1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* 82571EB Gigabit Ethernet Controller
30  * 82571EB Gigabit Ethernet Controller (Copper)
31  * 82571EB Gigabit Ethernet Controller (Fiber)
32  * 82571EB Dual Port Gigabit Mezzanine Adapter
33  * 82571EB Quad Port Gigabit Mezzanine Adapter
34  * 82571PT Gigabit PT Quad Port Server ExpressModule
35  * 82572EI Gigabit Ethernet Controller (Copper)
36  * 82572EI Gigabit Ethernet Controller (Fiber)
37  * 82572EI Gigabit Ethernet Controller
38  * 82573V Gigabit Ethernet Controller (Copper)
39  * 82573E Gigabit Ethernet Controller (Copper)
40  * 82573L Gigabit Ethernet Controller
41  * 82574L Gigabit Network Connection
42  * 82583V Gigabit Network Connection
43  */
44 
45 #include "e1000.h"
46 
47 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
48 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
49 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
50 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
51 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
52 				      u16 words, u16 *data);
53 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
54 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
55 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
56 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
57 static s32 e1000_led_on_82574(struct e1000_hw *hw);
58 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
59 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
60 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
61 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
62 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
63 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
64 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
65 
66 /**
67  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
68  *  @hw: pointer to the HW structure
69  **/
70 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
71 {
72 	struct e1000_phy_info *phy = &hw->phy;
73 	s32 ret_val;
74 
75 	if (hw->phy.media_type != e1000_media_type_copper) {
76 		phy->type = e1000_phy_none;
77 		return 0;
78 	}
79 
80 	phy->addr = 1;
81 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
82 	phy->reset_delay_us = 100;
83 
84 	phy->ops.power_up = e1000_power_up_phy_copper;
85 	phy->ops.power_down = e1000_power_down_phy_copper_82571;
86 
87 	switch (hw->mac.type) {
88 	case e1000_82571:
89 	case e1000_82572:
90 		phy->type = e1000_phy_igp_2;
91 		break;
92 	case e1000_82573:
93 		phy->type = e1000_phy_m88;
94 		break;
95 	case e1000_82574:
96 	case e1000_82583:
97 		phy->type = e1000_phy_bm;
98 		phy->ops.acquire = e1000_get_hw_semaphore_82574;
99 		phy->ops.release = e1000_put_hw_semaphore_82574;
100 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
101 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
102 		break;
103 	default:
104 		return -E1000_ERR_PHY;
105 		break;
106 	}
107 
108 	/* This can only be done after all function pointers are setup. */
109 	ret_val = e1000_get_phy_id_82571(hw);
110 	if (ret_val) {
111 		e_dbg("Error getting PHY ID\n");
112 		return ret_val;
113 	}
114 
115 	/* Verify phy id */
116 	switch (hw->mac.type) {
117 	case e1000_82571:
118 	case e1000_82572:
119 		if (phy->id != IGP01E1000_I_PHY_ID)
120 			ret_val = -E1000_ERR_PHY;
121 		break;
122 	case e1000_82573:
123 		if (phy->id != M88E1111_I_PHY_ID)
124 			ret_val = -E1000_ERR_PHY;
125 		break;
126 	case e1000_82574:
127 	case e1000_82583:
128 		if (phy->id != BME1000_E_PHY_ID_R2)
129 			ret_val = -E1000_ERR_PHY;
130 		break;
131 	default:
132 		ret_val = -E1000_ERR_PHY;
133 		break;
134 	}
135 
136 	if (ret_val)
137 		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
138 
139 	return ret_val;
140 }
141 
142 /**
143  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
144  *  @hw: pointer to the HW structure
145  **/
146 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
147 {
148 	struct e1000_nvm_info *nvm = &hw->nvm;
149 	u32 eecd = er32(EECD);
150 	u16 size;
151 
152 	nvm->opcode_bits = 8;
153 	nvm->delay_usec = 1;
154 	switch (nvm->override) {
155 	case e1000_nvm_override_spi_large:
156 		nvm->page_size = 32;
157 		nvm->address_bits = 16;
158 		break;
159 	case e1000_nvm_override_spi_small:
160 		nvm->page_size = 8;
161 		nvm->address_bits = 8;
162 		break;
163 	default:
164 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
165 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
166 		break;
167 	}
168 
169 	switch (hw->mac.type) {
170 	case e1000_82573:
171 	case e1000_82574:
172 	case e1000_82583:
173 		if (((eecd >> 15) & 0x3) == 0x3) {
174 			nvm->type = e1000_nvm_flash_hw;
175 			nvm->word_size = 2048;
176 			/* Autonomous Flash update bit must be cleared due
177 			 * to Flash update issue.
