1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* 30 * 82571EB Gigabit Ethernet Controller 31 * 82571EB Gigabit Ethernet Controller (Copper) 32 * 82571EB Gigabit Ethernet Controller (Fiber) 33 * 82571EB Dual Port Gigabit Mezzanine Adapter 34 * 82571EB Quad Port Gigabit Mezzanine Adapter 35 * 82571PT Gigabit PT Quad Port Server ExpressModule 36 * 82572EI Gigabit Ethernet Controller (Copper) 37 * 82572EI Gigabit Ethernet Controller (Fiber) 38 * 82572EI Gigabit Ethernet Controller 39 * 82573V Gigabit Ethernet Controller (Copper) 40 * 82573E Gigabit Ethernet Controller (Copper) 41 * 82573L Gigabit Ethernet Controller 42 * 82574L Gigabit Network Connection 43 * 82583V Gigabit Network Connection 44 */ 45 46 #include "e1000.h" 47 48 #define ID_LED_RESERVED_F746 0xF746 49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ 50 (ID_LED_OFF1_ON2 << 8) | \ 51 (ID_LED_DEF1_DEF2 << 4) | \ 52 (ID_LED_DEF1_DEF2)) 53 54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 55 #define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */ 56 #define E1000_BASE1000T_STATUS 10 57 #define E1000_IDLE_ERROR_COUNT_MASK 0xFF 58 #define E1000_RECEIVE_ERROR_COUNTER 21 59 #define E1000_RECEIVE_ERROR_MAX 0xFFFF 60 61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */ 62 63 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); 64 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); 65 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); 66 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); 67 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, 68 u16 words, u16 *data); 69 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); 70 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); 71 static s32 e1000_setup_link_82571(struct e1000_hw *hw); 72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); 73 static void e1000_clear_vfta_82571(struct e1000_hw *hw); 74 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); 75 static s32 e1000_led_on_82574(struct e1000_hw *hw); 76 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); 77 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); 78 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); 79 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); 80 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); 81 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active); 82 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active); 83 84 /** 85 * e1000_init_phy_params_82571 - Init PHY func ptrs. 86 * @hw: pointer to the HW structure 87 **/ 88 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) 89 { 90 struct e1000_phy_info *phy = &hw->phy; 91 s32 ret_val; 92 93 if (hw->phy.media_type != e1000_media_type_copper) { 94 phy->type = e1000_phy_none; 95 return 0; 96 } 97 98 phy->addr = 1; 99 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 100 phy->reset_delay_us = 100; 101 102 phy->ops.power_up = e1000_power_up_phy_copper; 103 phy->ops.power_down = e1000_power_down_phy_copper_82571; 104 105 switch (hw->mac.type) { 106 case e1000_82571: 107 case e1000_82572: 108 phy->type = e1000_phy_igp_2; 109 break; 110 case e1000_82573: 111 phy->type = e1000_phy_m88; 112 break; 113 case e1000_82574: 114 case e1000_82583: 115 phy->type = e1000_phy_bm; 116 phy->ops.acquire = e1000_get_hw_semaphore_82574; 117 phy->ops.release = e1000_put_hw_semaphore_82574; 118 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; 119 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; 120 break; 121 default: 122 return -E1000_ERR_PHY; 123 break; 124 } 125 126 /* This can only be done after all function pointers are setup. */ 127 ret_val = e1000_get_phy_id_82571(hw); 128 if (ret_val) { 129 e_dbg("Error getting PHY ID\n"); 130 return ret_val; 131 } 132 133 /* Verify phy id */ 134 switch (hw->mac.type) { 135 case e1000_82571: 136 case e1000_82572: 137 if (phy->id != IGP01E1000_I_PHY_ID) 138 ret_val = -E1000_ERR_PHY; 139 break; 140 case e1000_82573: 141 if (phy->id != M88E1111_I_PHY_ID) 142 ret_val = -E1000_ERR_PHY; 143 break; 144 case e1000_82574: 145 case e1000_82583: 146 if (phy->id != BME1000_E_PHY_ID_R2) 147 ret_val = -E1000_ERR_PHY; 148 break; 149 default: 150 ret_val = -E1000_ERR_PHY; 151 break; 152 } 153 154 if (ret_val) 155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id); 156 157 return ret_val; 158 } 159 160 /** 161 * e1000_init_nvm_params_82571 - Init NVM func ptrs. 162 * @hw: pointer to the HW structure 163 **/ 164 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) 165 { 166 struct e1000_nvm_info *nvm = &hw->nvm; 167 u32 eecd = er32(EECD); 168 u16 size; 169 170 nvm->opcode_bits = 8; 171 nvm->delay_usec = 1; 172 switch (nvm->override) { 173 case e1000_nvm_override_spi_large: 174 nvm->page_size = 32; 175 nvm->address_bits = 16; 176 break; 177 case e1000_nvm_override_spi_small: 178 nvm->page_size = 8; 179 nvm->address_bits = 8; 180 break; 181 default: 182 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; 183 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; 184 break; 185 } 186 187 switch (hw->mac.type) { 188 case e1000_82573: 189 case e1000_82574: 190 case e1000_82583: 191 if (((eecd >> 15) & 0x3) == 0x3) { 192 nvm->type = e1000_nvm_flash_hw; 193 nvm->word_size = 2048; 194 /* 195 * Autonomous Flash update bit must be cleared due 196 * to Flash update issue. 197 */ 198 eecd &= ~E1000_EECD_AUPDEN; 199 ew32(EECD, eecd); 200 break; 201 } 202 /* Fall Through */ 203 default: 204 nvm->type = e1000_nvm_eeprom_spi; 205 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> 206 E1000_EECD_SIZE_EX_SHIFT); 207 /* 208 * Added to a constant, "size" becomes the left-shift value 209 * for setting word_size. 210 */ 211 size += NVM_WORD_SIZE_BASE_SHIFT; 212 213 /* EEPROM access above 16k is unsupported */ 214 if (size > 14) 215 size = 14; 216 nvm->word_size = 1 << size; 217 break; 218 } 219 220 /* Function Pointers */ 221 switch (hw->mac.type) { 222 case e1000_82574: 223 case e1000_82583: 224 nvm->ops.acquire = e1000_get_hw_semaphore_82574; 225 nvm->ops.release = e1000_put_hw_semaphore_82574; 226 break; 227 default: 228 break; 229 } 230 231 return 0; 232 } 233 234 /** 235 * e1000_init_mac_params_82571 - Init MAC func ptrs. 236 * @hw: pointer to the HW structure 237 **/ 238 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw) 239 { 240 struct e1000_mac_info *mac = &hw->mac; 241 u32 swsm = 0; 242 u32 swsm2 = 0; 243 bool force_clear_smbi = false; 244 245 /* Set media type and media-dependent function pointers */ 246 switch (hw->adapter->pdev->device) { 247 case E1000_DEV_ID_82571EB_FIBER: 248 case E1000_DEV_ID_82572EI_FIBER: 249 case E1000_DEV_ID_82571EB_QUAD_FIBER: 250 hw->phy.media_type = e1000_media_type_fiber; 251 mac->ops.setup_physical_interface = 252 e1000_setup_fiber_serdes_link_82571; 253 mac->ops.check_for_link = e1000e_check_for_fiber_link; 254 mac->ops.get_link_up_info = 255 e1000e_get_speed_and_duplex_fiber_serdes; 256 break; 257 case E1000_DEV_ID_82571EB_SERDES: 258 case E1000_DEV_ID_82571EB_SERDES_DUAL: 259 case E1000_DEV_ID_82571EB_SERDES_QUAD: 260 case E1000_DEV_ID_82572EI_SERDES: 261 hw->phy.media_type = e1000_media_type_internal_serdes; 262 mac->ops.setup_physical_interface = 263 e1000_setup_fiber_serdes_link_82571; 264 mac->ops.check_for_link = e1000_check_for_serdes_link_82571; 265 mac->ops.get_link_up_info = 266 e1000e_get_speed_and_duplex_fiber_serdes; 267 break; 268 default: 269 hw->phy.media_type = e1000_media_type_copper; 270 mac->ops.setup_physical_interface = 271 e1000_setup_copper_link_82571; 272 mac->ops.check_for_link = e1000e_check_for_copper_link; 273 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper; 274 break; 275 } 276 277 /* Set mta register count */ 278 mac->mta_reg_count = 128; 279 /* Set rar entry count */ 280 mac->rar_entry_count = E1000_RAR_ENTRIES; 281 /* Adaptive IFS supported */ 282 mac->adaptive_ifs = true; 283 284 /* MAC-specific function pointers */ 285 switch (hw->mac.type) { 286 case e1000_82573: 287 mac->ops.set_lan_id = e1000_set_lan_id_single_port; 288 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; 289 mac->ops.led_on = e1000e_led_on_generic; 290 mac->ops.blink_led = e1000e_blink_led_generic; 291 292 /* FWSM register */ 293 mac->has_fwsm = true; 294 /* 295 * ARC supported; valid only if manageability features are 296 * enabled. 