xref: /openbmc/linux/drivers/net/ethernet/intel/e1000e/ethtool.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* ethtool support for e1000 */
23 
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/ethtool.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pm_runtime.h>
32 
33 #include "e1000.h"
34 
35 enum { NETDEV_STATS, E1000_STATS };
36 
37 struct e1000_stats {
38 	char stat_string[ETH_GSTRING_LEN];
39 	int type;
40 	int sizeof_stat;
41 	int stat_offset;
42 };
43 
44 #define E1000_STAT(str, m) { \
45 		.stat_string = str, \
46 		.type = E1000_STATS, \
47 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48 		.stat_offset = offsetof(struct e1000_adapter, m) }
49 #define E1000_NETDEV_STAT(str, m) { \
50 		.stat_string = str, \
51 		.type = NETDEV_STATS, \
52 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
54 
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56 	E1000_STAT("rx_packets", stats.gprc),
57 	E1000_STAT("tx_packets", stats.gptc),
58 	E1000_STAT("rx_bytes", stats.gorc),
59 	E1000_STAT("tx_bytes", stats.gotc),
60 	E1000_STAT("rx_broadcast", stats.bprc),
61 	E1000_STAT("tx_broadcast", stats.bptc),
62 	E1000_STAT("rx_multicast", stats.mprc),
63 	E1000_STAT("tx_multicast", stats.mptc),
64 	E1000_NETDEV_STAT("rx_errors", rx_errors),
65 	E1000_NETDEV_STAT("tx_errors", tx_errors),
66 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67 	E1000_STAT("multicast", stats.mprc),
68 	E1000_STAT("collisions", stats.colc),
69 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71 	E1000_STAT("rx_crc_errors", stats.crcerrs),
72 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
74 	E1000_STAT("rx_missed_errors", stats.mpc),
75 	E1000_STAT("tx_aborted_errors", stats.ecol),
76 	E1000_STAT("tx_carrier_errors", stats.tncrs),
77 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79 	E1000_STAT("tx_window_errors", stats.latecol),
80 	E1000_STAT("tx_abort_late_coll", stats.latecol),
81 	E1000_STAT("tx_deferred_ok", stats.dc),
82 	E1000_STAT("tx_single_coll_ok", stats.scc),
83 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
84 	E1000_STAT("tx_timeout_count", tx_timeout_count),
85 	E1000_STAT("tx_restart_queue", restart_queue),
86 	E1000_STAT("rx_long_length_errors", stats.roc),
87 	E1000_STAT("rx_short_length_errors", stats.ruc),
88 	E1000_STAT("rx_align_errors", stats.algnerrc),
89 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
94 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
96 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97 	E1000_STAT("rx_header_split", rx_hdr_split),
98 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99 	E1000_STAT("tx_smbus", stats.mgptc),
100 	E1000_STAT("rx_smbus", stats.mgprc),
101 	E1000_STAT("dropped_smbus", stats.mgpdc),
102 	E1000_STAT("rx_dma_failed", rx_dma_failed),
103 	E1000_STAT("tx_dma_failed", tx_dma_failed),
104 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106 	E1000_STAT("corr_ecc_errors", corr_errors),
107 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108 };
109 
110 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113 	"Register test  (offline)", "Eeprom test    (offline)",
114 	"Interrupt test (offline)", "Loopback test  (offline)",
115 	"Link test   (on/offline)"
116 };
117 
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119 
120 static int e1000_get_link_ksettings(struct net_device *netdev,
121 				    struct ethtool_link_ksettings *cmd)
122 {
123 	struct e1000_adapter *adapter = netdev_priv(netdev);
124 	struct e1000_hw *hw = &adapter->hw;
125 	u32 speed, supported, advertising;
126 
127 	if (hw->phy.media_type == e1000_media_type_copper) {
128 		supported = (SUPPORTED_10baseT_Half |
129 			     SUPPORTED_10baseT_Full |
130 			     SUPPORTED_100baseT_Half |
131 			     SUPPORTED_100baseT_Full |
132 			     SUPPORTED_1000baseT_Full |
133 			     SUPPORTED_Autoneg |
134 			     SUPPORTED_TP);
135 		if (hw->phy.type == e1000_phy_ife)
136 			supported &= ~SUPPORTED_1000baseT_Full;
137 		advertising = ADVERTISED_TP;
138 
139 		if (hw->mac.autoneg == 1) {
140 			advertising |= ADVERTISED_Autoneg;
141 			/* the e1000 autoneg seems to match ethtool nicely */
142 			advertising |= hw->phy.autoneg_advertised;
143 		}
144 
145 		cmd->base.port = PORT_TP;
146 		cmd->base.phy_address = hw->phy.addr;
147 	} else {
148 		supported   = (SUPPORTED_1000baseT_Full |
149 			       SUPPORTED_FIBRE |
150 			       SUPPORTED_Autoneg);
151 
152 		advertising = (ADVERTISED_1000baseT_Full |
153 			       ADVERTISED_FIBRE |
154 			       ADVERTISED_Autoneg);
155 
156 		cmd->base.port = PORT_FIBRE;
157 	}
158 
159 	speed = SPEED_UNKNOWN;
160 	cmd->base.duplex = DUPLEX_UNKNOWN;
161 
162 	if (netif_running(netdev)) {
163 		if (netif_carrier_ok(netdev)) {
164 			speed = adapter->link_speed;
165 			cmd->base.duplex = adapter->link_duplex - 1;
166 		}
167 	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
168 		u32 status = er32(STATUS);
169 
170 		if (status & E1000_STATUS_LU) {
171 			if (status & E1000_STATUS_SPEED_1000)
172 				speed = SPEED_1000;
173 			else if (status & E1000_STATUS_SPEED_100)
174 				speed = SPEED_100;
175 			else
176 				speed = SPEED_10;
177 
178 			if (status & E1000_STATUS_FD)
179 				cmd->base.duplex = DUPLEX_FULL;
180 			else
181 				cmd->base.duplex = DUPLEX_HALF;
182 		}
183 	}
184 
185 	cmd->base.speed = speed;
186 	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
187 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
188 
189 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
190 	if ((hw->phy.media_type == e1000_media_type_copper) &&
191 	    netif_carrier_ok(netdev))
192 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
193 			ETH_TP_MDI_X : ETH_TP_MDI;
194 	else
195 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
196 
197 	if (hw->phy.mdix == AUTO_ALL_MODES)
198 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
199 	else
200 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
201 
202 	if (hw->phy.media_type != e1000_media_type_copper)
203 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
204 
205 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
206 						supported);
207 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
208 						advertising);
209 
210 	return 0;
211 }
212 
213 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
214 {
215 	struct e1000_mac_info *mac = &adapter->hw.mac;
216 
217 	mac->autoneg = 0;
218 
219 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
220 	 * for the switch() below to work
221 	 */
222 	if ((spd & 1) || (dplx & ~1))
223 		goto err_inval;
224 
225 	/* Fiber NICs only allow 1000 gbps Full duplex */
226 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
227 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
228 		goto err_inval;
229 	}
230 
231 	switch (spd + dplx) {
232 	case SPEED_10 + DUPLEX_HALF:
233 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
234 		break;
235 	case SPEED_10 + DUPLEX_FULL:
236 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
237 		break;
238 	case SPEED_100 + DUPLEX_HALF:
239 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
240 		break;
241 	case SPEED_100 + DUPLEX_FULL:
242 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
243 		break;
244 	case SPEED_1000 + DUPLEX_FULL:
245 		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
246 			mac->autoneg = 1;
247 			adapter->hw.phy.autoneg_advertised =
248 				ADVERTISE_1000_FULL;
249 		} else {
250 			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
251 		}
252 		break;
253 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
254 	default:
255 		goto err_inval;
256 	}
257 
258 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
259 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
260 
261 	return 0;
262 
263 err_inval:
264 	e_err("Unsupported Speed/Duplex configuration\n");
265 	return -EINVAL;
266 }
267 
268 static int e1000_set_link_ksettings(struct net_device *netdev,
269 				    const struct ethtool_link_ksettings *cmd)
270 {
271 	struct e1000_adapter *adapter = netdev_priv(netdev);
272 	struct e1000_hw *hw = &adapter->hw;
273 	int ret_val = 0;
274 	u32 advertising;
275 
276 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
277 						cmd->link_modes.advertising);
278 
279 	pm_runtime_get_sync(netdev->dev.parent);
280 
281 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
282 	 * cannot be changed
283 	 */
284 	if (hw->phy.ops.check_reset_block &&
285 	    hw->phy.ops.check_reset_block(hw)) {
286 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
287 		ret_val = -EINVAL;
288 		goto out;
289 	}
290 
291 	/* MDI setting is only allowed when autoneg enabled because
292 	 * some hardware doesn't allow MDI setting when speed or
293 	 * duplex is forced.