178 			 */
179 			eecd &= ~E1000_EECD_AUPDEN;
180 			ew32(EECD, eecd);
181 			break;
182 		}
183 		/* Fall Through */
184 	default:
185 		nvm->type = e1000_nvm_eeprom_spi;
186 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
187 			     E1000_EECD_SIZE_EX_SHIFT);
188 		/* Added to a constant, "size" becomes the left-shift value
189 		 * for setting word_size.
190 		 */
191 		size += NVM_WORD_SIZE_BASE_SHIFT;
192 
193 		/* EEPROM access above 16k is unsupported */
194 		if (size > 14)
195 			size = 14;
196 		nvm->word_size = 1 << size;
197 		break;
198 	}
199 
200 	/* Function Pointers */
201 	switch (hw->mac.type) {
202 	case e1000_82574:
203 	case e1000_82583:
204 		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
205 		nvm->ops.release = e1000_put_hw_semaphore_82574;
206 		break;
207 	default:
208 		break;
209 	}
210 
211 	return 0;
212 }
213 
214 /**
215  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
216  *  @hw: pointer to the HW structure
217  **/
218 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
219 {
220 	struct e1000_mac_info *mac = &hw->mac;
221 	u32 swsm = 0;
222 	u32 swsm2 = 0;
223 	bool force_clear_smbi = false;
224 
225 	/* Set media type and media-dependent function pointers */
226 	switch (hw->adapter->pdev->device) {
227 	case E1000_DEV_ID_82571EB_FIBER:
228 	case E1000_DEV_ID_82572EI_FIBER:
229 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
230 		hw->phy.media_type = e1000_media_type_fiber;
231 		mac->ops.setup_physical_interface =
232 		    e1000_setup_fiber_serdes_link_82571;
233 		mac->ops.check_for_link = e1000e_check_for_fiber_link;
234 		mac->ops.get_link_up_info =
235 		    e1000e_get_speed_and_duplex_fiber_serdes;
236 		break;
237 	case E1000_DEV_ID_82571EB_SERDES:
238 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
239 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
240 	case E1000_DEV_ID_82572EI_SERDES:
241 		hw->phy.media_type = e1000_media_type_internal_serdes;
242 		mac->ops.setup_physical_interface =
243 		    e1000_setup_fiber_serdes_link_82571;
244 		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
245 		mac->ops.get_link_up_info =
246 		    e1000e_get_speed_and_duplex_fiber_serdes;
247 		break;
248 	default:
249 		hw->phy.media_type = e1000_media_type_copper;
250 		mac->ops.setup_physical_interface =
251 		    e1000_setup_copper_link_82571;
252 		mac->ops.check_for_link = e1000e_check_for_copper_link;
253 		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
254 		break;
255 	}
256 
257 	/* Set mta register count */
258 	mac->mta_reg_count = 128;
259 	/* Set rar entry count */
260 	mac->rar_entry_count = E1000_RAR_ENTRIES;
261 	/* Adaptive IFS supported */
262 	mac->adaptive_ifs = true;
263 
264 	/* MAC-specific function pointers */
265 	switch (hw->mac.type) {
266 	case e1000_82573:
267 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
268 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
269 		mac->ops.led_on = e1000e_led_on_generic;
270 		mac->ops.blink_led = e1000e_blink_led_generic;
271 
272 		/* FWSM register */
273 		mac->has_fwsm = true;
274 		/* ARC supported; valid only if manageability features are
275 		 * enabled.
