 				*data = 5;
1014 				break;
1015 			}
1016 		}
1017 	}
1018 
1019 	/* Disable all the interrupts */
1020 	ew32(IMC, 0xFFFFFFFF);
1021 	e1e_flush();
1022 	usleep_range(10000, 20000);
1023 
1024 	/* Unhook test interrupt handler */
1025 	free_irq(irq, netdev);
1026 
1027 out:
1028 	if (int_mode == E1000E_INT_MODE_MSIX) {
1029 		e1000e_reset_interrupt_capability(adapter);
1030 		adapter->int_mode = int_mode;
1031 		e1000e_set_interrupt_capability(adapter);
1032 	}
1033 
1034 	return ret_val;
1035 }
1036 
1037 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1038 {
1039 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1040 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1041 	struct pci_dev *pdev = adapter->pdev;
1042 	int i;
1043 
1044 	if (tx_ring->desc && tx_ring->buffer_info) {
1045 		for (i = 0; i < tx_ring->count; i++) {
1046 			if (tx_ring->buffer_info[i].dma)
1047 				dma_unmap_single(&pdev->dev,
1048 					tx_ring->buffer_info[i].dma,
1049 					tx_ring->buffer_info[i].length,
1050 					DMA_TO_DEVICE);
1051 			if (tx_ring->buffer_info[i].skb)
1052 				dev_kfree_skb(tx_ring->buffer_info[i].skb);
1053 		}
1054 	}
1055 
1056 	if (rx_ring->desc && rx_ring->buffer_info) {
1057 		for (i = 0; i < rx_ring->count; i++) {
1058 			if (rx_ring->buffer_info[i].dma)
1059 				dma_unmap_single(&pdev->dev,
1060 					rx_ring->buffer_info[i].dma,
1061 					2048, DMA_FROM_DEVICE);
1062 			if (rx_ring->buffer_info[i].skb)
1063 				dev_kfree_skb(rx_ring->buffer_info[i].skb);
1064 		}
1065 	}
1066 
1067 	if (tx_ring->desc) {
1068 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1069 				  tx_ring->dma);
1070 		tx_ring->desc = NULL;
1071 	}
1072 	if (rx_ring->desc) {
1073 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1074 				  rx_ring->dma);
1075 		rx_ring->desc = NULL;
1076 	}
1077 
1078 	kfree(tx_ring->buffer_info);
1079 	tx_ring->buffer_info = NULL;
1080 	kfree(rx_ring->buffer_info);
1081 	rx_ring->buffer_info = NULL;
1082 }
1083 
1084 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1085 {
1086 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1087 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1088 	struct pci_dev *pdev = adapter->pdev;
1089 	struct e1000_hw *hw = &adapter->hw;
1090 	u32 rctl;
1091 	int i;
1092 	int ret_val;
1093 
1094 	/* Setup Tx descriptor ring and Tx buffers */
1095 
1096 	if (!tx_ring->count)
1097 		tx_ring->count = E1000_DEFAULT_TXD;
1098 
1099 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1100 				       sizeof(struct e1000_buffer),
1101 				       GFP_KERNEL);
1102 	if (!tx_ring->buffer_info) {
1103 		ret_val = 1;
1104 		goto err_nomem;
1105 	}
1106 
1107 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1108 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1109 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1110 					   &tx_ring->dma, GFP_KERNEL);
1111 	if (!tx_ring->desc) {
1112 		ret_val = 2;
1113 		goto err_nomem;
1114 	}
1115 	tx_ring->next_to_use = 0;
1116 	tx_ring->next_to_clean = 0;
1117 
1118 	ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1119 	ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1120 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1121 	ew32(TDH(0), 0);
1122 	ew32(TDT(0), 0);
1123 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1124 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1125 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1126 
1127 	for (i = 0; i < tx_ring->count; i++) {
1128 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1129 		struct sk_buff *skb;
1130 		unsigned int skb_size = 1024;
1131 
1132 		skb = alloc_skb(skb_size, GFP_KERNEL);
1133 		if (!skb) {
1134 			ret_val = 3;
1135 			goto err_nomem;
1136 		}
1137 		skb_put(skb, skb_size);
1138 		tx_ring->buffer_info[i].skb = skb;
1139 		tx_ring->buffer_info[i].length = skb->len;
1140 		tx_ring->buffer_info[i].dma =
1141 			dma_map_single(&pdev->dev, skb->data, skb->len,
1142 				       DMA_TO_DEVICE);
1143 		if (dma_mapping_error(&pdev->dev,
1144 				      tx_ring->buffer_info[i].dma)) {
1145 			ret_val = 4;
