1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2015 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 /* ethtool support for e1000 */ 23 24 #include <linux/netdevice.h> 25 #include <linux/interrupt.h> 26 #include <linux/ethtool.h> 27 #include <linux/pci.h> 28 #include <linux/slab.h> 29 #include <linux/delay.h> 30 #include <linux/vmalloc.h> 31 #include <linux/pm_runtime.h> 32 33 #include "e1000.h" 34 35 enum { NETDEV_STATS, E1000_STATS }; 36 37 struct e1000_stats { 38 char stat_string[ETH_GSTRING_LEN]; 39 int type; 40 int sizeof_stat; 41 int stat_offset; 42 }; 43 44 #define E1000_STAT(str, m) { \ 45 .stat_string = str, \ 46 .type = E1000_STATS, \ 47 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 48 .stat_offset = offsetof(struct e1000_adapter, m) } 49 #define E1000_NETDEV_STAT(str, m) { \ 50 .stat_string = str, \ 51 .type = NETDEV_STATS, \ 52 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 53 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 54 55 static const struct e1000_stats e1000_gstrings_stats[] = { 56 E1000_STAT("rx_packets", stats.gprc), 57 E1000_STAT("tx_packets", stats.gptc), 58 E1000_STAT("rx_bytes", stats.gorc), 59 E1000_STAT("tx_bytes", stats.gotc), 60 E1000_STAT("rx_broadcast", stats.bprc), 61 E1000_STAT("tx_broadcast", stats.bptc), 62 E1000_STAT("rx_multicast", stats.mprc), 63 E1000_STAT("tx_multicast", stats.mptc), 64 E1000_NETDEV_STAT("rx_errors", rx_errors), 65 E1000_NETDEV_STAT("tx_errors", tx_errors), 66 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 67 E1000_STAT("multicast", stats.mprc), 68 E1000_STAT("collisions", stats.colc), 69 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 70 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 71 E1000_STAT("rx_crc_errors", stats.crcerrs), 72 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 73 E1000_STAT("rx_no_buffer_count", stats.rnbc), 74 E1000_STAT("rx_missed_errors", stats.mpc), 75 E1000_STAT("tx_aborted_errors", stats.ecol), 76 E1000_STAT("tx_carrier_errors", stats.tncrs), 77 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 78 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 79 E1000_STAT("tx_window_errors", stats.latecol), 80 E1000_STAT("tx_abort_late_coll", stats.latecol), 81 E1000_STAT("tx_deferred_ok", stats.dc), 82 E1000_STAT("tx_single_coll_ok", stats.scc), 83 E1000_STAT("tx_multi_coll_ok", stats.mcc), 84 E1000_STAT("tx_timeout_count", tx_timeout_count), 85 E1000_STAT("tx_restart_queue", restart_queue), 86 E1000_STAT("rx_long_length_errors", stats.roc), 87 E1000_STAT("rx_short_length_errors", stats.ruc), 88 E1000_STAT("rx_align_errors", stats.algnerrc), 89 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 90 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 91 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 92 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 93 E1000_STAT("tx_flow_control_xon", stats.xontxc), 94 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 95 E1000_STAT("rx_csum_offload_good", hw_csum_good), 96 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 97 E1000_STAT("rx_header_split", rx_hdr_split), 98 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 99 E1000_STAT("tx_smbus", stats.mgptc), 100 E1000_STAT("rx_smbus", stats.mgprc), 101 E1000_STAT("dropped_smbus", stats.mgpdc), 102 E1000_STAT("rx_dma_failed", rx_dma_failed), 103 E1000_STAT("tx_dma_failed", tx_dma_failed), 104 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 105 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 106 E1000_STAT("corr_ecc_errors", corr_errors), 107 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 108 }; 109 110 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 113 "Register test (offline)", "Eeprom test (offline)", 114 "Interrupt test (offline)", "Loopback test (offline)", 115 "Link test (on/offline)" 116 }; 117 118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 119 120 static int e1000_get_link_ksettings(struct net_device *netdev, 121 struct ethtool_link_ksettings *cmd) 122 { 123 struct e1000_adapter *adapter = netdev_priv(netdev); 124 struct e1000_hw *hw = &adapter->hw; 125 u32 speed, supported, advertising; 126 127 if (hw->phy.media_type == e1000_media_type_copper) { 128 supported = (SUPPORTED_10baseT_Half | 129 SUPPORTED_10baseT_Full | 130 SUPPORTED_100baseT_Half | 131 SUPPORTED_100baseT_Full | 132 SUPPORTED_1000baseT_Full | 133 SUPPORTED_Autoneg | 134 SUPPORTED_TP); 135 if (hw->phy.type == e1000_phy_ife) 136 supported &= ~SUPPORTED_1000baseT_Full; 137 advertising = ADVERTISED_TP; 138 139 if (hw->mac.autoneg == 1) { 140 advertising |= ADVERTISED_Autoneg; 141 /* the e1000 autoneg seems to match ethtool nicely */ 142 advertising |= hw->phy.autoneg_advertised; 143 } 144 145 cmd->base.port = PORT_TP; 146 cmd->base.phy_address = hw->phy.addr; 147 } else { 148 supported = (SUPPORTED_1000baseT_Full | 149 SUPPORTED_FIBRE | 150 SUPPORTED_Autoneg); 151 152 advertising = (ADVERTISED_1000baseT_Full | 153 ADVERTISED_FIBRE | 154 ADVERTISED_Autoneg); 155 156 cmd->base.port = PORT_FIBRE; 157 } 158 159 speed = SPEED_UNKNOWN; 160 cmd->base.duplex = DUPLEX_UNKNOWN; 161 162 if (netif_running(netdev)) { 163 if (netif_carrier_ok(netdev)) { 164 speed = adapter->link_speed; 165 cmd->base.duplex = adapter->link_duplex - 1; 166 } 167 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 168 u32 status = er32(STATUS); 169 170 if (status & E1000_STATUS_LU) { 171 if (status & E1000_STATUS_SPEED_1000) 172 speed = SPEED_1000; 173 else if (status & E1000_STATUS_SPEED_100) 174 speed = SPEED_100; 175 else 176 speed = SPEED_10; 177 178 if (status & E1000_STATUS_FD) 179 cmd->base.duplex = DUPLEX_FULL; 180 else 181 cmd->base.duplex = DUPLEX_HALF; 182 } 183 } 184 185 cmd->base.speed = speed; 186 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 187 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 188 189 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 190 if ((hw->phy.media_type == e1000_media_type_copper) && 191 netif_carrier_ok(netdev)) 192 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 193 ETH_TP_MDI_X : ETH_TP_MDI; 194 else 195 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 196 197 if (hw->phy.mdix == AUTO_ALL_MODES) 198 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 199 else 200 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 201 202 if (hw->phy.media_type != e1000_media_type_copper) 203 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 204 205 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 206 supported); 207 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 208 advertising); 209 210 return 0; 211 } 212 213 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 214 { 215 struct e1000_mac_info *mac = &adapter->hw.mac; 216 217 mac->autoneg = 0; 218 219 /* Make sure dplx is at most 1 bit and lsb of speed is not set 220 * for the switch() below to work 221 */ 222 if ((spd & 1) || (dplx & ~1)) 223 goto err_inval; 224 225 /* Fiber NICs only allow 1000 gbps Full duplex */ 226 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 227 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 228 goto err_inval; 229 } 230 231 switch (spd + dplx) { 232 case SPEED_10 + DUPLEX_HALF: 233 mac->forced_speed_duplex = ADVERTISE_10_HALF; 234 break; 235 case SPEED_10 + DUPLEX_FULL: 236 mac->forced_speed_duplex = ADVERTISE_10_FULL; 237 break; 238 case SPEED_100 + DUPLEX_HALF: 239 mac->forced_speed_duplex = ADVERTISE_100_HALF; 240 break; 241 case SPEED_100 + DUPLEX_FULL: 242 mac->forced_speed_duplex = ADVERTISE_100_FULL; 243 break; 244 case SPEED_1000 + DUPLEX_FULL: 245 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 246 mac->autoneg = 1; 247 adapter->hw.phy.autoneg_advertised = 248 ADVERTISE_1000_FULL; 249 } else { 250 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 251 } 252 break; 253 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 254 default: 255 goto err_inval; 256 } 257 258 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 259 adapter->hw.phy.mdix = AUTO_ALL_MODES; 260 261 return 0; 262 263 err_inval: 264 e_err("Unsupported Speed/Duplex configuration\n"); 265 return -EINVAL; 266 } 267 268 static int e1000_set_link_ksettings(struct net_device *netdev, 269 const struct ethtool_link_ksettings *cmd) 270 { 271 struct e1000_adapter *adapter = netdev_priv(netdev); 272 struct e1000_hw *hw = &adapter->hw; 273 int ret_val = 0; 274 u32 advertising; 275 276 ethtool_convert_link_mode_to_legacy_u32(&advertising, 277 cmd->link_modes.advertising); 278 279 pm_runtime_get_sync(netdev->dev.parent); 280 281 /* When SoL/IDER sessions are active, autoneg/speed/duplex 282 * cannot be changed 283 */ 284 if (hw->phy.ops.check_reset_block && 285 hw->phy.ops.check_reset_block(hw)) { 286 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 287 ret_val = -EINVAL; 288 goto out; 289 } 290 291 /* MDI setting is only allowed when autoneg enabled because 292 * some hardware doesn't allow MDI setting when speed or 293 * duplex is forced. 