276 		 */
277 		mac->arc_subsystem_valid = !!(er32(FWSM) &
278 					      E1000_FWSM_MODE_MASK);
279 		break;
280 	case e1000_82574:
281 	case e1000_82583:
282 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
283 		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
284 		mac->ops.led_on = e1000_led_on_82574;
285 		break;
286 	default:
287 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
288 		mac->ops.led_on = e1000e_led_on_generic;
289 		mac->ops.blink_led = e1000e_blink_led_generic;
290 
291 		/* FWSM register */
292 		mac->has_fwsm = true;
293 		break;
294 	}
295 
296 	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
297 	 * first NVM or PHY access. This should be done for single-port
298 	 * devices, and for one port only on dual-port devices so that
299 	 * for those devices we can still use the SMBI lock to synchronize
300 	 * inter-port accesses to the PHY & NVM.
301 	 */
302 	switch (hw->mac.type) {
303 	case e1000_82571:
304 	case e1000_82572:
305 		swsm2 = er32(SWSM2);
306 
307 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
308 			/* Only do this for the first interface on this card */
309 			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
310 			force_clear_smbi = true;
311 		} else {
312 			force_clear_smbi = false;
313 		}
314 		break;
315 	default:
316 		force_clear_smbi = true;
317 		break;
318 	}
319 
320 	if (force_clear_smbi) {
321 		/* Make sure SWSM.SMBI is clear */
322 		swsm = er32(SWSM);
323 		if (swsm & E1000_SWSM_SMBI) {
324 			/* This bit should not be set on a first interface, and
325 			 * indicates that the bootagent or EFI code has
326 			 * improperly left this bit enabled
327 			 */
328 			e_dbg("Please update your 82571 Bootagent\n");
329 		}
330 		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
331 	}
332 
333 	/* Initialize device specific counter of SMBI acquisition timeouts. */
334 	hw->dev_spec.e82571.smb_counter = 0;
335 
336 	return 0;
337 }
338 
339 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
340 {
341 	struct e1000_hw *hw = &adapter->hw;
342 	static int global_quad_port_a;	/* global port a indication */
343 	struct pci_dev *pdev = adapter->pdev;
344 	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
345 	s32 rc;
346 
347 	rc = e1000_init_mac_params_82571(hw);
348 	if (rc)
349 		return rc;
350 
351 	rc = e1000_init_nvm_params_82571(hw);
352 	if (rc)
353 		return rc;
354 
355 	rc = e1000_init_phy_params_82571(hw);
356 	if (rc)
357 		return rc;
358 
359 	/* tag quad port adapters first, it's used below */
360 	switch (pdev->device) {
361 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
362 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
363 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
364 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
365 		adapter->flags |= FLAG_IS_QUAD_PORT;
366 		/* mark the first port */
367 		if (global_quad_port_a == 0)
368 			adapter->flags |= FLAG_IS_QUAD_PORT_A;
369 		/* Reset for multiple quad port adapters */
370 		global_quad_port_a++;
371 		if (global_quad_port_a == 4)
372 			global_quad_port_a = 0;
373 		break;
374 	default:
375 		break;
376 	}
377 
378 	switch (adapter->hw.mac.type) {
379 	case e1000_82571:
380 		/* these dual ports don't have WoL on port B at all */
381 		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
382 		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
383 		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
384 		    (is_port_b))
385 			adapter->flags &= ~FLAG_HAS_WOL;
386 		/* quad ports only support WoL on port A */
387 		if (adapter->flags & FLAG_IS_QUAD_PORT &&
388 		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
389 			adapter->flags &= ~FLAG_HAS_WOL;
390 		/* Does not support WoL on any port */
391 		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
392 			adapter->flags &= ~FLAG_HAS_WOL;
393 		break;
394 	case e1000_82573:
395 		if (pdev->device == E1000_DEV_ID_82573L) {
396 			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
397 			adapter->max_hw_frame_size = DEFAULT_JUMBO;
398 		}
399 		break;
400 	default:
401 		break;
402 	}
403 
404 	return 0;
405 }
406 
407 /**
408  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
409  *  @hw: pointer to the HW structure
410  *
411  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
412  *  revision in the hardware structure.