297 */ 298 mac->arc_subsystem_valid = 299 (er32(FWSM) & E1000_FWSM_MODE_MASK) 300 ? true : false; 301 break; 302 case e1000_82574: 303 case e1000_82583: 304 mac->ops.set_lan_id = e1000_set_lan_id_single_port; 305 mac->ops.check_mng_mode = e1000_check_mng_mode_82574; 306 mac->ops.led_on = e1000_led_on_82574; 307 break; 308 default: 309 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; 310 mac->ops.led_on = e1000e_led_on_generic; 311 mac->ops.blink_led = e1000e_blink_led_generic; 312 313 /* FWSM register */ 314 mac->has_fwsm = true; 315 break; 316 } 317 318 /* 319 * Ensure that the inter-port SWSM.SMBI lock bit is clear before 320 * first NVM or PHY access. This should be done for single-port 321 * devices, and for one port only on dual-port devices so that 322 * for those devices we can still use the SMBI lock to synchronize 323 * inter-port accesses to the PHY & NVM. 324 */ 325 switch (hw->mac.type) { 326 case e1000_82571: 327 case e1000_82572: 328 swsm2 = er32(SWSM2); 329 330 if (!(swsm2 & E1000_SWSM2_LOCK)) { 331 /* Only do this for the first interface on this card */ 332 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK); 333 force_clear_smbi = true; 334 } else { 335 force_clear_smbi = false; 336 } 337 break; 338 default: 339 force_clear_smbi = true; 340 break; 341 } 342 343 if (force_clear_smbi) { 344 /* Make sure SWSM.SMBI is clear */ 345 swsm = er32(SWSM); 346 if (swsm & E1000_SWSM_SMBI) { 347 /* This bit should not be set on a first interface, and 348 * indicates that the bootagent or EFI code has 349 * improperly left this bit enabled 350 */ 351 e_dbg("Please update your 82571 Bootagent\n"); 352 } 353 ew32(SWSM, swsm & ~E1000_SWSM_SMBI); 354 } 355 356 /* 357 * Initialize device specific counter of SMBI acquisition 358 * timeouts. 359 */ 360 hw->dev_spec.e82571.smb_counter = 0; 361 362 return 0; 363 } 364 365 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) 366 { 367 struct e1000_hw *hw = &adapter->hw; 368 static int global_quad_port_a; /* global port a indication */ 369 struct pci_dev *pdev = adapter->pdev; 370 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; 371 s32 rc; 372 373 rc = e1000_init_mac_params_82571(hw); 374 if (rc) 375 return rc; 376 377 rc = e1000_init_nvm_params_82571(hw); 378 if (rc) 379 return rc; 380 381 rc = e1000_init_phy_params_82571(hw); 382 if (rc) 383 return rc; 384 385 /* tag quad port adapters first, it's used below */ 386 switch (pdev->device) { 387 case E1000_DEV_ID_82571EB_QUAD_COPPER: 388 case E1000_DEV_ID_82571EB_QUAD_FIBER: 389 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 390 case E1000_DEV_ID_82571PT_QUAD_COPPER: 391 adapter->flags |= FLAG_IS_QUAD_PORT; 392 /* mark the first port */ 393 if (global_quad_port_a == 0) 394 adapter->flags |= FLAG_IS_QUAD_PORT_A; 395 /* Reset for multiple quad port adapters */ 396 global_quad_port_a++; 397 if (global_quad_port_a == 4) 398 global_quad_port_a = 0; 399 break; 400 default: 401 break; 402 } 403 404 switch (adapter->hw.mac.type) { 405 case e1000_82571: 406 /* these dual ports don't have WoL on port B at all */ 407 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || 408 (pdev->device == E1000_DEV_ID_82571EB_SERDES) || 409 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && 410 (is_port_b)) 411 adapter->flags &= ~FLAG_HAS_WOL; 412 /* quad ports only support WoL on port A */ 413 if (adapter->flags & FLAG_IS_QUAD_PORT && 414 (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) 415 adapter->flags &= ~FLAG_HAS_WOL; 416 /* Does not support WoL on any port */ 417 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) 418 adapter->flags &= ~FLAG_HAS_WOL; 419 break; 420 case e1000_82573: 421 if (pdev->device == E1000_DEV_ID_82573L) { 422 adapter->flags |= FLAG_HAS_JUMBO_FRAMES; 423 adapter->max_hw_frame_size = DEFAULT_JUMBO; 424 } 425 break; 426 default: 427 break; 428 } 429 430 return 0; 431 } 432 433 /** 434 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision 435 * @hw: pointer to the HW structure 436 * 437 * Reads the PHY registers and stores the PHY ID and possibly the PHY 438 * revision in the hardware structure. 439 **/ 440 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) 441 { 442 struct e1000_phy_info *phy = &hw->phy; 443 s32 ret_val; 444 u16 phy_id = 0; 445 446 switch (hw->mac.type) { 447 case e1000_82571: 448 case e1000_82572: 449 /* 450 * The 82571 firmware may still be configuring the PHY. 451 * In this case, we cannot access the PHY until the 452 * configuration is done. So we explicitly set the 453 * PHY ID. 454 */ 455 phy->id = IGP01E1000_I_PHY_ID; 456 break; 457 case e1000_82573: 458 return e1000e_get_phy_id(hw); 459 break; 460 case e1000_82574: 461 case e1000_82583: 462 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); 463 if (ret_val) 464 return ret_val; 465 466 phy->id = (u32)(phy_id << 16); 467 udelay(20); 468 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); 469 if (ret_val) 470 return ret_val; 471 472 phy->id |= (u32)(phy_id); 473 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 474 break; 475 default: 476 return -E1000_ERR_PHY; 477 break; 478 } 479 480 return 0; 481 } 482 483 /** 484 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore 485 * @hw: pointer to the HW structure 486 * 487 * Acquire the HW semaphore to access the PHY or NVM 488 **/ 489 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) 490 { 491 u32 swsm; 492 s32 sw_timeout = hw->nvm.word_size + 1; 493 s32 fw_timeout = hw->nvm.word_size + 1; 494 s32 i = 0; 495 496 /* 497 * If we have timedout 3 times on trying to acquire 498 * the inter-port SMBI semaphore, there is old code 499 * operating on the other port, and it is not 500 * releasing SMBI. Modify the number of times that 501 * we try for the semaphore to interwork with this 502 * older code. 503 */ 504 if (hw->dev_spec.e82571.smb_counter > 2) 505 sw_timeout = 1; 506 507 /* Get the SW semaphore */ 508 while (i < sw_timeout) { 509 swsm = er32(SWSM); 510 if (!(swsm & E1000_SWSM_SMBI)) 511 break; 512 513 udelay(50); 514 i++; 515 } 516 517 if (i == sw_timeout) { 518 e_dbg("Driver can't access device - SMBI bit is set.\n"); 519 hw->dev_spec.e82571.smb_counter++; 520 } 521 /* Get the FW semaphore. */ 522 for (i = 0; i < fw_timeout; i++) { 523 swsm = er32(SWSM); 524 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); 525 526 /* Semaphore acquired if bit latched */ 527 if (er32(SWSM) & E1000_SWSM_SWESMBI) 528 break; 529 530 udelay(50); 531 } 532 533 if (i == fw_timeout) { 534 /* Release semaphores */ 535 e1000_put_hw_semaphore_82571(hw); 536 e_dbg("Driver can't access the NVM\n"); 537 return -E1000_ERR_NVM; 538 } 539 540 return 0; 541 } 542 543 /** 544 * e1000_put_hw_semaphore_82571 - Release hardware semaphore 545 * @hw: pointer to the HW structure 546 * 547 * Release hardware semaphore used to access the PHY or NVM 548 **/ 549 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) 550 { 551 u32 swsm; 552 553 swsm = er32(SWSM); 554 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 555 ew32(SWSM, swsm); 556 } 557 /** 558 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore 559 * @hw: pointer to the HW structure 560 * 561 * Acquire the HW semaphore during reset. 