xref: /openbmc/linux/drivers/net/ethernet/intel/e1000e/ethtool.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mdio.h>
39 
40 #include "e1000.h"
41 
42 enum {NETDEV_STATS, E1000_STATS};
43 
44 struct e1000_stats {
45 	char stat_string[ETH_GSTRING_LEN];
46 	int type;
47 	int sizeof_stat;
48 	int stat_offset;
49 };
50 
51 #define E1000_STAT(str, m) { \
52 		.stat_string = str, \
53 		.type = E1000_STATS, \
54 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
55 		.stat_offset = offsetof(struct e1000_adapter, m) }
56 #define E1000_NETDEV_STAT(str, m) { \
57 		.stat_string = str, \
58 		.type = NETDEV_STATS, \
59 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
60 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
61 
62 static const struct e1000_stats e1000_gstrings_stats[] = {
63 	E1000_STAT("rx_packets", stats.gprc),
64 	E1000_STAT("tx_packets", stats.gptc),
65 	E1000_STAT("rx_bytes", stats.gorc),
66 	E1000_STAT("tx_bytes", stats.gotc),
67 	E1000_STAT("rx_broadcast", stats.bprc),
68 	E1000_STAT("tx_broadcast", stats.bptc),
69 	E1000_STAT("rx_multicast", stats.mprc),
70 	E1000_STAT("tx_multicast", stats.mptc),
71 	E1000_NETDEV_STAT("rx_errors", rx_errors),
72 	E1000_NETDEV_STAT("tx_errors", tx_errors),
73 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
74 	E1000_STAT("multicast", stats.mprc),
75 	E1000_STAT("collisions", stats.colc),
76 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
77 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
78 	E1000_STAT("rx_crc_errors", stats.crcerrs),
79 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
80 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
81 	E1000_STAT("rx_missed_errors", stats.mpc),
82 	E1000_STAT("tx_aborted_errors", stats.ecol),
83 	E1000_STAT("tx_carrier_errors", stats.tncrs),
84 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
85 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
86 	E1000_STAT("tx_window_errors", stats.latecol),
87 	E1000_STAT("tx_abort_late_coll", stats.latecol),
88 	E1000_STAT("tx_deferred_ok", stats.dc),
89 	E1000_STAT("tx_single_coll_ok", stats.scc),
90 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
91 	E1000_STAT("tx_timeout_count", tx_timeout_count),
92 	E1000_STAT("tx_restart_queue", restart_queue),
93 	E1000_STAT("rx_long_length_errors", stats.roc),
94 	E1000_STAT("rx_short_length_errors", stats.ruc),
95 	E1000_STAT("rx_align_errors", stats.algnerrc),
96 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
97 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
98 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
99 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
100 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
101 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
102 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
103 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104 	E1000_STAT("rx_header_split", rx_hdr_split),
105 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106 	E1000_STAT("tx_smbus", stats.mgptc),
107 	E1000_STAT("rx_smbus", stats.mgprc),
108 	E1000_STAT("dropped_smbus", stats.mgpdc),
109 	E1000_STAT("rx_dma_failed", rx_dma_failed),
110 	E1000_STAT("tx_dma_failed", tx_dma_failed),
111 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
112 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
113 	E1000_STAT("corr_ecc_errors", corr_errors),
114 };
115 
116 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
119 	"Register test  (offline)", "Eeprom test    (offline)",
120 	"Interrupt test (offline)", "Loopback test  (offline)",
121 	"Link test   (on/offline)"
122 };
123 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
124 
125 static int e1000_get_settings(struct net_device *netdev,
126 			      struct ethtool_cmd *ecmd)
127 {
128 	struct e1000_adapter *adapter = netdev_priv(netdev);
129 	struct e1000_hw *hw = &adapter->hw;
130 	u32 speed;
131 
132 	if (hw->phy.media_type == e1000_media_type_copper) {
133 		ecmd->supported = (SUPPORTED_10baseT_Half |
134 				   SUPPORTED_10baseT_Full |
135 				   SUPPORTED_100baseT_Half |
136 				   SUPPORTED_100baseT_Full |
137 				   SUPPORTED_1000baseT_Full |
138 				   SUPPORTED_Autoneg |
139 				   SUPPORTED_TP);
140 		if (hw->phy.type == e1000_phy_ife)
141 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
142 		ecmd->advertising = ADVERTISED_TP;
143 
144 		if (hw->mac.autoneg == 1) {
145 			ecmd->advertising |= ADVERTISED_Autoneg;
146 			/* the e1000 autoneg seems to match ethtool nicely */
147 			ecmd->advertising |= hw->phy.autoneg_advertised;
148 		}
149 
150 		ecmd->port = PORT_TP;
151 		ecmd->phy_address = hw->phy.addr;
152 		ecmd->transceiver = XCVR_INTERNAL;
153 
154 	} else {
155 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
156 				     SUPPORTED_FIBRE |
157 				     SUPPORTED_Autoneg);
158 
159 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
160 				     ADVERTISED_FIBRE |
161 				     ADVERTISED_Autoneg);
162 
163 		ecmd->port = PORT_FIBRE;
164 		ecmd->transceiver = XCVR_EXTERNAL;
165 	}
166 
167 	speed = -1;
168 	ecmd->duplex = -1;
169 
170 	if (netif_running(netdev)) {
171 		if (netif_carrier_ok(netdev)) {
172 			speed = adapter->link_speed;
173 			ecmd->duplex = adapter->link_duplex - 1;
174 		}
175 	} else {
176 		u32 status = er32(STATUS);
177 		if (status & E1000_STATUS_LU) {
178 			if (status & E1000_STATUS_SPEED_1000)
179 				speed = SPEED_1000;
180 			else if (status & E1000_STATUS_SPEED_100)
181 				speed = SPEED_100;
182 			else
183 				speed = SPEED_10;
184 
185 			if (status & E1000_STATUS_FD)
186 				ecmd->duplex = DUPLEX_FULL;
187 			else
188 				ecmd->duplex = DUPLEX_HALF;
189 		}
190 	}
191 
192 	ethtool_cmd_speed_set(ecmd, speed);
193 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
194 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
195 
196 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
197 	if ((hw->phy.media_type == e1000_media_type_copper) &&
198 	    netif_carrier_ok(netdev))
199 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
200 		                                      ETH_TP_MDI;
201 	else
202 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
203 
204 	if (hw->phy.mdix == AUTO_ALL_MODES)
205 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
206 	else
207 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
208 
209 	return 0;
210 }
211 
212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
213 {
214 	struct e1000_mac_info *mac = &adapter->hw.mac;
215 
216 	mac->autoneg = 0;
217 
218 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
219 	 * for the switch() below to work
220 	 */
221 	if ((spd & 1) || (dplx & ~1))
222 		goto err_inval;
223 
224 	/* Fiber NICs only allow 1000 gbps Full duplex */
225 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
226 	    spd != SPEED_1000 &&
227 	    dplx != DUPLEX_FULL) {
228 		goto err_inval;
229 	}
230 
231 	switch (spd + dplx) {
232 	case SPEED_10 + DUPLEX_HALF:
233 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
234 		break;
235 	case SPEED_10 + DUPLEX_FULL:
236 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
237 		break;
238 	case SPEED_100 + DUPLEX_HALF:
239 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
240 		break;
241 	case SPEED_100 + DUPLEX_FULL:
242 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
243 		break;
244 	case SPEED_1000 + DUPLEX_FULL:
245 		mac->autoneg = 1;
246 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
247 		break;
248 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
249 	default:
250 		goto err_inval;
251 	}
252 
253 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
254 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
255 
256 	return 0;
257 
258 err_inval:
259 	e_err("Unsupported Speed/Duplex configuration\n");
260 	return -EINVAL;
261 }
262 
263 static int e1000_set_settings(struct net_device *netdev,
264 			      struct ethtool_cmd *ecmd)
265 {
266 	struct e1000_adapter *adapter = netdev_priv(netdev);
267 	struct e1000_hw *hw = &adapter->hw;
268 
269 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
270 	 * cannot be changed
271 	 */
272 	if (hw->phy.ops.check_reset_block &&
273 	    hw->phy.ops.check_reset_block(hw)) {
274 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
275 		return -EINVAL;
276 	}
277 
278 	/* MDI setting is only allowed when autoneg enabled because
279 	 * some hardware doesn't allow MDI setting when speed or
280 	 * duplex is forced.