294 */ 295 if (cmd->base.eth_tp_mdix_ctrl) { 296 if (hw->phy.media_type != e1000_media_type_copper) { 297 ret_val = -EOPNOTSUPP; 298 goto out; 299 } 300 301 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 302 (cmd->base.autoneg != AUTONEG_ENABLE)) { 303 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 304 ret_val = -EINVAL; 305 goto out; 306 } 307 } 308 309 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 310 usleep_range(1000, 2000); 311 312 if (cmd->base.autoneg == AUTONEG_ENABLE) { 313 hw->mac.autoneg = 1; 314 if (hw->phy.media_type == e1000_media_type_fiber) 315 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 316 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 317 else 318 hw->phy.autoneg_advertised = advertising | 319 ADVERTISED_TP | ADVERTISED_Autoneg; 320 advertising = hw->phy.autoneg_advertised; 321 if (adapter->fc_autoneg) 322 hw->fc.requested_mode = e1000_fc_default; 323 } else { 324 u32 speed = cmd->base.speed; 325 /* calling this overrides forced MDI setting */ 326 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 327 ret_val = -EINVAL; 328 goto out; 329 } 330 } 331 332 /* MDI-X => 2; MDI => 1; Auto => 3 */ 333 if (cmd->base.eth_tp_mdix_ctrl) { 334 /* fix up the value for auto (3 => 0) as zero is mapped 335 * internally to auto 336 */ 337 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 338 hw->phy.mdix = AUTO_ALL_MODES; 339 else 340 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 341 } 342 343 /* reset the link */ 344 if (netif_running(adapter->netdev)) { 345 e1000e_down(adapter, true); 346 e1000e_up(adapter); 347 } else { 348 e1000e_reset(adapter); 349 } 350 351 out: 352 pm_runtime_put_sync(netdev->dev.parent); 353 clear_bit(__E1000_RESETTING, &adapter->state); 354 return ret_val; 355 } 356 357 static void e1000_get_pauseparam(struct net_device *netdev, 358 struct ethtool_pauseparam *pause) 359 { 360 struct e1000_adapter *adapter = netdev_priv(netdev); 361 struct e1000_hw *hw = &adapter->hw; 362 363 pause->autoneg = 364 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 365 366 if (hw->fc.current_mode == e1000_fc_rx_pause) { 367 pause->rx_pause = 1; 368 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 369 pause->tx_pause = 1; 370 } else if (hw->fc.current_mode == e1000_fc_full) { 371 pause->rx_pause = 1; 372 pause->tx_pause = 1; 373 } 374 } 375 376 static int e1000_set_pauseparam(struct net_device *netdev, 377 struct ethtool_pauseparam *pause) 378 { 379 struct e1000_adapter *adapter = netdev_priv(netdev); 380 struct e1000_hw *hw = &adapter->hw; 381 int retval = 0; 382 383 adapter->fc_autoneg = pause->autoneg; 384 385 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 386 usleep_range(1000, 2000); 387 388 pm_runtime_get_sync(netdev->dev.parent); 389 390 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 391 hw->fc.requested_mode = e1000_fc_default; 392 if (netif_running(adapter->netdev)) { 393 e1000e_down(adapter, true); 394 e1000e_up(adapter); 395 } else { 396 e1000e_reset(adapter); 397 } 398 } else { 399 if (pause->rx_pause && pause->tx_pause) 400 hw->fc.requested_mode = e1000_fc_full; 401 else if (pause->rx_pause && !pause->tx_pause) 402 hw->fc.requested_mode = e1000_fc_rx_pause; 403 else if (!pause->rx_pause && pause->tx_pause) 404 hw->fc.requested_mode = e1000_fc_tx_pause; 405 else if (!pause->rx_pause && !pause->tx_pause) 406 hw->fc.requested_mode = e1000_fc_none; 407 408 hw->fc.current_mode = hw->fc.requested_mode; 409 410 if (hw->phy.media_type == e1000_media_type_fiber) { 411 retval = hw->mac.ops.setup_link(hw); 412 /* implicit goto out */ 413 } else { 414 retval = e1000e_force_mac_fc(hw); 415 if (retval) 416 goto out; 417 e1000e_set_fc_watermarks(hw); 418 } 419 } 420 421 out: 422 pm_runtime_put_sync(netdev->dev.parent); 423 clear_bit(__E1000_RESETTING, &adapter->state); 424 return retval; 425 } 426 427 static u32 e1000_get_msglevel(struct net_device *netdev) 428 { 429 struct e1000_adapter *adapter = netdev_priv(netdev); 430 return adapter->msg_enable; 431 } 432 433 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 434 { 435 struct e1000_adapter *adapter = netdev_priv(netdev); 436 adapter->msg_enable = data; 437 } 438 439 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 440 { 441 #define E1000_REGS_LEN 32 /* overestimate */ 442 return E1000_REGS_LEN * sizeof(u32); 443 } 444 445 static void e1000_get_regs(struct net_device *netdev, 446 struct ethtool_regs *regs, void *p) 447 { 448 struct e1000_adapter *adapter = netdev_priv(netdev); 449 struct e1000_hw *hw = &adapter->hw; 450 u32 *regs_buff = p; 451 u16 phy_data; 452 453 pm_runtime_get_sync(netdev->dev.parent); 454 455 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 456 457 regs->version = (1u << 24) | 458 (adapter->pdev->revision << 16) | 459 adapter->pdev->device; 460 461 regs_buff[0] = er32(CTRL); 462 regs_buff[1] = er32(STATUS); 463 464 regs_buff[2] = er32(RCTL); 465 regs_buff[3] = er32(RDLEN(0)); 466 regs_buff[4] = er32(RDH(0)); 467 regs_buff[5] = er32(RDT(0)); 468 regs_buff[6] = er32(RDTR); 469 470 regs_buff[7] = er32(TCTL); 471 regs_buff[8] = er32(TDLEN(0)); 472 regs_buff[9] = er32(TDH(0)); 473 regs_buff[10] = er32(TDT(0)); 474 regs_buff[11] = er32(TIDV); 475 476 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 477 478 /* ethtool doesn't use anything past this point, so all this 479 * code is likely legacy junk for apps that may or may not exist 480 */ 481 if (hw->phy.type == e1000_phy_m88) { 482 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 483 regs_buff[13] = (u32)phy_data; /* cable length */ 484 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 485 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 486 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 487 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 488 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 489 regs_buff[18] = regs_buff[13]; /* cable polarity */ 490 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 491 regs_buff[20] = regs_buff[17]; /* polarity correction */ 492 /* phy receive errors */ 493 regs_buff[22] = adapter->phy_stats.receive_errors; 494 regs_buff[23] = regs_buff[13]; /* mdix mode */ 495 } 496 regs_buff[21] = 0; /* was idle_errors */ 497 e1e_rphy(hw, MII_STAT1000, &phy_data); 498 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 499 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 500 501 pm_runtime_put_sync(netdev->dev.parent); 502 } 503 504 static int e1000_get_eeprom_len(struct net_device *netdev) 505 { 506 struct e1000_adapter *adapter = netdev_priv(netdev); 507 return adapter->hw.nvm.word_size * 2; 508 } 509 510 static int e1000_get_eeprom(struct net_device *netdev, 511 struct ethtool_eeprom *eeprom, u8 *bytes) 512 { 513 struct e1000_adapter *adapter = netdev_priv(netdev); 514 struct e1000_hw *hw = &adapter->hw; 515 u16 *eeprom_buff; 516 int first_word; 517 int last_word; 518 int ret_val = 0; 519 u16 i; 520 521 if (eeprom->len == 0) 522 return -EINVAL; 523 524 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 525 526 first_word = eeprom->offset >> 1; 527 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 528 529 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), 530 GFP_KERNEL); 531 if (!eeprom_buff) 532 return -ENOMEM; 533 534 pm_runtime_get_sync(netdev->dev.parent); 535 536 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 537 ret_val = e1000_read_nvm(hw, first_word, 538 last_word - first_word + 1, 539 eeprom_buff); 540 } else { 541 for (i = 0; i < last_word - first_word + 1; i++) { 542 ret_val = e1000_read_nvm(hw, first_word + i, 1, 543 &eeprom_buff[i]); 544 if (ret_val) 545 break; 546 } 547 } 548 549 pm_runtime_put_sync(netdev->dev.parent); 550 551 if (ret_val) { 552 /* a read error occurred, throw away the result */ 553 memset(eeprom_buff, 0xff, sizeof(u16) * 554 (last_word - first_word + 1)); 555 } else { 556 /* Device's eeprom is always little-endian, word addressable */ 557 for (i = 0; i < last_word - first_word + 1; i++) 558 le16_to_cpus(&eeprom_buff[i]); 559 } 560 561 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 562 kfree(eeprom_buff); 563 564 return ret_val; 565 } 566 567 static int e1000_set_eeprom(struct net_device *netdev, 568 struct ethtool_eeprom *eeprom, u8 *bytes) 569 { 570 struct e1000_adapter *adapter = netdev_priv(netdev); 571 struct e1000_hw *hw = &adapter->hw; 572 u16 *eeprom_buff; 