1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* ethtool support for e1000 */
23 
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/ethtool.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pm_runtime.h>
32 
33 #include "e1000.h"
34 
35 enum { NETDEV_STATS, E1000_STATS };
36 
37 struct e1000_stats {
38 	char stat_string[ETH_GSTRING_LEN];
39 	int type;
40 	int sizeof_stat;
41 	int stat_offset;
42 };
43 
44 #define E1000_STAT(str, m) { \
45 		.stat_string = str, \
46 		.type = E1000_STATS, \
47 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48 		.stat_offset = offsetof(struct e1000_adapter, m) }
49 #define E1000_NETDEV_STAT(str, m) { \
50 		.stat_string = str, \
51 		.type = NETDEV_STATS, \
52 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
54 
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56 	E1000_STAT("rx_packets", stats.gprc),
57 	E1000_STAT("tx_packets", stats.gptc),
58 	E1000_STAT("rx_bytes", stats.gorc),
59 	E1000_STAT("tx_bytes", stats.gotc),
60 	E1000_STAT("rx_broadcast", stats.bprc),
61 	E1000_STAT("tx_broadcast", stats.bptc),
62 	E1000_STAT("rx_multicast", stats.mprc),
63 	E1000_STAT("tx_multicast", stats.mptc),
64 	E1000_NETDEV_STAT("rx_errors", rx_errors),
65 	E1000_NETDEV_STAT("tx_errors", tx_errors),
66 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67 	E1000_STAT("multicast", stats.mprc),
68 	E1000_STAT("collisions", stats.colc),
69 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71 	E1000_STAT("rx_crc_errors", stats.crcerrs),
72 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
74 	E1000_STAT("rx_missed_errors", stats.mpc),
75 	E1000_STAT("tx_aborted_errors", stats.ecol),
76 	E1000_STAT("tx_carrier_errors", stats.tncrs),
77 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79 	E1000_STAT("tx_window_errors", stats.latecol),
80 	E1000_STAT("tx_abort_late_coll", stats.latecol),
81 	E1000_STAT("tx_deferred_ok", stats.dc),
82 	E1000_STAT("tx_single_coll_ok", stats.scc),
83 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
84 	E1000_STAT("tx_timeout_count", tx_timeout_count),
85 	E1000_STAT("tx_restart_queue", restart_queue),
86 	E1000_STAT("rx_long_length_errors", stats.roc),
87 	E1000_STAT("rx_short_length_errors", stats.ruc),
88 	E1000_STAT("rx_align_errors", stats.algnerrc),
89 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
94 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
96 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97 	E1000_STAT("rx_header_split", rx_hdr_split),
98 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99 	E1000_STAT("tx_smbus", stats.mgptc),
100 	E1000_STAT("rx_smbus", stats.mgprc),
101 	E1000_STAT("dropped_smbus", stats.mgpdc),
102 	E1000_STAT("rx_dma_failed", rx_dma_failed),
103 	E1000_STAT("tx_dma_failed", tx_dma_failed),
104 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106 	E1000_STAT("corr_ecc_errors", corr_errors),
107 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108 	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
109 };
110 
111 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
112 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
113 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
114 	"Register test  (offline)", "Eeprom test    (offline)",
115 	"Interrupt test (offline)", "Loopback test  (offline)",
116 	"Link test   (on/offline)"
117 };
118 
119 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
120 
121 static int e1000_get_link_ksettings(struct net_device *netdev,
122 				    struct ethtool_link_ksettings *cmd)
123 {
124 	struct e1000_adapter *adapter = netdev_priv(netdev);
125 	struct e1000_hw *hw = &adapter->hw;
126 	u32 speed, supported, advertising;
127 
128 	if (hw->phy.media_type == e1000_media_type_copper) {
129 		supported = (SUPPORTED_10baseT_Half |
130 			     SUPPORTED_10baseT_Full |
131 			     SUPPORTED_100baseT_Half |
132 			     SUPPORTED_100baseT_Full |
133 			     SUPPORTED_1000baseT_Full |
134 			     SUPPORTED_Autoneg |
135 			     SUPPORTED_TP);
136 		if (hw->phy.type == e1000_phy_ife)
137 			supported &= ~SUPPORTED_1000baseT_Full;
138 		advertising = ADVERTISED_TP;
139 
140 		if (hw->mac.autoneg == 1) {
141 			advertising |= ADVERTISED_Autoneg;
142 			/* the e1000 autoneg seems to match ethtool nicely */
143 			advertising |= hw->phy.autoneg_advertised;
144 		}
145 
146 		cmd->base.port = PORT_TP;
147 		cmd->base.phy_address = hw->phy.addr;
148 	} else {
149 		supported   = (SUPPORTED_1000baseT_Full |
150 			       SUPPORTED_FIBRE |
151 			       SUPPORTED_Autoneg);
152 
153 		advertising = (ADVERTISED_1000baseT_Full |
154 			       ADVERTISED_FIBRE |
155 			       ADVERTISED_Autoneg);
156 
157 		cmd->base.port = PORT_FIBRE;
158 	}
159 
160 	speed = SPEED_UNKNOWN;
161 	cmd->base.duplex = DUPLEX_UNKNOWN;
162 
163 	if (netif_running(netdev)) {
164 		if (netif_carrier_ok(netdev)) {
165 			speed = adapter->link_speed;
166 			cmd->base.duplex = adapter->link_duplex - 1;
167 		}
168 	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
169 		u32 status = er32(STATUS);
170 
171 		if (status & E1000_STATUS_LU) {
172 			if (status & E1000_STATUS_SPEED_1000)
173 				speed = SPEED_1000;
174 			else if (status & E1000_STATUS_SPEED_100)
175 				speed = SPEED_100;
176 			else
177 				speed = SPEED_10;
178 
179 			if (status & E1000_STATUS_FD)
180 				cmd->base.duplex = DUPLEX_FULL;
181 			else
182 				cmd->base.duplex = DUPLEX_HALF;
183 		}
184 	}
185 
186 	cmd->base.speed = speed;
187 	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
188 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
189 
190 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
191 	if ((hw->phy.media_type == e1000_media_type_copper) &&
192 	    netif_carrier_ok(netdev))
193 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
194 			ETH_TP_MDI_X : ETH_TP_MDI;
195 	else
196 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
197 
198 	if (hw->phy.mdix == AUTO_ALL_MODES)
199 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
200 	else
201 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
202 
203 	if (hw->phy.media_type != e1000_media_type_copper)
204 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
205 
206 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
207 						supported);
208 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
209 						advertising);
210 
211 	return 0;
212 }
213 
214 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
215 {
216 	struct e1000_mac_info *mac = &adapter->hw.mac;
217 
218 	mac->autoneg = 0;
219 
220 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
221 	 * for the switch() below to work
222 	 */
223 	if ((spd & 1) || (dplx & ~1))
224 		goto err_inval;
225 
226 	/* Fiber NICs only allow 1000 gbps Full duplex */
227 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
228 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
229 		goto err_inval;
230 	}
231 
232 	switch (spd + dplx) {
233 	case SPEED_10 + DUPLEX_HALF:
234 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
235 		break;
236 	case SPEED_10 + DUPLEX_FULL:
237 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
238 		break;
239 	case SPEED_100 + DUPLEX_HALF:
240 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
241 		break;
242 	case SPEED_100 + DUPLEX_FULL:
243 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
244 		break;
245 	case SPEED_1000 + DUPLEX_FULL:
246 		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
247 			mac->autoneg = 1;
248 			adapter->hw.phy.autoneg_advertised =
249 				ADVERTISE_1000_FULL;
250 		} else {
251 			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
252 		}
253 		break;
254 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
255 	default:
256 		goto err_inval;
257 	}
258 
259 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
260 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
261 
262 	return 0;
263 
264 err_inval:
265 	e_err("Unsupported Speed/Duplex configuration\n");
266 	return -EINVAL;
267 }
268 
269 static int e1000_set_link_ksettings(struct net_device *netdev,
270 				    const struct ethtool_link_ksettings *cmd)
271 {
272 	struct e1000_adapter *adapter = netdev_priv(netdev);
273 	struct e1000_hw *hw = &adapter->hw;
274 	int ret_val = 0;
275 	u32 advertising;
276 
277 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
278 						cmd->link_modes.advertising);
279 
280 	pm_runtime_get_sync(netdev->dev.parent);
281 
282 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
283 	 * cannot be changed
284 	 */
285 	if (hw->phy.ops.check_reset_block &&
286 	    hw->phy.ops.check_reset_block(hw)) {
287 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
288 		ret_val = -EINVAL;
289 		goto out;
290 	}
291 
292 	/* MDI setting is only allowed when autoneg enabled because
293 	 * some hardware doesn't allow MDI setting when speed or
294 	 * duplex is forced.