281 	 */
282 	if (ecmd->eth_tp_mdix_ctrl) {
283 		if (hw->phy.media_type != e1000_media_type_copper)
284 			return -EOPNOTSUPP;
285 
286 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
287 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
288 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
289 			return -EINVAL;
290 		}
291 	}
292 
293 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
294 		usleep_range(1000, 2000);
295 
296 	if (ecmd->autoneg == AUTONEG_ENABLE) {
297 		hw->mac.autoneg = 1;
298 		if (hw->phy.media_type == e1000_media_type_fiber)
299 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
300 						     ADVERTISED_FIBRE |
301 						     ADVERTISED_Autoneg;
302 		else
303 			hw->phy.autoneg_advertised = ecmd->advertising |
304 						     ADVERTISED_TP |
305 						     ADVERTISED_Autoneg;
306 		ecmd->advertising = hw->phy.autoneg_advertised;
307 		if (adapter->fc_autoneg)
308 			hw->fc.requested_mode = e1000_fc_default;
309 	} else {
310 		u32 speed = ethtool_cmd_speed(ecmd);
311 		/* calling this overrides forced MDI setting */
312 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
313 			clear_bit(__E1000_RESETTING, &adapter->state);
314 			return -EINVAL;
315 		}
316 	}
317 
318 	/* MDI-X => 2; MDI => 1; Auto => 3 */
319 	if (ecmd->eth_tp_mdix_ctrl) {
320 		/* fix up the value for auto (3 => 0) as zero is mapped
321 		 * internally to auto
322 		 */
323 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
324 			hw->phy.mdix = AUTO_ALL_MODES;
325 		else
326 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
327 	}
328 
329 	/* reset the link */
330 	if (netif_running(adapter->netdev)) {
331 		e1000e_down(adapter);
332 		e1000e_up(adapter);
333 	} else {
334 		e1000e_reset(adapter);
335 	}
336 
337 	clear_bit(__E1000_RESETTING, &adapter->state);
338 	return 0;
339 }
340 
341 static void e1000_get_pauseparam(struct net_device *netdev,
342 				 struct ethtool_pauseparam *pause)
343 {
344 	struct e1000_adapter *adapter = netdev_priv(netdev);
345 	struct e1000_hw *hw = &adapter->hw;
346 
347 	pause->autoneg =
348 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
349 
350 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
351 		pause->rx_pause = 1;
352 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
353 		pause->tx_pause = 1;
354 	} else if (hw->fc.current_mode == e1000_fc_full) {
355 		pause->rx_pause = 1;
356 		pause->tx_pause = 1;
357 	}
358 }
359 
360 static int e1000_set_pauseparam(struct net_device *netdev,
361 				struct ethtool_pauseparam *pause)
362 {
363 	struct e1000_adapter *adapter = netdev_priv(netdev);
364 	struct e1000_hw *hw = &adapter->hw;
365 	int retval = 0;
366 
367 	adapter->fc_autoneg = pause->autoneg;
368 
369 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
370 		usleep_range(1000, 2000);
371 
372 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
373 		hw->fc.requested_mode = e1000_fc_default;
374 		if (netif_running(adapter->netdev)) {
375 			e1000e_down(adapter);
376 			e1000e_up(adapter);
377 		} else {
378 			e1000e_reset(adapter);
379 		}
380 	} else {
381 		if (pause->rx_pause && pause->tx_pause)
382 			hw->fc.requested_mode = e1000_fc_full;
383 		else if (pause->rx_pause && !pause->tx_pause)
384 			hw->fc.requested_mode = e1000_fc_rx_pause;
385 		else if (!pause->rx_pause && pause->tx_pause)
386 			hw->fc.requested_mode = e1000_fc_tx_pause;
387 		else if (!pause->rx_pause && !pause->tx_pause)
388 			hw->fc.requested_mode = e1000_fc_none;
389 
390 		hw->fc.current_mode = hw->fc.requested_mode;
391 
392 		if (hw->phy.media_type == e1000_media_type_fiber) {
393 			retval = hw->mac.ops.setup_link(hw);
394 			/* implicit goto out */
395 		} else {
396 			retval = e1000e_force_mac_fc(hw);
397 			if (retval)
398 				goto out;
399 			e1000e_set_fc_watermarks(hw);
400 		}
401 	}
402 
403 out:
404 	clear_bit(__E1000_RESETTING, &adapter->state);
405 	return retval;
406 }
407 
408 static u32 e1000_get_msglevel(struct net_device *netdev)
409 {
410 	struct e1000_adapter *adapter = netdev_priv(netdev);
411 	return adapter->msg_enable;
412 }
413 
414 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
415 {
416 	struct e1000_adapter *adapter = netdev_priv(netdev);
417 	adapter->msg_enable = data;
418 }
419 
420 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
421 {
422 #define E1000_REGS_LEN 32 /* overestimate */
423 	return E1000_REGS_LEN * sizeof(u32);
424 }
425 
426 static void e1000_get_regs(struct net_device *netdev,
427 			   struct ethtool_regs *regs, void *p)
428 {
429 	struct e1000_adapter *adapter = netdev_priv(netdev);
430 	struct e1000_hw *hw = &adapter->hw;
431 	u32 *regs_buff = p;
432 	u16 phy_data;
433 
434 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
435 
436 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
437 			adapter->pdev->device;
438 
439 	regs_buff[0]  = er32(CTRL);
440 	regs_buff[1]  = er32(STATUS);
441 
442 	regs_buff[2]  = er32(RCTL);
443 	regs_buff[3]  = er32(RDLEN(0));
444 	regs_buff[4]  = er32(RDH(0));
445 	regs_buff[5]  = er32(RDT(0));
446 	regs_buff[6]  = er32(RDTR);
447 
448 	regs_buff[7]  = er32(TCTL);
449 	regs_buff[8]  = er32(TDLEN(0));
450 	regs_buff[9]  = er32(TDH(0));
451 	regs_buff[10] = er32(TDT(0));
452 	regs_buff[11] = er32(TIDV);
453 
454 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
455 
456 	/* ethtool doesn't use anything past this point, so all this
457 	 * code is likely legacy junk for apps that may or may not exist
458 	 */
459 	if (hw->phy.type == e1000_phy_m88) {
460 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
461 		regs_buff[13] = (u32)phy_data; /* cable length */
462 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
463 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
464 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
465 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
466 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
467 		regs_buff[18] = regs_buff[13]; /* cable polarity */
468 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
469 		regs_buff[20] = regs_buff[17]; /* polarity correction */
470 		/* phy receive errors */
471 		regs_buff[22] = adapter->phy_stats.receive_errors;
472 		regs_buff[23] = regs_buff[13]; /* mdix mode */
473 	}
474 	regs_buff[21] = 0;	/* was idle_errors */
475 	e1e_rphy(hw, MII_STAT1000, &phy_data);
476 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
477 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
478 }
479 
480 static int e1000_get_eeprom_len(struct net_device *netdev)
481 {
482 	struct e1000_adapter *adapter = netdev_priv(netdev);
483 	return adapter->hw.nvm.word_size * 2;
484 }
485 
486 static int e1000_get_eeprom(struct net_device *netdev,
487 			    struct ethtool_eeprom *eeprom, u8 *bytes)
488 {
489 	struct e1000_adapter *adapter = netdev_priv(netdev);
490 	struct e1000_hw *hw = &adapter->hw;
491 	u16 *eeprom_buff;
492 	int first_word;
493 	int last_word;
494 	int ret_val = 0;
495 	u16 i;
496 
497 	if (eeprom->len == 0)
498 		return -EINVAL;
499 
500 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
501 
502 	first_word = eeprom->offset >> 1;
503 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
504 
505 	eeprom_buff = kmalloc(sizeof(u16) *
506 			(last_word - first_word + 1), GFP_KERNEL);
507 	if (!eeprom_buff)
508 		return -ENOMEM;
509 
510 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
511 		ret_val = e1000_read_nvm(hw, first_word,
512 					 last_word - first_word + 1,
513 					 eeprom_buff);
514 	} else {
515 		for (i = 0; i < last_word - first_word + 1; i++) {
516 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
517 						      &eeprom_buff[i]);
518 			if (ret_val)
519 				break;
520 		}
521 	}
522 
523 	if (ret_val) {
524 		/* a read error occurred, throw away the result */
525 		memset(eeprom_buff, 0xff, sizeof(u16) *
526 		       (last_word - first_word + 1));
527 	} else {
528 		/* Device's eeprom is always little-endian, word addressable */
529 		for (i = 0; i < last_word - first_word + 1; i++)
530 			le16_to_cpus(&eeprom_buff[i]);
531 	}
532 
533 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
534 	kfree(eeprom_buff);
535 
536 	return ret_val;
537 }
538 
539 static int e1000_set_eeprom(struct net_device *netdev,
540 			    struct ethtool_eeprom *eeprom, u8 *bytes)
541 {
542 	struct e1000_adapter *adapter = netdev_priv(netdev);
543 	struct e1000_hw *hw = &adapter->hw;
544 	u16 *eeprom_buff;
545 	void *ptr;
546 	int max_len;
547 	int first_word;
548 	int last_word;
549 	int ret_val = 0;
