1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 #define E1000_STAT(str, m) { \ 27 .stat_string = str, \ 28 .type = E1000_STATS, \ 29 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 30 .stat_offset = offsetof(struct e1000_adapter, m) } 31 #define E1000_NETDEV_STAT(str, m) { \ 32 .stat_string = str, \ 33 .type = NETDEV_STATS, \ 34 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 35 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 36 37 static const struct e1000_stats e1000_gstrings_stats[] = { 38 E1000_STAT("rx_packets", stats.gprc), 39 E1000_STAT("tx_packets", stats.gptc), 40 E1000_STAT("rx_bytes", stats.gorc), 41 E1000_STAT("tx_bytes", stats.gotc), 42 E1000_STAT("rx_broadcast", stats.bprc), 43 E1000_STAT("tx_broadcast", stats.bptc), 44 E1000_STAT("rx_multicast", stats.mprc), 45 E1000_STAT("tx_multicast", stats.mptc), 46 E1000_NETDEV_STAT("rx_errors", rx_errors), 47 E1000_NETDEV_STAT("tx_errors", tx_errors), 48 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 49 E1000_STAT("multicast", stats.mprc), 50 E1000_STAT("collisions", stats.colc), 51 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 52 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 53 E1000_STAT("rx_crc_errors", stats.crcerrs), 54 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 55 E1000_STAT("rx_no_buffer_count", stats.rnbc), 56 E1000_STAT("rx_missed_errors", stats.mpc), 57 E1000_STAT("tx_aborted_errors", stats.ecol), 58 E1000_STAT("tx_carrier_errors", stats.tncrs), 59 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 60 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 61 E1000_STAT("tx_window_errors", stats.latecol), 62 E1000_STAT("tx_abort_late_coll", stats.latecol), 63 E1000_STAT("tx_deferred_ok", stats.dc), 64 E1000_STAT("tx_single_coll_ok", stats.scc), 65 E1000_STAT("tx_multi_coll_ok", stats.mcc), 66 E1000_STAT("tx_timeout_count", tx_timeout_count), 67 E1000_STAT("tx_restart_queue", restart_queue), 68 E1000_STAT("rx_long_length_errors", stats.roc), 69 E1000_STAT("rx_short_length_errors", stats.ruc), 70 E1000_STAT("rx_align_errors", stats.algnerrc), 71 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 72 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 73 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 74 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 75 E1000_STAT("tx_flow_control_xon", stats.xontxc), 76 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 77 E1000_STAT("rx_csum_offload_good", hw_csum_good), 78 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 79 E1000_STAT("rx_header_split", rx_hdr_split), 80 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 81 E1000_STAT("tx_smbus", stats.mgptc), 82 E1000_STAT("rx_smbus", stats.mgprc), 83 E1000_STAT("dropped_smbus", stats.mgpdc), 84 E1000_STAT("rx_dma_failed", rx_dma_failed), 85 E1000_STAT("tx_dma_failed", tx_dma_failed), 86 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 87 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 88 E1000_STAT("corr_ecc_errors", corr_errors), 89 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 90 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 91 }; 92 93 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 94 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 95 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 96 "Register test (offline)", "Eeprom test (offline)", 97 "Interrupt test (offline)", "Loopback test (offline)", 98 "Link test (on/offline)" 99 }; 100 101 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 102 103 static int e1000_get_link_ksettings(struct net_device *netdev, 104 struct ethtool_link_ksettings *cmd) 105 { 106 struct e1000_adapter *adapter = netdev_priv(netdev); 107 struct e1000_hw *hw = &adapter->hw; 108 u32 speed, supported, advertising; 109 110 if (hw->phy.media_type == e1000_media_type_copper) { 111 supported = (SUPPORTED_10baseT_Half | 112 SUPPORTED_10baseT_Full | 113 SUPPORTED_100baseT_Half | 114 SUPPORTED_100baseT_Full | 115 SUPPORTED_1000baseT_Full | 116 SUPPORTED_Autoneg | 117 SUPPORTED_TP); 118 if (hw->phy.type == e1000_phy_ife) 119 supported &= ~SUPPORTED_1000baseT_Full; 120 advertising = ADVERTISED_TP; 121 122 if (hw->mac.autoneg == 1) { 123 advertising |= ADVERTISED_Autoneg; 124 /* the e1000 autoneg seems to match ethtool nicely */ 125 advertising |= hw->phy.autoneg_advertised; 126 } 127 128 cmd->base.port = PORT_TP; 129 cmd->base.phy_address = hw->phy.addr; 130 } else { 131 supported = (SUPPORTED_1000baseT_Full | 132 SUPPORTED_FIBRE | 133 SUPPORTED_Autoneg); 134 135 advertising = (ADVERTISED_1000baseT_Full | 136 ADVERTISED_FIBRE | 137 ADVERTISED_Autoneg); 138 139 cmd->base.port = PORT_FIBRE; 140 } 141 142 speed = SPEED_UNKNOWN; 143 cmd->base.duplex = DUPLEX_UNKNOWN; 144 145 if (netif_running(netdev)) { 146 if (netif_carrier_ok(netdev)) { 147 speed = adapter->link_speed; 148 cmd->base.duplex = adapter->link_duplex - 1; 149 } 150 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 151 u32 status = er32(STATUS); 152 153 if (status & E1000_STATUS_LU) { 154 if (status & E1000_STATUS_SPEED_1000) 155 speed = SPEED_1000; 156 else if (status & E1000_STATUS_SPEED_100) 157 speed = SPEED_100; 158 else 159 speed = SPEED_10; 160 161 if (status & E1000_STATUS_FD) 162 cmd->base.duplex = DUPLEX_FULL; 163 else 164 cmd->base.duplex = DUPLEX_HALF; 165 } 166 } 167 168 cmd->base.speed = speed; 169 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 170 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 171 172 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 173 if ((hw->phy.media_type == e1000_media_type_copper) && 174 netif_carrier_ok(netdev)) 175 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 176 ETH_TP_MDI_X : ETH_TP_MDI; 177 else 178 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 179 180 if (hw->phy.mdix == AUTO_ALL_MODES) 181 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 182 else 183 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 184 185 if (hw->phy.media_type != e1000_media_type_copper) 186 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 187 188 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 189 supported); 190 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 191 advertising); 192 193 return 0; 194 } 195 196 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 197 { 198 struct e1000_mac_info *mac = &adapter->hw.mac; 199 200 mac->autoneg = 0; 201 202 /* Make sure dplx is at most 1 bit and lsb of speed is not set 203 * for the switch() below to work 204 */ 205 if ((spd & 1) || (dplx & ~1)) 206 goto err_inval; 207 208 /* Fiber NICs only allow 1000 gbps Full duplex */ 209 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 210 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 211 goto err_inval; 212 } 213 214 switch (spd + dplx) { 215 case SPEED_10 + DUPLEX_HALF: 216 mac->forced_speed_duplex = ADVERTISE_10_HALF; 217 break; 218 case SPEED_10 + DUPLEX_FULL: 219 mac->forced_speed_duplex = ADVERTISE_10_FULL; 220 break; 221 case SPEED_100 + DUPLEX_HALF: 222 mac->forced_speed_duplex = ADVERTISE_100_HALF; 223 break; 224 case SPEED_100 + DUPLEX_FULL: 225 mac->forced_speed_duplex = ADVERTISE_100_FULL; 226 break; 227 case SPEED_1000 + DUPLEX_FULL: 228 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 229 mac->autoneg = 1; 230 adapter->hw.phy.autoneg_advertised = 231 ADVERTISE_1000_FULL; 232 } else { 233 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 234 } 235 break; 236 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 237 default: 238 goto err_inval; 239 } 240 241 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 242 adapter->hw.phy.mdix = AUTO_ALL_MODES; 243 244 return 0; 245 246 err_inval: 247 e_err("Unsupported Speed/Duplex configuration\n"); 248 return -EINVAL; 249 } 250 251 static int e1000_set_link_ksettings(struct net_device *netdev, 252 const struct ethtool_link_ksettings *cmd) 253 { 254 struct e1000_adapter *adapter = netdev_priv(netdev); 255 struct e1000_hw *hw = &adapter->hw; 256 int ret_val = 0; 257 u32 advertising; 258 259 ethtool_convert_link_mode_to_legacy_u32(&advertising, 260 cmd->link_modes.advertising); 261 262 pm_runtime_get_sync(netdev->dev.parent); 263 264 /* When SoL/IDER sessions are active, autoneg/speed/duplex 265 * cannot be changed 266 */ 267 if (hw->phy.ops.check_reset_block && 268 hw->phy.ops.check_reset_block(hw)) { 269 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 270 ret_val = -EINVAL; 271 goto out; 272 } 273 274 /* MDI setting is only allowed when autoneg enabled because 275 * some hardware doesn't allow MDI setting when speed or 276 * duplex is forced. 