1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* ethtool support for e1000 */
5 
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14 
15 #include "e1000.h"
16 
17 enum { NETDEV_STATS, E1000_STATS };
18 
19 struct e1000_stats {
20 	char stat_string[ETH_GSTRING_LEN];
21 	int type;
22 	int sizeof_stat;
23 	int stat_offset;
24 };
25 
26 #define E1000_STAT(str, m) { \
27 		.stat_string = str, \
28 		.type = E1000_STATS, \
29 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
30 		.stat_offset = offsetof(struct e1000_adapter, m) }
31 #define E1000_NETDEV_STAT(str, m) { \
32 		.stat_string = str, \
33 		.type = NETDEV_STATS, \
34 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
35 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
36 
37 static const struct e1000_stats e1000_gstrings_stats[] = {
38 	E1000_STAT("rx_packets", stats.gprc),
39 	E1000_STAT("tx_packets", stats.gptc),
40 	E1000_STAT("rx_bytes", stats.gorc),
41 	E1000_STAT("tx_bytes", stats.gotc),
42 	E1000_STAT("rx_broadcast", stats.bprc),
43 	E1000_STAT("tx_broadcast", stats.bptc),
44 	E1000_STAT("rx_multicast", stats.mprc),
45 	E1000_STAT("tx_multicast", stats.mptc),
46 	E1000_NETDEV_STAT("rx_errors", rx_errors),
47 	E1000_NETDEV_STAT("tx_errors", tx_errors),
48 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
49 	E1000_STAT("multicast", stats.mprc),
50 	E1000_STAT("collisions", stats.colc),
51 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
52 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
53 	E1000_STAT("rx_crc_errors", stats.crcerrs),
54 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
55 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
56 	E1000_STAT("rx_missed_errors", stats.mpc),
57 	E1000_STAT("tx_aborted_errors", stats.ecol),
58 	E1000_STAT("tx_carrier_errors", stats.tncrs),
59 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
60 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
61 	E1000_STAT("tx_window_errors", stats.latecol),
62 	E1000_STAT("tx_abort_late_coll", stats.latecol),
63 	E1000_STAT("tx_deferred_ok", stats.dc),
64 	E1000_STAT("tx_single_coll_ok", stats.scc),
65 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
66 	E1000_STAT("tx_timeout_count", tx_timeout_count),
67 	E1000_STAT("tx_restart_queue", restart_queue),
68 	E1000_STAT("rx_long_length_errors", stats.roc),
69 	E1000_STAT("rx_short_length_errors", stats.ruc),
70 	E1000_STAT("rx_align_errors", stats.algnerrc),
71 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
72 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
73 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
74 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
75 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
76 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
77 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
78 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
79 	E1000_STAT("rx_header_split", rx_hdr_split),
80 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
81 	E1000_STAT("tx_smbus", stats.mgptc),
82 	E1000_STAT("rx_smbus", stats.mgprc),
83 	E1000_STAT("dropped_smbus", stats.mgpdc),
84 	E1000_STAT("rx_dma_failed", rx_dma_failed),
85 	E1000_STAT("tx_dma_failed", tx_dma_failed),
86 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
87 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
88 	E1000_STAT("corr_ecc_errors", corr_errors),
89 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
90 	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
91 };
92 
93 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
94 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
95 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
96 	"Register test  (offline)", "Eeprom test    (offline)",
97 	"Interrupt test (offline)", "Loopback test  (offline)",
98 	"Link test   (on/offline)"
99 };
100 
101 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
102 
103 static int e1000_get_link_ksettings(struct net_device *netdev,
104 				    struct ethtool_link_ksettings *cmd)
105 {
106 	struct e1000_adapter *adapter = netdev_priv(netdev);
107 	struct e1000_hw *hw = &adapter->hw;
108 	u32 speed, supported, advertising;
109 
110 	if (hw->phy.media_type == e1000_media_type_copper) {
111 		supported = (SUPPORTED_10baseT_Half |
112 			     SUPPORTED_10baseT_Full |
113 			     SUPPORTED_100baseT_Half |
114 			     SUPPORTED_100baseT_Full |
115 			     SUPPORTED_1000baseT_Full |
116 			     SUPPORTED_Autoneg |
117 			     SUPPORTED_TP);
118 		if (hw->phy.type == e1000_phy_ife)
119 			supported &= ~SUPPORTED_1000baseT_Full;
120 		advertising = ADVERTISED_TP;
121 
122 		if (hw->mac.autoneg == 1) {
123 			advertising |= ADVERTISED_Autoneg;
124 			/* the e1000 autoneg seems to match ethtool nicely */
125 			advertising |= hw->phy.autoneg_advertised;
126 		}
127 
128 		cmd->base.port = PORT_TP;
129 		cmd->base.phy_address = hw->phy.addr;
130 	} else {
131 		supported   = (SUPPORTED_1000baseT_Full |
132 			       SUPPORTED_FIBRE |
133 			       SUPPORTED_Autoneg);
134 
135 		advertising = (ADVERTISED_1000baseT_Full |
136 			       ADVERTISED_FIBRE |
137 			       ADVERTISED_Autoneg);
138 
139 		cmd->base.port = PORT_FIBRE;
140 	}
141 
142 	speed = SPEED_UNKNOWN;
143 	cmd->base.duplex = DUPLEX_UNKNOWN;
144 
145 	if (netif_running(netdev)) {
146 		if (netif_carrier_ok(netdev)) {
147 			speed = adapter->link_speed;
148 			cmd->base.duplex = adapter->link_duplex - 1;
149 		}
150 	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
151 		u32 status = er32(STATUS);
152 
153 		if (status & E1000_STATUS_LU) {
154 			if (status & E1000_STATUS_SPEED_1000)
155 				speed = SPEED_1000;
156 			else if (status & E1000_STATUS_SPEED_100)
157 				speed = SPEED_100;
158 			else
159 				speed = SPEED_10;
160 
161 			if (status & E1000_STATUS_FD)
162 				cmd->base.duplex = DUPLEX_FULL;
163 			else
164 				cmd->base.duplex = DUPLEX_HALF;
165 		}
166 	}
167 
168 	cmd->base.speed = speed;
169 	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
170 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171 
172 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
173 	if ((hw->phy.media_type == e1000_media_type_copper) &&
174 	    netif_carrier_ok(netdev))
175 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
176 			ETH_TP_MDI_X : ETH_TP_MDI;
177 	else
178 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
179 
180 	if (hw->phy.mdix == AUTO_ALL_MODES)
181 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
182 	else
183 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
184 
185 	if (hw->phy.media_type != e1000_media_type_copper)
186 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
187 
188 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
189 						supported);
190 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
191 						advertising);
192 
193 	return 0;
194 }
195 
196 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
197 {
198 	struct e1000_mac_info *mac = &adapter->hw.mac;
199 
200 	mac->autoneg = 0;
201 
202 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
203 	 * for the switch() below to work
204 	 */
205 	if ((spd & 1) || (dplx & ~1))
206 		goto err_inval;
207 
208 	/* Fiber NICs only allow 1000 gbps Full duplex */
209 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
210 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
211 		goto err_inval;
212 	}
213 
214 	switch (spd + dplx) {
215 	case SPEED_10 + DUPLEX_HALF:
216 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
217 		break;
218 	case SPEED_10 + DUPLEX_FULL:
219 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
220 		break;
221 	case SPEED_100 + DUPLEX_HALF:
222 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
223 		break;
224 	case SPEED_100 + DUPLEX_FULL:
225 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
226 		break;
227 	case SPEED_1000 + DUPLEX_FULL:
228 		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
229 			mac->autoneg = 1;
230 			adapter->hw.phy.autoneg_advertised =
231 				ADVERTISE_1000_FULL;
232 		} else {
233 			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
234 		}
235 		break;
236 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
237 	default:
238 		goto err_inval;
239 	}
240 
241 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
242 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
243 
244 	return 0;
245 
246 err_inval:
247 	e_err("Unsupported Speed/Duplex configuration\n");
248 	return -EINVAL;
249 }
250 
251 static int e1000_set_link_ksettings(struct net_device *netdev,
252 				    const struct ethtool_link_ksettings *cmd)
253 {
254 	struct e1000_adapter *adapter = netdev_priv(netdev);
255 	struct e1000_hw *hw = &adapter->hw;
256 	int ret_val = 0;
257 	u32 advertising;
258 
259 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
260 						cmd->link_modes.advertising);
261 
262 	pm_runtime_get_sync(netdev->dev.parent);
263 
264 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
265 	 * cannot be changed
266 	 */
267 	if (hw->phy.ops.check_reset_block &&
268 	    hw->phy.ops.check_reset_block(hw)) {
269 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
270 		ret_val = -EINVAL;
271 		goto out;
272 	}
273 
274 	/* MDI setting is only allowed when autoneg enabled because
275 	 * some hardware doesn't allow MDI setting when speed or
276 	 * duplex is forced.