550 	u16 i;
551 
552 	if (eeprom->len == 0)
553 		return -EOPNOTSUPP;
554 
555 	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
556 		return -EFAULT;
557 
558 	if (adapter->flags & FLAG_READ_ONLY_NVM)
559 		return -EINVAL;
560 
561 	max_len = hw->nvm.word_size * 2;
562 
563 	first_word = eeprom->offset >> 1;
564 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
565 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
566 	if (!eeprom_buff)
567 		return -ENOMEM;
568 
569 	ptr = (void *)eeprom_buff;
570 
571 	if (eeprom->offset & 1) {
572 		/* need read/modify/write of first changed EEPROM word */
573 		/* only the second byte of the word is being modified */
574 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
575 		ptr++;
576 	}
577 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
578 		/* need read/modify/write of last changed EEPROM word */
579 		/* only the first byte of the word is being modified */
580 		ret_val = e1000_read_nvm(hw, last_word, 1,
581 				  &eeprom_buff[last_word - first_word]);
582 
583 	if (ret_val)
584 		goto out;
585 
586 	/* Device's eeprom is always little-endian, word addressable */
587 	for (i = 0; i < last_word - first_word + 1; i++)
588 		le16_to_cpus(&eeprom_buff[i]);
589 
590 	memcpy(ptr, bytes, eeprom->len);
591 
592 	for (i = 0; i < last_word - first_word + 1; i++)
593 		cpu_to_le16s(&eeprom_buff[i]);
594 
595 	ret_val = e1000_write_nvm(hw, first_word,
596 				  last_word - first_word + 1, eeprom_buff);
597 
598 	if (ret_val)
599 		goto out;
600 
601 	/* Update the checksum over the first part of the EEPROM if needed
602 	 * and flush shadow RAM for applicable controllers
603 	 */
604 	if ((first_word <= NVM_CHECKSUM_REG) ||
605 	    (hw->mac.type == e1000_82583) ||
606 	    (hw->mac.type == e1000_82574) ||
607 	    (hw->mac.type == e1000_82573))
608 		ret_val = e1000e_update_nvm_checksum(hw);
609 
610 out:
611 	kfree(eeprom_buff);
612 	return ret_val;
613 }
614 
615 static void e1000_get_drvinfo(struct net_device *netdev,
616 			      struct ethtool_drvinfo *drvinfo)
617 {
618 	struct e1000_adapter *adapter = netdev_priv(netdev);
619 
620 	strlcpy(drvinfo->driver,  e1000e_driver_name,
621 		sizeof(drvinfo->driver));
622 	strlcpy(drvinfo->version, e1000e_driver_version,
623 		sizeof(drvinfo->version));
624 
625 	/* EEPROM image version # is reported as firmware version # for
626 	 * PCI-E controllers
627 	 */
628 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
629 		"%d.%d-%d",
630 		(adapter->eeprom_vers & 0xF000) >> 12,
631 		(adapter->eeprom_vers & 0x0FF0) >> 4,
632 		(adapter->eeprom_vers & 0x000F));
633 
634 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
635 		sizeof(drvinfo->bus_info));
636 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
637 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
638 }
639 
640 static void e1000_get_ringparam(struct net_device *netdev,
641 				struct ethtool_ringparam *ring)
642 {
643 	struct e1000_adapter *adapter = netdev_priv(netdev);
644 
645 	ring->rx_max_pending = E1000_MAX_RXD;
646 	ring->tx_max_pending = E1000_MAX_TXD;
647 	ring->rx_pending = adapter->rx_ring_count;
648 	ring->tx_pending = adapter->tx_ring_count;
649 }
650 
651 static int e1000_set_ringparam(struct net_device *netdev,
652 			       struct ethtool_ringparam *ring)
653 {
654 	struct e1000_adapter *adapter = netdev_priv(netdev);
655 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
656 	int err = 0, size = sizeof(struct e1000_ring);
657 	bool set_tx = false, set_rx = false;
658 	u16 new_rx_count, new_tx_count;
659 
660 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
661 		return -EINVAL;
662 
663 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
664 			       E1000_MAX_RXD);
665 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
666 
667 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
668 			       E1000_MAX_TXD);
669 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
670 
671 	if ((new_tx_count == adapter->tx_ring_count) &&
672 	    (new_rx_count == adapter->rx_ring_count))
673 		/* nothing to do */
674 		return 0;
675 
676 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
677 		usleep_range(1000, 2000);
678 
679 	if (!netif_running(adapter->netdev)) {
680 		/* Set counts now and allocate resources during open() */
681 		adapter->tx_ring->count = new_tx_count;
682 		adapter->rx_ring->count = new_rx_count;
683 		adapter->tx_ring_count = new_tx_count;
684 		adapter->rx_ring_count = new_rx_count;
685 		goto clear_reset;
686 	}
687 
688 	set_tx = (new_tx_count != adapter->tx_ring_count);
689 	set_rx = (new_rx_count != adapter->rx_ring_count);
690 
691 	/* Allocate temporary storage for ring updates */
692 	if (set_tx) {
693 		temp_tx = vmalloc(size);
694 		if (!temp_tx) {
695 			err = -ENOMEM;
696 			goto free_temp;
697 		}
698 	}
699 	if (set_rx) {
700 		temp_rx = vmalloc(size);
701 		if (!temp_rx) {
702 			err = -ENOMEM;
703 			goto free_temp;
704 		}
705 	}
706 
707 	e1000e_down(adapter);
708 
709 	/* We can't just free everything and then setup again, because the
710 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
711 	 * structs.  First, attempt to allocate new resources...
712 	 */
713 	if (set_tx) {
714 		memcpy(temp_tx, adapter->tx_ring, size);
715 		temp_tx->count = new_tx_count;
716 		err = e1000e_setup_tx_resources(temp_tx);
717 		if (err)
718 			goto err_setup;
719 	}
720 	if (set_rx) {
721 		memcpy(temp_rx, adapter->rx_ring, size);
722 		temp_rx->count = new_rx_count;
723 		err = e1000e_setup_rx_resources(temp_rx);
724 		if (err)
725 			goto err_setup_rx;
726 	}
727 
728 	/* ...then free the old resources and copy back any new ring data */
729 	if (set_tx) {
730 		e1000e_free_tx_resources(adapter->tx_ring);
731 		memcpy(adapter->tx_ring, temp_tx, size);
732 		adapter->tx_ring_count = new_tx_count;
733 	}
734 	if (set_rx) {
735 		e1000e_free_rx_resources(adapter->rx_ring);
736 		memcpy(adapter->rx_ring, temp_rx, size);
737 		adapter->rx_ring_count = new_rx_count;
738 	}
739 
740 err_setup_rx:
741 	if (err && set_tx)
742 		e1000e_free_tx_resources(temp_tx);
743 err_setup:
744 	e1000e_up(adapter);
745 free_temp:
746 	vfree(temp_tx);
747 	vfree(temp_rx);
748 clear_reset:
749 	clear_bit(__E1000_RESETTING, &adapter->state);
750 	return err;
751 }
752 
753 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
754 			     int reg, int offset, u32 mask, u32 write)
755 {
756 	u32 pat, val;
757 	static const u32 test[] = {
758 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
759 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
760 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
761 				      (test[pat] & write));
762 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
763 		if (val != (test[pat] & write & mask)) {
764 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
765 			      reg + (offset << 2), val,
766 			      (test[pat] & write & mask));
767 			*data = reg;
768 			return 1;
769 		}
770 	}
771 	return 0;
772 }
773 
774 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
775 			      int reg, u32 mask, u32 write)
776 {
777 	u32 val;
778 	__ew32(&adapter->hw, reg, write & mask);
779 	val = __er32(&adapter->hw, reg);
780 	if ((write & mask) != (val & mask)) {
781 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
782 		      reg, (val & mask), (write & mask));
783 		*data = reg;
784 		return 1;
785 	}
786 	return 0;
787 }
788 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
789 	do {                                                                   \
790 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
791 			return 1;                                              \
792 	} while (0)
793 #define REG_PATTERN_TEST(reg, mask, write)                                     \
794 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
795 
796 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
797 	do {                                                                   \
798 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
799 			return 1;                                              \
800 	} while (0)
801 
802 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
803 {
804 	struct e1000_hw *hw = &adapter->hw;
805 	struct e1000_mac_info *mac = &adapter->hw.mac;
806 	u32 value;
807 	u32 before;
808 	u32 after;
809 	u32 i;
810 	u32 toggle;
811 	u32 mask;
812 	u32 wlock_mac = 0;
813 
814 	/* The status register is Read Only, so a write should fail.
815 	 * Some bits that get toggled are ignored.
