1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/ethtool.h> 34 #include <linux/pci.h> 35 #include <linux/slab.h> 36 #include <linux/delay.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mdio.h> 39 40 #include "e1000.h" 41 42 enum {NETDEV_STATS, E1000_STATS}; 43 44 struct e1000_stats { 45 char stat_string[ETH_GSTRING_LEN]; 46 int type; 47 int sizeof_stat; 48 int stat_offset; 49 }; 50 51 #define E1000_STAT(str, m) { \ 52 .stat_string = str, \ 53 .type = E1000_STATS, \ 54 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 55 .stat_offset = offsetof(struct e1000_adapter, m) } 56 #define E1000_NETDEV_STAT(str, m) { \ 57 .stat_string = str, \ 58 .type = NETDEV_STATS, \ 59 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 60 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 61 62 static const struct e1000_stats e1000_gstrings_stats[] = { 63 E1000_STAT("rx_packets", stats.gprc), 64 E1000_STAT("tx_packets", stats.gptc), 65 E1000_STAT("rx_bytes", stats.gorc), 66 E1000_STAT("tx_bytes", stats.gotc), 67 E1000_STAT("rx_broadcast", stats.bprc), 68 E1000_STAT("tx_broadcast", stats.bptc), 69 E1000_STAT("rx_multicast", stats.mprc), 70 E1000_STAT("tx_multicast", stats.mptc), 71 E1000_NETDEV_STAT("rx_errors", rx_errors), 72 E1000_NETDEV_STAT("tx_errors", tx_errors), 73 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 74 E1000_STAT("multicast", stats.mprc), 75 E1000_STAT("collisions", stats.colc), 76 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 77 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 78 E1000_STAT("rx_crc_errors", stats.crcerrs), 79 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 80 E1000_STAT("rx_no_buffer_count", stats.rnbc), 81 E1000_STAT("rx_missed_errors", stats.mpc), 82 E1000_STAT("tx_aborted_errors", stats.ecol), 83 E1000_STAT("tx_carrier_errors", stats.tncrs), 84 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 85 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 86 E1000_STAT("tx_window_errors", stats.latecol), 87 E1000_STAT("tx_abort_late_coll", stats.latecol), 88 E1000_STAT("tx_deferred_ok", stats.dc), 89 E1000_STAT("tx_single_coll_ok", stats.scc), 90 E1000_STAT("tx_multi_coll_ok", stats.mcc), 91 E1000_STAT("tx_timeout_count", tx_timeout_count), 92 E1000_STAT("tx_restart_queue", restart_queue), 93 E1000_STAT("rx_long_length_errors", stats.roc), 94 E1000_STAT("rx_short_length_errors", stats.ruc), 95 E1000_STAT("rx_align_errors", stats.algnerrc), 96 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 97 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 98 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 99 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 100 E1000_STAT("tx_flow_control_xon", stats.xontxc), 101 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 102 E1000_STAT("rx_csum_offload_good", hw_csum_good), 103 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 104 E1000_STAT("rx_header_split", rx_hdr_split), 105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 106 E1000_STAT("tx_smbus", stats.mgptc), 107 E1000_STAT("rx_smbus", stats.mgprc), 108 E1000_STAT("dropped_smbus", stats.mgpdc), 109 E1000_STAT("rx_dma_failed", rx_dma_failed), 110 E1000_STAT("tx_dma_failed", tx_dma_failed), 111 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 112 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 113 E1000_STAT("corr_ecc_errors", corr_errors), 114 }; 115 116 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 119 "Register test (offline)", "Eeprom test (offline)", 120 "Interrupt test (offline)", "Loopback test (offline)", 121 "Link test (on/offline)" 122 }; 123 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 124 125 static int e1000_get_settings(struct net_device *netdev, 126 struct ethtool_cmd *ecmd) 127 { 128 struct e1000_adapter *adapter = netdev_priv(netdev); 129 struct e1000_hw *hw = &adapter->hw; 130 u32 speed; 131 132 if (hw->phy.media_type == e1000_media_type_copper) { 133 ecmd->supported = (SUPPORTED_10baseT_Half | 134 SUPPORTED_10baseT_Full | 135 SUPPORTED_100baseT_Half | 136 SUPPORTED_100baseT_Full | 137 SUPPORTED_1000baseT_Full | 138 SUPPORTED_Autoneg | 139 SUPPORTED_TP); 140 if (hw->phy.type == e1000_phy_ife) 141 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 142 ecmd->advertising = ADVERTISED_TP; 143 144 if (hw->mac.autoneg == 1) { 145 ecmd->advertising |= ADVERTISED_Autoneg; 146 /* the e1000 autoneg seems to match ethtool nicely */ 147 ecmd->advertising |= hw->phy.autoneg_advertised; 148 } 149 150 ecmd->port = PORT_TP; 151 ecmd->phy_address = hw->phy.addr; 152 ecmd->transceiver = XCVR_INTERNAL; 153 154 } else { 155 ecmd->supported = (SUPPORTED_1000baseT_Full | 156 SUPPORTED_FIBRE | 157 SUPPORTED_Autoneg); 158 159 ecmd->advertising = (ADVERTISED_1000baseT_Full | 160 ADVERTISED_FIBRE | 161 ADVERTISED_Autoneg); 162 163 ecmd->port = PORT_FIBRE; 164 ecmd->transceiver = XCVR_EXTERNAL; 165 } 166 167 speed = -1; 168 ecmd->duplex = -1; 169 170 if (netif_running(netdev)) { 171 if (netif_carrier_ok(netdev)) { 172 speed = adapter->link_speed; 173 ecmd->duplex = adapter->link_duplex - 1; 174 } 175 } else { 176 u32 status = er32(STATUS); 177 if (status & E1000_STATUS_LU) { 178 if (status & E1000_STATUS_SPEED_1000) 179 speed = SPEED_1000; 180 else if (status & E1000_STATUS_SPEED_100) 181 speed = SPEED_100; 182 else 183 speed = SPEED_10; 184 185 if (status & E1000_STATUS_FD) 186 ecmd->duplex = DUPLEX_FULL; 187 else 188 ecmd->duplex = DUPLEX_HALF; 189 } 190 } 191 192 ethtool_cmd_speed_set(ecmd, speed); 193 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 194 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 195 196 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 197 if ((hw->phy.media_type == e1000_media_type_copper) && 198 netif_carrier_ok(netdev)) 199 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 200 ETH_TP_MDI; 201 else 202 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 203 204 if (hw->phy.mdix == AUTO_ALL_MODES) 205 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 206 else 207 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 208 209 return 0; 210 } 211 212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 213 { 214 struct e1000_mac_info *mac = &adapter->hw.mac; 215 216 mac->autoneg = 0; 217 218 /* Make sure dplx is at most 1 bit and lsb of speed is not set 219 * for the switch() below to work 220 */ 221 if ((spd & 1) || (dplx & ~1)) 222 goto err_inval; 223 224 /* Fiber NICs only allow 1000 gbps Full duplex */ 225 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 226 spd != SPEED_1000 && 227 dplx != DUPLEX_FULL) { 228 goto err_inval; 229 } 230 231 switch (spd + dplx) { 232 case SPEED_10 + DUPLEX_HALF: 233 mac->forced_speed_duplex = ADVERTISE_10_HALF; 234 break; 235 case SPEED_10 + DUPLEX_FULL: 236 mac->forced_speed_duplex = ADVERTISE_10_FULL; 237 break; 238 case SPEED_100 + DUPLEX_HALF: 239 mac->forced_speed_duplex = ADVERTISE_100_HALF; 240 break; 241 case SPEED_100 + DUPLEX_FULL: 242 mac->forced_speed_duplex = ADVERTISE_100_FULL; 243 break; 244 case SPEED_1000 + DUPLEX_FULL: 245 mac->autoneg = 1; 246 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 247 break; 248 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 249 default: 250 goto err_inval; 251 } 252 253 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 254 adapter->hw.phy.mdix = AUTO_ALL_MODES; 255 256 return 0; 257 258 err_inval: 259 e_err("Unsupported Speed/Duplex configuration\n"); 260 return -EINVAL; 261 } 262 263 static int e1000_set_settings(struct net_device *netdev, 264 struct ethtool_cmd *ecmd) 265 { 266 struct e1000_adapter *adapter = netdev_priv(netdev); 267 struct e1000_hw *hw = &adapter->hw; 268 269 /* When SoL/IDER sessions are active, autoneg/speed/duplex 270 * cannot be changed 271 */ 272 if (hw->phy.ops.check_reset_block && 273 hw->phy.ops.check_reset_block(hw)) { 274 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 275 return -EINVAL; 276 } 277 278 /* MDI setting is only allowed when autoneg enabled because 279 * some hardware doesn't allow MDI setting when speed or 280 * duplex is forced. 