1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 
39 #include "e1000.h"
40 
41 enum {NETDEV_STATS, E1000_STATS};
42 
43 struct e1000_stats {
44 	char stat_string[ETH_GSTRING_LEN];
45 	int type;
46 	int sizeof_stat;
47 	int stat_offset;
48 };
49 
50 #define E1000_STAT(str, m) { \
51 		.stat_string = str, \
52 		.type = E1000_STATS, \
53 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54 		.stat_offset = offsetof(struct e1000_adapter, m) }
55 #define E1000_NETDEV_STAT(str, m) { \
56 		.stat_string = str, \
57 		.type = NETDEV_STATS, \
58 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
60 
61 static const struct e1000_stats e1000_gstrings_stats[] = {
62 	E1000_STAT("rx_packets", stats.gprc),
63 	E1000_STAT("tx_packets", stats.gptc),
64 	E1000_STAT("rx_bytes", stats.gorc),
65 	E1000_STAT("tx_bytes", stats.gotc),
66 	E1000_STAT("rx_broadcast", stats.bprc),
67 	E1000_STAT("tx_broadcast", stats.bptc),
68 	E1000_STAT("rx_multicast", stats.mprc),
69 	E1000_STAT("tx_multicast", stats.mptc),
70 	E1000_NETDEV_STAT("rx_errors", rx_errors),
71 	E1000_NETDEV_STAT("tx_errors", tx_errors),
72 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
73 	E1000_STAT("multicast", stats.mprc),
74 	E1000_STAT("collisions", stats.colc),
75 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
76 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
77 	E1000_STAT("rx_crc_errors", stats.crcerrs),
78 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
79 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
80 	E1000_STAT("rx_missed_errors", stats.mpc),
81 	E1000_STAT("tx_aborted_errors", stats.ecol),
82 	E1000_STAT("tx_carrier_errors", stats.tncrs),
83 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
84 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
85 	E1000_STAT("tx_window_errors", stats.latecol),
86 	E1000_STAT("tx_abort_late_coll", stats.latecol),
87 	E1000_STAT("tx_deferred_ok", stats.dc),
88 	E1000_STAT("tx_single_coll_ok", stats.scc),
89 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
90 	E1000_STAT("tx_timeout_count", tx_timeout_count),
91 	E1000_STAT("tx_restart_queue", restart_queue),
92 	E1000_STAT("rx_long_length_errors", stats.roc),
93 	E1000_STAT("rx_short_length_errors", stats.ruc),
94 	E1000_STAT("rx_align_errors", stats.algnerrc),
95 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
96 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
97 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
98 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
99 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
100 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
101 	E1000_STAT("rx_long_byte_count", stats.gorc),
102 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
103 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104 	E1000_STAT("rx_header_split", rx_hdr_split),
105 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106 	E1000_STAT("tx_smbus", stats.mgptc),
107 	E1000_STAT("rx_smbus", stats.mgprc),
108 	E1000_STAT("dropped_smbus", stats.mgpdc),
109 	E1000_STAT("rx_dma_failed", rx_dma_failed),
110 	E1000_STAT("tx_dma_failed", tx_dma_failed),
111 };
112 
113 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
115 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
116 	"Register test  (offline)", "Eeprom test    (offline)",
117 	"Interrupt test (offline)", "Loopback test  (offline)",
118 	"Link test   (on/offline)"
119 };
120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121 
122 static int e1000_get_settings(struct net_device *netdev,
123 			      struct ethtool_cmd *ecmd)
124 {
125 	struct e1000_adapter *adapter = netdev_priv(netdev);
126 	struct e1000_hw *hw = &adapter->hw;
127 	u32 speed;
128 
129 	if (hw->phy.media_type == e1000_media_type_copper) {
130 
131 		ecmd->supported = (SUPPORTED_10baseT_Half |
132 				   SUPPORTED_10baseT_Full |
133 				   SUPPORTED_100baseT_Half |
134 				   SUPPORTED_100baseT_Full |
135 				   SUPPORTED_1000baseT_Full |
136 				   SUPPORTED_Autoneg |
137 				   SUPPORTED_TP);
138 		if (hw->phy.type == e1000_phy_ife)
139 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
140 		ecmd->advertising = ADVERTISED_TP;
141 
142 		if (hw->mac.autoneg == 1) {
143 			ecmd->advertising |= ADVERTISED_Autoneg;
144 			/* the e1000 autoneg seems to match ethtool nicely */
145 			ecmd->advertising |= hw->phy.autoneg_advertised;
146 		}
147 
148 		ecmd->port = PORT_TP;
149 		ecmd->phy_address = hw->phy.addr;
150 		ecmd->transceiver = XCVR_INTERNAL;
151 
152 	} else {
153 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
154 				     SUPPORTED_FIBRE |
155 				     SUPPORTED_Autoneg);
156 
157 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
158 				     ADVERTISED_FIBRE |
159 				     ADVERTISED_Autoneg);
160 
161 		ecmd->port = PORT_FIBRE;
162 		ecmd->transceiver = XCVR_EXTERNAL;
163 	}
164 
165 	speed = -1;
166 	ecmd->duplex = -1;
167 
168 	if (netif_running(netdev)) {
169 		if (netif_carrier_ok(netdev)) {
170 			speed = adapter->link_speed;
171 			ecmd->duplex = adapter->link_duplex - 1;
172 		}
173 	} else {
174 		u32 status = er32(STATUS);
175 		if (status & E1000_STATUS_LU) {
176 			if (status & E1000_STATUS_SPEED_1000)
177 				speed = SPEED_1000;
178 			else if (status & E1000_STATUS_SPEED_100)
179 				speed = SPEED_100;
180 			else
181 				speed = SPEED_10;
182 
183 			if (status & E1000_STATUS_FD)
184 				ecmd->duplex = DUPLEX_FULL;
185 			else
186 				ecmd->duplex = DUPLEX_HALF;
187 		}
188 	}
189 
190 	ethtool_cmd_speed_set(ecmd, speed);
191 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
192 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
193 
194 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
195 	if ((hw->phy.media_type == e1000_media_type_copper) &&
196 	    netif_carrier_ok(netdev))
197 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
198 		                                      ETH_TP_MDI;
199 	else
200 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
201 
202 	return 0;
203 }
204 
205 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
206 {
207 	struct e1000_mac_info *mac = &adapter->hw.mac;
208 
209 	mac->autoneg = 0;
210 
211 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
212 	 * for the switch() below to work */
213 	if ((spd & 1) || (dplx & ~1))
214 		goto err_inval;
215 
216 	/* Fiber NICs only allow 1000 gbps Full duplex */
217 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
218 	    spd != SPEED_1000 &&
219 	    dplx != DUPLEX_FULL) {
220 		goto err_inval;
221 	}
222 
223 	switch (spd + dplx) {
224 	case SPEED_10 + DUPLEX_HALF:
225 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
226 		break;
227 	case SPEED_10 + DUPLEX_FULL:
228 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
229 		break;
230 	case SPEED_100 + DUPLEX_HALF:
231 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
232 		break;
233 	case SPEED_100 + DUPLEX_FULL:
234 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
235 		break;
236 	case SPEED_1000 + DUPLEX_FULL:
237 		mac->autoneg = 1;
238 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
239 		break;
240 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
241 	default:
242 		goto err_inval;
243 	}
244 	return 0;
245 
246 err_inval:
247 	e_err("Unsupported Speed/Duplex configuration\n");
248 	return -EINVAL;
249 }
250 
251 static int e1000_set_settings(struct net_device *netdev,
252 			      struct ethtool_cmd *ecmd)
253 {
254 	struct e1000_adapter *adapter = netdev_priv(netdev);
255 	struct e1000_hw *hw = &adapter->hw;
256 
257 	/*
258 	 * When SoL/IDER sessions are active, autoneg/speed/duplex
259 	 * cannot be changed
260 	 */
261 	if (hw->phy.ops.check_reset_block(hw)) {
262 		e_err("Cannot change link characteristics when SoL/IDER is "
263 		      "active.\n");
264 		return -EINVAL;
265 	}
266 
267 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
268 		usleep_range(1000, 2000);
269 
270 	if (ecmd->autoneg == AUTONEG_ENABLE) {
271 		hw->mac.autoneg = 1;
272 		if (hw->phy.media_type == e1000_media_type_fiber)