816 	 */
817 	switch (mac->type) {
818 	/* there are several bits on newer hardware that are r/w */
819 	case e1000_82571:
820 	case e1000_82572:
821 	case e1000_80003es2lan:
822 		toggle = 0x7FFFF3FF;
823 		break;
824         default:
825 		toggle = 0x7FFFF033;
826 		break;
827 	}
828 
829 	before = er32(STATUS);
830 	value = (er32(STATUS) & toggle);
831 	ew32(STATUS, toggle);
832 	after = er32(STATUS) & toggle;
833 	if (value != after) {
834 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
835 		      after, value);
836 		*data = 1;
837 		return 1;
838 	}
839 	/* restore previous status */
840 	ew32(STATUS, before);
841 
842 	if (!(adapter->flags & FLAG_IS_ICH)) {
843 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
844 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
845 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
846 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
847 	}
848 
849 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
850 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
851 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
852 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
853 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
854 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
855 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
856 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
857 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
858 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
859 
860 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
861 
862 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
863 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
864 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
865 
866 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
867 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
868 	if (!(adapter->flags & FLAG_IS_ICH))
869 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
870 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
871 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
872 	mask = 0x8003FFFF;
873 	switch (mac->type) {
874 	case e1000_ich10lan:
875 	case e1000_pchlan:
876 	case e1000_pch2lan:
877 	case e1000_pch_lpt:
878 		mask |= (1 << 18);
879 		break;
880 	default:
881 		break;
882 	}
883 
884 	if (mac->type == e1000_pch_lpt)
885 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
886 		    E1000_FWSM_WLOCK_MAC_SHIFT;
887 
888 	for (i = 0; i < mac->rar_entry_count; i++) {
889 		if (mac->type == e1000_pch_lpt) {
890 			/* Cannot test write-protected SHRAL[n] registers */
891 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
892 				continue;
893 
894 			/* SHRAH[9] different than the others */
895 			if (i == 10)
896 				mask |= (1 << 30);
897 			else
898 				mask &= ~(1 << 30);
899 		}
900 
901 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
902 				       0xFFFFFFFF);
903 	}
904 
905 	for (i = 0; i < mac->mta_reg_count; i++)
906 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
907 
908 	*data = 0;
909 
910 	return 0;
911 }
912 
913 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
914 {
915 	u16 temp;
916 	u16 checksum = 0;
917 	u16 i;
918 
919 	*data = 0;
920 	/* Read and add up the contents of the EEPROM */
921 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
922 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
923 			*data = 1;
924 			return *data;
925 		}
926 		checksum += temp;
927 	}
928 
929 	/* If Checksum is not Correct return error else test passed */
930 	if ((checksum != (u16) NVM_SUM) && !(*data))
931 		*data = 2;
932 
933 	return *data;
934 }
935 
936 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
937 {
938 	struct net_device *netdev = (struct net_device *) data;
939 	struct e1000_adapter *adapter = netdev_priv(netdev);
940 	struct e1000_hw *hw = &adapter->hw;
941 
942 	adapter->test_icr |= er32(ICR);
943 
944 	return IRQ_HANDLED;
945 }
946 
947 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
948 {
949 	struct net_device *netdev = adapter->netdev;
950 	struct e1000_hw *hw = &adapter->hw;
951 	u32 mask;
952 	u32 shared_int = 1;
953 	u32 irq = adapter->pdev->irq;
954 	int i;
955 	int ret_val = 0;
956 	int int_mode = E1000E_INT_MODE_LEGACY;
957 
958 	*data = 0;
959 
960 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
961 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
962 		int_mode = adapter->int_mode;
963 		e1000e_reset_interrupt_capability(adapter);
964 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
965 		e1000e_set_interrupt_capability(adapter);
966 	}
967 	/* Hook up test interrupt handler just for this test */
968 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
969 			 netdev)) {
970 		shared_int = 0;
971 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
972 		 netdev->name, netdev)) {
973 		*data = 1;
974 		ret_val = -1;
975 		goto out;
976 	}
977 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
978 
979 	/* Disable all the interrupts */
980 	ew32(IMC, 0xFFFFFFFF);
981 	e1e_flush();
982 	usleep_range(10000, 20000);
983 
984 	/* Test each interrupt */
985 	for (i = 0; i < 10; i++) {
986 		/* Interrupt to test */
987 		mask = 1 << i;
988 
989 		if (adapter->flags & FLAG_IS_ICH) {
990 			switch (mask) {
991 			case E1000_ICR_RXSEQ:
992 				continue;
993 			case 0x00000100:
994 				if (adapter->hw.mac.type == e1000_ich8lan ||
995 				    adapter->hw.mac.type == e1000_ich9lan)
996 					continue;
997 				break;
998 			default:
999 				break;
1000 			}
1001 		}
1002 
1003 		if (!shared_int) {
1004 			/* Disable the interrupt to be reported in
1005 			 * the cause register and then force the same
1006 			 * interrupt and see if one gets posted.  If
1007 			 * an interrupt was posted to the bus, the
1008 			 * test failed.
1009 			 */
1010 			adapter->test_icr = 0;
1011 			ew32(IMC, mask);
1012 			ew32(ICS, mask);
1013 			e1e_flush();
1014 			usleep_range(10000, 20000);
1015 
1016 			if (adapter->test_icr & mask) {
1017 				*data = 3;
1018 				break;
1019 			}
1020 		}
1021 
1022 		/* Enable the interrupt to be reported in
1023 		 * the cause register and then force the same
1024 		 * interrupt and see if one gets posted.  If
1025 		 * an interrupt was not posted to the bus, the
1026 		 * test failed.
1027 		 */
1028 		adapter->test_icr = 0;
1029 		ew32(IMS, mask);
1030 		ew32(ICS, mask);
1031 		e1e_flush();
1032 		usleep_range(10000, 20000);
1033 
1034 		if (!(adapter->test_icr & mask)) {
1035 			*data = 4;
1036 			break;
1037 		}
1038 
1039 		if (!shared_int) {
1040 			/* Disable the other interrupts to be reported in
1041 			 * the cause register and then force the other
1042 			 * interrupts and see if any get posted.  If
1043 			 * an interrupt was posted to the bus, the
1044 			 * test failed.
1045 			 */
1046 			adapter->test_icr = 0;
1047 			ew32(IMC, ~mask & 0x00007FFF);
1048 			ew32(ICS, ~mask & 0x00007FFF);
1049 			e1e_flush();
1050 			usleep_range(10000, 20000);
1051 
1052 			if (adapter->test_icr) {
1053 				*data = 5;
1054 				break;
1055 			}
1056 		}
1057 	}
1058 
1059 	/* Disable all the interrupts */
1060 	ew32(IMC, 0xFFFFFFFF);
1061 	e1e_flush();
1062 	usleep_range(10000, 20000);
1063 
1064 	/* Unhook test interrupt handler */
1065 	free_irq(irq, netdev);
1066 
1067 out:
1068 	if (int_mode == E1000E_INT_MODE_MSIX) {
1069 		e1000e_reset_interrupt_capability(adapter);
1070 		adapter->int_mode = int_mode;
1071 		e1000e_set_interrupt_capability(adapter);
1072 	}
1073 
1074 	return ret_val;
1075 }
1076 
1077 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1078 {
1079 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1080 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1081 	struct pci_dev *pdev = adapter->pdev;
1082 	int i;
1083 
1084 	if (tx_ring->desc && tx_ring->buffer_info) {
1085 		for (i = 0; i < tx_ring->count; i++) {
1086 			if (tx_ring->buffer_info[i].dma)
1087 				dma_unmap_single(&pdev->dev,
1088 					tx_ring->buffer_info[i].dma,
1089 					tx_ring->buffer_info[i].length,
1090 					DMA_TO_DEVICE);
1091 			if (tx_ring->buffer_info[i].skb)
1092 				dev_kfree_skb(tx_ring->buffer_info[i].skb);
1093 		}
1094 	}
1095 
1096 	if (rx_ring->desc && rx_ring->buffer_info) {
1097 		for (i = 0; i < rx_ring->count; i++) {
1098 			if (rx_ring->buffer_info[i].dma)
1099 				dma_unmap_single(&pdev->dev,
1100 					rx_ring->buffer_info[i].dma,
1101 					2048, DMA_FROM_DEVICE);
1102 			if (rx_ring->buffer_info[i].skb)
1103 				dev_kfree_skb(rx_ring->buffer_info[i].skb);
1104 		}
1105 	}
1106 
1107 	if (tx_ring->desc) {
1108 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1109 				  tx_ring->dma);
1110 		tx_ring->desc = NULL;
1111 	}
1112 	if (rx_ring->desc) {
1113 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1114 				  rx_ring->dma);
1115 		rx_ring->desc = NULL;
1116 	}
1117 
1118 	kfree(tx_ring->buffer_info);
1119 	tx_ring->buffer_info = NULL;
1120 	kfree(rx_ring->buffer_info);
1121 	rx_ring->buffer_info = NULL;