277 */ 278 if (cmd->base.eth_tp_mdix_ctrl) { 279 if (hw->phy.media_type != e1000_media_type_copper) { 280 ret_val = -EOPNOTSUPP; 281 goto out; 282 } 283 284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 285 (cmd->base.autoneg != AUTONEG_ENABLE)) { 286 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 287 ret_val = -EINVAL; 288 goto out; 289 } 290 } 291 292 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 293 usleep_range(1000, 2000); 294 295 if (cmd->base.autoneg == AUTONEG_ENABLE) { 296 hw->mac.autoneg = 1; 297 if (hw->phy.media_type == e1000_media_type_fiber) 298 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 299 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 300 else 301 hw->phy.autoneg_advertised = advertising | 302 ADVERTISED_TP | ADVERTISED_Autoneg; 303 advertising = hw->phy.autoneg_advertised; 304 if (adapter->fc_autoneg) 305 hw->fc.requested_mode = e1000_fc_default; 306 } else { 307 u32 speed = cmd->base.speed; 308 /* calling this overrides forced MDI setting */ 309 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 310 ret_val = -EINVAL; 311 goto out; 312 } 313 } 314 315 /* MDI-X => 2; MDI => 1; Auto => 3 */ 316 if (cmd->base.eth_tp_mdix_ctrl) { 317 /* fix up the value for auto (3 => 0) as zero is mapped 318 * internally to auto 319 */ 320 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 321 hw->phy.mdix = AUTO_ALL_MODES; 322 else 323 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 324 } 325 326 /* reset the link */ 327 if (netif_running(adapter->netdev)) { 328 e1000e_down(adapter, true); 329 e1000e_up(adapter); 330 } else { 331 e1000e_reset(adapter); 332 } 333 334 out: 335 pm_runtime_put_sync(netdev->dev.parent); 336 clear_bit(__E1000_RESETTING, &adapter->state); 337 return ret_val; 338 } 339 340 static void e1000_get_pauseparam(struct net_device *netdev, 341 struct ethtool_pauseparam *pause) 342 { 343 struct e1000_adapter *adapter = netdev_priv(netdev); 344 struct e1000_hw *hw = &adapter->hw; 345 346 pause->autoneg = 347 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 348 349 if (hw->fc.current_mode == e1000_fc_rx_pause) { 350 pause->rx_pause = 1; 351 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 352 pause->tx_pause = 1; 353 } else if (hw->fc.current_mode == e1000_fc_full) { 354 pause->rx_pause = 1; 355 pause->tx_pause = 1; 356 } 357 } 358 359 static int e1000_set_pauseparam(struct net_device *netdev, 360 struct ethtool_pauseparam *pause) 361 { 362 struct e1000_adapter *adapter = netdev_priv(netdev); 363 struct e1000_hw *hw = &adapter->hw; 364 int retval = 0; 365 366 adapter->fc_autoneg = pause->autoneg; 367 368 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 369 usleep_range(1000, 2000); 370 371 pm_runtime_get_sync(netdev->dev.parent); 372 373 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 374 hw->fc.requested_mode = e1000_fc_default; 375 if (netif_running(adapter->netdev)) { 376 e1000e_down(adapter, true); 377 e1000e_up(adapter); 378 } else { 379 e1000e_reset(adapter); 380 } 381 } else { 382 if (pause->rx_pause && pause->tx_pause) 383 hw->fc.requested_mode = e1000_fc_full; 384 else if (pause->rx_pause && !pause->tx_pause) 385 hw->fc.requested_mode = e1000_fc_rx_pause; 386 else if (!pause->rx_pause && pause->tx_pause) 387 hw->fc.requested_mode = e1000_fc_tx_pause; 388 else if (!pause->rx_pause && !pause->tx_pause) 389 hw->fc.requested_mode = e1000_fc_none; 390 391 hw->fc.current_mode = hw->fc.requested_mode; 392 393 if (hw->phy.media_type == e1000_media_type_fiber) { 394 retval = hw->mac.ops.setup_link(hw); 395 /* implicit goto out */ 396 } else { 397 retval = e1000e_force_mac_fc(hw); 398 if (retval) 399 goto out; 400 e1000e_set_fc_watermarks(hw); 401 } 402 } 403 404 out: 405 pm_runtime_put_sync(netdev->dev.parent); 406 clear_bit(__E1000_RESETTING, &adapter->state); 407 return retval; 408 } 409 410 static u32 e1000_get_msglevel(struct net_device *netdev) 411 { 412 struct e1000_adapter *adapter = netdev_priv(netdev); 413 return adapter->msg_enable; 414 } 415 416 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 417 { 418 struct e1000_adapter *adapter = netdev_priv(netdev); 419 adapter->msg_enable = data; 420 } 421 422 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 423 { 424 #define E1000_REGS_LEN 32 /* overestimate */ 425 return E1000_REGS_LEN * sizeof(u32); 426 } 427 428 static void e1000_get_regs(struct net_device *netdev, 429 struct ethtool_regs *regs, void *p) 430 { 431 struct e1000_adapter *adapter = netdev_priv(netdev); 432 struct e1000_hw *hw = &adapter->hw; 433 u32 *regs_buff = p; 434 u16 phy_data; 435 436 pm_runtime_get_sync(netdev->dev.parent); 437 438 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 439 440 regs->version = (1u << 24) | 441 (adapter->pdev->revision << 16) | 442 adapter->pdev->device; 443 444 regs_buff[0] = er32(CTRL); 445 regs_buff[1] = er32(STATUS); 446 447 regs_buff[2] = er32(RCTL); 448 regs_buff[3] = er32(RDLEN(0)); 449 regs_buff[4] = er32(RDH(0)); 450 regs_buff[5] = er32(RDT(0)); 451 regs_buff[6] = er32(RDTR); 452 453 regs_buff[7] = er32(TCTL); 454 regs_buff[8] = er32(TDLEN(0)); 455 regs_buff[9] = er32(TDH(0)); 456 regs_buff[10] = er32(TDT(0)); 457 regs_buff[11] = er32(TIDV); 458 459 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 460 461 /* ethtool doesn't use anything past this point, so all this 462 * code is likely legacy junk for apps that may or may not exist 463 */ 464 if (hw->phy.type == e1000_phy_m88) { 465 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 466 regs_buff[13] = (u32)phy_data; /* cable length */ 467 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 468 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 469 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 470 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 471 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 472 regs_buff[18] = regs_buff[13]; /* cable polarity */ 473 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 474 regs_buff[20] = regs_buff[17]; /* polarity correction */ 475 /* phy receive errors */ 476 regs_buff[22] = adapter->phy_stats.receive_errors; 477 regs_buff[23] = regs_buff[13]; /* mdix mode */ 478 } 479 regs_buff[21] = 0; /* was idle_errors */ 480 e1e_rphy(hw, MII_STAT1000, &phy_data); 481 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 482 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 483 484 pm_runtime_put_sync(netdev->dev.parent); 485 } 486 487 static int e1000_get_eeprom_len(struct net_device *netdev) 488 { 489 struct e1000_adapter *adapter = netdev_priv(netdev); 490 return adapter->hw.nvm.word_size * 2; 491 } 492 493 static int e1000_get_eeprom(struct net_device *netdev, 494 struct ethtool_eeprom *eeprom, u8 *bytes) 495 { 496 struct e1000_adapter *adapter = netdev_priv(netdev); 497 struct e1000_hw *hw = &adapter->hw; 498 u16 *eeprom_buff; 499 int first_word; 500 int last_word; 501 int ret_val = 0; 502 u16 i; 503 504 if (eeprom->len == 0) 505 return -EINVAL; 506 507 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 508 509 first_word = eeprom->offset >> 1; 510 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 511 512 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 513 GFP_KERNEL); 514 if (!eeprom_buff) 515 return -ENOMEM; 516 517 pm_runtime_get_sync(netdev->dev.parent); 518 519 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 520 ret_val = e1000_read_nvm(hw, first_word, 521 last_word - first_word + 1, 522 eeprom_buff); 523 } else { 524 for (i = 0; i < last_word - first_word + 1; i++) { 525 ret_val = e1000_read_nvm(hw, first_word + i, 1, 526 &eeprom_buff[i]); 527 if (ret_val) 528 break; 529 } 530 } 531 532 pm_runtime_put_sync(netdev->dev.parent); 533 534 if (ret_val) { 535 /* a read error occurred, throw away the result */ 536 memset(eeprom_buff, 0xff, sizeof(u16) * 537 (last_word - first_word + 1)); 538 } else { 539 /* Device's eeprom is always little-endian, word addressable */ 540 for (i = 0; i < last_word - first_word + 1; i++) 541 le16_to_cpus(&eeprom_buff[i]); 542 } 543 544 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 545 kfree(eeprom_buff); 546 547 return ret_val; 548 } 549 550 static int e1000_set_eeprom(struct net_device *netdev, 551 struct ethtool_eeprom *eeprom, u8 *bytes) 552 { 553 struct e1000_adapter *adapter = netdev_priv(netdev); 554 struct e1000_hw *hw = &adapter->hw; 555 u16 *eeprom_buff; 556 void *ptr; 557 int max_len; 558 int first_word; 559 int last_word; 560 int ret_val = 0; 561 u16 i; 562 563 if (eeprom->len == 0) 564 return -EOPNOTSUPP; 565 566 if (eeprom->magic != 567 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 568 return -EFAULT; 569 570 if (adapter->flags & FLAG_READ_ONLY_NVM) 571 return -EINVAL; 572 573 max_len = hw->nvm.word_size * 2; 574 575 first_word = eeprom->offset >> 1; 576 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 577 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 578 if (!eeprom_buff) 579 return -ENOMEM; 580 581 ptr = (void *)eeprom_buff; 582 583 pm_runtime_get_sync(netdev->dev.parent); 584 585 if (eeprom->offset & 1) { 586 /* need read/modify/write of first changed EEPROM word */ 587 /* only the second byte of the word is being modified */ 588 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 589 ptr++; 590 } 591 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 592 /* need read/modify/write of last changed EEPROM word */ 593 /* only the first byte of the word is being modified */ 594 ret_val = e1000_read_nvm(hw, last_word, 1, 595 &eeprom_buff[last_word - first_word]); 596 597 if (ret_val) 598 goto out; 599 600 /* Device's eeprom is always little-endian, word addressable */ 601 for (i = 0; i < last_word - first_word + 1; i++) 602 le16_to_cpus(&eeprom_buff[i]); 603 604 memcpy(ptr, bytes, eeprom->len); 605 606 for (i = 0; i < last_word - first_word + 1; i++) 607 cpu_to_le16s(&eeprom_buff[i]); 608 609 ret_val = e1000_write_nvm(hw, first_word, 610 last_word - first_word + 1, eeprom_buff); 611 612 if (ret_val) 613 goto out; 614 615 /* Update the checksum over the first part of the EEPROM if needed 616 * and flush shadow RAM for applicable controllers 617 */ 618 if ((first_word <= NVM_CHECKSUM_REG) || 619 (hw->mac.type == e1000_82583) || 620 (hw->mac.type == e1000_82574) || 621 (hw->mac.type == e1000_82573)) 622 ret_val = e1000e_update_nvm_checksum(hw); 623 624 out: 625 pm_runtime_put_sync(netdev->dev.parent); 626 kfree(eeprom_buff); 627 return ret_val; 628 } 629 630 static void e1000_get_drvinfo(struct net_device *netdev, 631 struct ethtool_drvinfo *drvinfo) 632 { 633 struct e1000_adapter *adapter = netdev_priv(netdev); 634 635 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 636 637 /* EEPROM image version # is reported as firmware version # for 638 * PCI-E controllers 639 */ 640 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 641 "%d.%d-%d", 642 (adapter->eeprom_vers & 0xF000) >> 12, 643 (adapter->eeprom_vers & 0x0FF0) >> 4, 644 (adapter->eeprom_vers & 0x000F)); 645 646 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 647 sizeof(drvinfo->bus_info)); 648 } 649 650 static void e1000_get_ringparam(struct net_device *netdev, 651 struct ethtool_ringparam *ring) 652 { 653 struct e1000_adapter *adapter = netdev_priv(netdev); 654 655 ring->rx_max_pending = E1000_MAX_RXD; 656 ring->tx_max_pending = E1000_MAX_TXD; 657 ring->rx_pending = adapter->rx_ring_count; 658 ring->tx_pending = adapter->tx_ring_count; 659 } 660 661 static int e1000_set_ringparam(struct net_device *netdev, 662 struct ethtool_ringparam *ring) 663 { 664 struct e1000_adapter *adapter = netdev_priv(netdev); 665 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 666 int err = 0, size = sizeof(struct e1000_ring); 667 bool set_tx = false, set_rx = false; 668 u16 new_rx_count, new_tx_count; 669 670 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 671 return -EINVAL; 672 673 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 674 E1000_MAX_RXD); 675 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 676 677 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 678 E1000_MAX_TXD); 679 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 680 681 if ((new_tx_count == adapter->tx_ring_count) && 682 (new_rx_count == adapter->rx_ring_count)) 683 /* nothing to do */ 684 return 0; 685 686 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 687 usleep_range(1000, 2000); 688 689 if (!netif_running(adapter->netdev)) { 690 /* Set counts now and allocate resources during open() */ 691 adapter->tx_ring->count = new_tx_count; 692 adapter->rx_ring->count = new_rx_count; 693 adapter->tx_ring_count = new_tx_count; 694 adapter->rx_ring_count = new_rx_count; 695 goto clear_reset; 696 } 697 698 set_tx = (new_tx_count != adapter->tx_ring_count); 699 set_rx = (new_rx_count != adapter->rx_ring_count); 700 701 /* Allocate temporary storage for ring updates */ 702 if (set_tx) { 703 temp_tx = vmalloc(size); 704 if (!temp_tx) { 705 err = -ENOMEM; 706 goto free_temp; 707 } 708 } 709 if (set_rx) { 710 temp_rx = vmalloc(size); 711 if (!temp_rx) { 712 err = -ENOMEM; 713 goto free_temp; 714 } 715 } 716 717 pm_runtime_get_sync(netdev->dev.parent); 718 719 e1000e_down(adapter, true); 720 721 /* We can't just free everything and then setup again, because the 722 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 723 * structs. First, attempt to allocate new resources... 724 */ 725 if (set_tx) { 726 memcpy(temp_tx, adapter->tx_ring, size); 727 temp_tx->count = new_tx_count; 728 err = e1000e_setup_tx_resources(temp_tx); 729 if (err) 730 goto err_setup; 731 } 732 if (set_rx) { 733 memcpy(temp_rx, adapter->rx_ring, size); 734 temp_rx->count = new_rx_count; 735 err = e1000e_setup_rx_resources(temp_rx); 736 if (err) 737 goto err_setup_rx; 738 } 739 740 /* ...then free the old resources and copy back any new ring data */ 741 if (set_tx) { 742 e1000e_free_tx_resources(adapter->tx_ring); 743 memcpy(adapter->tx_ring, temp_tx, size); 744 adapter->tx_ring_count = new_tx_count; 745 } 746 if (set_rx) { 747 e1000e_free_rx_resources(adapter->rx_ring); 748 memcpy(adapter->rx_ring, temp_rx, size); 749 adapter->rx_ring_count = new_rx_count; 750 } 751 752 err_setup_rx: 753 if (err && set_tx) 754 e1000e_free_tx_resources(temp_tx); 755 err_setup: 756 e1000e_up(adapter); 757 pm_runtime_put_sync(netdev->dev.parent); 758 free_temp: 759 vfree(temp_tx); 760 vfree(temp_rx); 761 clear_reset: 762 clear_bit(__E1000_RESETTING, &adapter->state); 763 return err; 764 } 765 766 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 767 int reg, int offset, u32 mask, u32 write) 768 { 769 u32 pat, val; 770 static const u32 test[] = { 771 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 772 }; 773 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 774 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 775 (test[pat] & write)); 776 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 777 if (val != (test[pat] & write & mask)) { 778 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 779 reg + (offset << 2), val, 780 (test[pat] & write & mask)); 781 *data = reg; 782 return true; 783 } 784 } 785 return false; 786 } 787 788 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 789 int reg, u32 mask, u32 write) 790 { 791 u32 val; 792 793 __ew32(&adapter->hw, reg, write & mask); 794 val = __er32(&adapter->hw, reg); 795 if ((write & mask) != (val & mask)) { 796 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 797 reg, (val & mask), (write & mask)); 798 *data = reg; 799 return true; 800 } 801 return false; 802 } 803 804 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 805 do { \ 806 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 807 return 1; \ 808 } while (0) 809 #define REG_PATTERN_TEST(reg, mask, write) \ 810 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 811 812 #define REG_SET_AND_CHECK(reg, mask, write) \ 813 do { \ 814 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 815 return 1; \ 816 } while (0) 817 818 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 819 { 820 struct e1000_hw *hw = &adapter->hw; 821 struct e1000_mac_info *mac = &adapter->hw.mac; 822 u32 value; 823 u32 before; 824 u32 after; 825 u32 i; 826 u32 toggle; 827 u32 mask; 828 u32 wlock_mac = 0; 829 830 /* The status register is Read Only, so a write should fail. 831 * Some bits that get toggled are ignored. There are several bits 832 * on newer hardware that are r/w. 833 */ 834 switch (mac->type) { 835 case e1000_82571: 836 case e1000_82572: 837 case e1000_80003es2lan: 838 toggle = 0x7FFFF3FF; 839 break; 840 default: 841 toggle = 0x7FFFF033; 842 break; 843 } 844 845 before = er32(STATUS); 846 value = (er32(STATUS) & toggle); 847 ew32(STATUS, toggle); 848 after = er32(STATUS) & toggle; 849 if (value != after) { 850 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 851 after, value); 852 *data = 1; 853 return 1; 854 } 855 /* restore previous status */ 856 ew32(STATUS, before); 857 858 if (!