1146 			goto err_nomem;
1147 		}
1148 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1149 		tx_desc->lower.data = cpu_to_le32(skb->len);
1150 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1151 						   E1000_TXD_CMD_IFCS |
1152 						   E1000_TXD_CMD_RS);
1153 		tx_desc->upper.data = 0;
1154 	}
1155 
1156 	/* Setup Rx descriptor ring and Rx buffers */
1157 
1158 	if (!rx_ring->count)
1159 		rx_ring->count = E1000_DEFAULT_RXD;
1160 
1161 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1162 				       sizeof(struct e1000_buffer),
1163 				       GFP_KERNEL);
1164 	if (!rx_ring->buffer_info) {
1165 		ret_val = 5;
1166 		goto err_nomem;
1167 	}
1168 
1169 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1170 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1171 					   &rx_ring->dma, GFP_KERNEL);
1172 	if (!rx_ring->desc) {
1173 		ret_val = 6;
1174 		goto err_nomem;
1175 	}
1176 	rx_ring->next_to_use = 0;
1177 	rx_ring->next_to_clean = 0;
1178 
1179 	rctl = er32(RCTL);
1180 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1181 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1182 	ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1183 	ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1184 	ew32(RDLEN(0), rx_ring->size);
1185 	ew32(RDH(0), 0);
1186 	ew32(RDT(0), 0);
1187 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1188 		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1189 		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1190 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1191 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1192 	ew32(RCTL, rctl);
1193 
1194 	for (i = 0; i < rx_ring->count; i++) {
1195 		union e1000_rx_desc_extended *rx_desc;
1196 		struct sk_buff *skb;
1197 
1198 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1199 		if (!skb) {
1200 			ret_val = 7;
1201 			goto err_nomem;
1202 		}
1203 		skb_reserve(skb, NET_IP_ALIGN);
1204 		rx_ring->buffer_info[i].skb = skb;
1205 		rx_ring->buffer_info[i].dma =
1206 			dma_map_single(&pdev->dev, skb->data, 2048,
1207 				       DMA_FROM_DEVICE);
1208 		if (dma_mapping_error(&pdev->dev,
1209 				      rx_ring->buffer_info[i].dma)) {
1210 			ret_val = 8;
1211 			goto err_nomem;
1212 		}
1213 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1214 		rx_desc->read.buffer_addr =
1215 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1216 		memset(skb->data, 0x00, skb->len);
1217 	}
1218 
1219 	return 0;
1220 
1221 err_nomem:
1222 	e1000_free_desc_rings(adapter);
1223 	return ret_val;
1224 }
1225 
1226 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1227 {
1228 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1229 	e1e_wphy(&adapter->hw, 29, 0x001F);
1230 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1231 	e1e_wphy(&adapter->hw, 29, 0x001A);
1232 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1233 }
1234 
1235 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1236 {
1237 	struct e1000_hw *hw = &adapter->hw;
1238 	u32 ctrl_reg = 0;
1239 	u16 phy_reg = 0;
1240 	s32 ret_val = 0;
1241 
1242 	hw->mac.autoneg = 0;
1243 
1244 	if (hw->phy.type == e1000_phy_ife) {
1245 		/* force 100, set loopback */
1246 		e1e_wphy(hw, PHY_CONTROL, 0x6100);
1247 
1248 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1249 		ctrl_reg = er32(CTRL);
1250 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1251 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1252 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1253 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1254 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1255 
1256 		ew32(CTRL, ctrl_reg);
1257 		e1e_flush();
1258 		udelay(500);
1259 
1260 		return 0;
1261 	}
1262 
1263 	/* Specific PHY configuration for loopback */
1264 	switch (hw->phy.type) {
1265 	case e1000_phy_m88:
1266 		/* Auto-MDI/MDIX Off */
1267 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1268 		/* reset to update Auto-MDI/MDIX */
1269 		e1e_wphy(hw, PHY_CONTROL, 0x9140);
1270 		/* autoneg off */
1271 		e1e_wphy(hw, PHY_CONTROL, 0x8140);