273 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
274 						     ADVERTISED_FIBRE |
275 						     ADVERTISED_Autoneg;
276 		else
277 			hw->phy.autoneg_advertised = ecmd->advertising |
278 						     ADVERTISED_TP |
279 						     ADVERTISED_Autoneg;
280 		ecmd->advertising = hw->phy.autoneg_advertised;
281 		if (adapter->fc_autoneg)
282 			hw->fc.requested_mode = e1000_fc_default;
283 	} else {
284 		u32 speed = ethtool_cmd_speed(ecmd);
285 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
286 			clear_bit(__E1000_RESETTING, &adapter->state);
287 			return -EINVAL;
288 		}
289 	}
290 
291 	/* reset the link */
292 
293 	if (netif_running(adapter->netdev)) {
294 		e1000e_down(adapter);
295 		e1000e_up(adapter);
296 	} else {
297 		e1000e_reset(adapter);
298 	}
299 
300 	clear_bit(__E1000_RESETTING, &adapter->state);
301 	return 0;
302 }
303 
304 static void e1000_get_pauseparam(struct net_device *netdev,
305 				 struct ethtool_pauseparam *pause)
306 {
307 	struct e1000_adapter *adapter = netdev_priv(netdev);
308 	struct e1000_hw *hw = &adapter->hw;
309 
310 	pause->autoneg =
311 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
312 
313 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
314 		pause->rx_pause = 1;
315 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
316 		pause->tx_pause = 1;
317 	} else if (hw->fc.current_mode == e1000_fc_full) {
318 		pause->rx_pause = 1;
319 		pause->tx_pause = 1;
320 	}
321 }
322 
323 static int e1000_set_pauseparam(struct net_device *netdev,
324 				struct ethtool_pauseparam *pause)
325 {
326 	struct e1000_adapter *adapter = netdev_priv(netdev);
327 	struct e1000_hw *hw = &adapter->hw;
328 	int retval = 0;
329 
330 	adapter->fc_autoneg = pause->autoneg;
331 
332 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
333 		usleep_range(1000, 2000);
334 
335 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
336 		hw->fc.requested_mode = e1000_fc_default;
337 		if (netif_running(adapter->netdev)) {
338 			e1000e_down(adapter);
339 			e1000e_up(adapter);
340 		} else {
341 			e1000e_reset(adapter);
342 		}
343 	} else {
344 		if (pause->rx_pause && pause->tx_pause)
345 			hw->fc.requested_mode = e1000_fc_full;
346 		else if (pause->rx_pause && !pause->tx_pause)
347 			hw->fc.requested_mode = e1000_fc_rx_pause;
348 		else if (!pause->rx_pause && pause->tx_pause)
349 			hw->fc.requested_mode = e1000_fc_tx_pause;
350 		else if (!pause->rx_pause && !pause->tx_pause)
351 			hw->fc.requested_mode = e1000_fc_none;
352 
353 		hw->fc.current_mode = hw->fc.requested_mode;
354 
355 		if (hw->phy.media_type == e1000_media_type_fiber) {
356 			retval = hw->mac.ops.setup_link(hw);
357 			/* implicit goto out */
358 		} else {
359 			retval = e1000e_force_mac_fc(hw);
360 			if (retval)
361 				goto out;
362 			e1000e_set_fc_watermarks(hw);
363 		}
364 	}
365 
366 out:
367 	clear_bit(__E1000_RESETTING, &adapter->state);
368 	return retval;
369 }
370 
371 static u32 e1000_get_msglevel(struct net_device *netdev)
372 {
373 	struct e1000_adapter *adapter = netdev_priv(netdev);
374 	return adapter->msg_enable;
375 }
376 
377 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
378 {
379 	struct e1000_adapter *adapter = netdev_priv(netdev);
380 	adapter->msg_enable = data;
381 }
382 
383 static int e1000_get_regs_len(struct net_device *netdev)
384 {
385 #define E1000_REGS_LEN 32 /* overestimate */
386 	return E1000_REGS_LEN * sizeof(u32);
387 }
388 
389 static void e1000_get_regs(struct net_device *netdev,
390 			   struct ethtool_regs *regs, void *p)
391 {
392 	struct e1000_adapter *adapter = netdev_priv(netdev);
393 	struct e1000_hw *hw = &adapter->hw;
394 	u32 *regs_buff = p;
395 	u16 phy_data;
396 
397 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
398 
399 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
400 			adapter->pdev->device;
401 
402 	regs_buff[0]  = er32(CTRL);
403 	regs_buff[1]  = er32(STATUS);
404 
405 	regs_buff[2]  = er32(RCTL);
406 	regs_buff[3]  = er32(RDLEN);
407 	regs_buff[4]  = er32(RDH);
408 	regs_buff[5]  = er32(RDT);
409 	regs_buff[6]  = er32(RDTR);
410 
411 	regs_buff[7]  = er32(TCTL);
412 	regs_buff[8]  = er32(TDLEN);
413 	regs_buff[9]  = er32(TDH);
414 	regs_buff[10] = er32(TDT);
415 	regs_buff[11] = er32(TIDV);
416 
417 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
418 
419 	/* ethtool doesn't use anything past this point, so all this
420 	 * code is likely legacy junk for apps that may or may not
421 	 * exist */
422 	if (hw->phy.type == e1000_phy_m88) {
423 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
424 		regs_buff[13] = (u32)phy_data; /* cable length */
425 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
426 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
427 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
428 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
429 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
430 		regs_buff[18] = regs_buff[13]; /* cable polarity */
431 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
432 		regs_buff[20] = regs_buff[17]; /* polarity correction */
433 		/* phy receive errors */
434 		regs_buff[22] = adapter->phy_stats.receive_errors;
435 		regs_buff[23] = regs_buff[13]; /* mdix mode */
436 	}
437 	regs_buff[21] = 0; /* was idle_errors */
438 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
439 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
440 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
441 }
442 
443 static int e1000_get_eeprom_len(struct net_device *netdev)
444 {
445 	struct e1000_adapter *adapter = netdev_priv(netdev);
446 	return adapter->hw.nvm.word_size * 2;
447 }
448 
449 static int e1000_get_eeprom(struct net_device *netdev,
450 			    struct ethtool_eeprom *eeprom, u8 *bytes)
451 {
452 	struct e1000_adapter *adapter = netdev_priv(netdev);
453 	struct e1000_hw *hw = &adapter->hw;
454 	u16 *eeprom_buff;
455 	int first_word;
456 	int last_word;
457 	int ret_val = 0;
458 	u16 i;
459 
460 	if (eeprom->len == 0)
461 		return -EINVAL;
462 
463 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
464 
465 	first_word = eeprom->offset >> 1;
466 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
467 
468 	eeprom_buff = kmalloc(sizeof(u16) *
469 			(last_word - first_word + 1), GFP_KERNEL);
470 	if (!eeprom_buff)
471 		return -ENOMEM;
472 
473 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
474 		ret_val = e1000_read_nvm(hw, first_word,
475 					 last_word - first_word + 1,
476 					 eeprom_buff);
477 	} else {
478 		for (i = 0; i < last_word - first_word + 1; i++) {
479 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
480 						      &eeprom_buff[i]);
481 			if (ret_val)
482 				break;
483 		}
484 	}
485 
486 	if (ret_val) {
487 		/* a read error occurred, throw away the result */
488 		memset(eeprom_buff, 0xff, sizeof(u16) *
489 		       (last_word - first_word + 1));
490 	} else {
491 		/* Device's eeprom is always little-endian, word addressable */
492 		for (i = 0; i < last_word - first_word + 1; i++)
493 			le16_to_cpus(&eeprom_buff[i]);
494 	}
495 
496 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
497 	kfree(eeprom_buff);
498 
499 	return ret_val;
500 }
501 
502 static int e1000_set_eeprom(struct net_device *netdev,
503 			    struct ethtool_eeprom *eeprom, u8 *bytes)
504 {
505 	struct e1000_adapter *adapter = netdev_priv(netdev);
506 	struct e1000_hw *hw = &adapter->hw;
507 	u16 *eeprom_buff;
508 	void *ptr;
509 	int max_len;
510 	int first_word;
511 	int last_word;
512 	int ret_val = 0;
513 	u16 i;
514 
515 	if (eeprom->len == 0)
516 		return -EOPNOTSUPP;
517 
518 	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
519 		return -EFAULT;
520 
521 	if (adapter->flags & FLAG_READ_ONLY_NVM)
522 		return -EINVAL;
523 
524 	max_len = hw->nvm.word_size * 2;
525 
526 	first_word = eeprom->offset >> 1;
527 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
528 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
529 	if (!eeprom_buff)