294 	 */
295 	if (cmd->base.eth_tp_mdix_ctrl) {
296 		if (hw->phy.media_type != e1000_media_type_copper) {
297 			ret_val = -EOPNOTSUPP;
298 			goto out;
299 		}
300 
301 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
302 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
303 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
304 			ret_val = -EINVAL;
305 			goto out;
306 		}
307 	}
308 
309 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
310 		usleep_range(1000, 2000);
311 
312 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
313 		hw->mac.autoneg = 1;
314 		if (hw->phy.media_type == e1000_media_type_fiber)
315 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
316 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
317 		else
318 			hw->phy.autoneg_advertised = advertising |
319 			    ADVERTISED_TP | ADVERTISED_Autoneg;
320 		advertising = hw->phy.autoneg_advertised;
321 		if (adapter->fc_autoneg)
322 			hw->fc.requested_mode = e1000_fc_default;
323 	} else {
324 		u32 speed = cmd->base.speed;
325 		/* calling this overrides forced MDI setting */
326 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
327 			ret_val = -EINVAL;
328 			goto out;
329 		}
330 	}
331 
332 	/* MDI-X => 2; MDI => 1; Auto => 3 */
333 	if (cmd->base.eth_tp_mdix_ctrl) {
334 		/* fix up the value for auto (3 => 0) as zero is mapped
335 		 * internally to auto
336 		 */
337 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
338 			hw->phy.mdix = AUTO_ALL_MODES;
339 		else
340 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
341 	}
342 
343 	/* reset the link */
344 	if (netif_running(adapter->netdev)) {
345 		e1000e_down(adapter, true);
346 		e1000e_up(adapter);
347 	} else {
348 		e1000e_reset(adapter);
349 	}
350 
351 out:
352 	pm_runtime_put_sync(netdev->dev.parent);
353 	clear_bit(__E1000_RESETTING, &adapter->state);
354 	return ret_val;
355 }
356 
357 static void e1000_get_pauseparam(struct net_device *netdev,
358 				 struct ethtool_pauseparam *pause)
359 {
360 	struct e1000_adapter *adapter = netdev_priv(netdev);
361 	struct e1000_hw *hw = &adapter->hw;
362 
363 	pause->autoneg =
364 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
365 
366 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
367 		pause->rx_pause = 1;
368 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
369 		pause->tx_pause = 1;
370 	} else if (hw->fc.current_mode == e1000_fc_full) {
371 		pause->rx_pause = 1;
372 		pause->tx_pause = 1;
373 	}
374 }
375 
376 static int e1000_set_pauseparam(struct net_device *netdev,
377 				struct ethtool_pauseparam *pause)
378 {
379 	struct e1000_adapter *adapter = netdev_priv(netdev);
380 	struct e1000_hw *hw = &adapter->hw;
381 	int retval = 0;
382 
383 	adapter->fc_autoneg = pause->autoneg;
384 
385 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
386 		usleep_range(1000, 2000);
387 
388 	pm_runtime_get_sync(netdev->dev.parent);
389 
390 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
391 		hw->fc.requested_mode = e1000_fc_default;
392 		if (netif_running(adapter->netdev)) {
393 			e1000e_down(adapter, true);
394 			e1000e_up(adapter);
395 		} else {
396 			e1000e_reset(adapter);
397 		}
398 	} else {
399 		if (pause->rx_pause && pause->tx_pause)
400 			hw->fc.requested_mode = e1000_fc_full;
401 		else if (pause->rx_pause && !pause->tx_pause)
402 			hw->fc.requested_mode = e1000_fc_rx_pause;
403 		else if (!pause->rx_pause && pause->tx_pause)
404 			hw->fc.requested_mode = e1000_fc_tx_pause;
405 		else if (!pause->rx_pause && !pause->tx_pause)
406 			hw->fc.requested_mode = e1000_fc_none;
407 
408 		hw->fc.current_mode = hw->fc.requested_mode;
409 
410 		if (hw->phy.media_type == e1000_media_type_fiber) {
411 			retval = hw->mac.ops.setup_link(hw);
412 			/* implicit goto out */
413 		} else {
414 			retval = e1000e_force_mac_fc(hw);
415 			if (retval)
416 				goto out;
417 			e1000e_set_fc_watermarks(hw);
418 		}
419 	}
420 
421 out:
422 	pm_runtime_put_sync(netdev->dev.parent);
423 	clear_bit(__E1000_RESETTING, &adapter->state);
424 	return retval;
425 }
426 
427 static u32 e1000_get_msglevel(struct net_device *netdev)
428 {
429 	struct e1000_adapter *adapter = netdev_priv(netdev);
430 	return adapter->msg_enable;
431 }
432 
433 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
434 {
435 	struct e1000_adapter *adapter = netdev_priv(netdev);
436 	adapter->msg_enable = data;
437 }
438 
439 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
440 {
441 #define E1000_REGS_LEN 32	/* overestimate */
442 	return E1000_REGS_LEN * sizeof(u32);
443 }
444 
445 static void e1000_get_regs(struct net_device *netdev,
446 			   struct ethtool_regs *regs, void *p)
447 {
448 	struct e1000_adapter *adapter = netdev_priv(netdev);
449 	struct e1000_hw *hw = &adapter->hw;
450 	u32 *regs_buff = p;
451 	u16 phy_data;
452 
453 	pm_runtime_get_sync(netdev->dev.parent);
454 
455 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
456 
457 	regs->version = (1u << 24) |
458 			(adapter->pdev->revision << 16) |
459 			adapter->pdev->device;
460 
461 	regs_buff[0] = er32(CTRL);
462 	regs_buff[1] = er32(STATUS);
463 
464 	regs_buff[2] = er32(RCTL);
465 	regs_buff[3] = er32(RDLEN(0));
466 	regs_buff[4] = er32(RDH(0));
467 	regs_buff[5] = er32(RDT(0));
468 	regs_buff[6] = er32(RDTR);
469 
470 	regs_buff[7] = er32(TCTL);
471 	regs_buff[8] = er32(TDLEN(0));
472 	regs_buff[9] = er32(TDH(0));
473 	regs_buff[10] = er32(TDT(0));
474 	regs_buff[11] = er32(TIDV);
475 
476 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
477 
478 	/* ethtool doesn't use anything past this point, so all this
479 	 * code is likely legacy junk for apps that may or may not exist
480 	 */
481 	if (hw->phy.type == e1000_phy_m88) {
482 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
483 		regs_buff[13] = (u32)phy_data; /* cable length */
484 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
485 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
486 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
487 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
488 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
489 		regs_buff[18] = regs_buff[13]; /* cable polarity */
490 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
491 		regs_buff[20] = regs_buff[17]; /* polarity correction */
492 		/* phy receive errors */
493 		regs_buff[22] = adapter->phy_stats.receive_errors;
494 		regs_buff[23] = regs_buff[13]; /* mdix mode */
495 	}
496 	regs_buff[21] = 0;	/* was idle_errors */
497 	e1e_rphy(hw, MII_STAT1000, &phy_data);
498 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
499 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
500 
501 	pm_runtime_put_sync(netdev->dev.parent);
502 }
503 
504 static int e1000_get_eeprom_len(struct net_device *netdev)
505 {
506 	struct e1000_adapter *adapter = netdev_priv(netdev);
507 	return adapter->hw.nvm.word_size * 2;
508 }
509 
510 static int e1000_get_eeprom(struct net_device *netdev,
511 			    struct ethtool_eeprom *eeprom, u8 *bytes)
512 {
513 	struct e1000_adapter *adapter = netdev_priv(netdev);
514 	struct e1000_hw *hw = &adapter->hw;
515 	u16 *eeprom_buff;
516 	int first_word;
517 	int last_word;
518 	int ret_val = 0;
519 	u16 i;
520 
521 	if (eeprom->len == 0)
522 		return -EINVAL;
523 
524 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
525 
526 	first_word = eeprom->offset >> 1;
527 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
528 
529 	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
530 			      GFP_KERNEL);
531 	if (!eeprom_buff)
532 		return -ENOMEM;
533 
534 	pm_runtime_get_sync(netdev->dev.parent);
535 
536 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
537 		ret_val = e1000_read_nvm(hw, first_word,
538 					 last_word - first_word + 1,
539 					 eeprom_buff);
540 	} else {
541 		for (i = 0; i < last_word - first_word + 1; i++) {
542 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
543 						 &eeprom_buff[i]);
544 			if (ret_val)
545 				break;
546 		}
547 	}
548 
549 	pm_runtime_put_sync(netdev->dev.parent);
550 
551 	if (ret_val) {
552 		/* a read error occurred, throw away the result */
553 		memset(eeprom_buff, 0xff, sizeof(u16) *
554 		       (last_word - first_word + 1));
555 	} else {
556 		/* Device's eeprom is always little-endian, word addressable */
557 		for (i = 0; i < last_word - first_word + 1; i++)
558 			le16_to_cpus(&eeprom_buff[i]);
559 	}
560 
561 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
562 	kfree(eeprom_buff);
563 
564 	return ret_val;
565 }
566 
567 static int e1000_set_eeprom(struct net_device *netdev,
568 			    struct ethtool_eeprom *eeprom, u8 *bytes)
569 {
570 	struct e1000_adapter *adapter = netdev_priv(netdev);
571 	struct e1000_hw *hw = &adapter->hw;
572 	u16 *eeprom_buff;