281 */ 282 if (ecmd->eth_tp_mdix_ctrl) { 283 if (hw->phy.media_type != e1000_media_type_copper) 284 return -EOPNOTSUPP; 285 286 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 287 (ecmd->autoneg != AUTONEG_ENABLE)) { 288 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 289 return -EINVAL; 290 } 291 } 292 293 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 294 usleep_range(1000, 2000); 295 296 if (ecmd->autoneg == AUTONEG_ENABLE) { 297 hw->mac.autoneg = 1; 298 if (hw->phy.media_type == e1000_media_type_fiber) 299 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 300 ADVERTISED_FIBRE | 301 ADVERTISED_Autoneg; 302 else 303 hw->phy.autoneg_advertised = ecmd->advertising | 304 ADVERTISED_TP | 305 ADVERTISED_Autoneg; 306 ecmd->advertising = hw->phy.autoneg_advertised; 307 if (adapter->fc_autoneg) 308 hw->fc.requested_mode = e1000_fc_default; 309 } else { 310 u32 speed = ethtool_cmd_speed(ecmd); 311 /* calling this overrides forced MDI setting */ 312 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 313 clear_bit(__E1000_RESETTING, &adapter->state); 314 return -EINVAL; 315 } 316 } 317 318 /* MDI-X => 2; MDI => 1; Auto => 3 */ 319 if (ecmd->eth_tp_mdix_ctrl) { 320 /* fix up the value for auto (3 => 0) as zero is mapped 321 * internally to auto 322 */ 323 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 324 hw->phy.mdix = AUTO_ALL_MODES; 325 else 326 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 327 } 328 329 /* reset the link */ 330 if (netif_running(adapter->netdev)) { 331 e1000e_down(adapter); 332 e1000e_up(adapter); 333 } else { 334 e1000e_reset(adapter); 335 } 336 337 clear_bit(__E1000_RESETTING, &adapter->state); 338 return 0; 339 } 340 341 static void e1000_get_pauseparam(struct net_device *netdev, 342 struct ethtool_pauseparam *pause) 343 { 344 struct e1000_adapter *adapter = netdev_priv(netdev); 345 struct e1000_hw *hw = &adapter->hw; 346 347 pause->autoneg = 348 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 349 350 if (hw->fc.current_mode == e1000_fc_rx_pause) { 351 pause->rx_pause = 1; 352 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 353 pause->tx_pause = 1; 354 } else if (hw->fc.current_mode == e1000_fc_full) { 355 pause->rx_pause = 1; 356 pause->tx_pause = 1; 357 } 358 } 359 360 static int e1000_set_pauseparam(struct net_device *netdev, 361 struct ethtool_pauseparam *pause) 362 { 363 struct e1000_adapter *adapter = netdev_priv(netdev); 364 struct e1000_hw *hw = &adapter->hw; 365 int retval = 0; 366 367 adapter->fc_autoneg = pause->autoneg; 368 369 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 370 usleep_range(1000, 2000); 371 372 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 373 hw->fc.requested_mode = e1000_fc_default; 374 if (netif_running(adapter->netdev)) { 375 e1000e_down(adapter); 376 e1000e_up(adapter); 377 } else { 378 e1000e_reset(adapter); 379 } 380 } else { 381 if (pause->rx_pause && pause->tx_pause) 382 hw->fc.requested_mode = e1000_fc_full; 383 else if (pause->rx_pause && !pause->tx_pause) 384 hw->fc.requested_mode = e1000_fc_rx_pause; 385 else if (!pause->rx_pause && pause->tx_pause) 386 hw->fc.requested_mode = e1000_fc_tx_pause; 387 else if (!pause->rx_pause && !pause->tx_pause) 388 hw->fc.requested_mode = e1000_fc_none; 389 390 hw->fc.current_mode = hw->fc.requested_mode; 391 392 if (hw->phy.media_type == e1000_media_type_fiber) { 393 retval = hw->mac.ops.setup_link(hw); 394 /* implicit goto out */ 395 } else { 396 retval = e1000e_force_mac_fc(hw); 397 if (retval) 398 goto out; 399 e1000e_set_fc_watermarks(hw); 400 } 401 } 402 403 out: 404 clear_bit(__E1000_RESETTING, &adapter->state); 405 return retval; 406 } 407 408 static u32 e1000_get_msglevel(struct net_device *netdev) 409 { 410 struct e1000_adapter *adapter = netdev_priv(netdev); 411 return adapter->msg_enable; 412 } 413 414 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 415 { 416 struct e1000_adapter *adapter = netdev_priv(netdev); 417 adapter->msg_enable = data; 418 } 419 420 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 421 { 422 #define E1000_REGS_LEN 32 /* overestimate */ 423 return E1000_REGS_LEN * sizeof(u32); 424 } 425 426 static void e1000_get_regs(struct net_device *netdev, 427 struct ethtool_regs *regs, void *p) 428 { 429 struct e1000_adapter *adapter = netdev_priv(netdev); 430 struct e1000_hw *hw = &adapter->hw; 431 u32 *regs_buff = p; 432 u16 phy_data; 433 434 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 435 436 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 437 adapter->pdev->device; 438 439 regs_buff[0] = er32(CTRL); 440 regs_buff[1] = er32(STATUS); 441 442 regs_buff[2] = er32(RCTL); 443 regs_buff[3] = er32(RDLEN(0)); 444 regs_buff[4] = er32(RDH(0)); 445 regs_buff[5] = er32(RDT(0)); 446 regs_buff[6] = er32(RDTR); 447 448 regs_buff[7] = er32(TCTL); 449 regs_buff[8] = er32(TDLEN(0)); 450 regs_buff[9] = er32(TDH(0)); 451 regs_buff[10] = er32(TDT(0)); 452 regs_buff[11] = er32(TIDV); 453 454 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 455 456 /* ethtool doesn't use anything past this point, so all this 457 * code is likely legacy junk for apps that may or may not exist 458 */ 459 if (hw->phy.type == e1000_phy_m88) { 460 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 461 regs_buff[13] = (u32)phy_data; /* cable length */ 462 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 463 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 464 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 465 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 466 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 467 regs_buff[18] = regs_buff[13]; /* cable polarity */ 468 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 469 regs_buff[20] = regs_buff[17]; /* polarity correction */ 470 /* phy receive errors */ 471 regs_buff[22] = adapter->phy_stats.receive_errors; 472 regs_buff[23] = regs_buff[13]; /* mdix mode */ 473 } 474 regs_buff[21] = 0; /* was idle_errors */ 475 e1e_rphy(hw, MII_STAT1000, &phy_data); 476 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 477 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 478 } 479 480 static int e1000_get_eeprom_len(struct net_device *netdev) 481 { 482 struct e1000_adapter *adapter = netdev_priv(netdev); 483 return adapter->hw.nvm.word_size * 2; 484 } 485 486 static int e1000_get_eeprom(struct net_device *netdev, 487 struct ethtool_eeprom *eeprom, u8 *bytes) 488 { 489 struct e1000_adapter *adapter = netdev_priv(netdev); 490 struct e1000_hw *hw = &adapter->hw; 491 u16 *eeprom_buff; 492 int first_word; 493 int last_word; 494 int ret_val = 0; 495 u16 i; 496 497 if (eeprom->len == 0) 498 return -EINVAL; 499 500 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 501 502 first_word = eeprom->offset >> 1; 503 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 504 505 eeprom_buff = kmalloc(sizeof(u16) * 506 (last_word - first_word + 1), GFP_KERNEL); 507 if (!eeprom_buff) 508 return -ENOMEM; 509 510 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 511 ret_val = e1000_read_nvm(hw, first_word, 512 last_word - first_word + 1, 513 eeprom_buff); 514 } else { 515 for (i = 0; i < last_word - first_word + 1; i++) { 516 ret_val = e1000_read_nvm(hw, first_word + i, 1, 517 &eeprom_buff[i]); 518 if (ret_val) 519 break; 520 } 521 } 522 523 if (ret_val) { 524 /* a read error occurred, throw away the result */ 525 memset(eeprom_buff, 0xff, sizeof(u16) * 526 (last_word - first_word + 1)); 527 } else { 528 /* Device's eeprom is always little-endian, word addressable */ 529 for (i = 0; i < last_word - first_word + 1; i++) 530 le16_to_cpus(&eeprom_buff[i]); 531 } 532 533 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 534 kfree(eeprom_buff); 535 536 return ret_val; 537 } 538 539 static int e1000_set_eeprom(struct net_device *netdev, 540 struct ethtool_eeprom *eeprom, u8 *bytes) 541 { 542 struct e1000_adapter *adapter = netdev_priv(netdev); 543 struct e1000_hw *hw = &adapter->hw; 544 u16 *eeprom_buff; 545 void *ptr; 546 int max_len; 547 int first_word; 548 int last_word; 549 int ret_val = 0; 550 u16 i; 551 552 if (eeprom->len == 0) 553 return -EOPNOTSUPP; 554 555 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) 556 return -EFAULT; 557 558 if (adapter->flags & FLAG_READ_ONLY_NVM) 559 return -EINVAL; 560 561 max_len = hw->nvm.word_size * 2; 562 563 first_word = eeprom->offset >> 1; 564 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 565 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 566 if (!eeprom_buff) 567 return -ENOMEM; 568 569 ptr = (void *)eeprom_buff; 570 571 