530 		return -ENOMEM;
531 
532 	ptr = (void *)eeprom_buff;
533 
534 	if (eeprom->offset & 1) {
535 		/* need read/modify/write of first changed EEPROM word */
536 		/* only the second byte of the word is being modified */
537 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
538 		ptr++;
539 	}
540 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
541 		/* need read/modify/write of last changed EEPROM word */
542 		/* only the first byte of the word is being modified */
543 		ret_val = e1000_read_nvm(hw, last_word, 1,
544 				  &eeprom_buff[last_word - first_word]);
545 
546 	if (ret_val)
547 		goto out;
548 
549 	/* Device's eeprom is always little-endian, word addressable */
550 	for (i = 0; i < last_word - first_word + 1; i++)
551 		le16_to_cpus(&eeprom_buff[i]);
552 
553 	memcpy(ptr, bytes, eeprom->len);
554 
555 	for (i = 0; i < last_word - first_word + 1; i++)
556 		cpu_to_le16s(&eeprom_buff[i]);
557 
558 	ret_val = e1000_write_nvm(hw, first_word,
559 				  last_word - first_word + 1, eeprom_buff);
560 
561 	if (ret_val)
562 		goto out;
563 
564 	/*
565 	 * Update the checksum over the first part of the EEPROM if needed
566 	 * and flush shadow RAM for applicable controllers
567 	 */
568 	if ((first_word <= NVM_CHECKSUM_REG) ||
569 	    (hw->mac.type == e1000_82583) ||
570 	    (hw->mac.type == e1000_82574) ||
571 	    (hw->mac.type == e1000_82573))
572 		ret_val = e1000e_update_nvm_checksum(hw);
573 
574 out:
575 	kfree(eeprom_buff);
576 	return ret_val;
577 }
578 
579 static void e1000_get_drvinfo(struct net_device *netdev,
580 			      struct ethtool_drvinfo *drvinfo)
581 {
582 	struct e1000_adapter *adapter = netdev_priv(netdev);
583 
584 	strlcpy(drvinfo->driver,  e1000e_driver_name,
585 		sizeof(drvinfo->driver));
586 	strlcpy(drvinfo->version, e1000e_driver_version,
587 		sizeof(drvinfo->version));
588 
589 	/*
590 	 * EEPROM image version # is reported as firmware version # for
591 	 * PCI-E controllers
592 	 */
593 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
594 		"%d.%d-%d",
595 		(adapter->eeprom_vers & 0xF000) >> 12,
596 		(adapter->eeprom_vers & 0x0FF0) >> 4,
597 		(adapter->eeprom_vers & 0x000F));
598 
599 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
600 		sizeof(drvinfo->bus_info));
601 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
602 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
603 }
604 
605 static void e1000_get_ringparam(struct net_device *netdev,
606 				struct ethtool_ringparam *ring)
607 {
608 	struct e1000_adapter *adapter = netdev_priv(netdev);
609 
610 	ring->rx_max_pending = E1000_MAX_RXD;
611 	ring->tx_max_pending = E1000_MAX_TXD;
612 	ring->rx_pending = adapter->rx_ring_count;
613 	ring->tx_pending = adapter->tx_ring_count;
614 }
615 
616 static int e1000_set_ringparam(struct net_device *netdev,
617 			       struct ethtool_ringparam *ring)
618 {
619 	struct e1000_adapter *adapter = netdev_priv(netdev);
620 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
621 	int err = 0, size = sizeof(struct e1000_ring);
622 	bool set_tx = false, set_rx = false;
623 	u16 new_rx_count, new_tx_count;
624 
625 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
626 		return -EINVAL;
627 
628 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
629 			       E1000_MAX_RXD);
630 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
631 
632 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
633 			       E1000_MAX_TXD);
634 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
635 
636 	if ((new_tx_count == adapter->tx_ring_count) &&
637 	    (new_rx_count == adapter->rx_ring_count))
638 		/* nothing to do */
639 		return 0;
640 
641 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
642 		usleep_range(1000, 2000);
643 
644 	if (!netif_running(adapter->netdev)) {
645 		/* Set counts now and allocate resources during open() */
646 		adapter->tx_ring->count = new_tx_count;
647 		adapter->rx_ring->count = new_rx_count;
648 		adapter->tx_ring_count = new_tx_count;
649 		adapter->rx_ring_count = new_rx_count;
650 		goto clear_reset;
651 	}
652 
653 	set_tx = (new_tx_count != adapter->tx_ring_count);
654 	set_rx = (new_rx_count != adapter->rx_ring_count);
655 
656 	/* Allocate temporary storage for ring updates */
657 	if (set_tx) {
658 		temp_tx = vmalloc(size);
659 		if (!temp_tx) {
660 			err = -ENOMEM;
661 			goto free_temp;
662 		}
663 	}
664 	if (set_rx) {
665 		temp_rx = vmalloc(size);
666 		if (!temp_rx) {
667 			err = -ENOMEM;
668 			goto free_temp;
669 		}
670 	}
671 
672 	e1000e_down(adapter);
673 
674 	/*
675 	 * We can't just free everything and then setup again, because the
676 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
677 	 * structs.  First, attempt to allocate new resources...
678 	 */
679 	if (set_tx) {
680 		memcpy(temp_tx, adapter->tx_ring, size);
681 		temp_tx->count = new_tx_count;
682 		err = e1000e_setup_tx_resources(temp_tx);
683 		if (err)
684 			goto err_setup;
685 	}
686 	if (set_rx) {
687 		memcpy(temp_rx, adapter->rx_ring, size);
688 		temp_rx->count = new_rx_count;
689 		err = e1000e_setup_rx_resources(temp_rx);
690 		if (err)
691 			goto err_setup_rx;
692 	}
693 
694 	/* ...then free the old resources and copy back any new ring data */
695 	if (set_tx) {
696 		e1000e_free_tx_resources(adapter->tx_ring);
697 		memcpy(adapter->tx_ring, temp_tx, size);
698 		adapter->tx_ring_count = new_tx_count;
699 	}
700 	if (set_rx) {
701 		e1000e_free_rx_resources(adapter->rx_ring);
702 		memcpy(adapter->rx_ring, temp_rx, size);
703 		adapter->rx_ring_count = new_rx_count;
704 	}
705 
706 err_setup_rx:
707 	if (err && set_tx)
708 		e1000e_free_tx_resources(temp_tx);
709 err_setup:
710 	e1000e_up(adapter);
711 free_temp:
712 	vfree(temp_tx);
713 	vfree(temp_rx);
714 clear_reset:
715 	clear_bit(__E1000_RESETTING, &adapter->state);
716 	return err;
717 }
718 
719 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
720 			     int reg, int offset, u32 mask, u32 write)
721 {
722 	u32 pat, val;
723 	static const u32 test[] = {
724 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
725 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
726 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
727 				      (test[pat] & write));
728 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
729 		if (val != (test[pat] & write & mask)) {
730 			e_err("pattern test reg %04X failed: got 0x%08X "
731 			      "expected 0x%08X\n", reg + offset, val,
732 			      (test[pat] & write & mask));
733 			*data = reg;
734 			return 1;
735 		}
736 	}
737 	return 0;
738 }
739 
740 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
741 			      int reg, u32 mask, u32 write)
742 {
743 	u32 val;
744 	__ew32(&adapter->hw, reg, write & mask);
745 	val = __er32(&adapter->hw, reg);
746 	if ((write & mask) != (val & mask)) {
747 		e_err("set/check reg %04X test failed: got 0x%08X "
748 		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
749 		*data = reg;
750 		return 1;
751 	}
752 	return 0;
753 }
754 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
755 	do {                                                                   \
756 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
757 			return 1;                                              \
758 	} while (0)
759 #define REG_PATTERN_TEST(reg, mask, write)                                     \
760 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
761 
762 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
763 	do {                                                                   \
764 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
765 			return 1;                                              \
766 	} while (0)
767 
768 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
769 {
770 	struct e1000_hw *hw = &adapter->hw;
771 	struct e1000_mac_info *mac = &adapter->hw.mac;
772 	u32 value;
773 	u32 before;
774 	u32 after;
775 	u32 i;
776 	u32 toggle;
777 	u32 mask;
778 
779 	/*
780 	 * The status register is Read Only, so a write should fail.