1122 }
1123 
1124 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1125 {
1126 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1127 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1128 	struct pci_dev *pdev = adapter->pdev;
1129 	struct e1000_hw *hw = &adapter->hw;
1130 	u32 rctl;
1131 	int i;
1132 	int ret_val;
1133 
1134 	/* Setup Tx descriptor ring and Tx buffers */
1135 
1136 	if (!tx_ring->count)
1137 		tx_ring->count = E1000_DEFAULT_TXD;
1138 
1139 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1140 				       sizeof(struct e1000_buffer),
1141 				       GFP_KERNEL);
1142 	if (!tx_ring->buffer_info) {
1143 		ret_val = 1;
1144 		goto err_nomem;
1145 	}
1146 
1147 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1148 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1149 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1150 					   &tx_ring->dma, GFP_KERNEL);
1151 	if (!tx_ring->desc) {
1152 		ret_val = 2;
1153 		goto err_nomem;
1154 	}
1155 	tx_ring->next_to_use = 0;
1156 	tx_ring->next_to_clean = 0;
1157 
1158 	ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1159 	ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1160 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1161 	ew32(TDH(0), 0);
1162 	ew32(TDT(0), 0);
1163 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1164 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1165 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1166 
1167 	for (i = 0; i < tx_ring->count; i++) {
1168 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1169 		struct sk_buff *skb;
1170 		unsigned int skb_size = 1024;
1171 
1172 		skb = alloc_skb(skb_size, GFP_KERNEL);
1173 		if (!skb) {
1174 			ret_val = 3;
1175 			goto err_nomem;
1176 		}
1177 		skb_put(skb, skb_size);
1178 		tx_ring->buffer_info[i].skb = skb;
1179 		tx_ring->buffer_info[i].length = skb->len;
1180 		tx_ring->buffer_info[i].dma =
1181 			dma_map_single(&pdev->dev, skb->data, skb->len,
1182 				       DMA_TO_DEVICE);
1183 		if (dma_mapping_error(&pdev->dev,
1184 				      tx_ring->buffer_info[i].dma)) {
1185 			ret_val = 4;
1186 			goto err_nomem;
1187 		}
1188 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1189 		tx_desc->lower.data = cpu_to_le32(skb->len);
1190 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1191 						   E1000_TXD_CMD_IFCS |
1192 						   E1000_TXD_CMD_RS);
1193 		tx_desc->upper.data = 0;
1194 	}
1195 
1196 	/* Setup Rx descriptor ring and Rx buffers */
1197 
1198 	if (!rx_ring->count)
1199 		rx_ring->count = E1000_DEFAULT_RXD;
1200 
1201 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1202 				       sizeof(struct e1000_buffer),
1203 				       GFP_KERNEL);
1204 	if (!rx_ring->buffer_info) {
1205 		ret_val = 5;
1206 		goto err_nomem;
1207 	}
1208 
1209 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1210 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1211 					   &rx_ring->dma, GFP_KERNEL);
1212 	if (!rx_ring->desc) {
1213 		ret_val = 6;
1214 		goto err_nomem;
1215 	}
1216 	rx_ring->next_to_use = 0;
1217 	rx_ring->next_to_clean = 0;
1218 
1219 	rctl = er32(RCTL);
1220 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1221 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1222 	ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1223 	ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1224 	ew32(RDLEN(0), rx_ring->size);
1225 	ew32(RDH(0), 0);
1226 	ew32(RDT(0), 0);
1227 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1228 		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1229 		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1230 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1231 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1232 	ew32(RCTL, rctl);
1233 
1234 	for (i = 0; i < rx_ring->count; i++) {
1235 		union e1000_rx_desc_extended *rx_desc;
1236 		struct sk_buff *skb;
1237 
1238 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1239 		if (!skb) {
1240 			ret_val = 7;
1241 			goto err_nomem;
1242 		}
1243 		skb_reserve(skb, NET_IP_ALIGN);
1244 		rx_ring->buffer_info[i].skb = skb;
1245 		rx_ring->buffer_info[i].dma =
1246 			dma_map_single(&pdev->dev, skb->data, 2048,
1247 				       DMA_FROM_DEVICE);
1248 		if (dma_mapping_error(&pdev->dev,
1249 				      rx_ring->buffer_info[i].dma)) {
1250 			ret_val = 8;
1251 			goto err_nomem;
1252 		}
1253 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1254 		rx_desc->read.buffer_addr =
1255 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1256 		memset(skb->data, 0x00, skb->len);
1257 	}
1258 
1259 	return 0;
1260 
1261 err_nomem:
1262 	e1000_free_desc_rings(adapter);
1263 	return ret_val;
1264 }
1265 
1266 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1267 {
1268 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1269 	e1e_wphy(&adapter->hw, 29, 0x001F);
1270 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1271 	e1e_wphy(&adapter->hw, 29, 0x001A);
1272 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1273 }
1274 
1275 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1276 {
1277 	struct e1000_hw *hw = &adapter->hw;
1278 	u32 ctrl_reg = 0;
1279 	u16 phy_reg = 0;
1280 	s32 ret_val = 0;
1281 
1282 	hw->mac.autoneg = 0;
1283 
1284 	if (hw->phy.type == e1000_phy_ife) {
1285 		/* force 100, set loopback */
1286 		e1e_wphy(hw, MII_BMCR, 0x6100);
1287 
1288 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1289 		ctrl_reg = er32(CTRL);
1290 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1291 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1292 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1293 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1294 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1295 
1296 		ew32(CTRL, ctrl_reg);
1297 		e1e_flush();
1298 		udelay(500);
1299 
1300 		return 0;
1301 	}
1302 
1303 	/* Specific PHY configuration for loopback */
1304 	switch (hw->phy.type) {
1305 	case e1000_phy_m88:
1306 		/* Auto-MDI/MDIX Off */
1307 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1308 		/* reset to update Auto-MDI/MDIX */
1309 		e1e_wphy(hw, MII_BMCR, 0x9140);
1310 		/* autoneg off */
1311 		e1e_wphy(hw, MII_BMCR, 0x8140);
1312 		break;
1313 	case e1000_phy_gg82563:
1314 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1315 		break;
1316 	case e1000_phy_bm:
1317 		/* Set Default MAC Interface speed to 1GB */
1318 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1319 		phy_reg &= ~0x0007;
1320 		phy_reg |= 0x006;
1321 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1322 		/* Assert SW reset for above settings to take effect */
1323 		hw->phy.ops.commit(hw);
1324 		mdelay(1);
1325 		/* Force Full Duplex */
1326 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1327 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1328 		/* Set Link Up (in force link) */
1329 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1330 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1331 		/* Force Link */
1332 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1333 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1334 		/* Set Early Link Enable */
1335 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1336 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1337 		break;
1338 	case e1000_phy_82577:
1339 	case e1000_phy_82578:
1340 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1341 		ret_val = hw->phy.ops.acquire(hw);
1342 		if (ret_val) {
1343 			e_err("Cannot setup 1Gbps loopback.\n");
1344 			return ret_val;
1345 		}
1346 		e1000_configure_k1_ich8lan(hw, false);
1347 		hw->phy.ops.release(hw);
1348 		break;
1349 	case e1000_phy_82579:
1350 		/* Disable PHY energy detect power down */
1351 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1352 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1353 		/* Disable full chip energy detect */
1354 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1355 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1356 		/* Enable loopback on the PHY */
1357 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1358 		break;
1359 	default:
1360 		break;
1361 	}
1362 
1363 	/* force 1000, set loopback */
1364 	e1e_wphy(hw, MII_BMCR, 0x4140);
1365 	mdelay(250);
1366 
1367 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1368 	ctrl_reg = er32(CTRL);
1369 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1370 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1371 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1372 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1373 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1374 
1375 	if (adapter->flags & FLAG_IS_ICH)
1376 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1377 
1378 	if (hw->phy.media_type == e1000_media_type_copper &&
1379 	    hw->phy.type == e1000_phy_m88) {
1380 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1381 	} else {
1382 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1383 		 * detected.