(adapter->flags & FLAG_IS_ICH)) { 859 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 860 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 861 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 862 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 863 } 864 865 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 866 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 867 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 868 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 869 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 870 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 871 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 872 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 873 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 874 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 875 876 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 877 878 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 879 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 880 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 881 882 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 883 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 884 if (!(adapter->flags & FLAG_IS_ICH)) 885 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 886 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 887 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 888 mask = 0x8003FFFF; 889 switch (mac->type) { 890 case e1000_ich10lan: 891 case e1000_pchlan: 892 case e1000_pch2lan: 893 case e1000_pch_lpt: 894 case e1000_pch_spt: 895 case e1000_pch_cnp: 896 case e1000_pch_tgp: 897 case e1000_pch_adp: 898 mask |= BIT(18); 899 break; 900 default: 901 break; 902 } 903 904 if (mac->type >= e1000_pch_lpt) 905 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 906 E1000_FWSM_WLOCK_MAC_SHIFT; 907 908 for (i = 0; i < mac->rar_entry_count; i++) { 909 if (mac->type >= e1000_pch_lpt) { 910 /* Cannot test write-protected SHRAL[n] registers */ 911 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 912 continue; 913 914 /* SHRAH[9] different than the others */ 915 if (i == 10) 916 mask |= BIT(30); 917 else 918 mask &= ~BIT(30); 919 } 920 if (mac->type == e1000_pch2lan) { 921 /* SHRAH[0,1,2] different than previous */ 922 if (i == 1) 923 mask &= 0xFFF4FFFF; 924 /* SHRAH[3] different than SHRAH[0,1,2] */ 925 if (i == 4) 926 mask |= BIT(30); 927 /* RAR[1-6] owned by management engine - skipping */ 928 if (i > 0) 929 i += 6; 930 } 931 932 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 933 0xFFFFFFFF); 934 /* reset index to actual value */ 935 if ((mac->type == e1000_pch2lan) && (i > 6)) 936 i -= 6; 937 } 938 939 for (i = 0; i < mac->mta_reg_count; i++) 940 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 941 942 *data = 0; 943 944 return 0; 945 } 946 947 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 948 { 949 u16 temp; 950 u16 checksum = 0; 951 u16 i; 952 953 *data = 0; 954 /* Read and add up the contents of the EEPROM */ 955 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 956 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 957 *data = 1; 958 return *data; 959 } 960 checksum += temp; 961 } 962 963 /* If Checksum is not Correct return error else test passed */ 964 if ((checksum != (u16)NVM_SUM) && !(*data)) 965 *data = 2; 966 967 return *data; 968 } 969 970 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 971 { 972 struct net_device *netdev = (struct net_device *)data; 973 struct e1000_adapter *adapter = netdev_priv(netdev); 974 struct e1000_hw *hw = &adapter->hw; 975 976 adapter->test_icr |= er32(ICR); 977 978 return IRQ_HANDLED; 979 } 980 981 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 982 { 983 struct net_device *netdev = adapter->netdev; 984 struct e1000_hw *hw = &adapter->hw; 985 u32 mask; 986 u32 shared_int = 1; 987 u32 irq = adapter->pdev->irq; 988 int i; 989 int ret_val = 0; 990 int int_mode = E1000E_INT_MODE_LEGACY; 991 992 *data = 0; 993 994 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 995 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 996 int_mode = adapter->int_mode; 997 e1000e_reset_interrupt_capability(adapter); 998 adapter->int_mode = E1000E_INT_MODE_LEGACY; 999 e1000e_set_interrupt_capability(adapter); 1000 } 1001 /* Hook up test interrupt handler just for this test */ 1002 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1003 netdev)) { 1004 shared_int = 0; 1005 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1006 netdev)) { 1007 *data = 1; 1008 ret_val = -1; 1009 goto out; 1010 } 1011 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1012 1013 /* Disable all the interrupts */ 1014 ew32(IMC, 0xFFFFFFFF); 1015 e1e_flush(); 1016 usleep_range(10000, 11000); 1017 1018 /* Test each interrupt */ 1019 for (i = 0; i < 10; i++) { 1020 /* Interrupt to test */ 1021 mask = BIT(i); 1022 1023 if (adapter->flags & FLAG_IS_ICH) { 1024 switch (mask) { 1025 case E1000_ICR_RXSEQ: 1026 continue; 1027 case 0x00000100: 1028 if (adapter->hw.mac.type == e1000_ich8lan || 1029 adapter->hw.mac.type == e1000_ich9lan) 1030 continue; 1031 break; 1032 default: 1033 break; 1034 } 1035 } 1036 1037 if (!shared_int) { 1038 /* Disable the interrupt to be reported in 1039 * the cause register and then force the same 1040 * interrupt and see if one gets posted. If 1041 * an interrupt was posted to the bus, the 1042 * test failed. 1043 */ 1044 adapter->test_icr = 0; 1045 ew32(IMC, mask); 1046 ew32(ICS, mask); 1047 e1e_flush(); 1048 usleep_range(10000, 11000); 1049 1050 if (adapter->test_icr & mask) { 1051 *data = 3; 1052 break; 1053 } 1054 } 1055 1056 /* Enable the interrupt to be reported in 1057 * the cause register and then force the same 1058 * interrupt and see if one gets posted. If 1059 * an interrupt was not posted to the bus, the 1060 * test failed. 1061 */ 1062 adapter->test_icr = 0; 1063 ew32(IMS, mask); 1064 ew32(ICS, mask); 1065 e1e_flush(); 1066 usleep_range(10000, 11000); 1067 1068 if (!(adapter->test_icr & mask)) { 1069 *data = 4; 1070 break; 1071 } 1072 1073 if (!shared_int) { 1074 /* Disable the other interrupts to be reported in 1075 * the cause register and then force the other 1076 * interrupts and see if any get posted. If 1077 * an interrupt was posted to the bus, the 1078 * test failed. 1079 */ 1080 adapter->test_icr = 0; 1081 ew32(IMC, ~mask & 0x00007FFF); 1082 ew32(ICS, ~mask & 0x00007FFF); 1083 e1e_flush(); 1084 usleep_range(10000, 11000); 1085 1086 if (adapter->test_icr) { 1087 *data = 5; 1088 break; 1089 } 1090 } 1091 } 1092 1093 /* Disable all the interrupts */ 1094 ew32(IMC, 0xFFFFFFFF); 1095 e1e_flush(); 1096 usleep_range(10000, 11000); 1097 1098 /* Unhook test interrupt handler */ 1099 free_irq(irq, netdev); 1100 1101 out: 1102 if (int_mode == E1000E_INT_MODE_MSIX) { 1103 e1000e_reset_interrupt_capability(adapter); 1104 adapter->int_mode = int_mode; 1105 e1000e_set_interrupt_capability(adapter); 1106 } 1107 1108 return ret_val; 1109 } 1110 1111 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1112 { 1113 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1114 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1115 struct pci_dev *pdev = adapter->pdev; 1116 struct e1000_buffer *buffer_info; 1117 int i; 1118 1119 if (tx_ring->desc && tx_ring->buffer_info) { 1120 for (i = 0; i < tx_ring->count; i++) { 1121 buffer_info = &tx_ring->buffer_info[i]; 1122 1123 if (buffer_info->dma) 1124 dma_unmap_single(&pdev->dev, 1125 buffer_info->dma, 1126 buffer_info->length, 1127 DMA_TO_DEVICE); 1128 dev_kfree_skb(buffer_info->skb); 1129 } 1130 } 1131 1132 if (rx_ring->desc && rx_ring->buffer_info) { 1133 for (i = 0; i < rx_ring->count; i++) { 1134 buffer_info = &rx_ring->buffer_info[i]; 1135 1136 if (buffer_info->dma) 1137 dma_unmap_single(&pdev->dev, 1138 buffer_info->dma, 1139 2048, DMA_FROM_DEVICE); 1140 dev_kfree_skb(buffer_info->skb); 1141 } 1142 } 1143 1144 if (tx_ring->desc) { 1145 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1146 tx_ring->dma); 1147 tx_ring->desc = NULL; 1148 } 1149 if (rx_ring->desc) { 1150 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1151 rx_ring->dma); 1152 rx_ring->desc = NULL; 1153 } 1154 1155 kfree(tx_ring->buffer_info); 1156 tx_ring->buffer_info = NULL; 1157 kfree(rx_ring->buffer_info); 1158 rx_ring->buffer_info = NULL; 1159 } 1160 1161 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1162 { 1163 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1164 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1165 struct pci_dev *pdev = adapter->pdev; 1166 struct e1000_hw *hw = &adapter->hw; 1167 u32 rctl; 1168 int i; 1169 int ret_val; 1170 1171 /* Setup Tx descriptor ring and Tx buffers */ 1172 1173 if (!tx_ring->count) 1174 tx_ring->count = E1000_DEFAULT_TXD; 1175 1176 tx_ring->buffer_info = kcalloc(tx_ring->count, 1177 sizeof(struct e1000_buffer), GFP_KERNEL); 1178 if (!tx_ring->buffer_info) { 1179 ret_val = 1; 1180 goto err_nomem; 1181 } 1182 1183 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1184 tx_ring->size = ALIGN(tx_ring->size, 4096); 1185 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1186 &tx_ring->dma, GFP_KERNEL); 1187 if (!tx_ring->desc) { 1188 ret_val = 2; 1189 goto err_nomem; 1190 } 1191 tx_ring->next_to_use = 0; 1192 tx_ring->next_to_clean = 0; 1193 1194 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1195 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1196 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1197 ew32(TDH(0), 0); 1198 ew32(TDT(0), 0); 1199 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1200 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1201 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1202 1203 for (i = 0; i < tx_ring->count; i++) { 1204 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1205 struct sk_buff *skb; 1206 unsigned int skb_size = 1024; 1207 1208 skb = alloc_skb(skb_size, GFP_KERNEL); 1209 if (!skb) { 1210 ret_val = 3; 1211 goto err_nomem; 1212 } 1213 skb_put(skb, skb_size); 1214 tx_ring->buffer_info[i].skb = skb; 1215 tx_ring->buffer_info[i].length = skb->len; 1216 tx_ring->buffer_info[i].dma = 1217 dma_map_single(&pdev->dev, skb->data, skb->len, 1218 DMA_TO_DEVICE); 1219 if (dma_mapping_error(&pdev->dev, 1220 tx_ring->buffer_info[i].dma)) { 1221 ret_val = 4; 1222 goto err_nomem; 1223 } 1224 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1225 tx_desc->lower.data = cpu_to_le32(skb->len); 1226 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1227 E1000_TXD_CMD_IFCS | 1228 E1000_TXD_CMD_RS); 1229 tx_desc->upper.data = 0; 1230 } 1231 1232 /* Setup Rx descriptor ring and Rx buffers */ 1233 1234 if (!rx_ring->count) 1235 rx_ring->count = E1000_DEFAULT_RXD; 1236 1237 rx_ring->buffer_info = kcalloc(rx_ring->count, 1238 sizeof(struct e1000_buffer), GFP_KERNEL); 1239 if (!rx_ring->buffer_info) { 1240 ret_val = 5; 1241 goto err_nomem; 1242 } 1243 1244 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1245 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1246 &rx_ring->dma, GFP_KERNEL); 1247 if (!rx_ring->desc) { 1248 ret_val = 6; 1249 goto err_nomem; 1250 } 1251 rx_ring->next_to_use = 0; 1252 rx_ring->next_to_clean = 0; 1253 1254 rctl = er32(RCTL); 1255 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1256 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1257 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1258 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1259 ew32(RDLEN(0), rx_ring->size); 1260 ew32(RDH(0), 0); 1261 ew32(RDT(0), 0); 1262 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1263 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1264 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1265 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1266 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1267 ew32(RCTL, rctl); 1268 1269 for (i = 0; i < rx_ring->count; i++) { 1270 union e1000_rx_desc_extended *rx_desc; 1271 struct sk_buff *skb; 1272 1273 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1274 if (!skb) { 1275 ret_val = 7; 1276 goto err_nomem; 1277 } 1278 skb_reserve(skb, NET_IP_ALIGN); 1279 rx_ring->buffer_info[i].skb = skb; 1280 rx_ring->buffer_info[i].dma = 1281 dma_map_single(&pdev->dev, skb->data, 2048, 1282 DMA_FROM_DEVICE); 1283 if (dma_mapping_error(&pdev->dev, 1284 rx_ring->buffer_info[i].dma)) { 1285 ret_val = 8; 1286 goto err_nomem; 1287 } 1288 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1289 rx_desc->read.buffer_addr = 1290 cpu_to_le64(rx_ring->buffer_info[i].dma); 1291 memset(skb->data, 0x00, skb->len); 1292 } 1293 1294 return 0; 1295 1296 err_nomem: 1297 e1000_free_desc_rings(adapter); 1298 return ret_val; 1299 } 1300 1301 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1302 { 1303 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1304 e1e_wphy(&adapter->hw, 29, 0x001F); 1305 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1306 e1e_wphy(&adapter->hw, 29, 0x001A); 1307 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1308 } 1309 1310 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1311 { 1312 struct e1000_hw *hw = &adapter->hw; 1313 u32 ctrl_reg = 0; 1314 u16 phy_reg = 0; 1315 s32 ret_val = 0; 1316 1317 hw->mac.autoneg = 0; 1318 1319 if (hw->phy.type == e1000_phy_ife) { 1320 /* force 100, set loopback */ 1321 e1e_wphy(hw, MII_BMCR, 0x6100); 1322 1323 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1324 ctrl_reg = er32(CTRL); 1325 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1326 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1327 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1328 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1329 E1000_CTRL_FD); /* Force Duplex to FULL */ 1330 1331 ew32(CTRL, ctrl_reg); 1332 e1e_flush(); 1333 usleep_range(500, 1000); 1334 1335 return 0; 1336 } 1337 1338 /* Specific PHY configuration for loopback */ 1339 switch (hw->phy.type) { 1340 case e1000_phy_m88: 1341 /* Auto-MDI/MDIX Off */ 1342 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1343 /* reset to update Auto-MDI/MDIX */ 1344 e1e_wphy(hw, MII_BMCR, 0x9140); 1345 /* autoneg off */ 1346 e1e_wphy(hw, MII_BMCR, 0x8140); 1347 break; 1348 case e1000_phy_gg82563: 1349 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1350 break; 1351 case e1000_phy_bm: 1352 /* Set Default MAC Interface speed to 1GB */ 1353 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1354 phy_reg &= ~0x0007; 1355 phy_reg |= 0x006; 1356 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1357 /* Assert SW reset for above settings to take effect */ 1358 hw->phy.ops.commit(hw); 1359 usleep_range(1000, 2000); 1360 /* Force Full Duplex */ 1361 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1362 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1363 /* Set Link Up (in force link) */ 1364 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1365 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1366 /* Force Link */ 1367 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1368 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1369 /* Set Early Link Enable */ 1370 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1371 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1372 break; 1373 case e1000_phy_82577: 1374 case e1000_phy_82578: 1375 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1376 ret_val = hw->phy.ops.acquire(hw); 1377 if (ret_val) { 1378 e_err("Cannot setup 1Gbps loopback.\n"); 1379 return ret_val; 1380 } 1381 e1000_configure_k1_ich8lan(hw, false); 1382 hw->phy.ops.release(hw); 1383 break; 1384 case e1000_phy_82579: 1385 /* Disable PHY energy detect power down */ 1386 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1387 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1388 /* Disable full chip energy detect */ 1389 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1390 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1391 /* Enable loopback on the PHY */ 1392 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1393 break; 1394 default: 1395 break; 1396 } 1397 1398 /* force 1000, set loopback */ 1399 e1e_wphy(hw, MII_BMCR, 0x4140); 1400 msleep(250); 1401 1402 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1403 ctrl_reg = er32(CTRL); 1404 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1405 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1406 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1407 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1408 E1000_CTRL_FD); /* Force Duplex to FULL */ 1409 1410 if (adapter->flags & FLAG_IS_ICH) 1411 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1412 1413 if (hw->phy.media_type == e1000_media_type_copper && 1414 hw->phy.type == e1000_phy_m88) { 1415 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1416 } else { 1417 /* Set the ILOS bit on the fiber Nic if half duplex link is 1418 * detected. 