xref: /openbmc/linux/drivers/net/ethernet/intel/e1000e/82571.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45 
46 #include "e1000.h"
47 
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 			      (ID_LED_OFF1_ON2  <<  8) | \
51 			      (ID_LED_DEF1_DEF2 <<  4) | \
52 			      (ID_LED_DEF1_DEF2))
53 
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT          5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS          10
57 #define E1000_IDLE_ERROR_COUNT_MASK     0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER     21
59 #define E1000_RECEIVE_ERROR_MAX         0xFFFF
60 
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62 
63 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68 				      u16 words, u16 *data);
69 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75 static s32 e1000_led_on_82574(struct e1000_hw *hw);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83 
84 /**
85  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
86  *  @hw: pointer to the HW structure
87  **/
88 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89 {
90 	struct e1000_phy_info *phy = &hw->phy;
91 	s32 ret_val;
92 
93 	if (hw->phy.media_type != e1000_media_type_copper) {
94 		phy->type = e1000_phy_none;
95 		return 0;
96 	}
97 
98 	phy->addr			 = 1;
99 	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100 	phy->reset_delay_us		 = 100;
101 
102 	phy->ops.power_up		 = e1000_power_up_phy_copper;
103 	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;
104 
105 	switch (hw->mac.type) {
106 	case e1000_82571:
107 	case e1000_82572:
108 		phy->type		 = e1000_phy_igp_2;
109 		break;
110 	case e1000_82573:
111 		phy->type		 = e1000_phy_m88;
112 		break;
113 	case e1000_82574:
114 	case e1000_82583:
115 		phy->type		 = e1000_phy_bm;
116 		phy->ops.acquire = e1000_get_hw_semaphore_82574;
117 		phy->ops.release = e1000_put_hw_semaphore_82574;
118 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120 		break;
121 	default:
122 		return -E1000_ERR_PHY;
123 		break;
124 	}
125 
126 	/* This can only be done after all function pointers are setup. */
127 	ret_val = e1000_get_phy_id_82571(hw);
128 	if (ret_val) {
129 		e_dbg("Error getting PHY ID\n");
130 		return ret_val;
131 	}
132 
133 	/* Verify phy id */
134 	switch (hw->mac.type) {
135 	case e1000_82571:
136 	case e1000_82572:
137 		if (phy->id != IGP01E1000_I_PHY_ID)
138 			ret_val = -E1000_ERR_PHY;
139 		break;
140 	case e1000_82573:
141 		if (phy->id != M88E1111_I_PHY_ID)
142 			ret_val = -E1000_ERR_PHY;
143 		break;
144 	case e1000_82574:
145 	case e1000_82583:
146 		if (phy->id != BME1000_E_PHY_ID_R2)
147 			ret_val = -E1000_ERR_PHY;
148 		break;
149 	default:
150 		ret_val = -E1000_ERR_PHY;
151 		break;
152 	}
153 
154 	if (ret_val)
155 		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156 
157 	return ret_val;
158 }
159 
160 /**
161  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
162  *  @hw: pointer to the HW structure
163  **/
164 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165 {
166 	struct e1000_nvm_info *nvm = &hw->nvm;
167 	u32 eecd = er32(EECD);
168 	u16 size;
169 
170 	nvm->opcode_bits = 8;
171 	nvm->delay_usec = 1;
172 	switch (nvm->override) {
173 	case e1000_nvm_override_spi_large:
174 		nvm->page_size = 32;
175 		nvm->address_bits = 16;
176 		break;
177 	case e1000_nvm_override_spi_small:
178 		nvm->page_size = 8;
179 		nvm->address_bits = 8;
180 		break;
181 	default:
182 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184 		break;
185 	}
186 
187 	switch (hw->mac.type) {
188 	case e1000_82573:
189 	case e1000_82574:
190 	case e1000_82583:
191 		if (((eecd >> 15) & 0x3) == 0x3) {
192 			nvm->type = e1000_nvm_flash_hw;
193 			nvm->word_size = 2048;
194 			/*
195 			 * Autonomous Flash update bit must be cleared due
196 			 * to Flash update issue.
197 			 */
198 			eecd &= ~E1000_EECD_AUPDEN;
199 			ew32(EECD, eecd);
200 			break;
201 		}
202 		/* Fall Through */
203 	default:
204 		nvm->type = e1000_nvm_eeprom_spi;
205 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206 				  E1000_EECD_SIZE_EX_SHIFT);
207 		/*
208 		 * Added to a constant, "size" becomes the left-shift value
209 		 * for setting word_size.
210 		 */
211 		size += NVM_WORD_SIZE_BASE_SHIFT;
212 
213 		/* EEPROM access above 16k is unsupported */
214 		if (size > 14)
215 			size = 14;
216 		nvm->word_size	= 1 << size;
217 		break;
218 	}
219 
220 	/* Function Pointers */
221 	switch (hw->mac.type) {
222 	case e1000_82574:
223 	case e1000_82583:
224 		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225 		nvm->ops.release = e1000_put_hw_semaphore_82574;
226 		break;
227 	default:
228 		break;
229 	}
230 
231 	return 0;
232 }
233 
234 /**
235  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
236  *  @hw: pointer to the HW structure
237  **/
238 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
239 {
240 	struct e1000_mac_info *mac = &hw->mac;
241 	u32 swsm = 0;
242 	u32 swsm2 = 0;
243 	bool force_clear_smbi = false;
244 
245 	/* Set media type and media-dependent function pointers */
246 	switch (hw->adapter->pdev->device) {
247 	case E1000_DEV_ID_82571EB_FIBER:
248 	case E1000_DEV_ID_82572EI_FIBER:
249 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
250 		hw->phy.media_type = e1000_media_type_fiber;
251 		mac->ops.setup_physical_interface =
252 		    e1000_setup_fiber_serdes_link_82571;
253 		mac->ops.check_for_link = e1000e_check_for_fiber_link;
254 		mac->ops.get_link_up_info =
255 		    e1000e_get_speed_and_duplex_fiber_serdes;
256 		break;
257 	case E1000_DEV_ID_82571EB_SERDES:
258 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
259 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
260 	case E1000_DEV_ID_82572EI_SERDES:
261 		hw->phy.media_type = e1000_media_type_internal_serdes;
262 		mac->ops.setup_physical_interface =
263 		    e1000_setup_fiber_serdes_link_82571;
264 		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
265 		mac->ops.get_link_up_info =
266 		    e1000e_get_speed_and_duplex_fiber_serdes;
267 		break;
268 	default:
269 		hw->phy.media_type = e1000_media_type_copper;
270 		mac->ops.setup_physical_interface =
271 		    e1000_setup_copper_link_82571;
272 		mac->ops.check_for_link = e1000e_check_for_copper_link;
273 		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
274 		break;
275 	}
276 
277 	/* Set mta register count */
278 	mac->mta_reg_count = 128;
279 	/* Set rar entry count */
280 	mac->rar_entry_count = E1000_RAR_ENTRIES;
281 	/* Adaptive IFS supported */
282 	mac->adaptive_ifs = true;
283 
284 	/* MAC-specific function pointers */
285 	switch (hw->mac.type) {
286 	case e1000_82573:
287 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
288 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
289 		mac->ops.led_on = e1000e_led_on_generic;
290 		mac->ops.blink_led = e1000e_blink_led_generic;
291 
292 		/* FWSM register */
293 		mac->has_fwsm = true;
294 		/*
295 		 * ARC supported; valid only if manageability features are
296 		 * enabled.
297 		 */
298 		mac->arc_subsystem_valid =
299 			(er32(FWSM) & E1000_FWSM_MODE_MASK)
300 			? true : false;
301 		break;
302 	case e1000_82574:
303 	case e1000_82583:
304 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
305 		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
306 		mac->ops.led_on = e1000_led_on_82574;
307 		break;
308 	default:
309 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
310 		mac->ops.led_on = e1000e_led_on_generic;
311 		mac->ops.blink_led = e1000e_blink_led_generic;
312 
313 		/* FWSM register */
314 		mac->has_fwsm = true;
315 		break;
316 	}
317 
318 	/*
319 	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
320 	 * first NVM or PHY access. This should be done for single-port
321 	 * devices, and for one port only on dual-port devices so that
322 	 * for those devices we can still use the SMBI lock to synchronize
323 	 * inter-port accesses to the PHY & NVM.