1272 		break;
1273 	case e1000_phy_gg82563:
1274 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1275 		break;
1276 	case e1000_phy_bm:
1277 		/* Set Default MAC Interface speed to 1GB */
1278 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1279 		phy_reg &= ~0x0007;
1280 		phy_reg |= 0x006;
1281 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1282 		/* Assert SW reset for above settings to take effect */
1283 		e1000e_commit_phy(hw);
1284 		mdelay(1);
1285 		/* Force Full Duplex */
1286 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1287 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1288 		/* Set Link Up (in force link) */
1289 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1290 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1291 		/* Force Link */
1292 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1293 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1294 		/* Set Early Link Enable */
1295 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1296 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1297 		break;
1298 	case e1000_phy_82577:
1299 	case e1000_phy_82578:
1300 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1301 		ret_val = hw->phy.ops.acquire(hw);
1302 		if (ret_val) {
1303 			e_err("Cannot setup 1Gbps loopback.\n");
1304 			return ret_val;
1305 		}
1306 		e1000_configure_k1_ich8lan(hw, false);
1307 		hw->phy.ops.release(hw);
1308 		break;
1309 	case e1000_phy_82579:
1310 		/* Disable PHY energy detect power down */
1311 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1312 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1313 		/* Disable full chip energy detect */
1314 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1315 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1316 		/* Enable loopback on the PHY */
1317 #define I82577_PHY_LBK_CTRL          19
1318 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1319 		break;
1320 	default:
1321 		break;
1322 	}
1323 
1324 	/* force 1000, set loopback */
1325 	e1e_wphy(hw, PHY_CONTROL, 0x4140);
1326 	mdelay(250);
1327 
1328 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1329 	ctrl_reg = er32(CTRL);
1330 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1331 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1332 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1333 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1334 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1335 
1336 	if (adapter->flags & FLAG_IS_ICH)
1337 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1338 
1339 	if (hw->phy.media_type == e1000_media_type_copper &&
1340 	    hw->phy.type == e1000_phy_m88) {
1341 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1342 	} else {
1343 		/*
1344 		 * Set the ILOS bit on the fiber Nic if half duplex link is
1345 		 * detected.
1346 		 */
1347 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1348 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1349 	}
1350 
1351 	ew32(CTRL, ctrl_reg);
1352 
1353 	/*
1354 	 * Disable the receiver on the PHY so when a cable is plugged in, the
1355 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1356 	 */
1357 	if (hw->phy.type == e1000_phy_m88)
1358 		e1000_phy_disable_receiver(adapter);
1359 
1360 	udelay(500);
1361 
1362 	return 0;
1363 }
1364 
1365 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1366 {
1367 	struct e1000_hw *hw = &adapter->hw;
1368 	u32 ctrl = er32(CTRL);
1369 	int link = 0;
1370 
1371 	/* special requirements for 82571/82572 fiber adapters */
1372 
1373 	/*
1374 	 * jump through hoops to make sure link is up because serdes
1375 	 * link is hardwired up
1376 	 */
1377 	ctrl |= E1000_CTRL_SLU;
1378 	ew32(CTRL, ctrl);
1379 
1380 	/* disable autoneg */
1381 	ctrl = er32(TXCW);
1382 	ctrl &= ~(1 << 31);
1383 	ew32(TXCW, ctrl);
1384 
1385 	link = (er32(STATUS) & E1000_STATUS_LU);
1386 
1387 	if (!link) {
1388 		/* set invert loss of signal */
1389 		ctrl = er32(CTRL);
1390 		ctrl |= E1000_CTRL_ILOS;
1391 		ew32(CTRL, ctrl);
1392 	}
1393 
1394 	/*
