1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = { 27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0) 28 "s0ix-enabled", 29 }; 30 31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings) 32 33 #define E1000_STAT(str, m) { \ 34 .stat_string = str, \ 35 .type = E1000_STATS, \ 36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 37 .stat_offset = offsetof(struct e1000_adapter, m) } 38 #define E1000_NETDEV_STAT(str, m) { \ 39 .stat_string = str, \ 40 .type = NETDEV_STATS, \ 41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 42 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 43 44 static const struct e1000_stats e1000_gstrings_stats[] = { 45 E1000_STAT("rx_packets", stats.gprc), 46 E1000_STAT("tx_packets", stats.gptc), 47 E1000_STAT("rx_bytes", stats.gorc), 48 E1000_STAT("tx_bytes", stats.gotc), 49 E1000_STAT("rx_broadcast", stats.bprc), 50 E1000_STAT("tx_broadcast", stats.bptc), 51 E1000_STAT("rx_multicast", stats.mprc), 52 E1000_STAT("tx_multicast", stats.mptc), 53 E1000_NETDEV_STAT("rx_errors", rx_errors), 54 E1000_NETDEV_STAT("tx_errors", tx_errors), 55 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 56 E1000_STAT("multicast", stats.mprc), 57 E1000_STAT("collisions", stats.colc), 58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 60 E1000_STAT("rx_crc_errors", stats.crcerrs), 61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 62 E1000_STAT("rx_no_buffer_count", stats.rnbc), 63 E1000_STAT("rx_missed_errors", stats.mpc), 64 E1000_STAT("tx_aborted_errors", stats.ecol), 65 E1000_STAT("tx_carrier_errors", stats.tncrs), 66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 68 E1000_STAT("tx_window_errors", stats.latecol), 69 E1000_STAT("tx_abort_late_coll", stats.latecol), 70 E1000_STAT("tx_deferred_ok", stats.dc), 71 E1000_STAT("tx_single_coll_ok", stats.scc), 72 E1000_STAT("tx_multi_coll_ok", stats.mcc), 73 E1000_STAT("tx_timeout_count", tx_timeout_count), 74 E1000_STAT("tx_restart_queue", restart_queue), 75 E1000_STAT("rx_long_length_errors", stats.roc), 76 E1000_STAT("rx_short_length_errors", stats.ruc), 77 E1000_STAT("rx_align_errors", stats.algnerrc), 78 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 80 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 82 E1000_STAT("tx_flow_control_xon", stats.xontxc), 83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 84 E1000_STAT("rx_csum_offload_good", hw_csum_good), 85 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 86 E1000_STAT("rx_header_split", rx_hdr_split), 87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 88 E1000_STAT("tx_smbus", stats.mgptc), 89 E1000_STAT("rx_smbus", stats.mgprc), 90 E1000_STAT("dropped_smbus", stats.mgpdc), 91 E1000_STAT("rx_dma_failed", rx_dma_failed), 92 E1000_STAT("tx_dma_failed", tx_dma_failed), 93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 94 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 95 E1000_STAT("corr_ecc_errors", corr_errors), 96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 98 }; 99 100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 103 "Register test (offline)", "Eeprom test (offline)", 104 "Interrupt test (offline)", "Loopback test (offline)", 105 "Link test (on/offline)" 106 }; 107 108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 109 110 static int e1000_get_link_ksettings(struct net_device *netdev, 111 struct ethtool_link_ksettings *cmd) 112 { 113 u32 speed, supported, advertising, lp_advertising, lpa_t; 114 struct e1000_adapter *adapter = netdev_priv(netdev); 115 struct e1000_hw *hw = &adapter->hw; 116 117 if (hw->phy.media_type == e1000_media_type_copper) { 118 supported = (SUPPORTED_10baseT_Half | 119 SUPPORTED_10baseT_Full | 120 SUPPORTED_100baseT_Half | 121 SUPPORTED_100baseT_Full | 122 SUPPORTED_1000baseT_Full | 123 SUPPORTED_Asym_Pause | 124 SUPPORTED_Autoneg | 125 SUPPORTED_Pause | 126 SUPPORTED_TP); 127 if (hw->phy.type == e1000_phy_ife) 128 supported &= ~SUPPORTED_1000baseT_Full; 129 advertising = ADVERTISED_TP; 130 131 if (hw->mac.autoneg == 1) { 132 advertising |= ADVERTISED_Autoneg; 133 /* the e1000 autoneg seems to match ethtool nicely */ 134 advertising |= hw->phy.autoneg_advertised; 135 } 136 137 cmd->base.port = PORT_TP; 138 cmd->base.phy_address = hw->phy.addr; 139 } else { 140 supported = (SUPPORTED_1000baseT_Full | 141 SUPPORTED_FIBRE | 142 SUPPORTED_Autoneg); 143 144 advertising = (ADVERTISED_1000baseT_Full | 145 ADVERTISED_FIBRE | 146 ADVERTISED_Autoneg); 147 148 cmd->base.port = PORT_FIBRE; 149 } 150 151 speed = SPEED_UNKNOWN; 152 cmd->base.duplex = DUPLEX_UNKNOWN; 153 154 if (netif_running(netdev)) { 155 if (netif_carrier_ok(netdev)) { 156 speed = adapter->link_speed; 157 cmd->base.duplex = adapter->link_duplex - 1; 158 } 159 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 160 u32 status = er32(STATUS); 161 162 if (status & E1000_STATUS_LU) { 163 if (status & E1000_STATUS_SPEED_1000) 164 speed = SPEED_1000; 165 else if (status & E1000_STATUS_SPEED_100) 166 speed = SPEED_100; 167 else 168 speed = SPEED_10; 169 170 if (status & E1000_STATUS_FD) 171 cmd->base.duplex = DUPLEX_FULL; 172 else 173 cmd->base.duplex = DUPLEX_HALF; 174 } 175 } 176 177 cmd->base.speed = speed; 178 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 179 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 180 181 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 182 if ((hw->phy.media_type == e1000_media_type_copper) && 183 netif_carrier_ok(netdev)) 184 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 185 ETH_TP_MDI_X : ETH_TP_MDI; 186 else 187 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 188 189 if (hw->phy.mdix == AUTO_ALL_MODES) 190 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 191 else 192 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 193 194 if (hw->phy.media_type != e1000_media_type_copper) 195 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 196 197 lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000); 198 lp_advertising = lpa_t | 199 mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa); 200 201 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 202 supported); 203 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 204 advertising); 205 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, 206 lp_advertising); 207 208 return 0; 209 } 210 211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 212 { 213 struct e1000_mac_info *mac = &adapter->hw.mac; 214 215 mac->autoneg = 0; 216 217 /* Make sure dplx is at most 1 bit and lsb of speed is not set 218 * for the switch() below to work 219 */ 220 if ((spd & 1) || (dplx & ~1)) 221 goto err_inval; 222 223 /* Fiber NICs only allow 1000 gbps Full duplex */ 224 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 225 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 226 goto err_inval; 227 } 228 229 switch (spd + dplx) { 230 case SPEED_10 + DUPLEX_HALF: 231 mac->forced_speed_duplex = ADVERTISE_10_HALF; 232 break; 233 case SPEED_10 + DUPLEX_FULL: 234 mac->forced_speed_duplex = ADVERTISE_10_FULL; 235 break; 236 case SPEED_100 + DUPLEX_HALF: 237 mac->forced_speed_duplex = ADVERTISE_100_HALF; 238 break; 239 case SPEED_100 + DUPLEX_FULL: 240 mac->forced_speed_duplex = ADVERTISE_100_FULL; 241 break; 242 case SPEED_1000 + DUPLEX_FULL: 243 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 244 mac->autoneg = 1; 245 adapter->hw.phy.autoneg_advertised = 246 ADVERTISE_1000_FULL; 247 } else { 248 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 249 } 250 break; 251 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 252 default: 253 goto err_inval; 254 } 255 256 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 257 adapter->hw.phy.mdix = AUTO_ALL_MODES; 258 259 return 0; 260 261 err_inval: 262 e_err("Unsupported Speed/Duplex configuration\n"); 263 return -EINVAL; 264 } 265 266 static int e1000_set_link_ksettings(struct net_device *netdev, 267 const struct ethtool_link_ksettings *cmd) 268 { 269 struct e1000_adapter *adapter = netdev_priv(netdev); 270 struct e1000_hw *hw = &adapter->hw; 271 int ret_val = 0; 272 u32 advertising; 273 274 ethtool_convert_link_mode_to_legacy_u32(&advertising, 275 cmd->link_modes.advertising); 276 277 pm_runtime_get_sync(netdev->dev.parent); 278 279 /* When SoL/IDER sessions are active, autoneg/speed/duplex 280 * cannot be changed 281 */ 282 if (hw->phy.ops.check_reset_block && 283 hw->phy.ops.check_reset_block(hw)) { 284 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 285 ret_val = -EINVAL; 286 goto out; 287 } 288 289 /* MDI setting is only allowed when autoneg enabled because 290 * some hardware doesn't allow MDI setting when speed or 291 * duplex is forced. 