324 	 */
325 	switch (hw->mac.type) {
326 	case e1000_82571:
327 	case e1000_82572:
328 		swsm2 = er32(SWSM2);
329 
330 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
331 			/* Only do this for the first interface on this card */
332 			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
333 			force_clear_smbi = true;
334 		} else {
335 			force_clear_smbi = false;
336 		}
337 		break;
338 	default:
339 		force_clear_smbi = true;
340 		break;
341 	}
342 
343 	if (force_clear_smbi) {
344 		/* Make sure SWSM.SMBI is clear */
345 		swsm = er32(SWSM);
346 		if (swsm & E1000_SWSM_SMBI) {
347 			/* This bit should not be set on a first interface, and
348 			 * indicates that the bootagent or EFI code has
349 			 * improperly left this bit enabled
350 			 */
351 			e_dbg("Please update your 82571 Bootagent\n");
352 		}
353 		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
354 	}
355 
356 	/*
357 	 * Initialize device specific counter of SMBI acquisition
358 	 * timeouts.
359 	 */
360 	 hw->dev_spec.e82571.smb_counter = 0;
361 
362 	return 0;
363 }
364 
365 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
366 {
367 	struct e1000_hw *hw = &adapter->hw;
368 	static int global_quad_port_a; /* global port a indication */
369 	struct pci_dev *pdev = adapter->pdev;
370 	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
371 	s32 rc;
372 
373 	rc = e1000_init_mac_params_82571(hw);
374 	if (rc)
375 		return rc;
376 
377 	rc = e1000_init_nvm_params_82571(hw);
378 	if (rc)
379 		return rc;
380 
381 	rc = e1000_init_phy_params_82571(hw);
382 	if (rc)
383 		return rc;
384 
385 	/* tag quad port adapters first, it's used below */
386 	switch (pdev->device) {
387 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
388 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
389 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
390 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
391 		adapter->flags |= FLAG_IS_QUAD_PORT;
392 		/* mark the first port */
393 		if (global_quad_port_a == 0)
394 			adapter->flags |= FLAG_IS_QUAD_PORT_A;
395 		/* Reset for multiple quad port adapters */
396 		global_quad_port_a++;
397 		if (global_quad_port_a == 4)
398 			global_quad_port_a = 0;
399 		break;
400 	default:
401 		break;
402 	}
403 
404 	switch (adapter->hw.mac.type) {
405 	case e1000_82571:
406 		/* these dual ports don't have WoL on port B at all */
407 		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
408 		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
409 		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
410 		    (is_port_b))
411 			adapter->flags &= ~FLAG_HAS_WOL;
412 		/* quad ports only support WoL on port A */
413 		if (adapter->flags & FLAG_IS_QUAD_PORT &&
414 		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
415 			adapter->flags &= ~FLAG_HAS_WOL;
416 		/* Does not support WoL on any port */
417 		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
418 			adapter->flags &= ~FLAG_HAS_WOL;
419 		break;
420 	case e1000_82573:
421 		if (pdev->device == E1000_DEV_ID_82573L) {
422 			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
423 			adapter->max_hw_frame_size = DEFAULT_JUMBO;
424 		}
425 		break;
426 	default:
427 		break;
428 	}
429 
430 	return 0;
431 }
432 
433 /**
434  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
435  *  @hw: pointer to the HW structure
436  *
437  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
438  *  revision in the hardware structure.
439  **/
440 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
441 {
442 	struct e1000_phy_info *phy = &hw->phy;
443 	s32 ret_val;
444 	u16 phy_id = 0;
445 
446 	switch (hw->mac.type) {
447 	case e1000_82571:
448 	case e1000_82572:
449 		/*
450 		 * The 82571 firmware may still be configuring the PHY.
451 		 * In this case, we cannot access the PHY until the
452 		 * configuration is done.  So we explicitly set the
453 		 * PHY ID.
454 		 */
455 		phy->id = IGP01E1000_I_PHY_ID;
456 		break;
457 	case e1000_82573:
458 		return e1000e_get_phy_id(hw);
459 		break;
460 	case e1000_82574:
461 	case e1000_82583:
462 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
463 		if (ret_val)
464 			return ret_val;
465 
466 		phy->id = (u32)(phy_id << 16);
467 		udelay(20);
468 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
469 		if (ret_val)
470 			return ret_val;
471 
472 		phy->id |= (u32)(phy_id);
473 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
474 		break;
475 	default:
476 		return -E1000_ERR_PHY;
477 		break;
478 	}
479 
480 	return 0;
481 }
482 
483 /**
484  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
485  *  @hw: pointer to the HW structure
486  *
487  *  Acquire the HW semaphore to access the PHY or NVM
488  **/
489 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
490 {
491 	u32 swsm;
492 	s32 sw_timeout = hw->nvm.word_size + 1;
493 	s32 fw_timeout = hw->nvm.word_size + 1;
494 	s32 i = 0;
495 
496 	/*
497 	 * If we have timedout 3 times on trying to acquire
498 	 * the inter-port SMBI semaphore, there is old code
499 	 * operating on the other port, and it is not
500 	 * releasing SMBI. Modify the number of times that
501 	 * we try for the semaphore to interwork with this
502 	 * older code.
503 	 */
504 	if (hw->dev_spec.e82571.smb_counter > 2)
505 		sw_timeout = 1;
506 
507 	/* Get the SW semaphore */
508 	while (i < sw_timeout) {
509 		swsm = er32(SWSM);
510 		if (!(swsm & E1000_SWSM_SMBI))
511 			break;
512 
513 		udelay(50);
514 		i++;
515 	}
516 
517 	if (i == sw_timeout) {
518 		e_dbg("Driver can't access device - SMBI bit is set.\n");
519 		hw->dev_spec.e82571.smb_counter++;
520 	}
521 	/* Get the FW semaphore. */
522 	for (i = 0; i < fw_timeout; i++) {
523 		swsm = er32(SWSM);
524 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
525 
526 		/* Semaphore acquired if bit latched */
527 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
528 			break;
529 
530 		udelay(50);
531 	}
532 
533 	if (i == fw_timeout) {
534 		/* Release semaphores */
535 		e1000_put_hw_semaphore_82571(hw);
536 		e_dbg("Driver can't access the NVM\n");
537 		return -E1000_ERR_NVM;
538 	}
539 
540 	return 0;
541 }
542 
543 /**
544  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
545  *  @hw: pointer to the HW structure
546  *
547  *  Release hardware semaphore used to access the PHY or NVM
548  **/
549 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
550 {
551 	u32 swsm;
552 
553 	swsm = er32(SWSM);
554 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
555 	ew32(SWSM, swsm);
556 }
557 /**
558  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
559  *  @hw: pointer to the HW structure
560  *
561  *  Acquire the HW semaphore during reset.
562  *
563  **/
564 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
565 {
566 	u32 extcnf_ctrl;
567 	s32 i = 0;
568 
569 	extcnf_ctrl = er32(EXTCNF_CTRL);
570 	extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
571 	do {
572 		ew32(EXTCNF_CTRL, extcnf_ctrl);
573 		extcnf_ctrl = er32(EXTCNF_CTRL);
574 
575 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
576 			break;
577 
578 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
579 
580 		usleep_range(2000, 4000);
581 		i++;
582 	} while (i < MDIO_OWNERSHIP_TIMEOUT);
583 
584 	if (i == MDIO_OWNERSHIP_TIMEOUT) {
585 		/* Release semaphores */
586 		e1000_put_hw_semaphore_82573(hw);
587 		e_dbg("Driver can't access the PHY\n");
588 		return -E1000_ERR_PHY;
589 	}
590 
591 	return 0;
592 }
593 
594 /**
595  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
596  *  @hw: pointer to the HW structure
597  *
598  *  Release hardware semaphore used during reset.
599  *
600  **/
601 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
602 {
603 	u32 extcnf_ctrl;
604 
605 	extcnf_ctrl = er32(EXTCNF_CTRL);
606 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
607 	ew32(EXTCNF_CTRL, extcnf_ctrl);
608 }
609 
610 static DEFINE_MUTEX(swflag_mutex);
611 
612 /**
613  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
614  *  @hw: pointer to the HW structure
615  *
616  *  Acquire the HW semaphore to access the PHY or NVM.