573 void *ptr; 574 int max_len; 575 int first_word; 576 int last_word; 577 int ret_val = 0; 578 u16 i; 579 580 if (eeprom->len == 0) 581 return -EOPNOTSUPP; 582 583 if (eeprom->magic != 584 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 585 return -EFAULT; 586 587 if (adapter->flags & FLAG_READ_ONLY_NVM) 588 return -EINVAL; 589 590 max_len = hw->nvm.word_size * 2; 591 592 first_word = eeprom->offset >> 1; 593 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 594 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 595 if (!eeprom_buff) 596 return -ENOMEM; 597 598 ptr = (void *)eeprom_buff; 599 600 pm_runtime_get_sync(netdev->dev.parent); 601 602 if (eeprom->offset & 1) { 603 /* need read/modify/write of first changed EEPROM word */ 604 /* only the second byte of the word is being modified */ 605 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 606 ptr++; 607 } 608 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 609 /* need read/modify/write of last changed EEPROM word */ 610 /* only the first byte of the word is being modified */ 611 ret_val = e1000_read_nvm(hw, last_word, 1, 612 &eeprom_buff[last_word - first_word]); 613 614 if (ret_val) 615 goto out; 616 617 /* Device's eeprom is always little-endian, word addressable */ 618 for (i = 0; i < last_word - first_word + 1; i++) 619 le16_to_cpus(&eeprom_buff[i]); 620 621 memcpy(ptr, bytes, eeprom->len); 622 623 for (i = 0; i < last_word - first_word + 1; i++) 624 cpu_to_le16s(&eeprom_buff[i]); 625 626 ret_val = e1000_write_nvm(hw, first_word, 627 last_word - first_word + 1, eeprom_buff); 628 629 if (ret_val) 630 goto out; 631 632 /* Update the checksum over the first part of the EEPROM if needed 633 * and flush shadow RAM for applicable controllers 634 */ 635 if ((first_word <= NVM_CHECKSUM_REG) || 636 (hw->mac.type == e1000_82583) || 637 (hw->mac.type == e1000_82574) || 638 (hw->mac.type == e1000_82573)) 639 ret_val = e1000e_update_nvm_checksum(hw); 640 641 out: 642 pm_runtime_put_sync(netdev->dev.parent); 643 kfree(eeprom_buff); 644 return ret_val; 645 } 646 647 static void e1000_get_drvinfo(struct net_device *netdev, 648 struct ethtool_drvinfo *drvinfo) 649 { 650 struct e1000_adapter *adapter = netdev_priv(netdev); 651 652 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 653 strlcpy(drvinfo->version, e1000e_driver_version, 654 sizeof(drvinfo->version)); 655 656 /* EEPROM image version # is reported as firmware version # for 657 * PCI-E controllers 658 */ 659 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 660 "%d.%d-%d", 661 (adapter->eeprom_vers & 0xF000) >> 12, 662 (adapter->eeprom_vers & 0x0FF0) >> 4, 663 (adapter->eeprom_vers & 0x000F)); 664 665 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 666 sizeof(drvinfo->bus_info)); 667 } 668 669 static void e1000_get_ringparam(struct net_device *netdev, 670 struct ethtool_ringparam *ring) 671 { 672 struct e1000_adapter *adapter = netdev_priv(netdev); 673 674 ring->rx_max_pending = E1000_MAX_RXD; 675 ring->tx_max_pending = E1000_MAX_TXD; 676 ring->rx_pending = adapter->rx_ring_count; 677 ring->tx_pending = adapter->tx_ring_count; 678 } 679 680 static int e1000_set_ringparam(struct net_device *netdev, 681 struct ethtool_ringparam *ring) 682 { 683 struct e1000_adapter *adapter = netdev_priv(netdev); 684 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 685 int err = 0, size = sizeof(struct e1000_ring); 686 bool set_tx = false, set_rx = false; 687 u16 new_rx_count, new_tx_count; 688 689 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 690 return -EINVAL; 691 692 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 693 E1000_MAX_RXD); 694 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 695 696 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 697 E1000_MAX_TXD); 698 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 699 700 if ((new_tx_count == adapter->tx_ring_count) && 701 (new_rx_count == adapter->rx_ring_count)) 702 /* nothing to do */ 703 return 0; 704 705 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 706 usleep_range(1000, 2000); 707 708 if (!netif_running(adapter->netdev)) { 709 /* Set counts now and allocate resources during open() */ 710 adapter->tx_ring->count = new_tx_count; 711 adapter->rx_ring->count = new_rx_count; 712 adapter->tx_ring_count = new_tx_count; 713 adapter->rx_ring_count = new_rx_count; 714 goto clear_reset; 715 } 716 717 set_tx = (new_tx_count != adapter->tx_ring_count); 718 set_rx = (new_rx_count != adapter->rx_ring_count); 719 720 /* Allocate temporary storage for ring updates */ 721 if (set_tx) { 722 temp_tx = vmalloc(size); 723 if (!temp_tx) { 724 err = -ENOMEM; 725 goto free_temp; 726 } 727 } 728 if (set_rx) { 729 temp_rx = vmalloc(size); 730 if (!temp_rx) { 731 err = -ENOMEM; 732 goto free_temp; 733 } 734 } 735 736 pm_runtime_get_sync(netdev->dev.parent); 737 738 e1000e_down(adapter, true); 739 740 /* We can't just free everything and then setup again, because the 741 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 742 * structs. First, attempt to allocate new resources... 743 */ 744 if (set_tx) { 745 memcpy(temp_tx, adapter->tx_ring, size); 746 temp_tx->count = new_tx_count; 747 err = e1000e_setup_tx_resources(temp_tx); 748 if (err) 749 goto err_setup; 750 } 751 if (set_rx) { 752 memcpy(temp_rx, adapter->rx_ring, size); 753 temp_rx->count = new_rx_count; 754 err = e1000e_setup_rx_resources(temp_rx); 755 if (err) 756 goto err_setup_rx; 757 } 758 759 /* ...then free the old resources and copy back any new ring data */ 760 if (set_tx) { 761 e1000e_free_tx_resources(adapter->tx_ring); 762 memcpy(adapter->tx_ring, temp_tx, size); 763 adapter->tx_ring_count = new_tx_count; 764 } 765 if (set_rx) { 766 e1000e_free_rx_resources(adapter->rx_ring); 767 memcpy(adapter->rx_ring, temp_rx, size); 768 adapter->rx_ring_count = new_rx_count; 769 } 770 771 err_setup_rx: 772 if (err && set_tx) 773 e1000e_free_tx_resources(temp_tx); 774 err_setup: 775 e1000e_up(adapter); 776 pm_runtime_put_sync(netdev->dev.parent); 777 free_temp: 778 vfree(temp_tx); 779 vfree(temp_rx); 780 clear_reset: 781 clear_bit(__E1000_RESETTING, &adapter->state); 782 return err; 783 } 784 785 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 786 int reg, int offset, u32 mask, u32 write) 787 { 788 u32 pat, val; 789 static const u32 test[] = { 790 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 791 }; 792 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 793 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 794 (test[pat] & write)); 795 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 796 if (val != (test[pat] & write & mask)) { 797 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 798 reg + (offset << 2), val, 799 (test[pat] & write & mask)); 800 *data = reg; 801 return true; 802 } 803 } 804 return false; 805 } 806 807 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 808 int reg, u32 mask, u32 write) 809 { 810 u32 val; 811 812 __ew32(&adapter->hw, reg, write & mask); 813 val = __er32(&adapter->hw, reg); 814 if ((write & mask) != (val & mask)) { 815 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 816 reg, (val & mask), (write & mask)); 817 *data = reg; 818 return true; 819 } 820 return false; 821 } 822 823 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 824 do { \ 825 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 826 return 1; \ 827 } while (0) 828 #define REG_PATTERN_TEST(reg, mask, write) \ 829 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 830 831 #define REG_SET_AND_CHECK(reg, mask, write) \ 832 do { \ 833 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 834 return 1; \ 835 } while (0) 836 837 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 838 { 839 struct e1000_hw *hw = &adapter->hw; 840 struct e1000_mac_info *mac = &adapter->hw.mac; 841 u32 value; 842 u32 before; 843 u32 after; 844 u32 i; 845 u32 toggle; 846 u32 mask; 847 u32 wlock_mac = 0; 848 849 /* The status register is Read Only, so a write should fail. 850 * Some bits that get toggled are ignored. There are several bits 851 * on newer hardware that are r/w. 852 */ 853 switch (mac->type) { 854 case e1000_82571: 855 case e1000_82572: 856 case e1000_80003es2lan: 857 toggle = 0x7FFFF3FF; 858 break; 859 default: 860 toggle = 0x7FFFF033; 861 break; 862 } 863 864 before = er32(STATUS); 865 value = (er32(STATUS) & toggle); 866 ew32(STATUS, toggle); 867 after = er32(STATUS) & toggle; 868 if (value != after) { 869 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 870 after, value); 871 *data = 1; 872 return 1; 873 } 874 /* restore previous status */ 875 ew32(STATUS, before); 876 877 if (!