1419 */ 1420 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1421 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1422 } 1423 1424 ew32(CTRL, ctrl_reg); 1425 1426 /* Disable the receiver on the PHY so when a cable is plugged in, the 1427 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1428 */ 1429 if (hw->phy.type == e1000_phy_m88) 1430 e1000_phy_disable_receiver(adapter); 1431 1432 usleep_range(500, 1000); 1433 1434 return 0; 1435 } 1436 1437 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1438 { 1439 struct e1000_hw *hw = &adapter->hw; 1440 u32 ctrl = er32(CTRL); 1441 int link; 1442 1443 /* special requirements for 82571/82572 fiber adapters */ 1444 1445 /* jump through hoops to make sure link is up because serdes 1446 * link is hardwired up 1447 */ 1448 ctrl |= E1000_CTRL_SLU; 1449 ew32(CTRL, ctrl); 1450 1451 /* disable autoneg */ 1452 ctrl = er32(TXCW); 1453 ctrl &= ~BIT(31); 1454 ew32(TXCW, ctrl); 1455 1456 link = (er32(STATUS) & E1000_STATUS_LU); 1457 1458 if (!link) { 1459 /* set invert loss of signal */ 1460 ctrl = er32(CTRL); 1461 ctrl |= E1000_CTRL_ILOS; 1462 ew32(CTRL, ctrl); 1463 } 1464 1465 /* special write to serdes control register to enable SerDes analog 1466 * loopback 1467 */ 1468 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1469 e1e_flush(); 1470 usleep_range(10000, 11000); 1471 1472 return 0; 1473 } 1474 1475 /* only call this for fiber/serdes connections to es2lan */ 1476 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1477 { 1478 struct e1000_hw *hw = &adapter->hw; 1479 u32 ctrlext = er32(CTRL_EXT); 1480 u32 ctrl = er32(CTRL); 1481 1482 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1483 * on mac_type 80003es2lan) 1484 */ 1485 adapter->tx_fifo_head = ctrlext; 1486 1487 /* clear the serdes mode bits, putting the device into mac loopback */ 1488 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1489 ew32(CTRL_EXT, ctrlext); 1490 1491 /* force speed to 1000/FD, link up */ 1492 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1493 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1494 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1495 ew32(CTRL, ctrl); 1496 1497 /* set mac loopback */ 1498 ctrl = er32(RCTL); 1499 ctrl |= E1000_RCTL_LBM_MAC; 1500 ew32(RCTL, ctrl); 1501 1502 /* set testing mode parameters (no need to reset later) */ 1503 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1504 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1505 ew32(KMRNCTRLSTA, 1506 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1507 1508 return 0; 1509 } 1510 1511 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1512 { 1513 struct e1000_hw *hw = &adapter->hw; 1514 u32 rctl, fext_nvm11, tarc0; 1515 1516 if (hw->mac.type >= e1000_pch_spt) { 1517 fext_nvm11 = er32(FEXTNVM11); 1518 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1519 ew32(FEXTNVM11, fext_nvm11); 1520 tarc0 = er32(TARC(0)); 1521 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1522 tarc0 &= 0xcfffffff; 1523 /* set bit 29 (value of MULR requests is now 2) */ 1524 tarc0 |= 0x20000000; 1525 ew32(TARC(0), tarc0); 1526 } 1527 if (hw->phy.media_type == e1000_media_type_fiber || 1528 hw->phy.media_type == e1000_media_type_internal_serdes) { 1529 switch (hw->mac.type) { 1530 case e1000_80003es2lan: 1531 return e1000_set_es2lan_mac_loopback(adapter); 1532 case e1000_82571: 1533 case e1000_82572: 1534 return e1000_set_82571_fiber_loopback(adapter); 1535 default: 1536 rctl = er32(RCTL); 1537 rctl |= E1000_RCTL_LBM_TCVR; 1538 ew32(RCTL, rctl); 1539 return 0; 1540 } 1541 } else if (hw->phy.media_type == e1000_media_type_copper) { 1542 return e1000_integrated_phy_loopback(adapter); 1543 } 1544 1545 return 7; 1546 } 1547 1548 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1549 { 1550 struct e1000_hw *hw = &adapter->hw; 1551 u32 rctl, fext_nvm11, tarc0; 1552 u16 phy_reg; 1553 1554 rctl = er32(RCTL); 1555 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1556 ew32(RCTL, rctl); 1557 1558 switch (hw->mac.type) { 1559 case e1000_pch_spt: 1560 case e1000_pch_cnp: 1561 case e1000_pch_tgp: 1562 case e1000_pch_adp: 1563 fext_nvm11 = er32(FEXTNVM11); 1564 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1565 ew32(FEXTNVM11, fext_nvm11); 1566 tarc0 = er32(TARC(0)); 1567 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1568 /* set bit 29 (value of MULR requests is now 0) */ 1569 tarc0 &= 0xcfffffff; 1570 ew32(TARC(0), tarc0); 1571 fallthrough; 1572 case e1000_80003es2lan: 1573 if (hw->phy.media_type == e1000_media_type_fiber || 1574 hw->phy.media_type == e1000_media_type_internal_serdes) { 1575 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1576 ew32(CTRL_EXT, adapter->tx_fifo_head); 1577 adapter->tx_fifo_head = 0; 1578 } 1579 fallthrough; 1580 case e1000_82571: 1581 case e1000_82572: 1582 if (hw->phy.media_type == e1000_media_type_fiber || 1583 hw->phy.media_type == e1000_media_type_internal_serdes) { 1584 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1585 e1e_flush(); 1586 usleep_range(10000, 11000); 1587 break; 1588 } 1589 fallthrough; 1590 default: 1591 hw->mac.autoneg = 1; 1592 if (hw->phy.type == e1000_phy_gg82563) 1593 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1594 e1e_rphy(hw, MII_BMCR, &phy_reg); 1595 if (phy_reg & BMCR_LOOPBACK) { 1596 phy_reg &= ~BMCR_LOOPBACK; 1597 e1e_wphy(hw, MII_BMCR, phy_reg); 1598 if (hw->phy.ops.commit) 1599 hw->phy.ops.commit(hw); 1600 } 1601 break; 1602 } 1603 } 1604 1605 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1606 unsigned int frame_size) 1607 { 1608 memset(skb->data, 0xFF, frame_size); 1609 frame_size &= ~1; 1610 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1611 skb->data[frame_size / 2 + 10] = 0xBE; 1612 skb->data[frame_size / 2 + 12] = 0xAF; 1613 } 1614 1615 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1616 unsigned int frame_size) 1617 { 1618 frame_size &= ~1; 1619 if (*(skb->data + 3) == 0xFF) 1620 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1621 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1622 return 0; 1623 return 13; 1624 } 1625 1626 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1627 { 1628 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1629 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1630 struct pci_dev *pdev = adapter->pdev; 1631 struct e1000_hw *hw = &adapter->hw; 1632 struct e1000_buffer *buffer_info; 1633 int i, j, k, l; 1634 int lc; 1635 int good_cnt; 1636 int ret_val = 0; 1637 unsigned long time; 1638 1639 ew32(RDT(0), rx_ring->count - 1); 1640 1641 /* Calculate the loop count based on the largest descriptor ring 1642 * The idea is to wrap the largest ring a number of times using 64 1643 * send/receive pairs during each loop 1644 */ 1645 1646 if (rx_ring->count <= tx_ring->count) 1647 lc = ((tx_ring->count / 64) * 2) + 1; 1648 else 1649 lc = ((rx_ring->count / 64) * 2) + 1; 1650 1651 k = 0; 1652 l = 0; 1653 /* loop count loop */ 1654 for (j = 0; j <= lc; j++) { 1655 /* send the packets */ 1656 for (i = 0; i < 64; i++) { 1657 buffer_info = &tx_ring->buffer_info[k]; 1658 1659 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1660 dma_sync_single_for_device(&pdev->dev, 1661 buffer_info->dma, 1662 buffer_info->length, 1663 DMA_TO_DEVICE); 1664 k++; 1665 if (k == tx_ring->count) 1666 k = 0; 1667 } 1668 ew32(TDT(0), k); 1669 e1e_flush(); 1670 msleep(200); 1671 time = jiffies; /* set the start time for the receive */ 1672 good_cnt = 0; 1673 /* receive the sent packets */ 1674 do { 1675 buffer_info = &rx_ring->buffer_info[l]; 1676 1677 dma_sync_single_for_cpu(&pdev->dev, 1678 buffer_info->dma, 2048, 1679 DMA_FROM_DEVICE); 1680 1681 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1682 1024); 1683 if (!ret_val) 1684 good_cnt++; 1685 l++; 1686 if (l == rx_ring->count) 1687 l = 0; 1688 /* time + 20 msecs (200 msecs on 2.4) is more than 1689 * enough time to complete the receives, if it's 1690 * exceeded, break and error off 1691 */ 1692 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1693 if (good_cnt != 64) { 1694 ret_val = 13; /* ret_val is the same as mis-compare */ 1695 break; 1696 } 1697 if (time_after(jiffies, time + 20)) { 1698 ret_val = 14; /* error code for time out error */ 1699 break; 1700 } 1701 } 1702 return ret_val; 1703 } 1704 1705 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1706 { 1707 struct e1000_hw *hw = &adapter->hw; 1708 1709 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1710 if (hw->phy.ops.check_reset_block && 1711 hw->phy.ops.check_reset_block(hw)) { 1712 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1713 *data = 0; 1714 goto out; 1715 } 1716 1717 *data = e1000_setup_desc_rings(adapter); 1718 if (*data) 1719 goto out; 1720 1721 *data = e1000_setup_loopback_test(adapter); 1722 if (*data) 1723 goto err_loopback; 1724 1725 *data = e1000_run_loopback_test(adapter); 1726 e1000_loopback_cleanup(adapter); 1727 1728 err_loopback: 1729 e1000_free_desc_rings(adapter); 1730 out: 1731 return *data; 1732 } 1733 1734 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1735 { 1736 struct e1000_hw *hw = &adapter->hw; 1737 1738 *data = 0; 1739 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1740 int i = 0; 1741 1742 hw->mac.serdes_has_link = false; 1743 1744 /* On some blade server designs, link establishment 1745 * could take as long as 2-3 minutes 1746 */ 1747 do { 1748 hw->mac.ops.check_for_link(hw); 1749 if (hw->mac.serdes_has_link) 1750 return *data; 1751 msleep(20); 1752 } while (i++ < 3750); 1753 1754 *data = 1; 1755 } else { 1756 hw->mac.ops.check_for_link(hw); 1757 if (hw->mac.autoneg) 1758 /* On some Phy/switch combinations, link establishment 1759 * can take a few seconds more than expected. 