573 	void *ptr;
574 	int max_len;
575 	int first_word;
576 	int last_word;
577 	int ret_val = 0;
578 	u16 i;
579 
580 	if (eeprom->len == 0)
581 		return -EOPNOTSUPP;
582 
583 	if (eeprom->magic !=
584 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
585 		return -EFAULT;
586 
587 	if (adapter->flags & FLAG_READ_ONLY_NVM)
588 		return -EINVAL;
589 
590 	max_len = hw->nvm.word_size * 2;
591 
592 	first_word = eeprom->offset >> 1;
593 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
594 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
595 	if (!eeprom_buff)
596 		return -ENOMEM;
597 
598 	ptr = (void *)eeprom_buff;
599 
600 	pm_runtime_get_sync(netdev->dev.parent);
601 
602 	if (eeprom->offset & 1) {
603 		/* need read/modify/write of first changed EEPROM word */
604 		/* only the second byte of the word is being modified */
605 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
606 		ptr++;
607 	}
608 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
609 		/* need read/modify/write of last changed EEPROM word */
610 		/* only the first byte of the word is being modified */
611 		ret_val = e1000_read_nvm(hw, last_word, 1,
612 					 &eeprom_buff[last_word - first_word]);
613 
614 	if (ret_val)
615 		goto out;
616 
617 	/* Device's eeprom is always little-endian, word addressable */
618 	for (i = 0; i < last_word - first_word + 1; i++)
619 		le16_to_cpus(&eeprom_buff[i]);
620 
621 	memcpy(ptr, bytes, eeprom->len);
622 
623 	for (i = 0; i < last_word - first_word + 1; i++)
624 		cpu_to_le16s(&eeprom_buff[i]);
625 
626 	ret_val = e1000_write_nvm(hw, first_word,
627 				  last_word - first_word + 1, eeprom_buff);
628 
629 	if (ret_val)
630 		goto out;
631 
632 	/* Update the checksum over the first part of the EEPROM if needed
633 	 * and flush shadow RAM for applicable controllers
634 	 */
635 	if ((first_word <= NVM_CHECKSUM_REG) ||
636 	    (hw->mac.type == e1000_82583) ||
637 	    (hw->mac.type == e1000_82574) ||
638 	    (hw->mac.type == e1000_82573))
639 		ret_val = e1000e_update_nvm_checksum(hw);
640 
641 out:
642 	pm_runtime_put_sync(netdev->dev.parent);
643 	kfree(eeprom_buff);
644 	return ret_val;
645 }
646 
647 static void e1000_get_drvinfo(struct net_device *netdev,
648 			      struct ethtool_drvinfo *drvinfo)
649 {
650 	struct e1000_adapter *adapter = netdev_priv(netdev);
651 
652 	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
653 	strlcpy(drvinfo->version, e1000e_driver_version,
654 		sizeof(drvinfo->version));
655 
656 	/* EEPROM image version # is reported as firmware version # for
657 	 * PCI-E controllers
658 	 */
659 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
660 		 "%d.%d-%d",
661 		 (adapter->eeprom_vers & 0xF000) >> 12,
662 		 (adapter->eeprom_vers & 0x0FF0) >> 4,
663 		 (adapter->eeprom_vers & 0x000F));
664 
665 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
666 		sizeof(drvinfo->bus_info));
667 }
668 
669 static void e1000_get_ringparam(struct net_device *netdev,
670 				struct ethtool_ringparam *ring)
671 {
672 	struct e1000_adapter *adapter = netdev_priv(netdev);
673 
674 	ring->rx_max_pending = E1000_MAX_RXD;
675 	ring->tx_max_pending = E1000_MAX_TXD;
676 	ring->rx_pending = adapter->rx_ring_count;
677 	ring->tx_pending = adapter->tx_ring_count;
678 }
679 
680 static int e1000_set_ringparam(struct net_device *netdev,
681 			       struct ethtool_ringparam *ring)
682 {
683 	struct e1000_adapter *adapter = netdev_priv(netdev);
684 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
685 	int err = 0, size = sizeof(struct e1000_ring);
686 	bool set_tx = false, set_rx = false;
687 	u16 new_rx_count, new_tx_count;
688 
689 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
690 		return -EINVAL;
691 
692 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
693 			       E1000_MAX_RXD);
694 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
695 
696 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
697 			       E1000_MAX_TXD);
698 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
699 
700 	if ((new_tx_count == adapter->tx_ring_count) &&
701 	    (new_rx_count == adapter->rx_ring_count))
702 		/* nothing to do */
703 		return 0;
704 
705 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
706 		usleep_range(1000, 2000);
707 
708 	if (!netif_running(adapter->netdev)) {
709 		/* Set counts now and allocate resources during open() */
710 		adapter->tx_ring->count = new_tx_count;
711 		adapter->rx_ring->count = new_rx_count;
712 		adapter->tx_ring_count = new_tx_count;
713 		adapter->rx_ring_count = new_rx_count;
714 		goto clear_reset;
715 	}
716 
717 	set_tx = (new_tx_count != adapter->tx_ring_count);
718 	set_rx = (new_rx_count != adapter->rx_ring_count);
719 
720 	/* Allocate temporary storage for ring updates */
721 	if (set_tx) {
722 		temp_tx = vmalloc(size);
723 		if (!temp_tx) {
724 			err = -ENOMEM;
725 			goto free_temp;
726 		}
727 	}
728 	if (set_rx) {
729 		temp_rx = vmalloc(size);
730 		if (!temp_rx) {
731 			err = -ENOMEM;
732 			goto free_temp;
733 		}
734 	}
735 
736 	pm_runtime_get_sync(netdev->dev.parent);
737 
738 	e1000e_down(adapter, true);
739 
740 	/* We can't just free everything and then setup again, because the
741 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
742 	 * structs.  First, attempt to allocate new resources...
743 	 */
744 	if (set_tx) {
745 		memcpy(temp_tx, adapter->tx_ring, size);
746 		temp_tx->count = new_tx_count;
747 		err = e1000e_setup_tx_resources(temp_tx);
748 		if (err)
749 			goto err_setup;
750 	}
751 	if (set_rx) {
752 		memcpy(temp_rx, adapter->rx_ring, size);
753 		temp_rx->count = new_rx_count;
754 		err = e1000e_setup_rx_resources(temp_rx);
755 		if (err)
756 			goto err_setup_rx;
757 	}
758 
759 	/* ...then free the old resources and copy back any new ring data */
760 	if (set_tx) {
761 		e1000e_free_tx_resources(adapter->tx_ring);
762 		memcpy(adapter->tx_ring, temp_tx, size);
763 		adapter->tx_ring_count = new_tx_count;
764 	}
765 	if (set_rx) {
766 		e1000e_free_rx_resources(adapter->rx_ring);
767 		memcpy(adapter->rx_ring, temp_rx, size);
768 		adapter->rx_ring_count = new_rx_count;
769 	}
770 
771 err_setup_rx:
772 	if (err && set_tx)
773 		e1000e_free_tx_resources(temp_tx);
774 err_setup:
775 	e1000e_up(adapter);
776 	pm_runtime_put_sync(netdev->dev.parent);
777 free_temp:
778 	vfree(temp_tx);
779 	vfree(temp_rx);
780 clear_reset:
781 	clear_bit(__E1000_RESETTING, &adapter->state);
782 	return err;
783 }
784 
785 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
786 			     int reg, int offset, u32 mask, u32 write)
787 {
788 	u32 pat, val;
789 	static const u32 test[] = {
790 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
791 	};
792 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
793 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
794 				      (test[pat] & write));
795 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
796 		if (val != (test[pat] & write & mask)) {
797 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
798 			      reg + (offset << 2), val,
799 			      (test[pat] & write & mask));
800 			*data = reg;
801 			return true;
802 		}
803 	}
804 	return false;
805 }
806 
807 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
808 			      int reg, u32 mask, u32 write)
809 {
810 	u32 val;
811 
812 	__ew32(&adapter->hw, reg, write & mask);
813 	val = __er32(&adapter->hw, reg);
814 	if ((write & mask) != (val & mask)) {
815 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
816 		      reg, (val & mask), (write & mask));
817 		*data = reg;
818 		return true;
819 	}
820 	return false;
821 }
822 
823 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
824 	do {                                                                   \
825 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
826 			return 1;                                              \
827 	} while (0)
828 #define REG_PATTERN_TEST(reg, mask, write)                                     \
829 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
830 
831 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
832 	do {                                                                   \
833 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
834 			return 1;                                              \
835 	} while (0)
836 
837 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
838 {
839 	struct e1000_hw *hw = &adapter->hw;
840 	struct e1000_mac_info *mac = &adapter->hw.mac;
841 	u32 value;
842 	u32 before;
843 	u32 after;
844 	u32 i;
845 	u32 toggle;
846 	u32 mask;
847 	u32 wlock_mac = 0;
848 
849 	/* The status register is Read Only, so a write should fail.
850 	 * Some bits that get toggled are ignored.  There are several bits
851 	 * on newer hardware that are r/w.