295 	 */
296 	if (cmd->base.eth_tp_mdix_ctrl) {
297 		if (hw->phy.media_type != e1000_media_type_copper) {
298 			ret_val = -EOPNOTSUPP;
299 			goto out;
300 		}
301 
302 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
303 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
304 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
305 			ret_val = -EINVAL;
306 			goto out;
307 		}
308 	}
309 
310 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
311 		usleep_range(1000, 2000);
312 
313 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
314 		hw->mac.autoneg = 1;
315 		if (hw->phy.media_type == e1000_media_type_fiber)
316 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
317 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
318 		else
319 			hw->phy.autoneg_advertised = advertising |
320 			    ADVERTISED_TP | ADVERTISED_Autoneg;
321 		advertising = hw->phy.autoneg_advertised;
322 		if (adapter->fc_autoneg)
323 			hw->fc.requested_mode = e1000_fc_default;
324 	} else {
325 		u32 speed = cmd->base.speed;
326 		/* calling this overrides forced MDI setting */
327 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
328 			ret_val = -EINVAL;
329 			goto out;
330 		}
331 	}
332 
333 	/* MDI-X => 2; MDI => 1; Auto => 3 */
334 	if (cmd->base.eth_tp_mdix_ctrl) {
335 		/* fix up the value for auto (3 => 0) as zero is mapped
336 		 * internally to auto
337 		 */
338 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
339 			hw->phy.mdix = AUTO_ALL_MODES;
340 		else
341 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
342 	}
343 
344 	/* reset the link */
345 	if (netif_running(adapter->netdev)) {
346 		e1000e_down(adapter, true);
347 		e1000e_up(adapter);
348 	} else {
349 		e1000e_reset(adapter);
350 	}
351 
352 out:
353 	pm_runtime_put_sync(netdev->dev.parent);
354 	clear_bit(__E1000_RESETTING, &adapter->state);
355 	return ret_val;
356 }
357 
358 static void e1000_get_pauseparam(struct net_device *netdev,
359 				 struct ethtool_pauseparam *pause)
360 {
361 	struct e1000_adapter *adapter = netdev_priv(netdev);
362 	struct e1000_hw *hw = &adapter->hw;
363 
364 	pause->autoneg =
365 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
366 
367 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
368 		pause->rx_pause = 1;
369 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
370 		pause->tx_pause = 1;
371 	} else if (hw->fc.current_mode == e1000_fc_full) {
372 		pause->rx_pause = 1;
373 		pause->tx_pause = 1;
374 	}
375 }
376 
377 static int e1000_set_pauseparam(struct net_device *netdev,
378 				struct ethtool_pauseparam *pause)
379 {
380 	struct e1000_adapter *adapter = netdev_priv(netdev);
381 	struct e1000_hw *hw = &adapter->hw;
382 	int retval = 0;
383 
384 	adapter->fc_autoneg = pause->autoneg;
385 
386 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
387 		usleep_range(1000, 2000);
388 
389 	pm_runtime_get_sync(netdev->dev.parent);
390 
391 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
392 		hw->fc.requested_mode = e1000_fc_default;
393 		if (netif_running(adapter->netdev)) {
394 			e1000e_down(adapter, true);
395 			e1000e_up(adapter);
396 		} else {
397 			e1000e_reset(adapter);
398 		}
399 	} else {
400 		if (pause->rx_pause && pause->tx_pause)
401 			hw->fc.requested_mode = e1000_fc_full;
402 		else if (pause->rx_pause && !pause->tx_pause)
403 			hw->fc.requested_mode = e1000_fc_rx_pause;
404 		else if (!pause->rx_pause && pause->tx_pause)
405 			hw->fc.requested_mode = e1000_fc_tx_pause;
406 		else if (!pause->rx_pause && !pause->tx_pause)
407 			hw->fc.requested_mode = e1000_fc_none;
408 
409 		hw->fc.current_mode = hw->fc.requested_mode;
410 
411 		if (hw->phy.media_type == e1000_media_type_fiber) {
412 			retval = hw->mac.ops.setup_link(hw);
413 			/* implicit goto out */
414 		} else {
415 			retval = e1000e_force_mac_fc(hw);
416 			if (retval)
417 				goto out;
418 			e1000e_set_fc_watermarks(hw);
419 		}
420 	}
421 
422 out:
423 	pm_runtime_put_sync(netdev->dev.parent);
424 	clear_bit(__E1000_RESETTING, &adapter->state);
425 	return retval;
426 }
427 
428 static u32 e1000_get_msglevel(struct net_device *netdev)
429 {
430 	struct e1000_adapter *adapter = netdev_priv(netdev);
431 	return adapter->msg_enable;
432 }
433 
434 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
435 {
436 	struct e1000_adapter *adapter = netdev_priv(netdev);
437 	adapter->msg_enable = data;
438 }
439 
440 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
441 {
442 #define E1000_REGS_LEN 32	/* overestimate */
443 	return E1000_REGS_LEN * sizeof(u32);
444 }
445 
446 static void e1000_get_regs(struct net_device *netdev,
447 			   struct ethtool_regs *regs, void *p)
448 {
449 	struct e1000_adapter *adapter = netdev_priv(netdev);
450 	struct e1000_hw *hw = &adapter->hw;
451 	u32 *regs_buff = p;
452 	u16 phy_data;
453 
454 	pm_runtime_get_sync(netdev->dev.parent);
455 
456 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
457 
458 	regs->version = (1u << 24) |
459 			(adapter->pdev->revision << 16) |
460 			adapter->pdev->device;
461 
462 	regs_buff[0] = er32(CTRL);
463 	regs_buff[1] = er32(STATUS);
464 
465 	regs_buff[2] = er32(RCTL);
466 	regs_buff[3] = er32(RDLEN(0));
467 	regs_buff[4] = er32(RDH(0));
468 	regs_buff[5] = er32(RDT(0));
469 	regs_buff[6] = er32(RDTR);
470 
471 	regs_buff[7] = er32(TCTL);
472 	regs_buff[8] = er32(TDLEN(0));
473 	regs_buff[9] = er32(TDH(0));
474 	regs_buff[10] = er32(TDT(0));
475 	regs_buff[11] = er32(TIDV);
476 
477 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
478 
479 	/* ethtool doesn't use anything past this point, so all this
480 	 * code is likely legacy junk for apps that may or may not exist
481 	 */
482 	if (hw->phy.type == e1000_phy_m88) {
483 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
484 		regs_buff[13] = (u32)phy_data; /* cable length */
485 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
486 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
487 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
488 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
489 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
490 		regs_buff[18] = regs_buff[13]; /* cable polarity */
491 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
492 		regs_buff[20] = regs_buff[17]; /* polarity correction */
493 		/* phy receive errors */
494 		regs_buff[22] = adapter->phy_stats.receive_errors;
495 		regs_buff[23] = regs_buff[13]; /* mdix mode */
496 	}
497 	regs_buff[21] = 0;	/* was idle_errors */
498 	e1e_rphy(hw, MII_STAT1000, &phy_data);
499 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
500 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
501 
502 	pm_runtime_put_sync(netdev->dev.parent);
503 }
504 
505 static int e1000_get_eeprom_len(struct net_device *netdev)
506 {
507 	struct e1000_adapter *adapter = netdev_priv(netdev);
508 	return adapter->hw.nvm.word_size * 2;
509 }
510 
511 static int e1000_get_eeprom(struct net_device *netdev,
512 			    struct ethtool_eeprom *eeprom, u8 *bytes)
513 {
514 	struct e1000_adapter *adapter = netdev_priv(netdev);
515 	struct e1000_hw *hw = &adapter->hw;
516 	u16 *eeprom_buff;
517 	int first_word;
518 	int last_word;
519 	int ret_val = 0;
520 	u16 i;
521 
522 	if (eeprom->len == 0)
523 		return -EINVAL;
524 
525 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
526 
527 	first_word = eeprom->offset >> 1;
528 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
529 
530 	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
531 			      GFP_KERNEL);
532 	if (!eeprom_buff)
533 		return -ENOMEM;
534 
535 	pm_runtime_get_sync(netdev->dev.parent);
536 
537 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
538 		ret_val = e1000_read_nvm(hw, first_word,
539 					 last_word - first_word + 1,
540 					 eeprom_buff);
541 	} else {
542 		for (i = 0; i < last_word - first_word + 1; i++) {
543 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
544 						 &eeprom_buff[i]);
545 			if (ret_val)
546 				break;
547 		}
548 	}
549 
550 	pm_runtime_put_sync(netdev->dev.parent);
551 
552 	if (ret_val) {
553 		/* a read error occurred, throw away the result */
554 		memset(eeprom_buff, 0xff, sizeof(u16) *
555 		       (last_word - first_word + 1));
556 	} else {
557 		/* Device's eeprom is always little-endian, word addressable */
558 		for (i = 0; i < last_word - first_word + 1; i++)
559 			le16_to_cpus(&eeprom_buff[i]);
560 	}
561 
562 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
563 	kfree(eeprom_buff);
564 
565 	return ret_val;
566 }
567 
568 static int e1000_set_eeprom(struct net_device *netdev,
569 			    struct ethtool_eeprom *eeprom, u8 *bytes)
570 {
571 	struct e1000_adapter *adapter = netdev_priv(netdev);
572 	struct e1000_hw *hw = &adapter->hw;
573 	u16 *eeprom_buff;