292 */ 293 if (cmd->base.eth_tp_mdix_ctrl) { 294 if (hw->phy.media_type != e1000_media_type_copper) { 295 ret_val = -EOPNOTSUPP; 296 goto out; 297 } 298 299 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 300 (cmd->base.autoneg != AUTONEG_ENABLE)) { 301 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 302 ret_val = -EINVAL; 303 goto out; 304 } 305 } 306 307 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 308 usleep_range(1000, 2000); 309 310 if (cmd->base.autoneg == AUTONEG_ENABLE) { 311 hw->mac.autoneg = 1; 312 if (hw->phy.media_type == e1000_media_type_fiber) 313 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 314 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 315 else 316 hw->phy.autoneg_advertised = advertising | 317 ADVERTISED_TP | ADVERTISED_Autoneg; 318 advertising = hw->phy.autoneg_advertised; 319 if (adapter->fc_autoneg) 320 hw->fc.requested_mode = e1000_fc_default; 321 } else { 322 u32 speed = cmd->base.speed; 323 /* calling this overrides forced MDI setting */ 324 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 325 ret_val = -EINVAL; 326 goto out; 327 } 328 } 329 330 /* MDI-X => 2; MDI => 1; Auto => 3 */ 331 if (cmd->base.eth_tp_mdix_ctrl) { 332 /* fix up the value for auto (3 => 0) as zero is mapped 333 * internally to auto 334 */ 335 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 336 hw->phy.mdix = AUTO_ALL_MODES; 337 else 338 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 339 } 340 341 /* reset the link */ 342 if (netif_running(adapter->netdev)) { 343 e1000e_down(adapter, true); 344 e1000e_up(adapter); 345 } else { 346 e1000e_reset(adapter); 347 } 348 349 out: 350 pm_runtime_put_sync(netdev->dev.parent); 351 clear_bit(__E1000_RESETTING, &adapter->state); 352 return ret_val; 353 } 354 355 static void e1000_get_pauseparam(struct net_device *netdev, 356 struct ethtool_pauseparam *pause) 357 { 358 struct e1000_adapter *adapter = netdev_priv(netdev); 359 struct e1000_hw *hw = &adapter->hw; 360 361 pause->autoneg = 362 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 363 364 if (hw->fc.current_mode == e1000_fc_rx_pause) { 365 pause->rx_pause = 1; 366 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 367 pause->tx_pause = 1; 368 } else if (hw->fc.current_mode == e1000_fc_full) { 369 pause->rx_pause = 1; 370 pause->tx_pause = 1; 371 } 372 } 373 374 static int e1000_set_pauseparam(struct net_device *netdev, 375 struct ethtool_pauseparam *pause) 376 { 377 struct e1000_adapter *adapter = netdev_priv(netdev); 378 struct e1000_hw *hw = &adapter->hw; 379 int retval = 0; 380 381 adapter->fc_autoneg = pause->autoneg; 382 383 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 384 usleep_range(1000, 2000); 385 386 pm_runtime_get_sync(netdev->dev.parent); 387 388 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 389 hw->fc.requested_mode = e1000_fc_default; 390 if (netif_running(adapter->netdev)) { 391 e1000e_down(adapter, true); 392 e1000e_up(adapter); 393 } else { 394 e1000e_reset(adapter); 395 } 396 } else { 397 if (pause->rx_pause && pause->tx_pause) 398 hw->fc.requested_mode = e1000_fc_full; 399 else if (pause->rx_pause && !pause->tx_pause) 400 hw->fc.requested_mode = e1000_fc_rx_pause; 401 else if (!pause->rx_pause && pause->tx_pause) 402 hw->fc.requested_mode = e1000_fc_tx_pause; 403 else if (!pause->rx_pause && !pause->tx_pause) 404 hw->fc.requested_mode = e1000_fc_none; 405 406 hw->fc.current_mode = hw->fc.requested_mode; 407 408 if (hw->phy.media_type == e1000_media_type_fiber) { 409 retval = hw->mac.ops.setup_link(hw); 410 /* implicit goto out */ 411 } else { 412 retval = e1000e_force_mac_fc(hw); 413 if (retval) 414 goto out; 415 e1000e_set_fc_watermarks(hw); 416 } 417 } 418 419 out: 420 pm_runtime_put_sync(netdev->dev.parent); 421 clear_bit(__E1000_RESETTING, &adapter->state); 422 return retval; 423 } 424 425 static u32 e1000_get_msglevel(struct net_device *netdev) 426 { 427 struct e1000_adapter *adapter = netdev_priv(netdev); 428 return adapter->msg_enable; 429 } 430 431 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 432 { 433 struct e1000_adapter *adapter = netdev_priv(netdev); 434 adapter->msg_enable = data; 435 } 436 437 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 438 { 439 #define E1000_REGS_LEN 32 /* overestimate */ 440 return E1000_REGS_LEN * sizeof(u32); 441 } 442 443 static void e1000_get_regs(struct net_device *netdev, 444 struct ethtool_regs *regs, void *p) 445 { 446 struct e1000_adapter *adapter = netdev_priv(netdev); 447 struct e1000_hw *hw = &adapter->hw; 448 u32 *regs_buff = p; 449 u16 phy_data; 450 451 pm_runtime_get_sync(netdev->dev.parent); 452 453 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 454 455 regs->version = (1u << 24) | 456 (adapter->pdev->revision << 16) | 457 adapter->pdev->device; 458 459 regs_buff[0] = er32(CTRL); 460 regs_buff[1] = er32(STATUS); 461 462 regs_buff[2] = er32(RCTL); 463 regs_buff[3] = er32(RDLEN(0)); 464 regs_buff[4] = er32(RDH(0)); 465 regs_buff[5] = er32(RDT(0)); 466 regs_buff[6] = er32(RDTR); 467 468 regs_buff[7] = er32(TCTL); 469 regs_buff[8] = er32(TDLEN(0)); 470 regs_buff[9] = er32(TDH(0)); 471 regs_buff[10] = er32(TDT(0)); 472 regs_buff[11] = er32(TIDV); 473 474 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 475 476 /* ethtool doesn't use anything past this point, so all this 477 * code is likely legacy junk for apps that may or may not exist 478 */ 479 if (hw->phy.type == e1000_phy_m88) { 480 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 481 regs_buff[13] = (u32)phy_data; /* cable length */ 482 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 483 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 484 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 485 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 486 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 487 regs_buff[18] = regs_buff[13]; /* cable polarity */ 488 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 489 regs_buff[20] = regs_buff[17]; /* polarity correction */ 490 /* phy receive errors */ 491 regs_buff[22] = adapter->phy_stats.receive_errors; 492 regs_buff[23] = regs_buff[13]; /* mdix mode */ 493 } 494 regs_buff[21] = 0; /* was idle_errors */ 495 e1e_rphy(hw, MII_STAT1000, &phy_data); 496 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 497 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 498 499 pm_runtime_put_sync(netdev->dev.parent); 500 } 501 502 static int e1000_get_eeprom_len(struct net_device *netdev) 503 { 504 struct e1000_adapter *adapter = netdev_priv(netdev); 505 return adapter->hw.nvm.word_size * 2; 506 } 507 508 static int e1000_get_eeprom(struct net_device *netdev, 509 struct ethtool_eeprom *eeprom, u8 *bytes) 510 { 511 struct e1000_adapter *adapter = netdev_priv(netdev); 512 struct e1000_hw *hw = &adapter->hw; 513 u16 *eeprom_buff; 514 int first_word; 515 int last_word; 516 int ret_val = 0; 517 u16 i; 518 519 if (eeprom->len == 0) 520 return -EINVAL; 521 522 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 523 524 first_word = eeprom->offset >> 1; 525 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 526 527 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 528 GFP_KERNEL); 529 if (!eeprom_buff) 530 return -ENOMEM; 531 532 pm_runtime_get_sync(netdev->dev.parent); 533 534 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 535 ret_val = e1000_read_nvm(hw, first_word, 536 last_word - first_word + 1, 537 eeprom_buff); 538 } else { 539 for (i = 0; i < last_word - first_word + 1; i++) { 540 ret_val = e1000_read_nvm(hw, first_word + i, 1, 541 &eeprom_buff[i]); 542 if (ret_val) 543 break; 544 } 545 } 546 547 pm_runtime_put_sync(netdev->dev.parent); 548 549 if (ret_val) { 550 /* a read error occurred, throw away the result */ 551 memset(eeprom_buff, 0xff, sizeof(u16) * 552 (last_word - first_word + 1)); 553 } else { 554 /* Device's eeprom is always little-endian, word addressable */ 555 for (i = 0; i < last_word - first_word + 1; i++) 556 le16_to_cpus(&eeprom_buff[i]); 557 } 558 559 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 560 kfree(eeprom_buff); 561 562 return ret_val; 563 } 564 565 static int e1000_set_eeprom(struct net_device *netdev, 566 struct ethtool_eeprom *eeprom, u8 *bytes) 567 { 568 struct e1000_adapter *adapter = netdev_priv(netdev); 569 struct e1000_hw *hw = &adapter->hw; 570 u16 *eeprom_buff; 571 void *ptr; 572 int max_len; 573 int first_word; 574 int last_word; 575 int ret_val = 0; 576 u16 i; 577 578 if (eeprom->len == 0) 579 return -EOPNOTSUPP; 580 581 if (eeprom->magic != 582 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 583 return -EFAULT; 584 585 if (adapter->flags & FLAG_READ_ONLY_NVM) 586 return -EINVAL; 587 588 max_len = hw->nvm.word_size * 2; 589 590 first_word = eeprom->offset >> 1; 591 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 592 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 593 if (!eeprom_buff) 594 return -ENOMEM; 595 596 ptr = (void *)eeprom_buff; 597 598 pm_runtime_get_sync(netdev->dev.parent); 