617  *
618  **/
619 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
620 {
621 	s32 ret_val;
622 
623 	mutex_lock(&swflag_mutex);
624 	ret_val = e1000_get_hw_semaphore_82573(hw);
625 	if (ret_val)
626 		mutex_unlock(&swflag_mutex);
627 	return ret_val;
628 }
629 
630 /**
631  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
632  *  @hw: pointer to the HW structure
633  *
634  *  Release hardware semaphore used to access the PHY or NVM
635  *
636  **/
637 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
638 {
639 	e1000_put_hw_semaphore_82573(hw);
640 	mutex_unlock(&swflag_mutex);
641 }
642 
643 /**
644  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
645  *  @hw: pointer to the HW structure
646  *  @active: true to enable LPLU, false to disable
647  *
648  *  Sets the LPLU D0 state according to the active flag.
649  *  LPLU will not be activated unless the
650  *  device autonegotiation advertisement meets standards of
651  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
652  *  This is a function pointer entry point only called by
653  *  PHY setup routines.
654  **/
655 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
656 {
657 	u16 data = er32(POEMB);
658 
659 	if (active)
660 		data |= E1000_PHY_CTRL_D0A_LPLU;
661 	else
662 		data &= ~E1000_PHY_CTRL_D0A_LPLU;
663 
664 	ew32(POEMB, data);
665 	return 0;
666 }
667 
668 /**
669  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
670  *  @hw: pointer to the HW structure
671  *  @active: boolean used to enable/disable lplu
672  *
673  *  The low power link up (lplu) state is set to the power management level D3
674  *  when active is true, else clear lplu for D3. LPLU
675  *  is used during Dx states where the power conservation is most important.
676  *  During driver activity, SmartSpeed should be enabled so performance is
677  *  maintained.
678  **/
679 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
680 {
681 	u16 data = er32(POEMB);
682 
683 	if (!active) {
684 		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
685 	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
686 		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
687 		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
688 		data |= E1000_PHY_CTRL_NOND0A_LPLU;
689 	}
690 
691 	ew32(POEMB, data);
692 	return 0;
693 }
694 
695 /**
696  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
697  *  @hw: pointer to the HW structure
698  *
699  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
700  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
701  *  for EEPROM access grant bit.  If the access grant bit is not set, release
702  *  hardware semaphore.
703  **/
704 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
705 {
706 	s32 ret_val;
707 
708 	ret_val = e1000_get_hw_semaphore_82571(hw);
709 	if (ret_val)
710 		return ret_val;
711 
712 	switch (hw->mac.type) {
713 	case e1000_82573:
714 		break;
715 	default:
716 		ret_val = e1000e_acquire_nvm(hw);
717 		break;
718 	}
719 
720 	if (ret_val)
721 		e1000_put_hw_semaphore_82571(hw);
722 
723 	return ret_val;
724 }
725 
726 /**
727  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
728  *  @hw: pointer to the HW structure
729  *
730  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
731  **/
732 static void e1000_release_nvm_82571(struct e1000_hw *hw)
733 {
734 	e1000e_release_nvm(hw);
735 	e1000_put_hw_semaphore_82571(hw);
736 }
737 
738 /**
739  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
740  *  @hw: pointer to the HW structure
741  *  @offset: offset within the EEPROM to be written to
742  *  @words: number of words to write
743  *  @data: 16 bit word(s) to be written to the EEPROM
744  *
745  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
746  *
747  *  If e1000e_update_nvm_checksum is not called after this function, the
748  *  EEPROM will most likely contain an invalid checksum.
749  **/
750 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
751 				 u16 *data)
752 {
753 	s32 ret_val;
754 
755 	switch (hw->mac.type) {
756 	case e1000_82573:
757 	case e1000_82574:
758 	case e1000_82583:
759 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
760 		break;
761 	case e1000_82571:
762 	case e1000_82572:
763 		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
764 		break;
765 	default:
766 		ret_val = -E1000_ERR_NVM;
767 		break;
768 	}
769 
770 	return ret_val;
771 }
772 
773 /**
774  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
775  *  @hw: pointer to the HW structure
776  *
777  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
778  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
779  *  value to the EEPROM.
780  **/
781 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
782 {
783 	u32 eecd;
784 	s32 ret_val;
785 	u16 i;
786 
787 	ret_val = e1000e_update_nvm_checksum_generic(hw);
788 	if (ret_val)
789 		return ret_val;
790 
791 	/*
792 	 * If our nvm is an EEPROM, then we're done
793 	 * otherwise, commit the checksum to the flash NVM.
794 	 */
795 	if (hw->nvm.type != e1000_nvm_flash_hw)
796 		return 0;
797 
798 	/* Check for pending operations. */
799 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
800 		usleep_range(1000, 2000);
801 		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
802 			break;
803 	}
804 
805 	if (i == E1000_FLASH_UPDATES)
806 		return -E1000_ERR_NVM;
807 
808 	/* Reset the firmware if using STM opcode. */
809 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
810 		/*
811 		 * The enabling of and the actual reset must be done
812 		 * in two write cycles.
813 		 */
814 		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
815 		e1e_flush();
816 		ew32(HICR, E1000_HICR_FW_RESET);
817 	}
818 
819 	/* Commit the write to flash */
820 	eecd = er32(EECD) | E1000_EECD_FLUPD;
821 	ew32(EECD, eecd);
822 
823 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
824 		usleep_range(1000, 2000);
825 		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
826 			break;
827 	}
828 
829 	if (i == E1000_FLASH_UPDATES)
830 		return -E1000_ERR_NVM;
831 
832 	return 0;
833 }
834 
835 /**
836  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
837  *  @hw: pointer to the HW structure
838  *
839  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
840  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
841  **/
842 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
843 {
844 	if (hw->nvm.type == e1000_nvm_flash_hw)
845 		e1000_fix_nvm_checksum_82571(hw);
846 
847 	return e1000e_validate_nvm_checksum_generic(hw);
848 }
849 
850 /**
851  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
852  *  @hw: pointer to the HW structure
853  *  @offset: offset within the EEPROM to be written to
854  *  @words: number of words to write
855  *  @data: 16 bit word(s) to be written to the EEPROM
856  *
857  *  After checking for invalid values, poll the EEPROM to ensure the previous
858  *  command has completed before trying to write the next word.  After write
859  *  poll for completion.
860  *
861  *  If e1000e_update_nvm_checksum is not called after this function, the
862  *  EEPROM will most likely contain an invalid checksum.
863  **/
864 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
865 				      u16 words, u16 *data)
866 {
867 	struct e1000_nvm_info *nvm = &hw->nvm;
868 	u32 i, eewr = 0;
869 	s32 ret_val = 0;
870 
871 	/*
872 	 * A check for invalid values:  offset too large, too many words,
873 	 * and not enough words.
874 	 */
875 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
876 	    (words == 0)) {
877 		e_dbg("nvm parameter(s) out of bounds\n");
878 		return -E1000_ERR_NVM;
879 	}
880 
881 	for (i = 0; i < words; i++) {
882 		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
883 		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
884 		       E1000_NVM_RW_REG_START;
885 
886 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
887 		if (ret_val)
888 			break;
889 
890 		ew32(EEWR, eewr);
891 
892 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
893 		if (ret_val)
894 			break;
895 	}
896 
897 	return ret_val;
898 }
899 
900 /**
901  *  e1000_get_cfg_done_82571 - Poll for configuration done
902  *  @hw: pointer to the HW structure
903  *
904  *  Reads the management control register for the config done bit to be set.
905  **/
906 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
907 {
908 	s32 timeout = PHY_CFG_TIMEOUT;
909 
910 	while (timeout) {
911 		if (er32(EEMNGCTL) &
912 		    E1000_NVM_CFG_DONE_PORT_0)
913 			break;
914 		usleep_range(1000, 2000);
915 		timeout--;
916 	}
917 	if (!timeout) {
918 		e_dbg("MNG configuration cycle has not completed.\n");
919 		return -E1000_ERR_RESET;
920 	}
921 
922 	return 0;
923 }
924 
925 /**
926  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
927  *  @hw: pointer to the HW structure
928  *  @active: true to enable LPLU, false to disable
929  *
930  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
931  *  this function also disables smart speed and vice versa.  LPLU will not be
932  *  activated unless the device autonegotiation advertisement meets standards
933  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
934  *  pointer entry point only called by PHY setup routines.