574 	void *ptr;
575 	int max_len;
576 	int first_word;
577 	int last_word;
578 	int ret_val = 0;
579 	u16 i;
580 
581 	if (eeprom->len == 0)
582 		return -EOPNOTSUPP;
583 
584 	if (eeprom->magic !=
585 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
586 		return -EFAULT;
587 
588 	if (adapter->flags & FLAG_READ_ONLY_NVM)
589 		return -EINVAL;
590 
591 	max_len = hw->nvm.word_size * 2;
592 
593 	first_word = eeprom->offset >> 1;
594 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
595 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
596 	if (!eeprom_buff)
597 		return -ENOMEM;
598 
599 	ptr = (void *)eeprom_buff;
600 
601 	pm_runtime_get_sync(netdev->dev.parent);
602 
603 	if (eeprom->offset & 1) {
604 		/* need read/modify/write of first changed EEPROM word */
605 		/* only the second byte of the word is being modified */
606 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
607 		ptr++;
608 	}
609 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
610 		/* need read/modify/write of last changed EEPROM word */
611 		/* only the first byte of the word is being modified */
612 		ret_val = e1000_read_nvm(hw, last_word, 1,
613 					 &eeprom_buff[last_word - first_word]);
614 
615 	if (ret_val)
616 		goto out;
617 
618 	/* Device's eeprom is always little-endian, word addressable */
619 	for (i = 0; i < last_word - first_word + 1; i++)
620 		le16_to_cpus(&eeprom_buff[i]);
621 
622 	memcpy(ptr, bytes, eeprom->len);
623 
624 	for (i = 0; i < last_word - first_word + 1; i++)
625 		cpu_to_le16s(&eeprom_buff[i]);
626 
627 	ret_val = e1000_write_nvm(hw, first_word,
628 				  last_word - first_word + 1, eeprom_buff);
629 
630 	if (ret_val)
631 		goto out;
632 
633 	/* Update the checksum over the first part of the EEPROM if needed
634 	 * and flush shadow RAM for applicable controllers
635 	 */
636 	if ((first_word <= NVM_CHECKSUM_REG) ||
637 	    (hw->mac.type == e1000_82583) ||
638 	    (hw->mac.type == e1000_82574) ||
639 	    (hw->mac.type == e1000_82573))
640 		ret_val = e1000e_update_nvm_checksum(hw);
641 
642 out:
643 	pm_runtime_put_sync(netdev->dev.parent);
644 	kfree(eeprom_buff);
645 	return ret_val;
646 }
647 
648 static void e1000_get_drvinfo(struct net_device *netdev,
649 			      struct ethtool_drvinfo *drvinfo)
650 {
651 	struct e1000_adapter *adapter = netdev_priv(netdev);
652 
653 	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
654 	strlcpy(drvinfo->version, e1000e_driver_version,
655 		sizeof(drvinfo->version));
656 
657 	/* EEPROM image version # is reported as firmware version # for
658 	 * PCI-E controllers
659 	 */
660 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
661 		 "%d.%d-%d",
662 		 (adapter->eeprom_vers & 0xF000) >> 12,
663 		 (adapter->eeprom_vers & 0x0FF0) >> 4,
664 		 (adapter->eeprom_vers & 0x000F));
665 
666 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
667 		sizeof(drvinfo->bus_info));
668 }
669 
670 static void e1000_get_ringparam(struct net_device *netdev,
671 				struct ethtool_ringparam *ring)
672 {
673 	struct e1000_adapter *adapter = netdev_priv(netdev);
674 
675 	ring->rx_max_pending = E1000_MAX_RXD;
676 	ring->tx_max_pending = E1000_MAX_TXD;
677 	ring->rx_pending = adapter->rx_ring_count;
678 	ring->tx_pending = adapter->tx_ring_count;
679 }
680 
681 static int e1000_set_ringparam(struct net_device *netdev,
682 			       struct ethtool_ringparam *ring)
683 {
684 	struct e1000_adapter *adapter = netdev_priv(netdev);
685 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
686 	int err = 0, size = sizeof(struct e1000_ring);
687 	bool set_tx = false, set_rx = false;
688 	u16 new_rx_count, new_tx_count;
689 
690 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
691 		return -EINVAL;
692 
693 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
694 			       E1000_MAX_RXD);
695 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
696 
697 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
698 			       E1000_MAX_TXD);
699 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
700 
701 	if ((new_tx_count == adapter->tx_ring_count) &&
702 	    (new_rx_count == adapter->rx_ring_count))
703 		/* nothing to do */
704 		return 0;
705 
706 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
707 		usleep_range(1000, 2000);
708 
709 	if (!netif_running(adapter->netdev)) {
710 		/* Set counts now and allocate resources during open() */
711 		adapter->tx_ring->count = new_tx_count;
712 		adapter->rx_ring->count = new_rx_count;
713 		adapter->tx_ring_count = new_tx_count;
714 		adapter->rx_ring_count = new_rx_count;
715 		goto clear_reset;
716 	}
717 
718 	set_tx = (new_tx_count != adapter->tx_ring_count);
719 	set_rx = (new_rx_count != adapter->rx_ring_count);
720 
721 	/* Allocate temporary storage for ring updates */
722 	if (set_tx) {
723 		temp_tx = vmalloc(size);
724 		if (!temp_tx) {
725 			err = -ENOMEM;
726 			goto free_temp;
727 		}
728 	}
729 	if (set_rx) {
730 		temp_rx = vmalloc(size);
731 		if (!temp_rx) {
732 			err = -ENOMEM;
733 			goto free_temp;
734 		}
735 	}
736 
737 	pm_runtime_get_sync(netdev->dev.parent);
738 
739 	e1000e_down(adapter, true);
740 
741 	/* We can't just free everything and then setup again, because the
742 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
743 	 * structs.  First, attempt to allocate new resources...
744 	 */
745 	if (set_tx) {
746 		memcpy(temp_tx, adapter->tx_ring, size);
747 		temp_tx->count = new_tx_count;
748 		err = e1000e_setup_tx_resources(temp_tx);
749 		if (err)
750 			goto err_setup;
751 	}
752 	if (set_rx) {
753 		memcpy(temp_rx, adapter->rx_ring, size);
754 		temp_rx->count = new_rx_count;
755 		err = e1000e_setup_rx_resources(temp_rx);
756 		if (err)
757 			goto err_setup_rx;
758 	}
759 
760 	/* ...then free the old resources and copy back any new ring data */
761 	if (set_tx) {
762 		e1000e_free_tx_resources(adapter->tx_ring);
763 		memcpy(adapter->tx_ring, temp_tx, size);
764 		adapter->tx_ring_count = new_tx_count;
765 	}
766 	if (set_rx) {
767 		e1000e_free_rx_resources(adapter->rx_ring);
768 		memcpy(adapter->rx_ring, temp_rx, size);
769 		adapter->rx_ring_count = new_rx_count;
770 	}
771 
772 err_setup_rx:
773 	if (err && set_tx)
774 		e1000e_free_tx_resources(temp_tx);
775 err_setup:
776 	e1000e_up(adapter);
777 	pm_runtime_put_sync(netdev->dev.parent);
778 free_temp:
779 	vfree(temp_tx);
780 	vfree(temp_rx);
781 clear_reset:
782 	clear_bit(__E1000_RESETTING, &adapter->state);
783 	return err;
784 }
785 
786 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
787 			     int reg, int offset, u32 mask, u32 write)
788 {
789 	u32 pat, val;
790 	static const u32 test[] = {
791 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
792 	};
793 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
794 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
795 				      (test[pat] & write));
796 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
797 		if (val != (test[pat] & write & mask)) {
798 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
799 			      reg + (offset << 2), val,
800 			      (test[pat] & write & mask));
801 			*data = reg;
802 			return true;
803 		}
804 	}
805 	return false;
806 }
807 
808 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
809 			      int reg, u32 mask, u32 write)
810 {
811 	u32 val;
812 
813 	__ew32(&adapter->hw, reg, write & mask);
814 	val = __er32(&adapter->hw, reg);
815 	if ((write & mask) != (val & mask)) {
816 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
817 		      reg, (val & mask), (write & mask));
818 		*data = reg;
819 		return true;
820 	}
821 	return false;
822 }
823 
824 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
825 	do {                                                                   \
826 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
827 			return 1;                                              \
828 	} while (0)
829 #define REG_PATTERN_TEST(reg, mask, write)                                     \
830 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
831 
832 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
833 	do {                                                                   \
834 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
835 			return 1;                                              \
836 	} while (0)
837 
838 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
839 {
840 	struct e1000_hw *hw = &adapter->hw;
841 	struct e1000_mac_info *mac = &adapter->hw.mac;
842 	u32 value;
843 	u32 before;
844 	u32 after;
845 	u32 i;
846 	u32 toggle;
847 	u32 mask;
848 	u32 wlock_mac = 0;
849 
850 	/* The status register is Read Only, so a write should fail.
851 	 * Some bits that get toggled are ignored.  There are several bits
852 	 * on newer hardware that are r/w.