(adapter->flags & FLAG_IS_ICH)) { 878 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 879 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 880 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 881 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 882 } 883 884 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 885 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 886 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 887 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 888 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 889 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 890 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 891 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 892 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 893 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 894 895 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 896 897 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 898 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 899 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 900 901 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 902 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 903 if (!(adapter->flags & FLAG_IS_ICH)) 904 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 905 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 906 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 907 mask = 0x8003FFFF; 908 switch (mac->type) { 909 case e1000_ich10lan: 910 case e1000_pchlan: 911 case e1000_pch2lan: 912 case e1000_pch_lpt: 913 case e1000_pch_spt: 914 mask |= BIT(18); 915 break; 916 default: 917 break; 918 } 919 920 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) 921 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 922 E1000_FWSM_WLOCK_MAC_SHIFT; 923 924 for (i = 0; i < mac->rar_entry_count; i++) { 925 if ((mac->type == e1000_pch_lpt) || 926 (mac->type == e1000_pch_spt)) { 927 /* Cannot test write-protected SHRAL[n] registers */ 928 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 929 continue; 930 931 /* SHRAH[9] different than the others */ 932 if (i == 10) 933 mask |= BIT(30); 934 else 935 mask &= ~BIT(30); 936 } 937 if (mac->type == e1000_pch2lan) { 938 /* SHRAH[0,1,2] different than previous */ 939 if (i == 1) 940 mask &= 0xFFF4FFFF; 941 /* SHRAH[3] different than SHRAH[0,1,2] */ 942 if (i == 4) 943 mask |= BIT(30); 944 /* RAR[1-6] owned by management engine - skipping */ 945 if (i > 0) 946 i += 6; 947 } 948 949 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 950 0xFFFFFFFF); 951 /* reset index to actual value */ 952 if ((mac->type == e1000_pch2lan) && (i > 6)) 953 i -= 6; 954 } 955 956 for (i = 0; i < mac->mta_reg_count; i++) 957 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 958 959 *data = 0; 960 961 return 0; 962 } 963 964 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 965 { 966 u16 temp; 967 u16 checksum = 0; 968 u16 i; 969 970 *data = 0; 971 /* Read and add up the contents of the EEPROM */ 972 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 973 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 974 *data = 1; 975 return *data; 976 } 977 checksum += temp; 978 } 979 980 /* If Checksum is not Correct return error else test passed */ 981 if ((checksum != (u16)NVM_SUM) && !(*data)) 982 *data = 2; 983 984 return *data; 985 } 986 987 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 988 { 989 struct net_device *netdev = (struct net_device *)data; 990 struct e1000_adapter *adapter = netdev_priv(netdev); 991 struct e1000_hw *hw = &adapter->hw; 992 993 adapter->test_icr |= er32(ICR); 994 995 return IRQ_HANDLED; 996 } 997 998 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 999 { 1000 struct net_device *netdev = adapter->netdev; 1001 struct e1000_hw *hw = &adapter->hw; 1002 u32 mask; 1003 u32 shared_int = 1; 1004 u32 irq = adapter->pdev->irq; 1005 int i; 1006 int ret_val = 0; 1007 int int_mode = E1000E_INT_MODE_LEGACY; 1008 1009 *data = 0; 1010 1011 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 1012 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 1013 int_mode = adapter->int_mode; 1014 e1000e_reset_interrupt_capability(adapter); 1015 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1016 e1000e_set_interrupt_capability(adapter); 1017 } 1018 /* Hook up test interrupt handler just for this test */ 1019 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1020 netdev)) { 1021 shared_int = 0; 1022 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1023 netdev)) { 1024 *data = 1; 1025 ret_val = -1; 1026 goto out; 1027 } 1028 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1029 1030 /* Disable all the interrupts */ 1031 ew32(IMC, 0xFFFFFFFF); 1032 e1e_flush(); 1033 usleep_range(10000, 20000); 1034 1035 /* Test each interrupt */ 1036 for (i = 0; i < 10; i++) { 1037 /* Interrupt to test */ 1038 mask = BIT(i); 1039 1040 if (adapter->flags & FLAG_IS_ICH) { 1041 switch (mask) { 1042 case E1000_ICR_RXSEQ: 1043 continue; 1044 case 0x00000100: 1045 if (adapter->hw.mac.type == e1000_ich8lan || 1046 adapter->hw.mac.type == e1000_ich9lan) 1047 continue; 1048 break; 1049 default: 1050 break; 1051 } 1052 } 1053 1054 if (!shared_int) { 1055 /* Disable the interrupt to be reported in 1056 * the cause register and then force the same 1057 * interrupt and see if one gets posted. If 1058 * an interrupt was posted to the bus, the 1059 * test failed. 1060 */ 1061 adapter->test_icr = 0; 1062 ew32(IMC, mask); 1063 ew32(ICS, mask); 1064 e1e_flush(); 1065 usleep_range(10000, 20000); 1066 1067 if (adapter->test_icr & mask) { 1068 *data = 3; 1069 break; 1070 } 1071 } 1072 1073 /* Enable the interrupt to be reported in 1074 * the cause register and then force the same 1075 * interrupt and see if one gets posted. If 1076 * an interrupt was not posted to the bus, the 1077 * test failed. 1078 */ 1079 adapter->test_icr = 0; 1080 ew32(IMS, mask); 1081 ew32(ICS, mask); 1082 e1e_flush(); 1083 usleep_range(10000, 20000); 1084 1085 if (!(adapter->test_icr & mask)) { 1086 *data = 4; 1087 break; 1088 } 1089 1090 if (!shared_int) { 1091 /* Disable the other interrupts to be reported in 1092 * the cause register and then force the other 1093 * interrupts and see if any get posted. If 1094 * an interrupt was posted to the bus, the 1095 * test failed. 1096 */ 1097 adapter->test_icr = 0; 1098 ew32(IMC, ~mask & 0x00007FFF); 1099 ew32(ICS, ~mask & 0x00007FFF); 1100 e1e_flush(); 1101 usleep_range(10000, 20000); 1102 1103 if (adapter->test_icr) { 1104 *data = 5; 1105 break; 1106 } 1107 } 1108 } 1109 1110 /* Disable all the interrupts */ 1111 ew32(IMC, 0xFFFFFFFF); 1112 e1e_flush(); 1113 usleep_range(10000, 20000); 1114 1115 /* Unhook test interrupt handler */ 1116 free_irq(irq, netdev); 1117 1118 out: 1119 if (int_mode == E1000E_INT_MODE_MSIX) { 1120 e1000e_reset_interrupt_capability(adapter); 1121 adapter->int_mode = int_mode; 1122 e1000e_set_interrupt_capability(adapter); 1123 } 1124 1125 return ret_val; 1126 } 1127 1128 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1129 { 1130 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1131 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1132 struct pci_dev *pdev = adapter->pdev; 1133 struct e1000_buffer *buffer_info; 1134 int i; 1135 1136 if (tx_ring->desc && tx_ring->buffer_info) { 1137 for (i = 0; i < tx_ring->count; i++) { 1138 buffer_info = &tx_ring->buffer_info[i]; 1139 1140 if (buffer_info->dma) 1141 dma_unmap_single(&pdev->dev, 1142 buffer_info->dma, 1143 buffer_info->length, 1144 DMA_TO_DEVICE); 1145 if (buffer_info->skb) 1146 dev_kfree_skb(buffer_info->skb); 1147 } 1148 } 1149 1150 if (rx_ring->desc && rx_ring->buffer_info) { 1151 for (i = 0; i < rx_ring->count; i++) { 1152 buffer_info = &rx_ring->buffer_info[i]; 1153 1154 if (buffer_info->dma) 1155 dma_unmap_single(&pdev->dev, 1156 buffer_info->dma, 1157 2048, DMA_FROM_DEVICE); 1158 if (buffer_info->skb) 1159 dev_kfree_skb(buffer_info->skb); 1160 } 1161 } 1162 1163 if (tx_ring->desc) { 1164 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1165 tx_ring->dma); 1166 tx_ring->desc = NULL; 1167 } 1168 if (rx_ring->desc) { 1169 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1170 rx_ring->dma); 1171 rx_ring->desc = NULL; 1172 } 1173 1174 kfree(tx_ring->buffer_info); 1175 tx_ring->buffer_info = NULL; 1176 kfree(rx_ring->buffer_info); 1177 rx_ring->buffer_info = NULL; 1178 } 1179 1180 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1181 { 1182 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1183 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1184 struct pci_dev *pdev = adapter->pdev; 1185 struct e1000_hw *hw = &adapter->hw; 1186 u32 rctl; 1187 int