413  **/
414 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
415 {
416 	struct e1000_phy_info *phy = &hw->phy;
417 	s32 ret_val;
418 	u16 phy_id = 0;
419 
420 	switch (hw->mac.type) {
421 	case e1000_82571:
422 	case e1000_82572:
423 		/* The 82571 firmware may still be configuring the PHY.
424 		 * In this case, we cannot access the PHY until the
425 		 * configuration is done.  So we explicitly set the
426 		 * PHY ID.
427 		 */
428 		phy->id = IGP01E1000_I_PHY_ID;
429 		break;
430 	case e1000_82573:
431 		return e1000e_get_phy_id(hw);
432 		break;
433 	case e1000_82574:
434 	case e1000_82583:
435 		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
436 		if (ret_val)
437 			return ret_val;
438 
439 		phy->id = (u32)(phy_id << 16);
440 		usleep_range(20, 40);
441 		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
442 		if (ret_val)
443 			return ret_val;
444 
445 		phy->id |= (u32)(phy_id);
446 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
447 		break;
448 	default:
449 		return -E1000_ERR_PHY;
450 		break;
451 	}
452 
453 	return 0;
454 }
455 
456 /**
457  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
458  *  @hw: pointer to the HW structure
459  *
460  *  Acquire the HW semaphore to access the PHY or NVM
461  **/
462 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
463 {
464 	u32 swsm;
465 	s32 sw_timeout = hw->nvm.word_size + 1;
466 	s32 fw_timeout = hw->nvm.word_size + 1;
467 	s32 i = 0;
468 
469 	/* If we have timedout 3 times on trying to acquire
470 	 * the inter-port SMBI semaphore, there is old code
471 	 * operating on the other port, and it is not
472 	 * releasing SMBI. Modify the number of times that
473 	 * we try for the semaphore to interwork with this
474 	 * older code.
475 	 */
476 	if (hw->dev_spec.e82571.smb_counter > 2)
477 		sw_timeout = 1;
478 
479 	/* Get the SW semaphore */
480 	while (i < sw_timeout) {
481 		swsm = er32(SWSM);
482 		if (!(swsm & E1000_SWSM_SMBI))
483 			break;
484 
485 		usleep_range(50, 100);
486 		i++;
487 	}
488 
489 	if (i == sw_timeout) {
490 		e_dbg("Driver can't access device - SMBI bit is set.\n");
491 		hw->dev_spec.e82571.smb_counter++;
492 	}
493 	/* Get the FW semaphore. */
494 	for (i = 0; i < fw_timeout; i++) {
495 		swsm = er32(SWSM);
496 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
497 
498 		/* Semaphore acquired if bit latched */
499 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
500 			break;
501 
502 		usleep_range(50, 100);
503 	}
504 
505 	if (i == fw_timeout) {
506 		/* Release semaphores */
507 		e1000_put_hw_semaphore_82571(hw);
508 		e_dbg("Driver can't access the NVM\n");
509 		return -E1000_ERR_NVM;
510 	}
511 
512 	return 0;
513 }
514 
515 /**
516  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
517  *  @hw: pointer to the HW structure
518  *
519  *  Release hardware semaphore used to access the PHY or NVM
520  **/
521 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
522 {
523 	u32 swsm;
524 
525 	swsm = er32(SWSM);
526 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
527 	ew32(SWSM, swsm);
528 }
529 
530 /**
531  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
532  *  @hw: pointer to the HW structure
533  *
534  *  Acquire the HW semaphore during reset.
535  *
536  **/
537 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
538 {
539 	u32 extcnf_ctrl;
540 	s32 i = 0;
541 
542 	extcnf_ctrl = er32(EXTCNF_CTRL);
543 	do {
544 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
545 		ew32(EXTCNF_CTRL, extcnf_ctrl);
546 		extcnf_ctrl = er32(EXTCNF_CTRL);
547 
548 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
549 			break;
550 
551 		usleep_range(2000, 4000);
552 		i++;
553 	} while (i < MDIO_OWNERSHIP_TIMEOUT);
554 
555 	if (i == MDIO_OWNERSHIP_TIMEOUT) {
556 		/* Release semaphores */
557 		e1000_put_hw_semaphore_82573(hw);
558 		e_dbg("Driver can't access the PHY\n");
559 		return -E1000_ERR_PHY;
560 	}
561 
562 	return 0;
563 }
564 
565 /**
566  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
567  *  @hw: pointer to the HW structure
568  *
569  *  Release hardware semaphore used during reset.