277 	 */
278 	if (cmd->base.eth_tp_mdix_ctrl) {
279 		if (hw->phy.media_type != e1000_media_type_copper) {
280 			ret_val = -EOPNOTSUPP;
281 			goto out;
282 		}
283 
284 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 			ret_val = -EINVAL;
288 			goto out;
289 		}
290 	}
291 
292 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
293 		usleep_range(1000, 2000);
294 
295 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
296 		hw->mac.autoneg = 1;
297 		if (hw->phy.media_type == e1000_media_type_fiber)
298 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
299 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
300 		else
301 			hw->phy.autoneg_advertised = advertising |
302 			    ADVERTISED_TP | ADVERTISED_Autoneg;
303 		advertising = hw->phy.autoneg_advertised;
304 		if (adapter->fc_autoneg)
305 			hw->fc.requested_mode = e1000_fc_default;
306 	} else {
307 		u32 speed = cmd->base.speed;
308 		/* calling this overrides forced MDI setting */
309 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
310 			ret_val = -EINVAL;
311 			goto out;
312 		}
313 	}
314 
315 	/* MDI-X => 2; MDI => 1; Auto => 3 */
316 	if (cmd->base.eth_tp_mdix_ctrl) {
317 		/* fix up the value for auto (3 => 0) as zero is mapped
318 		 * internally to auto
319 		 */
320 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
321 			hw->phy.mdix = AUTO_ALL_MODES;
322 		else
323 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
324 	}
325 
326 	/* reset the link */
327 	if (netif_running(adapter->netdev)) {
328 		e1000e_down(adapter, true);
329 		e1000e_up(adapter);
330 	} else {
331 		e1000e_reset(adapter);
332 	}
333 
334 out:
335 	pm_runtime_put_sync(netdev->dev.parent);
336 	clear_bit(__E1000_RESETTING, &adapter->state);
337 	return ret_val;
338 }
339 
340 static void e1000_get_pauseparam(struct net_device *netdev,
341 				 struct ethtool_pauseparam *pause)
342 {
343 	struct e1000_adapter *adapter = netdev_priv(netdev);
344 	struct e1000_hw *hw = &adapter->hw;
345 
346 	pause->autoneg =
347 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
348 
349 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
350 		pause->rx_pause = 1;
351 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
352 		pause->tx_pause = 1;
353 	} else if (hw->fc.current_mode == e1000_fc_full) {
354 		pause->rx_pause = 1;
355 		pause->tx_pause = 1;
356 	}
357 }
358 
359 static int e1000_set_pauseparam(struct net_device *netdev,
360 				struct ethtool_pauseparam *pause)
361 {
362 	struct e1000_adapter *adapter = netdev_priv(netdev);
363 	struct e1000_hw *hw = &adapter->hw;
364 	int retval = 0;
365 
366 	adapter->fc_autoneg = pause->autoneg;
367 
368 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
369 		usleep_range(1000, 2000);
370 
371 	pm_runtime_get_sync(netdev->dev.parent);
372 
373 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
374 		hw->fc.requested_mode = e1000_fc_default;
375 		if (netif_running(adapter->netdev)) {
376 			e1000e_down(adapter, true);
377 			e1000e_up(adapter);
378 		} else {
379 			e1000e_reset(adapter);
380 		}
381 	} else {
382 		if (pause->rx_pause && pause->tx_pause)
383 			hw->fc.requested_mode = e1000_fc_full;
384 		else if (pause->rx_pause && !pause->tx_pause)
385 			hw->fc.requested_mode = e1000_fc_rx_pause;
386 		else if (!pause->rx_pause && pause->tx_pause)
387 			hw->fc.requested_mode = e1000_fc_tx_pause;
388 		else if (!pause->rx_pause && !pause->tx_pause)
389 			hw->fc.requested_mode = e1000_fc_none;
390 
391 		hw->fc.current_mode = hw->fc.requested_mode;
392 
393 		if (hw->phy.media_type == e1000_media_type_fiber) {
394 			retval = hw->mac.ops.setup_link(hw);
395 			/* implicit goto out */
396 		} else {
397 			retval = e1000e_force_mac_fc(hw);
398 			if (retval)
399 				goto out;
400 			e1000e_set_fc_watermarks(hw);
401 		}
402 	}
403 
404 out:
405 	pm_runtime_put_sync(netdev->dev.parent);
406 	clear_bit(__E1000_RESETTING, &adapter->state);
407 	return retval;
408 }
409 
410 static u32 e1000_get_msglevel(struct net_device *netdev)
411 {
412 	struct e1000_adapter *adapter = netdev_priv(netdev);
413 	return adapter->msg_enable;
414 }
415 
416 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
417 {
418 	struct e1000_adapter *adapter = netdev_priv(netdev);
419 	adapter->msg_enable = data;
420 }
421 
422 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
423 {
424 #define E1000_REGS_LEN 32	/* overestimate */
425 	return E1000_REGS_LEN * sizeof(u32);
426 }
427 
428 static void e1000_get_regs(struct net_device *netdev,
429 			   struct ethtool_regs *regs, void *p)
430 {
431 	struct e1000_adapter *adapter = netdev_priv(netdev);
432 	struct e1000_hw *hw = &adapter->hw;
433 	u32 *regs_buff = p;
434 	u16 phy_data;
435 
436 	pm_runtime_get_sync(netdev->dev.parent);
437 
438 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
439 
440 	regs->version = (1u << 24) |
441 			(adapter->pdev->revision << 16) |
442 			adapter->pdev->device;
443 
444 	regs_buff[0] = er32(CTRL);
445 	regs_buff[1] = er32(STATUS);
446 
447 	regs_buff[2] = er32(RCTL);
448 	regs_buff[3] = er32(RDLEN(0));
449 	regs_buff[4] = er32(RDH(0));
450 	regs_buff[5] = er32(RDT(0));
451 	regs_buff[6] = er32(RDTR);
452 
453 	regs_buff[7] = er32(TCTL);
454 	regs_buff[8] = er32(TDLEN(0));
455 	regs_buff[9] = er32(TDH(0));
456 	regs_buff[10] = er32(TDT(0));
457 	regs_buff[11] = er32(TIDV);
458 
459 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
460 
461 	/* ethtool doesn't use anything past this point, so all this
462 	 * code is likely legacy junk for apps that may or may not exist
463 	 */
464 	if (hw->phy.type == e1000_phy_m88) {
465 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
466 		regs_buff[13] = (u32)phy_data; /* cable length */
467 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
468 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
469 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
470 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
471 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
472 		regs_buff[18] = regs_buff[13]; /* cable polarity */
473 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
474 		regs_buff[20] = regs_buff[17]; /* polarity correction */
475 		/* phy receive errors */
476 		regs_buff[22] = adapter->phy_stats.receive_errors;
477 		regs_buff[23] = regs_buff[13]; /* mdix mode */
478 	}
479 	regs_buff[21] = 0;	/* was idle_errors */
480 	e1e_rphy(hw, MII_STAT1000, &phy_data);
481 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
482 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
483 
484 	pm_runtime_put_sync(netdev->dev.parent);
485 }
486 
487 static int e1000_get_eeprom_len(struct net_device *netdev)
488 {
489 	struct e1000_adapter *adapter = netdev_priv(netdev);
490 	return adapter->hw.nvm.word_size * 2;
491 }
492 
493 static int e1000_get_eeprom(struct net_device *netdev,
494 			    struct ethtool_eeprom *eeprom, u8 *bytes)
495 {
496 	struct e1000_adapter *adapter = netdev_priv(netdev);
497 	struct e1000_hw *hw = &adapter->hw;
498 	u16 *eeprom_buff;
499 	int first_word;
500 	int last_word;
501 	int ret_val = 0;
502 	u16 i;
503 
504 	if (eeprom->len == 0)
505 		return -EINVAL;
506 
507 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
508 
509 	first_word = eeprom->offset >> 1;
510 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
511 
512 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
513 				    GFP_KERNEL);
514 	if (!eeprom_buff)
515 		return -ENOMEM;
516 
517 	pm_runtime_get_sync(netdev->dev.parent);
518 
519 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
520 		ret_val = e1000_read_nvm(hw, first_word,
521 					 last_word - first_word + 1,
522 					 eeprom_buff);
523 	} else {
524 		for (i = 0; i < last_word - first_word + 1; i++) {
525 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
526 						 &eeprom_buff[i]);
527 			if (ret_val)
528 				break;
529 		}
530 	}
531 
532 	pm_runtime_put_sync(netdev->dev.parent);
533 
534 	if (ret_val) {
535 		/* a read error occurred, throw away the result */
536 		memset(eeprom_buff, 0xff, sizeof(u16) *
537 		       (last_word - first_word + 1));
538 	} else {
539 		/* Device's eeprom is always little-endian, word addressable */
540 		for (i = 0; i < last_word - first_word + 1; i++)
541 			le16_to_cpus(&eeprom_buff[i]);
542 	}
543 
544 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
545 	kfree(eeprom_buff);
546 
547 	return ret_val;
548 }
549 
550 static int e1000_set_eeprom(struct net_device *netdev,
551 			    struct ethtool_eeprom *eeprom, u8 *bytes)
552 {
553 	struct e1000_adapter *adapter = netdev_priv(netdev);
554 	struct e1000_hw *hw = &adapter->hw;
555 	u16 *eeprom_buff;
556 	void *ptr;
557 	int max_len;
558 	int first_word;