599 600 if (eeprom->offset & 1) { 601 /* need read/modify/write of first changed EEPROM word */ 602 /* only the second byte of the word is being modified */ 603 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 604 ptr++; 605 } 606 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 607 /* need read/modify/write of last changed EEPROM word */ 608 /* only the first byte of the word is being modified */ 609 ret_val = e1000_read_nvm(hw, last_word, 1, 610 &eeprom_buff[last_word - first_word]); 611 612 if (ret_val) 613 goto out; 614 615 /* Device's eeprom is always little-endian, word addressable */ 616 for (i = 0; i < last_word - first_word + 1; i++) 617 le16_to_cpus(&eeprom_buff[i]); 618 619 memcpy(ptr, bytes, eeprom->len); 620 621 for (i = 0; i < last_word - first_word + 1; i++) 622 cpu_to_le16s(&eeprom_buff[i]); 623 624 ret_val = e1000_write_nvm(hw, first_word, 625 last_word - first_word + 1, eeprom_buff); 626 627 if (ret_val) 628 goto out; 629 630 /* Update the checksum over the first part of the EEPROM if needed 631 * and flush shadow RAM for applicable controllers 632 */ 633 if ((first_word <= NVM_CHECKSUM_REG) || 634 (hw->mac.type == e1000_82583) || 635 (hw->mac.type == e1000_82574) || 636 (hw->mac.type == e1000_82573)) 637 ret_val = e1000e_update_nvm_checksum(hw); 638 639 out: 640 pm_runtime_put_sync(netdev->dev.parent); 641 kfree(eeprom_buff); 642 return ret_val; 643 } 644 645 static void e1000_get_drvinfo(struct net_device *netdev, 646 struct ethtool_drvinfo *drvinfo) 647 { 648 struct e1000_adapter *adapter = netdev_priv(netdev); 649 650 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 651 652 /* EEPROM image version # is reported as firmware version # for 653 * PCI-E controllers 654 */ 655 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 656 "%d.%d-%d", 657 (adapter->eeprom_vers & 0xF000) >> 12, 658 (adapter->eeprom_vers & 0x0FF0) >> 4, 659 (adapter->eeprom_vers & 0x000F)); 660 661 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 662 sizeof(drvinfo->bus_info)); 663 } 664 665 static void e1000_get_ringparam(struct net_device *netdev, 666 struct ethtool_ringparam *ring, 667 struct kernel_ethtool_ringparam *kernel_ring, 668 struct netlink_ext_ack *extack) 669 { 670 struct e1000_adapter *adapter = netdev_priv(netdev); 671 672 ring->rx_max_pending = E1000_MAX_RXD; 673 ring->tx_max_pending = E1000_MAX_TXD; 674 ring->rx_pending = adapter->rx_ring_count; 675 ring->tx_pending = adapter->tx_ring_count; 676 } 677 678 static int e1000_set_ringparam(struct net_device *netdev, 679 struct ethtool_ringparam *ring, 680 struct kernel_ethtool_ringparam *kernel_ring, 681 struct netlink_ext_ack *extack) 682 { 683 struct e1000_adapter *adapter = netdev_priv(netdev); 684 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 685 int err = 0, size = sizeof(struct e1000_ring); 686 bool set_tx = false, set_rx = false; 687 u16 new_rx_count, new_tx_count; 688 689 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 690 return -EINVAL; 691 692 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 693 E1000_MAX_RXD); 694 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 695 696 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 697 E1000_MAX_TXD); 698 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 699 700 if ((new_tx_count == adapter->tx_ring_count) && 701 (new_rx_count == adapter->rx_ring_count)) 702 /* nothing to do */ 703 return 0; 704 705 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 706 usleep_range(1000, 2000); 707 708 if (!netif_running(adapter->netdev)) { 709 /* Set counts now and allocate resources during open() */ 710 adapter->tx_ring->count = new_tx_count; 711 adapter->rx_ring->count = new_rx_count; 712 adapter->tx_ring_count = new_tx_count; 713 adapter->rx_ring_count = new_rx_count; 714 goto clear_reset; 715 } 716 717 set_tx = (new_tx_count != adapter->tx_ring_count); 718 set_rx = (new_rx_count != adapter->rx_ring_count); 719 720 /* Allocate temporary storage for ring updates */ 721 if (set_tx) { 722 temp_tx = vmalloc(size); 723 if (!temp_tx) { 724 err = -ENOMEM; 725 goto free_temp; 726 } 727 } 728 if (set_rx) { 729 temp_rx = vmalloc(size); 730 if (!temp_rx) { 731 err = -ENOMEM; 732 goto free_temp; 733 } 734 } 735 736 pm_runtime_get_sync(netdev->dev.parent); 737 738 e1000e_down(adapter, true); 739 740 /* We can't just free everything and then setup again, because the 741 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 742 * structs. First, attempt to allocate new resources... 743 */ 744 if (set_tx) { 745 memcpy(temp_tx, adapter->tx_ring, size); 746 temp_tx->count = new_tx_count; 747 err = e1000e_setup_tx_resources(temp_tx); 748 if (err) 749 goto err_setup; 750 } 751 if (set_rx) { 752 memcpy(temp_rx, adapter->rx_ring, size); 753 temp_rx->count = new_rx_count; 754 err = e1000e_setup_rx_resources(temp_rx); 755 if (err) 756 goto err_setup_rx; 757 } 758 759 /* ...then free the old resources and copy back any new ring data */ 760 if (set_tx) { 761 e1000e_free_tx_resources(adapter->tx_ring); 762 memcpy(adapter->tx_ring, temp_tx, size); 763 adapter->tx_ring_count = new_tx_count; 764 } 765 if (set_rx) { 766 e1000e_free_rx_resources(adapter->rx_ring); 767 memcpy(adapter->rx_ring, temp_rx, size); 768 adapter->rx_ring_count = new_rx_count; 769 } 770 771 err_setup_rx: 772 if (err && set_tx) 773 e1000e_free_tx_resources(temp_tx); 774 err_setup: 775 e1000e_up(adapter); 776 pm_runtime_put_sync(netdev->dev.parent); 777 free_temp: 778 vfree(temp_tx); 779 vfree(temp_rx); 780 clear_reset: 781 clear_bit(__E1000_RESETTING, &adapter->state); 782 return err; 783 } 784 785 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 786 int reg, int offset, u32 mask, u32 write) 787 { 788 u32 pat, val; 789 static const u32 test[] = { 790 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 791 }; 792 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 793 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 794 (test[pat] & write)); 795 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 796 if (val != (test[pat] & write & mask)) { 797 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 798 reg + (offset << 2), val, 799 (test[pat] & write & mask)); 800 *data = reg; 801 return true; 802 } 803 } 804 return false; 805 } 806 807 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 808 int reg, u32 mask, u32 write) 809 { 810 u32 val; 811 812 __ew32(&adapter->hw, reg, write & mask); 813 val = __er32(&adapter->hw, reg); 814 if ((write & mask) != (val & mask)) { 815 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 816 reg, (val & mask), (write & mask)); 817 *data = reg; 818 return true; 819 } 820 return false; 821 } 822 823 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 824 do { \ 825 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 826 return 1; \ 827 } while (0) 828 #define REG_PATTERN_TEST(reg, mask, write) \ 829 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 830 831 #define REG_SET_AND_CHECK(reg, mask, write) \ 832 do { \ 833 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 834 return 1; \ 835 } while (0) 836 837 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 838 { 839 struct e1000_hw *hw = &adapter->hw; 840 struct e1000_mac_info *mac = &adapter->hw.mac; 841 u32 value; 842 u32 before; 843 u32 after; 844 u32 i; 845 u32 toggle; 846 u32 mask; 847 u32 wlock_mac = 0; 848 849 /* The status register is Read Only, so a write should fail. 850 * Some bits that get toggled are ignored. There are several bits 851 * on newer hardware that are r/w. 852 */ 853 switch (mac->type) { 854 case e1000_82571: 855 case e1000_82572: 856 case e1000_80003es2lan: 857 toggle = 0x7FFFF3FF; 858 break; 859 default: 860 toggle = 0x7FFFF033; 861 break; 862 } 863 864 before = er32(STATUS); 865 value = (er32(STATUS) & toggle); 866 ew32(STATUS, toggle); 867 after = er32(STATUS) & toggle; 868 if (value != after) { 869 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 870 after, value); 871 *data = 1; 872 return 1; 873 } 874 /* restore previous status */ 875 ew32(STATUS, before); 876 877 if (!(adapter->flags & FLAG_IS_ICH)) { 878 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 879 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 880 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 881 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 882 } 883 884 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 885 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 886 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 887 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 888 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 889 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 890 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 891 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 892 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 893 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 894 895 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 896 897 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 898 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 899 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 900 901 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 902 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 903 if (!