570  *
571  **/
572 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
573 {
574 	u32 extcnf_ctrl;
575 
576 	extcnf_ctrl = er32(EXTCNF_CTRL);
577 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
578 	ew32(EXTCNF_CTRL, extcnf_ctrl);
579 }
580 
581 static DEFINE_MUTEX(swflag_mutex);
582 
583 /**
584  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
585  *  @hw: pointer to the HW structure
586  *
587  *  Acquire the HW semaphore to access the PHY or NVM.
588  *
589  **/
590 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
591 {
592 	s32 ret_val;
593 
594 	mutex_lock(&swflag_mutex);
595 	ret_val = e1000_get_hw_semaphore_82573(hw);
596 	if (ret_val)
597 		mutex_unlock(&swflag_mutex);
598 	return ret_val;
599 }
600 
601 /**
602  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
603  *  @hw: pointer to the HW structure
604  *
605  *  Release hardware semaphore used to access the PHY or NVM
606  *
607  **/
608 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
609 {
610 	e1000_put_hw_semaphore_82573(hw);
611 	mutex_unlock(&swflag_mutex);
612 }
613 
614 /**
615  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
616  *  @hw: pointer to the HW structure
617  *  @active: true to enable LPLU, false to disable
618  *
619  *  Sets the LPLU D0 state according to the active flag.
620  *  LPLU will not be activated unless the
621  *  device autonegotiation advertisement meets standards of
622  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
623  *  This is a function pointer entry point only called by
624  *  PHY setup routines.
625  **/
626 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
627 {
628 	u32 data = er32(POEMB);
629 
630 	if (active)
631 		data |= E1000_PHY_CTRL_D0A_LPLU;
632 	else
633 		data &= ~E1000_PHY_CTRL_D0A_LPLU;
634 
635 	ew32(POEMB, data);
636 	return 0;
637 }
638 
639 /**
640  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
641  *  @hw: pointer to the HW structure
642  *  @active: boolean used to enable/disable lplu
643  *
644  *  The low power link up (lplu) state is set to the power management level D3
645  *  when active is true, else clear lplu for D3. LPLU
646  *  is used during Dx states where the power conservation is most important.
647  *  During driver activity, SmartSpeed should be enabled so performance is
648  *  maintained.
649  **/
650 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
651 {
652 	u32 data = er32(POEMB);
653 
654 	if (!active) {
655 		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
656 	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
657 		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
658 		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
659 		data |= E1000_PHY_CTRL_NOND0A_LPLU;
660 	}
661 
662 	ew32(POEMB, data);
663 	return 0;
664 }
665 
666 /**
667  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
668  *  @hw: pointer to the HW structure
669  *
670  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
671  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
672  *  for EEPROM access grant bit.  If the access grant bit is not set, release
673  *  hardware semaphore.
674  **/
675 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
676 {
677 	s32 ret_val;
678 
679 	ret_val = e1000_get_hw_semaphore_82571(hw);
680 	if (ret_val)
681 		return ret_val;
682 
683 	switch (hw->mac.type) {
684 	case e1000_82573:
685 		break;
686 	default:
687 		ret_val = e1000e_acquire_nvm(hw);
688 		break;
689 	}
690 
691 	if (ret_val)
692 		e1000_put_hw_semaphore_82571(hw);
693 
694 	return ret_val;
695 }
696 
697 /**
698  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
699  *  @hw: pointer to the HW structure
700  *
701  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
702  **/
703 static void e1000_release_nvm_82571(struct e1000_hw *hw)
704 {
705 	e1000e_release_nvm(hw);
706 	e1000_put_hw_semaphore_82571(hw);
707 }
708 
709 /**
710  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
711  *  @hw: pointer to the HW structure
712  *  @offset: offset within the EEPROM to be written to
713  *  @words: number of words to write
714  *  @data: 16 bit word(s) to be written to the EEPROM
715  *
716  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
717  *
718  *  If e1000e_update_nvm_checksum is not called after this function, the
719  *  EEPROM will most likely contain an invalid checksum.