781 	 * Some bits that get toggled are ignored.
782 	 */
783 	switch (mac->type) {
784 	/* there are several bits on newer hardware that are r/w */
785 	case e1000_82571:
786 	case e1000_82572:
787 	case e1000_80003es2lan:
788 		toggle = 0x7FFFF3FF;
789 		break;
790         default:
791 		toggle = 0x7FFFF033;
792 		break;
793 	}
794 
795 	before = er32(STATUS);
796 	value = (er32(STATUS) & toggle);
797 	ew32(STATUS, toggle);
798 	after = er32(STATUS) & toggle;
799 	if (value != after) {
800 		e_err("failed STATUS register test got: 0x%08X expected: "
801 		      "0x%08X\n", after, value);
802 		*data = 1;
803 		return 1;
804 	}
805 	/* restore previous status */
806 	ew32(STATUS, before);
807 
808 	if (!(adapter->flags & FLAG_IS_ICH)) {
809 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
810 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
811 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
812 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
813 	}
814 
815 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
816 	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
817 	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
818 	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
819 	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
820 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
821 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
822 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
823 	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
824 	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
825 
826 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
827 
828 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
829 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
830 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
831 
832 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
833 	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
834 	if (!(adapter->flags & FLAG_IS_ICH))
835 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
836 	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
837 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
838 	mask = 0x8003FFFF;
839 	switch (mac->type) {
840 	case e1000_ich10lan:
841 	case e1000_pchlan:
842 	case e1000_pch2lan:
843 		mask |= (1 << 18);
844 		break;
845 	default:
846 		break;
847 	}
848 	for (i = 0; i < mac->rar_entry_count; i++)
849 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
850 		                       mask, 0xFFFFFFFF);
851 
852 	for (i = 0; i < mac->mta_reg_count; i++)
853 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
854 
855 	*data = 0;
856 	return 0;
857 }
858 
859 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
860 {
861 	u16 temp;
862 	u16 checksum = 0;
863 	u16 i;
864 
865 	*data = 0;
866 	/* Read and add up the contents of the EEPROM */
867 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
868 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
869 			*data = 1;
870 			return *data;
871 		}
872 		checksum += temp;
873 	}
874 
875 	/* If Checksum is not Correct return error else test passed */
876 	if ((checksum != (u16) NVM_SUM) && !(*data))
877 		*data = 2;
878 
879 	return *data;
880 }
881 
882 static irqreturn_t e1000_test_intr(int irq, void *data)
883 {
884 	struct net_device *netdev = (struct net_device *) data;
885 	struct e1000_adapter *adapter = netdev_priv(netdev);
886 	struct e1000_hw *hw = &adapter->hw;
887 
888 	adapter->test_icr |= er32(ICR);
889 
890 	return IRQ_HANDLED;
891 }
892 
893 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
894 {
895 	struct net_device *netdev = adapter->netdev;
896 	struct e1000_hw *hw = &adapter->hw;
897 	u32 mask;
898 	u32 shared_int = 1;
899 	u32 irq = adapter->pdev->irq;
900 	int i;
901 	int ret_val = 0;
902 	int int_mode = E1000E_INT_MODE_LEGACY;
903 
904 	*data = 0;
905 
906 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
907 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
908 		int_mode = adapter->int_mode;
909 		e1000e_reset_interrupt_capability(adapter);
910 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
911 		e1000e_set_interrupt_capability(adapter);
912 	}
913 	/* Hook up test interrupt handler just for this test */
914 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
915 			 netdev)) {
916 		shared_int = 0;
917 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
918 		 netdev->name, netdev)) {
919 		*data = 1;
920 		ret_val = -1;
921 		goto out;
922 	}
923 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
924 
925 	/* Disable all the interrupts */
926 	ew32(IMC, 0xFFFFFFFF);
927 	e1e_flush();
928 	usleep_range(10000, 20000);
929 
930 	/* Test each interrupt */
931 	for (i = 0; i < 10; i++) {
932 		/* Interrupt to test */
933 		mask = 1 << i;
934 
935 		if (adapter->flags & FLAG_IS_ICH) {
936 			switch (mask) {
937 			case E1000_ICR_RXSEQ:
938 				continue;
939 			case 0x00000100:
940 				if (adapter->hw.mac.type == e1000_ich8lan ||
941 				    adapter->hw.mac.type == e1000_ich9lan)
942 					continue;
943 				break;
944 			default:
945 				break;
946 			}
947 		}
948 
949 		if (!shared_int) {
950 			/*
951 			 * Disable the interrupt to be reported in
952 			 * the cause register and then force the same
953 			 * interrupt and see if one gets posted.  If
954 			 * an interrupt was posted to the bus, the
955 			 * test failed.
956 			 */
957 			adapter->test_icr = 0;
958 			ew32(IMC, mask);
959 			ew32(ICS, mask);
960 			e1e_flush();
961 			usleep_range(10000, 20000);
962 
963 			if (adapter->test_icr & mask) {
964 				*data = 3;
965 				break;
966 			}
967 		}
968 
969 		/*
970 		 * Enable the interrupt to be reported in
971 		 * the cause register and then force the same
972 		 * interrupt and see if one gets posted.  If
973 		 * an interrupt was not posted to the bus, the
974 		 * test failed.
975 		 */
976 		adapter->test_icr = 0;
977 		ew32(IMS, mask);
978 		ew32(ICS, mask);
979 		e1e_flush();
980 		usleep_range(10000, 20000);
981 
982 		if (!(adapter->test_icr & mask)) {
983 			*data = 4;
984 			break;
985 		}
986 
987 		if (!shared_int) {
988 			/*
989 			 * Disable the other interrupts to be reported in
990 			 * the cause register and then force the other
991 			 * interrupts and see if any get posted.  If
992 			 * an interrupt was posted to the bus, the
993 			 * test failed.