1384 		 */
1385 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1386 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1387 	}
1388 
1389 	ew32(CTRL, ctrl_reg);
1390 
1391 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1392 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1393 	 */
1394 	if (hw->phy.type == e1000_phy_m88)
1395 		e1000_phy_disable_receiver(adapter);
1396 
1397 	udelay(500);
1398 
1399 	return 0;
1400 }
1401 
1402 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1403 {
1404 	struct e1000_hw *hw = &adapter->hw;
1405 	u32 ctrl = er32(CTRL);
1406 	int link;
1407 
1408 	/* special requirements for 82571/82572 fiber adapters */
1409 
1410 	/* jump through hoops to make sure link is up because serdes
1411 	 * link is hardwired up
1412 	 */
1413 	ctrl |= E1000_CTRL_SLU;
1414 	ew32(CTRL, ctrl);
1415 
1416 	/* disable autoneg */
1417 	ctrl = er32(TXCW);
1418 	ctrl &= ~(1 << 31);
1419 	ew32(TXCW, ctrl);
1420 
1421 	link = (er32(STATUS) & E1000_STATUS_LU);
1422 
1423 	if (!link) {
1424 		/* set invert loss of signal */
1425 		ctrl = er32(CTRL);
1426 		ctrl |= E1000_CTRL_ILOS;
1427 		ew32(CTRL, ctrl);
1428 	}
1429 
1430 	/* special write to serdes control register to enable SerDes analog
1431 	 * loopback
1432 	 */
1433 #define E1000_SERDES_LB_ON 0x410
1434 	ew32(SCTL, E1000_SERDES_LB_ON);
1435 	e1e_flush();
1436 	usleep_range(10000, 20000);
1437 
1438 	return 0;
1439 }
1440 
1441 /* only call this for fiber/serdes connections to es2lan */
1442 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1443 {
1444 	struct e1000_hw *hw = &adapter->hw;
1445 	u32 ctrlext = er32(CTRL_EXT);
1446 	u32 ctrl = er32(CTRL);
1447 
1448 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1449 	 * on mac_type 80003es2lan)
1450 	 */
1451 	adapter->tx_fifo_head = ctrlext;
1452 
1453 	/* clear the serdes mode bits, putting the device into mac loopback */
1454 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1455 	ew32(CTRL_EXT, ctrlext);
1456 
1457 	/* force speed to 1000/FD, link up */
1458 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1459 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1460 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1461 	ew32(CTRL, ctrl);
1462 
1463 	/* set mac loopback */
1464 	ctrl = er32(RCTL);
1465 	ctrl |= E1000_RCTL_LBM_MAC;
1466 	ew32(RCTL, ctrl);
1467 
1468 	/* set testing mode parameters (no need to reset later) */
1469 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1470 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1471 	ew32(KMRNCTRLSTA,
1472 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1473 
1474 	return 0;
1475 }
1476 
1477 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 	u32 rctl;
1481 
1482 	if (hw->phy.media_type == e1000_media_type_fiber ||
1483 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1484 		switch (hw->mac.type) {
1485 		case e1000_80003es2lan:
1486 			return e1000_set_es2lan_mac_loopback(adapter);
1487 			break;
1488 		case e1000_82571:
1489 		case e1000_82572:
1490 			return e1000_set_82571_fiber_loopback(adapter);
1491 			break;
1492 		default:
1493 			rctl = er32(RCTL);
1494 			rctl |= E1000_RCTL_LBM_TCVR;
1495 			ew32(RCTL, rctl);
1496 			return 0;
1497 		}
1498 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1499 		return e1000_integrated_phy_loopback(adapter);
1500 	}
1501 
1502 	return 7;
1503 }
1504 
1505 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1506 {
1507 	struct e1000_hw *hw = &adapter->hw;
1508 	u32 rctl;
1509 	u16 phy_reg;
1510 
1511 	rctl = er32(RCTL);
1512 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1513 	ew32(RCTL, rctl);
1514 
1515 	switch (hw->mac.type) {
1516 	case e1000_80003es2lan:
1517 		if (hw->phy.media_type == e1000_media_type_fiber ||
1518 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1519 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1520 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1521 			adapter->tx_fifo_head = 0;
1522 		}
1523 		/* fall through */
1524 	case e1000_82571:
1525 	case e1000_82572:
1526 		if (hw->phy.media_type == e1000_media_type_fiber ||
1527 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1528 #define E1000_SERDES_LB_OFF 0x400
1529 			ew32(SCTL, E1000_SERDES_LB_OFF);
1530 			e1e_flush();
1531 			usleep_range(10000, 20000);
1532 			break;
1533 		}
1534 		/* Fall Through */
1535 	default:
1536 		hw->mac.autoneg = 1;
1537 		if (hw->phy.type == e1000_phy_gg82563)
1538 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1539 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1540 		if (phy_reg & BMCR_LOOPBACK) {
1541 			phy_reg &= ~BMCR_LOOPBACK;
1542 			e1e_wphy(hw, MII_BMCR, phy_reg);
1543 			if (hw->phy.ops.commit)
1544 				hw->phy.ops.commit(hw);
1545 		}
1546 		break;
1547 	}
1548 }
1549 
1550 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1551 				      unsigned int frame_size)
1552 {
1553 	memset(skb->data, 0xFF, frame_size);
1554 	frame_size &= ~1;
1555 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1556 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1557 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1558 }
1559 
1560 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1561 				    unsigned int frame_size)
1562 {
1563 	frame_size &= ~1;
1564 	if (*(skb->data + 3) == 0xFF)
1565 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1566 		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
1567 			return 0;
1568 	return 13;
1569 }
1570 
1571 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1572 {
1573 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1574 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1575 	struct pci_dev *pdev = adapter->pdev;
1576 	struct e1000_hw *hw = &adapter->hw;
1577 	int i, j, k, l;
1578 	int lc;
1579 	int good_cnt;
1580 	int ret_val = 0;
1581 	unsigned long time;
1582 
1583 	ew32(RDT(0), rx_ring->count - 1);
1584 
1585 	/* Calculate the loop count based on the largest descriptor ring
1586 	 * The idea is to wrap the largest ring a number of times using 64
1587 	 * send/receive pairs during each loop
1588 	 */
1589 
1590 	if (rx_ring->count <= tx_ring->count)
1591 		lc = ((tx_ring->count / 64) * 2) + 1;
1592 	else
1593 		lc = ((rx_ring->count / 64) * 2) + 1;
1594 
1595 	k = 0;
1596 	l = 0;
1597 	for (j = 0; j <= lc; j++) { /* loop count loop */
1598 		for (i = 0; i < 64; i++) { /* send the packets */
1599 			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1600 						  1024);
1601 			dma_sync_single_for_device(&pdev->dev,
1602 					tx_ring->buffer_info[k].dma,
1603 					tx_ring->buffer_info[k].length,
1604 					DMA_TO_DEVICE);
1605 			k++;
1606 			if (k == tx_ring->count)
1607 				k = 0;
1608 		}
1609 		ew32(TDT(0), k);
1610 		e1e_flush();
1611 		msleep(200);
1612 		time = jiffies; /* set the start time for the receive */
1613 		good_cnt = 0;
1614 		do { /* receive the sent packets */
1615 			dma_sync_single_for_cpu(&pdev->dev,
1616 					rx_ring->buffer_info[l].dma, 2048,
1617 					DMA_FROM_DEVICE);
1618 
1619 			ret_val = e1000_check_lbtest_frame(
1620 					rx_ring->buffer_info[l].skb, 1024);
1621 			if (!ret_val)
1622 				good_cnt++;
1623 			l++;
1624 			if (l == rx_ring->count)
1625 				l = 0;
1626 			/* time + 20 msecs (200 msecs on 2.4) is more than
1627 			 * enough time to complete the receives, if it's
1628 			 * exceeded, break and error off
1629 			 */
1630 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1631 		if (good_cnt != 64) {
1632 			ret_val = 13; /* ret_val is the same as mis-compare */
1633 			break;
1634 		}
1635 		if (jiffies >= (time + 20)) {
1636 			ret_val = 14; /* error code for time out error */
1637 			break;
1638 		}
1639 	} /* end loop count loop */
1640 	return ret_val;
1641 }
1642 
1643 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1644 {
1645 	struct e1000_hw *hw = &adapter->hw;
1646 
1647 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1648 	if (hw->phy.ops.check_reset_block &&
1649 	    hw->phy.ops.check_reset_block(hw)) {
1650 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1651 		*data = 0;
1652 		goto out;
1653 	}
1654 
1655 	*data = e1000_setup_desc_rings(adapter);
1656 	if (*data)
1657 		goto out;
1658 
1659 	*data = e1000_setup_loopback_test(adapter);
1660 	if (*data)
1661 		goto err_loopback;
1662 
1663 	*data = e1000_run_loopback_test(adapter);
1664 	e1000_loopback_cleanup(adapter);
1665 
1666 err_loopback:
1667 	e1000_free_desc_rings(adapter);
1668 out:
1669 	return *data;
1670 }
1671 
1672 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1673 {
1674 	struct e1000_hw *hw = &adapter->hw;
1675 
1676 	*data = 0;
1677 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1678 		int i = 0;
1679 		hw->mac.serdes_has_link = false;
1680 
1681 		/* On some blade server designs, link establishment
1682 		 * could take as long as 2-3 minutes
1683 		 */
1684 		do {
1685 			hw->mac.ops.check_for_link(hw);
1686 			if (hw->mac.serdes_has_link)
1687 				return *data;
1688 			msleep(20);
1689 		} while (i++ < 3750);
1690 
1691 		*data = 1;
1692 	} else {
1693 		hw->mac.ops.check_for_link(hw);
1694 		if (hw->mac.autoneg)
1695 			/* On some Phy/switch combinations, link establishment
1696 			 * can take a few seconds more than expected.