559 	int last_word;
560 	int ret_val = 0;
561 	u16 i;
562 
563 	if (eeprom->len == 0)
564 		return -EOPNOTSUPP;
565 
566 	if (eeprom->magic !=
567 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
568 		return -EFAULT;
569 
570 	if (adapter->flags & FLAG_READ_ONLY_NVM)
571 		return -EINVAL;
572 
573 	max_len = hw->nvm.word_size * 2;
574 
575 	first_word = eeprom->offset >> 1;
576 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
577 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
578 	if (!eeprom_buff)
579 		return -ENOMEM;
580 
581 	ptr = (void *)eeprom_buff;
582 
583 	pm_runtime_get_sync(netdev->dev.parent);
584 
585 	if (eeprom->offset & 1) {
586 		/* need read/modify/write of first changed EEPROM word */
587 		/* only the second byte of the word is being modified */
588 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
589 		ptr++;
590 	}
591 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
592 		/* need read/modify/write of last changed EEPROM word */
593 		/* only the first byte of the word is being modified */
594 		ret_val = e1000_read_nvm(hw, last_word, 1,
595 					 &eeprom_buff[last_word - first_word]);
596 
597 	if (ret_val)
598 		goto out;
599 
600 	/* Device's eeprom is always little-endian, word addressable */
601 	for (i = 0; i < last_word - first_word + 1; i++)
602 		le16_to_cpus(&eeprom_buff[i]);
603 
604 	memcpy(ptr, bytes, eeprom->len);
605 
606 	for (i = 0; i < last_word - first_word + 1; i++)
607 		cpu_to_le16s(&eeprom_buff[i]);
608 
609 	ret_val = e1000_write_nvm(hw, first_word,
610 				  last_word - first_word + 1, eeprom_buff);
611 
612 	if (ret_val)
613 		goto out;
614 
615 	/* Update the checksum over the first part of the EEPROM if needed
616 	 * and flush shadow RAM for applicable controllers
617 	 */
618 	if ((first_word <= NVM_CHECKSUM_REG) ||
619 	    (hw->mac.type == e1000_82583) ||
620 	    (hw->mac.type == e1000_82574) ||
621 	    (hw->mac.type == e1000_82573))
622 		ret_val = e1000e_update_nvm_checksum(hw);
623 
624 out:
625 	pm_runtime_put_sync(netdev->dev.parent);
626 	kfree(eeprom_buff);
627 	return ret_val;
628 }
629 
630 static void e1000_get_drvinfo(struct net_device *netdev,
631 			      struct ethtool_drvinfo *drvinfo)
632 {
633 	struct e1000_adapter *adapter = netdev_priv(netdev);
634 
635 	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
636 	strlcpy(drvinfo->version, e1000e_driver_version,
637 		sizeof(drvinfo->version));
638 
639 	/* EEPROM image version # is reported as firmware version # for
640 	 * PCI-E controllers
641 	 */
642 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
643 		 "%d.%d-%d",
644 		 (adapter->eeprom_vers & 0xF000) >> 12,
645 		 (adapter->eeprom_vers & 0x0FF0) >> 4,
646 		 (adapter->eeprom_vers & 0x000F));
647 
648 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
649 		sizeof(drvinfo->bus_info));
650 }
651 
652 static void e1000_get_ringparam(struct net_device *netdev,
653 				struct ethtool_ringparam *ring)
654 {
655 	struct e1000_adapter *adapter = netdev_priv(netdev);
656 
657 	ring->rx_max_pending = E1000_MAX_RXD;
658 	ring->tx_max_pending = E1000_MAX_TXD;
659 	ring->rx_pending = adapter->rx_ring_count;
660 	ring->tx_pending = adapter->tx_ring_count;
661 }
662 
663 static int e1000_set_ringparam(struct net_device *netdev,
664 			       struct ethtool_ringparam *ring)
665 {
666 	struct e1000_adapter *adapter = netdev_priv(netdev);
667 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
668 	int err = 0, size = sizeof(struct e1000_ring);
669 	bool set_tx = false, set_rx = false;
670 	u16 new_rx_count, new_tx_count;
671 
672 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
673 		return -EINVAL;
674 
675 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
676 			       E1000_MAX_RXD);
677 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
678 
679 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
680 			       E1000_MAX_TXD);
681 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
682 
683 	if ((new_tx_count == adapter->tx_ring_count) &&
684 	    (new_rx_count == adapter->rx_ring_count))
685 		/* nothing to do */
686 		return 0;
687 
688 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
689 		usleep_range(1000, 2000);
690 
691 	if (!netif_running(adapter->netdev)) {
692 		/* Set counts now and allocate resources during open() */
693 		adapter->tx_ring->count = new_tx_count;
694 		adapter->rx_ring->count = new_rx_count;
695 		adapter->tx_ring_count = new_tx_count;
696 		adapter->rx_ring_count = new_rx_count;
697 		goto clear_reset;
698 	}
699 
700 	set_tx = (new_tx_count != adapter->tx_ring_count);
701 	set_rx = (new_rx_count != adapter->rx_ring_count);
702 
703 	/* Allocate temporary storage for ring updates */
704 	if (set_tx) {
705 		temp_tx = vmalloc(size);
706 		if (!temp_tx) {
707 			err = -ENOMEM;
708 			goto free_temp;
709 		}
710 	}
711 	if (set_rx) {
712 		temp_rx = vmalloc(size);
713 		if (!temp_rx) {
714 			err = -ENOMEM;
715 			goto free_temp;
716 		}
717 	}
718 
719 	pm_runtime_get_sync(netdev->dev.parent);
720 
721 	e1000e_down(adapter, true);
722 
723 	/* We can't just free everything and then setup again, because the
724 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
725 	 * structs.  First, attempt to allocate new resources...
726 	 */
727 	if (set_tx) {
728 		memcpy(temp_tx, adapter->tx_ring, size);
729 		temp_tx->count = new_tx_count;
730 		err = e1000e_setup_tx_resources(temp_tx);
731 		if (err)
732 			goto err_setup;
733 	}
734 	if (set_rx) {
735 		memcpy(temp_rx, adapter->rx_ring, size);
736 		temp_rx->count = new_rx_count;
737 		err = e1000e_setup_rx_resources(temp_rx);
738 		if (err)
739 			goto err_setup_rx;
740 	}
741 
742 	/* ...then free the old resources and copy back any new ring data */
743 	if (set_tx) {
744 		e1000e_free_tx_resources(adapter->tx_ring);
745 		memcpy(adapter->tx_ring, temp_tx, size);
746 		adapter->tx_ring_count = new_tx_count;
747 	}
748 	if (set_rx) {
749 		e1000e_free_rx_resources(adapter->rx_ring);
750 		memcpy(adapter->rx_ring, temp_rx, size);
751 		adapter->rx_ring_count = new_rx_count;
752 	}
753 
754 err_setup_rx:
755 	if (err && set_tx)
756 		e1000e_free_tx_resources(temp_tx);
757 err_setup:
758 	e1000e_up(adapter);
759 	pm_runtime_put_sync(netdev->dev.parent);
760 free_temp:
761 	vfree(temp_tx);
762 	vfree(temp_rx);
763 clear_reset:
764 	clear_bit(__E1000_RESETTING, &adapter->state);
765 	return err;
766 }
767 
768 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
769 			     int reg, int offset, u32 mask, u32 write)
770 {
771 	u32 pat, val;
772 	static const u32 test[] = {
773 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
774 	};
775 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
776 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
777 				      (test[pat] & write));
778 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
779 		if (val != (test[pat] & write & mask)) {
780 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
781 			      reg + (offset << 2), val,
782 			      (test[pat] & write & mask));
783 			*data = reg;
784 			return true;
785 		}
786 	}
787 	return false;
788 }
789 
790 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
791 			      int reg, u32 mask, u32 write)
792 {
793 	u32 val;
794 
795 	__ew32(&adapter->hw, reg, write & mask);
796 	val = __er32(&adapter->hw, reg);
797 	if ((write & mask) != (val & mask)) {
798 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
799 		      reg, (val & mask), (write & mask));
800 		*data = reg;
801 		return true;
802 	}
803 	return false;
804 }
805 
806 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
807 	do {                                                                   \
808 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
809 			return 1;                                              \
810 	} while (0)
811 #define REG_PATTERN_TEST(reg, mask, write)                                     \
812 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
813 
814 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
815 	do {                                                                   \
816 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
817 			return 1;                                              \
818 	} while (0)
819 
820 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
821 {
822 	struct e1000_hw *hw = &adapter->hw;
823 	struct e1000_mac_info *mac = &adapter->hw.mac;
824 	u32 value;
825 	u32 before;
826 	u32 after;
827 	u32 i;
828 	u32 toggle;
829 	u32 mask;
830 	u32 wlock_mac = 0;
831 
832 	/* The status register is Read Only, so a write should fail.
833 	 * Some bits that get toggled are ignored.  There are several bits
834 	 * on newer hardware that are r/w.