935  **/
936 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
937 {
938 	struct e1000_phy_info *phy = &hw->phy;
939 	s32 ret_val;
940 	u16 data;
941 
942 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
943 	if (ret_val)
944 		return ret_val;
945 
946 	if (active) {
947 		data |= IGP02E1000_PM_D0_LPLU;
948 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
949 		if (ret_val)
950 			return ret_val;
951 
952 		/* When LPLU is enabled, we should disable SmartSpeed */
953 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
954 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
955 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
956 		if (ret_val)
957 			return ret_val;
958 	} else {
959 		data &= ~IGP02E1000_PM_D0_LPLU;
960 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
961 		/*
962 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
963 		 * during Dx states where the power conservation is most
964 		 * important.  During driver activity we should enable
965 		 * SmartSpeed, so performance is maintained.
966 		 */
967 		if (phy->smart_speed == e1000_smart_speed_on) {
968 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
969 					   &data);
970 			if (ret_val)
971 				return ret_val;
972 
973 			data |= IGP01E1000_PSCFR_SMART_SPEED;
974 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
975 					   data);
976 			if (ret_val)
977 				return ret_val;
978 		} else if (phy->smart_speed == e1000_smart_speed_off) {
979 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
980 					   &data);
981 			if (ret_val)
982 				return ret_val;
983 
984 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
985 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
986 					   data);
987 			if (ret_val)
988 				return ret_val;
989 		}
990 	}
991 
992 	return 0;
993 }
994 
995 /**
996  *  e1000_reset_hw_82571 - Reset hardware
997  *  @hw: pointer to the HW structure
998  *
999  *  This resets the hardware into a known state.
1000  **/
1001 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1002 {
1003 	u32 ctrl, ctrl_ext;
1004 	s32 ret_val;
1005 
1006 	/*
1007 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1008 	 * on the last TLP read/write transaction when MAC is reset.
1009 	 */
1010 	ret_val = e1000e_disable_pcie_master(hw);
1011 	if (ret_val)
1012 		e_dbg("PCI-E Master disable polling has failed.\n");
1013 
1014 	e_dbg("Masking off all interrupts\n");
1015 	ew32(IMC, 0xffffffff);
1016 
1017 	ew32(RCTL, 0);
1018 	ew32(TCTL, E1000_TCTL_PSP);
1019 	e1e_flush();
1020 
1021 	usleep_range(10000, 20000);
1022 
1023 	/*
1024 	 * Must acquire the MDIO ownership before MAC reset.
1025 	 * Ownership defaults to firmware after a reset.
1026 	 */
1027 	switch (hw->mac.type) {
1028 	case e1000_82573:
1029 		ret_val = e1000_get_hw_semaphore_82573(hw);
1030 		break;
1031 	case e1000_82574:
1032 	case e1000_82583:
1033 		ret_val = e1000_get_hw_semaphore_82574(hw);
1034 		break;
1035 	default:
1036 		break;
1037 	}
1038 	if (ret_val)
1039 		e_dbg("Cannot acquire MDIO ownership\n");
1040 
1041 	ctrl = er32(CTRL);
1042 
1043 	e_dbg("Issuing a global reset to MAC\n");
1044 	ew32(CTRL, ctrl | E1000_CTRL_RST);
1045 
1046 	/* Must release MDIO ownership and mutex after MAC reset. */
1047 	switch (hw->mac.type) {
1048 	case e1000_82574:
1049 	case e1000_82583:
1050 		e1000_put_hw_semaphore_82574(hw);
1051 		break;
1052 	default:
1053 		break;
1054 	}
1055 
1056 	if (hw->nvm.type == e1000_nvm_flash_hw) {
1057 		udelay(10);
1058 		ctrl_ext = er32(CTRL_EXT);
1059 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1060 		ew32(CTRL_EXT, ctrl_ext);
1061 		e1e_flush();
1062 	}
1063 
1064 	ret_val = e1000e_get_auto_rd_done(hw);
1065 	if (ret_val)
1066 		/* We don't want to continue accessing MAC registers. */
1067 		return ret_val;
1068 
1069 	/*
1070 	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1071 	 * Need to wait for Phy configuration completion before accessing
1072 	 * NVM and Phy.
1073 	 */
1074 
1075 	switch (hw->mac.type) {
1076 	case e1000_82573:
1077 	case e1000_82574:
1078 	case e1000_82583:
1079 		msleep(25);
1080 		break;
1081 	default:
1082 		break;
1083 	}
1084 
1085 	/* Clear any pending interrupt events. */
1086 	ew32(IMC, 0xffffffff);
1087 	er32(ICR);
1088 
1089 	if (hw->mac.type == e1000_82571) {
1090 		/* Install any alternate MAC address into RAR0 */
1091 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1092 		if (ret_val)
1093 			return ret_val;
1094 
1095 		e1000e_set_laa_state_82571(hw, true);
1096 	}
1097 
1098 	/* Reinitialize the 82571 serdes link state machine */
1099 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
1100 		hw->mac.serdes_link_state = e1000_serdes_link_down;
1101 
1102 	return 0;
1103 }
1104 
1105 /**
1106  *  e1000_init_hw_82571 - Initialize hardware
1107  *  @hw: pointer to the HW structure
1108  *
1109  *  This inits the hardware readying it for operation.
1110  **/
1111 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1112 {
1113 	struct e1000_mac_info *mac = &hw->mac;
1114 	u32 reg_data;
1115 	s32 ret_val;
1116 	u16 i, rar_count = mac->rar_entry_count;
1117 
1118 	e1000_initialize_hw_bits_82571(hw);
1119 
1120 	/* Initialize identification LED */
1121 	ret_val = mac->ops.id_led_init(hw);
1122 	if (ret_val)
1123 		e_dbg("Error initializing identification LED\n");
1124 		/* This is not fatal and we should not stop init due to this */
1125 
1126 	/* Disabling VLAN filtering */
1127 	e_dbg("Initializing the IEEE VLAN\n");
1128 	mac->ops.clear_vfta(hw);
1129 
1130 	/* Setup the receive address. */
1131 	/*
1132 	 * If, however, a locally administered address was assigned to the
1133 	 * 82571, we must reserve a RAR for it to work around an issue where
1134 	 * resetting one port will reload the MAC on the other port.
1135 	 */
1136 	if (e1000e_get_laa_state_82571(hw))
1137 		rar_count--;
1138 	e1000e_init_rx_addrs(hw, rar_count);
1139 
1140 	/* Zero out the Multicast HASH table */
1141 	e_dbg("Zeroing the MTA\n");
1142 	for (i = 0; i < mac->mta_reg_count; i++)
1143 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1144 
1145 	/* Setup link and flow control */
1146 	ret_val = mac->ops.setup_link(hw);
1147 
1148 	/* Set the transmit descriptor write-back policy */
1149 	reg_data = er32(TXDCTL(0));
1150 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1151 		   E1000_TXDCTL_FULL_TX_DESC_WB |
1152 		   E1000_TXDCTL_COUNT_DESC;
1153 	ew32(TXDCTL(0), reg_data);
1154 
1155 	/* ...for both queues. */
1156 	switch (mac->type) {
1157 	case e1000_82573:
1158 		e1000e_enable_tx_pkt_filtering(hw);
1159 		/* fall through */
1160 	case e1000_82574:
1161 	case e1000_82583:
1162 		reg_data = er32(GCR);
1163 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1164 		ew32(GCR, reg_data);
1165 		break;
1166 	default:
1167 		reg_data = er32(TXDCTL(1));
1168 		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1169 			   E1000_TXDCTL_FULL_TX_DESC_WB |
1170 			   E1000_TXDCTL_COUNT_DESC;
1171 		ew32(TXDCTL(1), reg_data);
1172 		break;
1173 	}
1174 
1175 	/*
1176 	 * Clear all of the statistics registers (clear on read).  It is
1177 	 * important that we do this after we have tried to establish link
1178 	 * because the symbol error count will increment wildly if there
1179 	 * is no link.