562 * 563 **/ 564 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) 565 { 566 u32 extcnf_ctrl; 567 s32 i = 0; 568 569 extcnf_ctrl = er32(EXTCNF_CTRL); 570 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; 571 do { 572 ew32(EXTCNF_CTRL, extcnf_ctrl); 573 extcnf_ctrl = er32(EXTCNF_CTRL); 574 575 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) 576 break; 577 578 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; 579 580 usleep_range(2000, 4000); 581 i++; 582 } while (i < MDIO_OWNERSHIP_TIMEOUT); 583 584 if (i == MDIO_OWNERSHIP_TIMEOUT) { 585 /* Release semaphores */ 586 e1000_put_hw_semaphore_82573(hw); 587 e_dbg("Driver can't access the PHY\n"); 588 return -E1000_ERR_PHY; 589 } 590 591 return 0; 592 } 593 594 /** 595 * e1000_put_hw_semaphore_82573 - Release hardware semaphore 596 * @hw: pointer to the HW structure 597 * 598 * Release hardware semaphore used during reset. 599 * 600 **/ 601 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) 602 { 603 u32 extcnf_ctrl; 604 605 extcnf_ctrl = er32(EXTCNF_CTRL); 606 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; 607 ew32(EXTCNF_CTRL, extcnf_ctrl); 608 } 609 610 static DEFINE_MUTEX(swflag_mutex); 611 612 /** 613 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore 614 * @hw: pointer to the HW structure 615 * 616 * Acquire the HW semaphore to access the PHY or NVM. 617 * 618 **/ 619 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) 620 { 621 s32 ret_val; 622 623 mutex_lock(&swflag_mutex); 624 ret_val = e1000_get_hw_semaphore_82573(hw); 625 if (ret_val) 626 mutex_unlock(&swflag_mutex); 627 return ret_val; 628 } 629 630 /** 631 * e1000_put_hw_semaphore_82574 - Release hardware semaphore 632 * @hw: pointer to the HW structure 633 * 634 * Release hardware semaphore used to access the PHY or NVM 635 * 636 **/ 637 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) 638 { 639 e1000_put_hw_semaphore_82573(hw); 640 mutex_unlock(&swflag_mutex); 641 } 642 643 /** 644 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state 645 * @hw: pointer to the HW structure 646 * @active: true to enable LPLU, false to disable 647 * 648 * Sets the LPLU D0 state according to the active flag. 649 * LPLU will not be activated unless the 650 * device autonegotiation advertisement meets standards of 651 * either 10 or 10/100 or 10/100/1000 at all duplexes. 652 * This is a function pointer entry point only called by 653 * PHY setup routines. 654 **/ 655 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) 656 { 657 u16 data = er32(POEMB); 658 659 if (active) 660 data |= E1000_PHY_CTRL_D0A_LPLU; 661 else 662 data &= ~E1000_PHY_CTRL_D0A_LPLU; 663 664 ew32(POEMB, data); 665 return 0; 666 } 667 668 /** 669 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 670 * @hw: pointer to the HW structure 671 * @active: boolean used to enable/disable lplu 672 * 673 * The low power link up (lplu) state is set to the power management level D3 674 * when active is true, else clear lplu for D3. LPLU 675 * is used during Dx states where the power conservation is most important. 676 * During driver activity, SmartSpeed should be enabled so performance is 677 * maintained. 678 **/ 679 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) 680 { 681 u16 data = er32(POEMB); 682 683 if (!active) { 684 data &= ~E1000_PHY_CTRL_NOND0A_LPLU; 685 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 686 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || 687 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { 688 data |= E1000_PHY_CTRL_NOND0A_LPLU; 689 } 690 691 ew32(POEMB, data); 692 return 0; 693 } 694 695 /** 696 * e1000_acquire_nvm_82571 - Request for access to the EEPROM 697 * @hw: pointer to the HW structure 698 * 699 * To gain access to the EEPROM, first we must obtain a hardware semaphore. 700 * Then for non-82573 hardware, set the EEPROM access request bit and wait 701 * for EEPROM access grant bit. If the access grant bit is not set, release 702 * hardware semaphore. 703 **/ 704 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) 705 { 706 s32 ret_val; 707 708 ret_val = e1000_get_hw_semaphore_82571(hw); 709 if (ret_val) 710 return ret_val; 711 712 switch (hw->mac.type) { 713 case e1000_82573: 714 break; 715 default: 716 ret_val = e1000e_acquire_nvm(hw); 717 break; 718 } 719 720 if (ret_val) 721 e1000_put_hw_semaphore_82571(hw); 722 723 return ret_val; 724 } 725 726 /** 727 * e1000_release_nvm_82571 - Release exclusive access to EEPROM 728 * @hw: pointer to the HW structure 729 * 730 * Stop any current commands to the EEPROM and clear the EEPROM request bit. 731 **/ 732 static void e1000_release_nvm_82571(struct e1000_hw *hw) 733 { 734 e1000e_release_nvm(hw); 735 e1000_put_hw_semaphore_82571(hw); 736 } 737 738 /** 739 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface 740 * @hw: pointer to the HW structure 741 * @offset: offset within the EEPROM to be written to 742 * @words: number of words to write 743 * @data: 16 bit word(s) to be written to the EEPROM 744 * 745 * For non-82573 silicon, write data to EEPROM at offset using SPI interface. 746 * 747 * If e1000e_update_nvm_checksum is not called after this function, the 748 * EEPROM will most likely contain an invalid checksum. 749 **/ 750 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, 751 u16 *data) 752 { 753 s32 ret_val; 754 755 switch (hw->mac.type) { 756 case e1000_82573: 757 case e1000_82574: 758 case e1000_82583: 759 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); 760 break; 761 case e1000_82571: 762 case e1000_82572: 763 ret_val = e1000e_write_nvm_spi(hw, offset, words, data); 764 break; 765 default: 766 ret_val = -E1000_ERR_NVM; 767 break; 768 } 769 770 return ret_val; 771 } 772 773 /** 774 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum 775 * @hw: pointer to the HW structure 776 * 777 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 778 * up to the checksum. Then calculates the EEPROM checksum and writes the 779 * value to the EEPROM. 780 **/ 781 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) 782 { 783 u32 eecd; 784 s32 ret_val; 785 u16 i; 786 787 ret_val = e1000e_update_nvm_checksum_generic(hw); 788 if (ret_val) 789 return ret_val; 790 791 /* 792 * If our nvm is an EEPROM, then we're done 793 * otherwise, commit the checksum to the flash NVM. 794 */ 795 if (hw->nvm.type != e1000_nvm_flash_hw) 796 return 0; 797 798 /* Check for pending operations. */ 799 for (i = 0; i < E1000_FLASH_UPDATES; i++) { 800 usleep_range(1000, 2000); 801 if ((er32(EECD) & E1000_EECD_FLUPD) == 0) 802 break; 803 } 804 805 if (i == E1000_FLASH_UPDATES) 806 return -E1000_ERR_NVM; 807 808 /* Reset the firmware if using STM opcode. */ 809 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { 810 /* 811 * The enabling of and the actual reset must be done 812 * in two write cycles. 