if (eeprom->offset & 1) { 572 /* need read/modify/write of first changed EEPROM word */ 573 /* only the second byte of the word is being modified */ 574 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 575 ptr++; 576 } 577 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 578 /* need read/modify/write of last changed EEPROM word */ 579 /* only the first byte of the word is being modified */ 580 ret_val = e1000_read_nvm(hw, last_word, 1, 581 &eeprom_buff[last_word - first_word]); 582 583 if (ret_val) 584 goto out; 585 586 /* Device's eeprom is always little-endian, word addressable */ 587 for (i = 0; i < last_word - first_word + 1; i++) 588 le16_to_cpus(&eeprom_buff[i]); 589 590 memcpy(ptr, bytes, eeprom->len); 591 592 for (i = 0; i < last_word - first_word + 1; i++) 593 cpu_to_le16s(&eeprom_buff[i]); 594 595 ret_val = e1000_write_nvm(hw, first_word, 596 last_word - first_word + 1, eeprom_buff); 597 598 if (ret_val) 599 goto out; 600 601 /* Update the checksum over the first part of the EEPROM if needed 602 * and flush shadow RAM for applicable controllers 603 */ 604 if ((first_word <= NVM_CHECKSUM_REG) || 605 (hw->mac.type == e1000_82583) || 606 (hw->mac.type == e1000_82574) || 607 (hw->mac.type == e1000_82573)) 608 ret_val = e1000e_update_nvm_checksum(hw); 609 610 out: 611 kfree(eeprom_buff); 612 return ret_val; 613 } 614 615 static void e1000_get_drvinfo(struct net_device *netdev, 616 struct ethtool_drvinfo *drvinfo) 617 { 618 struct e1000_adapter *adapter = netdev_priv(netdev); 619 620 strlcpy(drvinfo->driver, e1000e_driver_name, 621 sizeof(drvinfo->driver)); 622 strlcpy(drvinfo->version, e1000e_driver_version, 623 sizeof(drvinfo->version)); 624 625 /* EEPROM image version # is reported as firmware version # for 626 * PCI-E controllers 627 */ 628 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 629 "%d.%d-%d", 630 (adapter->eeprom_vers & 0xF000) >> 12, 631 (adapter->eeprom_vers & 0x0FF0) >> 4, 632 (adapter->eeprom_vers & 0x000F)); 633 634 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 635 sizeof(drvinfo->bus_info)); 636 drvinfo->regdump_len = e1000_get_regs_len(netdev); 637 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 638 } 639 640 static void e1000_get_ringparam(struct net_device *netdev, 641 struct ethtool_ringparam *ring) 642 { 643 struct e1000_adapter *adapter = netdev_priv(netdev); 644 645 ring->rx_max_pending = E1000_MAX_RXD; 646 ring->tx_max_pending = E1000_MAX_TXD; 647 ring->rx_pending = adapter->rx_ring_count; 648 ring->tx_pending = adapter->tx_ring_count; 649 } 650 651 static int e1000_set_ringparam(struct net_device *netdev, 652 struct ethtool_ringparam *ring) 653 { 654 struct e1000_adapter *adapter = netdev_priv(netdev); 655 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 656 int err = 0, size = sizeof(struct e1000_ring); 657 bool set_tx = false, set_rx = false; 658 u16 new_rx_count, new_tx_count; 659 660 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 661 return -EINVAL; 662 663 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 664 E1000_MAX_RXD); 665 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 666 667 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 668 E1000_MAX_TXD); 669 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 670 671 if ((new_tx_count == adapter->tx_ring_count) && 672 (new_rx_count == adapter->rx_ring_count)) 673 /* nothing to do */ 674 return 0; 675 676 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 677 usleep_range(1000, 2000); 678 679 if (!netif_running(adapter->netdev)) { 680 /* Set counts now and allocate resources during open() */ 681 adapter->tx_ring->count = new_tx_count; 682 adapter->rx_ring->count = new_rx_count; 683 adapter->tx_ring_count = new_tx_count; 684 adapter->rx_ring_count = new_rx_count; 685 goto clear_reset; 686 } 687 688 set_tx = (new_tx_count != adapter->tx_ring_count); 689 set_rx = (new_rx_count != adapter->rx_ring_count); 690 691 /* Allocate temporary storage for ring updates */ 692 if (set_tx) { 693 temp_tx = vmalloc(size); 694 if (!temp_tx) { 695 err = -ENOMEM; 696 goto free_temp; 697 } 698 } 699 if (set_rx) { 700 temp_rx = vmalloc(size); 701 if (!temp_rx) { 702 err = -ENOMEM; 703 goto free_temp; 704 } 705 } 706 707 e1000e_down(adapter); 708 709 /* We can't just free everything and then setup again, because the 710 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 711 * structs. First, attempt to allocate new resources... 712 */ 713 if (set_tx) { 714 memcpy(temp_tx, adapter->tx_ring, size); 715 temp_tx->count = new_tx_count; 716 err = e1000e_setup_tx_resources(temp_tx); 717 if (err) 718 goto err_setup; 719 } 720 if (set_rx) { 721 memcpy(temp_rx, adapter->rx_ring, size); 722 temp_rx->count = new_rx_count; 723 err = e1000e_setup_rx_resources(temp_rx); 724 if (err) 725 goto err_setup_rx; 726 } 727 728 /* ...then free the old resources and copy back any new ring data */ 729 if (set_tx) { 730 e1000e_free_tx_resources(adapter->tx_ring); 731 memcpy(adapter->tx_ring, temp_tx, size); 732 adapter->tx_ring_count = new_tx_count; 733 } 734 if (set_rx) { 735 e1000e_free_rx_resources(adapter->rx_ring); 736 memcpy(adapter->rx_ring, temp_rx, size); 737 adapter->rx_ring_count = new_rx_count; 738 } 739 740 err_setup_rx: 741 if (err && set_tx) 742 e1000e_free_tx_resources(temp_tx); 743 err_setup: 744 e1000e_up(adapter); 745 free_temp: 746 vfree(temp_tx); 747 vfree(temp_rx); 748 clear_reset: 749 clear_bit(__E1000_RESETTING, &adapter->state); 750 return err; 751 } 752 753 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 754 int reg, int offset, u32 mask, u32 write) 755 { 756 u32 pat, val; 757 static const u32 test[] = { 758 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 759 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 760 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 761 (test[pat] & write)); 762 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 763 if (val != (test[pat] & write & mask)) { 764 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 765 reg + (offset << 2), val, 766 (test[pat] & write & mask)); 767 *data = reg; 768 return 1; 769 } 770 } 771 return 0; 772 } 773 774 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 775 int reg, u32 mask, u32 write) 776 { 777 u32 val; 778 __ew32(&adapter->hw, reg, write & mask); 779 val = __er32(&adapter->hw, reg); 780 if ((write & mask) != (val & mask)) { 781 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 782 reg, (val & mask), (write & mask)); 783 *data = reg; 784 return 1; 785 } 786 return 0; 787 } 788 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 789 do { \ 790 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 791 return 1; \ 792 } while (0) 793 #define REG_PATTERN_TEST(reg, mask, write) \ 794 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 795 796 #define REG_SET_AND_CHECK(reg, mask, write) \ 797 do { \ 798 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 799 return 1; \ 800 } while (0) 801 802 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 803 { 804 struct e1000_hw *hw = &adapter->hw; 805 struct e1000_mac_info *mac = &adapter->hw.mac; 806 u32 value; 807 u32 before; 808 u32 after; 809 u32 i; 810 u32 toggle; 811 u32 mask; 812 u32 wlock_mac = 0; 813 814 /* The status register is Read Only, so a write should fail. 815 * Some bits that get toggled are ignored. 816 */ 817 switch (mac->type) { 818 /* there are several bits on newer hardware that are r/w */ 819 case e1000_82571: 820 case e1000_82572: 821 case e1000_80003es2lan: 822 toggle = 0x7FFFF3FF; 823 break; 824 default: 825 toggle = 0x7FFFF033; 826 break; 827 } 828 829 before = er32(STATUS); 830 value = (er32(STATUS) & toggle); 831 ew32(STATUS, toggle); 832 after = er32(STATUS) & toggle; 833 if (value != after) { 834 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 835 after, value); 836 *data = 1; 837 return 1; 838 } 839 /* restore previous status */ 840 ew32(STATUS, before); 841 842 if (!