1395 	 * special write to serdes control register to enable SerDes analog
1396 	 * loopback
1397 	 */
1398 #define E1000_SERDES_LB_ON 0x410
1399 	ew32(SCTL, E1000_SERDES_LB_ON);
1400 	e1e_flush();
1401 	usleep_range(10000, 20000);
1402 
1403 	return 0;
1404 }
1405 
1406 /* only call this for fiber/serdes connections to es2lan */
1407 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1408 {
1409 	struct e1000_hw *hw = &adapter->hw;
1410 	u32 ctrlext = er32(CTRL_EXT);
1411 	u32 ctrl = er32(CTRL);
1412 
1413 	/*
1414 	 * save CTRL_EXT to restore later, reuse an empty variable (unused
1415 	 * on mac_type 80003es2lan)
1416 	 */
1417 	adapter->tx_fifo_head = ctrlext;
1418 
1419 	/* clear the serdes mode bits, putting the device into mac loopback */
1420 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1421 	ew32(CTRL_EXT, ctrlext);
1422 
1423 	/* force speed to 1000/FD, link up */
1424 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1425 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1426 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1427 	ew32(CTRL, ctrl);
1428 
1429 	/* set mac loopback */
1430 	ctrl = er32(RCTL);
1431 	ctrl |= E1000_RCTL_LBM_MAC;
1432 	ew32(RCTL, ctrl);
1433 
1434 	/* set testing mode parameters (no need to reset later) */
1435 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1436 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1437 	ew32(KMRNCTRLSTA,
1438 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1439 
1440 	return 0;
1441 }
1442 
1443 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1444 {
1445 	struct e1000_hw *hw = &adapter->hw;
1446 	u32 rctl;
1447 
1448 	if (hw->phy.media_type == e1000_media_type_fiber ||
1449 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1450 		switch (hw->mac.type) {
1451 		case e1000_80003es2lan:
1452 			return e1000_set_es2lan_mac_loopback(adapter);
1453 			break;
1454 		case e1000_82571:
1455 		case e1000_82572:
1456 			return e1000_set_82571_fiber_loopback(adapter);
1457 			break;
1458 		default:
1459 			rctl = er32(RCTL);
1460 			rctl |= E1000_RCTL_LBM_TCVR;
1461 			ew32(RCTL, rctl);
1462 			return 0;
1463 		}
1464 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1465 		return e1000_integrated_phy_loopback(adapter);
1466 	}
1467 
1468 	return 7;
1469 }
1470 
1471 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1472 {
1473 	struct e1000_hw *hw = &adapter->hw;
1474 	u32 rctl;
1475 	u16 phy_reg;
1476 
1477 	rctl = er32(RCTL);
1478 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1479 	ew32(RCTL, rctl);
1480 
1481 	switch (hw->mac.type) {
1482 	case e1000_80003es2lan:
1483 		if (hw->phy.media_type == e1000_media_type_fiber ||
1484 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1485 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1486 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1487 			adapter->tx_fifo_head = 0;
1488 		}
1489 		/* fall through */
1490 	case e1000_82571:
1491 	case e1000_82572:
1492 		if (hw->phy.media_type == e1000_media_type_fiber ||
1493 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1494 #define E1000_SERDES_LB_OFF 0x400
1495 			ew32(SCTL, E1000_SERDES_LB_OFF);
1496 			e1e_flush();
1497 			usleep_range(10000, 20000);
1498 			break;
1499 		}
1500 		/* Fall Through */
1501 	default:
1502 		hw->mac.autoneg = 1;
1503 		if (hw->phy.type == e1000_phy_gg82563)
1504 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1505 		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1506 		if (phy_reg & MII_CR_LOOPBACK) {
1507 			phy_reg &= ~MII_CR_LOOPBACK;
1508 			e1e_wphy(hw, PHY_CONTROL, phy_reg);
1509 			e1000e_commit_phy(hw);
1510 		}
1511 		break;
1512 	}
1513 }
1514 
1515 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1516 				      unsigned int frame_size)
1517 {
1518 	memset(skb->data, 0xFF, frame_size);
1519 	frame_size &= ~1;
1520 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1521 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1522 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1523 }
1524 
1525 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1526 				    unsigned int frame_size)