813 */ 814 ew32(HICR, E1000_HICR_FW_RESET_ENABLE); 815 e1e_flush(); 816 ew32(HICR, E1000_HICR_FW_RESET); 817 } 818 819 /* Commit the write to flash */ 820 eecd = er32(EECD) | E1000_EECD_FLUPD; 821 ew32(EECD, eecd); 822 823 for (i = 0; i < E1000_FLASH_UPDATES; i++) { 824 usleep_range(1000, 2000); 825 if ((er32(EECD) & E1000_EECD_FLUPD) == 0) 826 break; 827 } 828 829 if (i == E1000_FLASH_UPDATES) 830 return -E1000_ERR_NVM; 831 832 return 0; 833 } 834 835 /** 836 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum 837 * @hw: pointer to the HW structure 838 * 839 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 840 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 841 **/ 842 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) 843 { 844 if (hw->nvm.type == e1000_nvm_flash_hw) 845 e1000_fix_nvm_checksum_82571(hw); 846 847 return e1000e_validate_nvm_checksum_generic(hw); 848 } 849 850 /** 851 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon 852 * @hw: pointer to the HW structure 853 * @offset: offset within the EEPROM to be written to 854 * @words: number of words to write 855 * @data: 16 bit word(s) to be written to the EEPROM 856 * 857 * After checking for invalid values, poll the EEPROM to ensure the previous 858 * command has completed before trying to write the next word. After write 859 * poll for completion. 860 * 861 * If e1000e_update_nvm_checksum is not called after this function, the 862 * EEPROM will most likely contain an invalid checksum. 863 **/ 864 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, 865 u16 words, u16 *data) 866 { 867 struct e1000_nvm_info *nvm = &hw->nvm; 868 u32 i, eewr = 0; 869 s32 ret_val = 0; 870 871 /* 872 * A check for invalid values: offset too large, too many words, 873 * and not enough words. 874 */ 875 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 876 (words == 0)) { 877 e_dbg("nvm parameter(s) out of bounds\n"); 878 return -E1000_ERR_NVM; 879 } 880 881 for (i = 0; i < words; i++) { 882 eewr = (data[i] << E1000_NVM_RW_REG_DATA) | 883 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | 884 E1000_NVM_RW_REG_START; 885 886 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); 887 if (ret_val) 888 break; 889 890 ew32(EEWR, eewr); 891 892 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); 893 if (ret_val) 894 break; 895 } 896 897 return ret_val; 898 } 899 900 /** 901 * e1000_get_cfg_done_82571 - Poll for configuration done 902 * @hw: pointer to the HW structure 903 * 904 * Reads the management control register for the config done bit to be set. 905 **/ 906 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) 907 { 908 s32 timeout = PHY_CFG_TIMEOUT; 909 910 while (timeout) { 911 if (er32(EEMNGCTL) & 912 E1000_NVM_CFG_DONE_PORT_0) 913 break; 914 usleep_range(1000, 2000); 915 timeout--; 916 } 917 if (!timeout) { 918 e_dbg("MNG configuration cycle has not completed.\n"); 919 return -E1000_ERR_RESET; 920 } 921 922 return 0; 923 } 924 925 /** 926 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state 927 * @hw: pointer to the HW structure 928 * @active: true to enable LPLU, false to disable 929 * 930 * Sets the LPLU D0 state according to the active flag. When activating LPLU 931 * this function also disables smart speed and vice versa. LPLU will not be 932 * activated unless the device autonegotiation advertisement meets standards 933 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function 934 * pointer entry point only called by PHY setup routines. 935 **/ 936 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) 937 { 938 struct e1000_phy_info *phy = &hw->phy; 939 s32 ret_val; 940 u16 data; 941 942 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); 943 if (ret_val) 944 return ret_val; 945 946 if (active) { 947 data |= IGP02E1000_PM_D0_LPLU; 948 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 949 if (ret_val) 950 return ret_val; 951 952 /* When LPLU is enabled, we should disable SmartSpeed */ 953 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 954 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 955 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 956 if (ret_val) 957 return ret_val; 958 } else { 959 data &= ~IGP02E1000_PM_D0_LPLU; 960 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 961 /* 962 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 963 * during Dx states where the power conservation is most 964 * important. During driver activity we should enable 965 * SmartSpeed, so performance is maintained. 966 */ 967 if (phy->smart_speed == e1000_smart_speed_on) { 968 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 969 &data); 970 if (ret_val) 971 return ret_val; 972 973 data |= IGP01E1000_PSCFR_SMART_SPEED; 974 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 975 data); 976 if (ret_val) 977 return ret_val; 978 } else if (phy->smart_speed == e1000_smart_speed_off) { 979 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 980 &data); 981 if (ret_val) 982 return ret_val; 983 984 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 985 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 986 data); 987 if (ret_val) 988 return ret_val; 989 } 990 } 991 992 return 0; 993 } 994 995 /** 996 * e1000_reset_hw_82571 - Reset hardware 997 * @hw: pointer to the HW structure 998 * 999 * This resets the hardware into a known state. 1000 **/ 1001 static s32 e1000_reset_hw_82571(struct e1000_hw *hw) 1002 { 1003 u32 ctrl, ctrl_ext; 1004 s32 ret_val; 1005 1006 /* 1007 * Prevent the PCI-E bus from sticking if there is no TLP connection 1008 * on the last TLP read/write transaction when MAC is reset. 1009 */ 1010 ret_val = e1000e_disable_pcie_master(hw); 1011 if (ret_val) 1012 e_dbg("PCI-E Master disable polling has failed.\n"); 1013 1014 e_dbg("Masking off all interrupts\n"); 1015 ew32(IMC, 0xffffffff); 1016 1017 ew32(RCTL, 0); 1018 ew32(TCTL, E1000_TCTL_PSP); 1019 e1e_flush(); 1020 1021 usleep_range(10000, 20000); 1022 1023 /* 1024 * Must acquire the MDIO ownership before MAC reset. 1025 * Ownership defaults to firmware after a reset. 1026 */ 1027 switch (hw->mac.type) { 1028 case e1000_82573: 1029 ret_val = e1000_get_hw_semaphore_82573(hw); 1030 break; 1031 case e1000_82574: 1032 case e1000_82583: 1033 ret_val = e1000_get_hw_semaphore_82574(hw); 1034 break; 1035 default: 1036 break; 1037 } 1038 if (ret_val) 1039 e_dbg("Cannot acquire MDIO ownership\n"); 1040 1041 ctrl = er32(CTRL); 1042 1043 e_dbg("Issuing a global reset to MAC\n"); 1044 ew32(CTRL, ctrl | E1000_CTRL_RST); 1045 1046 /* Must release MDIO ownership and mutex after MAC reset. */ 1047 switch (hw->mac.type) { 1048 case e1000_82574: 1049 case e1000_82583: 1050 e1000_put_hw_semaphore_82574(hw); 1051 break; 1052 default: 1053 break; 1054 } 1055 1056 if (hw->nvm.type == e1000_nvm_flash_hw) { 1057 udelay(10); 1058 ctrl_ext = er32(CTRL_EXT); 1059 ctrl_ext |= E1000_CTRL_EXT_EE_RST; 1060 ew32(CTRL_EXT, ctrl_ext); 1061 e1e_flush(); 1062 } 1063 1064 ret_val = e1000e_get_auto_rd_done(hw); 1065 if (ret_val) 1066 /* We don't want to continue accessing MAC registers. */ 1067 return ret_val; 1068 1069 /* 1070 * Phy configuration from NVM just starts after EECD_AUTO_RD is set. 1071 * Need to wait for Phy configuration completion before accessing 1072 * NVM and Phy. 1073 */ 1074 1075 switch (hw->mac.type) { 1076 case e1000_82573: 1077 case e1000_82574: 1078 case e1000_82583: 1079 msleep(25); 1080 break; 1081 default: 1082 break; 1083 } 1084 1085 /* Clear any pending interrupt events. */ 1086 ew32(IMC, 0xffffffff); 1087 er32(ICR); 1088 1089 if (hw->mac.type == e1000_82571) { 1090 /* Install any alternate MAC address into RAR0 */ 1091 ret_val = e1000_check_alt_mac_addr_generic(hw); 1092 if (ret_val) 1093 return ret_val; 1094 1095 e1000e_set_laa_state_82571(hw, true); 1096 } 1097 1098 /* Reinitialize the 82571 serdes link state machine */ 1099 if (hw->phy.media_type == e1000_media_type_internal_serdes) 1100 hw->mac.serdes_link_state = e1000_serdes_link_down; 1101 1102 return 0; 1103 } 1104 1105 /** 1106 * e1000_init_hw_82571 - Initialize hardware 1107 * @hw: pointer to the HW structure 1108 * 1109 * This inits the hardware readying it for operation. 