835 	 */
836 	switch (mac->type) {
837 	case e1000_82571:
838 	case e1000_82572:
839 	case e1000_80003es2lan:
840 		toggle = 0x7FFFF3FF;
841 		break;
842 	default:
843 		toggle = 0x7FFFF033;
844 		break;
845 	}
846 
847 	before = er32(STATUS);
848 	value = (er32(STATUS) & toggle);
849 	ew32(STATUS, toggle);
850 	after = er32(STATUS) & toggle;
851 	if (value != after) {
852 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
853 		      after, value);
854 		*data = 1;
855 		return 1;
856 	}
857 	/* restore previous status */
858 	ew32(STATUS, before);
859 
860 	if (!(adapter->flags & FLAG_IS_ICH)) {
861 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
862 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
863 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
864 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
865 	}
866 
867 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
868 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
869 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
870 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
871 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
872 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
873 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
874 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
875 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
876 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
877 
878 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
879 
880 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
881 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
882 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
883 
884 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
885 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
886 	if (!(adapter->flags & FLAG_IS_ICH))
887 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
888 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
889 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
890 	mask = 0x8003FFFF;
891 	switch (mac->type) {
892 	case e1000_ich10lan:
893 	case e1000_pchlan:
894 	case e1000_pch2lan:
895 	case e1000_pch_lpt:
896 	case e1000_pch_spt:
897 	case e1000_pch_cnp:
898 		/* fall through */
899 	case e1000_pch_tgp:
900 	case e1000_pch_adp:
901 		mask |= BIT(18);
902 		break;
903 	default:
904 		break;
905 	}
906 
907 	if (mac->type >= e1000_pch_lpt)
908 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
909 		    E1000_FWSM_WLOCK_MAC_SHIFT;
910 
911 	for (i = 0; i < mac->rar_entry_count; i++) {
912 		if (mac->type >= e1000_pch_lpt) {
913 			/* Cannot test write-protected SHRAL[n] registers */
914 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
915 				continue;
916 
917 			/* SHRAH[9] different than the others */
918 			if (i == 10)
919 				mask |= BIT(30);
920 			else
921 				mask &= ~BIT(30);
922 		}
923 		if (mac->type == e1000_pch2lan) {
924 			/* SHRAH[0,1,2] different than previous */
925 			if (i == 1)
926 				mask &= 0xFFF4FFFF;
927 			/* SHRAH[3] different than SHRAH[0,1,2] */
928 			if (i == 4)
929 				mask |= BIT(30);
930 			/* RAR[1-6] owned by management engine - skipping */
931 			if (i > 0)
932 				i += 6;
933 		}
934 
935 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
936 				       0xFFFFFFFF);
937 		/* reset index to actual value */
938 		if ((mac->type == e1000_pch2lan) && (i > 6))
939 			i -= 6;
940 	}
941 
942 	for (i = 0; i < mac->mta_reg_count; i++)
943 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
944 
945 	*data = 0;
946 
947 	return 0;
948 }
949 
950 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
951 {
952 	u16 temp;
953 	u16 checksum = 0;
954 	u16 i;
955 
956 	*data = 0;
957 	/* Read and add up the contents of the EEPROM */
958 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
959 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
960 			*data = 1;
961 			return *data;
962 		}
963 		checksum += temp;
964 	}
965 
966 	/* If Checksum is not Correct return error else test passed */
967 	if ((checksum != (u16)NVM_SUM) && !(*data))
968 		*data = 2;
969 
970 	return *data;
971 }
972 
973 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
974 {
975 	struct net_device *netdev = (struct net_device *)data;
976 	struct e1000_adapter *adapter = netdev_priv(netdev);
977 	struct e1000_hw *hw = &adapter->hw;
978 
979 	adapter->test_icr |= er32(ICR);
980 
981 	return IRQ_HANDLED;
982 }
983 
984 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
985 {
986 	struct net_device *netdev = adapter->netdev;
987 	struct e1000_hw *hw = &adapter->hw;
988 	u32 mask;
989 	u32 shared_int = 1;
990 	u32 irq = adapter->pdev->irq;
991 	int i;
992 	int ret_val = 0;
993 	int int_mode = E1000E_INT_MODE_LEGACY;
994 
995 	*data = 0;
996 
997 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
998 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
999 		int_mode = adapter->int_mode;
1000 		e1000e_reset_interrupt_capability(adapter);
1001 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1002 		e1000e_set_interrupt_capability(adapter);
1003 	}
1004 	/* Hook up test interrupt handler just for this test */
1005 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1006 			 netdev)) {
1007 		shared_int = 0;
1008 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1009 			       netdev)) {
1010 		*data = 1;
1011 		ret_val = -1;
1012 		goto out;
1013 	}
1014 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1015 
1016 	/* Disable all the interrupts */
1017 	ew32(IMC, 0xFFFFFFFF);
1018 	e1e_flush();
1019 	usleep_range(10000, 11000);
1020 
1021 	/* Test each interrupt */
1022 	for (i = 0; i < 10; i++) {
1023 		/* Interrupt to test */
1024 		mask = BIT(i);
1025 
1026 		if (adapter->flags & FLAG_IS_ICH) {
1027 			switch (mask) {
1028 			case E1000_ICR_RXSEQ:
1029 				continue;
1030 			case 0x00000100:
1031 				if (adapter->hw.mac.type == e1000_ich8lan ||
1032 				    adapter->hw.mac.type == e1000_ich9lan)
1033 					continue;
1034 				break;
1035 			default:
1036 				break;
1037 			}
1038 		}
1039 
1040 		if (!shared_int) {
1041 			/* Disable the interrupt to be reported in
1042 			 * the cause register and then force the same
1043 			 * interrupt and see if one gets posted.  If
1044 			 * an interrupt was posted to the bus, the
1045 			 * test failed.
1046 			 */
1047 			adapter->test_icr = 0;
1048 			ew32(IMC, mask);
1049 			ew32(ICS, mask);
1050 			e1e_flush();
1051 			usleep_range(10000, 11000);
1052 
1053 			if (adapter->test_icr & mask) {
1054 				*data = 3;
1055 				break;
1056 			}
1057 		}
1058 
1059 		/* Enable the interrupt to be reported in
1060 		 * the cause register and then force the same
1061 		 * interrupt and see if one gets posted.  If
1062 		 * an interrupt was not posted to the bus, the
1063 		 * test failed.
1064 		 */
1065 		adapter->test_icr = 0;
1066 		ew32(IMS, mask);
1067 		ew32(ICS, mask);
1068 		e1e_flush();
1069 		usleep_range(10000, 11000);
1070 
1071 		if (!(adapter->test_icr & mask)) {
1072 			*data = 4;
1073 			break;
1074 		}
1075 
1076 		if (!shared_int) {
1077 			/* Disable the other interrupts to be reported in
1078 			 * the cause register and then force the other
1079 			 * interrupts and see if any get posted.  If
1080 			 * an interrupt was posted to the bus, the
1081 			 * test failed.
1082 			 */
1083 			adapter->test_icr = 0;
1084 			ew32(IMC, ~mask & 0x00007FFF);
1085 			ew32(ICS, ~mask & 0x00007FFF);
1086 			e1e_flush();
1087 			usleep_range(10000, 11000);
1088 
1089 			if (adapter->test_icr) {
1090 				*data = 5;
1091 				break;
1092 			}
1093 		}
1094 	}
1095 
1096 	/* Disable all the interrupts */
1097 	ew32(IMC, 0xFFFFFFFF);
1098 	e1e_flush();
1099 	usleep_range(10000, 11000);
1100 
1101 	/* Unhook test interrupt handler */
1102 	free_irq(irq, netdev);
1103 
1104 out:
1105 	if (int_mode == E1000E_INT_MODE_MSIX) {
1106 		e1000e_reset_interrupt_capability(adapter);
1107 		adapter->int_mode = int_mode;
1108 		e1000e_set_interrupt_capability(adapter);
1109 	}
1110 
1111 	return ret_val;
1112 }
1113 
1114 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1115 {
1116 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1117 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1118 	struct pci_dev *pdev = adapter->pdev;
1119 	struct e1000_buffer *buffer_info;
1120 	int i;
1121 
1122 	if (tx_ring->desc && tx_ring->buffer_info) {
1123 		for (i = 0; i < tx_ring->count; i++) {
1124 			buffer_info = &tx_ring->buffer_info[i];
1125 
1126 			if (buffer_info->dma)
1127 				dma_unmap_single(&pdev->dev,
1128 						 buffer_info->dma,
1129 						 buffer_info->length,
1130 						 DMA_TO_DEVICE);
1131 			dev_kfree_skb(buffer_info->skb);
1132 		}
1133 	}
1134 
1135 	if (rx_ring->desc && rx_ring->buffer_info) {
1136 		for (i = 0; i < rx_ring->count; i++) {
1137 			buffer_info = &rx_ring->buffer_info[i];
1138 
1139 			if (buffer_info->dma)
1140 				dma_unmap_single(&pdev->dev,
1141 						 buffer_info->dma,
1142 						 2048, DMA_FROM_DEVICE);
1143 			dev_kfree_skb(buffer_info->skb);
1144 		}
1145 	}
1146 
1147 	if (tx_ring->desc) {
1148 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1149 				  tx_ring->dma);
1150 		tx_ring->desc = NULL;
1151 	}
1152 	if (rx_ring->desc) {