(adapter->flags & FLAG_IS_ICH)) 904 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 905 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 906 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 907 mask = 0x8003FFFF; 908 switch (mac->type) { 909 case e1000_ich10lan: 910 case e1000_pchlan: 911 case e1000_pch2lan: 912 case e1000_pch_lpt: 913 case e1000_pch_spt: 914 case e1000_pch_cnp: 915 case e1000_pch_tgp: 916 case e1000_pch_adp: 917 case e1000_pch_mtp: 918 case e1000_pch_lnp: 919 case e1000_pch_ptp: 920 case e1000_pch_nvp: 921 mask |= BIT(18); 922 break; 923 default: 924 break; 925 } 926 927 if (mac->type >= e1000_pch_lpt) 928 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 929 E1000_FWSM_WLOCK_MAC_SHIFT; 930 931 for (i = 0; i < mac->rar_entry_count; i++) { 932 if (mac->type >= e1000_pch_lpt) { 933 /* Cannot test write-protected SHRAL[n] registers */ 934 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 935 continue; 936 937 /* SHRAH[9] different than the others */ 938 if (i == 10) 939 mask |= BIT(30); 940 else 941 mask &= ~BIT(30); 942 } 943 if (mac->type == e1000_pch2lan) { 944 /* SHRAH[0,1,2] different than previous */ 945 if (i == 1) 946 mask &= 0xFFF4FFFF; 947 /* SHRAH[3] different than SHRAH[0,1,2] */ 948 if (i == 4) 949 mask |= BIT(30); 950 /* RAR[1-6] owned by management engine - skipping */ 951 if (i > 0) 952 i += 6; 953 } 954 955 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 956 0xFFFFFFFF); 957 /* reset index to actual value */ 958 if ((mac->type == e1000_pch2lan) && (i > 6)) 959 i -= 6; 960 } 961 962 for (i = 0; i < mac->mta_reg_count; i++) 963 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 964 965 *data = 0; 966 967 return 0; 968 } 969 970 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 971 { 972 u16 temp; 973 u16 checksum = 0; 974 u16 i; 975 976 *data = 0; 977 /* Read and add up the contents of the EEPROM */ 978 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 979 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 980 *data = 1; 981 return *data; 982 } 983 checksum += temp; 984 } 985 986 /* If Checksum is not Correct return error else test passed */ 987 if ((checksum != (u16)NVM_SUM) && !(*data)) 988 *data = 2; 989 990 return *data; 991 } 992 993 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 994 { 995 struct net_device *netdev = (struct net_device *)data; 996 struct e1000_adapter *adapter = netdev_priv(netdev); 997 struct e1000_hw *hw = &adapter->hw; 998 999 adapter->test_icr |= er32(ICR); 1000 1001 return IRQ_HANDLED; 1002 } 1003 1004 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 1005 { 1006 struct net_device *netdev = adapter->netdev; 1007 struct e1000_hw *hw = &adapter->hw; 1008 u32 mask; 1009 u32 shared_int = 1; 1010 u32 irq = adapter->pdev->irq; 1011 int i; 1012 int ret_val = 0; 1013 int int_mode = E1000E_INT_MODE_LEGACY; 1014 1015 *data = 0; 1016 1017 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 1018 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 1019 int_mode = adapter->int_mode; 1020 e1000e_reset_interrupt_capability(adapter); 1021 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1022 e1000e_set_interrupt_capability(adapter); 1023 } 1024 /* Hook up test interrupt handler just for this test */ 1025 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1026 netdev)) { 1027 shared_int = 0; 1028 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1029 netdev)) { 1030 *data = 1; 1031 ret_val = -1; 1032 goto out; 1033 } 1034 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1035 1036 /* Disable all the interrupts */ 1037 ew32(IMC, 0xFFFFFFFF); 1038 e1e_flush(); 1039 usleep_range(10000, 11000); 1040 1041 /* Test each interrupt */ 1042 for (i = 0; i < 10; i++) { 1043 /* Interrupt to test */ 1044 mask = BIT(i); 1045 1046 if (adapter->flags & FLAG_IS_ICH) { 1047 switch (mask) { 1048 case E1000_ICR_RXSEQ: 1049 continue; 1050 case 0x00000100: 1051 if (adapter->hw.mac.type == e1000_ich8lan || 1052 adapter->hw.mac.type == e1000_ich9lan) 1053 continue; 1054 break; 1055 default: 1056 break; 1057 } 1058 } 1059 1060 if (!shared_int) { 1061 /* Disable the interrupt to be reported in 1062 * the cause register and then force the same 1063 * interrupt and see if one gets posted. If 1064 * an interrupt was posted to the bus, the 1065 * test failed. 1066 */ 1067 adapter->test_icr = 0; 1068 ew32(IMC, mask); 1069 ew32(ICS, mask); 1070 e1e_flush(); 1071 usleep_range(10000, 11000); 1072 1073 if (adapter->test_icr & mask) { 1074 *data = 3; 1075 break; 1076 } 1077 } 1078 1079 /* Enable the interrupt to be reported in 1080 * the cause register and then force the same 1081 * interrupt and see if one gets posted. If 1082 * an interrupt was not posted to the bus, the 1083 * test failed. 1084 */ 1085 adapter->test_icr = 0; 1086 ew32(IMS, mask); 1087 ew32(ICS, mask); 1088 e1e_flush(); 1089 usleep_range(10000, 11000); 1090 1091 if (!(adapter->test_icr & mask)) { 1092 *data = 4; 1093 break; 1094 } 1095 1096 if (!shared_int) { 1097 /* Disable the other interrupts to be reported in 1098 * the cause register and then force the other 1099 * interrupts and see if any get posted. If 1100 * an interrupt was posted to the bus, the 1101 * test failed. 1102 */ 1103 adapter->test_icr = 0; 1104 ew32(IMC, ~mask & 0x00007FFF); 1105 ew32(ICS, ~mask & 0x00007FFF); 1106 e1e_flush(); 1107 usleep_range(10000, 11000); 1108 1109 if (adapter->test_icr) { 1110 *data = 5; 1111 break; 1112 } 1113 } 1114 } 1115 1116 /* Disable all the interrupts */ 1117 ew32(IMC, 0xFFFFFFFF); 1118 e1e_flush(); 1119 usleep_range(10000, 11000); 1120 1121 /* Unhook test interrupt handler */ 1122 free_irq(irq, netdev); 1123 1124 out: 1125 if (int_mode == E1000E_INT_MODE_MSIX) { 1126 e1000e_reset_interrupt_capability(adapter); 1127 adapter->int_mode = int_mode; 1128 e1000e_set_interrupt_capability(adapter); 1129 } 1130 1131 return ret_val; 1132 } 1133 1134 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1135 { 1136 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1137 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1138 struct pci_dev *pdev = adapter->pdev; 1139 struct e1000_buffer *buffer_info; 1140 int i; 1141 1142 if (tx_ring->desc && tx_ring->buffer_info) { 1143 for (i = 0; i < tx_ring->count; i++) { 1144 buffer_info = &tx_ring->buffer_info[i]; 1145 1146 if (buffer_info->dma) 1147 dma_unmap_single(&pdev->dev, 1148 buffer_info->dma, 1149 buffer_info->length, 1150 DMA_TO_DEVICE); 1151 dev_kfree_skb(buffer_info->skb); 1152 } 1153 } 1154 1155 if (rx_ring->desc && rx_ring->buffer_info) { 1156 for (i = 0; i < rx_ring->count; i++) { 1157 buffer_info = &rx_ring->buffer_info[i]; 1158 1159 if (buffer_info->dma) 1160 dma_unmap_single(&pdev->dev, 1161 buffer_info->dma, 1162 2048, DMA_FROM_DEVICE); 1163 dev_kfree_skb(buffer_info->skb); 1164 } 1165 } 1166 1167 if (tx_ring->desc) { 1168 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1169 tx_ring->dma); 1170 tx_ring->desc = NULL; 1171 } 1172 if (rx_ring->desc) { 1173 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1174 rx_ring->dma); 1175 rx_ring->desc = NULL; 1176 } 1177 1178 kfree(tx_ring->buffer_info); 1179 tx_ring->buffer_info = NULL; 1180 kfree(rx_ring->buffer_info); 1181 rx_ring->buffer_info = NULL; 1182 } 1183 1184 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1185 { 1186 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1187 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1188 struct pci_dev *pdev = adapter->pdev; 1189 struct e1000_hw *hw = &adapter->hw; 1190 u32 rctl; 1191 int i; 1192 int ret_val; 1193 1194 /* Setup Tx descriptor ring and Tx buffers */ 1195 1196 if (!tx_ring->count) 1197 tx_ring->count = E1000_DEFAULT_TXD; 1198 1199 tx_ring->buffer_info = kcalloc(tx_ring->count, 1200 sizeof(struct e1000_buffer), GFP_KERNEL); 1201 if (!tx_ring->buffer_info) { 1202 ret_val = 1; 1203 goto err_nomem; 1204 } 1205 1206 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1207 tx_ring->size = ALIGN(tx_ring->size, 4096); 1208 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1209 &tx_ring->dma, GFP_KERNEL); 1210 if (!tx_ring->desc) { 1211 ret_val = 2; 1212 goto err_nomem; 1213 } 1214 tx_ring->next_to_use = 0; 1215 tx_ring->next_to_clean = 0; 1216 1217 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1218 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1219 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1220 