853 	 */
854 	switch (mac->type) {
855 	case e1000_82571:
856 	case e1000_82572:
857 	case e1000_80003es2lan:
858 		toggle = 0x7FFFF3FF;
859 		break;
860 	default:
861 		toggle = 0x7FFFF033;
862 		break;
863 	}
864 
865 	before = er32(STATUS);
866 	value = (er32(STATUS) & toggle);
867 	ew32(STATUS, toggle);
868 	after = er32(STATUS) & toggle;
869 	if (value != after) {
870 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
871 		      after, value);
872 		*data = 1;
873 		return 1;
874 	}
875 	/* restore previous status */
876 	ew32(STATUS, before);
877 
878 	if (!(adapter->flags & FLAG_IS_ICH)) {
879 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
880 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
881 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
882 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
883 	}
884 
885 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
886 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
887 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
888 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
889 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
890 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
891 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
892 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
893 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
894 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
895 
896 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
897 
898 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
899 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
900 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
901 
902 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
903 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
904 	if (!(adapter->flags & FLAG_IS_ICH))
905 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
906 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
907 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
908 	mask = 0x8003FFFF;
909 	switch (mac->type) {
910 	case e1000_ich10lan:
911 	case e1000_pchlan:
912 	case e1000_pch2lan:
913 	case e1000_pch_lpt:
914 	case e1000_pch_spt:
915 		/* fall through */
916 	case e1000_pch_cnp:
917 		mask |= BIT(18);
918 		break;
919 	default:
920 		break;
921 	}
922 
923 	if (mac->type >= e1000_pch_lpt)
924 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
925 		    E1000_FWSM_WLOCK_MAC_SHIFT;
926 
927 	for (i = 0; i < mac->rar_entry_count; i++) {
928 		if (mac->type >= e1000_pch_lpt) {
929 			/* Cannot test write-protected SHRAL[n] registers */
930 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
931 				continue;
932 
933 			/* SHRAH[9] different than the others */
934 			if (i == 10)
935 				mask |= BIT(30);
936 			else
937 				mask &= ~BIT(30);
938 		}
939 		if (mac->type == e1000_pch2lan) {
940 			/* SHRAH[0,1,2] different than previous */
941 			if (i == 1)
942 				mask &= 0xFFF4FFFF;
943 			/* SHRAH[3] different than SHRAH[0,1,2] */
944 			if (i == 4)
945 				mask |= BIT(30);
946 			/* RAR[1-6] owned by management engine - skipping */
947 			if (i > 0)
948 				i += 6;
949 		}
950 
951 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
952 				       0xFFFFFFFF);
953 		/* reset index to actual value */
954 		if ((mac->type == e1000_pch2lan) && (i > 6))
955 			i -= 6;
956 	}
957 
958 	for (i = 0; i < mac->mta_reg_count; i++)
959 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
960 
961 	*data = 0;
962 
963 	return 0;
964 }
965 
966 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
967 {
968 	u16 temp;
969 	u16 checksum = 0;
970 	u16 i;
971 
972 	*data = 0;
973 	/* Read and add up the contents of the EEPROM */
974 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
975 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
976 			*data = 1;
977 			return *data;
978 		}
979 		checksum += temp;
980 	}
981 
982 	/* If Checksum is not Correct return error else test passed */
983 	if ((checksum != (u16)NVM_SUM) && !(*data))
984 		*data = 2;
985 
986 	return *data;
987 }
988 
989 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
990 {
991 	struct net_device *netdev = (struct net_device *)data;
992 	struct e1000_adapter *adapter = netdev_priv(netdev);
993 	struct e1000_hw *hw = &adapter->hw;
994 
995 	adapter->test_icr |= er32(ICR);
996 
997 	return IRQ_HANDLED;
998 }
999 
1000 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1001 {
1002 	struct net_device *netdev = adapter->netdev;
1003 	struct e1000_hw *hw = &adapter->hw;
1004 	u32 mask;
1005 	u32 shared_int = 1;
1006 	u32 irq = adapter->pdev->irq;
1007 	int i;
1008 	int ret_val = 0;
1009 	int int_mode = E1000E_INT_MODE_LEGACY;
1010 
1011 	*data = 0;
1012 
1013 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1014 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1015 		int_mode = adapter->int_mode;
1016 		e1000e_reset_interrupt_capability(adapter);
1017 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1018 		e1000e_set_interrupt_capability(adapter);
1019 	}
1020 	/* Hook up test interrupt handler just for this test */
1021 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1022 			 netdev)) {
1023 		shared_int = 0;
1024 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1025 			       netdev)) {
1026 		*data = 1;
1027 		ret_val = -1;
1028 		goto out;
1029 	}
1030 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1031 
1032 	/* Disable all the interrupts */
1033 	ew32(IMC, 0xFFFFFFFF);
1034 	e1e_flush();
1035 	usleep_range(10000, 20000);
1036 
1037 	/* Test each interrupt */
1038 	for (i = 0; i < 10; i++) {
1039 		/* Interrupt to test */
1040 		mask = BIT(i);
1041 
1042 		if (adapter->flags & FLAG_IS_ICH) {
1043 			switch (mask) {
1044 			case E1000_ICR_RXSEQ:
1045 				continue;
1046 			case 0x00000100:
1047 				if (adapter->hw.mac.type == e1000_ich8lan ||
1048 				    adapter->hw.mac.type == e1000_ich9lan)
1049 					continue;
1050 				break;
1051 			default:
1052 				break;
1053 			}
1054 		}
1055 
1056 		if (!shared_int) {
1057 			/* Disable the interrupt to be reported in
1058 			 * the cause register and then force the same
1059 			 * interrupt and see if one gets posted.  If
1060 			 * an interrupt was posted to the bus, the
1061 			 * test failed.
1062 			 */
1063 			adapter->test_icr = 0;
1064 			ew32(IMC, mask);
1065 			ew32(ICS, mask);
1066 			e1e_flush();
1067 			usleep_range(10000, 20000);
1068 
1069 			if (adapter->test_icr & mask) {
1070 				*data = 3;
1071 				break;
1072 			}
1073 		}
1074 
1075 		/* Enable the interrupt to be reported in
1076 		 * the cause register and then force the same
1077 		 * interrupt and see if one gets posted.  If
1078 		 * an interrupt was not posted to the bus, the
1079 		 * test failed.
1080 		 */
1081 		adapter->test_icr = 0;
1082 		ew32(IMS, mask);
1083 		ew32(ICS, mask);
1084 		e1e_flush();
1085 		usleep_range(10000, 20000);
1086 
1087 		if (!(adapter->test_icr & mask)) {
1088 			*data = 4;
1089 			break;
1090 		}
1091 
1092 		if (!shared_int) {
1093 			/* Disable the other interrupts to be reported in
1094 			 * the cause register and then force the other
1095 			 * interrupts and see if any get posted.  If
1096 			 * an interrupt was posted to the bus, the
1097 			 * test failed.
1098 			 */
1099 			adapter->test_icr = 0;
1100 			ew32(IMC, ~mask & 0x00007FFF);
1101 			ew32(ICS, ~mask & 0x00007FFF);
1102 			e1e_flush();
1103 			usleep_range(10000, 20000);
1104 
1105 			if (adapter->test_icr) {
1106 				*data = 5;
1107 				break;
1108 			}
1109 		}
1110 	}
1111 
1112 	/* Disable all the interrupts */
1113 	ew32(IMC, 0xFFFFFFFF);
1114 	e1e_flush();
1115 	usleep_range(10000, 20000);
1116 
1117 	/* Unhook test interrupt handler */
1118 	free_irq(irq, netdev);
1119 
1120 out:
1121 	if (int_mode == E1000E_INT_MODE_MSIX) {
1122 		e1000e_reset_interrupt_capability(adapter);
1123 		adapter->int_mode = int_mode;
1124 		e1000e_set_interrupt_capability(adapter);
1125 	}
1126 
1127 	return ret_val;
1128 }
1129 
1130 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1131 {
1132 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1133 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1134 	struct pci_dev *pdev = adapter->pdev;
1135 	struct e1000_buffer *buffer_info;
1136 	int i;
1137 
1138 	if (tx_ring->desc && tx_ring->buffer_info) {
1139 		for (i = 0; i < tx_ring->count; i++) {
1140 			buffer_info = &tx_ring->buffer_info[i];
1141 
1142 			if (buffer_info->dma)
1143 				dma_unmap_single(&pdev->dev,
1144 						 buffer_info->dma,
1145 						 buffer_info->length,
1146 						 DMA_TO_DEVICE);
1147 			if (buffer_info->skb)
1148 				dev_kfree_skb(buffer_info->skb);
1149 		}
1150 	}
1151 
1152 	if (rx_ring->desc && rx_ring->buffer_info) {
1153 		for (i = 0; i < rx_ring->count; i++) {
1154 			buffer_info = &rx_ring->buffer_info[i];
1155 
1156 			if (buffer_info->dma)
1157 				dma_unmap_single(&pdev->dev,
1158 						 buffer_info->dma,
1159 						 2048, DMA_FROM_DEVICE);
1160 			if (buffer_info->skb)
1161 				dev_kfree_skb(buffer_info->skb);
1162 		}
1163 	}
1164 
1165 	if (tx_ring->desc) {
1166 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1167 				  tx_ring->dma);
1168 		tx_ring->desc = NULL;
1169 	}
1170 	if (rx_ring->desc) {