852 	 */
853 	switch (mac->type) {
854 	case e1000_82571:
855 	case e1000_82572:
856 	case e1000_80003es2lan:
857 		toggle = 0x7FFFF3FF;
858 		break;
859 	default:
860 		toggle = 0x7FFFF033;
861 		break;
862 	}
863 
864 	before = er32(STATUS);
865 	value = (er32(STATUS) & toggle);
866 	ew32(STATUS, toggle);
867 	after = er32(STATUS) & toggle;
868 	if (value != after) {
869 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
870 		      after, value);
871 		*data = 1;
872 		return 1;
873 	}
874 	/* restore previous status */
875 	ew32(STATUS, before);
876 
877 	if (!(adapter->flags & FLAG_IS_ICH)) {
878 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
879 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
880 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
881 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
882 	}
883 
884 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
885 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
886 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
887 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
888 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
889 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
890 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
891 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
892 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
893 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
894 
895 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
896 
897 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
898 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
899 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
900 
901 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
902 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
903 	if (!(adapter->flags & FLAG_IS_ICH))
904 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
905 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
906 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
907 	mask = 0x8003FFFF;
908 	switch (mac->type) {
909 	case e1000_ich10lan:
910 	case e1000_pchlan:
911 	case e1000_pch2lan:
912 	case e1000_pch_lpt:
913 	case e1000_pch_spt:
914 		mask |= BIT(18);
915 		break;
916 	default:
917 		break;
918 	}
919 
920 	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt))
921 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
922 		    E1000_FWSM_WLOCK_MAC_SHIFT;
923 
924 	for (i = 0; i < mac->rar_entry_count; i++) {
925 		if ((mac->type == e1000_pch_lpt) ||
926 		    (mac->type == e1000_pch_spt)) {
927 			/* Cannot test write-protected SHRAL[n] registers */
928 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
929 				continue;
930 
931 			/* SHRAH[9] different than the others */
932 			if (i == 10)
933 				mask |= BIT(30);
934 			else
935 				mask &= ~BIT(30);
936 		}
937 		if (mac->type == e1000_pch2lan) {
938 			/* SHRAH[0,1,2] different than previous */
939 			if (i == 1)
940 				mask &= 0xFFF4FFFF;
941 			/* SHRAH[3] different than SHRAH[0,1,2] */
942 			if (i == 4)
943 				mask |= BIT(30);
944 			/* RAR[1-6] owned by management engine - skipping */
945 			if (i > 0)
946 				i += 6;
947 		}
948 
949 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
950 				       0xFFFFFFFF);
951 		/* reset index to actual value */
952 		if ((mac->type == e1000_pch2lan) && (i > 6))
953 			i -= 6;
954 	}
955 
956 	for (i = 0; i < mac->mta_reg_count; i++)
957 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
958 
959 	*data = 0;
960 
961 	return 0;
962 }
963 
964 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
965 {
966 	u16 temp;
967 	u16 checksum = 0;
968 	u16 i;
969 
970 	*data = 0;
971 	/* Read and add up the contents of the EEPROM */
972 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
973 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
974 			*data = 1;
975 			return *data;
976 		}
977 		checksum += temp;
978 	}
979 
980 	/* If Checksum is not Correct return error else test passed */
981 	if ((checksum != (u16)NVM_SUM) && !(*data))
982 		*data = 2;
983 
984 	return *data;
985 }
986 
987 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
988 {
989 	struct net_device *netdev = (struct net_device *)data;
990 	struct e1000_adapter *adapter = netdev_priv(netdev);
991 	struct e1000_hw *hw = &adapter->hw;
992 
993 	adapter->test_icr |= er32(ICR);
994 
995 	return IRQ_HANDLED;
996 }
997 
998 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
999 {
1000 	struct net_device *netdev = adapter->netdev;
1001 	struct e1000_hw *hw = &adapter->hw;
1002 	u32 mask;
1003 	u32 shared_int = 1;
1004 	u32 irq = adapter->pdev->irq;
1005 	int i;
1006 	int ret_val = 0;
1007 	int int_mode = E1000E_INT_MODE_LEGACY;
1008 
1009 	*data = 0;
1010 
1011 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1012 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1013 		int_mode = adapter->int_mode;
1014 		e1000e_reset_interrupt_capability(adapter);
1015 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1016 		e1000e_set_interrupt_capability(adapter);
1017 	}
1018 	/* Hook up test interrupt handler just for this test */
1019 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1020 			 netdev)) {
1021 		shared_int = 0;
1022 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1023 			       netdev)) {
1024 		*data = 1;
1025 		ret_val = -1;
1026 		goto out;
1027 	}
1028 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1029 
1030 	/* Disable all the interrupts */
1031 	ew32(IMC, 0xFFFFFFFF);
1032 	e1e_flush();
1033 	usleep_range(10000, 20000);
1034 
1035 	/* Test each interrupt */
1036 	for (i = 0; i < 10; i++) {
1037 		/* Interrupt to test */
1038 		mask = BIT(i);
1039 
1040 		if (adapter->flags & FLAG_IS_ICH) {
1041 			switch (mask) {
1042 			case E1000_ICR_RXSEQ:
1043 				continue;
1044 			case 0x00000100:
1045 				if (adapter->hw.mac.type == e1000_ich8lan ||
1046 				    adapter->hw.mac.type == e1000_ich9lan)
1047 					continue;
1048 				break;
1049 			default:
1050 				break;
1051 			}
1052 		}
1053 
1054 		if (!shared_int) {
1055 			/* Disable the interrupt to be reported in
1056 			 * the cause register and then force the same
1057 			 * interrupt and see if one gets posted.  If
1058 			 * an interrupt was posted to the bus, the
1059 			 * test failed.
1060 			 */
1061 			adapter->test_icr = 0;
1062 			ew32(IMC, mask);
1063 			ew32(ICS, mask);
1064 			e1e_flush();
1065 			usleep_range(10000, 20000);
1066 
1067 			if (adapter->test_icr & mask) {
1068 				*data = 3;
1069 				break;
1070 			}
1071 		}
1072 
1073 		/* Enable the interrupt to be reported in
1074 		 * the cause register and then force the same
1075 		 * interrupt and see if one gets posted.  If
1076 		 * an interrupt was not posted to the bus, the
1077 		 * test failed.
1078 		 */
1079 		adapter->test_icr = 0;
1080 		ew32(IMS, mask);
1081 		ew32(ICS, mask);
1082 		e1e_flush();
1083 		usleep_range(10000, 20000);
1084 
1085 		if (!(adapter->test_icr & mask)) {
1086 			*data = 4;
1087 			break;
1088 		}
1089 
1090 		if (!shared_int) {
1091 			/* Disable the other interrupts to be reported in
1092 			 * the cause register and then force the other
1093 			 * interrupts and see if any get posted.  If
1094 			 * an interrupt was posted to the bus, the
1095 			 * test failed.
1096 			 */
1097 			adapter->test_icr = 0;
1098 			ew32(IMC, ~mask & 0x00007FFF);
1099 			ew32(ICS, ~mask & 0x00007FFF);
1100 			e1e_flush();
1101 			usleep_range(10000, 20000);
1102 
1103 			if (adapter->test_icr) {
1104 				*data = 5;
1105 				break;
1106 			}
1107 		}
1108 	}
1109 
1110 	/* Disable all the interrupts */
1111 	ew32(IMC, 0xFFFFFFFF);
1112 	e1e_flush();
1113 	usleep_range(10000, 20000);
1114 
1115 	/* Unhook test interrupt handler */
1116 	free_irq(irq, netdev);
1117 
1118 out:
1119 	if (int_mode == E1000E_INT_MODE_MSIX) {
1120 		e1000e_reset_interrupt_capability(adapter);
1121 		adapter->int_mode = int_mode;
1122 		e1000e_set_interrupt_capability(adapter);
1123 	}
1124 
1125 	return ret_val;
1126 }
1127 
1128 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1129 {
1130 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1131 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1132 	struct pci_dev *pdev = adapter->pdev;
1133 	struct e1000_buffer *buffer_info;
1134 	int i;
1135 
1136 	if (tx_ring->desc && tx_ring->buffer_info) {
1137 		for (i = 0; i < tx_ring->count; i++) {
1138 			buffer_info = &tx_ring->buffer_info[i];
1139 
1140 			if (buffer_info->dma)
1141 				dma_unmap_single(&pdev->dev,
1142 						 buffer_info->dma,
1143 						 buffer_info->length,
1144 						 DMA_TO_DEVICE);
1145 			if (buffer_info->skb)
1146 				dev_kfree_skb(buffer_info->skb);
1147 		}
1148 	}
1149 
1150 	if (rx_ring->desc && rx_ring->buffer_info) {
1151 		for (i = 0; i < rx_ring->count; i++) {
1152 			buffer_info = &rx_ring->buffer_info[i];
1153 
1154 			if (buffer_info->dma)
1155 				dma_unmap_single(&pdev->dev,
1156 						 buffer_info->dma,
1157 						 2048, DMA_FROM_DEVICE);
1158 			if (buffer_info->skb)
1159 				dev_kfree_skb(buffer_info->skb);
1160 		}
1161 	}
1162 
1163 	if (tx_ring->desc) {
1164 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1165 				  tx_ring->dma);
1166 		tx_ring->desc = NULL;
1167 	}