(adapter->flags & FLAG_IS_ICH)) { 843 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 844 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 845 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 846 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 847 } 848 849 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 850 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 851 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 852 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 853 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 854 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 855 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 856 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 857 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 858 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 859 860 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 861 862 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 863 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 864 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 865 866 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 867 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 868 if (!(adapter->flags & FLAG_IS_ICH)) 869 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 870 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 871 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 872 mask = 0x8003FFFF; 873 switch (mac->type) { 874 case e1000_ich10lan: 875 case e1000_pchlan: 876 case e1000_pch2lan: 877 case e1000_pch_lpt: 878 mask |= (1 << 18); 879 break; 880 default: 881 break; 882 } 883 884 if (mac->type == e1000_pch_lpt) 885 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 886 E1000_FWSM_WLOCK_MAC_SHIFT; 887 888 for (i = 0; i < mac->rar_entry_count; i++) { 889 if (mac->type == e1000_pch_lpt) { 890 /* Cannot test write-protected SHRAL[n] registers */ 891 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 892 continue; 893 894 /* SHRAH[9] different than the others */ 895 if (i == 10) 896 mask |= (1 << 30); 897 else 898 mask &= ~(1 << 30); 899 } 900 901 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 902 0xFFFFFFFF); 903 } 904 905 for (i = 0; i < mac->mta_reg_count; i++) 906 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 907 908 *data = 0; 909 910 return 0; 911 } 912 913 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 914 { 915 u16 temp; 916 u16 checksum = 0; 917 u16 i; 918 919 *data = 0; 920 /* Read and add up the contents of the EEPROM */ 921 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 922 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 923 *data = 1; 924 return *data; 925 } 926 checksum += temp; 927 } 928 929 /* If Checksum is not Correct return error else test passed */ 930 if ((checksum != (u16) NVM_SUM) && !(*data)) 931 *data = 2; 932 933 return *data; 934 } 935 936 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 937 { 938 struct net_device *netdev = (struct net_device *) data; 939 struct e1000_adapter *adapter = netdev_priv(netdev); 940 struct e1000_hw *hw = &adapter->hw; 941 942 adapter->test_icr |= er32(ICR); 943 944 return IRQ_HANDLED; 945 } 946 947 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 948 { 949 struct net_device *netdev = adapter->netdev; 950 struct e1000_hw *hw = &adapter->hw; 951 u32 mask; 952 u32 shared_int = 1; 953 u32 irq = adapter->pdev->irq; 954 int i; 955 int ret_val = 0; 956 int int_mode = E1000E_INT_MODE_LEGACY; 957 958 *data = 0; 959 960 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 961 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 962 int_mode = adapter->int_mode; 963 e1000e_reset_interrupt_capability(adapter); 964 adapter->int_mode = E1000E_INT_MODE_LEGACY; 965 e1000e_set_interrupt_capability(adapter); 966 } 967 /* Hook up test interrupt handler just for this test */ 968 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 969 netdev)) { 970 shared_int = 0; 971 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 972 netdev->name, netdev)) { 973 *data = 1; 974 ret_val = -1; 975 goto out; 976 } 977 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 978 979 /* Disable all the interrupts */ 980 ew32(IMC, 0xFFFFFFFF); 981 e1e_flush(); 982 usleep_range(10000, 20000); 983 984 /* Test each interrupt */ 985 for (i = 0; i < 10; i++) { 986 /* Interrupt to test */ 987 mask = 1 << i; 988 989 if (adapter->flags & FLAG_IS_ICH) { 990 switch (mask) { 991 case E1000_ICR_RXSEQ: 992 continue; 993 case 0x00000100: 994 if (adapter->hw.mac.type == e1000_ich8lan || 995 adapter->hw.mac.type == e1000_ich9lan) 996 continue; 997 break; 998 default: 999 break; 1000 } 1001 } 1002 1003 if (!shared_int) { 1004 /* Disable the interrupt to be reported in 1005 * the cause register and then force the same 1006 * interrupt and see if one gets posted. If 1007 * an interrupt was posted to the bus, the 1008 * test failed. 1009 */ 1010 adapter->test_icr = 0; 1011 ew32(IMC, mask); 1012 ew32(ICS, mask); 1013 e1e_flush(); 1014 usleep_range(10000, 20000); 1015 1016 if (adapter->test_icr & mask) { 1017 *data = 3; 1018 break; 1019 } 1020 } 1021 1022 /* Enable the interrupt to be reported in 1023 * the cause register and then force the same 1024 * interrupt and see if one gets posted. If 1025 * an interrupt was not posted to the bus, the 1026 * test failed. 1027 */ 1028 adapter->test_icr = 0; 1029 ew32(IMS, mask); 1030 ew32(ICS, mask); 1031 e1e_flush(); 1032 usleep_range(10000, 20000); 1033 1034 if (!(adapter->test_icr & mask)) { 1035 *data = 4; 1036 break; 1037 } 1038 1039 if (!shared_int) { 1040 /* Disable the other interrupts to be reported in 1041 * the cause register and then force the other 1042 * interrupts and see if any get posted. If 1043 * an interrupt was posted to the bus, the 1044 * test failed. 1045 */ 1046 adapter->test_icr = 0; 1047 ew32(IMC, ~mask & 0x00007FFF); 1048 ew32(ICS, ~mask & 0x00007FFF); 1049 e1e_flush(); 1050 usleep_range(10000, 20000); 1051 1052 if (adapter->test_icr) { 1053 *data = 5; 1054 break; 1055 } 1056 } 1057 } 1058 1059 /* Disable all the interrupts */ 1060 ew32(IMC, 0xFFFFFFFF); 1061 e1e_flush(); 1062 usleep_range(10000, 20000); 1063 1064 /* Unhook test interrupt handler */ 1065 free_irq(irq, netdev); 1066 1067 out: 1068 if (int_mode == E1000E_INT_MODE_MSIX) { 1069 e1000e_reset_interrupt_capability(adapter); 1070 adapter->int_mode = int_mode; 1071 e1000e_set_interrupt_capability(adapter); 1072 } 1073 1074 return ret_val; 1075 } 1076 1077 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1078 { 1079 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1080 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1081 struct pci_dev *pdev = adapter->pdev; 1082 int i; 1083 1084 if (tx_ring->desc && tx_ring->buffer_info) { 1085 for (i = 0; i < tx_ring->count; i++) { 1086 if (tx_ring->buffer_info[i].dma) 1087 dma_unmap_single(&pdev->dev, 1088 tx_ring->buffer_info[i].dma, 1089 tx_ring->buffer_info[i].length, 1090 DMA_TO_DEVICE); 1091 if (tx_ring->buffer_info[i].skb) 1092 dev_kfree_skb(tx_ring->buffer_info[i].skb); 1093 } 1094 } 1095 1096 if (rx_ring->desc && rx_ring->buffer_info) { 1097 for (i = 0; i < rx_ring->count; i++) { 1098 if (rx_ring->buffer_info[i].dma) 1099 dma_unmap_single(&pdev->dev, 1100 rx_ring->buffer_info[i].dma, 1101 2048, DMA_FROM_DEVICE); 1102 if (rx_ring->buffer_info[i].skb) 1103 dev_kfree_skb(rx_ring->buffer_info[i].skb); 1104 } 1105 } 1106 1107 if (tx_ring->desc) { 1108 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1109 tx_ring->dma); 1110 tx_ring->desc = NULL; 1111 } 1112 if (rx_ring->desc) { 1113 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1114 rx_ring->dma); 1115 rx_ring->desc = NULL; 1116 } 1117 1118 kfree(tx_ring->buffer_info); 1119 tx_ring->buffer_info = NULL; 1120 kfree(rx_ring->buffer_info); 1121 rx_ring->buffer_info = NULL; 1122 } 1123 1124 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1125 { 1126 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1127 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1128 struct pci_dev *pdev = adapter->pdev; 1129 struct e1000_hw *hw = &adapter->hw; 1130 u32 rctl; 1131 int i; 1132 int ret_val; 1133 1134 /* Setup Tx descriptor ring and Tx buffers */ 1135 1136 if (!tx_ring->count) 1137 tx_ring->count = E1000_DEFAULT_TXD; 1138 1139 tx_ring->buffer_info = kcalloc(tx_ring->count, 1140 sizeof(struct e1000_buffer), 1141 GFP_KERNEL); 1142 if (!tx_ring->buffer_info) { 1143 ret_val = 1; 1144 goto err_nomem; 1145 } 1146 1147 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1148 tx_ring->size = ALIGN(tx_ring->size, 4096); 1149 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1150 &tx_ring->dma, GFP_KERNEL); 1151 if (!tx_ring->desc) { 1152 ret_val = 2; 1153 