1180 	 */
1181 	e1000_clear_hw_cntrs_82571(hw);
1182 
1183 	return ret_val;
1184 }
1185 
1186 /**
1187  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1188  *  @hw: pointer to the HW structure
1189  *
1190  *  Initializes required hardware-dependent bits needed for normal operation.
1191  **/
1192 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1193 {
1194 	u32 reg;
1195 
1196 	/* Transmit Descriptor Control 0 */
1197 	reg = er32(TXDCTL(0));
1198 	reg |= (1 << 22);
1199 	ew32(TXDCTL(0), reg);
1200 
1201 	/* Transmit Descriptor Control 1 */
1202 	reg = er32(TXDCTL(1));
1203 	reg |= (1 << 22);
1204 	ew32(TXDCTL(1), reg);
1205 
1206 	/* Transmit Arbitration Control 0 */
1207 	reg = er32(TARC(0));
1208 	reg &= ~(0xF << 27); /* 30:27 */
1209 	switch (hw->mac.type) {
1210 	case e1000_82571:
1211 	case e1000_82572:
1212 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1213 		break;
1214 	case e1000_82574:
1215 	case e1000_82583:
1216 		reg |= (1 << 26);
1217 		break;
1218 	default:
1219 		break;
1220 	}
1221 	ew32(TARC(0), reg);
1222 
1223 	/* Transmit Arbitration Control 1 */
1224 	reg = er32(TARC(1));
1225 	switch (hw->mac.type) {
1226 	case e1000_82571:
1227 	case e1000_82572:
1228 		reg &= ~((1 << 29) | (1 << 30));
1229 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1230 		if (er32(TCTL) & E1000_TCTL_MULR)
1231 			reg &= ~(1 << 28);
1232 		else
1233 			reg |= (1 << 28);
1234 		ew32(TARC(1), reg);
1235 		break;
1236 	default:
1237 		break;
1238 	}
1239 
1240 	/* Device Control */
1241 	switch (hw->mac.type) {
1242 	case e1000_82573:
1243 	case e1000_82574:
1244 	case e1000_82583:
1245 		reg = er32(CTRL);
1246 		reg &= ~(1 << 29);
1247 		ew32(CTRL, reg);
1248 		break;
1249 	default:
1250 		break;
1251 	}
1252 
1253 	/* Extended Device Control */
1254 	switch (hw->mac.type) {
1255 	case e1000_82573:
1256 	case e1000_82574:
1257 	case e1000_82583:
1258 		reg = er32(CTRL_EXT);
1259 		reg &= ~(1 << 23);
1260 		reg |= (1 << 22);
1261 		ew32(CTRL_EXT, reg);
1262 		break;
1263 	default:
1264 		break;
1265 	}
1266 
1267 	if (hw->mac.type == e1000_82571) {
1268 		reg = er32(PBA_ECC);
1269 		reg |= E1000_PBA_ECC_CORR_EN;
1270 		ew32(PBA_ECC, reg);
1271 	}
1272 
1273 	/*
1274 	 * Workaround for hardware errata.
1275 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1276 	 */
1277 	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1278 		reg = er32(CTRL_EXT);
1279 		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1280 		ew32(CTRL_EXT, reg);
1281 	}
1282 
1283 	/* PCI-Ex Control Registers */
1284 	switch (hw->mac.type) {
1285 	case e1000_82574:
1286 	case e1000_82583:
1287 		reg = er32(GCR);
1288 		reg |= (1 << 22);
1289 		ew32(GCR, reg);
1290 
1291 		/*
1292 		 * Workaround for hardware errata.
1293 		 * apply workaround for hardware errata documented in errata
1294 		 * docs Fixes issue where some error prone or unreliable PCIe
1295 		 * completions are occurring, particularly with ASPM enabled.
1296 		 * Without fix, issue can cause Tx timeouts.
1297 		 */
1298 		reg = er32(GCR2);
1299 		reg |= 1;
1300 		ew32(GCR2, reg);
1301 		break;
1302 	default:
1303 		break;
1304 	}
1305 }
1306 
1307 /**
1308  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1309  *  @hw: pointer to the HW structure
1310  *
1311  *  Clears the register array which contains the VLAN filter table by
1312  *  setting all the values to 0.
1313  **/
1314 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1315 {
1316 	u32 offset;
1317 	u32 vfta_value = 0;
1318 	u32 vfta_offset = 0;
1319 	u32 vfta_bit_in_reg = 0;
1320 
1321 	switch (hw->mac.type) {
1322 	case e1000_82573:
1323 	case e1000_82574:
1324 	case e1000_82583:
1325 		if (hw->mng_cookie.vlan_id != 0) {
1326 			/*
1327 			 * The VFTA is a 4096b bit-field, each identifying
1328 			 * a single VLAN ID.  The following operations
1329 			 * determine which 32b entry (i.e. offset) into the
1330 			 * array we want to set the VLAN ID (i.e. bit) of
1331 			 * the manageability unit.
1332 			 */
1333 			vfta_offset = (hw->mng_cookie.vlan_id >>
1334 				       E1000_VFTA_ENTRY_SHIFT) &
1335 				      E1000_VFTA_ENTRY_MASK;
1336 			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1337 					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1338 		}
1339 		break;
1340 	default:
1341 		break;
1342 	}
1343 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1344 		/*
1345 		 * If the offset we want to clear is the same offset of the
1346 		 * manageability VLAN ID, then clear all bits except that of
1347 		 * the manageability unit.
1348 		 */
1349 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1350 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1351 		e1e_flush();
1352 	}
1353 }
1354 
1355 /**
1356  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1357  *  @hw: pointer to the HW structure
1358  *
1359  *  Reads the NVM Initialization Control Word 2 and returns true
1360  *  (>0) if any manageability is enabled, else false (0).
1361  **/
1362 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1363 {
1364 	u16 data;
1365 
1366 	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1367 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1368 }
1369 
1370 /**
1371  *  e1000_led_on_82574 - Turn LED on
1372  *  @hw: pointer to the HW structure
1373  *
1374  *  Turn LED on.
1375  **/
1376 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1377 {
1378 	u32 ctrl;
1379 	u32 i;
1380 
1381 	ctrl = hw->mac.ledctl_mode2;
1382 	if (!(E1000_STATUS_LU & er32(STATUS))) {
1383 		/*
1384 		 * If no link, then turn LED on by setting the invert bit
1385 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1386 		 */
1387 		for (i = 0; i < 4; i++)
1388 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1389 			    E1000_LEDCTL_MODE_LED_ON)
1390 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1391 	}
1392 	ew32(LEDCTL, ctrl);
1393 
1394 	return 0;
1395 }
1396 
1397 /**
1398  *  e1000_check_phy_82574 - check 82574 phy hung state
1399  *  @hw: pointer to the HW structure
1400  *
1401  *  Returns whether phy is hung or not
1402  **/
1403 bool e1000_check_phy_82574(struct e1000_hw *hw)
1404 {
1405 	u16 status_1kbt = 0;
1406 	u16 receive_errors = 0;
1407 	s32 ret_val = 0;
1408 
1409 	/*
1410 	 * Read PHY Receive Error counter first, if its is max - all F's then
1411 	 * read the Base1000T status register If both are max then PHY is hung.
1412 	 */
1413 	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1414 	if (ret_val)
1415 		return false;
1416 	if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
1417 		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1418 		if (ret_val)
1419 			return false;
1420 		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1421 		    E1000_IDLE_ERROR_COUNT_MASK)
1422 			return true;
1423 	}
1424 
1425 	return false;
1426 }
1427 
1428 /**
1429  *  e1000_setup_link_82571 - Setup flow control and link settings
1430  *  @hw: pointer to the HW structure
1431  *
1432  *  Determines which flow control settings to use, then configures flow
1433  *  control.  Calls the appropriate media-specific link configuration
1434  *  function.  Assuming the adapter has a valid link partner, a valid link
1435  *  should be established.  Assumes the hardware has previously been reset
1436  *  and the transmitter and receiver are not enabled.