1168 	if (rx_ring->desc) {
1169 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1170 				  rx_ring->dma);
1171 		rx_ring->desc = NULL;
1172 	}
1173 
1174 	kfree(tx_ring->buffer_info);
1175 	tx_ring->buffer_info = NULL;
1176 	kfree(rx_ring->buffer_info);
1177 	rx_ring->buffer_info = NULL;
1178 }
1179 
1180 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1181 {
1182 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1183 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1184 	struct pci_dev *pdev = adapter->pdev;
1185 	struct e1000_hw *hw = &adapter->hw;
1186 	u32 rctl;
1187 	int i;
1188 	int ret_val;
1189 
1190 	/* Setup Tx descriptor ring and Tx buffers */
1191 
1192 	if (!tx_ring->count)
1193 		tx_ring->count = E1000_DEFAULT_TXD;
1194 
1195 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1196 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1197 	if (!tx_ring->buffer_info) {
1198 		ret_val = 1;
1199 		goto err_nomem;
1200 	}
1201 
1202 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1203 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1204 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1205 					   &tx_ring->dma, GFP_KERNEL);
1206 	if (!tx_ring->desc) {
1207 		ret_val = 2;
1208 		goto err_nomem;
1209 	}
1210 	tx_ring->next_to_use = 0;
1211 	tx_ring->next_to_clean = 0;
1212 
1213 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1214 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1215 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1216 	ew32(TDH(0), 0);
1217 	ew32(TDT(0), 0);
1218 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1219 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1220 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1221 
1222 	for (i = 0; i < tx_ring->count; i++) {
1223 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1224 		struct sk_buff *skb;
1225 		unsigned int skb_size = 1024;
1226 
1227 		skb = alloc_skb(skb_size, GFP_KERNEL);
1228 		if (!skb) {
1229 			ret_val = 3;
1230 			goto err_nomem;
1231 		}
1232 		skb_put(skb, skb_size);
1233 		tx_ring->buffer_info[i].skb = skb;
1234 		tx_ring->buffer_info[i].length = skb->len;
1235 		tx_ring->buffer_info[i].dma =
1236 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1237 				   DMA_TO_DEVICE);
1238 		if (dma_mapping_error(&pdev->dev,
1239 				      tx_ring->buffer_info[i].dma)) {
1240 			ret_val = 4;
1241 			goto err_nomem;
1242 		}
1243 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1244 		tx_desc->lower.data = cpu_to_le32(skb->len);
1245 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1246 						   E1000_TXD_CMD_IFCS |
1247 						   E1000_TXD_CMD_RS);
1248 		tx_desc->upper.data = 0;
1249 	}
1250 
1251 	/* Setup Rx descriptor ring and Rx buffers */
1252 
1253 	if (!rx_ring->count)
1254 		rx_ring->count = E1000_DEFAULT_RXD;
1255 
1256 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1257 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1258 	if (!rx_ring->buffer_info) {
1259 		ret_val = 5;
1260 		goto err_nomem;
1261 	}
1262 
1263 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1264 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1265 					   &rx_ring->dma, GFP_KERNEL);
1266 	if (!rx_ring->desc) {
1267 		ret_val = 6;
1268 		goto err_nomem;
1269 	}
1270 	rx_ring->next_to_use = 0;
1271 	rx_ring->next_to_clean = 0;
1272 
1273 	rctl = er32(RCTL);
1274 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1275 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1276 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1277 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1278 	ew32(RDLEN(0), rx_ring->size);
1279 	ew32(RDH(0), 0);
1280 	ew32(RDT(0), 0);
1281 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1282 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1283 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1284 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1285 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1286 	ew32(RCTL, rctl);
1287 
1288 	for (i = 0; i < rx_ring->count; i++) {
1289 		union e1000_rx_desc_extended *rx_desc;
1290 		struct sk_buff *skb;
1291 
1292 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1293 		if (!skb) {
1294 			ret_val = 7;
1295 			goto err_nomem;
1296 		}
1297 		skb_reserve(skb, NET_IP_ALIGN);
1298 		rx_ring->buffer_info[i].skb = skb;
1299 		rx_ring->buffer_info[i].dma =
1300 		    dma_map_single(&pdev->dev, skb->data, 2048,
1301 				   DMA_FROM_DEVICE);
1302 		if (dma_mapping_error(&pdev->dev,
1303 				      rx_ring->buffer_info[i].dma)) {
1304 			ret_val = 8;
1305 			goto err_nomem;
1306 		}
1307 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1308 		rx_desc->read.buffer_addr =
1309 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1310 		memset(skb->data, 0x00, skb->len);
1311 	}
1312 
1313 	return 0;
1314 
1315 err_nomem:
1316 	e1000_free_desc_rings(adapter);
1317 	return ret_val;
1318 }
1319 
1320 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1321 {
1322 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1323 	e1e_wphy(&adapter->hw, 29, 0x001F);
1324 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1325 	e1e_wphy(&adapter->hw, 29, 0x001A);
1326 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1327 }
1328 
1329 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1330 {
1331 	struct e1000_hw *hw = &adapter->hw;
1332 	u32 ctrl_reg = 0;
1333 	u16 phy_reg = 0;
1334 	s32 ret_val = 0;
1335 
1336 	hw->mac.autoneg = 0;
1337 
1338 	if (hw->phy.type == e1000_phy_ife) {
1339 		/* force 100, set loopback */
1340 		e1e_wphy(hw, MII_BMCR, 0x6100);
1341 
1342 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1343 		ctrl_reg = er32(CTRL);
1344 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1345 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1346 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1347 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1348 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1349 
1350 		ew32(CTRL, ctrl_reg);
1351 		e1e_flush();
1352 		usleep_range(500, 1000);
1353 
1354 		return 0;
1355 	}
1356 
1357 	/* Specific PHY configuration for loopback */
1358 	switch (hw->phy.type) {
1359 	case e1000_phy_m88:
1360 		/* Auto-MDI/MDIX Off */
1361 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1362 		/* reset to update Auto-MDI/MDIX */
1363 		e1e_wphy(hw, MII_BMCR, 0x9140);
1364 		/* autoneg off */
1365 		e1e_wphy(hw, MII_BMCR, 0x8140);
1366 		break;
1367 	case e1000_phy_gg82563:
1368 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1369 		break;
1370 	case e1000_phy_bm:
1371 		/* Set Default MAC Interface speed to 1GB */
1372 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1373 		phy_reg &= ~0x0007;
1374 		phy_reg |= 0x006;
1375 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1376 		/* Assert SW reset for above settings to take effect */
1377 		hw->phy.ops.commit(hw);
1378 		usleep_range(1000, 2000);
1379 		/* Force Full Duplex */
1380 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1381 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1382 		/* Set Link Up (in force link) */
1383 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1384 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1385 		/* Force Link */
1386 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1387 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1388 		/* Set Early Link Enable */
1389 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1390 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1391 		break;
1392 	case e1000_phy_82577:
1393 	case e1000_phy_82578:
1394 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1395 		ret_val = hw->phy.ops.acquire(hw);
1396 		if (ret_val) {
1397 			e_err("Cannot setup 1Gbps loopback.\n");
1398 			return ret_val;
1399 		}
1400 		e1000_configure_k1_ich8lan(hw, false);
1401 		hw->phy.ops.release(hw);
1402 		break;
1403 	case e1000_phy_82579:
1404 		/* Disable PHY energy detect power down */
1405 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1406 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1407 		/* Disable full chip energy detect */
1408 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1409 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1410 		/* Enable loopback on the PHY */
1411 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1412 		break;
1413 	default:
1414 		break;
1415 	}
1416 
1417 	/* force 1000, set loopback */
1418 	e1e_wphy(hw, MII_BMCR, 0x4140);
1419 	msleep(250);
1420 
1421 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1422 	ctrl_reg = er32(CTRL);
1423 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1424 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1425 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1426 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1427 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1428 
1429 	if (adapter->flags & FLAG_IS_ICH)
1430 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1431 
1432 	if (hw->phy.media_type == e1000_media_type_copper &&
1433 	    hw->phy.type == e1000_phy_m88) {
1434 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1435 	} else {
1436 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1437 		 * detected.