1110 **/ 1111 static s32 e1000_init_hw_82571(struct e1000_hw *hw) 1112 { 1113 struct e1000_mac_info *mac = &hw->mac; 1114 u32 reg_data; 1115 s32 ret_val; 1116 u16 i, rar_count = mac->rar_entry_count; 1117 1118 e1000_initialize_hw_bits_82571(hw); 1119 1120 /* Initialize identification LED */ 1121 ret_val = mac->ops.id_led_init(hw); 1122 if (ret_val) 1123 e_dbg("Error initializing identification LED\n"); 1124 /* This is not fatal and we should not stop init due to this */ 1125 1126 /* Disabling VLAN filtering */ 1127 e_dbg("Initializing the IEEE VLAN\n"); 1128 mac->ops.clear_vfta(hw); 1129 1130 /* Setup the receive address. */ 1131 /* 1132 * If, however, a locally administered address was assigned to the 1133 * 82571, we must reserve a RAR for it to work around an issue where 1134 * resetting one port will reload the MAC on the other port. 1135 */ 1136 if (e1000e_get_laa_state_82571(hw)) 1137 rar_count--; 1138 e1000e_init_rx_addrs(hw, rar_count); 1139 1140 /* Zero out the Multicast HASH table */ 1141 e_dbg("Zeroing the MTA\n"); 1142 for (i = 0; i < mac->mta_reg_count; i++) 1143 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 1144 1145 /* Setup link and flow control */ 1146 ret_val = mac->ops.setup_link(hw); 1147 1148 /* Set the transmit descriptor write-back policy */ 1149 reg_data = er32(TXDCTL(0)); 1150 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | 1151 E1000_TXDCTL_FULL_TX_DESC_WB | 1152 E1000_TXDCTL_COUNT_DESC; 1153 ew32(TXDCTL(0), reg_data); 1154 1155 /* ...for both queues. */ 1156 switch (mac->type) { 1157 case e1000_82573: 1158 e1000e_enable_tx_pkt_filtering(hw); 1159 /* fall through */ 1160 case e1000_82574: 1161 case e1000_82583: 1162 reg_data = er32(GCR); 1163 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; 1164 ew32(GCR, reg_data); 1165 break; 1166 default: 1167 reg_data = er32(TXDCTL(1)); 1168 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | 1169 E1000_TXDCTL_FULL_TX_DESC_WB | 1170 E1000_TXDCTL_COUNT_DESC; 1171 ew32(TXDCTL(1), reg_data); 1172 break; 1173 } 1174 1175 /* 1176 * Clear all of the statistics registers (clear on read). It is 1177 * important that we do this after we have tried to establish link 1178 * because the symbol error count will increment wildly if there 1179 * is no link. 1180 */ 1181 e1000_clear_hw_cntrs_82571(hw); 1182 1183 return ret_val; 1184 } 1185 1186 /** 1187 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits 1188 * @hw: pointer to the HW structure 1189 * 1190 * Initializes required hardware-dependent bits needed for normal operation. 1191 **/ 1192 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) 1193 { 1194 u32 reg; 1195 1196 /* Transmit Descriptor Control 0 */ 1197 reg = er32(TXDCTL(0)); 1198 reg |= (1 << 22); 1199 ew32(TXDCTL(0), reg); 1200 1201 /* Transmit Descriptor Control 1 */ 1202 reg = er32(TXDCTL(1)); 1203 reg |= (1 << 22); 1204 ew32(TXDCTL(1), reg); 1205 1206 /* Transmit Arbitration Control 0 */ 1207 reg = er32(TARC(0)); 1208 reg &= ~(0xF << 27); /* 30:27 */ 1209 switch (hw->mac.type) { 1210 case e1000_82571: 1211 case e1000_82572: 1212 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); 1213 break; 1214 case e1000_82574: 1215 case e1000_82583: 1216 reg |= (1 << 26); 1217 break; 1218 default: 1219 break; 1220 } 1221 ew32(TARC(0), reg); 1222 1223 /* Transmit Arbitration Control 1 */ 1224 reg = er32(TARC(1)); 1225 switch (hw->mac.type) { 1226 case e1000_82571: 1227 case e1000_82572: 1228 reg &= ~((1 << 29) | (1 << 30)); 1229 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); 1230 if (er32(TCTL) & E1000_TCTL_MULR) 1231 reg &= ~(1 << 28); 1232 else 1233 reg |= (1 << 28); 1234 ew32(TARC(1), reg); 1235 break; 1236 default: 1237 break; 1238 } 1239 1240 /* Device Control */ 1241 switch (hw->mac.type) { 1242 case e1000_82573: 1243 case e1000_82574: 1244 case e1000_82583: 1245 reg = er32(CTRL); 1246 reg &= ~(1 << 29); 1247 ew32(CTRL, reg); 1248 break; 1249 default: 1250 break; 1251 } 1252 1253 /* Extended Device Control */ 1254 switch (hw->mac.type) { 1255 case e1000_82573: 1256 case e1000_82574: 1257 case e1000_82583: 1258 reg = er32(CTRL_EXT); 1259 reg &= ~(1 << 23); 1260 reg |= (1 << 22); 1261 ew32(CTRL_EXT, reg); 1262 break; 1263 default: 1264 break; 1265 } 1266 1267 if (hw->mac.type == e1000_82571) { 1268 reg = er32(PBA_ECC); 1269 reg |= E1000_PBA_ECC_CORR_EN; 1270 ew32(PBA_ECC, reg); 1271 } 1272 1273 /* 1274 * Workaround for hardware errata. 1275 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 1276 */ 1277 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) { 1278 reg = er32(CTRL_EXT); 1279 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; 1280 ew32(CTRL_EXT, reg); 1281 } 1282 1283 /* PCI-Ex Control Registers */ 1284 switch (hw->mac.type) { 1285 case e1000_82574: 1286 case e1000_82583: 1287 reg = er32(GCR); 1288 reg |= (1 << 22); 1289 ew32(GCR, reg); 1290 1291 /* 1292 * Workaround for hardware errata. 1293 * apply workaround for hardware errata documented in errata 1294 * docs Fixes issue where some error prone or unreliable PCIe 1295 * completions are occurring, particularly with ASPM enabled. 1296 * Without fix, issue can cause Tx timeouts. 1297 */ 1298 reg = er32(GCR2); 1299 reg |= 1; 1300 ew32(GCR2, reg); 1301 break; 1302 default: 1303 break; 1304 } 1305 } 1306 1307 /** 1308 * e1000_clear_vfta_82571 - Clear VLAN filter table 1309 * @hw: pointer to the HW structure 1310 * 1311 * Clears the register array which contains the VLAN filter table by 1312 * setting all the values to 0. 1313 **/ 1314 static void e1000_clear_vfta_82571(struct e1000_hw *hw) 1315 { 1316 u32 offset; 1317 u32 vfta_value = 0; 1318 u32 vfta_offset = 0; 1319 u32 vfta_bit_in_reg = 0; 1320 1321 switch (hw->mac.type) { 1322 case e1000_82573: 1323 case e1000_82574: 1324 case e1000_82583: 1325 if (hw->mng_cookie.vlan_id != 0) { 1326 /* 1327 * The VFTA is a 4096b bit-field, each identifying 1328 * a single VLAN ID. The following operations 1329 * determine which 32b entry (i.e. offset) into the 1330 * array we want to set the VLAN ID (i.e. bit) of 1331 * the manageability unit. 1332 */ 1333 vfta_offset = (hw->mng_cookie.vlan_id >> 1334 E1000_VFTA_ENTRY_SHIFT) & 1335 E1000_VFTA_ENTRY_MASK; 1336 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & 1337 E1000_VFTA_ENTRY_BIT_SHIFT_MASK); 1338 } 1339 break; 1340 default: 1341 break; 1342 } 1343 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { 1344 /* 1345 * If the offset we want to clear is the same offset of the 1346 * manageability VLAN ID, then clear all bits except that of 1347 * the manageability unit. 1348 */ 1349 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; 1350 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); 1351 e1e_flush(); 1352 } 1353 } 1354 1355 /** 1356 * e1000_check_mng_mode_82574 - Check manageability is enabled 1357 * @hw: pointer to the HW structure 1358 * 1359 * Reads the NVM Initialization Control Word 2 and returns true 1360 * (>0) if any manageability is enabled, else false (0). 