ew32(TDH(0), 0); 1221 ew32(TDT(0), 0); 1222 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1223 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1224 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1225 1226 for (i = 0; i < tx_ring->count; i++) { 1227 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1228 struct sk_buff *skb; 1229 unsigned int skb_size = 1024; 1230 1231 skb = alloc_skb(skb_size, GFP_KERNEL); 1232 if (!skb) { 1233 ret_val = 3; 1234 goto err_nomem; 1235 } 1236 skb_put(skb, skb_size); 1237 tx_ring->buffer_info[i].skb = skb; 1238 tx_ring->buffer_info[i].length = skb->len; 1239 tx_ring->buffer_info[i].dma = 1240 dma_map_single(&pdev->dev, skb->data, skb->len, 1241 DMA_TO_DEVICE); 1242 if (dma_mapping_error(&pdev->dev, 1243 tx_ring->buffer_info[i].dma)) { 1244 ret_val = 4; 1245 goto err_nomem; 1246 } 1247 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1248 tx_desc->lower.data = cpu_to_le32(skb->len); 1249 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1250 E1000_TXD_CMD_IFCS | 1251 E1000_TXD_CMD_RS); 1252 tx_desc->upper.data = 0; 1253 } 1254 1255 /* Setup Rx descriptor ring and Rx buffers */ 1256 1257 if (!rx_ring->count) 1258 rx_ring->count = E1000_DEFAULT_RXD; 1259 1260 rx_ring->buffer_info = kcalloc(rx_ring->count, 1261 sizeof(struct e1000_buffer), GFP_KERNEL); 1262 if (!rx_ring->buffer_info) { 1263 ret_val = 5; 1264 goto err_nomem; 1265 } 1266 1267 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1268 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1269 &rx_ring->dma, GFP_KERNEL); 1270 if (!rx_ring->desc) { 1271 ret_val = 6; 1272 goto err_nomem; 1273 } 1274 rx_ring->next_to_use = 0; 1275 rx_ring->next_to_clean = 0; 1276 1277 rctl = er32(RCTL); 1278 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1279 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1280 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1281 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1282 ew32(RDLEN(0), rx_ring->size); 1283 ew32(RDH(0), 0); 1284 ew32(RDT(0), 0); 1285 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1286 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1287 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1288 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1289 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1290 ew32(RCTL, rctl); 1291 1292 for (i = 0; i < rx_ring->count; i++) { 1293 union e1000_rx_desc_extended *rx_desc; 1294 struct sk_buff *skb; 1295 1296 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1297 if (!skb) { 1298 ret_val = 7; 1299 goto err_nomem; 1300 } 1301 skb_reserve(skb, NET_IP_ALIGN); 1302 rx_ring->buffer_info[i].skb = skb; 1303 rx_ring->buffer_info[i].dma = 1304 dma_map_single(&pdev->dev, skb->data, 2048, 1305 DMA_FROM_DEVICE); 1306 if (dma_mapping_error(&pdev->dev, 1307 rx_ring->buffer_info[i].dma)) { 1308 ret_val = 8; 1309 goto err_nomem; 1310 } 1311 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1312 rx_desc->read.buffer_addr = 1313 cpu_to_le64(rx_ring->buffer_info[i].dma); 1314 memset(skb->data, 0x00, skb->len); 1315 } 1316 1317 return 0; 1318 1319 err_nomem: 1320 e1000_free_desc_rings(adapter); 1321 return ret_val; 1322 } 1323 1324 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1325 { 1326 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1327 e1e_wphy(&adapter->hw, 29, 0x001F); 1328 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1329 e1e_wphy(&adapter->hw, 29, 0x001A); 1330 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1331 } 1332 1333 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1334 { 1335 struct e1000_hw *hw = &adapter->hw; 1336 u32 ctrl_reg = 0; 1337 u16 phy_reg = 0; 1338 s32 ret_val = 0; 1339 1340 hw->mac.autoneg = 0; 1341 1342 if (hw->phy.type == e1000_phy_ife) { 1343 /* force 100, set loopback */ 1344 e1e_wphy(hw, MII_BMCR, 0x6100); 1345 1346 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1347 ctrl_reg = er32(CTRL); 1348 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1349 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1350 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1351 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1352 E1000_CTRL_FD); /* Force Duplex to FULL */ 1353 1354 ew32(CTRL, ctrl_reg); 1355 e1e_flush(); 1356 usleep_range(500, 1000); 1357 1358 return 0; 1359 } 1360 1361 /* Specific PHY configuration for loopback */ 1362 switch (hw->phy.type) { 1363 case e1000_phy_m88: 1364 /* Auto-MDI/MDIX Off */ 1365 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1366 /* reset to update Auto-MDI/MDIX */ 1367 e1e_wphy(hw, MII_BMCR, 0x9140); 1368 /* autoneg off */ 1369 e1e_wphy(hw, MII_BMCR, 0x8140); 1370 break; 1371 case e1000_phy_gg82563: 1372 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1373 break; 1374 case e1000_phy_bm: 1375 /* Set Default MAC Interface speed to 1GB */ 1376 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1377 phy_reg &= ~0x0007; 1378 phy_reg |= 0x006; 1379 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1380 /* Assert SW reset for above settings to take effect */ 1381 hw->phy.ops.commit(hw); 1382 usleep_range(1000, 2000); 1383 /* Force Full Duplex */ 1384 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1385 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1386 /* Set Link Up (in force link) */ 1387 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1388 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1389 /* Force Link */ 1390 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1391 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1392 /* Set Early Link Enable */ 1393 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1394 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1395 break; 1396 case e1000_phy_82577: 1397 case e1000_phy_82578: 1398 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1399 ret_val = hw->phy.ops.acquire(hw); 1400 if (ret_val) { 1401 e_err("Cannot setup 1Gbps loopback.\n"); 1402 return ret_val; 1403 } 1404 e1000_configure_k1_ich8lan(hw, false); 1405 hw->phy.ops.release(hw); 1406 break; 1407 case e1000_phy_82579: 1408 /* Disable PHY energy detect power down */ 1409 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1410 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1411 /* Disable full chip energy detect */ 1412 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1413 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1414 /* Enable loopback on the PHY */ 1415 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1416 break; 1417 default: 1418 break; 1419 } 1420 1421 /* force 1000, set loopback */ 1422 e1e_wphy(hw, MII_BMCR, 0x4140); 1423 msleep(250); 1424 1425 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1426 ctrl_reg = er32(CTRL); 1427 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1428 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1429 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1430 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1431 E1000_CTRL_FD); /* Force Duplex to FULL */ 1432 1433 if (adapter->flags & FLAG_IS_ICH) 1434 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1435 1436 if (hw->phy.media_type == e1000_media_type_copper && 1437 hw->phy.type == e1000_phy_m88) { 1438 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1439 } else { 1440 /* Set the ILOS bit on the fiber Nic if half duplex link is 1441 * detected. 1442 */ 1443 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1444 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1445 } 1446 1447 ew32(CTRL, ctrl_reg); 1448 1449 /* Disable the receiver on the PHY so when a cable is plugged in, the 1450 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1451 */ 1452 if (hw->phy.type == e1000_phy_m88) 1453 e1000_phy_disable_receiver(adapter); 1454 1455 usleep_range(500, 1000); 1456 1457 return 0; 1458 } 1459 1460 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1461 { 1462 struct e1000_hw *hw = &adapter->hw; 1463 u32 ctrl = er32(CTRL); 1464 int link; 1465 1466 /* special requirements for 82571/82572 fiber adapters */ 1467 1468 /* jump through hoops to make sure link is up because serdes 1469 * link is hardwired up 1470 */ 1471 ctrl |= E1000_CTRL_SLU; 1472 ew32(CTRL, ctrl); 1473 1474 /* disable autoneg */ 1475 ctrl = er32(TXCW); 1476 ctrl &= ~BIT(31); 1477 ew32(TXCW, ctrl); 1478 1479 link = (er32(STATUS) & E1000_STATUS_LU); 1480 1481 if (!link) { 1482 /* set invert loss of signal */ 1483 ctrl = er32(CTRL); 1484 ctrl |= E1000_CTRL_ILOS; 1485 ew32(CTRL, ctrl); 1486 } 1487 1488 /* special write to serdes control register to enable SerDes analog 1489 * loopback 1490 */ 1491 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1492 e1e_flush(); 1493 usleep_range(10000, 11000); 1494 1495 return 0; 1496 } 1497 1498 /* only call this for fiber/serdes connections to es2lan */ 1499 