1438 		 */
1439 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1440 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1441 	}
1442 
1443 	ew32(CTRL, ctrl_reg);
1444 
1445 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1446 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1447 	 */
1448 	if (hw->phy.type == e1000_phy_m88)
1449 		e1000_phy_disable_receiver(adapter);
1450 
1451 	usleep_range(500, 1000);
1452 
1453 	return 0;
1454 }
1455 
1456 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1457 {
1458 	struct e1000_hw *hw = &adapter->hw;
1459 	u32 ctrl = er32(CTRL);
1460 	int link;
1461 
1462 	/* special requirements for 82571/82572 fiber adapters */
1463 
1464 	/* jump through hoops to make sure link is up because serdes
1465 	 * link is hardwired up
1466 	 */
1467 	ctrl |= E1000_CTRL_SLU;
1468 	ew32(CTRL, ctrl);
1469 
1470 	/* disable autoneg */
1471 	ctrl = er32(TXCW);
1472 	ctrl &= ~BIT(31);
1473 	ew32(TXCW, ctrl);
1474 
1475 	link = (er32(STATUS) & E1000_STATUS_LU);
1476 
1477 	if (!link) {
1478 		/* set invert loss of signal */
1479 		ctrl = er32(CTRL);
1480 		ctrl |= E1000_CTRL_ILOS;
1481 		ew32(CTRL, ctrl);
1482 	}
1483 
1484 	/* special write to serdes control register to enable SerDes analog
1485 	 * loopback
1486 	 */
1487 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1488 	e1e_flush();
1489 	usleep_range(10000, 20000);
1490 
1491 	return 0;
1492 }
1493 
1494 /* only call this for fiber/serdes connections to es2lan */
1495 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1496 {
1497 	struct e1000_hw *hw = &adapter->hw;
1498 	u32 ctrlext = er32(CTRL_EXT);
1499 	u32 ctrl = er32(CTRL);
1500 
1501 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1502 	 * on mac_type 80003es2lan)
1503 	 */
1504 	adapter->tx_fifo_head = ctrlext;
1505 
1506 	/* clear the serdes mode bits, putting the device into mac loopback */
1507 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1508 	ew32(CTRL_EXT, ctrlext);
1509 
1510 	/* force speed to 1000/FD, link up */
1511 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1512 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1513 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1514 	ew32(CTRL, ctrl);
1515 
1516 	/* set mac loopback */
1517 	ctrl = er32(RCTL);
1518 	ctrl |= E1000_RCTL_LBM_MAC;
1519 	ew32(RCTL, ctrl);
1520 
1521 	/* set testing mode parameters (no need to reset later) */
1522 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1523 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1524 	ew32(KMRNCTRLSTA,
1525 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1526 
1527 	return 0;
1528 }
1529 
1530 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1531 {
1532 	struct e1000_hw *hw = &adapter->hw;
1533 	u32 rctl, fext_nvm11, tarc0;
1534 
1535 	if (hw->mac.type == e1000_pch_spt) {
1536 		fext_nvm11 = er32(FEXTNVM11);
1537 		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1538 		ew32(FEXTNVM11, fext_nvm11);
1539 		tarc0 = er32(TARC(0));
1540 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1541 		tarc0 &= 0xcfffffff;
1542 		/* set bit 29 (value of MULR requests is now 2) */
1543 		tarc0 |= 0x20000000;
1544 		ew32(TARC(0), tarc0);
1545 	}
1546 	if (hw->phy.media_type == e1000_media_type_fiber ||
1547 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1548 		switch (hw->mac.type) {
1549 		case e1000_80003es2lan:
1550 			return e1000_set_es2lan_mac_loopback(adapter);
1551 		case e1000_82571:
1552 		case e1000_82572:
1553 			return e1000_set_82571_fiber_loopback(adapter);
1554 		default:
1555 			rctl = er32(RCTL);
1556 			rctl |= E1000_RCTL_LBM_TCVR;
1557 			ew32(RCTL, rctl);
1558 			return 0;
1559 		}
1560 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1561 		return e1000_integrated_phy_loopback(adapter);
1562 	}
1563 
1564 	return 7;
1565 }
1566 
1567 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1568 {
1569 	struct e1000_hw *hw = &adapter->hw;
1570 	u32 rctl, fext_nvm11, tarc0;
1571 	u16 phy_reg;
1572 
1573 	rctl = er32(RCTL);
1574 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1575 	ew32(RCTL, rctl);
1576 
1577 	switch (hw->mac.type) {
1578 	case e1000_pch_spt:
1579 		fext_nvm11 = er32(FEXTNVM11);
1580 		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1581 		ew32(FEXTNVM11, fext_nvm11);
1582 		tarc0 = er32(TARC(0));
1583 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1584 		/* set bit 29 (value of MULR requests is now 0) */
1585 		tarc0 &= 0xcfffffff;
1586 		ew32(TARC(0), tarc0);
1587 		/* fall through */
1588 	case e1000_80003es2lan:
1589 		if (hw->phy.media_type == e1000_media_type_fiber ||
1590 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1591 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1592 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1593 			adapter->tx_fifo_head = 0;
1594 		}
1595 		/* fall through */
1596 	case e1000_82571:
1597 	case e1000_82572:
1598 		if (hw->phy.media_type == e1000_media_type_fiber ||
1599 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1600 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1601 			e1e_flush();
1602 			usleep_range(10000, 20000);
1603 			break;
1604 		}
1605 		/* Fall Through */
1606 	default:
1607 		hw->mac.autoneg = 1;
1608 		if (hw->phy.type == e1000_phy_gg82563)
1609 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1610 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1611 		if (phy_reg & BMCR_LOOPBACK) {
1612 			phy_reg &= ~BMCR_LOOPBACK;
1613 			e1e_wphy(hw, MII_BMCR, phy_reg);
1614 			if (hw->phy.ops.commit)
1615 				hw->phy.ops.commit(hw);
1616 		}
1617 		break;
1618 	}
1619 }
1620 
1621 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1622 				      unsigned int frame_size)
1623 {
1624 	memset(skb->data, 0xFF, frame_size);
1625 	frame_size &= ~1;
1626 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1627 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1628 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1629 }
1630 
1631 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1632 				    unsigned int frame_size)
1633 {
1634 	frame_size &= ~1;
1635 	if (*(skb->data + 3) == 0xFF)
1636 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1637 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1638 			return 0;
1639 	return 13;
1640 }
1641 
1642 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1643 {
1644 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1645 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1646 	struct pci_dev *pdev = adapter->pdev;
1647 	struct e1000_hw *hw = &adapter->hw;
1648 	struct e1000_buffer *buffer_info;
1649 	int i, j, k, l;
1650 	int lc;
1651 	int good_cnt;
1652 	int ret_val = 0;
1653 	unsigned long time;
1654 
1655 	ew32(RDT(0), rx_ring->count - 1);
1656 
1657 	/* Calculate the loop count based on the largest descriptor ring
1658 	 * The idea is to wrap the largest ring a number of times using 64
1659 	 * send/receive pairs during each loop
1660 	 */
1661 
1662 	if (rx_ring->count <= tx_ring->count)
1663 		lc = ((tx_ring->count / 64) * 2) + 1;
1664 	else
1665 		lc = ((rx_ring->count / 64) * 2) + 1;
1666 
1667 	k = 0;
1668 	l = 0;
1669 	/* loop count loop */
1670 	for (j = 0; j <= lc; j++) {
1671 		/* send the packets */
1672 		for (i = 0; i < 64; i++) {
1673 			buffer_info = &tx_ring->buffer_info[k];
1674 
1675 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1676 			dma_sync_single_for_device(&pdev->dev,
1677 						   buffer_info->dma,
1678 						   buffer_info->length,
1679 						   DMA_TO_DEVICE);
1680 			k++;
1681 			if (k == tx_ring->count)
1682 				k = 0;
1683 		}
1684 		ew32(TDT(0), k);
1685 		e1e_flush();
1686 		msleep(200);
1687 		time = jiffies;	/* set the start time for the receive */
1688 		good_cnt = 0;
1689 		/* receive the sent packets */
1690 		do {
1691 			buffer_info = &rx_ring->buffer_info[l];
1692 
1693 			dma_sync_single_for_cpu(&pdev->dev,
1694 						buffer_info->dma, 2048,
1695 						DMA_FROM_DEVICE);
1696 
1697 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1698 							   1024);
1699 			if (!ret_val)
1700 				good_cnt++;
1701 			l++;
1702 			if (l == rx_ring->count)
1703 				l = 0;
1704 			/* time + 20 msecs (200 msecs on 2.4) is more than
1705 			 * enough time to complete the receives, if it's
1706 			 * exceeded, break and error off
1707 			 */
1708 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1709 		if (good_cnt != 64) {
1710 			ret_val = 13;	/* ret_val is the same as mis-compare */
1711 			break;
1712 		}
1713 		if (time_after(jiffies, time + 20)) {
1714 			ret_val = 14;	/* error code for time out error */
1715 			break;
1716 		}
1717 	}
1718 	return ret_val;
1719 }
1720 
1721 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1722 {
1723 	struct e1000_hw *hw = &adapter->hw;
1724 
1725 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1726 	if (hw->phy.ops.check_reset_block &&
1727 	    hw->phy.ops.check_reset_block(hw)) {
1728 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1729 		*data = 0;
1730 		goto out;
1731 	}
1732 
1733 	*data = e1000_setup_desc_rings(adapter);
1734 	if (*data)
1735 		goto out;
1736 
1737 	*data = e1000_setup_loopback_test(adapter);
1738 	if (*data)
1739 		goto err_loopback;
1740 
1741 	*data = e1000_run_loopback_test(adapter);
1742 	e1000_loopback_cleanup(adapter);
1743 
1744 err_loopback:
1745 	e1000_free_desc_rings(adapter);
1746 out:
1747 	return *data;
1748 }
1749 
1750 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1751 {
1752 	struct e1000_hw *hw = &adapter->hw;
1753 
1754 	*data = 0;
1755 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1756 		int i = 0;
1757 
1758 		hw->mac.serdes_has_link = false;
1759 
1760 		/* On some blade server designs, link establishment
1761 		 * could take as long as 2-3 minutes
1762 		 */
1763 		do {
1764 			hw->mac.ops.check_for_link(hw);
1765 			if (hw->mac.serdes_has_link)
1766 				return *data;
1767 			msleep(20);
1768 		} while (i++ < 3750);
1769 
1770 		*data = 1;
1771 	} else {
1772 		hw->mac.ops.check_for_link(hw);
1773 		if (hw->mac.autoneg)
1774 			/* On some Phy/switch combinations, link establishment
1775 			 * can take a few seconds more than expected.