1171 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1172 				  rx_ring->dma);
1173 		rx_ring->desc = NULL;
1174 	}
1175 
1176 	kfree(tx_ring->buffer_info);
1177 	tx_ring->buffer_info = NULL;
1178 	kfree(rx_ring->buffer_info);
1179 	rx_ring->buffer_info = NULL;
1180 }
1181 
1182 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1183 {
1184 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1185 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1186 	struct pci_dev *pdev = adapter->pdev;
1187 	struct e1000_hw *hw = &adapter->hw;
1188 	u32 rctl;
1189 	int i;
1190 	int ret_val;
1191 
1192 	/* Setup Tx descriptor ring and Tx buffers */
1193 
1194 	if (!tx_ring->count)
1195 		tx_ring->count = E1000_DEFAULT_TXD;
1196 
1197 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1198 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1199 	if (!tx_ring->buffer_info) {
1200 		ret_val = 1;
1201 		goto err_nomem;
1202 	}
1203 
1204 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1205 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1206 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1207 					   &tx_ring->dma, GFP_KERNEL);
1208 	if (!tx_ring->desc) {
1209 		ret_val = 2;
1210 		goto err_nomem;
1211 	}
1212 	tx_ring->next_to_use = 0;
1213 	tx_ring->next_to_clean = 0;
1214 
1215 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1216 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1217 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1218 	ew32(TDH(0), 0);
1219 	ew32(TDT(0), 0);
1220 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1221 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1222 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1223 
1224 	for (i = 0; i < tx_ring->count; i++) {
1225 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1226 		struct sk_buff *skb;
1227 		unsigned int skb_size = 1024;
1228 
1229 		skb = alloc_skb(skb_size, GFP_KERNEL);
1230 		if (!skb) {
1231 			ret_val = 3;
1232 			goto err_nomem;
1233 		}
1234 		skb_put(skb, skb_size);
1235 		tx_ring->buffer_info[i].skb = skb;
1236 		tx_ring->buffer_info[i].length = skb->len;
1237 		tx_ring->buffer_info[i].dma =
1238 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1239 				   DMA_TO_DEVICE);
1240 		if (dma_mapping_error(&pdev->dev,
1241 				      tx_ring->buffer_info[i].dma)) {
1242 			ret_val = 4;
1243 			goto err_nomem;
1244 		}
1245 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1246 		tx_desc->lower.data = cpu_to_le32(skb->len);
1247 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1248 						   E1000_TXD_CMD_IFCS |
1249 						   E1000_TXD_CMD_RS);
1250 		tx_desc->upper.data = 0;
1251 	}
1252 
1253 	/* Setup Rx descriptor ring and Rx buffers */
1254 
1255 	if (!rx_ring->count)
1256 		rx_ring->count = E1000_DEFAULT_RXD;
1257 
1258 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1259 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1260 	if (!rx_ring->buffer_info) {
1261 		ret_val = 5;
1262 		goto err_nomem;
1263 	}
1264 
1265 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1266 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1267 					   &rx_ring->dma, GFP_KERNEL);
1268 	if (!rx_ring->desc) {
1269 		ret_val = 6;
1270 		goto err_nomem;
1271 	}
1272 	rx_ring->next_to_use = 0;
1273 	rx_ring->next_to_clean = 0;
1274 
1275 	rctl = er32(RCTL);
1276 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1277 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1278 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1279 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1280 	ew32(RDLEN(0), rx_ring->size);
1281 	ew32(RDH(0), 0);
1282 	ew32(RDT(0), 0);
1283 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1284 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1285 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1286 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1287 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1288 	ew32(RCTL, rctl);
1289 
1290 	for (i = 0; i < rx_ring->count; i++) {
1291 		union e1000_rx_desc_extended *rx_desc;
1292 		struct sk_buff *skb;
1293 
1294 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1295 		if (!skb) {
1296 			ret_val = 7;
1297 			goto err_nomem;
1298 		}
1299 		skb_reserve(skb, NET_IP_ALIGN);
1300 		rx_ring->buffer_info[i].skb = skb;
1301 		rx_ring->buffer_info[i].dma =
1302 		    dma_map_single(&pdev->dev, skb->data, 2048,
1303 				   DMA_FROM_DEVICE);
1304 		if (dma_mapping_error(&pdev->dev,
1305 				      rx_ring->buffer_info[i].dma)) {
1306 			ret_val = 8;
1307 			goto err_nomem;
1308 		}
1309 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1310 		rx_desc->read.buffer_addr =
1311 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1312 		memset(skb->data, 0x00, skb->len);
1313 	}
1314 
1315 	return 0;
1316 
1317 err_nomem:
1318 	e1000_free_desc_rings(adapter);
1319 	return ret_val;
1320 }
1321 
1322 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1323 {
1324 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1325 	e1e_wphy(&adapter->hw, 29, 0x001F);
1326 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1327 	e1e_wphy(&adapter->hw, 29, 0x001A);
1328 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1329 }
1330 
1331 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1332 {
1333 	struct e1000_hw *hw = &adapter->hw;
1334 	u32 ctrl_reg = 0;
1335 	u16 phy_reg = 0;
1336 	s32 ret_val = 0;
1337 
1338 	hw->mac.autoneg = 0;
1339 
1340 	if (hw->phy.type == e1000_phy_ife) {
1341 		/* force 100, set loopback */
1342 		e1e_wphy(hw, MII_BMCR, 0x6100);
1343 
1344 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1345 		ctrl_reg = er32(CTRL);
1346 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1347 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1348 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1349 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1350 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1351 
1352 		ew32(CTRL, ctrl_reg);
1353 		e1e_flush();
1354 		usleep_range(500, 1000);
1355 
1356 		return 0;
1357 	}
1358 
1359 	/* Specific PHY configuration for loopback */
1360 	switch (hw->phy.type) {
1361 	case e1000_phy_m88:
1362 		/* Auto-MDI/MDIX Off */
1363 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1364 		/* reset to update Auto-MDI/MDIX */
1365 		e1e_wphy(hw, MII_BMCR, 0x9140);
1366 		/* autoneg off */
1367 		e1e_wphy(hw, MII_BMCR, 0x8140);
1368 		break;
1369 	case e1000_phy_gg82563:
1370 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1371 		break;
1372 	case e1000_phy_bm:
1373 		/* Set Default MAC Interface speed to 1GB */
1374 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1375 		phy_reg &= ~0x0007;
1376 		phy_reg |= 0x006;
1377 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1378 		/* Assert SW reset for above settings to take effect */
1379 		hw->phy.ops.commit(hw);
1380 		usleep_range(1000, 2000);
1381 		/* Force Full Duplex */
1382 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1383 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1384 		/* Set Link Up (in force link) */
1385 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1386 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1387 		/* Force Link */
1388 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1389 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1390 		/* Set Early Link Enable */
1391 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1392 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1393 		break;
1394 	case e1000_phy_82577:
1395 	case e1000_phy_82578:
1396 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1397 		ret_val = hw->phy.ops.acquire(hw);
1398 		if (ret_val) {
1399 			e_err("Cannot setup 1Gbps loopback.\n");
1400 			return ret_val;
1401 		}
1402 		e1000_configure_k1_ich8lan(hw, false);
1403 		hw->phy.ops.release(hw);
1404 		break;
1405 	case e1000_phy_82579:
1406 		/* Disable PHY energy detect power down */
1407 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1408 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1409 		/* Disable full chip energy detect */
1410 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1411 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1412 		/* Enable loopback on the PHY */
1413 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1414 		break;
1415 	default:
1416 		break;
1417 	}
1418 
1419 	/* force 1000, set loopback */
1420 	e1e_wphy(hw, MII_BMCR, 0x4140);
1421 	msleep(250);
1422 
1423 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1424 	ctrl_reg = er32(CTRL);
1425 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1426 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1427 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1428 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1429 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1430 
1431 	if (adapter->flags & FLAG_IS_ICH)
1432 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1433 
1434 	if (hw->phy.media_type == e1000_media_type_copper &&
1435 	    hw->phy.type == e1000_phy_m88) {
1436 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1437 	} else {
1438 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1439 		 * detected.