1437  **/
1438 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1439 {
1440 	/*
1441 	 * 82573 does not have a word in the NVM to determine
1442 	 * the default flow control setting, so we explicitly
1443 	 * set it to full.
1444 	 */
1445 	switch (hw->mac.type) {
1446 	case e1000_82573:
1447 	case e1000_82574:
1448 	case e1000_82583:
1449 		if (hw->fc.requested_mode == e1000_fc_default)
1450 			hw->fc.requested_mode = e1000_fc_full;
1451 		break;
1452 	default:
1453 		break;
1454 	}
1455 
1456 	return e1000e_setup_link_generic(hw);
1457 }
1458 
1459 /**
1460  *  e1000_setup_copper_link_82571 - Configure copper link settings
1461  *  @hw: pointer to the HW structure
1462  *
1463  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1464  *  for link, once link is established calls to configure collision distance
1465  *  and flow control are called.
1466  **/
1467 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1468 {
1469 	u32 ctrl;
1470 	s32 ret_val;
1471 
1472 	ctrl = er32(CTRL);
1473 	ctrl |= E1000_CTRL_SLU;
1474 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1475 	ew32(CTRL, ctrl);
1476 
1477 	switch (hw->phy.type) {
1478 	case e1000_phy_m88:
1479 	case e1000_phy_bm:
1480 		ret_val = e1000e_copper_link_setup_m88(hw);
1481 		break;
1482 	case e1000_phy_igp_2:
1483 		ret_val = e1000e_copper_link_setup_igp(hw);
1484 		break;
1485 	default:
1486 		return -E1000_ERR_PHY;
1487 		break;
1488 	}
1489 
1490 	if (ret_val)
1491 		return ret_val;
1492 
1493 	return e1000e_setup_copper_link(hw);
1494 }
1495 
1496 /**
1497  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1498  *  @hw: pointer to the HW structure
1499  *
1500  *  Configures collision distance and flow control for fiber and serdes links.
1501  *  Upon successful setup, poll for link.
1502  **/
1503 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1504 {
1505 	switch (hw->mac.type) {
1506 	case e1000_82571:
1507 	case e1000_82572:
1508 		/*
1509 		 * If SerDes loopback mode is entered, there is no form
1510 		 * of reset to take the adapter out of that mode.  So we
1511 		 * have to explicitly take the adapter out of loopback
1512 		 * mode.  This prevents drivers from twiddling their thumbs
1513 		 * if another tool failed to take it out of loopback mode.
1514 		 */
1515 		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1516 		break;
1517 	default:
1518 		break;
1519 	}
1520 
1521 	return e1000e_setup_fiber_serdes_link(hw);
1522 }
1523 
1524 /**
1525  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1526  *  @hw: pointer to the HW structure
1527  *
1528  *  Reports the link state as up or down.
1529  *
1530  *  If autonegotiation is supported by the link partner, the link state is
1531  *  determined by the result of autonegotiation. This is the most likely case.
1532  *  If autonegotiation is not supported by the link partner, and the link
1533  *  has a valid signal, force the link up.
1534  *
1535  *  The link state is represented internally here by 4 states:
1536  *
1537  *  1) down
1538  *  2) autoneg_progress
1539  *  3) autoneg_complete (the link successfully autonegotiated)
1540  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1541  *
1542  **/
1543 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1544 {
1545 	struct e1000_mac_info *mac = &hw->mac;
1546 	u32 rxcw;
1547 	u32 ctrl;
1548 	u32 status;
1549 	u32 txcw;
1550 	u32 i;
1551 	s32 ret_val = 0;
1552 
1553 	ctrl = er32(CTRL);
1554 	status = er32(STATUS);
1555 	rxcw = er32(RXCW);
1556 
1557 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1558 
1559 		/* Receiver is synchronized with no invalid bits.  */
1560 		switch (mac->serdes_link_state) {
1561 		case e1000_serdes_link_autoneg_complete:
1562 			if (!(status & E1000_STATUS_LU)) {
1563 				/*
1564 				 * We have lost link, retry autoneg before
1565 				 * reporting link failure
1566 				 */
1567 				mac->serdes_link_state =
1568 				    e1000_serdes_link_autoneg_progress;
1569 				mac->serdes_has_link = false;
1570 				e_dbg("AN_UP     -> AN_PROG\n");
1571 			} else {
1572 				mac->serdes_has_link = true;
1573 			}
1574 			break;
1575 
1576 		case e1000_serdes_link_forced_up:
1577 			/*
1578 			 * If we are receiving /C/ ordered sets, re-enable
1579 			 * auto-negotiation in the TXCW register and disable
1580 			 * forced link in the Device Control register in an
1581 			 * attempt to auto-negotiate with our link partner.
1582 			 * If the partner code word is null, stop forcing
1583 			 * and restart auto negotiation.
1584 			 */
1585 			if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW))  {
1586 				/* Enable autoneg, and unforce link up */
1587 				ew32(TXCW, mac->txcw);
1588 				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1589 				mac->serdes_link_state =
1590 				    e1000_serdes_link_autoneg_progress;
1591 				mac->serdes_has_link = false;
1592 				e_dbg("FORCED_UP -> AN_PROG\n");
1593 			} else {
1594 				mac->serdes_has_link = true;
1595 			}
1596 			break;
1597 
1598 		case e1000_serdes_link_autoneg_progress:
1599 			if (rxcw & E1000_RXCW_C) {
1600 				/*
1601 				 * We received /C/ ordered sets, meaning the
1602 				 * link partner has autonegotiated, and we can
1603 				 * trust the Link Up (LU) status bit.
1604 				 */
1605 				if (status & E1000_STATUS_LU) {
1606 					mac->serdes_link_state =
1607 					    e1000_serdes_link_autoneg_complete;
1608 					e_dbg("AN_PROG   -> AN_UP\n");
1609 					mac->serdes_has_link = true;
1610 				} else {
1611 					/* Autoneg completed, but failed. */
1612 					mac->serdes_link_state =
1613 					    e1000_serdes_link_down;
1614 					e_dbg("AN_PROG   -> DOWN\n");
1615 				}
1616 			} else {
1617 				/*
1618 				 * The link partner did not autoneg.
1619 				 * Force link up and full duplex, and change
1620 				 * state to forced.
1621 				 */
1622 				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1623 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1624 				ew32(CTRL, ctrl);
1625 
1626 				/* Configure Flow Control after link up. */
1627 				ret_val = e1000e_config_fc_after_link_up(hw);
1628 				if (ret_val) {
1629 					e_dbg("Error config flow control\n");
1630 					break;
1631 				}
1632 				mac->serdes_link_state =
1633 				    e1000_serdes_link_forced_up;
1634 				mac->serdes_has_link = true;
1635 				e_dbg("AN_PROG   -> FORCED_UP\n");
1636 			}
1637 			break;
1638 
1639 		case e1000_serdes_link_down:
1640 		default:
1641 			/*
1642 			 * The link was down but the receiver has now gained
1643 			 * valid sync, so lets see if we can bring the link
1644 			 * up.
1645 			 */
1646 			ew32(TXCW, mac->txcw);
1647 			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1648 			mac->serdes_link_state =
1649 			    e1000_serdes_link_autoneg_progress;
1650 			mac->serdes_has_link = false;
1651 			e_dbg("DOWN      -> AN_PROG\n");
1652 			break;
1653 		}
1654 	} else {
1655 		if (!(rxcw & E1000_RXCW_SYNCH)) {
1656 			mac->serdes_has_link = false;
1657 			mac->serdes_link_state = e1000_serdes_link_down;
1658 			e_dbg("ANYSTATE  -> DOWN\n");
1659 		} else {
1660 			/*
1661 			 * Check several times, if Sync and Config
1662 			 * both are consistently 1 then simply ignore
1663 			 * the Invalid bit and restart Autoneg
1664 			 */
1665 			for (i = 0; i < AN_RETRY_COUNT; i++) {
1666 				udelay(10);
1667 				rxcw = er32(RXCW);
1668 				if ((rxcw & E1000_RXCW_IV) &&
1669 				    !((rxcw & E1000_RXCW_SYNCH) &&
1670 				      (rxcw & E1000_RXCW_C))) {
1671 					mac->serdes_has_link = false;
1672 					mac->serdes_link_state =
1673 					    e1000_serdes_link_down;
1674 					e_dbg("ANYSTATE  -> DOWN\n");
1675 					break;
1676 				}
1677 			}
1678 
1679 			if (i == AN_RETRY_COUNT) {
1680 				txcw = er32(TXCW);
1681 				txcw |= E1000_TXCW_ANE;
1682 				ew32(TXCW, txcw);
1683 				mac->serdes_link_state =
1684 				    e1000_serdes_link_autoneg_progress;
1685 				mac->serdes_has_link = false;
1686 				e_dbg("ANYSTATE  -> AN_PROG\n");
1687 			}
1688 		}
1689 	}
1690 
1691 	return ret_val;
1692 }
1693 
1694 /**
1695  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1696  *  @hw: pointer to the HW structure
1697  *  @data: pointer to the NVM (EEPROM)
1698  *
1699  *  Read the EEPROM for the current default LED configuration.  If the
1700  *  LED configuration is not valid, set to a valid LED configuration.