1697 			 */
1698 			msleep(5000);
1699 
1700 		if (!(er32(STATUS) & E1000_STATUS_LU))
1701 			*data = 1;
1702 	}
1703 	return *data;
1704 }
1705 
1706 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1707 				 int sset)
1708 {
1709 	switch (sset) {
1710 	case ETH_SS_TEST:
1711 		return E1000_TEST_LEN;
1712 	case ETH_SS_STATS:
1713 		return E1000_STATS_LEN;
1714 	default:
1715 		return -EOPNOTSUPP;
1716 	}
1717 }
1718 
1719 static void e1000_diag_test(struct net_device *netdev,
1720 			    struct ethtool_test *eth_test, u64 *data)
1721 {
1722 	struct e1000_adapter *adapter = netdev_priv(netdev);
1723 	u16 autoneg_advertised;
1724 	u8 forced_speed_duplex;
1725 	u8 autoneg;
1726 	bool if_running = netif_running(netdev);
1727 
1728 	set_bit(__E1000_TESTING, &adapter->state);
1729 
1730 	if (!if_running) {
1731 		/* Get control of and reset hardware */
1732 		if (adapter->flags & FLAG_HAS_AMT)
1733 			e1000e_get_hw_control(adapter);
1734 
1735 		e1000e_power_up_phy(adapter);
1736 
1737 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1738 		e1000e_reset(adapter);
1739 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1740 	}
1741 
1742 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1743 		/* Offline tests */
1744 
1745 		/* save speed, duplex, autoneg settings */
1746 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1747 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1748 		autoneg = adapter->hw.mac.autoneg;
1749 
1750 		e_info("offline testing starting\n");
1751 
1752 		if (if_running)
1753 			/* indicate we're in test mode */
1754 			dev_close(netdev);
1755 
1756 		if (e1000_reg_test(adapter, &data[0]))
1757 			eth_test->flags |= ETH_TEST_FL_FAILED;
1758 
1759 		e1000e_reset(adapter);
1760 		if (e1000_eeprom_test(adapter, &data[1]))
1761 			eth_test->flags |= ETH_TEST_FL_FAILED;
1762 
1763 		e1000e_reset(adapter);
1764 		if (e1000_intr_test(adapter, &data[2]))
1765 			eth_test->flags |= ETH_TEST_FL_FAILED;
1766 
1767 		e1000e_reset(adapter);
1768 		if (e1000_loopback_test(adapter, &data[3]))
1769 			eth_test->flags |= ETH_TEST_FL_FAILED;
1770 
1771 		/* force this routine to wait until autoneg complete/timeout */
1772 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1773 		e1000e_reset(adapter);
1774 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1775 
1776 		if (e1000_link_test(adapter, &data[4]))
1777 			eth_test->flags |= ETH_TEST_FL_FAILED;
1778 
1779 		/* restore speed, duplex, autoneg settings */
1780 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1781 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1782 		adapter->hw.mac.autoneg = autoneg;
1783 		e1000e_reset(adapter);
1784 
1785 		clear_bit(__E1000_TESTING, &adapter->state);
1786 		if (if_running)
1787 			dev_open(netdev);
1788 	} else {
1789 		/* Online tests */
1790 
1791 		e_info("online testing starting\n");
1792 
1793 		/* register, eeprom, intr and loopback tests not run online */
1794 		data[0] = 0;
1795 		data[1] = 0;
1796 		data[2] = 0;
1797 		data[3] = 0;
1798 
1799 		if (e1000_link_test(adapter, &data[4]))
1800 			eth_test->flags |= ETH_TEST_FL_FAILED;
1801 
1802 		clear_bit(__E1000_TESTING, &adapter->state);
1803 	}
1804 
1805 	if (!if_running) {
1806 		e1000e_reset(adapter);
1807 
1808 		if (adapter->flags & FLAG_HAS_AMT)
1809 			e1000e_release_hw_control(adapter);
1810 	}
1811 
1812 	msleep_interruptible(4 * 1000);
1813 }
1814 
1815 static void e1000_get_wol(struct net_device *netdev,
1816 			  struct ethtool_wolinfo *wol)
1817 {
1818 	struct e1000_adapter *adapter = netdev_priv(netdev);
1819 
1820 	wol->supported = 0;
1821 	wol->wolopts = 0;
1822 
1823 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1824 	    !device_can_wakeup(&adapter->pdev->dev))
1825 		return;
1826 
1827 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1828 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1829 
1830 	/* apply any specific unsupported masks here */
1831 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1832 		wol->supported &= ~WAKE_UCAST;
1833 
1834 		if (adapter->wol & E1000_WUFC_EX)
1835 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1836 	}
1837 
1838 	if (adapter->wol & E1000_WUFC_EX)
1839 		wol->wolopts |= WAKE_UCAST;
1840 	if (adapter->wol & E1000_WUFC_MC)
1841 		wol->wolopts |= WAKE_MCAST;
1842 	if (adapter->wol & E1000_WUFC_BC)
1843 		wol->wolopts |= WAKE_BCAST;
1844 	if (adapter->wol & E1000_WUFC_MAG)
1845 		wol->wolopts |= WAKE_MAGIC;
1846 	if (adapter->wol & E1000_WUFC_LNKC)
1847 		wol->wolopts |= WAKE_PHY;
1848 }
1849 
1850 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1851 {
1852 	struct e1000_adapter *adapter = netdev_priv(netdev);
1853 
1854 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1855 	    !device_can_wakeup(&adapter->pdev->dev) ||
1856 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1857 			      WAKE_MAGIC | WAKE_PHY)))
1858 		return -EOPNOTSUPP;
1859 
1860 	/* these settings will always override what we currently have */
1861 	adapter->wol = 0;
1862 
1863 	if (wol->wolopts & WAKE_UCAST)
1864 		adapter->wol |= E1000_WUFC_EX;
1865 	if (wol->wolopts & WAKE_MCAST)
1866 		adapter->wol |= E1000_WUFC_MC;
1867 	if (wol->wolopts & WAKE_BCAST)
1868 		adapter->wol |= E1000_WUFC_BC;
1869 	if (wol->wolopts & WAKE_MAGIC)
1870 		adapter->wol |= E1000_WUFC_MAG;
1871 	if (wol->wolopts & WAKE_PHY)
1872 		adapter->wol |= E1000_WUFC_LNKC;
1873 
1874 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1875 
1876 	return 0;
1877 }
1878 
1879 static int e1000_set_phys_id(struct net_device *netdev,
1880 			     enum ethtool_phys_id_state state)
1881 {
1882 	struct e1000_adapter *adapter = netdev_priv(netdev);
1883 	struct e1000_hw *hw = &adapter->hw;
1884 
1885 	switch (state) {
1886 	case ETHTOOL_ID_ACTIVE:
1887 		if (!hw->mac.ops.blink_led)
1888 			return 2;	/* cycle on/off twice per second */
1889 
1890 		hw->mac.ops.blink_led(hw);
1891 		break;
1892 
1893 	case ETHTOOL_ID_INACTIVE:
1894 		if (hw->phy.type == e1000_phy_ife)
1895 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1896 		hw->mac.ops.led_off(hw);
1897 		hw->mac.ops.cleanup_led(hw);
1898 		break;
1899 
1900 	case ETHTOOL_ID_ON:
1901 		hw->mac.ops.led_on(hw);
1902 		break;
1903 
1904 	case ETHTOOL_ID_OFF:
1905 		hw->mac.ops.led_off(hw);
1906 		break;
1907 	}
1908 	return 0;
1909 }
1910 
1911 static int e1000_get_coalesce(struct net_device *netdev,
1912 			      struct ethtool_coalesce *ec)
1913 {
1914 	struct e1000_adapter *adapter = netdev_priv(netdev);
1915 
1916 	if (adapter->itr_setting <= 4)
1917 		ec->rx_coalesce_usecs = adapter->itr_setting;
1918 	else
1919 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1920 
1921 	return 0;
1922 }
1923 
1924 static int e1000_set_coalesce(struct net_device *netdev,
1925 			      struct ethtool_coalesce *ec)
1926 {
1927 	struct e1000_adapter *adapter = netdev_priv(netdev);
1928 
1929 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1930 	    ((ec->rx_coalesce_usecs > 4) &&
1931 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1932 	    (ec->rx_coalesce_usecs == 2))
1933 		return -EINVAL;
1934 
1935 	if (ec->rx_coalesce_usecs == 4) {
1936 		adapter->itr_setting = 4;
1937 		adapter->itr = adapter->itr_setting;
1938 	} else if (ec->rx_coalesce_usecs <= 3) {
1939 		adapter->itr = 20000;
1940 		adapter->itr_setting = ec->rx_coalesce_usecs;
1941 	} else {
1942 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1943 		adapter->itr_setting = adapter->itr & ~3;
1944 	}
1945 
1946 	if (adapter->itr_setting != 0)
1947 		e1000e_write_itr(adapter, adapter->itr);
1948 	else
1949 		e1000e_write_itr(adapter, 0);
1950 
1951 	return 0;
1952 }
1953 
1954 static int e1000_nway_reset(struct net_device *netdev)
1955 {
1956 	struct e1000_adapter *adapter = netdev_priv(netdev);
1957 
1958 	if (!netif_running(netdev))
1959 		return -EAGAIN;
1960 
1961 	if (!adapter->hw.mac.autoneg)
1962 		return -EINVAL;
1963 
1964 	e1000e_reinit_locked(adapter);
1965 
1966 	return 0;
1967 }
1968 
1969 static void e1000_get_ethtool_stats(struct net_device *netdev,
1970 				    struct ethtool_stats __always_unused *stats,
1971 				    u64 *data)
1972 {
1973 	struct e1000_adapter *adapter = netdev_priv(netdev);
1974 	struct rtnl_link_stats64 net_stats;
1975 	int i;
1976 	char *p = NULL;
1977 
1978 	e1000e_get_stats64(netdev, &net_stats);
1979 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1980 		switch (e1000_gstrings_stats[i].type) {
1981 		case NETDEV_STATS:
1982 			p = (char *) &net_stats +
1983 					e1000_gstrings_stats[i].stat_offset;
1984 			break;
1985 		case E1000_STATS:
1986 			p = (char *) adapter +
1987 					e1000_gstrings_stats[i].stat_offset;
1988 			break;
1989 		default:
1990 			data[i] = 0;
1991 			continue;
1992 		}
1993 
1994 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1995 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1996 	}
1997 }
1998 
1999 static void e1000_get_strings(struct net_device __always_unused *netdev,