1440 		 */
1441 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1442 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1443 	}
1444 
1445 	ew32(CTRL, ctrl_reg);
1446 
1447 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1448 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1449 	 */
1450 	if (hw->phy.type == e1000_phy_m88)
1451 		e1000_phy_disable_receiver(adapter);
1452 
1453 	usleep_range(500, 1000);
1454 
1455 	return 0;
1456 }
1457 
1458 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1459 {
1460 	struct e1000_hw *hw = &adapter->hw;
1461 	u32 ctrl = er32(CTRL);
1462 	int link;
1463 
1464 	/* special requirements for 82571/82572 fiber adapters */
1465 
1466 	/* jump through hoops to make sure link is up because serdes
1467 	 * link is hardwired up
1468 	 */
1469 	ctrl |= E1000_CTRL_SLU;
1470 	ew32(CTRL, ctrl);
1471 
1472 	/* disable autoneg */
1473 	ctrl = er32(TXCW);
1474 	ctrl &= ~BIT(31);
1475 	ew32(TXCW, ctrl);
1476 
1477 	link = (er32(STATUS) & E1000_STATUS_LU);
1478 
1479 	if (!link) {
1480 		/* set invert loss of signal */
1481 		ctrl = er32(CTRL);
1482 		ctrl |= E1000_CTRL_ILOS;
1483 		ew32(CTRL, ctrl);
1484 	}
1485 
1486 	/* special write to serdes control register to enable SerDes analog
1487 	 * loopback
1488 	 */
1489 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1490 	e1e_flush();
1491 	usleep_range(10000, 20000);
1492 
1493 	return 0;
1494 }
1495 
1496 /* only call this for fiber/serdes connections to es2lan */
1497 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1498 {
1499 	struct e1000_hw *hw = &adapter->hw;
1500 	u32 ctrlext = er32(CTRL_EXT);
1501 	u32 ctrl = er32(CTRL);
1502 
1503 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1504 	 * on mac_type 80003es2lan)
1505 	 */
1506 	adapter->tx_fifo_head = ctrlext;
1507 
1508 	/* clear the serdes mode bits, putting the device into mac loopback */
1509 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1510 	ew32(CTRL_EXT, ctrlext);
1511 
1512 	/* force speed to 1000/FD, link up */
1513 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1514 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1515 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1516 	ew32(CTRL, ctrl);
1517 
1518 	/* set mac loopback */
1519 	ctrl = er32(RCTL);
1520 	ctrl |= E1000_RCTL_LBM_MAC;
1521 	ew32(RCTL, ctrl);
1522 
1523 	/* set testing mode parameters (no need to reset later) */
1524 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1525 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1526 	ew32(KMRNCTRLSTA,
1527 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1528 
1529 	return 0;
1530 }
1531 
1532 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1533 {
1534 	struct e1000_hw *hw = &adapter->hw;
1535 	u32 rctl, fext_nvm11, tarc0;
1536 
1537 	if (hw->mac.type >= e1000_pch_spt) {
1538 		fext_nvm11 = er32(FEXTNVM11);
1539 		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1540 		ew32(FEXTNVM11, fext_nvm11);
1541 		tarc0 = er32(TARC(0));
1542 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1543 		tarc0 &= 0xcfffffff;
1544 		/* set bit 29 (value of MULR requests is now 2) */
1545 		tarc0 |= 0x20000000;
1546 		ew32(TARC(0), tarc0);
1547 	}
1548 	if (hw->phy.media_type == e1000_media_type_fiber ||
1549 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1550 		switch (hw->mac.type) {
1551 		case e1000_80003es2lan:
1552 			return e1000_set_es2lan_mac_loopback(adapter);
1553 		case e1000_82571:
1554 		case e1000_82572:
1555 			return e1000_set_82571_fiber_loopback(adapter);
1556 		default:
1557 			rctl = er32(RCTL);
1558 			rctl |= E1000_RCTL_LBM_TCVR;
1559 			ew32(RCTL, rctl);
1560 			return 0;
1561 		}
1562 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1563 		return e1000_integrated_phy_loopback(adapter);
1564 	}
1565 
1566 	return 7;
1567 }
1568 
1569 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1570 {
1571 	struct e1000_hw *hw = &adapter->hw;
1572 	u32 rctl, fext_nvm11, tarc0;
1573 	u16 phy_reg;
1574 
1575 	rctl = er32(RCTL);
1576 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1577 	ew32(RCTL, rctl);
1578 
1579 	switch (hw->mac.type) {
1580 	case e1000_pch_spt:
1581 	case e1000_pch_cnp:
1582 		fext_nvm11 = er32(FEXTNVM11);
1583 		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1584 		ew32(FEXTNVM11, fext_nvm11);
1585 		tarc0 = er32(TARC(0));
1586 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1587 		/* set bit 29 (value of MULR requests is now 0) */
1588 		tarc0 &= 0xcfffffff;
1589 		ew32(TARC(0), tarc0);
1590 		/* fall through */
1591 	case e1000_80003es2lan:
1592 		if (hw->phy.media_type == e1000_media_type_fiber ||
1593 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1594 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1595 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1596 			adapter->tx_fifo_head = 0;
1597 		}
1598 		/* fall through */
1599 	case e1000_82571:
1600 	case e1000_82572:
1601 		if (hw->phy.media_type == e1000_media_type_fiber ||
1602 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1603 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1604 			e1e_flush();
1605 			usleep_range(10000, 20000);
1606 			break;
1607 		}
1608 		/* Fall Through */
1609 	default:
1610 		hw->mac.autoneg = 1;
1611 		if (hw->phy.type == e1000_phy_gg82563)
1612 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1613 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1614 		if (phy_reg & BMCR_LOOPBACK) {
1615 			phy_reg &= ~BMCR_LOOPBACK;
1616 			e1e_wphy(hw, MII_BMCR, phy_reg);
1617 			if (hw->phy.ops.commit)
1618 				hw->phy.ops.commit(hw);
1619 		}
1620 		break;
1621 	}
1622 }
1623 
1624 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1625 				      unsigned int frame_size)
1626 {
1627 	memset(skb->data, 0xFF, frame_size);
1628 	frame_size &= ~1;
1629 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1630 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1631 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1632 }
1633 
1634 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1635 				    unsigned int frame_size)
1636 {
1637 	frame_size &= ~1;
1638 	if (*(skb->data + 3) == 0xFF)
1639 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1640 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1641 			return 0;
1642 	return 13;
1643 }
1644 
1645 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1646 {
1647 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1648 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1649 	struct pci_dev *pdev = adapter->pdev;
1650 	struct e1000_hw *hw = &adapter->hw;
1651 	struct e1000_buffer *buffer_info;
1652 	int i, j, k, l;
1653 	int lc;
1654 	int good_cnt;
1655 	int ret_val = 0;
1656 	unsigned long time;
1657 
1658 	ew32(RDT(0), rx_ring->count - 1);
1659 
1660 	/* Calculate the loop count based on the largest descriptor ring
1661 	 * The idea is to wrap the largest ring a number of times using 64
1662 	 * send/receive pairs during each loop
1663 	 */
1664 
1665 	if (rx_ring->count <= tx_ring->count)
1666 		lc = ((tx_ring->count / 64) * 2) + 1;
1667 	else
1668 		lc = ((rx_ring->count / 64) * 2) + 1;
1669 
1670 	k = 0;
1671 	l = 0;
1672 	/* loop count loop */
1673 	for (j = 0; j <= lc; j++) {
1674 		/* send the packets */
1675 		for (i = 0; i < 64; i++) {
1676 			buffer_info = &tx_ring->buffer_info[k];
1677 
1678 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1679 			dma_sync_single_for_device(&pdev->dev,
1680 						   buffer_info->dma,
1681 						   buffer_info->length,
1682 						   DMA_TO_DEVICE);
1683 			k++;
1684 			if (k == tx_ring->count)
1685 				k = 0;
1686 		}
1687 		ew32(TDT(0), k);
1688 		e1e_flush();
1689 		msleep(200);
1690 		time = jiffies;	/* set the start time for the receive */
1691 		good_cnt = 0;
1692 		/* receive the sent packets */
1693 		do {
1694 			buffer_info = &rx_ring->buffer_info[l];
1695 
1696 			dma_sync_single_for_cpu(&pdev->dev,
1697 						buffer_info->dma, 2048,
1698 						DMA_FROM_DEVICE);
1699 
1700 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1701 							   1024);
1702 			if (!ret_val)
1703 				good_cnt++;
1704 			l++;
1705 			if (l == rx_ring->count)
1706 				l = 0;
1707 			/* time + 20 msecs (200 msecs on 2.4) is more than
1708 			 * enough time to complete the receives, if it's
1709 			 * exceeded, break and error off
1710 			 */
1711 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1712 		if (good_cnt != 64) {
1713 			ret_val = 13;	/* ret_val is the same as mis-compare */
1714 			break;
1715 		}
1716 		if (time_after(jiffies, time + 20)) {
1717 			ret_val = 14;	/* error code for time out error */
1718 			break;
1719 		}
1720 	}
1721 	return ret_val;
1722 }
1723 
1724 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1725 {
1726 	struct e1000_hw *hw = &adapter->hw;
1727 
1728 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1729 	if (hw->phy.ops.check_reset_block &&
1730 	    hw->phy.ops.check_reset_block(hw)) {
1731 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1732 		*data = 0;
1733 		goto out;
1734 	}
1735 
1736 	*data = e1000_setup_desc_rings(adapter);
1737 	if (*data)
1738 		goto out;
1739 
1740 	*data = e1000_setup_loopback_test(adapter);
1741 	if (*data)
1742 		goto err_loopback;
1743 
1744 	*data = e1000_run_loopback_test(adapter);
1745 	e1000_loopback_cleanup(adapter);
1746 
1747 err_loopback:
1748 	e1000_free_desc_rings(adapter);
1749 out:
1750 	return *data;
1751 }
1752 
1753 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1754 {
1755 	struct e1000_hw *hw = &adapter->hw;
1756 
1757 	*data = 0;
1758 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1759 		int i = 0;
1760 
1761 		hw->mac.serdes_has_link = false;
1762 
1763 		/* On some blade server designs, link establishment
1764 		 * could take as long as 2-3 minutes
1765 		 */
1766 		do {
1767 			hw->mac.ops.check_for_link(hw);
1768 			if (hw->mac.serdes_has_link)
1769 				return *data;
1770 			msleep(20);
1771 		} while (i++ < 3750);
1772 
1773 		*data = 1;
1774 	} else {
1775 		hw->mac.ops.check_for_link(hw);
1776 		if (hw->mac.autoneg)
1777 			/* On some Phy/switch combinations, link establishment
1778 			 * can take a few seconds more than expected.