994 			 */
995 			adapter->test_icr = 0;
996 			ew32(IMC, ~mask & 0x00007FFF);
997 			ew32(ICS, ~mask & 0x00007FFF);
998 			e1e_flush();
999 			usleep_range(10000, 20000);
1000 
1001 			if (adapter->test_icr) {
1002 				*data = 5;
1003 				break;
1004 			}
1005 		}
1006 	}
1007 
1008 	/* Disable all the interrupts */
1009 	ew32(IMC, 0xFFFFFFFF);
1010 	e1e_flush();
1011 	usleep_range(10000, 20000);
1012 
1013 	/* Unhook test interrupt handler */
1014 	free_irq(irq, netdev);
1015 
1016 out:
1017 	if (int_mode == E1000E_INT_MODE_MSIX) {
1018 		e1000e_reset_interrupt_capability(adapter);
1019 		adapter->int_mode = int_mode;
1020 		e1000e_set_interrupt_capability(adapter);
1021 	}
1022 
1023 	return ret_val;
1024 }
1025 
1026 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1027 {
1028 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1029 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1030 	struct pci_dev *pdev = adapter->pdev;
1031 	int i;
1032 
1033 	if (tx_ring->desc && tx_ring->buffer_info) {
1034 		for (i = 0; i < tx_ring->count; i++) {
1035 			if (tx_ring->buffer_info[i].dma)
1036 				dma_unmap_single(&pdev->dev,
1037 					tx_ring->buffer_info[i].dma,
1038 					tx_ring->buffer_info[i].length,
1039 					DMA_TO_DEVICE);
1040 			if (tx_ring->buffer_info[i].skb)
1041 				dev_kfree_skb(tx_ring->buffer_info[i].skb);
1042 		}
1043 	}
1044 
1045 	if (rx_ring->desc && rx_ring->buffer_info) {
1046 		for (i = 0; i < rx_ring->count; i++) {
1047 			if (rx_ring->buffer_info[i].dma)
1048 				dma_unmap_single(&pdev->dev,
1049 					rx_ring->buffer_info[i].dma,
1050 					2048, DMA_FROM_DEVICE);
1051 			if (rx_ring->buffer_info[i].skb)
1052 				dev_kfree_skb(rx_ring->buffer_info[i].skb);
1053 		}
1054 	}
1055 
1056 	if (tx_ring->desc) {
1057 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1058 				  tx_ring->dma);
1059 		tx_ring->desc = NULL;
1060 	}
1061 	if (rx_ring->desc) {
1062 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1063 				  rx_ring->dma);
1064 		rx_ring->desc = NULL;
1065 	}
1066 
1067 	kfree(tx_ring->buffer_info);
1068 	tx_ring->buffer_info = NULL;
1069 	kfree(rx_ring->buffer_info);
1070 	rx_ring->buffer_info = NULL;
1071 }
1072 
1073 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1074 {
1075 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1076 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1077 	struct pci_dev *pdev = adapter->pdev;
1078 	struct e1000_hw *hw = &adapter->hw;
1079 	u32 rctl;
1080 	int i;
1081 	int ret_val;
1082 
1083 	/* Setup Tx descriptor ring and Tx buffers */
1084 
1085 	if (!tx_ring->count)
1086 		tx_ring->count = E1000_DEFAULT_TXD;
1087 
1088 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1089 				       sizeof(struct e1000_buffer),
1090 				       GFP_KERNEL);
1091 	if (!tx_ring->buffer_info) {
1092 		ret_val = 1;
1093 		goto err_nomem;
1094 	}
1095 
1096 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1097 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1098 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1099 					   &tx_ring->dma, GFP_KERNEL);
1100 	if (!tx_ring->desc) {
1101 		ret_val = 2;
1102 		goto err_nomem;
1103 	}
1104 	tx_ring->next_to_use = 0;
1105 	tx_ring->next_to_clean = 0;
1106 
1107 	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1108 	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1109 	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1110 	ew32(TDH, 0);
1111 	ew32(TDT, 0);
1112 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1113 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1114 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1115 
1116 	for (i = 0; i < tx_ring->count; i++) {
1117 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1118 		struct sk_buff *skb;
1119 		unsigned int skb_size = 1024;
1120 
1121 		skb = alloc_skb(skb_size, GFP_KERNEL);
1122 		if (!skb) {
1123 			ret_val = 3;
1124 			goto err_nomem;
1125 		}
1126 		skb_put(skb, skb_size);
1127 		tx_ring->buffer_info[i].skb = skb;
1128 		tx_ring->buffer_info[i].length = skb->len;
1129 		tx_ring->buffer_info[i].dma =
1130 			dma_map_single(&pdev->dev, skb->data, skb->len,
1131 				       DMA_TO_DEVICE);
1132 		if (dma_mapping_error(&pdev->dev,
1133 				      tx_ring->buffer_info[i].dma)) {
1134 			ret_val = 4;
1135 			goto err_nomem;
1136 		}
1137 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1138 		tx_desc->lower.data = cpu_to_le32(skb->len);
1139 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1140 						   E1000_TXD_CMD_IFCS |
1141 						   E1000_TXD_CMD_RS);
1142 		tx_desc->upper.data = 0;
1143 	}
1144 
1145 	/* Setup Rx descriptor ring and Rx buffers */
1146 
1147 	if (!rx_ring->count)
1148 		rx_ring->count = E1000_DEFAULT_RXD;
1149 
1150 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1151 				       sizeof(struct e1000_buffer),
1152 				       GFP_KERNEL);
1153 	if (!rx_ring->buffer_info) {
1154 		ret_val = 5;
1155 		goto err_nomem;
1156 	}
1157 
1158 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1159 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1160 					   &rx_ring->dma, GFP_KERNEL);
1161 	if (!rx_ring->desc) {
1162 		ret_val = 6;
1163 		goto err_nomem;
1164 	}
1165 	rx_ring->next_to_use = 0;
1166 	rx_ring->next_to_clean = 0;
1167 
1168 	rctl = er32(RCTL);
1169 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1170 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1171 	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1172 	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1173 	ew32(RDLEN, rx_ring->size);
1174 	ew32(RDH, 0);
1175 	ew32(RDT, 0);
1176 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1177 		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1178 		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1179 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1180 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1181 	ew32(RCTL, rctl);
1182 
1183 	for (i = 0; i < rx_ring->count; i++) {
1184 		union e1000_rx_desc_extended *rx_desc;
1185 		struct sk_buff *skb;
1186 
1187 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1188 		if (!skb) {
1189 			ret_val = 7;
1190 			goto err_nomem;
1191 		}
1192 		skb_reserve(skb, NET_IP_ALIGN);
1193 		rx_ring->buffer_info[i].skb = skb;
1194 		rx_ring->buffer_info[i].dma =
1195 			dma_map_single(&pdev->dev, skb->data, 2048,
1196 				       DMA_FROM_DEVICE);
1197 		if (dma_mapping_error(&pdev->dev,
1198 				      rx_ring->buffer_info[i].dma)) {
1199 			ret_val = 8;
1200 			goto err_nomem;
1201 		}
1202 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1203 		rx_desc->read.buffer_addr =
1204 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1205 		memset(skb->data, 0x00, skb->len);
1206 	}
1207 
1208 	return 0;
1209 
1210 err_nomem:
1211 	e1000_free_desc_rings(adapter);
1212 	return ret_val;
1213 }
1214 
1215 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1216 {
1217 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1218 	e1e_wphy(&adapter->hw, 29, 0x001F);
1219 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1220 	e1e_wphy(&adapter->hw, 29, 0x001A);
1221 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1222 }
1223 
1224 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1225 {
1226 	struct e1000_hw *hw = &adapter->hw;
1227 	u32 ctrl_reg = 0;
1228 	u16 phy_reg = 0;
1229 	s32 ret_val = 0;
1230 
1231 	hw->mac.autoneg = 0;
1232 
1233 	if (hw->phy.type == e1000_phy_ife) {
1234 		/* force 100, set loopback */
1235 		e1e_wphy(hw, PHY_CONTROL, 0x6100);
1236 
1237 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1238 		ctrl_reg = er32(CTRL);
1239 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1240 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1241 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1242 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1243 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1244 
1245 		ew32(CTRL, ctrl_reg);
1246 		e1e_flush();
1247 		udelay(500);
1248 
1249 		return 0;
1250 	}
1251 
1252 	/* Specific PHY configuration for loopback */
1253 	switch (hw->phy.type) {
1254 	case e1000_phy_m88:
1255 		/* Auto-MDI/MDIX Off */
1256 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1257 		/* reset to update Auto-MDI/MDIX */
1258 		e1e_wphy(hw, PHY_CONTROL, 0x9140);
1259 		/* autoneg off */
1260 		e1e_wphy(hw, PHY_CONTROL, 0x8140);
1261 		break;
1262 	case e1000_phy_gg82563:
1263 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1264 		break;
1265 	case e1000_phy_bm:
1266 		/* Set Default MAC Interface speed to 1GB */
1267 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1268 		phy_reg &= ~0x0007;
1269 		phy_reg |= 0x006;
1270 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1271 		/* Assert SW reset for above settings to take effect */
1272 		e1000e_commit_phy(hw);
1273 		mdelay(1);
1274 		/* Force Full Duplex */
1275 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1276 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1277 		/* Set Link Up (in force link) */
1278 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1279 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1280 		/* Force Link */
1281 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1282 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1283 		/* Set Early Link Enable */
1284 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1285 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1286 		break;
1287 	case e1000_phy_82577:
1288 	case e1000_phy_82578:
1289 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1290 		ret_val = hw->phy.ops.acquire(hw);
1291 		if (ret_val) {
1292 			e_err("Cannot setup 1Gbps loopback.\n");
1293 			return ret_val;
1294 		}
1295 		e1000_configure_k1_ich8lan(hw, false);
1296 		hw->phy.ops.release(hw);
1297 		break;
1298 	case e1000_phy_82579:
1299 		/* Disable PHY energy detect power down */
1300 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1301 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1302 		/* Disable full chip energy detect */
1303 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1304 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1305 		/* Enable loopback on the PHY */
1306 #define I82577_PHY_LBK_CTRL          19
1307 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1308 		break;
1309 	default:
1310 		break;
1311 	}
1312 
1313 	/* force 1000, set loopback */
1314 	e1e_wphy(hw, PHY_CONTROL, 0x4140);
1315 	mdelay(250);
1316 
1317 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1318 	ctrl_reg = er32(CTRL);
1319 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1320 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1321 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1322 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1323 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1324 
1325 	if (adapter->flags & FLAG_IS_ICH)
1326 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1327 
1328 	if (hw->phy.media_type == e1000_media_type_copper &&
1329 	    hw->phy.type == e1000_phy_m88) {
1330 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1331 	} else {
1332 		/*
1333 		 * Set the ILOS bit on the fiber Nic if half duplex link is
1334 		 * detected.