goto err_nomem; 1154 } 1155 tx_ring->next_to_use = 0; 1156 tx_ring->next_to_clean = 0; 1157 1158 ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); 1159 ew32(TDBAH(0), ((u64) tx_ring->dma >> 32)); 1160 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1161 ew32(TDH(0), 0); 1162 ew32(TDT(0), 0); 1163 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1164 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1165 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1166 1167 for (i = 0; i < tx_ring->count; i++) { 1168 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1169 struct sk_buff *skb; 1170 unsigned int skb_size = 1024; 1171 1172 skb = alloc_skb(skb_size, GFP_KERNEL); 1173 if (!skb) { 1174 ret_val = 3; 1175 goto err_nomem; 1176 } 1177 skb_put(skb, skb_size); 1178 tx_ring->buffer_info[i].skb = skb; 1179 tx_ring->buffer_info[i].length = skb->len; 1180 tx_ring->buffer_info[i].dma = 1181 dma_map_single(&pdev->dev, skb->data, skb->len, 1182 DMA_TO_DEVICE); 1183 if (dma_mapping_error(&pdev->dev, 1184 tx_ring->buffer_info[i].dma)) { 1185 ret_val = 4; 1186 goto err_nomem; 1187 } 1188 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1189 tx_desc->lower.data = cpu_to_le32(skb->len); 1190 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1191 E1000_TXD_CMD_IFCS | 1192 E1000_TXD_CMD_RS); 1193 tx_desc->upper.data = 0; 1194 } 1195 1196 /* Setup Rx descriptor ring and Rx buffers */ 1197 1198 if (!rx_ring->count) 1199 rx_ring->count = E1000_DEFAULT_RXD; 1200 1201 rx_ring->buffer_info = kcalloc(rx_ring->count, 1202 sizeof(struct e1000_buffer), 1203 GFP_KERNEL); 1204 if (!rx_ring->buffer_info) { 1205 ret_val = 5; 1206 goto err_nomem; 1207 } 1208 1209 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1210 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1211 &rx_ring->dma, GFP_KERNEL); 1212 if (!rx_ring->desc) { 1213 ret_val = 6; 1214 goto err_nomem; 1215 } 1216 rx_ring->next_to_use = 0; 1217 rx_ring->next_to_clean = 0; 1218 1219 rctl = er32(RCTL); 1220 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1221 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1222 ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF)); 1223 ew32(RDBAH(0), ((u64) rx_ring->dma >> 32)); 1224 ew32(RDLEN(0), rx_ring->size); 1225 ew32(RDH(0), 0); 1226 ew32(RDT(0), 0); 1227 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1228 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1229 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1230 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1231 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1232 ew32(RCTL, rctl); 1233 1234 for (i = 0; i < rx_ring->count; i++) { 1235 union e1000_rx_desc_extended *rx_desc; 1236 struct sk_buff *skb; 1237 1238 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1239 if (!skb) { 1240 ret_val = 7; 1241 goto err_nomem; 1242 } 1243 skb_reserve(skb, NET_IP_ALIGN); 1244 rx_ring->buffer_info[i].skb = skb; 1245 rx_ring->buffer_info[i].dma = 1246 dma_map_single(&pdev->dev, skb->data, 2048, 1247 DMA_FROM_DEVICE); 1248 if (dma_mapping_error(&pdev->dev, 1249 rx_ring->buffer_info[i].dma)) { 1250 ret_val = 8; 1251 goto err_nomem; 1252 } 1253 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1254 rx_desc->read.buffer_addr = 1255 cpu_to_le64(rx_ring->buffer_info[i].dma); 1256 memset(skb->data, 0x00, skb->len); 1257 } 1258 1259 return 0; 1260 1261 err_nomem: 1262 e1000_free_desc_rings(adapter); 1263 return ret_val; 1264 } 1265 1266 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1267 { 1268 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1269 e1e_wphy(&adapter->hw, 29, 0x001F); 1270 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1271 e1e_wphy(&adapter->hw, 29, 0x001A); 1272 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1273 } 1274 1275 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1276 { 1277 struct e1000_hw *hw = &adapter->hw; 1278 u32 ctrl_reg = 0; 1279 u16 phy_reg = 0; 1280 s32 ret_val = 0; 1281 1282 hw->mac.autoneg = 0; 1283 1284 if (hw->phy.type == e1000_phy_ife) { 1285 /* force 100, set loopback */ 1286 e1e_wphy(hw, MII_BMCR, 0x6100); 1287 1288 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1289 ctrl_reg = er32(CTRL); 1290 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1291 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1292 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1293 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1294 E1000_CTRL_FD); /* Force Duplex to FULL */ 1295 1296 ew32(CTRL, ctrl_reg); 1297 e1e_flush(); 1298 udelay(500); 1299 1300 return 0; 1301 } 1302 1303 /* Specific PHY configuration for loopback */ 1304 switch (hw->phy.type) { 1305 case e1000_phy_m88: 1306 /* Auto-MDI/MDIX Off */ 1307 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1308 /* reset to update Auto-MDI/MDIX */ 1309 e1e_wphy(hw, MII_BMCR, 0x9140); 1310 /* autoneg off */ 1311 e1e_wphy(hw, MII_BMCR, 0x8140); 1312 break; 1313 case e1000_phy_gg82563: 1314 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1315 break; 1316 case e1000_phy_bm: 1317 /* Set Default MAC Interface speed to 1GB */ 1318 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1319 phy_reg &= ~0x0007; 1320 phy_reg |= 0x006; 1321 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1322 /* Assert SW reset for above settings to take effect */ 1323 hw->phy.ops.commit(hw); 1324 mdelay(1); 1325 /* Force Full Duplex */ 1326 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1327 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1328 /* Set Link Up (in force link) */ 1329 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1330 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1331 /* Force Link */ 1332 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1333 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1334 /* Set Early Link Enable */ 1335 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1336 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1337 break; 1338 case e1000_phy_82577: 1339 case e1000_phy_82578: 1340 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1341 ret_val = hw->phy.ops.acquire(hw); 1342 if (ret_val) { 1343 e_err("Cannot setup 1Gbps loopback.\n"); 1344 return ret_val; 1345 } 1346 e1000_configure_k1_ich8lan(hw, false); 1347 hw->phy.ops.release(hw); 1348 break; 1349 case e1000_phy_82579: 1350 /* Disable PHY energy detect power down */ 1351 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1352 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); 1353 /* Disable full chip energy detect */ 1354 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1355 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1356 /* Enable loopback on the PHY */ 1357 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1358 break; 1359 default: 1360 break; 1361 } 1362 1363 /* force 1000, set loopback */ 1364 e1e_wphy(hw, MII_BMCR, 0x4140); 1365 mdelay(250); 1366 1367 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1368 ctrl_reg = er32(CTRL); 1369 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1370 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1371 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1372 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1373 E1000_CTRL_FD); /* Force Duplex to FULL */ 1374 1375 if (adapter->flags & FLAG_IS_ICH) 1376 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1377 1378 if (hw->phy.media_type == e1000_media_type_copper && 1379 hw->phy.type == e1000_phy_m88) { 1380 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1381 } else { 1382 /* Set the ILOS bit on the fiber Nic if half duplex link is 1383 * detected. 