1779 			 */
1780 			msleep_interruptible(5000);
1781 
1782 		if (!(er32(STATUS) & E1000_STATUS_LU))
1783 			*data = 1;
1784 	}
1785 	return *data;
1786 }
1787 
1788 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1789 				 int sset)
1790 {
1791 	switch (sset) {
1792 	case ETH_SS_TEST:
1793 		return E1000_TEST_LEN;
1794 	case ETH_SS_STATS:
1795 		return E1000_STATS_LEN;
1796 	default:
1797 		return -EOPNOTSUPP;
1798 	}
1799 }
1800 
1801 static void e1000_diag_test(struct net_device *netdev,
1802 			    struct ethtool_test *eth_test, u64 *data)
1803 {
1804 	struct e1000_adapter *adapter = netdev_priv(netdev);
1805 	u16 autoneg_advertised;
1806 	u8 forced_speed_duplex;
1807 	u8 autoneg;
1808 	bool if_running = netif_running(netdev);
1809 
1810 	pm_runtime_get_sync(netdev->dev.parent);
1811 
1812 	set_bit(__E1000_TESTING, &adapter->state);
1813 
1814 	if (!if_running) {
1815 		/* Get control of and reset hardware */
1816 		if (adapter->flags & FLAG_HAS_AMT)
1817 			e1000e_get_hw_control(adapter);
1818 
1819 		e1000e_power_up_phy(adapter);
1820 
1821 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1822 		e1000e_reset(adapter);
1823 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1824 	}
1825 
1826 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1827 		/* Offline tests */
1828 
1829 		/* save speed, duplex, autoneg settings */
1830 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1831 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1832 		autoneg = adapter->hw.mac.autoneg;
1833 
1834 		e_info("offline testing starting\n");
1835 
1836 		if (if_running)
1837 			/* indicate we're in test mode */
1838 			e1000e_close(netdev);
1839 
1840 		if (e1000_reg_test(adapter, &data[0]))
1841 			eth_test->flags |= ETH_TEST_FL_FAILED;
1842 
1843 		e1000e_reset(adapter);
1844 		if (e1000_eeprom_test(adapter, &data[1]))
1845 			eth_test->flags |= ETH_TEST_FL_FAILED;
1846 
1847 		e1000e_reset(adapter);
1848 		if (e1000_intr_test(adapter, &data[2]))
1849 			eth_test->flags |= ETH_TEST_FL_FAILED;
1850 
1851 		e1000e_reset(adapter);
1852 		if (e1000_loopback_test(adapter, &data[3]))
1853 			eth_test->flags |= ETH_TEST_FL_FAILED;
1854 
1855 		/* force this routine to wait until autoneg complete/timeout */
1856 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1857 		e1000e_reset(adapter);
1858 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1859 
1860 		if (e1000_link_test(adapter, &data[4]))
1861 			eth_test->flags |= ETH_TEST_FL_FAILED;
1862 
1863 		/* restore speed, duplex, autoneg settings */
1864 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1865 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1866 		adapter->hw.mac.autoneg = autoneg;
1867 		e1000e_reset(adapter);
1868 
1869 		clear_bit(__E1000_TESTING, &adapter->state);
1870 		if (if_running)
1871 			e1000e_open(netdev);
1872 	} else {
1873 		/* Online tests */
1874 
1875 		e_info("online testing starting\n");
1876 
1877 		/* register, eeprom, intr and loopback tests not run online */
1878 		data[0] = 0;
1879 		data[1] = 0;
1880 		data[2] = 0;
1881 		data[3] = 0;
1882 
1883 		if (e1000_link_test(adapter, &data[4]))
1884 			eth_test->flags |= ETH_TEST_FL_FAILED;
1885 
1886 		clear_bit(__E1000_TESTING, &adapter->state);
1887 	}
1888 
1889 	if (!if_running) {
1890 		e1000e_reset(adapter);
1891 
1892 		if (adapter->flags & FLAG_HAS_AMT)
1893 			e1000e_release_hw_control(adapter);
1894 	}
1895 
1896 	msleep_interruptible(4 * 1000);
1897 
1898 	pm_runtime_put_sync(netdev->dev.parent);
1899 }
1900 
1901 static void e1000_get_wol(struct net_device *netdev,
1902 			  struct ethtool_wolinfo *wol)
1903 {
1904 	struct e1000_adapter *adapter = netdev_priv(netdev);
1905 
1906 	wol->supported = 0;
1907 	wol->wolopts = 0;
1908 
1909 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1910 	    !device_can_wakeup(&adapter->pdev->dev))
1911 		return;
1912 
1913 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1914 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1915 
1916 	/* apply any specific unsupported masks here */
1917 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1918 		wol->supported &= ~WAKE_UCAST;
1919 
1920 		if (adapter->wol & E1000_WUFC_EX)
1921 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1922 	}
1923 
1924 	if (adapter->wol & E1000_WUFC_EX)
1925 		wol->wolopts |= WAKE_UCAST;
1926 	if (adapter->wol & E1000_WUFC_MC)
1927 		wol->wolopts |= WAKE_MCAST;
1928 	if (adapter->wol & E1000_WUFC_BC)
1929 		wol->wolopts |= WAKE_BCAST;
1930 	if (adapter->wol & E1000_WUFC_MAG)
1931 		wol->wolopts |= WAKE_MAGIC;
1932 	if (adapter->wol & E1000_WUFC_LNKC)
1933 		wol->wolopts |= WAKE_PHY;
1934 }
1935 
1936 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1937 {
1938 	struct e1000_adapter *adapter = netdev_priv(netdev);
1939 
1940 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1941 	    !device_can_wakeup(&adapter->pdev->dev) ||
1942 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1943 			      WAKE_MAGIC | WAKE_PHY)))
1944 		return -EOPNOTSUPP;
1945 
1946 	/* these settings will always override what we currently have */
1947 	adapter->wol = 0;
1948 
1949 	if (wol->wolopts & WAKE_UCAST)
1950 		adapter->wol |= E1000_WUFC_EX;
1951 	if (wol->wolopts & WAKE_MCAST)
1952 		adapter->wol |= E1000_WUFC_MC;
1953 	if (wol->wolopts & WAKE_BCAST)
1954 		adapter->wol |= E1000_WUFC_BC;
1955 	if (wol->wolopts & WAKE_MAGIC)
1956 		adapter->wol |= E1000_WUFC_MAG;
1957 	if (wol->wolopts & WAKE_PHY)
1958 		adapter->wol |= E1000_WUFC_LNKC;
1959 
1960 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1961 
1962 	return 0;
1963 }
1964 
1965 static int e1000_set_phys_id(struct net_device *netdev,
1966 			     enum ethtool_phys_id_state state)
1967 {
1968 	struct e1000_adapter *adapter = netdev_priv(netdev);
1969 	struct e1000_hw *hw = &adapter->hw;
1970 
1971 	switch (state) {
1972 	case ETHTOOL_ID_ACTIVE:
1973 		pm_runtime_get_sync(netdev->dev.parent);
1974 
1975 		if (!hw->mac.ops.blink_led)
1976 			return 2;	/* cycle on/off twice per second */
1977 
1978 		hw->mac.ops.blink_led(hw);
1979 		break;
1980 
1981 	case ETHTOOL_ID_INACTIVE:
1982 		if (hw->phy.type == e1000_phy_ife)
1983 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1984 		hw->mac.ops.led_off(hw);
1985 		hw->mac.ops.cleanup_led(hw);
1986 		pm_runtime_put_sync(netdev->dev.parent);
1987 		break;
1988 
1989 	case ETHTOOL_ID_ON:
1990 		hw->mac.ops.led_on(hw);
1991 		break;
1992 
1993 	case ETHTOOL_ID_OFF:
1994 		hw->mac.ops.led_off(hw);
1995 		break;
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 static int e1000_get_coalesce(struct net_device *netdev,
2002 			      struct ethtool_coalesce *ec)
2003 {
2004 	struct e1000_adapter *adapter = netdev_priv(netdev);
2005 
2006 	if (adapter->itr_setting <= 4)
2007 		ec->rx_coalesce_usecs = adapter->itr_setting;
2008 	else
2009 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2010 
2011 	return 0;
2012 }
2013 
2014 static int e1000_set_coalesce(struct net_device *netdev,
2015 			      struct ethtool_coalesce *ec)
2016 {
2017 	struct e1000_adapter *adapter = netdev_priv(netdev);
2018 
2019 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2020 	    ((ec->rx_coalesce_usecs > 4) &&
2021 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2022 	    (ec->rx_coalesce_usecs == 2))
2023 		return -EINVAL;
2024 
2025 	if (ec->rx_coalesce_usecs == 4) {
2026 		adapter->itr_setting = 4;
2027 		adapter->itr = adapter->itr_setting;
2028 	} else if (ec->rx_coalesce_usecs <= 3) {
2029 		adapter->itr = 20000;
2030 		adapter->itr_setting = ec->rx_coalesce_usecs;
2031 	} else {
2032 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2033 		adapter->itr_setting = adapter->itr & ~3;
2034 	}
2035 
2036 	pm_runtime_get_sync(netdev->dev.parent);
2037 
2038 	if (adapter->itr_setting != 0)
2039 		e1000e_write_itr(adapter, adapter->itr);
2040 	else
2041 		e1000e_write_itr(adapter, 0);
2042 
2043 	pm_runtime_put_sync(netdev->dev.parent);
2044 
2045 	return 0;
2046 }
2047 
2048 static int e1000_nway_reset(struct net_device *netdev)
2049 {
2050 	struct e1000_adapter *adapter = netdev_priv(netdev);
2051 
2052 	if (!netif_running(netdev))
2053 		return -EAGAIN;
2054 
2055 	if (!adapter->hw.mac.autoneg)
2056 		return -EINVAL;
2057 
2058 	pm_runtime_get_sync(netdev->dev.parent);
2059 	e1000e_reinit_locked(adapter);
2060 	pm_runtime_put_sync(netdev->dev.parent);
2061 
2062 	return 0;
2063 }
2064 
2065 static void e1000_get_ethtool_stats(struct net_device *netdev,
2066 				    struct ethtool_stats __always_unused *stats,
2067 				    u64 *data)
2068 {
2069 	struct e1000_adapter *adapter = netdev_priv(netdev);
2070 	struct rtnl_link_stats64 net_stats;
2071 	int i;
2072 	char *p = NULL;
2073 
2074 	pm_runtime_get_sync(netdev->dev.parent);
2075 
2076 	dev_get_stats(netdev, &net_stats);
2077 
2078 	pm_runtime_put_sync(netdev->dev.parent);