1335 		 */
1336 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1337 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1338 	}
1339 
1340 	ew32(CTRL, ctrl_reg);
1341 
1342 	/*
1343 	 * Disable the receiver on the PHY so when a cable is plugged in, the
1344 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1345 	 */
1346 	if (hw->phy.type == e1000_phy_m88)
1347 		e1000_phy_disable_receiver(adapter);
1348 
1349 	udelay(500);
1350 
1351 	return 0;
1352 }
1353 
1354 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1355 {
1356 	struct e1000_hw *hw = &adapter->hw;
1357 	u32 ctrl = er32(CTRL);
1358 	int link = 0;
1359 
1360 	/* special requirements for 82571/82572 fiber adapters */
1361 
1362 	/*
1363 	 * jump through hoops to make sure link is up because serdes
1364 	 * link is hardwired up
1365 	 */
1366 	ctrl |= E1000_CTRL_SLU;
1367 	ew32(CTRL, ctrl);
1368 
1369 	/* disable autoneg */
1370 	ctrl = er32(TXCW);
1371 	ctrl &= ~(1 << 31);
1372 	ew32(TXCW, ctrl);
1373 
1374 	link = (er32(STATUS) & E1000_STATUS_LU);
1375 
1376 	if (!link) {
1377 		/* set invert loss of signal */
1378 		ctrl = er32(CTRL);
1379 		ctrl |= E1000_CTRL_ILOS;
1380 		ew32(CTRL, ctrl);
1381 	}
1382 
1383 	/*
1384 	 * special write to serdes control register to enable SerDes analog
1385 	 * loopback
1386 	 */
1387 #define E1000_SERDES_LB_ON 0x410
1388 	ew32(SCTL, E1000_SERDES_LB_ON);
1389 	e1e_flush();
1390 	usleep_range(10000, 20000);
1391 
1392 	return 0;
1393 }
1394 
1395 /* only call this for fiber/serdes connections to es2lan */
1396 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1397 {
1398 	struct e1000_hw *hw = &adapter->hw;
1399 	u32 ctrlext = er32(CTRL_EXT);
1400 	u32 ctrl = er32(CTRL);
1401 
1402 	/*
1403 	 * save CTRL_EXT to restore later, reuse an empty variable (unused
1404 	 * on mac_type 80003es2lan)
1405 	 */
1406 	adapter->tx_fifo_head = ctrlext;
1407 
1408 	/* clear the serdes mode bits, putting the device into mac loopback */
1409 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1410 	ew32(CTRL_EXT, ctrlext);
1411 
1412 	/* force speed to 1000/FD, link up */
1413 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1414 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1415 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1416 	ew32(CTRL, ctrl);
1417 
1418 	/* set mac loopback */
1419 	ctrl = er32(RCTL);
1420 	ctrl |= E1000_RCTL_LBM_MAC;
1421 	ew32(RCTL, ctrl);
1422 
1423 	/* set testing mode parameters (no need to reset later) */
1424 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1425 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1426 	ew32(KMRNCTRLSTA,
1427 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1428 
1429 	return 0;
1430 }
1431 
1432 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1433 {
1434 	struct e1000_hw *hw = &adapter->hw;
1435 	u32 rctl;
1436 
1437 	if (hw->phy.media_type == e1000_media_type_fiber ||
1438 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1439 		switch (hw->mac.type) {
1440 		case e1000_80003es2lan:
1441 			return e1000_set_es2lan_mac_loopback(adapter);
1442 			break;
1443 		case e1000_82571:
1444 		case e1000_82572:
1445 			return e1000_set_82571_fiber_loopback(adapter);
1446 			break;
1447 		default:
1448 			rctl = er32(RCTL);
1449 			rctl |= E1000_RCTL_LBM_TCVR;
1450 			ew32(RCTL, rctl);
1451 			return 0;
1452 		}
1453 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1454 		return e1000_integrated_phy_loopback(adapter);
1455 	}
1456 
1457 	return 7;
1458 }
1459 
1460 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1461 {
1462 	struct e1000_hw *hw = &adapter->hw;
1463 	u32 rctl;
1464 	u16 phy_reg;
1465 
1466 	rctl = er32(RCTL);
1467 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1468 	ew32(RCTL, rctl);
1469 
1470 	switch (hw->mac.type) {
1471 	case e1000_80003es2lan:
1472 		if (hw->phy.media_type == e1000_media_type_fiber ||
1473 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1474 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1475 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1476 			adapter->tx_fifo_head = 0;
1477 		}
1478 		/* fall through */
1479 	case e1000_82571:
1480 	case e1000_82572:
1481 		if (hw->phy.media_type == e1000_media_type_fiber ||
1482 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1483 #define E1000_SERDES_LB_OFF 0x400
1484 			ew32(SCTL, E1000_SERDES_LB_OFF);
1485 			e1e_flush();
1486 			usleep_range(10000, 20000);
1487 			break;
1488 		}
1489 		/* Fall Through */
1490 	default:
1491 		hw->mac.autoneg = 1;
1492 		if (hw->phy.type == e1000_phy_gg82563)
1493 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1494 		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1495 		if (phy_reg & MII_CR_LOOPBACK) {
1496 			phy_reg &= ~MII_CR_LOOPBACK;
1497 			e1e_wphy(hw, PHY_CONTROL, phy_reg);
1498 			e1000e_commit_phy(hw);
1499 		}
1500 		break;
1501 	}
1502 }
1503 
1504 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1505 				      unsigned int frame_size)
1506 {
1507 	memset(skb->data, 0xFF, frame_size);
1508 	frame_size &= ~1;
1509 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1510 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1511 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1512 }
1513 
1514 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1515 				    unsigned int frame_size)
1516 {
1517 	frame_size &= ~1;
1518 	if (*(skb->data + 3) == 0xFF)
1519 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1520 		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
1521 			return 0;
1522 	return 13;
1523 }
1524 
1525 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1526 {
1527 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1528 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1529 	struct pci_dev *pdev = adapter->pdev;
1530 	struct e1000_hw *hw = &adapter->hw;
1531 	int i, j, k, l;
1532 	int lc;
1533 	int good_cnt;
1534 	int ret_val = 0;
1535 	unsigned long time;
1536 
1537 	ew32(RDT, rx_ring->count - 1);
1538 
1539 	/*
1540 	 * Calculate the loop count based on the largest descriptor ring
1541 	 * The idea is to wrap the largest ring a number of times using 64
1542 	 * send/receive pairs during each loop
1543 	 */
1544 
1545 	if (rx_ring->count <= tx_ring->count)
1546 		lc = ((tx_ring->count / 64) * 2) + 1;
1547 	else
1548 		lc = ((rx_ring->count / 64) * 2) + 1;
1549 
1550 	k = 0;
1551 	l = 0;
1552 	for (j = 0; j <= lc; j++) { /* loop count loop */
1553 		for (i = 0; i < 64; i++) { /* send the packets */
1554 			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1555 						  1024);
1556 			dma_sync_single_for_device(&pdev->dev,
1557 					tx_ring->buffer_info[k].dma,
1558 					tx_ring->buffer_info[k].length,
1559 					DMA_TO_DEVICE);
1560 			k++;
1561 			if (k == tx_ring->count)
1562 				k = 0;
1563 		}
1564 		ew32(TDT, k);
1565 		e1e_flush();
1566 		msleep(200);
1567 		time = jiffies; /* set the start time for the receive */
1568 		good_cnt = 0;
1569 		do { /* receive the sent packets */
1570 			dma_sync_single_for_cpu(&pdev->dev,
1571 					rx_ring->buffer_info[l].dma, 2048,
1572 					DMA_FROM_DEVICE);
1573 
1574 			ret_val = e1000_check_lbtest_frame(
1575 					rx_ring->buffer_info[l].skb, 1024);
1576 			if (!ret_val)
1577 				good_cnt++;
1578 			l++;
1579 			if (l == rx_ring->count)
1580 				l = 0;
1581 			/*
1582 			 * time + 20 msecs (200 msecs on 2.4) is more than
1583 			 * enough time to complete the receives, if it's
1584 			 * exceeded, break and error off
1585 			 */
1586 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1587 		if (good_cnt != 64) {
1588 			ret_val = 13; /* ret_val is the same as mis-compare */
1589 			break;
1590 		}
1591 		if (jiffies >= (time + 20)) {
1592 			ret_val = 14; /* error code for time out error */
1593 			break;
1594 		}
1595 	} /* end loop count loop */
1596 	return ret_val;
1597 }
1598 
1599 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1600 {
1601 	struct e1000_hw *hw = &adapter->hw;
1602 
1603 	/*
1604 	 * PHY loopback cannot be performed if SoL/IDER
1605 	 * sessions are active
1606 	 */
1607 	if (hw->phy.ops.check_reset_block(hw)) {
1608 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1609 		*data = 0;
1610 		goto out;
1611 	}
1612 
1613 	*data = e1000_setup_desc_rings(adapter);
1614 	if (*data)
1615 		goto out;
1616 
1617 	*data = e1000_setup_loopback_test(adapter);
1618 	if (*data)
1619 		goto err_loopback;
1620 
1621 	*data = e1000_run_loopback_test(adapter);
1622 	e1000_loopback_cleanup(adapter);
1623 
1624 err_loopback:
1625 	e1000_free_desc_rings(adapter);
1626 out:
1627 	return *data;
1628 }
1629 
1630 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1631 {
1632 	struct e1000_hw *hw = &adapter->hw;
1633 
1634 	*data = 0;
1635 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1636 		int i = 0;
1637 		hw->mac.serdes_has_link = false;
1638 
1639 		/*
1640 		 * On some blade server designs, link establishment
1641 		 * could take as long as 2-3 minutes
1642 		 */
1643 		do {
1644 			hw->mac.ops.check_for_link(hw);
1645 			if (hw->mac.serdes_has_link)
1646 				return *data;
1647 			msleep(20);
1648 		} while (i++ < 3750);
1649 
1650 		*data = 1;
1651 	} else {
1652 		hw->mac.ops.check_for_link(hw);
1653 		if (hw->mac.autoneg)
1654 			/*
1655 			 * On some Phy/switch combinations, link establishment
1656 			 * can take a few seconds more than expected.