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1500 { 1501 struct e1000_hw *hw = &adapter->hw; 1502 u32 ctrlext = er32(CTRL_EXT); 1503 u32 ctrl = er32(CTRL); 1504 1505 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1506 * on mac_type 80003es2lan) 1507 */ 1508 adapter->tx_fifo_head = ctrlext; 1509 1510 /* clear the serdes mode bits, putting the device into mac loopback */ 1511 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1512 ew32(CTRL_EXT, ctrlext); 1513 1514 /* force speed to 1000/FD, link up */ 1515 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1516 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1517 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1518 ew32(CTRL, ctrl); 1519 1520 /* set mac loopback */ 1521 ctrl = er32(RCTL); 1522 ctrl |= E1000_RCTL_LBM_MAC; 1523 ew32(RCTL, ctrl); 1524 1525 /* set testing mode parameters (no need to reset later) */ 1526 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1527 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1528 ew32(KMRNCTRLSTA, 1529 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1530 1531 return 0; 1532 } 1533 1534 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1535 { 1536 struct e1000_hw *hw = &adapter->hw; 1537 u32 rctl, fext_nvm11, tarc0; 1538 1539 if (hw->mac.type >= e1000_pch_spt) { 1540 fext_nvm11 = er32(FEXTNVM11); 1541 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1542 ew32(FEXTNVM11, fext_nvm11); 1543 tarc0 = er32(TARC(0)); 1544 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1545 tarc0 &= 0xcfffffff; 1546 /* set bit 29 (value of MULR requests is now 2) */ 1547 tarc0 |= 0x20000000; 1548 ew32(TARC(0), tarc0); 1549 } 1550 if (hw->phy.media_type == e1000_media_type_fiber || 1551 hw->phy.media_type == e1000_media_type_internal_serdes) { 1552 switch (hw->mac.type) { 1553 case e1000_80003es2lan: 1554 return e1000_set_es2lan_mac_loopback(adapter); 1555 case e1000_82571: 1556 case e1000_82572: 1557 return e1000_set_82571_fiber_loopback(adapter); 1558 default: 1559 rctl = er32(RCTL); 1560 rctl |= E1000_RCTL_LBM_TCVR; 1561 ew32(RCTL, rctl); 1562 return 0; 1563 } 1564 } else if (hw->phy.media_type == e1000_media_type_copper) { 1565 return e1000_integrated_phy_loopback(adapter); 1566 } 1567 1568 return 7; 1569 } 1570 1571 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1572 { 1573 struct e1000_hw *hw = &adapter->hw; 1574 u32 rctl, fext_nvm11, tarc0; 1575 u16 phy_reg; 1576 1577 rctl = er32(RCTL); 1578 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1579 ew32(RCTL, rctl); 1580 1581 switch (hw->mac.type) { 1582 case e1000_pch_spt: 1583 case e1000_pch_cnp: 1584 case e1000_pch_tgp: 1585 case e1000_pch_adp: 1586 case e1000_pch_mtp: 1587 case e1000_pch_lnp: 1588 case e1000_pch_ptp: 1589 case e1000_pch_nvp: 1590 fext_nvm11 = er32(FEXTNVM11); 1591 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1592 ew32(FEXTNVM11, fext_nvm11); 1593 tarc0 = er32(TARC(0)); 1594 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1595 /* set bit 29 (value of MULR requests is now 0) */ 1596 tarc0 &= 0xcfffffff; 1597 ew32(TARC(0), tarc0); 1598 fallthrough; 1599 case e1000_80003es2lan: 1600 if (hw->phy.media_type == e1000_media_type_fiber || 1601 hw->phy.media_type == e1000_media_type_internal_serdes) { 1602 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1603 ew32(CTRL_EXT, adapter->tx_fifo_head); 1604 adapter->tx_fifo_head = 0; 1605 } 1606 fallthrough; 1607 case e1000_82571: 1608 case e1000_82572: 1609 if (hw->phy.media_type == e1000_media_type_fiber || 1610 hw->phy.media_type == e1000_media_type_internal_serdes) { 1611 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1612 e1e_flush(); 1613 usleep_range(10000, 11000); 1614 break; 1615 } 1616 fallthrough; 1617 default: 1618 hw->mac.autoneg = 1; 1619 if (hw->phy.type == e1000_phy_gg82563) 1620 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1621 e1e_rphy(hw, MII_BMCR, &phy_reg); 1622 if (phy_reg & BMCR_LOOPBACK) { 1623 phy_reg &= ~BMCR_LOOPBACK; 1624 e1e_wphy(hw, MII_BMCR, phy_reg); 1625 if (hw->phy.ops.commit) 1626 hw->phy.ops.commit(hw); 1627 } 1628 break; 1629 } 1630 } 1631 1632 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1633 unsigned int frame_size) 1634 { 1635 memset(skb->data, 0xFF, frame_size); 1636 frame_size &= ~1; 1637 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1638 skb->data[frame_size / 2 + 10] = 0xBE; 1639 skb->data[frame_size / 2 + 12] = 0xAF; 1640 } 1641 1642 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1643 unsigned int frame_size) 1644 { 1645 frame_size &= ~1; 1646 if (*(skb->data + 3) == 0xFF) 1647 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1648 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1649 return 0; 1650 return 13; 1651 } 1652 1653 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1654 { 1655 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1656 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1657 struct pci_dev *pdev = adapter->pdev; 1658 struct e1000_hw *hw = &adapter->hw; 1659 struct e1000_buffer *buffer_info; 1660 int i, j, k, l; 1661 int lc; 1662 int good_cnt; 1663 int ret_val = 0; 1664 unsigned long time; 1665 1666 ew32(RDT(0), rx_ring->count - 1); 1667 1668 /* Calculate the loop count based on the largest descriptor ring 1669 * The idea is to wrap the largest ring a number of times using 64 1670 * send/receive pairs during each loop 1671 */ 1672 1673 if (rx_ring->count <= tx_ring->count) 1674 lc = ((tx_ring->count / 64) * 2) + 1; 1675 else 1676 lc = ((rx_ring->count / 64) * 2) + 1; 1677 1678 k = 0; 1679 l = 0; 1680 /* loop count loop */ 1681 for (j = 0; j <= lc; j++) { 1682 /* send the packets */ 1683 for (i = 0; i < 64; i++) { 1684 buffer_info = &tx_ring->buffer_info[k]; 1685 1686 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1687 dma_sync_single_for_device(&pdev->dev, 1688 buffer_info->dma, 1689 buffer_info->length, 1690 DMA_TO_DEVICE); 1691 k++; 1692 if (k == tx_ring->count) 1693 k = 0; 1694 } 1695 ew32(TDT(0), k); 1696 e1e_flush(); 1697 msleep(200); 1698 time = jiffies; /* set the start time for the receive */ 1699 good_cnt = 0; 1700 /* receive the sent packets */ 1701 do { 1702 buffer_info = &rx_ring->buffer_info[l]; 1703 1704 dma_sync_single_for_cpu(&pdev->dev, 1705 buffer_info->dma, 2048, 1706 DMA_FROM_DEVICE); 1707 1708 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1709 1024); 1710 if (!ret_val) 1711 good_cnt++; 1712 l++; 1713 if (l == rx_ring->count) 1714 l = 0; 1715 /* time + 20 msecs (200 msecs on 2.4) is more than 1716 * enough time to complete the receives, if it's 1717 * exceeded, break and error off 1718 */ 1719 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1720 if (good_cnt != 64) { 1721 ret_val = 13; /* ret_val is the same as mis-compare */ 1722 break; 1723 } 1724 if (time_after(jiffies, time + 20)) { 1725 ret_val = 14; /* error code for time out error */ 1726 break; 1727 } 1728 } 1729 return ret_val; 1730 } 1731 1732 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1733 { 1734 struct e1000_hw *hw = &adapter->hw; 1735 1736 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1737 if (hw->phy.ops.check_reset_block && 1738 hw->phy.ops.check_reset_block(hw)) { 1739 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1740 *data = 0; 1741 goto out; 1742 } 1743 1744 *data = e1000_setup_desc_rings(adapter); 1745 if (*data) 1746 goto out; 1747 1748 *data = e1000_setup_loopback_test(adapter); 1749 if (*data) 1750 goto err_loopback; 1751 1752 *data = e1000_run_loopback_test(adapter); 1753 e1000_loopback_cleanup(adapter); 1754 1755 err_loopback: 1756 e1000_free_desc_rings(adapter); 1757 out: 1758 return *data; 1759 } 1760 1761 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1762 { 1763 struct e1000_hw *hw = &adapter->hw; 1764 1765 *data = 0; 1766 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1767 int i = 0; 1768 1769 hw->mac.serdes_has_link = false; 1770 1771 /* On some blade server designs, link establishment 1772 * could take as long as 2-3 minutes 1773 */ 1774 do { 1775 hw->mac.ops.check_for_link(hw); 1776 if (hw->mac.serdes_has_link) 1777 return *data; 1778 msleep(20); 1779 } while (i++ < 3750); 1780 1781 *data = 1; 1782 } else { 1783 hw->mac.ops.check_for_link(hw); 1784 if (hw->mac.autoneg) 1785 /* On some Phy/switch combinations, link establishment 1786 * can take a few seconds more than expected. 1787 */ 1788 msleep_interruptible(5000); 1789 1790 if (!