1153 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1154 				  rx_ring->dma);
1155 		rx_ring->desc = NULL;
1156 	}
1157 
1158 	kfree(tx_ring->buffer_info);
1159 	tx_ring->buffer_info = NULL;
1160 	kfree(rx_ring->buffer_info);
1161 	rx_ring->buffer_info = NULL;
1162 }
1163 
1164 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1165 {
1166 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1167 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1168 	struct pci_dev *pdev = adapter->pdev;
1169 	struct e1000_hw *hw = &adapter->hw;
1170 	u32 rctl;
1171 	int i;
1172 	int ret_val;
1173 
1174 	/* Setup Tx descriptor ring and Tx buffers */
1175 
1176 	if (!tx_ring->count)
1177 		tx_ring->count = E1000_DEFAULT_TXD;
1178 
1179 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1180 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1181 	if (!tx_ring->buffer_info) {
1182 		ret_val = 1;
1183 		goto err_nomem;
1184 	}
1185 
1186 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1187 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1188 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1189 					   &tx_ring->dma, GFP_KERNEL);
1190 	if (!tx_ring->desc) {
1191 		ret_val = 2;
1192 		goto err_nomem;
1193 	}
1194 	tx_ring->next_to_use = 0;
1195 	tx_ring->next_to_clean = 0;
1196 
1197 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1198 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1199 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1200 	ew32(TDH(0), 0);
1201 	ew32(TDT(0), 0);
1202 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1203 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1204 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1205 
1206 	for (i = 0; i < tx_ring->count; i++) {
1207 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1208 		struct sk_buff *skb;
1209 		unsigned int skb_size = 1024;
1210 
1211 		skb = alloc_skb(skb_size, GFP_KERNEL);
1212 		if (!skb) {
1213 			ret_val = 3;
1214 			goto err_nomem;
1215 		}
1216 		skb_put(skb, skb_size);
1217 		tx_ring->buffer_info[i].skb = skb;
1218 		tx_ring->buffer_info[i].length = skb->len;
1219 		tx_ring->buffer_info[i].dma =
1220 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1221 				   DMA_TO_DEVICE);
1222 		if (dma_mapping_error(&pdev->dev,
1223 				      tx_ring->buffer_info[i].dma)) {
1224 			ret_val = 4;
1225 			goto err_nomem;
1226 		}
1227 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1228 		tx_desc->lower.data = cpu_to_le32(skb->len);
1229 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1230 						   E1000_TXD_CMD_IFCS |
1231 						   E1000_TXD_CMD_RS);
1232 		tx_desc->upper.data = 0;
1233 	}
1234 
1235 	/* Setup Rx descriptor ring and Rx buffers */
1236 
1237 	if (!rx_ring->count)
1238 		rx_ring->count = E1000_DEFAULT_RXD;
1239 
1240 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1241 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1242 	if (!rx_ring->buffer_info) {
1243 		ret_val = 5;
1244 		goto err_nomem;
1245 	}
1246 
1247 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1248 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1249 					   &rx_ring->dma, GFP_KERNEL);
1250 	if (!rx_ring->desc) {
1251 		ret_val = 6;
1252 		goto err_nomem;
1253 	}
1254 	rx_ring->next_to_use = 0;
1255 	rx_ring->next_to_clean = 0;
1256 
1257 	rctl = er32(RCTL);
1258 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1259 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1260 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1261 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1262 	ew32(RDLEN(0), rx_ring->size);
1263 	ew32(RDH(0), 0);
1264 	ew32(RDT(0), 0);
1265 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1266 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1267 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1268 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1269 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1270 	ew32(RCTL, rctl);
1271 
1272 	for (i = 0; i < rx_ring->count; i++) {
1273 		union e1000_rx_desc_extended *rx_desc;
1274 		struct sk_buff *skb;
1275 
1276 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1277 		if (!skb) {
1278 			ret_val = 7;
1279 			goto err_nomem;
1280 		}
1281 		skb_reserve(skb, NET_IP_ALIGN);
1282 		rx_ring->buffer_info[i].skb = skb;
1283 		rx_ring->buffer_info[i].dma =
1284 		    dma_map_single(&pdev->dev, skb->data, 2048,
1285 				   DMA_FROM_DEVICE);
1286 		if (dma_mapping_error(&pdev->dev,
1287 				      rx_ring->buffer_info[i].dma)) {
1288 			ret_val = 8;
1289 			goto err_nomem;
1290 		}
1291 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1292 		rx_desc->read.buffer_addr =
1293 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1294 		memset(skb->data, 0x00, skb->len);
1295 	}
1296 
1297 	return 0;
1298 
1299 err_nomem:
1300 	e1000_free_desc_rings(adapter);
1301 	return ret_val;
1302 }
1303 
1304 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1305 {
1306 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1307 	e1e_wphy(&adapter->hw, 29, 0x001F);
1308 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1309 	e1e_wphy(&adapter->hw, 29, 0x001A);
1310 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1311 }
1312 
1313 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1314 {
1315 	struct e1000_hw *hw = &adapter->hw;
1316 	u32 ctrl_reg = 0;
1317 	u16 phy_reg = 0;
1318 	s32 ret_val = 0;
1319 
1320 	hw->mac.autoneg = 0;
1321 
1322 	if (hw->phy.type == e1000_phy_ife) {
1323 		/* force 100, set loopback */
1324 		e1e_wphy(hw, MII_BMCR, 0x6100);
1325 
1326 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1327 		ctrl_reg = er32(CTRL);
1328 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1329 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1330 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1331 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1332 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1333 
1334 		ew32(CTRL, ctrl_reg);
1335 		e1e_flush();
1336 		usleep_range(500, 1000);
1337 
1338 		return 0;
1339 	}
1340 
1341 	/* Specific PHY configuration for loopback */
1342 	switch (hw->phy.type) {
1343 	case e1000_phy_m88:
1344 		/* Auto-MDI/MDIX Off */
1345 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1346 		/* reset to update Auto-MDI/MDIX */
1347 		e1e_wphy(hw, MII_BMCR, 0x9140);
1348 		/* autoneg off */
1349 		e1e_wphy(hw, MII_BMCR, 0x8140);
1350 		break;
1351 	case e1000_phy_gg82563:
1352 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1353 		break;
1354 	case e1000_phy_bm:
1355 		/* Set Default MAC Interface speed to 1GB */
1356 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1357 		phy_reg &= ~0x0007;
1358 		phy_reg |= 0x006;
1359 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1360 		/* Assert SW reset for above settings to take effect */
1361 		hw->phy.ops.commit(hw);
1362 		usleep_range(1000, 2000);
1363 		/* Force Full Duplex */
1364 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1365 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1366 		/* Set Link Up (in force link) */
1367 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1368 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1369 		/* Force Link */
1370 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1371 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1372 		/* Set Early Link Enable */
1373 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1374 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1375 		break;
1376 	case e1000_phy_82577:
1377 	case e1000_phy_82578:
1378 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1379 		ret_val = hw->phy.ops.acquire(hw);
1380 		if (ret_val) {
1381 			e_err("Cannot setup 1Gbps loopback.\n");
1382 			return ret_val;
1383 		}
1384 		e1000_configure_k1_ich8lan(hw, false);
1385 		hw->phy.ops.release(hw);
1386 		break;
1387 	case e1000_phy_82579:
1388 		/* Disable PHY energy detect power down */
1389 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1390 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1391 		/* Disable full chip energy detect */
1392 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1393 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1394 		/* Enable loopback on the PHY */
1395 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1396 		break;
1397 	default:
1398 		break;
1399 	}
1400 
1401 	/* force 1000, set loopback */
1402 	e1e_wphy(hw, MII_BMCR, 0x4140);
1403 	msleep(250);
1404 
1405 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1406 	ctrl_reg = er32(CTRL);
1407 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1408 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1409 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1410 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1411 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1412 
1413 	if (adapter->flags & FLAG_IS_ICH)
1414 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1415 
1416 	if (hw->phy.media_type == e1000_media_type_copper &&
1417 	    hw->phy.type == e1000_phy_m88) {
1418 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1419 	} else {
1420 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1421 		 * detected.