1361 **/ 1362 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) 1363 { 1364 u16 data; 1365 1366 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); 1367 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; 1368 } 1369 1370 /** 1371 * e1000_led_on_82574 - Turn LED on 1372 * @hw: pointer to the HW structure 1373 * 1374 * Turn LED on. 1375 **/ 1376 static s32 e1000_led_on_82574(struct e1000_hw *hw) 1377 { 1378 u32 ctrl; 1379 u32 i; 1380 1381 ctrl = hw->mac.ledctl_mode2; 1382 if (!(E1000_STATUS_LU & er32(STATUS))) { 1383 /* 1384 * If no link, then turn LED on by setting the invert bit 1385 * for each LED that's "on" (0x0E) in ledctl_mode2. 1386 */ 1387 for (i = 0; i < 4; i++) 1388 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == 1389 E1000_LEDCTL_MODE_LED_ON) 1390 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); 1391 } 1392 ew32(LEDCTL, ctrl); 1393 1394 return 0; 1395 } 1396 1397 /** 1398 * e1000_check_phy_82574 - check 82574 phy hung state 1399 * @hw: pointer to the HW structure 1400 * 1401 * Returns whether phy is hung or not 1402 **/ 1403 bool e1000_check_phy_82574(struct e1000_hw *hw) 1404 { 1405 u16 status_1kbt = 0; 1406 u16 receive_errors = 0; 1407 s32 ret_val = 0; 1408 1409 /* 1410 * Read PHY Receive Error counter first, if its is max - all F's then 1411 * read the Base1000T status register If both are max then PHY is hung. 1412 */ 1413 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors); 1414 if (ret_val) 1415 return false; 1416 if (receive_errors == E1000_RECEIVE_ERROR_MAX) { 1417 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt); 1418 if (ret_val) 1419 return false; 1420 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == 1421 E1000_IDLE_ERROR_COUNT_MASK) 1422 return true; 1423 } 1424 1425 return false; 1426 } 1427 1428 /** 1429 * e1000_setup_link_82571 - Setup flow control and link settings 1430 * @hw: pointer to the HW structure 1431 * 1432 * Determines which flow control settings to use, then configures flow 1433 * control. Calls the appropriate media-specific link configuration 1434 * function. Assuming the adapter has a valid link partner, a valid link 1435 * should be established. Assumes the hardware has previously been reset 1436 * and the transmitter and receiver are not enabled. 1437 **/ 1438 static s32 e1000_setup_link_82571(struct e1000_hw *hw) 1439 { 1440 /* 1441 * 82573 does not have a word in the NVM to determine 1442 * the default flow control setting, so we explicitly 1443 * set it to full. 1444 */ 1445 switch (hw->mac.type) { 1446 case e1000_82573: 1447 case e1000_82574: 1448 case e1000_82583: 1449 if (hw->fc.requested_mode == e1000_fc_default) 1450 hw->fc.requested_mode = e1000_fc_full; 1451 break; 1452 default: 1453 break; 1454 } 1455 1456 return e1000e_setup_link_generic(hw); 1457 } 1458 1459 /** 1460 * e1000_setup_copper_link_82571 - Configure copper link settings 1461 * @hw: pointer to the HW structure 1462 * 1463 * Configures the link for auto-neg or forced speed and duplex. Then we check 1464 * for link, once link is established calls to configure collision distance 1465 * and flow control are called. 1466 **/ 1467 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) 1468 { 1469 u32 ctrl; 1470 s32 ret_val; 1471 1472 ctrl = er32(CTRL); 1473 ctrl |= E1000_CTRL_SLU; 1474 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1475 ew32(CTRL, ctrl); 1476 1477 switch (hw->phy.type) { 1478 case e1000_phy_m88: 1479 case e1000_phy_bm: 1480 ret_val = e1000e_copper_link_setup_m88(hw); 1481 break; 1482 case e1000_phy_igp_2: 1483 ret_val = e1000e_copper_link_setup_igp(hw); 1484 break; 1485 default: 1486 return -E1000_ERR_PHY; 1487 break; 1488 } 1489 1490 if (ret_val) 1491 return ret_val; 1492 1493 return e1000e_setup_copper_link(hw); 1494 } 1495 1496 /** 1497 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes 1498 * @hw: pointer to the HW structure 1499 * 1500 * Configures collision distance and flow control for fiber and serdes links. 1501 * Upon successful setup, poll for link. 1502 **/ 1503 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) 1504 { 1505 switch (hw->mac.type) { 1506 case e1000_82571: 1507 case e1000_82572: 1508 /* 1509 * If SerDes loopback mode is entered, there is no form 1510 * of reset to take the adapter out of that mode. So we 1511 * have to explicitly take the adapter out of loopback 1512 * mode. This prevents drivers from twiddling their thumbs 1513 * if another tool failed to take it out of loopback mode. 1514 */ 1515 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1516 break; 1517 default: 1518 break; 1519 } 1520 1521 return e1000e_setup_fiber_serdes_link(hw); 1522 } 1523 1524 /** 1525 * e1000_check_for_serdes_link_82571 - Check for link (Serdes) 1526 * @hw: pointer to the HW structure 1527 * 1528 * Reports the link state as up or down. 1529 * 1530 * If autonegotiation is supported by the link partner, the link state is 1531 * determined by the result of autonegotiation. This is the most likely case. 1532 * If autonegotiation is not supported by the link partner, and the link 1533 * has a valid signal, force the link up. 1534 * 1535 * The link state is represented internally here by 4 states: 1536 * 1537 * 1) down 1538 * 2) autoneg_progress 1539 * 3) autoneg_complete (the link successfully autonegotiated) 1540 * 4) forced_up (the link has been forced up, it did not autonegotiate) 1541 * 1542 **/ 1543 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) 1544 { 1545 struct e1000_mac_info *mac = &hw->mac; 1546 u32 rxcw; 1547 u32 ctrl; 1548 u32 status; 1549 u32 txcw; 1550 u32 i; 1551 s32 ret_val = 0; 1552 1553 ctrl = er32(CTRL); 1554 status = er32(STATUS); 1555 rxcw = er32(RXCW); 1556 1557 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { 1558 1559 /* Receiver is synchronized with no invalid bits. */ 1560 switch (mac->serdes_link_state) { 1561 case e1000_serdes_link_autoneg_complete: 1562 if (!(status & E1000_STATUS_LU)) { 1563 /* 1564 * We have lost link, retry autoneg before 1565 * reporting link failure 1566 */ 1567 mac->serdes_link_state = 1568 e1000_serdes_link_autoneg_progress; 1569 mac->serdes_has_link = false; 1570 e_dbg("AN_UP -> AN_PROG\n"); 1571 } else { 1572 mac->serdes_has_link = true; 1573 } 1574 break; 1575 1576 case e1000_serdes_link_forced_up: 1577 /* 1578 * If we are receiving /C/ ordered sets, re-enable 1579 * auto-negotiation in the TXCW register and disable 1580 * forced link in the Device Control register in an 1581 * attempt to auto-negotiate with our link partner. 1582 * If the partner code word is null, stop forcing 1583 * and restart auto negotiation. 1584 */ 1585 if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) { 1586 /* Enable autoneg, and unforce link up */ 1587 ew32(TXCW, mac->txcw); 1588 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 1589 mac->serdes_link_state = 1590 e1000_serdes_link_autoneg_progress; 1591 mac->serdes_has_link = false; 1592 e_dbg("FORCED_UP -> AN_PROG\n"); 1593 } else { 1594 mac->serdes_has_link = true; 1595 } 1596 break; 1597 1598 case e1000_serdes_link_autoneg_progress: 1599 if (rxcw & E1000_RXCW_C) { 1600 /* 1601 * We received /C/ ordered sets, meaning the 1602 * link partner has autonegotiated, and we can 1603 * trust the Link Up (LU) status bit. 1604 */ 1605 if (status & E1000_STATUS_LU) { 1606 mac->serdes_link_state = 1607 e1000_serdes_link_autoneg_complete; 1608 e_dbg("AN_PROG -> AN_UP\n"); 1609 mac->serdes_has_link = true; 1610 } else { 1611 /* Autoneg completed, but failed. */ 1612 mac->serdes_link_state = 1613 e1000_serdes_link_down; 1614 e_dbg("AN_PROG -> DOWN\n"); 1615 } 1616 } else { 1617 /* 1618 * The link partner did not autoneg. 