1657 			 */
1658 			msleep(5000);
1659 
1660 		if (!(er32(STATUS) & E1000_STATUS_LU))
1661 			*data = 1;
1662 	}
1663 	return *data;
1664 }
1665 
1666 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1667 {
1668 	switch (sset) {
1669 	case ETH_SS_TEST:
1670 		return E1000_TEST_LEN;
1671 	case ETH_SS_STATS:
1672 		return E1000_STATS_LEN;
1673 	default:
1674 		return -EOPNOTSUPP;
1675 	}
1676 }
1677 
1678 static void e1000_diag_test(struct net_device *netdev,
1679 			    struct ethtool_test *eth_test, u64 *data)
1680 {
1681 	struct e1000_adapter *adapter = netdev_priv(netdev);
1682 	u16 autoneg_advertised;
1683 	u8 forced_speed_duplex;
1684 	u8 autoneg;
1685 	bool if_running = netif_running(netdev);
1686 
1687 	set_bit(__E1000_TESTING, &adapter->state);
1688 
1689 	if (!if_running) {
1690 		/* Get control of and reset hardware */
1691 		if (adapter->flags & FLAG_HAS_AMT)
1692 			e1000e_get_hw_control(adapter);
1693 
1694 		e1000e_power_up_phy(adapter);
1695 
1696 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1697 		e1000e_reset(adapter);
1698 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1699 	}
1700 
1701 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1702 		/* Offline tests */
1703 
1704 		/* save speed, duplex, autoneg settings */
1705 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1706 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1707 		autoneg = adapter->hw.mac.autoneg;
1708 
1709 		e_info("offline testing starting\n");
1710 
1711 		if (if_running)
1712 			/* indicate we're in test mode */
1713 			dev_close(netdev);
1714 
1715 		if (e1000_reg_test(adapter, &data[0]))
1716 			eth_test->flags |= ETH_TEST_FL_FAILED;
1717 
1718 		e1000e_reset(adapter);
1719 		if (e1000_eeprom_test(adapter, &data[1]))
1720 			eth_test->flags |= ETH_TEST_FL_FAILED;
1721 
1722 		e1000e_reset(adapter);
1723 		if (e1000_intr_test(adapter, &data[2]))
1724 			eth_test->flags |= ETH_TEST_FL_FAILED;
1725 
1726 		e1000e_reset(adapter);
1727 		if (e1000_loopback_test(adapter, &data[3]))
1728 			eth_test->flags |= ETH_TEST_FL_FAILED;
1729 
1730 		/* force this routine to wait until autoneg complete/timeout */
1731 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1732 		e1000e_reset(adapter);
1733 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1734 
1735 		if (e1000_link_test(adapter, &data[4]))
1736 			eth_test->flags |= ETH_TEST_FL_FAILED;
1737 
1738 		/* restore speed, duplex, autoneg settings */
1739 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1740 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1741 		adapter->hw.mac.autoneg = autoneg;
1742 		e1000e_reset(adapter);
1743 
1744 		clear_bit(__E1000_TESTING, &adapter->state);
1745 		if (if_running)
1746 			dev_open(netdev);
1747 	} else {
1748 		/* Online tests */
1749 
1750 		e_info("online testing starting\n");
1751 
1752 		/* register, eeprom, intr and loopback tests not run online */
1753 		data[0] = 0;
1754 		data[1] = 0;
1755 		data[2] = 0;
1756 		data[3] = 0;
1757 
1758 		if (e1000_link_test(adapter, &data[4]))
1759 			eth_test->flags |= ETH_TEST_FL_FAILED;
1760 
1761 		clear_bit(__E1000_TESTING, &adapter->state);
1762 	}
1763 
1764 	if (!if_running) {
1765 		e1000e_reset(adapter);
1766 
1767 		if (adapter->flags & FLAG_HAS_AMT)
1768 			e1000e_release_hw_control(adapter);
1769 	}
1770 
1771 	msleep_interruptible(4 * 1000);
1772 }
1773 
1774 static void e1000_get_wol(struct net_device *netdev,
1775 			  struct ethtool_wolinfo *wol)
1776 {
1777 	struct e1000_adapter *adapter = netdev_priv(netdev);
1778 
1779 	wol->supported = 0;
1780 	wol->wolopts = 0;
1781 
1782 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1783 	    !device_can_wakeup(&adapter->pdev->dev))
1784 		return;
1785 
1786 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1787 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1788 
1789 	/* apply any specific unsupported masks here */
1790 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1791 		wol->supported &= ~WAKE_UCAST;
1792 
1793 		if (adapter->wol & E1000_WUFC_EX)
1794 			e_err("Interface does not support directed (unicast) "
1795 			      "frame wake-up packets\n");
1796 	}
1797 
1798 	if (adapter->wol & E1000_WUFC_EX)
1799 		wol->wolopts |= WAKE_UCAST;
1800 	if (adapter->wol & E1000_WUFC_MC)
1801 		wol->wolopts |= WAKE_MCAST;
1802 	if (adapter->wol & E1000_WUFC_BC)
1803 		wol->wolopts |= WAKE_BCAST;
1804 	if (adapter->wol & E1000_WUFC_MAG)
1805 		wol->wolopts |= WAKE_MAGIC;
1806 	if (adapter->wol & E1000_WUFC_LNKC)
1807 		wol->wolopts |= WAKE_PHY;
1808 }
1809 
1810 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1811 {
1812 	struct e1000_adapter *adapter = netdev_priv(netdev);
1813 
1814 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1815 	    !device_can_wakeup(&adapter->pdev->dev) ||
1816 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1817 			      WAKE_MAGIC | WAKE_PHY)))
1818 		return -EOPNOTSUPP;
1819 
1820 	/* these settings will always override what we currently have */
1821 	adapter->wol = 0;
1822 
1823 	if (wol->wolopts & WAKE_UCAST)
1824 		adapter->wol |= E1000_WUFC_EX;
1825 	if (wol->wolopts & WAKE_MCAST)
1826 		adapter->wol |= E1000_WUFC_MC;
1827 	if (wol->wolopts & WAKE_BCAST)
1828 		adapter->wol |= E1000_WUFC_BC;
1829 	if (wol->wolopts & WAKE_MAGIC)
1830 		adapter->wol |= E1000_WUFC_MAG;
1831 	if (wol->wolopts & WAKE_PHY)
1832 		adapter->wol |= E1000_WUFC_LNKC;
1833 
1834 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1835 
1836 	return 0;
1837 }
1838 
1839 static int e1000_set_phys_id(struct net_device *netdev,
1840 			     enum ethtool_phys_id_state state)
1841 {
1842 	struct e1000_adapter *adapter = netdev_priv(netdev);
1843 	struct e1000_hw *hw = &adapter->hw;
1844 
1845 	switch (state) {
1846 	case ETHTOOL_ID_ACTIVE:
1847 		if (!hw->mac.ops.blink_led)
1848 			return 2;	/* cycle on/off twice per second */
1849 
1850 		hw->mac.ops.blink_led(hw);
1851 		break;
1852 
1853 	case ETHTOOL_ID_INACTIVE:
1854 		if (hw->phy.type == e1000_phy_ife)