1760 */ 1761 msleep_interruptible(5000); 1762 1763 if (!(er32(STATUS) & E1000_STATUS_LU)) 1764 *data = 1; 1765 } 1766 return *data; 1767 } 1768 1769 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1770 int sset) 1771 { 1772 switch (sset) { 1773 case ETH_SS_TEST: 1774 return E1000_TEST_LEN; 1775 case ETH_SS_STATS: 1776 return E1000_STATS_LEN; 1777 default: 1778 return -EOPNOTSUPP; 1779 } 1780 } 1781 1782 static void e1000_diag_test(struct net_device *netdev, 1783 struct ethtool_test *eth_test, u64 *data) 1784 { 1785 struct e1000_adapter *adapter = netdev_priv(netdev); 1786 u16 autoneg_advertised; 1787 u8 forced_speed_duplex; 1788 u8 autoneg; 1789 bool if_running = netif_running(netdev); 1790 1791 pm_runtime_get_sync(netdev->dev.parent); 1792 1793 set_bit(__E1000_TESTING, &adapter->state); 1794 1795 if (!if_running) { 1796 /* Get control of and reset hardware */ 1797 if (adapter->flags & FLAG_HAS_AMT) 1798 e1000e_get_hw_control(adapter); 1799 1800 e1000e_power_up_phy(adapter); 1801 1802 adapter->hw.phy.autoneg_wait_to_complete = 1; 1803 e1000e_reset(adapter); 1804 adapter->hw.phy.autoneg_wait_to_complete = 0; 1805 } 1806 1807 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1808 /* Offline tests */ 1809 1810 /* save speed, duplex, autoneg settings */ 1811 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1812 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1813 autoneg = adapter->hw.mac.autoneg; 1814 1815 e_info("offline testing starting\n"); 1816 1817 if (if_running) 1818 /* indicate we're in test mode */ 1819 e1000e_close(netdev); 1820 1821 if (e1000_reg_test(adapter, &data[0])) 1822 eth_test->flags |= ETH_TEST_FL_FAILED; 1823 1824 e1000e_reset(adapter); 1825 if (e1000_eeprom_test(adapter, &data[1])) 1826 eth_test->flags |= ETH_TEST_FL_FAILED; 1827 1828 e1000e_reset(adapter); 1829 if (e1000_intr_test(adapter, &data[2])) 1830 eth_test->flags |= ETH_TEST_FL_FAILED; 1831 1832 e1000e_reset(adapter); 1833 if (e1000_loopback_test(adapter, &data[3])) 1834 eth_test->flags |= ETH_TEST_FL_FAILED; 1835 1836 /* force this routine to wait until autoneg complete/timeout */ 1837 adapter->hw.phy.autoneg_wait_to_complete = 1; 1838 e1000e_reset(adapter); 1839 adapter->hw.phy.autoneg_wait_to_complete = 0; 1840 1841 if (e1000_link_test(adapter, &data[4])) 1842 eth_test->flags |= ETH_TEST_FL_FAILED; 1843 1844 /* restore speed, duplex, autoneg settings */ 1845 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1846 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1847 adapter->hw.mac.autoneg = autoneg; 1848 e1000e_reset(adapter); 1849 1850 clear_bit(__E1000_TESTING, &adapter->state); 1851 if (if_running) 1852 e1000e_open(netdev); 1853 } else { 1854 /* Online tests */ 1855 1856 e_info("online testing starting\n"); 1857 1858 /* register, eeprom, intr and loopback tests not run online */ 1859 data[0] = 0; 1860 data[1] = 0; 1861 data[2] = 0; 1862 data[3] = 0; 1863 1864 if (e1000_link_test(adapter, &data[4])) 1865 eth_test->flags |= ETH_TEST_FL_FAILED; 1866 1867 clear_bit(__E1000_TESTING, &adapter->state); 1868 } 1869 1870 if (!if_running) { 1871 e1000e_reset(adapter); 1872 1873 if (adapter->flags & FLAG_HAS_AMT) 1874 e1000e_release_hw_control(adapter); 1875 } 1876 1877 msleep_interruptible(4 * 1000); 1878 1879 pm_runtime_put_sync(netdev->dev.parent); 1880 } 1881 1882 static void e1000_get_wol(struct net_device *netdev, 1883 struct ethtool_wolinfo *wol) 1884 { 1885 struct e1000_adapter *adapter = netdev_priv(netdev); 1886 1887 wol->supported = 0; 1888 wol->wolopts = 0; 1889 1890 if (!(adapter->flags & FLAG_HAS_WOL) || 1891 !device_can_wakeup(&adapter->pdev->dev)) 1892 return; 1893 1894 wol->supported = WAKE_UCAST | WAKE_MCAST | 1895 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1896 1897 /* apply any specific unsupported masks here */ 1898 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1899 wol->supported &= ~WAKE_UCAST; 1900 1901 if (adapter->wol & E1000_WUFC_EX) 1902 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1903 } 1904 1905 if (adapter->wol & E1000_WUFC_EX) 1906 wol->wolopts |= WAKE_UCAST; 1907 if (adapter->wol & E1000_WUFC_MC) 1908 wol->wolopts |= WAKE_MCAST; 1909 if (adapter->wol & E1000_WUFC_BC) 1910 wol->wolopts |= WAKE_BCAST; 1911 if (adapter->wol & E1000_WUFC_MAG) 1912 wol->wolopts |= WAKE_MAGIC; 1913 if (adapter->wol & E1000_WUFC_LNKC) 1914 wol->wolopts |= WAKE_PHY; 1915 } 1916 1917 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1918 { 1919 struct e1000_adapter *adapter = netdev_priv(netdev); 1920 1921 if (!(adapter->flags & FLAG_HAS_WOL) || 1922 !device_can_wakeup(&adapter->pdev->dev) || 1923 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1924 WAKE_MAGIC | WAKE_PHY))) 1925 return -EOPNOTSUPP; 1926 1927 /* these settings will always override what we currently have */ 1928 adapter->wol = 0; 1929 1930 if (wol->wolopts & WAKE_UCAST) 1931 adapter->wol |= E1000_WUFC_EX; 1932 if (wol->wolopts & WAKE_MCAST) 1933 adapter->wol |= E1000_WUFC_MC; 1934 if (wol->wolopts & WAKE_BCAST) 1935 adapter->wol |= E1000_WUFC_BC; 1936 if (wol->wolopts & WAKE_MAGIC) 1937 adapter->wol |= E1000_WUFC_MAG; 1938 if (wol->wolopts & WAKE_PHY) 1939 adapter->wol |= E1000_WUFC_LNKC; 1940 1941 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1942 1943 return 0; 1944 } 1945 1946 static int e1000_set_phys_id(struct net_device *netdev, 1947 enum ethtool_phys_id_state state) 1948 { 1949 struct e1000_adapter *adapter = netdev_priv(netdev); 1950 struct e1000_hw *hw = &adapter->hw; 1951 1952 switch (state) { 1953 case ETHTOOL_ID_ACTIVE: 1954 pm_runtime_get_sync(netdev->dev.parent); 1955 1956 if (!hw->mac.ops.blink_led) 1957 return 2; /* cycle on/off twice per second */ 1958 1959 hw->mac.ops.blink_led(hw); 1960 break; 1961 1962 case ETHTOOL_ID_INACTIVE: 1963 if (hw->phy.type == e1000_phy_ife) 1964 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1965 hw->mac.ops.led_off(hw); 1966 hw->mac.ops.cleanup_led(hw); 1967 pm_runtime_put_sync(netdev->dev.parent); 1968 break; 1969 1970 case ETHTOOL_ID_ON: 1971 hw->mac.ops.led_on(hw); 1972 break; 1973 1974 case ETHTOOL_ID_OFF: 1975 hw->mac.ops.led_off(hw); 1976 break; 1977 } 1978 1979 return 0; 1980 } 1981 1982 static int e1000_get_coalesce(struct net_device *netdev, 1983 struct ethtool_coalesce *ec) 1984 { 1985 struct e1000_adapter *adapter = netdev_priv(netdev); 1986 1987 if (adapter->itr_setting <= 4) 1988 ec->rx_coalesce_usecs = adapter->itr_setting; 1989 else 1990 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1991 1992 return 0; 1993 } 1994 1995 static int e1000_set_coalesce(struct net_device *netdev, 1996 struct ethtool_coalesce *ec) 1997 { 1998 struct e1000_adapter *adapter = netdev_priv(netdev); 1999 2000 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2001 ((ec->rx_coalesce_usecs > 4) && 2002 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2003 (ec->rx_coalesce_usecs == 2)) 2004 return -EINVAL; 2005 2006 if (ec->rx_coalesce_usecs == 4) { 2007 adapter->itr_setting = 4; 2008 adapter->itr = adapter->itr_setting; 2009 } else if (ec->rx_coalesce_usecs <= 3) { 2010 adapter->itr = 20000; 2011 adapter->itr_setting = ec->rx_coalesce_usecs; 2012 } else { 2013 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2014 adapter->itr_setting = adapter->itr & ~3; 2015 } 2016 2017 pm_runtime_get_sync(netdev->dev.parent); 2018 2019 if (adapter->itr_setting != 0) 2020 e1000e_write_itr(adapter, adapter->itr); 2021 else 2022 e1000e_write_itr(adapter, 0); 2023 2024 pm_runtime_put_sync(netdev->dev.parent); 2025 2026 return 0; 2027 } 2028 2029 static int e1000_nway_reset(struct net_device *netdev) 2030 { 2031 struct e1000_adapter *adapter = netdev_priv(netdev); 2032 2033 if (!netif_running(netdev)) 2034 return -EAGAIN; 2035 2036 if (!adapter->hw.mac.autoneg) 2037 return -EINVAL; 2038 2039 pm_runtime_get_sync(netdev->dev.parent); 2040 e1000e_reinit_locked(adapter); 2041 pm_runtime_put_sync(netdev->dev.parent); 2042 2043 return 0; 2044 } 2045 2046 static void e1000_get_ethtool_stats(struct net_device *netdev, 2047 struct ethtool_stats __always_unused *stats, 2048 u64 *data) 2049 { 2050 struct e1000_adapter *adapter = netdev_priv(netdev); 2051 struct rtnl_link_stats64 net_stats; 2052 int