2079 
2080 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2081 		switch (e1000_gstrings_stats[i].type) {
2082 		case NETDEV_STATS:
2083 			p = (char *)&net_stats +
2084 			    e1000_gstrings_stats[i].stat_offset;
2085 			break;
2086 		case E1000_STATS:
2087 			p = (char *)adapter +
2088 			    e1000_gstrings_stats[i].stat_offset;
2089 			break;
2090 		default:
2091 			data[i] = 0;
2092 			continue;
2093 		}
2094 
2095 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2096 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2097 	}
2098 }
2099 
2100 static void e1000_get_strings(struct net_device __always_unused *netdev,
2101 			      u32 stringset, u8 *data)
2102 {
2103 	u8 *p = data;
2104 	int i;
2105 
2106 	switch (stringset) {
2107 	case ETH_SS_TEST:
2108 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2109 		break;
2110 	case ETH_SS_STATS:
2111 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2112 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2113 			       ETH_GSTRING_LEN);
2114 			p += ETH_GSTRING_LEN;
2115 		}
2116 		break;
2117 	}
2118 }
2119 
2120 static int e1000_get_rxnfc(struct net_device *netdev,
2121 			   struct ethtool_rxnfc *info,
2122 			   u32 __always_unused *rule_locs)
2123 {
2124 	info->data = 0;
2125 
2126 	switch (info->cmd) {
2127 	case ETHTOOL_GRXFH: {
2128 		struct e1000_adapter *adapter = netdev_priv(netdev);
2129 		struct e1000_hw *hw = &adapter->hw;
2130 		u32 mrqc;
2131 
2132 		pm_runtime_get_sync(netdev->dev.parent);
2133 		mrqc = er32(MRQC);
2134 		pm_runtime_put_sync(netdev->dev.parent);
2135 
2136 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2137 			return 0;
2138 
2139 		switch (info->flow_type) {
2140 		case TCP_V4_FLOW:
2141 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2142 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2143 			/* fall through */
2144 		case UDP_V4_FLOW:
2145 		case SCTP_V4_FLOW:
2146 		case AH_ESP_V4_FLOW:
2147 		case IPV4_FLOW:
2148 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2149 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2150 			break;
2151 		case TCP_V6_FLOW:
2152 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2153 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2154 			/* fall through */
2155 		case UDP_V6_FLOW:
2156 		case SCTP_V6_FLOW:
2157 		case AH_ESP_V6_FLOW:
2158 		case IPV6_FLOW:
2159 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2160 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2161 			break;
2162 		default:
2163 			break;
2164 		}
2165 		return 0;
2166 	}
2167 	default:
2168 		return -EOPNOTSUPP;
2169 	}
2170 }
2171 
2172 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2173 {
2174 	struct e1000_adapter *adapter = netdev_priv(netdev);
2175 	struct e1000_hw *hw = &adapter->hw;
2176 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2177 	u32 ret_val;
2178 
2179 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2180 		return -EOPNOTSUPP;
2181 
2182 	switch (hw->phy.type) {
2183 	case e1000_phy_82579:
2184 		cap_addr = I82579_EEE_CAPABILITY;
2185 		lpa_addr = I82579_EEE_LP_ABILITY;
2186 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2187 		break;
2188 	case e1000_phy_i217:
2189 		cap_addr = I217_EEE_CAPABILITY;
2190 		lpa_addr = I217_EEE_LP_ABILITY;
2191 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2192 		break;
2193 	default:
2194 		return -EOPNOTSUPP;
2195 	}
2196 
2197 	pm_runtime_get_sync(netdev->dev.parent);
2198 
2199 	ret_val = hw->phy.ops.acquire(hw);
2200 	if (ret_val) {
2201 		pm_runtime_put_sync(netdev->dev.parent);
2202 		return -EBUSY;
2203 	}
2204 
2205 	/* EEE Capability */
2206 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2207 	if (ret_val)
2208 		goto release;
2209 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2210 
2211 	/* EEE Advertised */
2212 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2213 
2214 	/* EEE Link Partner Advertised */
2215 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2216 	if (ret_val)
2217 		goto release;
2218 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2219 
2220 	/* EEE PCS Status */
2221 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2222 	if (ret_val)
2223 		goto release;
2224 	if (hw->phy.type == e1000_phy_82579)
2225 		phy_data <<= 8;
2226 
2227 	/* Result of the EEE auto negotiation - there is no register that
2228 	 * has the status of the EEE negotiation so do a best-guess based
2229 	 * on whether Tx or Rx LPI indications have been received.
2230 	 */
2231 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2232 		edata->eee_active = true;
2233 
2234 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2235 	edata->tx_lpi_enabled = true;
2236 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2237 
2238 release:
2239 	hw->phy.ops.release(hw);
2240 	if (ret_val)
2241 		ret_val = -ENODATA;
2242 
2243 	pm_runtime_put_sync(netdev->dev.parent);
2244 
2245 	return ret_val;
2246 }
2247 
2248 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2249 {
2250 	struct e1000_adapter *adapter = netdev_priv(netdev);
2251 	struct e1000_hw *hw = &adapter->hw;
2252 	struct ethtool_eee eee_curr;
2253 	s32 ret_val;
2254 
2255 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2256 	if (ret_val)
2257 		return ret_val;
2258 
2259 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2260 		e_err("Setting EEE tx-lpi is not supported\n");
2261 		return -EINVAL;
2262 	}
2263 
2264 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2265 		e_err("Setting EEE Tx LPI timer is not supported\n");
2266 		return -EINVAL;
2267 	}
2268 
2269 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2270 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2271 		return -EINVAL;
2272 	}
2273 
2274 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2275 
2276 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2277 
2278 	pm_runtime_get_sync(netdev->dev.parent);
2279 
2280 	/* reset the link */
2281 	if (netif_running(netdev))
2282 		e1000e_reinit_locked(adapter);
2283 	else
2284 		e1000e_reset(adapter);
2285 
2286 	pm_runtime_put_sync(netdev->dev.parent);
2287 
2288 	return 0;
2289 }
2290 
2291 static int e1000e_get_ts_info(struct net_device *netdev,
2292 			      struct ethtool_ts_info *info)
2293 {
2294 	struct e1000_adapter *adapter = netdev_priv(netdev);
2295 
2296 	ethtool_op_get_ts_info(netdev, info);
2297 
2298 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2299 		return 0;
2300 
2301 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2302 				  SOF_TIMESTAMPING_RX_HARDWARE |
2303 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2304 
2305 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2306 
2307 	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2308 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2309 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2310 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2311 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2312 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2313 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2314 			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2315 			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2316 			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2317 			    BIT(HWTSTAMP_FILTER_ALL));
2318 
2319 	if (adapter->ptp_clock)
2320 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2321 
2322 	return 0;
2323 }
2324 
2325 static const struct ethtool_ops e1000_ethtool_ops = {
2326 	.get_drvinfo		= e1000_get_drvinfo,
2327 	.get_regs_len		= e1000_get_regs_len,
2328 	.get_regs		= e1000_get_regs,
2329 	.get_wol		= e1000_get_wol,
2330 	.set_wol		= e1000_set_wol,
2331 	.get_msglevel		= e1000_get_msglevel,
2332 	.set_msglevel		= e1000_set_msglevel,
2333 	.nway_reset		= e1000_nway_reset,
2334 	.get_link		= ethtool_op_get_link,
2335 	.get_eeprom_len		= e1000_get_eeprom_len,
2336 	.get_eeprom		= e1000_get_eeprom,
2337 	.set_eeprom		= e1000_set_eeprom,
2338 	.get_ringparam		= e1000_get_ringparam,
2339 	.set_ringparam		= e1000_set_ringparam,
2340 	.get_pauseparam		= e1000_get_pauseparam,
2341 	.set_pauseparam		= e1000_set_pauseparam,
2342 	.self_test		= e1000_diag_test,
2343 	.get_strings		= e1000_get_strings,
2344 	.set_phys_id		= e1000_set_phys_id,
2345 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2346 	.get_sset_count		= e1000e_get_sset_count,
2347 	.get_coalesce		= e1000_get_coalesce,
2348 	.set_coalesce		= e1000_set_coalesce,
2349 	.get_rxnfc		= e1000_get_rxnfc,
2350 	.get_ts_info		= e1000e_get_ts_info,
2351 	.get_eee		= e1000e_get_eee,
2352 	.set_eee		= e1000e_set_eee,
2353 	.get_link_ksettings	= e1000_get_link_ksettings,
2354 	.set_link_ksettings	= e1000_set_link_ksettings,
2355 };
2356 
2357 void e1000e_set_ethtool_ops(struct net_device *netdev)
2358 {
2359 	netdev->ethtool_ops = &e1000_ethtool_ops;
2360 }
2361