1619 * Force link up and full duplex, and change 1620 * state to forced. 1621 */ 1622 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 1623 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 1624 ew32(CTRL, ctrl); 1625 1626 /* Configure Flow Control after link up. */ 1627 ret_val = e1000e_config_fc_after_link_up(hw); 1628 if (ret_val) { 1629 e_dbg("Error config flow control\n"); 1630 break; 1631 } 1632 mac->serdes_link_state = 1633 e1000_serdes_link_forced_up; 1634 mac->serdes_has_link = true; 1635 e_dbg("AN_PROG -> FORCED_UP\n"); 1636 } 1637 break; 1638 1639 case e1000_serdes_link_down: 1640 default: 1641 /* 1642 * The link was down but the receiver has now gained 1643 * valid sync, so lets see if we can bring the link 1644 * up. 1645 */ 1646 ew32(TXCW, mac->txcw); 1647 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 1648 mac->serdes_link_state = 1649 e1000_serdes_link_autoneg_progress; 1650 mac->serdes_has_link = false; 1651 e_dbg("DOWN -> AN_PROG\n"); 1652 break; 1653 } 1654 } else { 1655 if (!(rxcw & E1000_RXCW_SYNCH)) { 1656 mac->serdes_has_link = false; 1657 mac->serdes_link_state = e1000_serdes_link_down; 1658 e_dbg("ANYSTATE -> DOWN\n"); 1659 } else { 1660 /* 1661 * Check several times, if Sync and Config 1662 * both are consistently 1 then simply ignore 1663 * the Invalid bit and restart Autoneg 1664 */ 1665 for (i = 0; i < AN_RETRY_COUNT; i++) { 1666 udelay(10); 1667 rxcw = er32(RXCW); 1668 if ((rxcw & E1000_RXCW_IV) && 1669 !((rxcw & E1000_RXCW_SYNCH) && 1670 (rxcw & E1000_RXCW_C))) { 1671 mac->serdes_has_link = false; 1672 mac->serdes_link_state = 1673 e1000_serdes_link_down; 1674 e_dbg("ANYSTATE -> DOWN\n"); 1675 break; 1676 } 1677 } 1678 1679 if (i == AN_RETRY_COUNT) { 1680 txcw = er32(TXCW); 1681 txcw |= E1000_TXCW_ANE; 1682 ew32(TXCW, txcw); 1683 mac->serdes_link_state = 1684 e1000_serdes_link_autoneg_progress; 1685 mac->serdes_has_link = false; 1686 e_dbg("ANYSTATE -> AN_PROG\n"); 1687 } 1688 } 1689 } 1690 1691 return ret_val; 1692 } 1693 1694 /** 1695 * e1000_valid_led_default_82571 - Verify a valid default LED config 1696 * @hw: pointer to the HW structure 1697 * @data: pointer to the NVM (EEPROM) 1698 * 1699 * Read the EEPROM for the current default LED configuration. If the 1700 * LED configuration is not valid, set to a valid LED configuration. 1701 **/ 1702 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) 1703 { 1704 s32 ret_val; 1705 1706 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 1707 if (ret_val) { 1708 e_dbg("NVM Read Error\n"); 1709 return ret_val; 1710 } 1711 1712 switch (hw->mac.type) { 1713 case e1000_82573: 1714 case e1000_82574: 1715 case e1000_82583: 1716 if (*data == ID_LED_RESERVED_F746) 1717 *data = ID_LED_DEFAULT_82573; 1718 break; 1719 default: 1720 if (*data == ID_LED_RESERVED_0000 || 1721 *data == ID_LED_RESERVED_FFFF) 1722 *data = ID_LED_DEFAULT; 1723 break; 1724 } 1725 1726 return 0; 1727 } 1728 1729 /** 1730 * e1000e_get_laa_state_82571 - Get locally administered address state 1731 * @hw: pointer to the HW structure 1732 * 1733 * Retrieve and return the current locally administered address state. 1734 **/ 1735 bool e1000e_get_laa_state_82571(struct e1000_hw *hw) 1736 { 1737 if (hw->mac.type != e1000_82571) 1738 return false; 1739 1740 return hw->dev_spec.e82571.laa_is_present; 1741 } 1742 1743 /** 1744 * e1000e_set_laa_state_82571 - Set locally administered address state 1745 * @hw: pointer to the HW structure 1746 * @state: enable/disable locally administered address 1747 * 1748 * Enable/Disable the current locally administered address state. 1749 **/ 1750 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) 1751 { 1752 if (hw->mac.type != e1000_82571) 1753 return; 1754 1755 hw->dev_spec.e82571.laa_is_present = state; 1756 1757 /* If workaround is activated... */ 1758 if (state) 1759 /* 1760 * Hold a copy of the LAA in RAR[14] This is done so that 1761 * between the time RAR[0] gets clobbered and the time it 1762 * gets fixed, the actual LAA is in one of the RARs and no 1763 * incoming packets directed to this port are dropped. 1764 * Eventually the LAA will be in RAR[0] and RAR[14]. 1765 */ 1766 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); 1767 } 1768 1769 /** 1770 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum 1771 * @hw: pointer to the HW structure 1772 * 1773 * Verifies that the EEPROM has completed the update. After updating the 1774 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If 1775 * the checksum fix is not implemented, we need to set the bit and update 1776 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, 1777 * we need to return bad checksum. 1778 **/ 1779 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) 1780 { 1781 struct e1000_nvm_info *nvm = &hw->nvm; 1782 s32 ret_val; 1783 u16 data; 1784 1785 if (nvm->type != e1000_nvm_flash_hw) 1786 return 0; 1787 1788 /* 1789 * Check bit 4 of word 10h. If it is 0, firmware is done updating 1790 * 10h-12h. Checksum may need to be fixed. 1791 */ 1792 ret_val = e1000_read_nvm(hw, 0x10, 1, &data); 1793 if (ret_val) 1794 return ret_val; 1795 1796 if (!(data & 0x10)) { 1797 /* 1798 * Read 0x23 and check bit 15. This bit is a 1 1799 * when the checksum has already been fixed. If 1800 * the checksum is still wrong and this bit is a 1801 * 1, we need to return bad checksum. Otherwise, 1802 * we need to set this bit to a 1 and update the 1803 * checksum. 1804 */ 1805 ret_val = e1000_read_nvm(hw, 0x23, 1, &data); 1806 if (ret_val) 1807 return ret_val; 1808 1809 if (!(data & 0x8000)) { 1810 data |= 0x8000; 1811 ret_val = e1000_write_nvm(hw, 0x23, 1, &data); 1812 if (ret_val) 1813 return ret_val; 1814 ret_val = e1000e_update_nvm_checksum(hw); 1815 } 1816 } 1817 1818 return 0; 1819 } 1820 1821 /** 1822 * e1000_read_mac_addr_82571 - Read device MAC address 1823 * @hw: pointer to the HW structure 1824 **/ 1825 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) 1826 { 1827 if (hw->mac.type == e1000_82571) { 1828 s32 ret_val = 0; 1829 1830 /* 1831 * If there's an alternate MAC address place it in RAR0 1832 * so that it will override the Si installed default perm 1833 * address. 1834 */ 1835 ret_val = e1000_check_alt_mac_addr_generic(hw); 1836 if (ret_val) 1837 return ret_val; 1838 } 1839 1840 return e1000_read_mac_addr_generic(hw); 1841 } 1842 1843 /** 1844 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down 1845 * @hw: pointer to the HW structure 1846 * 1847 * In the case of a PHY power down to save power, or to turn off link during a 1848 * driver unload, or wake on lan is not enabled, remove the link. 1849 **/ 1850 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) 1851 { 1852 struct e1000_phy_info *phy = &hw->phy; 1853 struct e1000_mac_info *mac = &hw->mac; 1854 1855 if (!phy->ops.check_reset_block) 1856 return; 1857 1858 /* If the management interface is not enabled, then power down */ 1859 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) 1860 e1000_power_down_phy_copper(hw); 1861 } 1862 1863 /** 1864 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters 1865 * @hw: pointer to the HW structure 1866 * 1867 * Clears the hardware counters by reading the counter registers. 