1701  **/
1702 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1703 {
1704 	s32 ret_val;
1705 
1706 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1707 	if (ret_val) {
1708 		e_dbg("NVM Read Error\n");
1709 		return ret_val;
1710 	}
1711 
1712 	switch (hw->mac.type) {
1713 	case e1000_82573:
1714 	case e1000_82574:
1715 	case e1000_82583:
1716 		if (*data == ID_LED_RESERVED_F746)
1717 			*data = ID_LED_DEFAULT_82573;
1718 		break;
1719 	default:
1720 		if (*data == ID_LED_RESERVED_0000 ||
1721 		    *data == ID_LED_RESERVED_FFFF)
1722 			*data = ID_LED_DEFAULT;
1723 		break;
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 /**
1730  *  e1000e_get_laa_state_82571 - Get locally administered address state
1731  *  @hw: pointer to the HW structure
1732  *
1733  *  Retrieve and return the current locally administered address state.
1734  **/
1735 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1736 {
1737 	if (hw->mac.type != e1000_82571)
1738 		return false;
1739 
1740 	return hw->dev_spec.e82571.laa_is_present;
1741 }
1742 
1743 /**
1744  *  e1000e_set_laa_state_82571 - Set locally administered address state
1745  *  @hw: pointer to the HW structure
1746  *  @state: enable/disable locally administered address
1747  *
1748  *  Enable/Disable the current locally administered address state.
1749  **/
1750 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1751 {
1752 	if (hw->mac.type != e1000_82571)
1753 		return;
1754 
1755 	hw->dev_spec.e82571.laa_is_present = state;
1756 
1757 	/* If workaround is activated... */
1758 	if (state)
1759 		/*
1760 		 * Hold a copy of the LAA in RAR[14] This is done so that
1761 		 * between the time RAR[0] gets clobbered and the time it
1762 		 * gets fixed, the actual LAA is in one of the RARs and no
1763 		 * incoming packets directed to this port are dropped.
1764 		 * Eventually the LAA will be in RAR[0] and RAR[14].
1765 		 */
1766 		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1767 }
1768 
1769 /**
1770  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1771  *  @hw: pointer to the HW structure
1772  *
1773  *  Verifies that the EEPROM has completed the update.  After updating the
1774  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1775  *  the checksum fix is not implemented, we need to set the bit and update
1776  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1777  *  we need to return bad checksum.
1778  **/
1779 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1780 {
1781 	struct e1000_nvm_info *nvm = &hw->nvm;
1782 	s32 ret_val;
1783 	u16 data;
1784 
1785 	if (nvm->type != e1000_nvm_flash_hw)
1786 		return 0;
1787 
1788 	/*
1789 	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1790 	 * 10h-12h.  Checksum may need to be fixed.
1791 	 */
1792 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1793 	if (ret_val)
1794 		return ret_val;
1795 
1796 	if (!(data & 0x10)) {
1797 		/*
1798 		 * Read 0x23 and check bit 15.  This bit is a 1
1799 		 * when the checksum has already been fixed.  If
1800 		 * the checksum is still wrong and this bit is a
1801 		 * 1, we need to return bad checksum.  Otherwise,
1802 		 * we need to set this bit to a 1 and update the
1803 		 * checksum.
1804 		 */
1805 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1806 		if (ret_val)
1807 			return ret_val;
1808 
1809 		if (!(data & 0x8000)) {
1810 			data |= 0x8000;
1811 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1812 			if (ret_val)
1813 				return ret_val;
1814 			ret_val = e1000e_update_nvm_checksum(hw);
1815 		}
1816 	}
1817 
1818 	return 0;
1819 }
1820 
1821 /**
1822  *  e1000_read_mac_addr_82571 - Read device MAC address
1823  *  @hw: pointer to the HW structure
1824  **/
1825 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1826 {
1827 	if (hw->mac.type == e1000_82571) {
1828 		s32 ret_val = 0;
1829 
1830 		/*
1831 		 * If there's an alternate MAC address place it in RAR0
1832 		 * so that it will override the Si installed default perm
1833 		 * address.
1834 		 */
1835 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1836 		if (ret_val)
1837 			return ret_val;
1838 	}
1839 
1840 	return e1000_read_mac_addr_generic(hw);
1841 }
1842 
1843 /**
1844  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1845  * @hw: pointer to the HW structure
1846  *
1847  * In the case of a PHY power down to save power, or to turn off link during a
1848  * driver unload, or wake on lan is not enabled, remove the link.
1849  **/
1850 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1851 {
1852 	struct e1000_phy_info *phy = &hw->phy;
1853 	struct e1000_mac_info *mac = &hw->mac;
1854 
1855 	if (!phy->ops.check_reset_block)
1856 		return;
1857 
1858 	/* If the management interface is not enabled, then power down */
1859 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1860 		e1000_power_down_phy_copper(hw);
1861 }
1862 
1863 /**
1864  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1865  *  @hw: pointer to the HW structure
1866  *
1867  *  Clears the hardware counters by reading the counter registers.