i; 1188 int ret_val; 1189 1190 /* Setup Tx descriptor ring and Tx buffers */ 1191 1192 if (!tx_ring->count) 1193 tx_ring->count = E1000_DEFAULT_TXD; 1194 1195 tx_ring->buffer_info = kcalloc(tx_ring->count, 1196 sizeof(struct e1000_buffer), GFP_KERNEL); 1197 if (!tx_ring->buffer_info) { 1198 ret_val = 1; 1199 goto err_nomem; 1200 } 1201 1202 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1203 tx_ring->size = ALIGN(tx_ring->size, 4096); 1204 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1205 &tx_ring->dma, GFP_KERNEL); 1206 if (!tx_ring->desc) { 1207 ret_val = 2; 1208 goto err_nomem; 1209 } 1210 tx_ring->next_to_use = 0; 1211 tx_ring->next_to_clean = 0; 1212 1213 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1214 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1215 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1216 ew32(TDH(0), 0); 1217 ew32(TDT(0), 0); 1218 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1219 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1220 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1221 1222 for (i = 0; i < tx_ring->count; i++) { 1223 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1224 struct sk_buff *skb; 1225 unsigned int skb_size = 1024; 1226 1227 skb = alloc_skb(skb_size, GFP_KERNEL); 1228 if (!skb) { 1229 ret_val = 3; 1230 goto err_nomem; 1231 } 1232 skb_put(skb, skb_size); 1233 tx_ring->buffer_info[i].skb = skb; 1234 tx_ring->buffer_info[i].length = skb->len; 1235 tx_ring->buffer_info[i].dma = 1236 dma_map_single(&pdev->dev, skb->data, skb->len, 1237 DMA_TO_DEVICE); 1238 if (dma_mapping_error(&pdev->dev, 1239 tx_ring->buffer_info[i].dma)) { 1240 ret_val = 4; 1241 goto err_nomem; 1242 } 1243 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1244 tx_desc->lower.data = cpu_to_le32(skb->len); 1245 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1246 E1000_TXD_CMD_IFCS | 1247 E1000_TXD_CMD_RS); 1248 tx_desc->upper.data = 0; 1249 } 1250 1251 /* Setup Rx descriptor ring and Rx buffers */ 1252 1253 if (!rx_ring->count) 1254 rx_ring->count = E1000_DEFAULT_RXD; 1255 1256 rx_ring->buffer_info = kcalloc(rx_ring->count, 1257 sizeof(struct e1000_buffer), GFP_KERNEL); 1258 if (!rx_ring->buffer_info) { 1259 ret_val = 5; 1260 goto err_nomem; 1261 } 1262 1263 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1264 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1265 &rx_ring->dma, GFP_KERNEL); 1266 if (!rx_ring->desc) { 1267 ret_val = 6; 1268 goto err_nomem; 1269 } 1270 rx_ring->next_to_use = 0; 1271 rx_ring->next_to_clean = 0; 1272 1273 rctl = er32(RCTL); 1274 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1275 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1276 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1277 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1278 ew32(RDLEN(0), rx_ring->size); 1279 ew32(RDH(0), 0); 1280 ew32(RDT(0), 0); 1281 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1282 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1283 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1284 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1285 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1286 ew32(RCTL, rctl); 1287 1288 for (i = 0; i < rx_ring->count; i++) { 1289 union e1000_rx_desc_extended *rx_desc; 1290 struct sk_buff *skb; 1291 1292 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1293 if (!skb) { 1294 ret_val = 7; 1295 goto err_nomem; 1296 } 1297 skb_reserve(skb, NET_IP_ALIGN); 1298 rx_ring->buffer_info[i].skb = skb; 1299 rx_ring->buffer_info[i].dma = 1300 dma_map_single(&pdev->dev, skb->data, 2048, 1301 DMA_FROM_DEVICE); 1302 if (dma_mapping_error(&pdev->dev, 1303 rx_ring->buffer_info[i].dma)) { 1304 ret_val = 8; 1305 goto err_nomem; 1306 } 1307 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1308 rx_desc->read.buffer_addr = 1309 cpu_to_le64(rx_ring->buffer_info[i].dma); 1310 memset(skb->data, 0x00, skb->len); 1311 } 1312 1313 return 0; 1314 1315 err_nomem: 1316 e1000_free_desc_rings(adapter); 1317 return ret_val; 1318 } 1319 1320 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1321 { 1322 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1323 e1e_wphy(&adapter->hw, 29, 0x001F); 1324 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1325 e1e_wphy(&adapter->hw, 29, 0x001A); 1326 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1327 } 1328 1329 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1330 { 1331 struct e1000_hw *hw = &adapter->hw; 1332 u32 ctrl_reg = 0; 1333 u16 phy_reg = 0; 1334 s32 ret_val = 0; 1335 1336 hw->mac.autoneg = 0; 1337 1338 if (hw->phy.type == e1000_phy_ife) { 1339 /* force 100, set loopback */ 1340 e1e_wphy(hw, MII_BMCR, 0x6100); 1341 1342 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1343 ctrl_reg = er32(CTRL); 1344 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1345 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1346 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1347 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1348 E1000_CTRL_FD); /* Force Duplex to FULL */ 1349 1350 ew32(CTRL, ctrl_reg); 1351 e1e_flush(); 1352 usleep_range(500, 1000); 1353 1354 return 0; 1355 } 1356 1357 /* Specific PHY configuration for loopback */ 1358 switch (hw->phy.type) { 1359 case e1000_phy_m88: 1360 /* Auto-MDI/MDIX Off */ 1361 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1362 /* reset to update Auto-MDI/MDIX */ 1363 e1e_wphy(hw, MII_BMCR, 0x9140); 1364 /* autoneg off */ 1365 e1e_wphy(hw, MII_BMCR, 0x8140); 1366 break; 1367 case e1000_phy_gg82563: 1368 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1369 break; 1370 case e1000_phy_bm: 1371 /* Set Default MAC Interface speed to 1GB */ 1372 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1373 phy_reg &= ~0x0007; 1374 phy_reg |= 0x006; 1375 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1376 /* Assert SW reset for above settings to take effect */ 1377 hw->phy.ops.commit(hw); 1378 usleep_range(1000, 2000); 1379 /* Force Full Duplex */ 1380 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1381 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1382 /* Set Link Up (in force link) */ 1383 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1384 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1385 /* Force Link */ 1386 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1387 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1388 /* Set Early Link Enable */ 1389 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1390 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1391 break; 1392 case e1000_phy_82577: 1393 case e1000_phy_82578: 1394 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1395 ret_val = hw->phy.ops.acquire(hw); 1396 if (ret_val) { 1397 e_err("Cannot setup 1Gbps loopback.\n"); 1398 return ret_val; 1399 } 1400 e1000_configure_k1_ich8lan(hw, false); 1401 hw->phy.ops.release(hw); 1402 break; 1403 case e1000_phy_82579: 1404 /* Disable PHY energy detect power down */ 1405 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1406 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1407 /* Disable full chip energy detect */ 1408 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1409 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1410 /* Enable loopback on the PHY */ 1411 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1412 break; 1413 default: 1414 break; 1415 } 1416 1417 /* force 1000, set loopback */ 1418 e1e_wphy(hw, MII_BMCR, 0x4140); 1419 msleep(250); 1420 1421 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1422 ctrl_reg = er32(CTRL); 1423 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1424 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1425 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1426 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1427 E1000_CTRL_FD); /* Force Duplex to FULL */ 1428 1429 if (adapter->flags & FLAG_IS_ICH) 1430 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1431 1432 if (hw->phy.media_type == e1000_media_type_copper && 1433 hw->phy.type == e1000_phy_m88) { 1434 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1435 } else { 1436 /* Set the ILOS bit on the fiber Nic if half duplex link is 1437 * detected. 