720  **/
721 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
722 				 u16 *data)
723 {
724 	s32 ret_val;
725 
726 	switch (hw->mac.type) {
727 	case e1000_82573:
728 	case e1000_82574:
729 	case e1000_82583:
730 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
731 		break;
732 	case e1000_82571:
733 	case e1000_82572:
734 		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
735 		break;
736 	default:
737 		ret_val = -E1000_ERR_NVM;
738 		break;
739 	}
740 
741 	return ret_val;
742 }
743 
744 /**
745  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
746  *  @hw: pointer to the HW structure
747  *
748  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
749  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
750  *  value to the EEPROM.
751  **/
752 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
753 {
754 	u32 eecd;
755 	s32 ret_val;
756 	u16 i;
757 
758 	ret_val = e1000e_update_nvm_checksum_generic(hw);
759 	if (ret_val)
760 		return ret_val;
761 
762 	/* If our nvm is an EEPROM, then we're done
763 	 * otherwise, commit the checksum to the flash NVM.
764 	 */
765 	if (hw->nvm.type != e1000_nvm_flash_hw)
766 		return 0;
767 
768 	/* Check for pending operations. */
769 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
770 		usleep_range(1000, 2000);
771 		if (!(er32(EECD) & E1000_EECD_FLUPD))
772 			break;
773 	}
774 
775 	if (i == E1000_FLASH_UPDATES)
776 		return -E1000_ERR_NVM;
777 
778 	/* Reset the firmware if using STM opcode. */
779 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
780 		/* The enabling of and the actual reset must be done
781 		 * in two write cycles.
782 		 */
783 		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
784 		e1e_flush();
785 		ew32(HICR, E1000_HICR_FW_RESET);
786 	}
787 
788 	/* Commit the write to flash */
789 	eecd = er32(EECD) | E1000_EECD_FLUPD;
790 	ew32(EECD, eecd);
791 
792 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
793 		usleep_range(1000, 2000);
794 		if (!(er32(EECD) & E1000_EECD_FLUPD))
795 			break;
796 	}
797 
798 	if (i == E1000_FLASH_UPDATES)
799 		return -E1000_ERR_NVM;
800 
801 	return 0;
802 }
803 
804 /**
805  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
806  *  @hw: pointer to the HW structure
807  *
808  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
809  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
810  **/
811 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
812 {
813 	if (hw->nvm.type == e1000_nvm_flash_hw)
814 		e1000_fix_nvm_checksum_82571(hw);
815 
816 	return e1000e_validate_nvm_checksum_generic(hw);
817 }
818 
819 /**
820  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
821  *  @hw: pointer to the HW structure
822  *  @offset: offset within the EEPROM to be written to
823  *  @words: number of words to write
824  *  @data: 16 bit word(s) to be written to the EEPROM
825  *
826  *  After checking for invalid values, poll the EEPROM to ensure the previous
827  *  command has completed before trying to write the next word.  After write
828  *  poll for completion.
829  *
830  *  If e1000e_update_nvm_checksum is not called after this function, the
831  *  EEPROM will most likely contain an invalid checksum.
832  **/
833 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
834 				      u16 words, u16 *data)
835 {
836 	struct e1000_nvm_info *nvm = &hw->nvm;
837 	u32 i, eewr = 0;
838 	s32 ret_val = 0;
839 
840 	/* A check for invalid values:  offset too large, too many words,
841 	 * and not enough words.
842 	 */
843 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
844 	    (words == 0)) {
845 		e_dbg("nvm parameter(s) out of bounds\n");
846 		return -E1000_ERR_NVM;
847 	}
848 
849 	for (i = 0; i < words; i++) {
850 		eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
851 			((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
852 			E1000_NVM_RW_REG_START);
853 
854 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
855 		if (ret_val)
856 			break;
857 
858 		ew32(EEWR, eewr);
859 
860 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
861 		if (ret_val)
862 			break;
863 	}
864 
865 	return ret_val;
866 }
867 
868 /**
869  *  e1000_get_cfg_done_82571 - Poll for configuration done
870  *  @hw: pointer to the HW structure
871  *
872  *  Reads the management control register for the config done bit to be set.