1776 			 */
1777 			msleep_interruptible(5000);
1778 
1779 		if (!(er32(STATUS) & E1000_STATUS_LU))
1780 			*data = 1;
1781 	}
1782 	return *data;
1783 }
1784 
1785 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1786 				 int sset)
1787 {
1788 	switch (sset) {
1789 	case ETH_SS_TEST:
1790 		return E1000_TEST_LEN;
1791 	case ETH_SS_STATS:
1792 		return E1000_STATS_LEN;
1793 	default:
1794 		return -EOPNOTSUPP;
1795 	}
1796 }
1797 
1798 static void e1000_diag_test(struct net_device *netdev,
1799 			    struct ethtool_test *eth_test, u64 *data)
1800 {
1801 	struct e1000_adapter *adapter = netdev_priv(netdev);
1802 	u16 autoneg_advertised;
1803 	u8 forced_speed_duplex;
1804 	u8 autoneg;
1805 	bool if_running = netif_running(netdev);
1806 
1807 	pm_runtime_get_sync(netdev->dev.parent);
1808 
1809 	set_bit(__E1000_TESTING, &adapter->state);
1810 
1811 	if (!if_running) {
1812 		/* Get control of and reset hardware */
1813 		if (adapter->flags & FLAG_HAS_AMT)
1814 			e1000e_get_hw_control(adapter);
1815 
1816 		e1000e_power_up_phy(adapter);
1817 
1818 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1819 		e1000e_reset(adapter);
1820 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1821 	}
1822 
1823 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1824 		/* Offline tests */
1825 
1826 		/* save speed, duplex, autoneg settings */
1827 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1828 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1829 		autoneg = adapter->hw.mac.autoneg;
1830 
1831 		e_info("offline testing starting\n");
1832 
1833 		if (if_running)
1834 			/* indicate we're in test mode */
1835 			e1000e_close(netdev);
1836 
1837 		if (e1000_reg_test(adapter, &data[0]))
1838 			eth_test->flags |= ETH_TEST_FL_FAILED;
1839 
1840 		e1000e_reset(adapter);
1841 		if (e1000_eeprom_test(adapter, &data[1]))
1842 			eth_test->flags |= ETH_TEST_FL_FAILED;
1843 
1844 		e1000e_reset(adapter);
1845 		if (e1000_intr_test(adapter, &data[2]))
1846 			eth_test->flags |= ETH_TEST_FL_FAILED;
1847 
1848 		e1000e_reset(adapter);
1849 		if (e1000_loopback_test(adapter, &data[3]))
1850 			eth_test->flags |= ETH_TEST_FL_FAILED;
1851 
1852 		/* force this routine to wait until autoneg complete/timeout */
1853 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1854 		e1000e_reset(adapter);
1855 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1856 
1857 		if (e1000_link_test(adapter, &data[4]))
1858 			eth_test->flags |= ETH_TEST_FL_FAILED;
1859 
1860 		/* restore speed, duplex, autoneg settings */
1861 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1862 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1863 		adapter->hw.mac.autoneg = autoneg;
1864 		e1000e_reset(adapter);
1865 
1866 		clear_bit(__E1000_TESTING, &adapter->state);
1867 		if (if_running)
1868 			e1000e_open(netdev);
1869 	} else {
1870 		/* Online tests */
1871 
1872 		e_info("online testing starting\n");
1873 
1874 		/* register, eeprom, intr and loopback tests not run online */
1875 		data[0] = 0;
1876 		data[1] = 0;
1877 		data[2] = 0;
1878 		data[3] = 0;
1879 
1880 		if (e1000_link_test(adapter, &data[4]))
1881 			eth_test->flags |= ETH_TEST_FL_FAILED;
1882 
1883 		clear_bit(__E1000_TESTING, &adapter->state);
1884 	}
1885 
1886 	if (!if_running) {
1887 		e1000e_reset(adapter);
1888 
1889 		if (adapter->flags & FLAG_HAS_AMT)
1890 			e1000e_release_hw_control(adapter);
1891 	}
1892 
1893 	msleep_interruptible(4 * 1000);
1894 
1895 	pm_runtime_put_sync(netdev->dev.parent);
1896 }
1897 
1898 static void e1000_get_wol(struct net_device *netdev,
1899 			  struct ethtool_wolinfo *wol)
1900 {
1901 	struct e1000_adapter *adapter = netdev_priv(netdev);
1902 
1903 	wol->supported = 0;
1904 	wol->wolopts = 0;
1905 
1906 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1907 	    !device_can_wakeup(&adapter->pdev->dev))
1908 		return;
1909 
1910 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1911 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1912 
1913 	/* apply any specific unsupported masks here */
1914 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1915 		wol->supported &= ~WAKE_UCAST;
1916 
1917 		if (adapter->wol & E1000_WUFC_EX)
1918 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1919 	}
1920 
1921 	if (adapter->wol & E1000_WUFC_EX)
1922 		wol->wolopts |= WAKE_UCAST;
1923 	if (adapter->wol & E1000_WUFC_MC)
1924 		wol->wolopts |= WAKE_MCAST;
1925 	if (adapter->wol & E1000_WUFC_BC)
1926 		wol->wolopts |= WAKE_BCAST;
1927 	if (adapter->wol & E1000_WUFC_MAG)
1928 		wol->wolopts |= WAKE_MAGIC;
1929 	if (adapter->wol & E1000_WUFC_LNKC)
1930 		wol->wolopts |= WAKE_PHY;
1931 }
1932 
1933 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1934 {
1935 	struct e1000_adapter *adapter = netdev_priv(netdev);
1936 
1937 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1938 	    !device_can_wakeup(&adapter->pdev->dev) ||
1939 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1940 			      WAKE_MAGIC | WAKE_PHY)))
1941 		return -EOPNOTSUPP;
1942 
1943 	/* these settings will always override what we currently have */
1944 	adapter->wol = 0;
1945 
1946 	if (wol->wolopts & WAKE_UCAST)
1947 		adapter->wol |= E1000_WUFC_EX;
1948 	if (wol->wolopts & WAKE_MCAST)
1949 		adapter->wol |= E1000_WUFC_MC;
1950 	if (wol->wolopts & WAKE_BCAST)
1951 		adapter->wol |= E1000_WUFC_BC;
1952 	if (wol->wolopts & WAKE_MAGIC)
1953 		adapter->wol |= E1000_WUFC_MAG;
1954 	if (wol->wolopts & WAKE_PHY)
1955 		adapter->wol |= E1000_WUFC_LNKC;
1956 
1957 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1958 
1959 	return 0;
1960 }
1961 
1962 static int e1000_set_phys_id(struct net_device *netdev,
1963 			     enum ethtool_phys_id_state state)
1964 {
1965 	struct e1000_adapter *adapter = netdev_priv(netdev);
1966 	struct e1000_hw *hw = &adapter->hw;
1967 
1968 	switch (state) {
1969 	case ETHTOOL_ID_ACTIVE:
1970 		pm_runtime_get_sync(netdev->dev.parent);
1971 
1972 		if (!hw->mac.ops.blink_led)
1973 			return 2;	/* cycle on/off twice per second */
1974 
1975 		hw->mac.ops.blink_led(hw);
1976 		break;
1977 
1978 	case ETHTOOL_ID_INACTIVE:
1979 		if (hw->phy.type == e1000_phy_ife)
1980 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1981 		hw->mac.ops.led_off(hw);
1982 		hw->mac.ops.cleanup_led(hw);
1983 		pm_runtime_put_sync(netdev->dev.parent);
1984 		break;
1985 
1986 	case ETHTOOL_ID_ON:
1987 		hw->mac.ops.led_on(hw);
1988 		break;
1989 
1990 	case ETHTOOL_ID_OFF:
1991 		hw->mac.ops.led_off(hw);
1992 		break;
1993 	}
1994 
1995 	return 0;
1996 }
1997 
1998 static int e1000_get_coalesce(struct net_device *netdev,
1999 			      struct ethtool_coalesce *ec)
2000 {
2001 	struct e1000_adapter *adapter = netdev_priv(netdev);
2002 
2003 	if (adapter->itr_setting <= 4)
2004 		ec->rx_coalesce_usecs = adapter->itr_setting;
2005 	else
2006 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2007 
2008 	return 0;
2009 }
2010 
2011 static int e1000_set_coalesce(struct net_device *netdev,
2012 			      struct ethtool_coalesce *ec)
2013 {
2014 	struct e1000_adapter *adapter = netdev_priv(netdev);
2015 
2016 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2017 	    ((ec->rx_coalesce_usecs > 4) &&
2018 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2019 	    (ec->rx_coalesce_usecs == 2))
2020 		return -EINVAL;
2021 
2022 	if (ec->rx_coalesce_usecs == 4) {
2023 		adapter->itr_setting = 4;
2024 		adapter->itr = adapter->itr_setting;
2025 	} else if (ec->rx_coalesce_usecs <= 3) {
2026 		adapter->itr = 20000;
2027 		adapter->itr_setting = ec->rx_coalesce_usecs;
2028 	} else {
2029 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2030 		adapter->itr_setting = adapter->itr & ~3;
2031 	}
2032 
2033 	pm_runtime_get_sync(netdev->dev.parent);
2034 
2035 	if (adapter->itr_setting != 0)
2036 		e1000e_write_itr(adapter, adapter->itr);
2037 	else
2038 		e1000e_write_itr(adapter, 0);
2039 
2040 	pm_runtime_put_sync(netdev->dev.parent);
2041 
2042 	return 0;
2043 }
2044 
2045 static int e1000_nway_reset(struct net_device *netdev)
2046 {
2047 	struct e1000_adapter *adapter = netdev_priv(netdev);
2048 
2049 	if (!netif_running(netdev))
2050 		return -EAGAIN;
2051 
2052 	if (!adapter->hw.mac.autoneg)
2053 		return -EINVAL;
2054 
2055 	pm_runtime_get_sync(netdev->dev.parent);
2056 	e1000e_reinit_locked(adapter);
2057 	pm_runtime_put_sync(netdev->dev.parent);
2058 
2059 	return 0;
2060 }
2061 
2062 static void e1000_get_ethtool_stats(struct net_device *netdev,
2063 				    struct ethtool_stats __always_unused *stats,
2064 				    u64 *data)
2065 {
2066 	struct e1000_adapter *adapter = netdev_priv(netdev);
2067 	struct rtnl_link_stats64 net_stats;
2068 	int i;
2069 	char *p = NULL;
2070 
2071 	pm_runtime_get_sync(netdev->dev.parent);
2072 
2073 	e1000e_get_stats64(netdev, &net_stats);
2074 
2075 	pm_runtime_put_sync(netdev->dev.parent);