1438 */ 1439 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1440 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1441 } 1442 1443 ew32(CTRL, ctrl_reg); 1444 1445 /* Disable the receiver on the PHY so when a cable is plugged in, the 1446 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1447 */ 1448 if (hw->phy.type == e1000_phy_m88) 1449 e1000_phy_disable_receiver(adapter); 1450 1451 usleep_range(500, 1000); 1452 1453 return 0; 1454 } 1455 1456 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1457 { 1458 struct e1000_hw *hw = &adapter->hw; 1459 u32 ctrl = er32(CTRL); 1460 int link; 1461 1462 /* special requirements for 82571/82572 fiber adapters */ 1463 1464 /* jump through hoops to make sure link is up because serdes 1465 * link is hardwired up 1466 */ 1467 ctrl |= E1000_CTRL_SLU; 1468 ew32(CTRL, ctrl); 1469 1470 /* disable autoneg */ 1471 ctrl = er32(TXCW); 1472 ctrl &= ~BIT(31); 1473 ew32(TXCW, ctrl); 1474 1475 link = (er32(STATUS) & E1000_STATUS_LU); 1476 1477 if (!link) { 1478 /* set invert loss of signal */ 1479 ctrl = er32(CTRL); 1480 ctrl |= E1000_CTRL_ILOS; 1481 ew32(CTRL, ctrl); 1482 } 1483 1484 /* special write to serdes control register to enable SerDes analog 1485 * loopback 1486 */ 1487 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1488 e1e_flush(); 1489 usleep_range(10000, 20000); 1490 1491 return 0; 1492 } 1493 1494 /* only call this for fiber/serdes connections to es2lan */ 1495 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1496 { 1497 struct e1000_hw *hw = &adapter->hw; 1498 u32 ctrlext = er32(CTRL_EXT); 1499 u32 ctrl = er32(CTRL); 1500 1501 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1502 * on mac_type 80003es2lan) 1503 */ 1504 adapter->tx_fifo_head = ctrlext; 1505 1506 /* clear the serdes mode bits, putting the device into mac loopback */ 1507 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1508 ew32(CTRL_EXT, ctrlext); 1509 1510 /* force speed to 1000/FD, link up */ 1511 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1512 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1513 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1514 ew32(CTRL, ctrl); 1515 1516 /* set mac loopback */ 1517 ctrl = er32(RCTL); 1518 ctrl |= E1000_RCTL_LBM_MAC; 1519 ew32(RCTL, ctrl); 1520 1521 /* set testing mode parameters (no need to reset later) */ 1522 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1523 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1524 ew32(KMRNCTRLSTA, 1525 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1526 1527 return 0; 1528 } 1529 1530 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1531 { 1532 struct e1000_hw *hw = &adapter->hw; 1533 u32 rctl, fext_nvm11, tarc0; 1534 1535 if (hw->mac.type == e1000_pch_spt) { 1536 fext_nvm11 = er32(FEXTNVM11); 1537 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1538 ew32(FEXTNVM11, fext_nvm11); 1539 tarc0 = er32(TARC(0)); 1540 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1541 tarc0 &= 0xcfffffff; 1542 /* set bit 29 (value of MULR requests is now 2) */ 1543 tarc0 |= 0x20000000; 1544 ew32(TARC(0), tarc0); 1545 } 1546 if (hw->phy.media_type == e1000_media_type_fiber || 1547 hw->phy.media_type == e1000_media_type_internal_serdes) { 1548 switch (hw->mac.type) { 1549 case e1000_80003es2lan: 1550 return e1000_set_es2lan_mac_loopback(adapter); 1551 case e1000_82571: 1552 case e1000_82572: 1553 return e1000_set_82571_fiber_loopback(adapter); 1554 default: 1555 rctl = er32(RCTL); 1556 rctl |= E1000_RCTL_LBM_TCVR; 1557 ew32(RCTL, rctl); 1558 return 0; 1559 } 1560 } else if (hw->phy.media_type == e1000_media_type_copper) { 1561 return e1000_integrated_phy_loopback(adapter); 1562 } 1563 1564 return 7; 1565 } 1566 1567 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1568 { 1569 struct e1000_hw *hw = &adapter->hw; 1570 u32 rctl, fext_nvm11, tarc0; 1571 u16 phy_reg; 1572 1573 rctl = er32(RCTL); 1574 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1575 ew32(RCTL, rctl); 1576 1577 switch (hw->mac.type) { 1578 case e1000_pch_spt: 1579 fext_nvm11 = er32(FEXTNVM11); 1580 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1581 ew32(FEXTNVM11, fext_nvm11); 1582 tarc0 = er32(TARC(0)); 1583 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1584 /* set bit 29 (value of MULR requests is now 0) */ 1585 tarc0 &= 0xcfffffff; 1586 ew32(TARC(0), tarc0); 1587 /* fall through */ 1588 case e1000_80003es2lan: 1589 if (hw->phy.media_type == e1000_media_type_fiber || 1590 hw->phy.media_type == e1000_media_type_internal_serdes) { 1591 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1592 ew32(CTRL_EXT, adapter->tx_fifo_head); 1593 adapter->tx_fifo_head = 0; 1594 } 1595 /* fall through */ 1596 case e1000_82571: 1597 case e1000_82572: 1598 if (hw->phy.media_type == e1000_media_type_fiber || 1599 hw->phy.media_type == e1000_media_type_internal_serdes) { 1600 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1601 e1e_flush(); 1602 usleep_range(10000, 20000); 1603 break; 1604 } 1605 /* Fall Through */ 1606 default: 1607 hw->mac.autoneg = 1; 1608 if (hw->phy.type == e1000_phy_gg82563) 1609 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1610 e1e_rphy(hw, MII_BMCR, &phy_reg); 1611 if (phy_reg & BMCR_LOOPBACK) { 1612 phy_reg &= ~BMCR_LOOPBACK; 1613 e1e_wphy(hw, MII_BMCR, phy_reg); 1614 if (hw->phy.ops.commit) 1615 hw->phy.ops.commit(hw); 1616 } 1617 break; 1618 } 1619 } 1620 1621 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1622 unsigned int frame_size) 1623 { 1624 memset(skb->data, 0xFF, frame_size); 1625 frame_size &= ~1; 1626 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1627 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1628 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1629 } 1630 1631 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1632 unsigned int frame_size) 1633 { 1634 frame_size &= ~1; 1635 if (*(skb->data + 3) == 0xFF) 1636 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1637 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1638 return 0; 1639 return 13; 1640 } 1641 1642 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1643 { 1644 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1645 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1646 struct pci_dev *pdev = adapter->pdev; 1647 struct e1000_hw *hw = &adapter->hw; 1648 struct e1000_buffer *buffer_info; 1649 int i, j, k, l; 1650 int lc; 1651 int good_cnt; 1652 int ret_val = 0; 1653 unsigned long time; 1654 1655 ew32(RDT(0), rx_ring->count - 1); 1656 1657 /* Calculate the loop count based on the largest descriptor ring 1658 * The idea is to wrap the largest ring a number of times using 64 1659 * send/receive pairs during each loop 1660 */ 1661 1662 if (rx_ring->count <= tx_ring->count) 1663 lc = ((tx_ring->count / 64) * 2) + 1; 1664 else 1665 lc = ((rx_ring->count / 64) * 2) + 1; 1666 1667 k = 0; 1668 l = 0; 1669 /* loop count loop */ 1670 for (j = 0; j <= lc; j++) { 1671 /* send the packets */ 1672 for (i = 0; i < 64; i++) { 1673 buffer_info = &tx_ring->buffer_info[k]; 1674 1675 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1676 dma_sync_single_for_device(&pdev->dev, 1677 buffer_info->dma, 1678 buffer_info->length, 1679 DMA_TO_DEVICE); 1680 k++; 1681 if (k == tx_ring->count) 1682 k = 0; 1683 } 1684 ew32(TDT(0), k); 1685 e1e_flush(); 1686 msleep(200); 1687 time = jiffies; /* set the start time for the receive */ 1688 good_cnt = 0; 1689 /* receive the sent packets */ 1690 do { 1691 buffer_info = &rx_ring->buffer_info[l]; 1692 1693 dma_sync_single_for_cpu(&pdev->dev, 1694 buffer_info->dma, 2048, 1695 DMA_FROM_DEVICE); 1696 1697 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1698 1024); 1699 if (!ret_val) 1700 good_cnt++; 1701 l++; 1702 if (l == rx_ring->count) 1703 l = 0; 1704 /* time + 20 msecs (200 msecs on 2.4) is more than 1705 * enough time to complete the receives, if it's 1706 * exceeded, break and error off 1707 */ 1708 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1709 if (good_cnt != 64) { 1710 ret_val = 13; /* ret_val is the same as mis-compare */ 1711 break; 1712 } 1713 if (time_after(jiffies, time + 20)) { 1714 ret_val = 14; /* error code for time out error */ 1715 break; 1716 } 1717 } 1718 return ret_val; 1719 } 1720 1721 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1722 { 1723 struct e1000_hw *hw = &adapter->hw; 1724 1725 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1726 if (hw->phy.ops.check_reset_block && 1727 hw->phy.ops.check_reset_block(hw)) { 1728 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1729 *data = 0; 1730 goto out; 1731 } 1732 1733 *data = e1000_setup_desc_rings(adapter); 1734 if (*data) 1735 goto out; 1736 1737 *data = e1000_setup_loopback_test(adapter); 1738 if (*data) 1739 goto err_loopback; 1740 1741 *data = e1000_run_loopback_test(adapter); 1742 e1000_loopback_cleanup(adapter); 1743 1744 err_loopback: 1745 e1000_free_desc_rings(adapter); 1746 out: 1747 return *data; 1748 } 1749 1750 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1751 { 1752 struct e1000_hw *hw = &adapter->hw; 1753 1754 *data = 0; 1755 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1756 int i = 0; 1757 1758 hw->mac.serdes_has_link = false; 1759 1760 /* On some blade server designs, link establishment 1761 * could take as long as 2-3 minutes 1762 */ 1763 do { 1764 hw->mac.ops.check_for_link(hw); 1765 if (hw->mac.serdes_has_link) 1766 return *data; 1767 msleep(20); 1768 } while (i++ < 3750); 1769 1770 *data = 1; 1771 } else { 1772 hw->mac.ops.check_for_link(hw); 1773 if (hw->mac.autoneg) 1774 /* On some Phy/switch combinations, link establishment 1775 * can take a few seconds more than expected. 