1527 {
1528 	frame_size &= ~1;
1529 	if (*(skb->data + 3) == 0xFF)
1530 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1531 		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
1532 			return 0;
1533 	return 13;
1534 }
1535 
1536 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1537 {
1538 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1539 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1540 	struct pci_dev *pdev = adapter->pdev;
1541 	struct e1000_hw *hw = &adapter->hw;
1542 	int i, j, k, l;
1543 	int lc;
1544 	int good_cnt;
1545 	int ret_val = 0;
1546 	unsigned long time;
1547 
1548 	ew32(RDT(0), rx_ring->count - 1);
1549 
1550 	/*
1551 	 * Calculate the loop count based on the largest descriptor ring
1552 	 * The idea is to wrap the largest ring a number of times using 64
1553 	 * send/receive pairs during each loop
1554 	 */
1555 
1556 	if (rx_ring->count <= tx_ring->count)
1557 		lc = ((tx_ring->count / 64) * 2) + 1;
1558 	else
1559 		lc = ((rx_ring->count / 64) * 2) + 1;
1560 
1561 	k = 0;
1562 	l = 0;
1563 	for (j = 0; j <= lc; j++) { /* loop count loop */
1564 		for (i = 0; i < 64; i++) { /* send the packets */
1565 			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1566 						  1024);
1567 			dma_sync_single_for_device(&pdev->dev,
1568 					tx_ring->buffer_info[k].dma,
1569 					tx_ring->buffer_info[k].length,
1570 					DMA_TO_DEVICE);
1571 			k++;
1572 			if (k == tx_ring->count)
1573 				k = 0;
1574 		}
1575 		ew32(TDT(0), k);
1576 		e1e_flush();
1577 		msleep(200);
1578 		time = jiffies; /* set the start time for the receive */
1579 		good_cnt = 0;
1580 		do { /* receive the sent packets */
1581 			dma_sync_single_for_cpu(&pdev->dev,
1582 					rx_ring->buffer_info[l].dma, 2048,
1583 					DMA_FROM_DEVICE);
1584 
1585 			ret_val = e1000_check_lbtest_frame(
1586 					rx_ring->buffer_info[l].skb, 1024);
1587 			if (!ret_val)
1588 				good_cnt++;
1589 			l++;
1590 			if (l == rx_ring->count)
1591 				l = 0;
1592 			/*
1593 			 * time + 20 msecs (200 msecs on 2.4) is more than
1594 			 * enough time to complete the receives, if it's
1595 			 * exceeded, break and error off
1596 			 */
1597 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1598 		if (good_cnt != 64) {
1599 			ret_val = 13; /* ret_val is the same as mis-compare */
1600 			break;
1601 		}
1602 		if (jiffies >= (time + 20)) {
1603 			ret_val = 14; /* error code for time out error */
1604 			break;
1605 		}
1606 	} /* end loop count loop */
1607 	return ret_val;
1608 }
1609 
1610 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1611 {
1612 	struct e1000_hw *hw = &adapter->hw;
1613 
1614 	/*
1615 	 * PHY loopback cannot be performed if SoL/IDER
1616 	 * sessions are active
1617 	 */
1618 	if (hw->phy.ops.check_reset_block(hw)) {
1619 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1620 		*data = 0;
1621 		goto out;
1622 	}
1623 
1624 	*data = e1000_setup_desc_rings(adapter);
1625 	if (*data)
1626 		goto out;
1627 
1628 	*data = e1000_setup_loopback_test(adapter);
1629 	if (*data)
1630 		goto err_loopback;
1631 
1632 	*data = e1000_run_loopback_test(adapter);
1633 	e1000_loopback_cleanup(adapter);
1634 
1635 err_loopback:
1636 	e1000_free_desc_rings(adapter);
1637 out:
1638 	return *data;
1639 }
1640 
1641 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1642 {
1643 	struct e1000_hw *hw = &adapter->hw;
1644 
1645 	*data = 0;
1646 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1647 		int i = 0;
1648 		hw->mac.serdes_has_link = false;
1649 
1650 		/*
1651 		 * On some blade server designs, link establishment
1652 		 * could take as long as 2-3 minutes
1653 		 */
1654 		do {
1655 			hw->mac.ops.check_for_link(hw);
1656 			if (hw->mac.serdes_has_link)
1657 				return *data;
1658 			msleep(20);
1659 		} while (i++ < 3750);
1660 
1661 		*data = 1;
1662 	} else {
1663 		hw->mac.ops.check_for_link(hw);
1664 		if (hw->mac.autoneg)
1665 			/*
1666 			 * On some Phy/switch combinations, link establishment
1667 			 * can take a few seconds more than expected.