1384 */ 1385 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1386 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1387 } 1388 1389 ew32(CTRL, ctrl_reg); 1390 1391 /* Disable the receiver on the PHY so when a cable is plugged in, the 1392 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1393 */ 1394 if (hw->phy.type == e1000_phy_m88) 1395 e1000_phy_disable_receiver(adapter); 1396 1397 udelay(500); 1398 1399 return 0; 1400 } 1401 1402 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1403 { 1404 struct e1000_hw *hw = &adapter->hw; 1405 u32 ctrl = er32(CTRL); 1406 int link; 1407 1408 /* special requirements for 82571/82572 fiber adapters */ 1409 1410 /* jump through hoops to make sure link is up because serdes 1411 * link is hardwired up 1412 */ 1413 ctrl |= E1000_CTRL_SLU; 1414 ew32(CTRL, ctrl); 1415 1416 /* disable autoneg */ 1417 ctrl = er32(TXCW); 1418 ctrl &= ~(1 << 31); 1419 ew32(TXCW, ctrl); 1420 1421 link = (er32(STATUS) & E1000_STATUS_LU); 1422 1423 if (!link) { 1424 /* set invert loss of signal */ 1425 ctrl = er32(CTRL); 1426 ctrl |= E1000_CTRL_ILOS; 1427 ew32(CTRL, ctrl); 1428 } 1429 1430 /* special write to serdes control register to enable SerDes analog 1431 * loopback 1432 */ 1433 #define E1000_SERDES_LB_ON 0x410 1434 ew32(SCTL, E1000_SERDES_LB_ON); 1435 e1e_flush(); 1436 usleep_range(10000, 20000); 1437 1438 return 0; 1439 } 1440 1441 /* only call this for fiber/serdes connections to es2lan */ 1442 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1443 { 1444 struct e1000_hw *hw = &adapter->hw; 1445 u32 ctrlext = er32(CTRL_EXT); 1446 u32 ctrl = er32(CTRL); 1447 1448 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1449 * on mac_type 80003es2lan) 1450 */ 1451 adapter->tx_fifo_head = ctrlext; 1452 1453 /* clear the serdes mode bits, putting the device into mac loopback */ 1454 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1455 ew32(CTRL_EXT, ctrlext); 1456 1457 /* force speed to 1000/FD, link up */ 1458 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1459 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1460 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1461 ew32(CTRL, ctrl); 1462 1463 /* set mac loopback */ 1464 ctrl = er32(RCTL); 1465 ctrl |= E1000_RCTL_LBM_MAC; 1466 ew32(RCTL, ctrl); 1467 1468 /* set testing mode parameters (no need to reset later) */ 1469 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1470 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1471 ew32(KMRNCTRLSTA, 1472 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1473 1474 return 0; 1475 } 1476 1477 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1478 { 1479 struct e1000_hw *hw = &adapter->hw; 1480 u32 rctl; 1481 1482 if (hw->phy.media_type == e1000_media_type_fiber || 1483 hw->phy.media_type == e1000_media_type_internal_serdes) { 1484 switch (hw->mac.type) { 1485 case e1000_80003es2lan: 1486 return e1000_set_es2lan_mac_loopback(adapter); 1487 break; 1488 case e1000_82571: 1489 case e1000_82572: 1490 return e1000_set_82571_fiber_loopback(adapter); 1491 break; 1492 default: 1493 rctl = er32(RCTL); 1494 rctl |= E1000_RCTL_LBM_TCVR; 1495 ew32(RCTL, rctl); 1496 return 0; 1497 } 1498 } else if (hw->phy.media_type == e1000_media_type_copper) { 1499 return e1000_integrated_phy_loopback(adapter); 1500 } 1501 1502 return 7; 1503 } 1504 1505 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1506 { 1507 struct e1000_hw *hw = &adapter->hw; 1508 u32 rctl; 1509 u16 phy_reg; 1510 1511 rctl = er32(RCTL); 1512 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1513 ew32(RCTL, rctl); 1514 1515 switch (hw->mac.type) { 1516 case e1000_80003es2lan: 1517 if (hw->phy.media_type == e1000_media_type_fiber || 1518 hw->phy.media_type == e1000_media_type_internal_serdes) { 1519 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1520 ew32(CTRL_EXT, adapter->tx_fifo_head); 1521 adapter->tx_fifo_head = 0; 1522 } 1523 /* fall through */ 1524 case e1000_82571: 1525 case e1000_82572: 1526 if (hw->phy.media_type == e1000_media_type_fiber || 1527 hw->phy.media_type == e1000_media_type_internal_serdes) { 1528 #define E1000_SERDES_LB_OFF 0x400 1529 ew32(SCTL, E1000_SERDES_LB_OFF); 1530 e1e_flush(); 1531 usleep_range(10000, 20000); 1532 break; 1533 } 1534 /* Fall Through */ 1535 default: 1536 hw->mac.autoneg = 1; 1537 if (hw->phy.type == e1000_phy_gg82563) 1538 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1539 e1e_rphy(hw, MII_BMCR, &phy_reg); 1540 if (phy_reg & BMCR_LOOPBACK) { 1541 phy_reg &= ~BMCR_LOOPBACK; 1542 e1e_wphy(hw, MII_BMCR, phy_reg); 1543 if (hw->phy.ops.commit) 1544 hw->phy.ops.commit(hw); 1545 } 1546 break; 1547 } 1548 } 1549 1550 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1551 unsigned int frame_size) 1552 { 1553 memset(skb->data, 0xFF, frame_size); 1554 frame_size &= ~1; 1555 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1556 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1557 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1558 } 1559 1560 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1561 unsigned int frame_size) 1562 { 1563 frame_size &= ~1; 1564 if (*(skb->data + 3) == 0xFF) 1565 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1566 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1567 return 0; 1568 return 13; 1569 } 1570 1571 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1572 { 1573 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1574 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1575 struct pci_dev *pdev = adapter->pdev; 1576 struct e1000_hw *hw = &adapter->hw; 1577 int i, j, k, l; 1578 int lc; 1579 int good_cnt; 1580 int ret_val = 0; 1581 unsigned long time; 1582 1583 ew32(RDT(0), rx_ring->count - 1); 1584 1585 /* Calculate the loop count based on the largest descriptor ring 1586 * The idea is to wrap the largest ring a number of times using 64 1587 * send/receive pairs during each loop 1588 */ 1589 1590 if (rx_ring->count <= tx_ring->count) 1591 lc = ((tx_ring->count / 64) * 2) + 1; 1592 else 1593 lc = ((rx_ring->count / 64) * 2) + 1; 1594 1595 k = 0; 1596 l = 0; 1597 for (j = 0; j <= lc; j++) { /* loop count loop */ 1598 for (i = 0; i < 64; i++) { /* send the packets */ 1599 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb, 1600 1024); 1601 dma_sync_single_for_device(&pdev->dev, 1602 tx_ring->buffer_info[k].dma, 1603 tx_ring->buffer_info[k].length, 1604 DMA_TO_DEVICE); 1605 k++; 1606 if (k == tx_ring->count) 1607 k = 0; 1608 } 1609 ew32(TDT(0), k); 1610 e1e_flush(); 1611 msleep(200); 1612 time = jiffies; /* set the start time for the receive */ 1613 good_cnt = 0; 1614 do { /* receive the sent packets */ 1615 dma_sync_single_for_cpu(&pdev->dev, 1616 rx_ring->buffer_info[l].dma, 2048, 1617 DMA_FROM_DEVICE); 1618 1619 ret_val = e1000_check_lbtest_frame( 1620 rx_ring->buffer_info[l].skb, 1024); 1621 if (!ret_val) 1622 good_cnt++; 1623 l++; 1624 if (l == rx_ring->count) 1625 l = 0; 1626 /* time + 20 msecs (200 msecs on 2.4) is more than 1627 * enough time to complete the receives, if it's 1628 * exceeded, break and error off 1629 */ 1630 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1631 if (good_cnt != 64) { 1632 ret_val = 13; /* ret_val is the same as mis-compare */ 1633 break; 1634 } 1635 if (jiffies >= (time + 20)) { 1636 ret_val = 14; /* error code for time out error */ 1637 break; 1638 } 1639 } /* end loop count loop */ 1640 return ret_val; 1641 } 1642 1643 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1644 { 1645 struct e1000_hw *hw = &adapter->hw; 1646 1647 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1648 if (hw->phy.ops.check_reset_block && 1649 hw->phy.ops.check_reset_block(hw)) { 1650 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1651 *data = 0; 1652 goto out; 1653 } 1654 1655 *data = e1000_setup_desc_rings(adapter); 1656 if (*data) 1657 goto out; 1658 1659 *data = e1000_setup_loopback_test(adapter); 1660 if (*data) 1661 goto err_loopback; 1662 1663 *data = e1000_run_loopback_test(adapter); 1664 e1000_loopback_cleanup(adapter); 1665 1666 err_loopback: 1667 e1000_free_desc_rings(adapter); 1668 out: 1669 return *data; 1670 } 1671 1672 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1673 { 1674 struct e1000_hw *hw = &adapter->hw; 1675 1676 *data = 0; 1677 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1678 int i = 0; 1679 hw->mac.serdes_has_link = false; 1680 1681 /* On some blade server designs, link establishment 1682 * could take as long as 2-3 minutes 1683 */ 1684 do { 1685 hw->mac.ops.check_for_link(hw); 1686 if (hw->mac.serdes_has_link) 1687 return *data; 1688 msleep(20); 1689 } while (i++ < 3750); 1690 1691 *data = 1; 1692 } else { 1693 hw->mac.ops.check_for_link(hw); 1694 if (hw->mac.autoneg) 1695 /* On some Phy/switch combinations, link establishment 1696 * can take a few seconds more than expected. 1697 */ 1698 msleep(5000); 1699 1700 if (!