1776 */ 1777 msleep_interruptible(5000); 1778 1779 if (!(er32(STATUS) & E1000_STATUS_LU)) 1780 *data = 1; 1781 } 1782 return *data; 1783 } 1784 1785 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1786 int sset) 1787 { 1788 switch (sset) { 1789 case ETH_SS_TEST: 1790 return E1000_TEST_LEN; 1791 case ETH_SS_STATS: 1792 return E1000_STATS_LEN; 1793 default: 1794 return -EOPNOTSUPP; 1795 } 1796 } 1797 1798 static void e1000_diag_test(struct net_device *netdev, 1799 struct ethtool_test *eth_test, u64 *data) 1800 { 1801 struct e1000_adapter *adapter = netdev_priv(netdev); 1802 u16 autoneg_advertised; 1803 u8 forced_speed_duplex; 1804 u8 autoneg; 1805 bool if_running = netif_running(netdev); 1806 1807 pm_runtime_get_sync(netdev->dev.parent); 1808 1809 set_bit(__E1000_TESTING, &adapter->state); 1810 1811 if (!if_running) { 1812 /* Get control of and reset hardware */ 1813 if (adapter->flags & FLAG_HAS_AMT) 1814 e1000e_get_hw_control(adapter); 1815 1816 e1000e_power_up_phy(adapter); 1817 1818 adapter->hw.phy.autoneg_wait_to_complete = 1; 1819 e1000e_reset(adapter); 1820 adapter->hw.phy.autoneg_wait_to_complete = 0; 1821 } 1822 1823 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1824 /* Offline tests */ 1825 1826 /* save speed, duplex, autoneg settings */ 1827 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1828 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1829 autoneg = adapter->hw.mac.autoneg; 1830 1831 e_info("offline testing starting\n"); 1832 1833 if (if_running) 1834 /* indicate we're in test mode */ 1835 e1000e_close(netdev); 1836 1837 if (e1000_reg_test(adapter, &data[0])) 1838 eth_test->flags |= ETH_TEST_FL_FAILED; 1839 1840 e1000e_reset(adapter); 1841 if (e1000_eeprom_test(adapter, &data[1])) 1842 eth_test->flags |= ETH_TEST_FL_FAILED; 1843 1844 e1000e_reset(adapter); 1845 if (e1000_intr_test(adapter, &data[2])) 1846 eth_test->flags |= ETH_TEST_FL_FAILED; 1847 1848 e1000e_reset(adapter); 1849 if (e1000_loopback_test(adapter, &data[3])) 1850 eth_test->flags |= ETH_TEST_FL_FAILED; 1851 1852 /* force this routine to wait until autoneg complete/timeout */ 1853 adapter->hw.phy.autoneg_wait_to_complete = 1; 1854 e1000e_reset(adapter); 1855 adapter->hw.phy.autoneg_wait_to_complete = 0; 1856 1857 if (e1000_link_test(adapter, &data[4])) 1858 eth_test->flags |= ETH_TEST_FL_FAILED; 1859 1860 /* restore speed, duplex, autoneg settings */ 1861 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1862 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1863 adapter->hw.mac.autoneg = autoneg; 1864 e1000e_reset(adapter); 1865 1866 clear_bit(__E1000_TESTING, &adapter->state); 1867 if (if_running) 1868 e1000e_open(netdev); 1869 } else { 1870 /* Online tests */ 1871 1872 e_info("online testing starting\n"); 1873 1874 /* register, eeprom, intr and loopback tests not run online */ 1875 data[0] = 0; 1876 data[1] = 0; 1877 data[2] = 0; 1878 data[3] = 0; 1879 1880 if (e1000_link_test(adapter, &data[4])) 1881 eth_test->flags |= ETH_TEST_FL_FAILED; 1882 1883 clear_bit(__E1000_TESTING, &adapter->state); 1884 } 1885 1886 if (!if_running) { 1887 e1000e_reset(adapter); 1888 1889 if (adapter->flags & FLAG_HAS_AMT) 1890 e1000e_release_hw_control(adapter); 1891 } 1892 1893 msleep_interruptible(4 * 1000); 1894 1895 pm_runtime_put_sync(netdev->dev.parent); 1896 } 1897 1898 static void e1000_get_wol(struct net_device *netdev, 1899 struct ethtool_wolinfo *wol) 1900 { 1901 struct e1000_adapter *adapter = netdev_priv(netdev); 1902 1903 wol->supported = 0; 1904 wol->wolopts = 0; 1905 1906 if (!(adapter->flags & FLAG_HAS_WOL) || 1907 !device_can_wakeup(&adapter->pdev->dev)) 1908 return; 1909 1910 wol->supported = WAKE_UCAST | WAKE_MCAST | 1911 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1912 1913 /* apply any specific unsupported masks here */ 1914 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1915 wol->supported &= ~WAKE_UCAST; 1916 1917 if (adapter->wol & E1000_WUFC_EX) 1918 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1919 } 1920 1921 if (adapter->wol & E1000_WUFC_EX) 1922 wol->wolopts |= WAKE_UCAST; 1923 if (adapter->wol & E1000_WUFC_MC) 1924 wol->wolopts |= WAKE_MCAST; 1925 if (adapter->wol & E1000_WUFC_BC) 1926 wol->wolopts |= WAKE_BCAST; 1927 if (adapter->wol & E1000_WUFC_MAG) 1928 wol->wolopts |= WAKE_MAGIC; 1929 if (adapter->wol & E1000_WUFC_LNKC) 1930 wol->wolopts |= WAKE_PHY; 1931 } 1932 1933 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1934 { 1935 struct e1000_adapter *adapter = netdev_priv(netdev); 1936 1937 if (!(adapter->flags & FLAG_HAS_WOL) || 1938 !device_can_wakeup(&adapter->pdev->dev) || 1939 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1940 WAKE_MAGIC | WAKE_PHY))) 1941 return -EOPNOTSUPP; 1942 1943 /* these settings will always override what we currently have */ 1944 adapter->wol = 0; 1945 1946 if (wol->wolopts & WAKE_UCAST) 1947 adapter->wol |= E1000_WUFC_EX; 1948 if (wol->wolopts & WAKE_MCAST) 1949 adapter->wol |= E1000_WUFC_MC; 1950 if (wol->wolopts & WAKE_BCAST) 1951 adapter->wol |= E1000_WUFC_BC; 1952 if (wol->wolopts & WAKE_MAGIC) 1953 adapter->wol |= E1000_WUFC_MAG; 1954 if (wol->wolopts & WAKE_PHY) 1955 adapter->wol |= E1000_WUFC_LNKC; 1956 1957 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1958 1959 return 0; 1960 } 1961 1962 static int e1000_set_phys_id(struct net_device *netdev, 1963 enum ethtool_phys_id_state state) 1964 { 1965 struct e1000_adapter *adapter = netdev_priv(netdev); 1966 struct e1000_hw *hw = &adapter->hw; 1967 1968 switch (state) { 1969 case ETHTOOL_ID_ACTIVE: 1970 pm_runtime_get_sync(netdev->dev.parent); 1971 1972 if (!hw->mac.ops.blink_led) 1973 return 2; /* cycle on/off twice per second */ 1974 1975 hw->mac.ops.blink_led(hw); 1976 break; 1977 1978 case ETHTOOL_ID_INACTIVE: 1979 if (hw->phy.type == e1000_phy_ife) 1980 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1981 hw->mac.ops.led_off(hw); 1982 hw->mac.ops.cleanup_led(hw); 1983 pm_runtime_put_sync(netdev->dev.parent); 1984 break; 1985 1986 case ETHTOOL_ID_ON: 1987 hw->mac.ops.led_on(hw); 1988 break; 1989 1990 case ETHTOOL_ID_OFF: 1991 hw->mac.ops.led_off(hw); 1992 break; 1993 } 1994 1995 return 0; 1996 } 1997 1998 static int e1000_get_coalesce(struct net_device *netdev, 1999 struct ethtool_coalesce *ec) 2000 { 2001 struct e1000_adapter *adapter = netdev_priv(netdev); 2002 2003 if (adapter->itr_setting <= 4) 2004 ec->rx_coalesce_usecs = adapter->itr_setting; 2005 else 2006 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 2007 2008 return 0; 2009 } 2010 2011 static int e1000_set_coalesce(struct net_device *netdev, 2012 struct ethtool_coalesce *ec) 2013 { 2014 struct e1000_adapter *adapter = netdev_priv(netdev); 2015 2016 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2017 ((ec->rx_coalesce_usecs > 4) && 2018 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2019 (ec->rx_coalesce_usecs == 2)) 2020 return -EINVAL; 2021 2022 if (ec->rx_coalesce_usecs == 4) { 2023 adapter->itr_setting = 4; 2024 adapter->itr = adapter->itr_setting; 2025 } else if (ec->rx_coalesce_usecs <= 3) { 2026 adapter->itr = 20000; 2027 adapter->itr_setting = ec->rx_coalesce_usecs; 2028 } else { 2029 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2030 adapter->itr_setting = adapter->itr & ~3; 2031 } 2032 2033 pm_runtime_get_sync(netdev->dev.parent); 2034 2035 if (adapter->itr_setting != 0) 2036 e1000e_write_itr(adapter, adapter->itr); 2037 else 2038 e1000e_write_itr(adapter, 0); 2039 2040 pm_runtime_put_sync(netdev->dev.parent); 2041 2042 return 0; 2043 } 2044 2045 static int e1000_nway_reset(struct net_device *netdev) 2046 { 2047 struct e1000_adapter *adapter = netdev_priv(netdev); 2048 2049 if (!netif_running(netdev)) 2050 return -EAGAIN; 2051 2052 if (!adapter->hw.mac.autoneg) 2053 return -EINVAL; 2054 2055 pm_runtime_get_sync(netdev->dev.parent); 2056 e1000e_reinit_locked(adapter); 2057 pm_runtime_put_sync(netdev->dev.parent); 2058 2059 return 0; 2060 } 2061 2062 static void e1000_get_ethtool_stats(struct net_device *netdev, 2063 struct ethtool_stats __always_unused *stats, 2064 u64 *data) 2065 { 2066 struct