1855 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1856 		hw->mac.ops.led_off(hw);
1857 		hw->mac.ops.cleanup_led(hw);
1858 		break;
1859 
1860 	case ETHTOOL_ID_ON:
1861 		hw->mac.ops.led_on(hw);
1862 		break;
1863 
1864 	case ETHTOOL_ID_OFF:
1865 		hw->mac.ops.led_off(hw);
1866 		break;
1867 	}
1868 	return 0;
1869 }
1870 
1871 static int e1000_get_coalesce(struct net_device *netdev,
1872 			      struct ethtool_coalesce *ec)
1873 {
1874 	struct e1000_adapter *adapter = netdev_priv(netdev);
1875 
1876 	if (adapter->itr_setting <= 4)
1877 		ec->rx_coalesce_usecs = adapter->itr_setting;
1878 	else
1879 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1880 
1881 	return 0;
1882 }
1883 
1884 static int e1000_set_coalesce(struct net_device *netdev,
1885 			      struct ethtool_coalesce *ec)
1886 {
1887 	struct e1000_adapter *adapter = netdev_priv(netdev);
1888 	struct e1000_hw *hw = &adapter->hw;
1889 
1890 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1891 	    ((ec->rx_coalesce_usecs > 4) &&
1892 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1893 	    (ec->rx_coalesce_usecs == 2))
1894 		return -EINVAL;
1895 
1896 	if (ec->rx_coalesce_usecs == 4) {
1897 		adapter->itr = adapter->itr_setting = 4;
1898 	} else if (ec->rx_coalesce_usecs <= 3) {
1899 		adapter->itr = 20000;
1900 		adapter->itr_setting = ec->rx_coalesce_usecs;
1901 	} else {
1902 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1903 		adapter->itr_setting = adapter->itr & ~3;
1904 	}
1905 
1906 	if (adapter->itr_setting != 0)
1907 		ew32(ITR, 1000000000 / (adapter->itr * 256));
1908 	else
1909 		ew32(ITR, 0);
1910 
1911 	return 0;
1912 }
1913 
1914 static int e1000_nway_reset(struct net_device *netdev)
1915 {
1916 	struct e1000_adapter *adapter = netdev_priv(netdev);
1917 
1918 	if (!netif_running(netdev))
1919 		return -EAGAIN;
1920 
1921 	if (!adapter->hw.mac.autoneg)
1922 		return -EINVAL;
1923 
1924 	e1000e_reinit_locked(adapter);
1925 
1926 	return 0;
1927 }
1928 
1929 static void e1000_get_ethtool_stats(struct net_device *netdev,
1930 				    struct ethtool_stats *stats,
1931 				    u64 *data)
1932 {
1933 	struct e1000_adapter *adapter = netdev_priv(netdev);
1934 	struct rtnl_link_stats64 net_stats;
1935 	int i;
1936 	char *p = NULL;
1937 
1938 	e1000e_get_stats64(netdev, &net_stats);
1939 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1940 		switch (e1000_gstrings_stats[i].type) {
1941 		case NETDEV_STATS:
1942 			p = (char *) &net_stats +
1943 					e1000_gstrings_stats[i].stat_offset;
1944 			break;
1945 		case E1000_STATS:
1946 			p = (char *) adapter +
1947 					e1000_gstrings_stats[i].stat_offset;
1948 			break;
1949 		default:
1950 			data[i] = 0;
1951 			continue;
1952 		}
1953 
1954 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1955 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1956 	}
1957 }
1958 
1959 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1960 			      u8 *data)
1961 {
1962 	u8 *p = data;
1963 	int i;
1964 
1965 	switch (stringset) {
1966 	case ETH_SS_TEST:
1967 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1968 		break;
1969 	case ETH_SS_STATS:
1970 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1971 			memcpy(p, e1000_gstrings_stats[i].stat_string,
1972 			       ETH_GSTRING_LEN);
1973 			p += ETH_GSTRING_LEN;
1974 		}
1975 		break;
1976 	}
1977 }
1978 
1979 static int e1000_get_rxnfc(struct net_device *netdev,
1980 			   struct ethtool_rxnfc *info, u32 *rule_locs)
1981 {
1982 	info->data = 0;
1983 
1984 	switch (info->cmd) {
1985 	case ETHTOOL_GRXFH: {
1986 		struct e1000_adapter *adapter = netdev_priv(netdev);
1987 		struct e1000_hw *hw = &adapter->hw;
1988 		u32 mrqc = er32(MRQC);
1989 
1990 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
1991 			return 0;
1992 
1993 		switch (info->flow_type) {
1994 		case TCP_V4_FLOW:
1995 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
1996 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1997 			/* fall through */
1998 		case UDP_V4_FLOW:
1999 		case SCTP_V4_FLOW:
2000 		case AH_ESP_V4_FLOW:
2001 		case IPV4_FLOW:
2002 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2003 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2004 			break;
2005 		case TCP_V6_FLOW:
2006 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2007 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2008 			/* fall through */
2009 		case UDP_V6_FLOW:
2010 		case SCTP_V6_FLOW:
2011 		case AH_ESP_V6_FLOW:
2012 		case IPV6_FLOW:
2013 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2014 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2015 			break;
2016 		default:
2017 			break;
2018 		}
2019 		return 0;
2020 	}
2021 	default:
2022 		return -EOPNOTSUPP;
2023 	}
2024 }
2025 
2026 static const struct ethtool_ops e1000_ethtool_ops = {
2027 	.get_settings		= e1000_get_settings,
2028 	.set_settings		= e1000_set_settings,
2029 	.get_drvinfo		= e1000_get_drvinfo,
2030 	.get_regs_len		= e1000_get_regs_len,
2031 	.get_regs		= e1000_get_regs,
2032 	.get_wol		= e1000_get_wol,
2033 	.set_wol		= e1000_set_wol,
2034 	.get_msglevel		= e1000_get_msglevel,
2035 	.set_msglevel		= e1000_set_msglevel,
2036 	.nway_reset		= e1000_nway_reset,
2037 	.get_link		= ethtool_op_get_link,
2038 	.get_eeprom_len		= e1000_get_eeprom_len,
2039 	.get_eeprom		= e1000_get_eeprom,
2040 	.set_eeprom		= e1000_set_eeprom,
2041 	.get_ringparam		= e1000_get_ringparam,
2042 	.set_ringparam		= e1000_set_ringparam,
2043 	.get_pauseparam		= e1000_get_pauseparam,
2044 	.set_pauseparam		= e1000_set_pauseparam,
2045 	.self_test		= e1000_diag_test,
2046 	.get_strings		= e1000_get_strings,
2047 	.set_phys_id		= e1000_set_phys_id,
2048 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2049 	.get_sset_count		= e1000e_get_sset_count,
2050 	.get_coalesce		= e1000_get_coalesce,
2051 	.set_coalesce		= e1000_set_coalesce,
2052 	.get_rxnfc		= e1000_get_rxnfc,
2053 };
2054 
2055 void e1000e_set_ethtool_ops(struct net_device *netdev)
2056 {
2057 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2058 }
2059