2076 
2077 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2078 		switch (e1000_gstrings_stats[i].type) {
2079 		case NETDEV_STATS:
2080 			p = (char *)&net_stats +
2081 			    e1000_gstrings_stats[i].stat_offset;
2082 			break;
2083 		case E1000_STATS:
2084 			p = (char *)adapter +
2085 			    e1000_gstrings_stats[i].stat_offset;
2086 			break;
2087 		default:
2088 			data[i] = 0;
2089 			continue;
2090 		}
2091 
2092 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2093 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2094 	}
2095 }
2096 
2097 static void e1000_get_strings(struct net_device __always_unused *netdev,
2098 			      u32 stringset, u8 *data)
2099 {
2100 	u8 *p = data;
2101 	int i;
2102 
2103 	switch (stringset) {
2104 	case ETH_SS_TEST:
2105 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2106 		break;
2107 	case ETH_SS_STATS:
2108 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2109 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2110 			       ETH_GSTRING_LEN);
2111 			p += ETH_GSTRING_LEN;
2112 		}
2113 		break;
2114 	}
2115 }
2116 
2117 static int e1000_get_rxnfc(struct net_device *netdev,
2118 			   struct ethtool_rxnfc *info,
2119 			   u32 __always_unused *rule_locs)
2120 {
2121 	info->data = 0;
2122 
2123 	switch (info->cmd) {
2124 	case ETHTOOL_GRXFH: {
2125 		struct e1000_adapter *adapter = netdev_priv(netdev);
2126 		struct e1000_hw *hw = &adapter->hw;
2127 		u32 mrqc;
2128 
2129 		pm_runtime_get_sync(netdev->dev.parent);
2130 		mrqc = er32(MRQC);
2131 		pm_runtime_put_sync(netdev->dev.parent);
2132 
2133 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2134 			return 0;
2135 
2136 		switch (info->flow_type) {
2137 		case TCP_V4_FLOW:
2138 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2139 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2140 			/* fall through */
2141 		case UDP_V4_FLOW:
2142 		case SCTP_V4_FLOW:
2143 		case AH_ESP_V4_FLOW:
2144 		case IPV4_FLOW:
2145 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2146 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2147 			break;
2148 		case TCP_V6_FLOW:
2149 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2150 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2151 			/* fall through */
2152 		case UDP_V6_FLOW:
2153 		case SCTP_V6_FLOW:
2154 		case AH_ESP_V6_FLOW:
2155 		case IPV6_FLOW:
2156 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2157 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2158 			break;
2159 		default:
2160 			break;
2161 		}
2162 		return 0;
2163 	}
2164 	default:
2165 		return -EOPNOTSUPP;
2166 	}
2167 }
2168 
2169 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2170 {
2171 	struct e1000_adapter *adapter = netdev_priv(netdev);
2172 	struct e1000_hw *hw = &adapter->hw;
2173 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2174 	u32 ret_val;
2175 
2176 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2177 		return -EOPNOTSUPP;
2178 
2179 	switch (hw->phy.type) {
2180 	case e1000_phy_82579:
2181 		cap_addr = I82579_EEE_CAPABILITY;
2182 		lpa_addr = I82579_EEE_LP_ABILITY;
2183 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2184 		break;
2185 	case e1000_phy_i217:
2186 		cap_addr = I217_EEE_CAPABILITY;
2187 		lpa_addr = I217_EEE_LP_ABILITY;
2188 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2189 		break;
2190 	default:
2191 		return -EOPNOTSUPP;
2192 	}
2193 
2194 	pm_runtime_get_sync(netdev->dev.parent);
2195 
2196 	ret_val = hw->phy.ops.acquire(hw);
2197 	if (ret_val) {
2198 		pm_runtime_put_sync(netdev->dev.parent);
2199 		return -EBUSY;
2200 	}
2201 
2202 	/* EEE Capability */
2203 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2204 	if (ret_val)
2205 		goto release;
2206 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2207 
2208 	/* EEE Advertised */
2209 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2210 
2211 	/* EEE Link Partner Advertised */
2212 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2213 	if (ret_val)
2214 		goto release;
2215 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2216 
2217 	/* EEE PCS Status */
2218 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2219 	if (ret_val)
2220 		goto release;
2221 	if (hw->phy.type == e1000_phy_82579)
2222 		phy_data <<= 8;
2223 
2224 	/* Result of the EEE auto negotiation - there is no register that
2225 	 * has the status of the EEE negotiation so do a best-guess based
2226 	 * on whether Tx or Rx LPI indications have been received.
2227 	 */
2228 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2229 		edata->eee_active = true;
2230 
2231 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2232 	edata->tx_lpi_enabled = true;
2233 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2234 
2235 release:
2236 	hw->phy.ops.release(hw);
2237 	if (ret_val)
2238 		ret_val = -ENODATA;
2239 
2240 	pm_runtime_put_sync(netdev->dev.parent);
2241 
2242 	return ret_val;
2243 }
2244 
2245 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2246 {
2247 	struct e1000_adapter *adapter = netdev_priv(netdev);
2248 	struct e1000_hw *hw = &adapter->hw;
2249 	struct ethtool_eee eee_curr;
2250 	s32 ret_val;
2251 
2252 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2253 	if (ret_val)
2254 		return ret_val;
2255 
2256 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2257 		e_err("Setting EEE tx-lpi is not supported\n");
2258 		return -EINVAL;
2259 	}
2260 
2261 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2262 		e_err("Setting EEE Tx LPI timer is not supported\n");
2263 		return -EINVAL;
2264 	}
2265 
2266 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2267 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2268 		return -EINVAL;
2269 	}
2270 
2271 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2272 
2273 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2274 
2275 	pm_runtime_get_sync(netdev->dev.parent);
2276 
2277 	/* reset the link */
2278 	if (netif_running(netdev))
2279 		e1000e_reinit_locked(adapter);
2280 	else
2281 		e1000e_reset(adapter);
2282 
2283 	pm_runtime_put_sync(netdev->dev.parent);
2284 
2285 	return 0;
2286 }
2287 
2288 static int e1000e_get_ts_info(struct net_device *netdev,
2289 			      struct ethtool_ts_info *info)
2290 {
2291 	struct e1000_adapter *adapter = netdev_priv(netdev);
2292 
2293 	ethtool_op_get_ts_info(netdev, info);
2294 
2295 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2296 		return 0;
2297 
2298 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2299 				  SOF_TIMESTAMPING_RX_HARDWARE |
2300 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2301 
2302 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2303 
2304 	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2305 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2306 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2307 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2308 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2309 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2310 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2311 			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2312 			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2313 			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2314 			    BIT(HWTSTAMP_FILTER_ALL));
2315 
2316 	if (adapter->ptp_clock)
2317 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2318 
2319 	return 0;
2320 }
2321 
2322 static const struct ethtool_ops e1000_ethtool_ops = {
2323 	.get_drvinfo		= e1000_get_drvinfo,
2324 	.get_regs_len		= e1000_get_regs_len,
2325 	.get_regs		= e1000_get_regs,
2326 	.get_wol		= e1000_get_wol,
2327 	.set_wol		= e1000_set_wol,
2328 	.get_msglevel		= e1000_get_msglevel,
2329 	.set_msglevel		= e1000_set_msglevel,
2330 	.nway_reset		= e1000_nway_reset,
2331 	.get_link		= ethtool_op_get_link,
2332 	.get_eeprom_len		= e1000_get_eeprom_len,
2333 	.get_eeprom		= e1000_get_eeprom,
2334 	.set_eeprom		= e1000_set_eeprom,
2335 	.get_ringparam		= e1000_get_ringparam,
2336 	.set_ringparam		= e1000_set_ringparam,
2337 	.get_pauseparam		= e1000_get_pauseparam,
2338 	.set_pauseparam		= e1000_set_pauseparam,
2339 	.self_test		= e1000_diag_test,
2340 	.get_strings		= e1000_get_strings,
2341 	.set_phys_id		= e1000_set_phys_id,
2342 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2343 	.get_sset_count		= e1000e_get_sset_count,
2344 	.get_coalesce		= e1000_get_coalesce,
2345 	.set_coalesce		= e1000_set_coalesce,
2346 	.get_rxnfc		= e1000_get_rxnfc,
2347 	.get_ts_info		= e1000e_get_ts_info,
2348 	.get_eee		= e1000e_get_eee,
2349 	.set_eee		= e1000e_set_eee,
2350 	.get_link_ksettings	= e1000_get_link_ksettings,
2351 	.set_link_ksettings	= e1000_set_link_ksettings,
2352 };
2353 
2354 void e1000e_set_ethtool_ops(struct net_device *netdev)
2355 {
2356 	netdev->ethtool_ops = &e1000_ethtool_ops;
2357 }
2358