1422 		 */
1423 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1424 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1425 	}
1426 
1427 	ew32(CTRL, ctrl_reg);
1428 
1429 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1430 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1431 	 */
1432 	if (hw->phy.type == e1000_phy_m88)
1433 		e1000_phy_disable_receiver(adapter);
1434 
1435 	usleep_range(500, 1000);
1436 
1437 	return 0;
1438 }
1439 
1440 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1441 {
1442 	struct e1000_hw *hw = &adapter->hw;
1443 	u32 ctrl = er32(CTRL);
1444 	int link;
1445 
1446 	/* special requirements for 82571/82572 fiber adapters */
1447 
1448 	/* jump through hoops to make sure link is up because serdes
1449 	 * link is hardwired up
1450 	 */
1451 	ctrl |= E1000_CTRL_SLU;
1452 	ew32(CTRL, ctrl);
1453 
1454 	/* disable autoneg */
1455 	ctrl = er32(TXCW);
1456 	ctrl &= ~BIT(31);
1457 	ew32(TXCW, ctrl);
1458 
1459 	link = (er32(STATUS) & E1000_STATUS_LU);
1460 
1461 	if (!link) {
1462 		/* set invert loss of signal */
1463 		ctrl = er32(CTRL);
1464 		ctrl |= E1000_CTRL_ILOS;
1465 		ew32(CTRL, ctrl);
1466 	}
1467 
1468 	/* special write to serdes control register to enable SerDes analog
1469 	 * loopback
1470 	 */
1471 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1472 	e1e_flush();
1473 	usleep_range(10000, 11000);
1474 
1475 	return 0;
1476 }
1477 
1478 /* only call this for fiber/serdes connections to es2lan */
1479 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1480 {
1481 	struct e1000_hw *hw = &adapter->hw;
1482 	u32 ctrlext = er32(CTRL_EXT);
1483 	u32 ctrl = er32(CTRL);
1484 
1485 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1486 	 * on mac_type 80003es2lan)
1487 	 */
1488 	adapter->tx_fifo_head = ctrlext;
1489 
1490 	/* clear the serdes mode bits, putting the device into mac loopback */
1491 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1492 	ew32(CTRL_EXT, ctrlext);
1493 
1494 	/* force speed to 1000/FD, link up */
1495 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1496 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1497 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1498 	ew32(CTRL, ctrl);
1499 
1500 	/* set mac loopback */
1501 	ctrl = er32(RCTL);
1502 	ctrl |= E1000_RCTL_LBM_MAC;
1503 	ew32(RCTL, ctrl);
1504 
1505 	/* set testing mode parameters (no need to reset later) */
1506 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1507 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1508 	ew32(KMRNCTRLSTA,
1509 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1510 
1511 	return 0;
1512 }
1513 
1514 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1515 {
1516 	struct e1000_hw *hw = &adapter->hw;
1517 	u32 rctl, fext_nvm11, tarc0;
1518 
1519 	if (hw->mac.type >= e1000_pch_spt) {
1520 		fext_nvm11 = er32(FEXTNVM11);
1521 		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1522 		ew32(FEXTNVM11, fext_nvm11);
1523 		tarc0 = er32(TARC(0));
1524 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1525 		tarc0 &= 0xcfffffff;
1526 		/* set bit 29 (value of MULR requests is now 2) */
1527 		tarc0 |= 0x20000000;
1528 		ew32(TARC(0), tarc0);
1529 	}
1530 	if (hw->phy.media_type == e1000_media_type_fiber ||
1531 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1532 		switch (hw->mac.type) {
1533 		case e1000_80003es2lan:
1534 			return e1000_set_es2lan_mac_loopback(adapter);
1535 		case e1000_82571:
1536 		case e1000_82572:
1537 			return e1000_set_82571_fiber_loopback(adapter);
1538 		default:
1539 			rctl = er32(RCTL);
1540 			rctl |= E1000_RCTL_LBM_TCVR;
1541 			ew32(RCTL, rctl);
1542 			return 0;
1543 		}
1544 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1545 		return e1000_integrated_phy_loopback(adapter);
1546 	}
1547 
1548 	return 7;
1549 }
1550 
1551 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1552 {
1553 	struct e1000_hw *hw = &adapter->hw;
1554 	u32 rctl, fext_nvm11, tarc0;
1555 	u16 phy_reg;
1556 
1557 	rctl = er32(RCTL);
1558 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1559 	ew32(RCTL, rctl);
1560 
1561 	switch (hw->mac.type) {
1562 	case e1000_pch_spt:
1563 	case e1000_pch_cnp:
1564 	case e1000_pch_tgp:
1565 	case e1000_pch_adp:
1566 		fext_nvm11 = er32(FEXTNVM11);
1567 		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1568 		ew32(FEXTNVM11, fext_nvm11);
1569 		tarc0 = er32(TARC(0));
1570 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1571 		/* set bit 29 (value of MULR requests is now 0) */
1572 		tarc0 &= 0xcfffffff;
1573 		ew32(TARC(0), tarc0);
1574 		/* fall through */
1575 	case e1000_80003es2lan:
1576 		if (hw->phy.media_type == e1000_media_type_fiber ||
1577 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1578 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1579 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1580 			adapter->tx_fifo_head = 0;
1581 		}
1582 		/* fall through */
1583 	case e1000_82571:
1584 	case e1000_82572:
1585 		if (hw->phy.media_type == e1000_media_type_fiber ||
1586 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1587 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1588 			e1e_flush();
1589 			usleep_range(10000, 11000);
1590 			break;
1591 		}
1592 		/* Fall Through */
1593 	default:
1594 		hw->mac.autoneg = 1;
1595 		if (hw->phy.type == e1000_phy_gg82563)
1596 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1597 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1598 		if (phy_reg & BMCR_LOOPBACK) {
1599 			phy_reg &= ~BMCR_LOOPBACK;
1600 			e1e_wphy(hw, MII_BMCR, phy_reg);
1601 			if (hw->phy.ops.commit)
1602 				hw->phy.ops.commit(hw);
1603 		}
1604 		break;
1605 	}
1606 }
1607 
1608 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1609 				      unsigned int frame_size)
1610 {
1611 	memset(skb->data, 0xFF, frame_size);
1612 	frame_size &= ~1;
1613 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1614 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1615 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1616 }
1617 
1618 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1619 				    unsigned int frame_size)
1620 {
1621 	frame_size &= ~1;
1622 	if (*(skb->data + 3) == 0xFF)
1623 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1624 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1625 			return 0;
1626 	return 13;
1627 }
1628 
1629 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1630 {
1631 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1632 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1633 	struct pci_dev *pdev = adapter->pdev;
1634 	struct e1000_hw *hw = &adapter->hw;
1635 	struct e1000_buffer *buffer_info;
1636 	int i, j, k, l;
1637 	int lc;
1638 	int good_cnt;
1639 	int ret_val = 0;
1640 	unsigned long time;
1641 
1642 	ew32(RDT(0), rx_ring->count - 1);
1643 
1644 	/* Calculate the loop count based on the largest descriptor ring
1645 	 * The idea is to wrap the largest ring a number of times using 64
1646 	 * send/receive pairs during each loop
1647 	 */
1648 
1649 	if (rx_ring->count <= tx_ring->count)
1650 		lc = ((tx_ring->count / 64) * 2) + 1;
1651 	else
1652 		lc = ((rx_ring->count / 64) * 2) + 1;
1653 
1654 	k = 0;
1655 	l = 0;
1656 	/* loop count loop */
1657 	for (j = 0; j <= lc; j++) {
1658 		/* send the packets */
1659 		for (i = 0; i < 64; i++) {
1660 			buffer_info = &tx_ring->buffer_info[k];
1661 
1662 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1663 			dma_sync_single_for_device(&pdev->dev,
1664 						   buffer_info->dma,
1665 						   buffer_info->length,
1666 						   DMA_TO_DEVICE);
1667 			k++;
1668 			if (k == tx_ring->count)
1669 				k = 0;
1670 		}
1671 		ew32(TDT(0), k);
1672 		e1e_flush();
1673 		msleep(200);
1674 		time = jiffies;	/* set the start time for the receive */
1675 		good_cnt = 0;
1676 		/* receive the sent packets */
1677 		do {
1678 			buffer_info = &rx_ring->buffer_info[l];
1679 
1680 			dma_sync_single_for_cpu(&pdev->dev,
1681 						buffer_info->dma, 2048,
1682 						DMA_FROM_DEVICE);
1683 
1684 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1685 							   1024);
1686 			if (!ret_val)
1687 				good_cnt++;
1688 			l++;
1689 			if (l == rx_ring->count)
1690 				l = 0;
1691 			/* time + 20 msecs (200 msecs on 2.4) is more than
1692 			 * enough time to complete the receives, if it's
1693 			 * exceeded, break and error off
1694 			 */
1695 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1696 		if (good_cnt != 64) {
1697 			ret_val = 13;	/* ret_val is the same as mis-compare */
1698 			break;
1699 		}
1700 		if (time_after(jiffies, time + 20)) {
1701 			ret_val = 14;	/* error code for time out error */
1702 			break;
1703 		}
1704 	}
1705 	return ret_val;
1706 }
1707 
1708 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1709 {
1710 	struct e1000_hw *hw = &adapter->hw;
1711 
1712 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1713 	if (hw->phy.ops.check_reset_block &&
1714 	    hw->phy.ops.check_reset_block(hw)) {
1715 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1716 		*data = 0;
1717 		goto out;
1718 	}
1719 
1720 	*data = e1000_setup_desc_rings(adapter);
1721 	if (*data)
1722 		goto out;
1723 
1724 	*data = e1000_setup_loopback_test(adapter);
1725 	if (*data)
1726 		goto err_loopback;
1727 
1728 	*data = e1000_run_loopback_test(adapter);
1729 	e1000_loopback_cleanup(adapter);
1730 
1731 err_loopback:
1732 	e1000_free_desc_rings(adapter);
1733 out:
1734 	return *data;
1735 }
1736 
1737 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1738 {
1739 	struct e1000_hw *hw = &adapter->hw;
1740 
1741 	*data = 0;
1742 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1743 		int i = 0;
1744 
1745 		hw->mac.serdes_has_link = false;
1746 
1747 		/* On some blade server designs, link establishment
1748 		 * could take as long as 2-3 minutes
1749 		 */
1750 		do {
1751 			hw->mac.ops.check_for_link(hw);
1752 			if (hw->mac.serdes_has_link)
1753 				return *data;
1754 			msleep(20);
1755 		} while (i++ < 3750);
1756 
1757 		*data = 1;
1758 	} else {
1759 		hw->mac.ops.check_for_link(hw);
1760 		if (hw->mac.autoneg)
1761 			/* On some Phy/switch combinations, link establishment
1762 			 * can take a few seconds more than expected.