873  **/
874 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
875 {
876 	s32 timeout = PHY_CFG_TIMEOUT;
877 
878 	while (timeout) {
879 		if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
880 			break;
881 		usleep_range(1000, 2000);
882 		timeout--;
883 	}
884 	if (!timeout) {
885 		e_dbg("MNG configuration cycle has not completed.\n");
886 		return -E1000_ERR_RESET;
887 	}
888 
889 	return 0;
890 }
891 
892 /**
893  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
894  *  @hw: pointer to the HW structure
895  *  @active: true to enable LPLU, false to disable
896  *
897  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
898  *  this function also disables smart speed and vice versa.  LPLU will not be
899  *  activated unless the device autonegotiation advertisement meets standards
900  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
901  *  pointer entry point only called by PHY setup routines.
902  **/
903 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
904 {
905 	struct e1000_phy_info *phy = &hw->phy;
906 	s32 ret_val;
907 	u16 data;
908 
909 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
910 	if (ret_val)
911 		return ret_val;
912 
913 	if (active) {
914 		data |= IGP02E1000_PM_D0_LPLU;
915 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
916 		if (ret_val)
917 			return ret_val;
918 
919 		/* When LPLU is enabled, we should disable SmartSpeed */
920 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
921 		if (ret_val)
922 			return ret_val;
923 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
924 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
925 		if (ret_val)
926 			return ret_val;
927 	} else {
928 		data &= ~IGP02E1000_PM_D0_LPLU;
929 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
930 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
931 		 * during Dx states where the power conservation is most
932 		 * important.  During driver activity we should enable
933 		 * SmartSpeed, so performance is maintained.
934 		 */
935 		if (phy->smart_speed == e1000_smart_speed_on) {
936 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
937 					   &data);
938 			if (ret_val)
939 				return ret_val;
940 
941 			data |= IGP01E1000_PSCFR_SMART_SPEED;
942 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
943 					   data);
944 			if (ret_val)
945 				return ret_val;
946 		} else if (phy->smart_speed == e1000_smart_speed_off) {
947 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
948 					   &data);
949 			if (ret_val)
950 				return ret_val;
951 
952 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
953 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
954 					   data);
955 			if (ret_val)
956 				return ret_val;
957 		}
958 	}
959 
960 	return 0;
961 }
962 
963 /**
964  *  e1000_reset_hw_82571 - Reset hardware
965  *  @hw: pointer to the HW structure
966  *
967  *  This resets the hardware into a known state.
968  **/
969 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
970 {
971 	u32 ctrl, ctrl_ext, eecd, tctl;
972 	s32 ret_val;
973 
974 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
975 	 * on the last TLP read/write transaction when MAC is reset.
976 	 */
977 	ret_val = e1000e_disable_pcie_master(hw);
978 	if (ret_val)
979 		e_dbg("PCI-E Master disable polling has failed.\n");
980 
981 	e_dbg("Masking off all interrupts\n");
982 	ew32(IMC, 0xffffffff);
983 
984 	ew32(RCTL, 0);
985 	tctl = er32(TCTL);
986 	tctl &= ~E1000_TCTL_EN;
987 	ew32(TCTL, tctl);
988 	e1e_flush();
989 
990 	usleep_range(10000, 20000);
991 
992 	/* Must acquire the MDIO ownership before MAC reset.
993 	 * Ownership defaults to firmware after a reset.