(er32(STATUS) & E1000_STATUS_LU)) 1701 *data = 1; 1702 } 1703 return *data; 1704 } 1705 1706 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1707 int sset) 1708 { 1709 switch (sset) { 1710 case ETH_SS_TEST: 1711 return E1000_TEST_LEN; 1712 case ETH_SS_STATS: 1713 return E1000_STATS_LEN; 1714 default: 1715 return -EOPNOTSUPP; 1716 } 1717 } 1718 1719 static void e1000_diag_test(struct net_device *netdev, 1720 struct ethtool_test *eth_test, u64 *data) 1721 { 1722 struct e1000_adapter *adapter = netdev_priv(netdev); 1723 u16 autoneg_advertised; 1724 u8 forced_speed_duplex; 1725 u8 autoneg; 1726 bool if_running = netif_running(netdev); 1727 1728 set_bit(__E1000_TESTING, &adapter->state); 1729 1730 if (!if_running) { 1731 /* Get control of and reset hardware */ 1732 if (adapter->flags & FLAG_HAS_AMT) 1733 e1000e_get_hw_control(adapter); 1734 1735 e1000e_power_up_phy(adapter); 1736 1737 adapter->hw.phy.autoneg_wait_to_complete = 1; 1738 e1000e_reset(adapter); 1739 adapter->hw.phy.autoneg_wait_to_complete = 0; 1740 } 1741 1742 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1743 /* Offline tests */ 1744 1745 /* save speed, duplex, autoneg settings */ 1746 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1747 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1748 autoneg = adapter->hw.mac.autoneg; 1749 1750 e_info("offline testing starting\n"); 1751 1752 if (if_running) 1753 /* indicate we're in test mode */ 1754 dev_close(netdev); 1755 1756 if (e1000_reg_test(adapter, &data[0])) 1757 eth_test->flags |= ETH_TEST_FL_FAILED; 1758 1759 e1000e_reset(adapter); 1760 if (e1000_eeprom_test(adapter, &data[1])) 1761 eth_test->flags |= ETH_TEST_FL_FAILED; 1762 1763 e1000e_reset(adapter); 1764 if (e1000_intr_test(adapter, &data[2])) 1765 eth_test->flags |= ETH_TEST_FL_FAILED; 1766 1767 e1000e_reset(adapter); 1768 if (e1000_loopback_test(adapter, &data[3])) 1769 eth_test->flags |= ETH_TEST_FL_FAILED; 1770 1771 /* force this routine to wait until autoneg complete/timeout */ 1772 adapter->hw.phy.autoneg_wait_to_complete = 1; 1773 e1000e_reset(adapter); 1774 adapter->hw.phy.autoneg_wait_to_complete = 0; 1775 1776 if (e1000_link_test(adapter, &data[4])) 1777 eth_test->flags |= ETH_TEST_FL_FAILED; 1778 1779 /* restore speed, duplex, autoneg settings */ 1780 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1781 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1782 adapter->hw.mac.autoneg = autoneg; 1783 e1000e_reset(adapter); 1784 1785 clear_bit(__E1000_TESTING, &adapter->state); 1786 if (if_running) 1787 dev_open(netdev); 1788 } else { 1789 /* Online tests */ 1790 1791 e_info("online testing starting\n"); 1792 1793 /* register, eeprom, intr and loopback tests not run online */ 1794 data[0] = 0; 1795 data[1] = 0; 1796 data[2] = 0; 1797 data[3] = 0; 1798 1799 if (e1000_link_test(adapter, &data[4])) 1800 eth_test->flags |= ETH_TEST_FL_FAILED; 1801 1802 clear_bit(__E1000_TESTING, &adapter->state); 1803 } 1804 1805 if (!if_running) { 1806 e1000e_reset(adapter); 1807 1808 if (adapter->flags & FLAG_HAS_AMT) 1809 e1000e_release_hw_control(adapter); 1810 } 1811 1812 msleep_interruptible(4 * 1000); 1813 } 1814 1815 static void e1000_get_wol(struct net_device *netdev, 1816 struct ethtool_wolinfo *wol) 1817 { 1818 struct e1000_adapter *adapter = netdev_priv(netdev); 1819 1820 wol->supported = 0; 1821 wol->wolopts = 0; 1822 1823 if (!(adapter->flags & FLAG_HAS_WOL) || 1824 !device_can_wakeup(&adapter->pdev->dev)) 1825 return; 1826 1827 wol->supported = WAKE_UCAST | WAKE_MCAST | 1828 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1829 1830 /* apply any specific unsupported masks here */ 1831 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1832 wol->supported &= ~WAKE_UCAST; 1833 1834 if (adapter->wol & E1000_WUFC_EX) 1835 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1836 } 1837 1838 if (adapter->wol & E1000_WUFC_EX) 1839 wol->wolopts |= WAKE_UCAST; 1840 if (adapter->wol & E1000_WUFC_MC) 1841 wol->wolopts |= WAKE_MCAST; 1842 if (adapter->wol & E1000_WUFC_BC) 1843 wol->wolopts |= WAKE_BCAST; 1844 if (adapter->wol & E1000_WUFC_MAG) 1845 wol->wolopts |= WAKE_MAGIC; 1846 if (adapter->wol & E1000_WUFC_LNKC) 1847 wol->wolopts |= WAKE_PHY; 1848 } 1849 1850 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1851 { 1852 struct e1000_adapter *adapter = netdev_priv(netdev); 1853 1854 if (!(adapter->flags & FLAG_HAS_WOL) || 1855 !device_can_wakeup(&adapter->pdev->dev) || 1856 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1857 WAKE_MAGIC | WAKE_PHY))) 1858 return -EOPNOTSUPP; 1859 1860 /* these settings will always override what we currently have */ 1861 adapter->wol = 0; 1862 1863 if (wol->wolopts & WAKE_UCAST) 1864 adapter->wol |= E1000_WUFC_EX; 1865 if (wol->wolopts & WAKE_MCAST) 1866 adapter->wol |= E1000_WUFC_MC; 1867 if (wol->wolopts & WAKE_BCAST) 1868 adapter->wol |= E1000_WUFC_BC; 1869 if (wol->wolopts & WAKE_MAGIC) 1870 adapter->wol |= E1000_WUFC_MAG; 1871 if (wol->wolopts & WAKE_PHY) 1872 adapter->wol |= E1000_WUFC_LNKC; 1873 1874 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1875 1876 return 0; 1877 } 1878 1879 static int e1000_set_phys_id(struct net_device *netdev, 1880 enum ethtool_phys_id_state state) 1881 { 1882 struct e1000_adapter *adapter = netdev_priv(netdev); 1883 struct e1000_hw *hw = &adapter->hw; 1884 1885 switch (state) { 1886 case ETHTOOL_ID_ACTIVE: 1887 if (!hw->mac.ops.blink_led) 1888 return 2; /* cycle on/off twice per second */ 1889 1890 hw->mac.ops.blink_led(hw); 1891 break; 1892 1893 case ETHTOOL_ID_INACTIVE: 1894 if (hw->phy.type == e1000_phy_ife) 1895 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1896 hw->mac.ops.led_off(hw); 1897 hw->mac.ops.cleanup_led(hw); 1898 break; 1899 1900 case ETHTOOL_ID_ON: 1901 hw->mac.ops.led_on(hw); 1902 break; 1903 1904 case ETHTOOL_ID_OFF: 1905 hw->mac.ops.led_off(hw); 1906 break; 1907 } 1908 return 0; 1909 } 1910 1911 static int e1000_get_coalesce(struct net_device *netdev, 1912 struct ethtool_coalesce *ec) 1913 { 1914 struct e1000_adapter *adapter = netdev_priv(netdev); 1915 1916 if (adapter->itr_setting <= 4) 1917 ec->rx_coalesce_usecs = adapter->itr_setting; 1918 else 1919 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1920 1921 return 0; 1922 } 1923 1924 static int e1000_set_coalesce(struct net_device *netdev, 1925 struct ethtool_coalesce *ec) 1926 { 1927 struct e1000_adapter *adapter = netdev_priv(netdev); 1928 1929 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1930 ((ec->rx_coalesce_usecs > 4) && 1931 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1932 (ec->rx_coalesce_usecs == 2)) 1933 return -EINVAL; 1934 1935 if (ec->rx_coalesce_usecs == 4) { 1936 adapter->itr_setting = 4; 1937 adapter->itr = adapter->itr_setting; 1938 } else if (ec->rx_coalesce_usecs <= 3) { 1939 adapter->itr = 20000; 1940 adapter->itr_setting = ec->rx_coalesce_usecs; 1941 } else { 1942 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1943 adapter->itr_setting = adapter->itr & ~3; 1944 } 1945 1946 if (adapter->itr_setting != 0) 1947 e1000e_write_itr(adapter, adapter->itr); 1948 else 1949 e1000e_write_itr(adapter, 0); 1950 1951 return 0; 1952 } 1953 1954 static int e1000_nway_reset(struct net_device *netdev) 1955 { 1956 struct e1000_adapter *adapter = netdev_priv(netdev); 1957 1958 if (!netif_running(netdev)) 1959 return -EAGAIN; 1960 1961 if (!adapter->hw.mac.autoneg) 1962 return -EINVAL; 1963 1964 e1000e_reinit_locked(adapter); 1965 1966 return 0; 1967 } 1968 1969 static void e1000_get_ethtool_stats(struct net_device *netdev, 1970 struct ethtool_stats __always_unused *stats, 1971 u64 *data) 1972 { 1973 struct e1000_adapter *adapter = netdev_priv(netdev); 1974 struct rtnl_link_stats64 net_stats; 1975 int i; 1976 char *p = NULL; 1977 1978 e1000e_get_stats64(netdev, &net_stats); 1979 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1980 switch (e1000_gstrings_stats[i].type) { 1981 case NETDEV_STATS: 1982 p = (char *) &net_stats + 1983 e1000_gstrings_stats[i].stat_offset; 1984 break; 1985 case E1000_STATS: 1986 p = (char *) adapter + 1987 e1000_gstrings_stats[i].stat_offset; 1988 break; 1989 default: 1990 data[i] = 0; 1991 continue; 1992 } 1993 1994 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 1995 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1996 } 1997 } 1998 1999 static void e1000_get_strings(struct net_device __always_unused *netdev, 2000 u32 stringset, u8 *data) 2001 { 2002 u8 *p = data; 2003 int i; 2004 2005 switch (stringset) { 