1763 			 */
1764 			msleep_interruptible(5000);
1765 
1766 		if (!(er32(STATUS) & E1000_STATUS_LU))
1767 			*data = 1;
1768 	}
1769 	return *data;
1770 }
1771 
1772 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1773 				 int sset)
1774 {
1775 	switch (sset) {
1776 	case ETH_SS_TEST:
1777 		return E1000_TEST_LEN;
1778 	case ETH_SS_STATS:
1779 		return E1000_STATS_LEN;
1780 	default:
1781 		return -EOPNOTSUPP;
1782 	}
1783 }
1784 
1785 static void e1000_diag_test(struct net_device *netdev,
1786 			    struct ethtool_test *eth_test, u64 *data)
1787 {
1788 	struct e1000_adapter *adapter = netdev_priv(netdev);
1789 	u16 autoneg_advertised;
1790 	u8 forced_speed_duplex;
1791 	u8 autoneg;
1792 	bool if_running = netif_running(netdev);
1793 
1794 	pm_runtime_get_sync(netdev->dev.parent);
1795 
1796 	set_bit(__E1000_TESTING, &adapter->state);
1797 
1798 	if (!if_running) {
1799 		/* Get control of and reset hardware */
1800 		if (adapter->flags & FLAG_HAS_AMT)
1801 			e1000e_get_hw_control(adapter);
1802 
1803 		e1000e_power_up_phy(adapter);
1804 
1805 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1806 		e1000e_reset(adapter);
1807 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1808 	}
1809 
1810 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1811 		/* Offline tests */
1812 
1813 		/* save speed, duplex, autoneg settings */
1814 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1815 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1816 		autoneg = adapter->hw.mac.autoneg;
1817 
1818 		e_info("offline testing starting\n");
1819 
1820 		if (if_running)
1821 			/* indicate we're in test mode */
1822 			e1000e_close(netdev);
1823 
1824 		if (e1000_reg_test(adapter, &data[0]))
1825 			eth_test->flags |= ETH_TEST_FL_FAILED;
1826 
1827 		e1000e_reset(adapter);
1828 		if (e1000_eeprom_test(adapter, &data[1]))
1829 			eth_test->flags |= ETH_TEST_FL_FAILED;
1830 
1831 		e1000e_reset(adapter);
1832 		if (e1000_intr_test(adapter, &data[2]))
1833 			eth_test->flags |= ETH_TEST_FL_FAILED;
1834 
1835 		e1000e_reset(adapter);
1836 		if (e1000_loopback_test(adapter, &data[3]))
1837 			eth_test->flags |= ETH_TEST_FL_FAILED;
1838 
1839 		/* force this routine to wait until autoneg complete/timeout */
1840 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1841 		e1000e_reset(adapter);
1842 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1843 
1844 		if (e1000_link_test(adapter, &data[4]))
1845 			eth_test->flags |= ETH_TEST_FL_FAILED;
1846 
1847 		/* restore speed, duplex, autoneg settings */
1848 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1849 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1850 		adapter->hw.mac.autoneg = autoneg;
1851 		e1000e_reset(adapter);
1852 
1853 		clear_bit(__E1000_TESTING, &adapter->state);
1854 		if (if_running)
1855 			e1000e_open(netdev);
1856 	} else {
1857 		/* Online tests */
1858 
1859 		e_info("online testing starting\n");
1860 
1861 		/* register, eeprom, intr and loopback tests not run online */
1862 		data[0] = 0;
1863 		data[1] = 0;
1864 		data[2] = 0;
1865 		data[3] = 0;
1866 
1867 		if (e1000_link_test(adapter, &data[4]))
1868 			eth_test->flags |= ETH_TEST_FL_FAILED;
1869 
1870 		clear_bit(__E1000_TESTING, &adapter->state);
1871 	}
1872 
1873 	if (!if_running) {
1874 		e1000e_reset(adapter);
1875 
1876 		if (adapter->flags & FLAG_HAS_AMT)
1877 			e1000e_release_hw_control(adapter);
1878 	}
1879 
1880 	msleep_interruptible(4 * 1000);
1881 
1882 	pm_runtime_put_sync(netdev->dev.parent);
1883 }
1884 
1885 static void e1000_get_wol(struct net_device *netdev,
1886 			  struct ethtool_wolinfo *wol)
1887 {
1888 	struct e1000_adapter *adapter = netdev_priv(netdev);
1889 
1890 	wol->supported = 0;
1891 	wol->wolopts = 0;
1892 
1893 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1894 	    !device_can_wakeup(&adapter->pdev->dev))
1895 		return;
1896 
1897 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1898 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1899 
1900 	/* apply any specific unsupported masks here */
1901 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1902 		wol->supported &= ~WAKE_UCAST;
1903 
1904 		if (adapter->wol & E1000_WUFC_EX)
1905 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1906 	}
1907 
1908 	if (adapter->wol & E1000_WUFC_EX)
1909 		wol->wolopts |= WAKE_UCAST;
1910 	if (adapter->wol & E1000_WUFC_MC)
1911 		wol->wolopts |= WAKE_MCAST;
1912 	if (adapter->wol & E1000_WUFC_BC)
1913 		wol->wolopts |= WAKE_BCAST;
1914 	if (adapter->wol & E1000_WUFC_MAG)
1915 		wol->wolopts |= WAKE_MAGIC;
1916 	if (adapter->wol & E1000_WUFC_LNKC)
1917 		wol->wolopts |= WAKE_PHY;
1918 }
1919 
1920 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1921 {
1922 	struct e1000_adapter *adapter = netdev_priv(netdev);
1923 
1924 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1925 	    !device_can_wakeup(&adapter->pdev->dev) ||
1926 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1927 			      WAKE_MAGIC | WAKE_PHY)))
1928 		return -EOPNOTSUPP;
1929 
1930 	/* these settings will always override what we currently have */
1931 	adapter->wol = 0;
1932 
1933 	if (wol->wolopts & WAKE_UCAST)
1934 		adapter->wol |= E1000_WUFC_EX;
1935 	if (wol->wolopts & WAKE_MCAST)
1936 		adapter->wol |= E1000_WUFC_MC;
1937 	if (wol->wolopts & WAKE_BCAST)
1938 		adapter->wol |= E1000_WUFC_BC;
1939 	if (wol->wolopts & WAKE_MAGIC)
1940 		adapter->wol |= E1000_WUFC_MAG;
1941 	if (wol->wolopts & WAKE_PHY)
1942 		adapter->wol |= E1000_WUFC_LNKC;
1943 
1944 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1945 
1946 	return 0;
1947 }
1948 
1949 static int e1000_set_phys_id(struct net_device *netdev,
1950 			     enum ethtool_phys_id_state state)
1951 {
1952 	struct e1000_adapter *adapter = netdev_priv(netdev);
1953 	struct e1000_hw *hw = &adapter->hw;
1954 
1955 	switch (state) {
1956 	case ETHTOOL_ID_ACTIVE:
1957 		pm_runtime_get_sync(netdev->dev.parent);
1958 
1959 		if (!hw->mac.ops.blink_led)
1960 			return 2;	/* cycle on/off twice per second */
1961 
1962 		hw->mac.ops.blink_led(hw);
1963 		break;
1964 
1965 	case ETHTOOL_ID_INACTIVE:
1966 		if (hw->phy.type == e1000_phy_ife)
1967 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1968 		hw->mac.ops.led_off(hw);
1969 		hw->mac.ops.cleanup_led(hw);
1970 		pm_runtime_put_sync(netdev->dev.parent);
1971 		break;
1972 
1973 	case ETHTOOL_ID_ON:
1974 		hw->mac.ops.led_on(hw);
1975 		break;
1976 
1977 	case ETHTOOL_ID_OFF:
1978 		hw->mac.ops.led_off(hw);
1979 		break;
1980 	}
1981 
1982 	return 0;
1983 }
1984 
1985 static int e1000_get_coalesce(struct net_device *netdev,
1986 			      struct ethtool_coalesce *ec)
1987 {
1988 	struct e1000_adapter *adapter = netdev_priv(netdev);
1989 
1990 	if (adapter->itr_setting <= 4)
1991 		ec->rx_coalesce_usecs = adapter->itr_setting;
1992 	else
1993 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1994 
1995 	return 0;
1996 }
1997 
1998 static int e1000_set_coalesce(struct net_device *netdev,
1999 			      struct ethtool_coalesce *ec)
2000 {
2001 	struct e1000_adapter *adapter = netdev_priv(netdev);
2002 
2003 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2004 	    ((ec->rx_coalesce_usecs > 4) &&
2005 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2006 	    (ec->rx_coalesce_usecs == 2))
2007 		return -EINVAL;
2008 
2009 	if (ec->rx_coalesce_usecs == 4) {
2010 		adapter->itr_setting = 4;
2011 		adapter->itr = adapter->itr_setting;
2012 	} else if (ec->rx_coalesce_usecs <= 3) {
2013 		adapter->itr = 20000;
2014 		adapter->itr_setting = ec->rx_coalesce_usecs;
2015 	} else {
2016 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2017 		adapter->itr_setting = adapter->itr & ~3;
2018 	}
2019 
2020 	pm_runtime_get_sync(netdev->dev.parent);
2021 
2022 	if (adapter->itr_setting != 0)
2023 		e1000e_write_itr(adapter, adapter->itr);
2024 	else
2025 		e1000e_write_itr(adapter, 0);
2026 
2027 	pm_runtime_put_sync(netdev->dev.parent);
2028 
2029 	return 0;
2030 }
2031 
2032 static int e1000_nway_reset(struct net_device *netdev)
2033 {
2034 	struct e1000_adapter *adapter = netdev_priv(netdev);
2035 
2036 	if (!netif_running(netdev))
2037 		return -EAGAIN;
2038 
2039 	if (!adapter->hw.mac.autoneg)
2040 		return -EINVAL;
2041 
2042 	pm_runtime_get_sync(netdev->dev.parent);
2043 	e1000e_reinit_locked(adapter);
2044 	pm_runtime_put_sync(netdev->dev.parent);
2045 
2046 	return 0;
2047 }
2048 
2049 static void e1000_get_ethtool_stats(struct net_device *netdev,
2050 				    struct ethtool_stats __always_unused *stats,
2051 				    u64 *data)
2052 {
2053 	struct e1000_adapter *adapter = netdev_priv(netdev);
2054 	struct rtnl_link_stats64 net_stats;
2055 	int i;
2056 	char *p = NULL;
2057 
2058 	pm_runtime_get_sync(netdev->dev.parent);
2059 
2060 	dev_get_stats(netdev, &net_stats);
2061 
2062 	pm_runtime_put_sync(netdev->dev.parent);
2063 