1668 			 */
1669 			msleep(5000);
1670 
1671 		if (!(er32(STATUS) & E1000_STATUS_LU))
1672 			*data = 1;
1673 	}
1674 	return *data;
1675 }
1676 
1677 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1678 {
1679 	switch (sset) {
1680 	case ETH_SS_TEST:
1681 		return E1000_TEST_LEN;
1682 	case ETH_SS_STATS:
1683 		return E1000_STATS_LEN;
1684 	default:
1685 		return -EOPNOTSUPP;
1686 	}
1687 }
1688 
1689 static void e1000_diag_test(struct net_device *netdev,
1690 			    struct ethtool_test *eth_test, u64 *data)
1691 {
1692 	struct e1000_adapter *adapter = netdev_priv(netdev);
1693 	u16 autoneg_advertised;
1694 	u8 forced_speed_duplex;
1695 	u8 autoneg;
1696 	bool if_running = netif_running(netdev);
1697 
1698 	set_bit(__E1000_TESTING, &adapter->state);
1699 
1700 	if (!if_running) {
1701 		/* Get control of and reset hardware */
1702 		if (adapter->flags & FLAG_HAS_AMT)
1703 			e1000e_get_hw_control(adapter);
1704 
1705 		e1000e_power_up_phy(adapter);
1706 
1707 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1708 		e1000e_reset(adapter);
1709 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1710 	}
1711 
1712 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1713 		/* Offline tests */
1714 
1715 		/* save speed, duplex, autoneg settings */
1716 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1717 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1718 		autoneg = adapter->hw.mac.autoneg;
1719 
1720 		e_info("offline testing starting\n");
1721 
1722 		if (if_running)
1723 			/* indicate we're in test mode */
1724 			dev_close(netdev);
1725 
1726 		if (e1000_reg_test(adapter, &data[0]))
1727 			eth_test->flags |= ETH_TEST_FL_FAILED;
1728 
1729 		e1000e_reset(adapter);
1730 		if (e1000_eeprom_test(adapter, &data[1]))
1731 			eth_test->flags |= ETH_TEST_FL_FAILED;
1732 
1733 		e1000e_reset(adapter);
1734 		if (e1000_intr_test(adapter, &data[2]))
1735 			eth_test->flags |= ETH_TEST_FL_FAILED;
1736 
1737 		e1000e_reset(adapter);
1738 		if (e1000_loopback_test(adapter, &data[3]))
1739 			eth_test->flags |= ETH_TEST_FL_FAILED;
1740 
1741 		/* force this routine to wait until autoneg complete/timeout */
1742 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1743 		e1000e_reset(adapter);
1744 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1745 
1746 		if (e1000_link_test(adapter, &data[4]))
1747 			eth_test->flags |= ETH_TEST_FL_FAILED;
1748 
1749 		/* restore speed, duplex, autoneg settings */
1750 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1751 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1752 		adapter->hw.mac.autoneg = autoneg;
1753 		e1000e_reset(adapter);
1754 
1755 		clear_bit(__E1000_TESTING, &adapter->state);
1756 		if (if_running)
1757 			dev_open(netdev);
1758 	} else {
1759 		/* Online tests */
1760 
1761 		e_info("online testing starting\n");
1762 
1763 		/* register, eeprom, intr and loopback tests not run online */
1764 		data[0] = 0;
1765 		data[1] = 0;
1766 		data[2] = 0;
1767 		data[3] = 0;
1768 
1769 		if (e1000_link_test(adapter, &data[4]))
1770 			eth_test->flags |= ETH_TEST_FL_FAILED;
1771 
1772 		clear_bit(__E1000_TESTING, &adapter->state);
1773 	}
1774 
1775 	if (!if_running) {
1776 		e1000e_reset(adapter);
1777 
1778 		if (adapter->flags & FLAG_HAS_AMT)
1779 			e1000e_release_hw_control(adapter);
1780 	}
1781 
1782 	msleep_interruptible(4 * 1000);
1783 }
1784 
1785 static void e1000_get_wol(struct net_device *netdev,
1786 			  struct ethtool_wolinfo *wol)
1787 {
1788 	struct e1000_adapter *adapter = netdev_priv(netdev);
1789 
1790 	wol->supported = 0;
1791 	wol->wolopts = 0;
1792 
1793 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1794 	    !device_can_wakeup(&adapter->pdev->dev))
1795 		return;
1796 
1797 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1798 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1799 
1800 	/* apply any specific unsupported masks here */
1801 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1802 		wol->supported &= ~WAKE_UCAST;