2000 			      u32 stringset, u8 *data)
2001 {
2002 	u8 *p = data;
2003 	int i;
2004 
2005 	switch (stringset) {
2006 	case ETH_SS_TEST:
2007 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2008 		break;
2009 	case ETH_SS_STATS:
2010 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2011 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2012 			       ETH_GSTRING_LEN);
2013 			p += ETH_GSTRING_LEN;
2014 		}
2015 		break;
2016 	}
2017 }
2018 
2019 static int e1000_get_rxnfc(struct net_device *netdev,
2020 			   struct ethtool_rxnfc *info,
2021 			   u32 __always_unused *rule_locs)
2022 {
2023 	info->data = 0;
2024 
2025 	switch (info->cmd) {
2026 	case ETHTOOL_GRXFH: {
2027 		struct e1000_adapter *adapter = netdev_priv(netdev);
2028 		struct e1000_hw *hw = &adapter->hw;
2029 		u32 mrqc = er32(MRQC);
2030 
2031 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2032 			return 0;
2033 
2034 		switch (info->flow_type) {
2035 		case TCP_V4_FLOW:
2036 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2037 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2038 			/* fall through */
2039 		case UDP_V4_FLOW:
2040 		case SCTP_V4_FLOW:
2041 		case AH_ESP_V4_FLOW:
2042 		case IPV4_FLOW:
2043 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2044 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2045 			break;
2046 		case TCP_V6_FLOW:
2047 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2048 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2049 			/* fall through */
2050 		case UDP_V6_FLOW:
2051 		case SCTP_V6_FLOW:
2052 		case AH_ESP_V6_FLOW:
2053 		case IPV6_FLOW:
2054 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2055 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2056 			break;
2057 		default:
2058 			break;
2059 		}
2060 		return 0;
2061 	}
2062 	default:
2063 		return -EOPNOTSUPP;
2064 	}
2065 }
2066 
2067 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2068 {
2069 	struct e1000_adapter *adapter = netdev_priv(netdev);
2070 	struct e1000_hw *hw = &adapter->hw;
2071 	u16 cap_addr, adv_addr, lpa_addr, pcs_stat_addr, phy_data, lpi_ctrl;
2072 	u32 status, ret_val;
2073 
2074 	if (!(adapter->flags & FLAG_IS_ICH) ||
2075 	    !(adapter->flags2 & FLAG2_HAS_EEE))
2076 		return -EOPNOTSUPP;
2077 
2078 	switch (hw->phy.type) {
2079 	case e1000_phy_82579:
2080 		cap_addr = I82579_EEE_CAPABILITY;
2081 		adv_addr = I82579_EEE_ADVERTISEMENT;
2082 		lpa_addr = I82579_EEE_LP_ABILITY;
2083 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2084 		break;
2085 	case e1000_phy_i217:
2086 		cap_addr = I217_EEE_CAPABILITY;
2087 		adv_addr = I217_EEE_ADVERTISEMENT;
2088 		lpa_addr = I217_EEE_LP_ABILITY;
2089 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2090 		break;
2091 	default:
2092 		return -EOPNOTSUPP;
2093 	}
2094 
2095 	ret_val = hw->phy.ops.acquire(hw);
2096 	if (ret_val)
2097 		return -EBUSY;
2098 
2099 	/* EEE Capability */
2100 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2101 	if (ret_val)
2102 		goto release;
2103 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2104 
2105 	/* EEE Advertised */
2106 	ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &phy_data);
2107 	if (ret_val)
2108 		goto release;
2109 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2110 
2111 	/* EEE Link Partner Advertised */
2112 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2113 	if (ret_val)
2114 		goto release;
2115 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2116 
2117 	/* EEE PCS Status */
2118 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2119 	if (hw->phy.type == e1000_phy_82579)
2120 		phy_data <<= 8;
2121 
2122 release:
2123 	hw->phy.ops.release(hw);
2124 	if (ret_val)
2125 		return -ENODATA;
2126 
2127 	e1e_rphy(hw, I82579_LPI_CTRL, &lpi_ctrl);
2128 	status = er32(STATUS);
2129 
2130 	/* Result of the EEE auto negotiation - there is no register that
2131 	 * has the status of the EEE negotiation so do a best-guess based
2132 	 * on whether both Tx and Rx LPI indications have been received or
2133 	 * base it on the link speed, the EEE advertised speeds on both ends
2134 	 * and the speeds on which EEE is enabled locally.
2135 	 */
2136 	if (((phy_data & E1000_EEE_TX_LPI_RCVD) &&
2137 	     (phy_data & E1000_EEE_RX_LPI_RCVD)) ||
2138 	    ((status & E1000_STATUS_SPEED_100) &&
2139 	     (edata->advertised & ADVERTISED_100baseT_Full) &&
2140 	     (edata->lp_advertised & ADVERTISED_100baseT_Full) &&
2141 	     (lpi_ctrl & I82579_LPI_CTRL_100_ENABLE)) ||
2142 	    ((status & E1000_STATUS_SPEED_1000) &&
2143 	     (edata->advertised & ADVERTISED_1000baseT_Full) &&
2144 	     (edata->lp_advertised & ADVERTISED_1000baseT_Full) &&
2145 	     (lpi_ctrl & I82579_LPI_CTRL_1000_ENABLE)))
2146 		edata->eee_active = true;
2147 
2148 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2149 	edata->tx_lpi_enabled = true;
2150 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2151 
2152 	return 0;
2153 }
2154 
2155 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2156 {
2157 	struct e1000_adapter *adapter = netdev_priv(netdev);
2158 	struct e1000_hw *hw = &adapter->hw;
2159 	struct ethtool_eee eee_curr;
2160 	s32 ret_val;
2161 
2162 	if (!(adapter->flags & FLAG_IS_ICH) ||
2163 	    !(adapter->flags2 & FLAG2_HAS_EEE))
2164 		return -EOPNOTSUPP;
2165 
2166 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2167 	if (ret_val)
2168 		return ret_val;
2169 
2170 	if (eee_curr.advertised != edata->advertised) {
2171 		e_err("Setting EEE advertisement is not supported\n");
2172 		return -EINVAL;
2173 	}
2174 
2175 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2176 		e_err("Setting EEE tx-lpi is not supported\n");
2177 		return -EINVAL;
2178 	}
2179 
2180 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2181 		e_err("Setting EEE Tx LPI timer is not supported\n");
2182 		return -EINVAL;
2183 	}
2184 
2185 	if (hw->dev_spec.ich8lan.eee_disable != !edata->eee_enabled) {
2186 		hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2187 
2188 		/* reset the link */
2189 		if (netif_running(netdev))
2190 			e1000e_reinit_locked(adapter);
2191 		else
2192 			e1000e_reset(adapter);
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 static int e1000e_get_ts_info(struct net_device *netdev,
2199 			      struct ethtool_ts_info *info)
2200 {
2201 	struct e1000_adapter *adapter = netdev_priv(netdev);
2202 
2203 	ethtool_op_get_ts_info(netdev, info);
2204 
2205 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2206 		return 0;
2207 
2208 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2209 				  SOF_TIMESTAMPING_RX_HARDWARE |
2210 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2211 
2212 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2213 
2214 	info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2215 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2216 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2217 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2218 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2219 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2220 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2221 			    (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2222 			    (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2223 			    (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2224 			    (1 << HWTSTAMP_FILTER_ALL));
2225 
2226 	if (adapter->ptp_clock)
2227 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2228 
2229 	return 0;
2230 }
2231 
2232 static const struct ethtool_ops e1000_ethtool_ops = {
2233 	.get_settings		= e1000_get_settings,
2234 	.set_settings		= e1000_set_settings,
2235 	.get_drvinfo		= e1000_get_drvinfo,
2236 	.get_regs_len		= e1000_get_regs_len,
2237 	.get_regs		= e1000_get_regs,
2238 	.get_wol		= e1000_get_wol,
2239 	.set_wol		= e1000_set_wol,
2240 	.get_msglevel		= e1000_get_msglevel,
2241 	.set_msglevel		= e1000_set_msglevel,
2242 	.nway_reset		= e1000_nway_reset,
2243 	.get_link		= ethtool_op_get_link,
2244 	.get_eeprom_len		= e1000_get_eeprom_len,
2245 	.get_eeprom		= e1000_get_eeprom,
2246 	.set_eeprom		= e1000_set_eeprom,
2247 	.get_ringparam		= e1000_get_ringparam,
2248 	.set_ringparam		= e1000_set_ringparam,
2249 	.get_pauseparam		= e1000_get_pauseparam,
2250 	.set_pauseparam		= e1000_set_pauseparam,
2251 	.self_test		= e1000_diag_test,
2252 	.get_strings		= e1000_get_strings,
2253 	.set_phys_id		= e1000_set_phys_id,
2254 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2255 	.get_sset_count		= e1000e_get_sset_count,
2256 	.get_coalesce		= e1000_get_coalesce,
2257 	.set_coalesce		= e1000_set_coalesce,
2258 	.get_rxnfc		= e1000_get_rxnfc,
2259 	.get_ts_info		= e1000e_get_ts_info,
2260 	.get_eee		= e1000e_get_eee,
2261 	.set_eee		= e1000e_set_eee,
2262 };
2263 
2264 void e1000e_set_ethtool_ops(struct net_device *netdev)
2265 {
2266 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2267 }
2268