2006 case ETH_SS_TEST: 2007 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2008 break; 2009 case ETH_SS_STATS: 2010 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2011 memcpy(p, e1000_gstrings_stats[i].stat_string, 2012 ETH_GSTRING_LEN); 2013 p += ETH_GSTRING_LEN; 2014 } 2015 break; 2016 } 2017 } 2018 2019 static int e1000_get_rxnfc(struct net_device *netdev, 2020 struct ethtool_rxnfc *info, 2021 u32 __always_unused *rule_locs) 2022 { 2023 info->data = 0; 2024 2025 switch (info->cmd) { 2026 case ETHTOOL_GRXFH: { 2027 struct e1000_adapter *adapter = netdev_priv(netdev); 2028 struct e1000_hw *hw = &adapter->hw; 2029 u32 mrqc = er32(MRQC); 2030 2031 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2032 return 0; 2033 2034 switch (info->flow_type) { 2035 case TCP_V4_FLOW: 2036 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2037 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2038 /* fall through */ 2039 case UDP_V4_FLOW: 2040 case SCTP_V4_FLOW: 2041 case AH_ESP_V4_FLOW: 2042 case IPV4_FLOW: 2043 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2044 info->data |= RXH_IP_SRC | RXH_IP_DST; 2045 break; 2046 case TCP_V6_FLOW: 2047 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2048 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2049 /* fall through */ 2050 case UDP_V6_FLOW: 2051 case SCTP_V6_FLOW: 2052 case AH_ESP_V6_FLOW: 2053 case IPV6_FLOW: 2054 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2055 info->data |= RXH_IP_SRC | RXH_IP_DST; 2056 break; 2057 default: 2058 break; 2059 } 2060 return 0; 2061 } 2062 default: 2063 return -EOPNOTSUPP; 2064 } 2065 } 2066 2067 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2068 { 2069 struct e1000_adapter *adapter = netdev_priv(netdev); 2070 struct e1000_hw *hw = &adapter->hw; 2071 u16 cap_addr, adv_addr, lpa_addr, pcs_stat_addr, phy_data, lpi_ctrl; 2072 u32 status, ret_val; 2073 2074 if (!(adapter->flags & FLAG_IS_ICH) || 2075 !(adapter->flags2 & FLAG2_HAS_EEE)) 2076 return -EOPNOTSUPP; 2077 2078 switch (hw->phy.type) { 2079 case e1000_phy_82579: 2080 cap_addr = I82579_EEE_CAPABILITY; 2081 adv_addr = I82579_EEE_ADVERTISEMENT; 2082 lpa_addr = I82579_EEE_LP_ABILITY; 2083 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2084 break; 2085 case e1000_phy_i217: 2086 cap_addr = I217_EEE_CAPABILITY; 2087 adv_addr = I217_EEE_ADVERTISEMENT; 2088 lpa_addr = I217_EEE_LP_ABILITY; 2089 pcs_stat_addr = I217_EEE_PCS_STATUS; 2090 break; 2091 default: 2092 return -EOPNOTSUPP; 2093 } 2094 2095 ret_val = hw->phy.ops.acquire(hw); 2096 if (ret_val) 2097 return -EBUSY; 2098 2099 /* EEE Capability */ 2100 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2101 if (ret_val) 2102 goto release; 2103 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2104 2105 /* EEE Advertised */ 2106 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &phy_data); 2107 if (ret_val) 2108 goto release; 2109 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2110 2111 /* EEE Link Partner Advertised */ 2112 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2113 if (ret_val) 2114 goto release; 2115 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2116 2117 /* EEE PCS Status */ 2118 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2119 if (hw->phy.type == e1000_phy_82579) 2120 phy_data <<= 8; 2121 2122 release: 2123 hw->phy.ops.release(hw); 2124 if (ret_val) 2125 return -ENODATA; 2126 2127 e1e_rphy(hw, I82579_LPI_CTRL, &lpi_ctrl); 2128 status = er32(STATUS); 2129 2130 /* Result of the EEE auto negotiation - there is no register that 2131 * has the status of the EEE negotiation so do a best-guess based 2132 * on whether both Tx and Rx LPI indications have been received or 2133 * base it on the link speed, the EEE advertised speeds on both ends 2134 * and the speeds on which EEE is enabled locally. 2135 */ 2136 if (((phy_data & E1000_EEE_TX_LPI_RCVD) && 2137 (phy_data & E1000_EEE_RX_LPI_RCVD)) || 2138 ((status & E1000_STATUS_SPEED_100) && 2139 (edata->advertised & ADVERTISED_100baseT_Full) && 2140 (edata->lp_advertised & ADVERTISED_100baseT_Full) && 2141 (lpi_ctrl & I82579_LPI_CTRL_100_ENABLE)) || 2142 ((status & E1000_STATUS_SPEED_1000) && 2143 (edata->advertised & ADVERTISED_1000baseT_Full) && 2144 (edata->lp_advertised & ADVERTISED_1000baseT_Full) && 2145 (lpi_ctrl & I82579_LPI_CTRL_1000_ENABLE))) 2146 edata->eee_active = true; 2147 2148 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2149 edata->tx_lpi_enabled = true; 2150 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2151 2152 return 0; 2153 } 2154 2155 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2156 { 2157 struct e1000_adapter *adapter = netdev_priv(netdev); 2158 struct e1000_hw *hw = &adapter->hw; 2159 struct ethtool_eee eee_curr; 2160 s32 ret_val; 2161 2162 if (!(adapter->flags & FLAG_IS_ICH) || 2163 !(adapter->flags2 & FLAG2_HAS_EEE)) 2164 return -EOPNOTSUPP; 2165 2166 ret_val = e1000e_get_eee(netdev, &eee_curr); 2167 if (ret_val) 2168 return ret_val; 2169 2170 if (eee_curr.advertised != edata->advertised) { 2171 e_err("Setting EEE advertisement is not supported\n"); 2172 return -EINVAL; 2173 } 2174 2175 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2176 e_err("Setting EEE tx-lpi is not supported\n"); 2177 return -EINVAL; 2178 } 2179 2180 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2181 e_err("Setting EEE Tx LPI timer is not supported\n"); 2182 return -EINVAL; 2183 } 2184 2185 if (hw->dev_spec.ich8lan.eee_disable != !edata->eee_enabled) { 2186 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2187 2188 /* reset the link */ 2189 if (netif_running(netdev)) 2190 e1000e_reinit_locked(adapter); 2191 else 2192 e1000e_reset(adapter); 2193 } 2194 2195 return 0; 2196 } 2197 2198 static int e1000e_get_ts_info(struct net_device *netdev, 2199 struct ethtool_ts_info *info) 2200 { 2201 struct e1000_adapter *adapter = netdev_priv(netdev); 2202 2203 ethtool_op_get_ts_info(netdev, info); 2204 2205 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2206 return 0; 2207 2208 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2209 SOF_TIMESTAMPING_RX_HARDWARE | 2210 SOF_TIMESTAMPING_RAW_HARDWARE); 2211 2212 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); 2213 2214 info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) | 2215 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2216 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2217 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2218 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2219 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2220 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2221 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) | 2222 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) | 2223 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2224 (1 << HWTSTAMP_FILTER_ALL)); 2225 2226 if (adapter->ptp_clock) 2227 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2228 2229 return 0; 2230 } 2231 2232 static const struct ethtool_ops e1000_ethtool_ops = { 2233 .get_settings = e1000_get_settings, 2234 .set_settings = e1000_set_settings, 2235 .get_drvinfo = e1000_get_drvinfo, 2236 .get_regs_len = e1000_get_regs_len, 2237 .get_regs = e1000_get_regs, 2238 .get_wol = e1000_get_wol, 2239 .set_wol = e1000_set_wol, 2240 .get_msglevel = e1000_get_msglevel, 2241 .set_msglevel = e1000_set_msglevel, 2242 .nway_reset = e1000_nway_reset, 2243 .get_link = ethtool_op_get_link, 2244 .get_eeprom_len = e1000_get_eeprom_len, 2245 .get_eeprom = e1000_get_eeprom, 2246 .set_eeprom = e1000_set_eeprom, 2247 .get_ringparam = e1000_get_ringparam, 2248 .set_ringparam = e1000_set_ringparam, 2249 .get_pauseparam = e1000_get_pauseparam, 2250 .set_pauseparam = e1000_set_pauseparam, 2251 .self_test = e1000_diag_test, 2252 .get_strings = e1000_get_strings, 2253 .set_phys_id = e1000_set_phys_id, 2254 .get_ethtool_stats = e1000_get_ethtool_stats, 2255 .get_sset_count = e1000e_get_sset_count, 2256 .get_coalesce = e1000_get_coalesce, 2257 .set_coalesce = e1000_set_coalesce, 2258 .get_rxnfc = e1000_get_rxnfc, 2259 .get_ts_info = e1000e_get_ts_info, 2260 .get_eee = e1000e_get_eee, 2261 .set_eee = e1000e_set_eee, 2262 }; 2263 2264 void e1000e_set_ethtool_ops(struct net_device *netdev) 2265 { 2266 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 2267 } 2268