(er32(STATUS) & E1000_STATUS_LU)) 1791 *data = 1; 1792 } 1793 return *data; 1794 } 1795 1796 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1797 int sset) 1798 { 1799 switch (sset) { 1800 case ETH_SS_TEST: 1801 return E1000_TEST_LEN; 1802 case ETH_SS_STATS: 1803 return E1000_STATS_LEN; 1804 case ETH_SS_PRIV_FLAGS: 1805 return E1000E_PRIV_FLAGS_STR_LEN; 1806 default: 1807 return -EOPNOTSUPP; 1808 } 1809 } 1810 1811 static void e1000_diag_test(struct net_device *netdev, 1812 struct ethtool_test *eth_test, u64 *data) 1813 { 1814 struct e1000_adapter *adapter = netdev_priv(netdev); 1815 u16 autoneg_advertised; 1816 u8 forced_speed_duplex; 1817 u8 autoneg; 1818 bool if_running = netif_running(netdev); 1819 1820 pm_runtime_get_sync(netdev->dev.parent); 1821 1822 set_bit(__E1000_TESTING, &adapter->state); 1823 1824 if (!if_running) { 1825 /* Get control of and reset hardware */ 1826 if (adapter->flags & FLAG_HAS_AMT) 1827 e1000e_get_hw_control(adapter); 1828 1829 e1000e_power_up_phy(adapter); 1830 1831 adapter->hw.phy.autoneg_wait_to_complete = 1; 1832 e1000e_reset(adapter); 1833 adapter->hw.phy.autoneg_wait_to_complete = 0; 1834 } 1835 1836 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1837 /* Offline tests */ 1838 1839 /* save speed, duplex, autoneg settings */ 1840 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1841 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1842 autoneg = adapter->hw.mac.autoneg; 1843 1844 e_info("offline testing starting\n"); 1845 1846 if (if_running) 1847 /* indicate we're in test mode */ 1848 e1000e_close(netdev); 1849 1850 if (e1000_reg_test(adapter, &data[0])) 1851 eth_test->flags |= ETH_TEST_FL_FAILED; 1852 1853 e1000e_reset(adapter); 1854 if (e1000_eeprom_test(adapter, &data[1])) 1855 eth_test->flags |= ETH_TEST_FL_FAILED; 1856 1857 e1000e_reset(adapter); 1858 if (e1000_intr_test(adapter, &data[2])) 1859 eth_test->flags |= ETH_TEST_FL_FAILED; 1860 1861 e1000e_reset(adapter); 1862 if (e1000_loopback_test(adapter, &data[3])) 1863 eth_test->flags |= ETH_TEST_FL_FAILED; 1864 1865 /* force this routine to wait until autoneg complete/timeout */ 1866 adapter->hw.phy.autoneg_wait_to_complete = 1; 1867 e1000e_reset(adapter); 1868 adapter->hw.phy.autoneg_wait_to_complete = 0; 1869 1870 if (e1000_link_test(adapter, &data[4])) 1871 eth_test->flags |= ETH_TEST_FL_FAILED; 1872 1873 /* restore speed, duplex, autoneg settings */ 1874 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1875 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1876 adapter->hw.mac.autoneg = autoneg; 1877 e1000e_reset(adapter); 1878 1879 clear_bit(__E1000_TESTING, &adapter->state); 1880 if (if_running) 1881 e1000e_open(netdev); 1882 } else { 1883 /* Online tests */ 1884 1885 e_info("online testing starting\n"); 1886 1887 /* register, eeprom, intr and loopback tests not run online */ 1888 data[0] = 0; 1889 data[1] = 0; 1890 data[2] = 0; 1891 data[3] = 0; 1892 1893 if (e1000_link_test(adapter, &data[4])) 1894 eth_test->flags |= ETH_TEST_FL_FAILED; 1895 1896 clear_bit(__E1000_TESTING, &adapter->state); 1897 } 1898 1899 if (!if_running) { 1900 e1000e_reset(adapter); 1901 1902 if (adapter->flags & FLAG_HAS_AMT) 1903 e1000e_release_hw_control(adapter); 1904 } 1905 1906 msleep_interruptible(4 * 1000); 1907 1908 pm_runtime_put_sync(netdev->dev.parent); 1909 } 1910 1911 static void e1000_get_wol(struct net_device *netdev, 1912 struct ethtool_wolinfo *wol) 1913 { 1914 struct e1000_adapter *adapter = netdev_priv(netdev); 1915 1916 wol->supported = 0; 1917 wol->wolopts = 0; 1918 1919 if (!(adapter->flags & FLAG_HAS_WOL) || 1920 !device_can_wakeup(&adapter->pdev->dev)) 1921 return; 1922 1923 wol->supported = WAKE_UCAST | WAKE_MCAST | 1924 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1925 1926 /* apply any specific unsupported masks here */ 1927 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1928 wol->supported &= ~WAKE_UCAST; 1929 1930 if (adapter->wol & E1000_WUFC_EX) 1931 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1932 } 1933 1934 if (adapter->wol & E1000_WUFC_EX) 1935 wol->wolopts |= WAKE_UCAST; 1936 if (adapter->wol & E1000_WUFC_MC) 1937 wol->wolopts |= WAKE_MCAST; 1938 if (adapter->wol & E1000_WUFC_BC) 1939 wol->wolopts |= WAKE_BCAST; 1940 if (adapter->wol & E1000_WUFC_MAG) 1941 wol->wolopts |= WAKE_MAGIC; 1942 if (adapter->wol & E1000_WUFC_LNKC) 1943 wol->wolopts |= WAKE_PHY; 1944 } 1945 1946 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1947 { 1948 struct e1000_adapter *adapter = netdev_priv(netdev); 1949 1950 if (!(adapter->flags & FLAG_HAS_WOL) || 1951 !device_can_wakeup(&adapter->pdev->dev) || 1952 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1953 WAKE_MAGIC | WAKE_PHY))) 1954 return -EOPNOTSUPP; 1955 1956 /* these settings will always override what we currently have */ 1957 adapter->wol = 0; 1958 1959 if (wol->wolopts & WAKE_UCAST) 1960 adapter->wol |= E1000_WUFC_EX; 1961 if (wol->wolopts & WAKE_MCAST) 1962 adapter->wol |= E1000_WUFC_MC; 1963 if (wol->wolopts & WAKE_BCAST) 1964 adapter->wol |= E1000_WUFC_BC; 1965 if (wol->wolopts & WAKE_MAGIC) 1966 adapter->wol |= E1000_WUFC_MAG; 1967 if (wol->wolopts & WAKE_PHY) 1968 adapter->wol |= E1000_WUFC_LNKC; 1969 1970 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1971 1972 return 0; 1973 } 1974 1975 static int e1000_set_phys_id(struct net_device *netdev, 1976 enum ethtool_phys_id_state state) 1977 { 1978 struct e1000_adapter *adapter = netdev_priv(netdev); 1979 struct e1000_hw *hw = &adapter->hw; 1980 1981 switch (state) { 1982 case ETHTOOL_ID_ACTIVE: 1983 pm_runtime_get_sync(netdev->dev.parent); 1984 1985 if (!hw->mac.ops.blink_led) 1986 return 2; /* cycle on/off twice per second */ 1987 1988 hw->mac.ops.blink_led(hw); 1989 break; 1990 1991 case ETHTOOL_ID_INACTIVE: 1992 if (hw->phy.type == e1000_phy_ife) 1993 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1994 hw->mac.ops.led_off(hw); 1995 hw->mac.ops.cleanup_led(hw); 1996 pm_runtime_put_sync(netdev->dev.parent); 1997 break; 1998 1999 case ETHTOOL_ID_ON: 2000 hw->mac.ops.led_on(hw); 2001 break; 2002 2003 case ETHTOOL_ID_OFF: 2004 hw->mac.ops.led_off(hw); 2005 break; 2006 } 2007 2008 return 0; 2009 } 2010 2011 static int e1000_get_coalesce(struct net_device *netdev, 2012 struct ethtool_coalesce *ec, 2013 struct kernel_ethtool_coalesce *kernel_coal, 2014 struct netlink_ext_ack *extack) 2015 { 2016 struct e1000_adapter *adapter = netdev_priv(netdev); 2017 2018 if (adapter->itr_setting <= 4) 2019 ec->rx_coalesce_usecs = adapter->itr_setting; 2020 else 2021 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 2022 2023 return 0; 2024 } 2025 2026 static int e1000_set_coalesce(struct net_device *netdev, 2027 struct ethtool_coalesce *ec, 2028 struct kernel_ethtool_coalesce *kernel_coal, 2029 struct netlink_ext_ack *extack) 2030 { 2031 struct e1000_adapter *adapter = netdev_priv(netdev); 2032 2033 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2034 ((ec->rx_coalesce_usecs > 4) && 2035 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2036 (ec->rx_coalesce_usecs == 2)) 2037 return -EINVAL; 2038 2039 if (ec->rx_coalesce_usecs == 4) { 2040 adapter->itr_setting = 4; 2041 adapter->itr = adapter->itr_setting; 2042 } else if (ec->rx_coalesce_usecs <= 3) { 2043 adapter->itr = 20000; 2044 adapter->itr_setting = ec->rx_coalesce_usecs; 2045 } else { 2046 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2047 adapter->itr_setting = adapter->itr & ~3; 2048 } 2049 2050 pm_runtime_get_sync(netdev->dev.parent); 2051 2052 if (adapter->itr_setting != 0) 2053 e1000e_write_itr(adapter, adapter->itr); 2054 else 2055 e1000e_write_itr(adapter, 0); 2056 2057 pm_runtime_put_sync(netdev->dev.parent); 2058 2059 return 0; 2060 } 2061 2062 static int e1000_nway_reset(struct net_device *netdev) 2063 { 2064 struct e1000_adapter *adapter = netdev_priv(netdev); 2065 2066 if (!netif_running(netdev)) 2067 return -EAGAIN; 2068 2069 if (!adapter->hw.mac.autoneg) 2070 return -EINVAL; 2071 2072 pm_runtime_get_sync(netdev->dev.parent); 2073 e1000e_reinit_locked(adapter); 2074 pm_runtime_put_sync(netdev->dev.parent); 2075 2076 return 0; 2077 } 2078 2079 static void e1000_get_ethtool_stats(struct net_device *netdev, 2080 struct ethtool_stats __always_unused *stats, 2081 u64 *data) 2082 { 2083 struct e1000_adapter *adapter = netdev_priv(netdev); 2084 struct rtnl_link_stats64 net_stats; 2085 int i; 2086 char *p = NULL; 2087 2088 pm_runtime_get_sync(netdev->dev.parent); 2089 2090 dev_get_stats(netdev, &net_stats); 2091 2092 pm_runtime_put_sync(netdev->dev.parent); 2093 2094 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2095 switch (e1000_gstrings_stats[i].type) { 2096 case NETDEV_STATS: 2097 p = (char *)&net_stats + 2098 e1000_gstrings_stats[i].stat_offset; 2099 break; 2100 case E1000_STATS: 2101 p = (char *)adapter + 2102 e1000_gstrings_stats[i].stat_offset; 2103 break; 2104 default: 2105 data[i] = 0; 2106 continue; 2107 } 2108 2109 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2110 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2111 } 2112 } 2113 2114 static void e1000_get_strings(struct net_device __always_unused *netdev, 2115 u32 stringset, u8 *data) 2116 { 2117 u8 *p = data; 2118 int i; 2119 2120 switch (stringset) { 2121 case ETH_SS_TEST: 2122 