1868 **/ 1869 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) 1870 { 1871 e1000e_clear_hw_cntrs_base(hw); 1872 1873 er32(PRC64); 1874 er32(PRC127); 1875 er32(PRC255); 1876 er32(PRC511); 1877 er32(PRC1023); 1878 er32(PRC1522); 1879 er32(PTC64); 1880 er32(PTC127); 1881 er32(PTC255); 1882 er32(PTC511); 1883 er32(PTC1023); 1884 er32(PTC1522); 1885 1886 er32(ALGNERRC); 1887 er32(RXERRC); 1888 er32(TNCRS); 1889 er32(CEXTERR); 1890 er32(TSCTC); 1891 er32(TSCTFC); 1892 1893 er32(MGTPRC); 1894 er32(MGTPDC); 1895 er32(MGTPTC); 1896 1897 er32(IAC); 1898 er32(ICRXOC); 1899 1900 er32(ICRXPTC); 1901 er32(ICRXATC); 1902 er32(ICTXPTC); 1903 er32(ICTXATC); 1904 er32(ICTXQEC); 1905 er32(ICTXQMTC); 1906 er32(ICRXDMTC); 1907 } 1908 1909 static const struct e1000_mac_operations e82571_mac_ops = { 1910 /* .check_mng_mode: mac type dependent */ 1911 /* .check_for_link: media type dependent */ 1912 .id_led_init = e1000e_id_led_init_generic, 1913 .cleanup_led = e1000e_cleanup_led_generic, 1914 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, 1915 .get_bus_info = e1000e_get_bus_info_pcie, 1916 .set_lan_id = e1000_set_lan_id_multi_port_pcie, 1917 /* .get_link_up_info: media type dependent */ 1918 /* .led_on: mac type dependent */ 1919 .led_off = e1000e_led_off_generic, 1920 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 1921 .write_vfta = e1000_write_vfta_generic, 1922 .clear_vfta = e1000_clear_vfta_82571, 1923 .reset_hw = e1000_reset_hw_82571, 1924 .init_hw = e1000_init_hw_82571, 1925 .setup_link = e1000_setup_link_82571, 1926 /* .setup_physical_interface: media type dependent */ 1927 .setup_led = e1000e_setup_led_generic, 1928 .config_collision_dist = e1000e_config_collision_dist_generic, 1929 .read_mac_addr = e1000_read_mac_addr_82571, 1930 }; 1931 1932 static const struct e1000_phy_operations e82_phy_ops_igp = { 1933 .acquire = e1000_get_hw_semaphore_82571, 1934 .check_polarity = e1000_check_polarity_igp, 1935 .check_reset_block = e1000e_check_reset_block_generic, 1936 .commit = NULL, 1937 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, 1938 .get_cfg_done = e1000_get_cfg_done_82571, 1939 .get_cable_length = e1000e_get_cable_length_igp_2, 1940 .get_info = e1000e_get_phy_info_igp, 1941 .read_reg = e1000e_read_phy_reg_igp, 1942 .release = e1000_put_hw_semaphore_82571, 1943 .reset = e1000e_phy_hw_reset_generic, 1944 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, 1945 .set_d3_lplu_state = e1000e_set_d3_lplu_state, 1946 .write_reg = e1000e_write_phy_reg_igp, 1947 .cfg_on_link_up = NULL, 1948 }; 1949 1950 static const struct e1000_phy_operations e82_phy_ops_m88 = { 1951 .acquire = e1000_get_hw_semaphore_82571, 1952 .check_polarity = e1000_check_polarity_m88, 1953 .check_reset_block = e1000e_check_reset_block_generic, 1954 .commit = e1000e_phy_sw_reset, 1955 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, 1956 .get_cfg_done = e1000e_get_cfg_done, 1957 .get_cable_length = e1000e_get_cable_length_m88, 1958 .get_info = e1000e_get_phy_info_m88, 1959 .read_reg = e1000e_read_phy_reg_m88, 1960 .release = e1000_put_hw_semaphore_82571, 1961 .reset = e1000e_phy_hw_reset_generic, 1962 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, 1963 .set_d3_lplu_state = e1000e_set_d3_lplu_state, 1964 .write_reg = e1000e_write_phy_reg_m88, 1965 .cfg_on_link_up = NULL, 1966 }; 1967 1968 static const struct e1000_phy_operations e82_phy_ops_bm = { 1969 .acquire = e1000_get_hw_semaphore_82571, 1970 .check_polarity = e1000_check_polarity_m88, 1971 .check_reset_block = e1000e_check_reset_block_generic, 1972 .commit = e1000e_phy_sw_reset, 1973 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, 1974 .get_cfg_done = e1000e_get_cfg_done, 1975 .get_cable_length = e1000e_get_cable_length_m88, 1976 .get_info = e1000e_get_phy_info_m88, 1977 .read_reg = e1000e_read_phy_reg_bm2, 1978 .release = e1000_put_hw_semaphore_82571, 1979 .reset = e1000e_phy_hw_reset_generic, 1980 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, 1981 .set_d3_lplu_state = e1000e_set_d3_lplu_state, 1982 .write_reg = e1000e_write_phy_reg_bm2, 1983 .cfg_on_link_up = NULL, 1984 }; 1985 1986 static const struct e1000_nvm_operations e82571_nvm_ops = { 1987 .acquire = e1000_acquire_nvm_82571, 1988 .read = e1000e_read_nvm_eerd, 1989 .release = e1000_release_nvm_82571, 1990 .reload = e1000e_reload_nvm_generic, 1991 .update = e1000_update_nvm_checksum_82571, 1992 .valid_led_default = e1000_valid_led_default_82571, 1993 .validate = e1000_validate_nvm_checksum_82571, 1994 .write = e1000_write_nvm_82571, 1995 }; 1996 1997 const struct e1000_info e1000_82571_info = { 1998 .mac = e1000_82571, 1999 .flags = FLAG_HAS_HW_VLAN_FILTER 2000 | FLAG_HAS_JUMBO_FRAMES 2001 | FLAG_HAS_WOL 2002 | FLAG_APME_IN_CTRL3 2003 | FLAG_HAS_CTRLEXT_ON_LOAD 2004 | FLAG_HAS_SMART_POWER_DOWN 2005 | FLAG_RESET_OVERWRITES_LAA /* errata */ 2006 | FLAG_TARC_SPEED_MODE_BIT /* errata */ 2007 | FLAG_APME_CHECK_PORT_B, 2008 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ 2009 | FLAG2_DMA_BURST, 2010 .pba = 38, 2011 .max_hw_frame_size = DEFAULT_JUMBO, 2012 .get_variants = e1000_get_variants_82571, 2013 .mac_ops = &e82571_mac_ops, 2014 .phy_ops = &e82_phy_ops_igp, 2015 .nvm_ops = &e82571_nvm_ops, 2016 }; 2017 2018 const struct e1000_info e1000_82572_info = { 2019 .mac = e1000_82572, 2020 .flags = FLAG_HAS_HW_VLAN_FILTER 2021 | FLAG_HAS_JUMBO_FRAMES 2022 | FLAG_HAS_WOL 2023 | FLAG_APME_IN_CTRL3 2024 | FLAG_HAS_CTRLEXT_ON_LOAD 2025 | FLAG_TARC_SPEED_MODE_BIT, /* errata */ 2026 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ 2027 | FLAG2_DMA_BURST, 2028 .pba = 38, 2029 .max_hw_frame_size = DEFAULT_JUMBO, 2030 .get_variants = e1000_get_variants_82571, 2031 .mac_ops = &e82571_mac_ops, 2032 .phy_ops = &e82_phy_ops_igp, 2033 .nvm_ops = &e82571_nvm_ops, 2034 }; 2035 2036 const struct e1000_info e1000_82573_info = { 2037 .mac = e1000_82573, 2038 .flags = FLAG_HAS_HW_VLAN_FILTER 2039 | FLAG_HAS_WOL 2040 | FLAG_APME_IN_CTRL3 2041 | FLAG_HAS_SMART_POWER_DOWN 2042 | FLAG_HAS_AMT 2043 | FLAG_HAS_SWSM_ON_LOAD, 2044 .flags2 = FLAG2_DISABLE_ASPM_L1 2045 | FLAG2_DISABLE_ASPM_L0S, 2046 .pba = 20, 2047 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, 2048 .get_variants = e1000_get_variants_82571, 2049 .mac_ops = &e82571_mac_ops, 2050 .phy_ops = &e82_phy_ops_m88, 2051 .nvm_ops = &e82571_nvm_ops, 2052 }; 2053 2054 const struct e1000_info e1000_82574_info = { 2055 .mac = e1000_82574, 2056 .flags = FLAG_HAS_HW_VLAN_FILTER 2057 | FLAG_HAS_MSIX 2058 | FLAG_HAS_JUMBO_FRAMES 2059 | FLAG_HAS_WOL 2060 | FLAG_APME_IN_CTRL3 2061 | FLAG_HAS_SMART_POWER_DOWN 2062 | FLAG_HAS_AMT 2063 | FLAG_HAS_CTRLEXT_ON_LOAD, 2064 .flags2 = FLAG2_CHECK_PHY_HANG 2065 | FLAG2_DISABLE_ASPM_L0S 2066 | FLAG2_NO_DISABLE_RX, 2067 .pba = 32, 2068 .max_hw_frame_size = DEFAULT_JUMBO, 2069 .get_variants = e1000_get_variants_82571, 2070 .mac_ops = &e82571_mac_ops, 2071 .phy_ops = &e82_phy_ops_bm, 2072 .nvm_ops = &e82571_nvm_ops, 2073 }; 2074 2075 const struct e1000_info e1000_82583_info = { 2076 .mac = e1000_82583, 2077 .flags = FLAG_HAS_HW_VLAN_FILTER 2078 | FLAG_HAS_WOL 2079 | FLAG_APME_IN_CTRL3 2080 | FLAG_HAS_SMART_POWER_DOWN 2081 | FLAG_HAS_AMT 2082 | FLAG_HAS_JUMBO_FRAMES 2083 | FLAG_HAS_CTRLEXT_ON_LOAD, 2084 .flags2 = FLAG2_DISABLE_ASPM_L0S 2085 | FLAG2_NO_DISABLE_RX, 2086 .pba = 32, 2087 .max_hw_frame_size = DEFAULT_JUMBO, 2088 .get_variants = e1000_get_variants_82571, 2089 .mac_ops = &e82571_mac_ops, 2090 .phy_ops = &e82_phy_ops_bm, 2091 .nvm_ops = &e82571_nvm_ops, 2092 }; 2093 2094