e1000_adapter *adapter = netdev_priv(netdev); 2067 struct rtnl_link_stats64 net_stats; 2068 int i; 2069 char *p = NULL; 2070 2071 pm_runtime_get_sync(netdev->dev.parent); 2072 2073 e1000e_get_stats64(netdev, &net_stats); 2074 2075 pm_runtime_put_sync(netdev->dev.parent); 2076 2077 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2078 switch (e1000_gstrings_stats[i].type) { 2079 case NETDEV_STATS: 2080 p = (char *)&net_stats + 2081 e1000_gstrings_stats[i].stat_offset; 2082 break; 2083 case E1000_STATS: 2084 p = (char *)adapter + 2085 e1000_gstrings_stats[i].stat_offset; 2086 break; 2087 default: 2088 data[i] = 0; 2089 continue; 2090 } 2091 2092 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2093 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2094 } 2095 } 2096 2097 static void e1000_get_strings(struct net_device __always_unused *netdev, 2098 u32 stringset, u8 *data) 2099 { 2100 u8 *p = data; 2101 int i; 2102 2103 switch (stringset) { 2104 case ETH_SS_TEST: 2105 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2106 break; 2107 case ETH_SS_STATS: 2108 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2109 memcpy(p, e1000_gstrings_stats[i].stat_string, 2110 ETH_GSTRING_LEN); 2111 p += ETH_GSTRING_LEN; 2112 } 2113 break; 2114 } 2115 } 2116 2117 static int e1000_get_rxnfc(struct net_device *netdev, 2118 struct ethtool_rxnfc *info, 2119 u32 __always_unused *rule_locs) 2120 { 2121 info->data = 0; 2122 2123 switch (info->cmd) { 2124 case ETHTOOL_GRXFH: { 2125 struct e1000_adapter *adapter = netdev_priv(netdev); 2126 struct e1000_hw *hw = &adapter->hw; 2127 u32 mrqc; 2128 2129 pm_runtime_get_sync(netdev->dev.parent); 2130 mrqc = er32(MRQC); 2131 pm_runtime_put_sync(netdev->dev.parent); 2132 2133 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2134 return 0; 2135 2136 switch (info->flow_type) { 2137 case TCP_V4_FLOW: 2138 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2139 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2140 /* fall through */ 2141 case UDP_V4_FLOW: 2142 case SCTP_V4_FLOW: 2143 case AH_ESP_V4_FLOW: 2144 case IPV4_FLOW: 2145 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2146 info->data |= RXH_IP_SRC | RXH_IP_DST; 2147 break; 2148 case TCP_V6_FLOW: 2149 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2150 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2151 /* fall through */ 2152 case UDP_V6_FLOW: 2153 case SCTP_V6_FLOW: 2154 case AH_ESP_V6_FLOW: 2155 case IPV6_FLOW: 2156 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2157 info->data |= RXH_IP_SRC | RXH_IP_DST; 2158 break; 2159 default: 2160 break; 2161 } 2162 return 0; 2163 } 2164 default: 2165 return -EOPNOTSUPP; 2166 } 2167 } 2168 2169 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2170 { 2171 struct e1000_adapter *adapter = netdev_priv(netdev); 2172 struct e1000_hw *hw = &adapter->hw; 2173 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2174 u32 ret_val; 2175 2176 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2177 return -EOPNOTSUPP; 2178 2179 switch (hw->phy.type) { 2180 case e1000_phy_82579: 2181 cap_addr = I82579_EEE_CAPABILITY; 2182 lpa_addr = I82579_EEE_LP_ABILITY; 2183 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2184 break; 2185 case e1000_phy_i217: 2186 cap_addr = I217_EEE_CAPABILITY; 2187 lpa_addr = I217_EEE_LP_ABILITY; 2188 pcs_stat_addr = I217_EEE_PCS_STATUS; 2189 break; 2190 default: 2191 return -EOPNOTSUPP; 2192 } 2193 2194 pm_runtime_get_sync(netdev->dev.parent); 2195 2196 ret_val = hw->phy.ops.acquire(hw); 2197 if (ret_val) { 2198 pm_runtime_put_sync(netdev->dev.parent); 2199 return -EBUSY; 2200 } 2201 2202 /* EEE Capability */ 2203 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2204 if (ret_val) 2205 goto release; 2206 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2207 2208 /* EEE Advertised */ 2209 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2210 2211 /* EEE Link Partner Advertised */ 2212 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2213 if (ret_val) 2214 goto release; 2215 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2216 2217 /* EEE PCS Status */ 2218 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2219 if (ret_val) 2220 goto release; 2221 if (hw->phy.type == e1000_phy_82579) 2222 phy_data <<= 8; 2223 2224 /* Result of the EEE auto negotiation - there is no register that 2225 * has the status of the EEE negotiation so do a best-guess based 2226 * on whether Tx or Rx LPI indications have been received. 2227 */ 2228 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2229 edata->eee_active = true; 2230 2231 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2232 edata->tx_lpi_enabled = true; 2233 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2234 2235 release: 2236 hw->phy.ops.release(hw); 2237 if (ret_val) 2238 ret_val = -ENODATA; 2239 2240 pm_runtime_put_sync(netdev->dev.parent); 2241 2242 return ret_val; 2243 } 2244 2245 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2246 { 2247 struct e1000_adapter *adapter = netdev_priv(netdev); 2248 struct e1000_hw *hw = &adapter->hw; 2249 struct ethtool_eee eee_curr; 2250 s32 ret_val; 2251 2252 ret_val = e1000e_get_eee(netdev, &eee_curr); 2253 if (ret_val) 2254 return ret_val; 2255 2256 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2257 e_err("Setting EEE tx-lpi is not supported\n"); 2258 return -EINVAL; 2259 } 2260 2261 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2262 e_err("Setting EEE Tx LPI timer is not supported\n"); 2263 return -EINVAL; 2264 } 2265 2266 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2267 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2268 return -EINVAL; 2269 } 2270 2271 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2272 2273 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2274 2275 pm_runtime_get_sync(netdev->dev.parent); 2276 2277 /* reset the link */ 2278 if (netif_running(netdev)) 2279 e1000e_reinit_locked(adapter); 2280 else 2281 e1000e_reset(adapter); 2282 2283 pm_runtime_put_sync(netdev->dev.parent); 2284 2285 return 0; 2286 } 2287 2288 static int e1000e_get_ts_info(struct net_device *netdev, 2289 struct ethtool_ts_info *info) 2290 { 2291 struct e1000_adapter *adapter = netdev_priv(netdev); 2292 2293 ethtool_op_get_ts_info(netdev, info); 2294 2295 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2296 return 0; 2297 2298 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2299 SOF_TIMESTAMPING_RX_HARDWARE | 2300 SOF_TIMESTAMPING_RAW_HARDWARE); 2301 2302 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2303 2304 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2305 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2306 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2307 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2308 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2309 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2310 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2311 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2312 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2313 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2314 BIT(HWTSTAMP_FILTER_ALL)); 2315 2316 if (adapter->ptp_clock) 2317 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2318 2319 return 0; 2320 } 2321 2322 static const struct ethtool_ops e1000_ethtool_ops = { 2323 .get_drvinfo = e1000_get_drvinfo, 2324 .get_regs_len = e1000_get_regs_len, 2325 .get_regs = e1000_get_regs, 2326 .get_wol = e1000_get_wol, 2327 .set_wol = e1000_set_wol, 2328 .get_msglevel = e1000_get_msglevel, 2329 .set_msglevel = e1000_set_msglevel, 2330 .nway_reset = e1000_nway_reset, 2331 .get_link = ethtool_op_get_link, 2332 .get_eeprom_len = e1000_get_eeprom_len, 2333 .get_eeprom = e1000_get_eeprom, 2334 .set_eeprom = e1000_set_eeprom, 2335 .get_ringparam = e1000_get_ringparam, 2336 .set_ringparam = e1000_set_ringparam, 2337 .get_pauseparam = e1000_get_pauseparam, 2338 .set_pauseparam = e1000_set_pauseparam, 2339 .self_test = e1000_diag_test, 2340 .get_strings = e1000_get_strings, 2341 .set_phys_id = e1000_set_phys_id, 2342 .get_ethtool_stats = e1000_get_ethtool_stats, 2343 .get_sset_count = e1000e_get_sset_count, 2344 .get_coalesce = e1000_get_coalesce, 2345 .set_coalesce = e1000_set_coalesce, 2346 .get_rxnfc = e1000_get_rxnfc, 2347 .get_ts_info = e1000e_get_ts_info, 2348 .get_eee = e1000e_get_eee, 2349 .set_eee = e1000e_set_eee, 2350 .get_link_ksettings = e1000_get_link_ksettings, 2351 .set_link_ksettings = e1000_set_link_ksettings, 2352 }; 2353 2354 void e1000e_set_ethtool_ops(struct net_device *netdev) 2355 { 2356 netdev->ethtool_ops = &e1000_ethtool_ops; 2357 } 2358