1803 
1804 		if (adapter->wol & E1000_WUFC_EX)
1805 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1806 	}
1807 
1808 	if (adapter->wol & E1000_WUFC_EX)
1809 		wol->wolopts |= WAKE_UCAST;
1810 	if (adapter->wol & E1000_WUFC_MC)
1811 		wol->wolopts |= WAKE_MCAST;
1812 	if (adapter->wol & E1000_WUFC_BC)
1813 		wol->wolopts |= WAKE_BCAST;
1814 	if (adapter->wol & E1000_WUFC_MAG)
1815 		wol->wolopts |= WAKE_MAGIC;
1816 	if (adapter->wol & E1000_WUFC_LNKC)
1817 		wol->wolopts |= WAKE_PHY;
1818 }
1819 
1820 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1821 {
1822 	struct e1000_adapter *adapter = netdev_priv(netdev);
1823 
1824 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1825 	    !device_can_wakeup(&adapter->pdev->dev) ||
1826 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1827 			      WAKE_MAGIC | WAKE_PHY)))
1828 		return -EOPNOTSUPP;
1829 
1830 	/* these settings will always override what we currently have */
1831 	adapter->wol = 0;
1832 
1833 	if (wol->wolopts & WAKE_UCAST)
1834 		adapter->wol |= E1000_WUFC_EX;
1835 	if (wol->wolopts & WAKE_MCAST)
1836 		adapter->wol |= E1000_WUFC_MC;
1837 	if (wol->wolopts & WAKE_BCAST)
1838 		adapter->wol |= E1000_WUFC_BC;
1839 	if (wol->wolopts & WAKE_MAGIC)
1840 		adapter->wol |= E1000_WUFC_MAG;
1841 	if (wol->wolopts & WAKE_PHY)
1842 		adapter->wol |= E1000_WUFC_LNKC;
1843 
1844 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1845 
1846 	return 0;
1847 }
1848 
1849 static int e1000_set_phys_id(struct net_device *netdev,
1850 			     enum ethtool_phys_id_state state)
1851 {
1852 	struct e1000_adapter *adapter = netdev_priv(netdev);
1853 	struct e1000_hw *hw = &adapter->hw;
1854 
1855 	switch (state) {
1856 	case ETHTOOL_ID_ACTIVE:
1857 		if (!hw->mac.ops.blink_led)
1858 			return 2;	/* cycle on/off twice per second */
1859 
1860 		hw->mac.ops.blink_led(hw);
1861 		break;
1862 
1863 	case ETHTOOL_ID_INACTIVE:
1864 		if (hw->phy.type == e1000_phy_ife)
1865 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1866 		hw->mac.ops.led_off(hw);
1867 		hw->mac.ops.cleanup_led(hw);
1868 		break;
1869 
1870 	case ETHTOOL_ID_ON:
1871 		hw->mac.ops.led_on(hw);
1872 		break;
1873 
1874 	case ETHTOOL_ID_OFF:
1875 		hw->mac.ops.led_off(hw);
1876 		break;
1877 	}
1878 	return 0;
1879 }
1880 
1881 static int e1000_get_coalesce(struct net_device *netdev,
1882 			      struct ethtool_coalesce *ec)
1883 {
1884 	struct e1000_adapter *adapter = netdev_priv(netdev);
1885 
1886 	if (adapter->itr_setting <= 4)
1887 		ec->rx_coalesce_usecs = adapter->itr_setting;
1888 	else
1889 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1890 
1891 	return 0;
1892 }
1893 
1894 static int e1000_set_coalesce(struct net_device *netdev,
1895 			      struct ethtool_coalesce *ec)
1896 {
1897 	struct e1000_adapter *adapter = netdev_priv(netdev);
1898 	struct e1000_hw *hw = &adapter->hw;
1899 
1900 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1901 	    ((ec->rx_coalesce_usecs > 4) &&
1902 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1903 	    (ec->rx_coalesce_usecs == 2))
1904 		return -EINVAL;
1905 
1906 	if (ec->rx_coalesce_usecs == 4) {
1907 		adapter->itr = adapter->itr_setting = 4;
1908 	} else if (ec->rx_coalesce_usecs <= 3) {
1909 		adapter->itr = 20000;
1910 		adapter->itr_setting = ec->rx_coalesce_usecs;
1911 	} else {
1912 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1913 		adapter->itr_setting = adapter->itr & ~3;
1914 	}
1915 
1916 	if (adapter->itr_setting != 0)
1917 		ew32(ITR, 1000000000 / (adapter->itr * 256));
1918 	else
1919 		ew32(ITR, 0);
1920 
1921 	return 0;
1922 }
1923 
1924 static int e1000_nway_reset(struct net_device *netdev)
1925 {
1926 	struct e1000_adapter *adapter = netdev_priv(netdev);
1927 
1928 	if (!netif_running(netdev))
1929 		return -EAGAIN;
1930 
1931 	if (!adapter->hw.mac.autoneg)
1932 		return -EINVAL;
1933 
1934 	e1000e_reinit_locked(adapter);
1935 
1936 	return 0;
1937 }
1938 
1939 static void e1000_get_ethtool_stats(struct net_device *netdev,