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2123 break; 2124 case ETH_SS_STATS: 2125 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2126 memcpy(p, e1000_gstrings_stats[i].stat_string, 2127 ETH_GSTRING_LEN); 2128 p += ETH_GSTRING_LEN; 2129 } 2130 break; 2131 case ETH_SS_PRIV_FLAGS: 2132 memcpy(data, e1000e_priv_flags_strings, 2133 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2134 break; 2135 } 2136 } 2137 2138 static int e1000_get_rxnfc(struct net_device *netdev, 2139 struct ethtool_rxnfc *info, 2140 u32 __always_unused *rule_locs) 2141 { 2142 info->data = 0; 2143 2144 switch (info->cmd) { 2145 case ETHTOOL_GRXFH: { 2146 struct e1000_adapter *adapter = netdev_priv(netdev); 2147 struct e1000_hw *hw = &adapter->hw; 2148 u32 mrqc; 2149 2150 pm_runtime_get_sync(netdev->dev.parent); 2151 mrqc = er32(MRQC); 2152 pm_runtime_put_sync(netdev->dev.parent); 2153 2154 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2155 return 0; 2156 2157 switch (info->flow_type) { 2158 case TCP_V4_FLOW: 2159 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2160 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2161 fallthrough; 2162 case UDP_V4_FLOW: 2163 case SCTP_V4_FLOW: 2164 case AH_ESP_V4_FLOW: 2165 case IPV4_FLOW: 2166 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2167 info->data |= RXH_IP_SRC | RXH_IP_DST; 2168 break; 2169 case TCP_V6_FLOW: 2170 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2171 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2172 fallthrough; 2173 case UDP_V6_FLOW: 2174 case SCTP_V6_FLOW: 2175 case AH_ESP_V6_FLOW: 2176 case IPV6_FLOW: 2177 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2178 info->data |= RXH_IP_SRC | RXH_IP_DST; 2179 break; 2180 default: 2181 break; 2182 } 2183 return 0; 2184 } 2185 default: 2186 return -EOPNOTSUPP; 2187 } 2188 } 2189 2190 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2191 { 2192 struct e1000_adapter *adapter = netdev_priv(netdev); 2193 struct e1000_hw *hw = &adapter->hw; 2194 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2195 u32 ret_val; 2196 2197 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2198 return -EOPNOTSUPP; 2199 2200 switch (hw->phy.type) { 2201 case e1000_phy_82579: 2202 cap_addr = I82579_EEE_CAPABILITY; 2203 lpa_addr = I82579_EEE_LP_ABILITY; 2204 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2205 break; 2206 case e1000_phy_i217: 2207 cap_addr = I217_EEE_CAPABILITY; 2208 lpa_addr = I217_EEE_LP_ABILITY; 2209 pcs_stat_addr = I217_EEE_PCS_STATUS; 2210 break; 2211 default: 2212 return -EOPNOTSUPP; 2213 } 2214 2215 pm_runtime_get_sync(netdev->dev.parent); 2216 2217 ret_val = hw->phy.ops.acquire(hw); 2218 if (ret_val) { 2219 pm_runtime_put_sync(netdev->dev.parent); 2220 return -EBUSY; 2221 } 2222 2223 /* EEE Capability */ 2224 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2225 if (ret_val) 2226 goto release; 2227 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2228 2229 /* EEE Advertised */ 2230 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2231 2232 /* EEE Link Partner Advertised */ 2233 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2234 if (ret_val) 2235 goto release; 2236 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2237 2238 /* EEE PCS Status */ 2239 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2240 if (ret_val) 2241 goto release; 2242 if (hw->phy.type == e1000_phy_82579) 2243 phy_data <<= 8; 2244 2245 /* Result of the EEE auto negotiation - there is no register that 2246 * has the status of the EEE negotiation so do a best-guess based 2247 * on whether Tx or Rx LPI indications have been received. 2248 */ 2249 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2250 edata->eee_active = true; 2251 2252 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2253 edata->tx_lpi_enabled = true; 2254 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2255 2256 release: 2257 hw->phy.ops.release(hw); 2258 if (ret_val) 2259 ret_val = -ENODATA; 2260 2261 pm_runtime_put_sync(netdev->dev.parent); 2262 2263 return ret_val; 2264 } 2265 2266 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2267 { 2268 struct e1000_adapter *adapter = netdev_priv(netdev); 2269 struct e1000_hw *hw = &adapter->hw; 2270 struct ethtool_eee eee_curr; 2271 s32 ret_val; 2272 2273 ret_val = e1000e_get_eee(netdev, &eee_curr); 2274 if (ret_val) 2275 return ret_val; 2276 2277 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2278 e_err("Setting EEE tx-lpi is not supported\n"); 2279 return -EINVAL; 2280 } 2281 2282 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2283 e_err("Setting EEE Tx LPI timer is not supported\n"); 2284 return -EINVAL; 2285 } 2286 2287 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2288 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2289 return -EINVAL; 2290 } 2291 2292 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2293 2294 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2295 2296 pm_runtime_get_sync(netdev->dev.parent); 2297 2298 /* reset the link */ 2299 if (netif_running(netdev)) 2300 e1000e_reinit_locked(adapter); 2301 else 2302 e1000e_reset(adapter); 2303 2304 pm_runtime_put_sync(netdev->dev.parent); 2305 2306 return 0; 2307 } 2308 2309 static int e1000e_get_ts_info(struct net_device *netdev, 2310 struct ethtool_ts_info *info) 2311 { 2312 struct e1000_adapter *adapter = netdev_priv(netdev); 2313 2314 ethtool_op_get_ts_info(netdev, info); 2315 2316 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2317 return 0; 2318 2319 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2320 SOF_TIMESTAMPING_RX_HARDWARE | 2321 SOF_TIMESTAMPING_RAW_HARDWARE); 2322 2323 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2324 2325 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2326 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2327 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2328 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2329 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2330 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2331 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2332 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2333 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2334 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2335 BIT(HWTSTAMP_FILTER_ALL)); 2336 2337 if (adapter->ptp_clock) 2338 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2339 2340 return 0; 2341 } 2342 2343 static u32 e1000e_get_priv_flags(struct net_device *netdev) 2344 { 2345 struct e1000_adapter *adapter = netdev_priv(netdev); 2346 u32 priv_flags = 0; 2347 2348 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 2349 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED; 2350 2351 return priv_flags; 2352 } 2353 2354 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags) 2355 { 2356 struct e1000_adapter *adapter = netdev_priv(netdev); 2357 unsigned int flags2 = adapter->flags2; 2358 2359 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS; 2360 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) { 2361 struct e1000_hw *hw = &adapter->hw; 2362 2363 if (hw->mac.type < e1000_pch_cnp) 2364 return -EINVAL; 2365 flags2 |= FLAG2_ENABLE_S0IX_FLOWS; 2366 } 2367 2368 if (flags2 != adapter->flags2) 2369 adapter->flags2 = flags2; 2370 2371 return 0; 2372 } 2373 2374 static const struct ethtool_ops e1000_ethtool_ops = { 2375 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2376 .get_drvinfo = e1000_get_drvinfo, 2377 .get_regs_len = e1000_get_regs_len, 2378 .get_regs = e1000_get_regs, 2379 .get_wol = e1000_get_wol, 2380 .set_wol = e1000_set_wol, 2381 .get_msglevel = e1000_get_msglevel, 2382 .set_msglevel = e1000_set_msglevel, 2383 .nway_reset = e1000_nway_reset, 2384 .get_link = ethtool_op_get_link, 2385 .get_eeprom_len = e1000_get_eeprom_len, 2386 .get_eeprom = e1000_get_eeprom, 2387 .set_eeprom = e1000_set_eeprom, 2388 .get_ringparam = e1000_get_ringparam, 2389 .set_ringparam = e1000_set_ringparam, 2390 .get_pauseparam = e1000_get_pauseparam, 2391 .set_pauseparam = e1000_set_pauseparam, 2392 .self_test = e1000_diag_test, 2393 .get_strings = e1000_get_strings, 2394 .set_phys_id = e1000_set_phys_id, 2395 .get_ethtool_stats = e1000_get_ethtool_stats, 2396 .get_sset_count = e1000e_get_sset_count, 2397 .get_coalesce = e1000_get_coalesce, 2398 .set_coalesce = e1000_set_coalesce, 2399 .get_rxnfc = e1000_get_rxnfc, 2400 .get_ts_info = e1000e_get_ts_info, 2401 .get_eee = e1000e_get_eee, 2402 .set_eee = e1000e_set_eee, 2403 .get_link_ksettings = e1000_get_link_ksettings, 2404 .set_link_ksettings = e1000_set_link_ksettings, 2405 .get_priv_flags = e1000e_get_priv_flags, 2406 .set_priv_flags = e1000e_set_priv_flags, 2407 }; 2408 2409 void e1000e_set_ethtool_ops(struct net_device *netdev) 2410 { 2411 netdev->ethtool_ops = &e1000_ethtool_ops; 2412 } 2413