i; 2053 char *p = NULL; 2054 2055 pm_runtime_get_sync(netdev->dev.parent); 2056 2057 dev_get_stats(netdev, &net_stats); 2058 2059 pm_runtime_put_sync(netdev->dev.parent); 2060 2061 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2062 switch (e1000_gstrings_stats[i].type) { 2063 case NETDEV_STATS: 2064 p = (char *)&net_stats + 2065 e1000_gstrings_stats[i].stat_offset; 2066 break; 2067 case E1000_STATS: 2068 p = (char *)adapter + 2069 e1000_gstrings_stats[i].stat_offset; 2070 break; 2071 default: 2072 data[i] = 0; 2073 continue; 2074 } 2075 2076 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2077 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2078 } 2079 } 2080 2081 static void e1000_get_strings(struct net_device __always_unused *netdev, 2082 u32 stringset, u8 *data) 2083 { 2084 u8 *p = data; 2085 int i; 2086 2087 switch (stringset) { 2088 case ETH_SS_TEST: 2089 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2090 break; 2091 case ETH_SS_STATS: 2092 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2093 memcpy(p, e1000_gstrings_stats[i].stat_string, 2094 ETH_GSTRING_LEN); 2095 p += ETH_GSTRING_LEN; 2096 } 2097 break; 2098 } 2099 } 2100 2101 static int e1000_get_rxnfc(struct net_device *netdev, 2102 struct ethtool_rxnfc *info, 2103 u32 __always_unused *rule_locs) 2104 { 2105 info->data = 0; 2106 2107 switch (info->cmd) { 2108 case ETHTOOL_GRXFH: { 2109 struct e1000_adapter *adapter = netdev_priv(netdev); 2110 struct e1000_hw *hw = &adapter->hw; 2111 u32 mrqc; 2112 2113 pm_runtime_get_sync(netdev->dev.parent); 2114 mrqc = er32(MRQC); 2115 pm_runtime_put_sync(netdev->dev.parent); 2116 2117 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2118 return 0; 2119 2120 switch (info->flow_type) { 2121 case TCP_V4_FLOW: 2122 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2123 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2124 fallthrough; 2125 case UDP_V4_FLOW: 2126 case SCTP_V4_FLOW: 2127 case AH_ESP_V4_FLOW: 2128 case IPV4_FLOW: 2129 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2130 info->data |= RXH_IP_SRC | RXH_IP_DST; 2131 break; 2132 case TCP_V6_FLOW: 2133 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2134 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2135 fallthrough; 2136 case UDP_V6_FLOW: 2137 case SCTP_V6_FLOW: 2138 case AH_ESP_V6_FLOW: 2139 case IPV6_FLOW: 2140 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2141 info->data |= RXH_IP_SRC | RXH_IP_DST; 2142 break; 2143 default: 2144 break; 2145 } 2146 return 0; 2147 } 2148 default: 2149 return -EOPNOTSUPP; 2150 } 2151 } 2152 2153 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2154 { 2155 struct e1000_adapter *adapter = netdev_priv(netdev); 2156 struct e1000_hw *hw = &adapter->hw; 2157 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2158 u32 ret_val; 2159 2160 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2161 return -EOPNOTSUPP; 2162 2163 switch (hw->phy.type) { 2164 case e1000_phy_82579: 2165 cap_addr = I82579_EEE_CAPABILITY; 2166 lpa_addr = I82579_EEE_LP_ABILITY; 2167 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2168 break; 2169 case e1000_phy_i217: 2170 cap_addr = I217_EEE_CAPABILITY; 2171 lpa_addr = I217_EEE_LP_ABILITY; 2172 pcs_stat_addr = I217_EEE_PCS_STATUS; 2173 break; 2174 default: 2175 return -EOPNOTSUPP; 2176 } 2177 2178 pm_runtime_get_sync(netdev->dev.parent); 2179 2180 ret_val = hw->phy.ops.acquire(hw); 2181 if (ret_val) { 2182 pm_runtime_put_sync(netdev->dev.parent); 2183 return -EBUSY; 2184 } 2185 2186 /* EEE Capability */ 2187 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2188 if (ret_val) 2189 goto release; 2190 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2191 2192 /* EEE Advertised */ 2193 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2194 2195 /* EEE Link Partner Advertised */ 2196 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2197 if (ret_val) 2198 goto release; 2199 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2200 2201 /* EEE PCS Status */ 2202 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2203 if (ret_val) 2204 goto release; 2205 if (hw->phy.type == e1000_phy_82579) 2206 phy_data <<= 8; 2207 2208 /* Result of the EEE auto negotiation - there is no register that 2209 * has the status of the EEE negotiation so do a best-guess based 2210 * on whether Tx or Rx LPI indications have been received. 2211 */ 2212 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2213 edata->eee_active = true; 2214 2215 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2216 edata->tx_lpi_enabled = true; 2217 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2218 2219 release: 2220 hw->phy.ops.release(hw); 2221 if (ret_val) 2222 ret_val = -ENODATA; 2223 2224 pm_runtime_put_sync(netdev->dev.parent); 2225 2226 return ret_val; 2227 } 2228 2229 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2230 { 2231 struct e1000_adapter *adapter = netdev_priv(netdev); 2232 struct e1000_hw *hw = &adapter->hw; 2233 struct ethtool_eee eee_curr; 2234 s32 ret_val; 2235 2236 ret_val = e1000e_get_eee(netdev, &eee_curr); 2237 if (ret_val) 2238 return ret_val; 2239 2240 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2241 e_err("Setting EEE tx-lpi is not supported\n"); 2242 return -EINVAL; 2243 } 2244 2245 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2246 e_err("Setting EEE Tx LPI timer is not supported\n"); 2247 return -EINVAL; 2248 } 2249 2250 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2251 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2252 return -EINVAL; 2253 } 2254 2255 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2256 2257 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2258 2259 pm_runtime_get_sync(netdev->dev.parent); 2260 2261 /* reset the link */ 2262 if (netif_running(netdev)) 2263 e1000e_reinit_locked(adapter); 2264 else 2265 e1000e_reset(adapter); 2266 2267 pm_runtime_put_sync(netdev->dev.parent); 2268 2269 return 0; 2270 } 2271 2272 static int e1000e_get_ts_info(struct net_device *netdev, 2273 struct ethtool_ts_info *info) 2274 { 2275 struct e1000_adapter *adapter = netdev_priv(netdev); 2276 2277 ethtool_op_get_ts_info(netdev, info); 2278 2279 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2280 return 0; 2281 2282 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2283 SOF_TIMESTAMPING_RX_HARDWARE | 2284 SOF_TIMESTAMPING_RAW_HARDWARE); 2285 2286 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2287 2288 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2289 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2290 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2291 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2292 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2293 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2294 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2295 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2296 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2297 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2298 BIT(HWTSTAMP_FILTER_ALL)); 2299 2300 if (adapter->ptp_clock) 2301 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2302 2303 return 0; 2304 } 2305 2306 static const struct ethtool_ops e1000_ethtool_ops = { 2307 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2308 .get_drvinfo = e1000_get_drvinfo, 2309 .get_regs_len = e1000_get_regs_len, 2310 .get_regs = e1000_get_regs, 2311 .get_wol = e1000_get_wol, 2312 .set_wol = e1000_set_wol, 2313 .get_msglevel = e1000_get_msglevel, 2314 .set_msglevel = e1000_set_msglevel, 2315 .nway_reset = e1000_nway_reset, 2316 .get_link = ethtool_op_get_link, 2317 .get_eeprom_len = e1000_get_eeprom_len, 2318 .get_eeprom = e1000_get_eeprom, 2319 .set_eeprom = e1000_set_eeprom, 2320 .get_ringparam = e1000_get_ringparam, 2321 .set_ringparam = e1000_set_ringparam, 2322 .get_pauseparam = e1000_get_pauseparam, 2323 .set_pauseparam = e1000_set_pauseparam, 2324 .self_test = e1000_diag_test, 2325 .get_strings = e1000_get_strings, 2326 .set_phys_id = e1000_set_phys_id, 2327 .get_ethtool_stats = e1000_get_ethtool_stats, 2328 .get_sset_count = e1000e_get_sset_count, 2329 .get_coalesce = e1000_get_coalesce, 2330 .set_coalesce = e1000_set_coalesce, 2331 .get_rxnfc = e1000_get_rxnfc, 2332 .get_ts_info = e1000e_get_ts_info, 2333 .get_eee = e1000e_get_eee, 2334 .set_eee = e1000e_set_eee, 2335 .get_link_ksettings = e1000_get_link_ksettings, 2336 .set_link_ksettings = e1000_set_link_ksettings, 2337 }; 2338 2339 void e1000e_set_ethtool_ops(struct net_device *netdev) 2340 { 2341 netdev->ethtool_ops = &e1000_ethtool_ops; 2342 } 2343