1940 				    struct ethtool_stats *stats,
1941 				    u64 *data)
1942 {
1943 	struct e1000_adapter *adapter = netdev_priv(netdev);
1944 	struct rtnl_link_stats64 net_stats;
1945 	int i;
1946 	char *p = NULL;
1947 
1948 	e1000e_get_stats64(netdev, &net_stats);
1949 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1950 		switch (e1000_gstrings_stats[i].type) {
1951 		case NETDEV_STATS:
1952 			p = (char *) &net_stats +
1953 					e1000_gstrings_stats[i].stat_offset;
1954 			break;
1955 		case E1000_STATS:
1956 			p = (char *) adapter +
1957 					e1000_gstrings_stats[i].stat_offset;
1958 			break;
1959 		default:
1960 			data[i] = 0;
1961 			continue;
1962 		}
1963 
1964 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1965 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1966 	}
1967 }
1968 
1969 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1970 			      u8 *data)
1971 {
1972 	u8 *p = data;
1973 	int i;
1974 
1975 	switch (stringset) {
1976 	case ETH_SS_TEST:
1977 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1978 		break;
1979 	case ETH_SS_STATS:
1980 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1981 			memcpy(p, e1000_gstrings_stats[i].stat_string,
1982 			       ETH_GSTRING_LEN);
1983 			p += ETH_GSTRING_LEN;
1984 		}
1985 		break;
1986 	}
1987 }
1988 
1989 static int e1000_get_rxnfc(struct net_device *netdev,
1990 			   struct ethtool_rxnfc *info, u32 *rule_locs)
1991 {
1992 	info->data = 0;
1993 
1994 	switch (info->cmd) {
1995 	case ETHTOOL_GRXFH: {
1996 		struct e1000_adapter *adapter = netdev_priv(netdev);
1997 		struct e1000_hw *hw = &adapter->hw;
1998 		u32 mrqc = er32(MRQC);
1999 
2000 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2001 			return 0;
2002 
2003 		switch (info->flow_type) {
2004 		case TCP_V4_FLOW:
2005 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2006 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2007 			/* fall through */
2008 		case UDP_V4_FLOW:
2009 		case SCTP_V4_FLOW:
2010 		case AH_ESP_V4_FLOW:
2011 		case IPV4_FLOW:
2012 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2013 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2014 			break;
2015 		case TCP_V6_FLOW:
2016 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2017 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2018 			/* fall through */
2019 		case UDP_V6_FLOW:
2020 		case SCTP_V6_FLOW:
2021 		case AH_ESP_V6_FLOW:
2022 		case IPV6_FLOW:
2023 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2024 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2025 			break;
2026 		default:
2027 			break;
2028 		}
2029 		return 0;
2030 	}
2031 	default:
2032 		return -EOPNOTSUPP;
2033 	}
2034 }
2035 
2036 static const struct ethtool_ops e1000_ethtool_ops = {
2037 	.get_settings		= e1000_get_settings,
2038 	.set_settings		= e1000_set_settings,
2039 	.get_drvinfo		= e1000_get_drvinfo,
2040 	.get_regs_len		= e1000_get_regs_len,
2041 	.get_regs		= e1000_get_regs,
2042 	.get_wol		= e1000_get_wol,
2043 	.set_wol		= e1000_set_wol,
2044 	.get_msglevel		= e1000_get_msglevel,
2045 	.set_msglevel		= e1000_set_msglevel,
2046 	.nway_reset		= e1000_nway_reset,
2047 	.get_link		= ethtool_op_get_link,
2048 	.get_eeprom_len		= e1000_get_eeprom_len,
2049 	.get_eeprom		= e1000_get_eeprom,
2050 	.set_eeprom		= e1000_set_eeprom,
2051 	.get_ringparam		= e1000_get_ringparam,
2052 	.set_ringparam		= e1000_set_ringparam,
2053 	.get_pauseparam		= e1000_get_pauseparam,
2054 	.set_pauseparam		= e1000_set_pauseparam,
2055 	.self_test		= e1000_diag_test,
2056 	.get_strings		= e1000_get_strings,
2057 	.set_phys_id		= e1000_set_phys_id,
2058 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2059 	.get_sset_count		= e1000e_get_sset_count,
2060 	.get_coalesce		= e1000_get_coalesce,
2061 	.set_coalesce		= e1000_set_coalesce,
2062 	.get_rxnfc		= e1000_get_rxnfc,
2063 };
2064 
2065 void e1000e_set_ethtool_ops(struct net_device *netdev)
2066 {
2067 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2068 }
2069