2064 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2065 		switch (e1000_gstrings_stats[i].type) {
2066 		case NETDEV_STATS:
2067 			p = (char *)&net_stats +
2068 			    e1000_gstrings_stats[i].stat_offset;
2069 			break;
2070 		case E1000_STATS:
2071 			p = (char *)adapter +
2072 			    e1000_gstrings_stats[i].stat_offset;
2073 			break;
2074 		default:
2075 			data[i] = 0;
2076 			continue;
2077 		}
2078 
2079 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2080 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2081 	}
2082 }
2083 
2084 static void e1000_get_strings(struct net_device __always_unused *netdev,
2085 			      u32 stringset, u8 *data)
2086 {
2087 	u8 *p = data;
2088 	int i;
2089 
2090 	switch (stringset) {
2091 	case ETH_SS_TEST:
2092 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2093 		break;
2094 	case ETH_SS_STATS:
2095 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2096 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2097 			       ETH_GSTRING_LEN);
2098 			p += ETH_GSTRING_LEN;
2099 		}
2100 		break;
2101 	}
2102 }
2103 
2104 static int e1000_get_rxnfc(struct net_device *netdev,
2105 			   struct ethtool_rxnfc *info,
2106 			   u32 __always_unused *rule_locs)
2107 {
2108 	info->data = 0;
2109 
2110 	switch (info->cmd) {
2111 	case ETHTOOL_GRXFH: {
2112 		struct e1000_adapter *adapter = netdev_priv(netdev);
2113 		struct e1000_hw *hw = &adapter->hw;
2114 		u32 mrqc;
2115 
2116 		pm_runtime_get_sync(netdev->dev.parent);
2117 		mrqc = er32(MRQC);
2118 		pm_runtime_put_sync(netdev->dev.parent);
2119 
2120 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2121 			return 0;
2122 
2123 		switch (info->flow_type) {
2124 		case TCP_V4_FLOW:
2125 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2126 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2127 			/* fall through */
2128 		case UDP_V4_FLOW:
2129 		case SCTP_V4_FLOW:
2130 		case AH_ESP_V4_FLOW:
2131 		case IPV4_FLOW:
2132 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2133 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2134 			break;
2135 		case TCP_V6_FLOW:
2136 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2137 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2138 			/* fall through */
2139 		case UDP_V6_FLOW:
2140 		case SCTP_V6_FLOW:
2141 		case AH_ESP_V6_FLOW:
2142 		case IPV6_FLOW:
2143 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2144 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2145 			break;
2146 		default:
2147 			break;
2148 		}
2149 		return 0;
2150 	}
2151 	default:
2152 		return -EOPNOTSUPP;
2153 	}
2154 }
2155 
2156 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2157 {
2158 	struct e1000_adapter *adapter = netdev_priv(netdev);
2159 	struct e1000_hw *hw = &adapter->hw;
2160 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2161 	u32 ret_val;
2162 
2163 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2164 		return -EOPNOTSUPP;
2165 
2166 	switch (hw->phy.type) {
2167 	case e1000_phy_82579:
2168 		cap_addr = I82579_EEE_CAPABILITY;
2169 		lpa_addr = I82579_EEE_LP_ABILITY;
2170 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2171 		break;
2172 	case e1000_phy_i217:
2173 		cap_addr = I217_EEE_CAPABILITY;
2174 		lpa_addr = I217_EEE_LP_ABILITY;
2175 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2176 		break;
2177 	default:
2178 		return -EOPNOTSUPP;
2179 	}
2180 
2181 	pm_runtime_get_sync(netdev->dev.parent);
2182 
2183 	ret_val = hw->phy.ops.acquire(hw);
2184 	if (ret_val) {
2185 		pm_runtime_put_sync(netdev->dev.parent);
2186 		return -EBUSY;
2187 	}
2188 
2189 	/* EEE Capability */
2190 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2191 	if (ret_val)
2192 		goto release;
2193 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2194 
2195 	/* EEE Advertised */
2196 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2197 
2198 	/* EEE Link Partner Advertised */
2199 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2200 	if (ret_val)
2201 		goto release;
2202 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2203 
2204 	/* EEE PCS Status */
2205 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2206 	if (ret_val)
2207 		goto release;
2208 	if (hw->phy.type == e1000_phy_82579)
2209 		phy_data <<= 8;
2210 
2211 	/* Result of the EEE auto negotiation - there is no register that
2212 	 * has the status of the EEE negotiation so do a best-guess based
2213 	 * on whether Tx or Rx LPI indications have been received.
2214 	 */
2215 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2216 		edata->eee_active = true;
2217 
2218 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2219 	edata->tx_lpi_enabled = true;
2220 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2221 
2222 release:
2223 	hw->phy.ops.release(hw);
2224 	if (ret_val)
2225 		ret_val = -ENODATA;
2226 
2227 	pm_runtime_put_sync(netdev->dev.parent);
2228 
2229 	return ret_val;
2230 }
2231 
2232 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2233 {
2234 	struct e1000_adapter *adapter = netdev_priv(netdev);
2235 	struct e1000_hw *hw = &adapter->hw;
2236 	struct ethtool_eee eee_curr;
2237 	s32 ret_val;
2238 
2239 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2240 	if (ret_val)
2241 		return ret_val;
2242 
2243 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2244 		e_err("Setting EEE tx-lpi is not supported\n");
2245 		return -EINVAL;
2246 	}
2247 
2248 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2249 		e_err("Setting EEE Tx LPI timer is not supported\n");
2250 		return -EINVAL;
2251 	}
2252 
2253 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2254 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2255 		return -EINVAL;
2256 	}
2257 
2258 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2259 
2260 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2261 
2262 	pm_runtime_get_sync(netdev->dev.parent);
2263 
2264 	/* reset the link */
2265 	if (netif_running(netdev))
2266 		e1000e_reinit_locked(adapter);
2267 	else
2268 		e1000e_reset(adapter);
2269 
2270 	pm_runtime_put_sync(netdev->dev.parent);
2271 
2272 	return 0;
2273 }
2274 
2275 static int e1000e_get_ts_info(struct net_device *netdev,
2276 			      struct ethtool_ts_info *info)
2277 {
2278 	struct e1000_adapter *adapter = netdev_priv(netdev);
2279 
2280 	ethtool_op_get_ts_info(netdev, info);
2281 
2282 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2283 		return 0;
2284 
2285 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2286 				  SOF_TIMESTAMPING_RX_HARDWARE |
2287 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2288 
2289 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2290 
2291 	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2292 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2293 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2294 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2295 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2296 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2297 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2298 			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2299 			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2300 			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2301 			    BIT(HWTSTAMP_FILTER_ALL));
2302 
2303 	if (adapter->ptp_clock)
2304 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2305 
2306 	return 0;
2307 }
2308 
2309 static const struct ethtool_ops e1000_ethtool_ops = {
2310 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2311 	.get_drvinfo		= e1000_get_drvinfo,
2312 	.get_regs_len		= e1000_get_regs_len,
2313 	.get_regs		= e1000_get_regs,
2314 	.get_wol		= e1000_get_wol,
2315 	.set_wol		= e1000_set_wol,
2316 	.get_msglevel		= e1000_get_msglevel,
2317 	.set_msglevel		= e1000_set_msglevel,
2318 	.nway_reset		= e1000_nway_reset,
2319 	.get_link		= ethtool_op_get_link,
2320 	.get_eeprom_len		= e1000_get_eeprom_len,
2321 	.get_eeprom		= e1000_get_eeprom,
2322 	.set_eeprom		= e1000_set_eeprom,
2323 	.get_ringparam		= e1000_get_ringparam,
2324 	.set_ringparam		= e1000_set_ringparam,
2325 	.get_pauseparam		= e1000_get_pauseparam,
2326 	.set_pauseparam		= e1000_set_pauseparam,
2327 	.self_test		= e1000_diag_test,
2328 	.get_strings		= e1000_get_strings,
2329 	.set_phys_id		= e1000_set_phys_id,
2330 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2331 	.get_sset_count		= e1000e_get_sset_count,
2332 	.get_coalesce		= e1000_get_coalesce,
2333 	.set_coalesce		= e1000_set_coalesce,
2334 	.get_rxnfc		= e1000_get_rxnfc,
2335 	.get_ts_info		= e1000e_get_ts_info,
2336 	.get_eee		= e1000e_get_eee,
2337 	.set_eee		= e1000e_set_eee,
2338 	.get_link_ksettings	= e1000_get_link_ksettings,
2339 	.set_link_ksettings	= e1000_set_link_ksettings,
2340 };
2341 
2342 void e1000e_set_ethtool_ops(struct net_device *netdev)
2343 {
2344 	netdev->ethtool_ops = &e1000_ethtool_ops;
2345 }
2346