1868  **/
1869 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1870 {
1871 	e1000e_clear_hw_cntrs_base(hw);
1872 
1873 	er32(PRC64);
1874 	er32(PRC127);
1875 	er32(PRC255);
1876 	er32(PRC511);
1877 	er32(PRC1023);
1878 	er32(PRC1522);
1879 	er32(PTC64);
1880 	er32(PTC127);
1881 	er32(PTC255);
1882 	er32(PTC511);
1883 	er32(PTC1023);
1884 	er32(PTC1522);
1885 
1886 	er32(ALGNERRC);
1887 	er32(RXERRC);
1888 	er32(TNCRS);
1889 	er32(CEXTERR);
1890 	er32(TSCTC);
1891 	er32(TSCTFC);
1892 
1893 	er32(MGTPRC);
1894 	er32(MGTPDC);
1895 	er32(MGTPTC);
1896 
1897 	er32(IAC);
1898 	er32(ICRXOC);
1899 
1900 	er32(ICRXPTC);
1901 	er32(ICRXATC);
1902 	er32(ICTXPTC);
1903 	er32(ICTXATC);
1904 	er32(ICTXQEC);
1905 	er32(ICTXQMTC);
1906 	er32(ICRXDMTC);
1907 }
1908 
1909 static const struct e1000_mac_operations e82571_mac_ops = {
1910 	/* .check_mng_mode: mac type dependent */
1911 	/* .check_for_link: media type dependent */
1912 	.id_led_init		= e1000e_id_led_init_generic,
1913 	.cleanup_led		= e1000e_cleanup_led_generic,
1914 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
1915 	.get_bus_info		= e1000e_get_bus_info_pcie,
1916 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1917 	/* .get_link_up_info: media type dependent */
1918 	/* .led_on: mac type dependent */
1919 	.led_off		= e1000e_led_off_generic,
1920 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1921 	.write_vfta		= e1000_write_vfta_generic,
1922 	.clear_vfta		= e1000_clear_vfta_82571,
1923 	.reset_hw		= e1000_reset_hw_82571,
1924 	.init_hw		= e1000_init_hw_82571,
1925 	.setup_link		= e1000_setup_link_82571,
1926 	/* .setup_physical_interface: media type dependent */
1927 	.setup_led		= e1000e_setup_led_generic,
1928 	.config_collision_dist	= e1000e_config_collision_dist_generic,
1929 	.read_mac_addr		= e1000_read_mac_addr_82571,
1930 };
1931 
1932 static const struct e1000_phy_operations e82_phy_ops_igp = {
1933 	.acquire		= e1000_get_hw_semaphore_82571,
1934 	.check_polarity		= e1000_check_polarity_igp,
1935 	.check_reset_block	= e1000e_check_reset_block_generic,
1936 	.commit			= NULL,
1937 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
1938 	.get_cfg_done		= e1000_get_cfg_done_82571,
1939 	.get_cable_length	= e1000e_get_cable_length_igp_2,
1940 	.get_info		= e1000e_get_phy_info_igp,
1941 	.read_reg		= e1000e_read_phy_reg_igp,
1942 	.release		= e1000_put_hw_semaphore_82571,
1943 	.reset			= e1000e_phy_hw_reset_generic,
1944 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1945 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1946 	.write_reg		= e1000e_write_phy_reg_igp,
1947 	.cfg_on_link_up      	= NULL,
1948 };
1949 
1950 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1951 	.acquire		= e1000_get_hw_semaphore_82571,
1952 	.check_polarity		= e1000_check_polarity_m88,
1953 	.check_reset_block	= e1000e_check_reset_block_generic,
1954 	.commit			= e1000e_phy_sw_reset,
1955 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1956 	.get_cfg_done		= e1000e_get_cfg_done,
1957 	.get_cable_length	= e1000e_get_cable_length_m88,
1958 	.get_info		= e1000e_get_phy_info_m88,
1959 	.read_reg		= e1000e_read_phy_reg_m88,
1960 	.release		= e1000_put_hw_semaphore_82571,
1961 	.reset			= e1000e_phy_hw_reset_generic,
1962 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1963 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1964 	.write_reg		= e1000e_write_phy_reg_m88,
1965 	.cfg_on_link_up      	= NULL,
1966 };
1967 
1968 static const struct e1000_phy_operations e82_phy_ops_bm = {
1969 	.acquire		= e1000_get_hw_semaphore_82571,
1970 	.check_polarity		= e1000_check_polarity_m88,
1971 	.check_reset_block	= e1000e_check_reset_block_generic,
1972 	.commit			= e1000e_phy_sw_reset,
1973 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1974 	.get_cfg_done		= e1000e_get_cfg_done,
1975 	.get_cable_length	= e1000e_get_cable_length_m88,
1976 	.get_info		= e1000e_get_phy_info_m88,
1977 	.read_reg		= e1000e_read_phy_reg_bm2,
1978 	.release		= e1000_put_hw_semaphore_82571,
1979 	.reset			= e1000e_phy_hw_reset_generic,
1980 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1981 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1982 	.write_reg		= e1000e_write_phy_reg_bm2,
1983 	.cfg_on_link_up      	= NULL,
1984 };
1985 
1986 static const struct e1000_nvm_operations e82571_nvm_ops = {
1987 	.acquire		= e1000_acquire_nvm_82571,
1988 	.read			= e1000e_read_nvm_eerd,
1989 	.release		= e1000_release_nvm_82571,
1990 	.reload			= e1000e_reload_nvm_generic,
1991 	.update			= e1000_update_nvm_checksum_82571,
1992 	.valid_led_default	= e1000_valid_led_default_82571,
1993 	.validate		= e1000_validate_nvm_checksum_82571,
1994 	.write			= e1000_write_nvm_82571,
1995 };
1996 
1997 const struct e1000_info e1000_82571_info = {
1998 	.mac			= e1000_82571,
1999 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2000 				  | FLAG_HAS_JUMBO_FRAMES
2001 				  | FLAG_HAS_WOL
2002 				  | FLAG_APME_IN_CTRL3
2003 				  | FLAG_HAS_CTRLEXT_ON_LOAD
2004 				  | FLAG_HAS_SMART_POWER_DOWN
2005 				  | FLAG_RESET_OVERWRITES_LAA /* errata */
2006 				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
2007 				  | FLAG_APME_CHECK_PORT_B,
2008 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2009 				  | FLAG2_DMA_BURST,
2010 	.pba			= 38,
2011 	.max_hw_frame_size	= DEFAULT_JUMBO,
2012 	.get_variants		= e1000_get_variants_82571,
2013 	.mac_ops		= &e82571_mac_ops,
2014 	.phy_ops		= &e82_phy_ops_igp,
2015 	.nvm_ops		= &e82571_nvm_ops,
2016 };
2017 
2018 const struct e1000_info e1000_82572_info = {
2019 	.mac			= e1000_82572,
2020 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2021 				  | FLAG_HAS_JUMBO_FRAMES
2022 				  | FLAG_HAS_WOL
2023 				  | FLAG_APME_IN_CTRL3
2024 				  | FLAG_HAS_CTRLEXT_ON_LOAD
2025 				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2026 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2027 				  | FLAG2_DMA_BURST,
2028 	.pba			= 38,
2029 	.max_hw_frame_size	= DEFAULT_JUMBO,
2030 	.get_variants		= e1000_get_variants_82571,
2031 	.mac_ops		= &e82571_mac_ops,
2032 	.phy_ops		= &e82_phy_ops_igp,
2033 	.nvm_ops		= &e82571_nvm_ops,
2034 };
2035 
2036 const struct e1000_info e1000_82573_info = {
2037 	.mac			= e1000_82573,
2038 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2039 				  | FLAG_HAS_WOL
2040 				  | FLAG_APME_IN_CTRL3
2041 				  | FLAG_HAS_SMART_POWER_DOWN
2042 				  | FLAG_HAS_AMT
2043 				  | FLAG_HAS_SWSM_ON_LOAD,
2044 	.flags2			= FLAG2_DISABLE_ASPM_L1
2045 				  | FLAG2_DISABLE_ASPM_L0S,
2046 	.pba			= 20,
2047 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
2048 	.get_variants		= e1000_get_variants_82571,
2049 	.mac_ops		= &e82571_mac_ops,
2050 	.phy_ops		= &e82_phy_ops_m88,
2051 	.nvm_ops		= &e82571_nvm_ops,
2052 };
2053 
2054 const struct e1000_info e1000_82574_info = {
2055 	.mac			= e1000_82574,
2056 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2057 				  | FLAG_HAS_MSIX
2058 				  | FLAG_HAS_JUMBO_FRAMES
2059 				  | FLAG_HAS_WOL
2060 				  | FLAG_APME_IN_CTRL3
2061 				  | FLAG_HAS_SMART_POWER_DOWN
2062 				  | FLAG_HAS_AMT
2063 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2064 	.flags2			  = FLAG2_CHECK_PHY_HANG
2065 				  | FLAG2_DISABLE_ASPM_L0S
2066 				  | FLAG2_NO_DISABLE_RX,
2067 	.pba			= 32,
2068 	.max_hw_frame_size	= DEFAULT_JUMBO,
2069 	.get_variants		= e1000_get_variants_82571,
2070 	.mac_ops		= &e82571_mac_ops,
2071 	.phy_ops		= &e82_phy_ops_bm,
2072 	.nvm_ops		= &e82571_nvm_ops,
2073 };
2074 
2075 const struct e1000_info e1000_82583_info = {
2076 	.mac			= e1000_82583,
2077 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2078 				  | FLAG_HAS_WOL
2079 				  | FLAG_APME_IN_CTRL3
2080 				  | FLAG_HAS_SMART_POWER_DOWN
2081 				  | FLAG_HAS_AMT
2082 				  | FLAG_HAS_JUMBO_FRAMES
2083 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2084 	.flags2			= FLAG2_DISABLE_ASPM_L0S
2085 				  | FLAG2_NO_DISABLE_RX,
2086 	.pba			= 32,
2087 	.max_hw_frame_size	= DEFAULT_JUMBO,
2088 	.get_variants		= e1000_get_variants_82571,
2089 	.mac_ops		= &e82571_mac_ops,
2090 	.phy_ops		= &e82_phy_ops_bm,
2091 	.nvm_ops		= &e82571_nvm_ops,
2092 };
2093 
2094