994 	 */
995 	switch (hw->mac.type) {
996 	case e1000_82573:
997 		ret_val = e1000_get_hw_semaphore_82573(hw);
998 		break;
999 	case e1000_82574:
1000 	case e1000_82583:
1001 		ret_val = e1000_get_hw_semaphore_82574(hw);
1002 		break;
1003 	default:
1004 		break;
1005 	}
1006 
1007 	ctrl = er32(CTRL);
1008 
1009 	e_dbg("Issuing a global reset to MAC\n");
1010 	ew32(CTRL, ctrl | E1000_CTRL_RST);
1011 
1012 	/* Must release MDIO ownership and mutex after MAC reset. */
1013 	switch (hw->mac.type) {
1014 	case e1000_82573:
1015 		/* Release mutex only if the hw semaphore is acquired */
1016 		if (!ret_val)
1017 			e1000_put_hw_semaphore_82573(hw);
1018 		break;
1019 	case e1000_82574:
1020 	case e1000_82583:
1021 		/* Release mutex only if the hw semaphore is acquired */
1022 		if (!ret_val)
1023 			e1000_put_hw_semaphore_82574(hw);
1024 		break;
1025 	default:
1026 		break;
1027 	}
1028 
1029 	if (hw->nvm.type == e1000_nvm_flash_hw) {
1030 		usleep_range(10, 20);
1031 		ctrl_ext = er32(CTRL_EXT);
1032 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1033 		ew32(CTRL_EXT, ctrl_ext);
1034 		e1e_flush();
1035 	}
1036 
1037 	ret_val = e1000e_get_auto_rd_done(hw);
1038 	if (ret_val)
1039 		/* We don't want to continue accessing MAC registers. */
1040 		return ret_val;
1041 
1042 	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1043 	 * Need to wait for Phy configuration completion before accessing
1044 	 * NVM and Phy.
1045 	 */
1046 
1047 	switch (hw->mac.type) {
1048 	case e1000_82571:
1049 	case e1000_82572:
1050 		/* REQ and GNT bits need to be cleared when using AUTO_RD
1051 		 * to access the EEPROM.
1052 		 */
1053 		eecd = er32(EECD);
1054 		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1055 		ew32(EECD, eecd);
1056 		break;
1057 	case e1000_82573:
1058 	case e1000_82574:
1059 	case e1000_82583:
1060 		msleep(25);
1061 		break;
1062 	default:
1063 		break;
1064 	}
1065 
1066 	/* Clear any pending interrupt events. */
1067 	ew32(IMC, 0xffffffff);
1068 	er32(ICR);
1069 
1070 	if (hw->mac.type == e1000_82571) {
1071 		/* Install any alternate MAC address into RAR0 */
1072 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1073 		if (ret_val)
1074 			return ret_val;
1075 
1076 		e1000e_set_laa_state_82571(hw, true);
1077 	}
1078 
1079 	/* Reinitialize the 82571 serdes link state machine */
1080 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
1081 		hw->mac.serdes_link_state = e1000_serdes_link_down;
1082 
1083 	return 0;
1084 }
1085 
1086 /**
1087  *  e1000_init_hw_82571 - Initialize hardware
1088  *  @hw: pointer to the HW structure
1089  *
1090  *  This inits the hardware readying it for operation.
1091  **/
1092 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1093 {
1094 	struct e1000_mac_info *mac = &hw->mac;
1095 	u32 reg_data;
1096 	s32 ret_val;
1097 	u16 i, rar_count = mac->rar_entry_count;
1098 
1099 	e1000_initialize_hw_bits_82571(hw);
1100 
1101 	/* Initialize identification LED */
1102 	ret_val = mac->ops.id_led_init(hw);
1103 	/* An error is not fatal and we should not stop init due to this */
1104 	if (ret_val)
1105 		e_dbg("Error initializing identification LED\n");
1106 
1107 	/* Disabling VLAN filtering */
1108 	e_dbg("Initializing the IEEE VLAN\n");
1109 	mac->ops.clear_vfta(hw);
1110 
1111 	/* Setup the receive address.
1112 	 * If, however, a locally administered address was assigned to the
1113 	 * 82571, we must reserve a RAR for it to work around an issue where
1114 	 * resetting one port will reload the MAC on the other port.
1115 	 */
1116 	if (e1000e_get_laa_state_82571(hw))
1117 		rar_count--;
1118 	e1000e_init_rx_addrs(hw, rar_count);
1119 
1120 	/* Zero out the Multicast HASH table */
1121 	e_dbg("Zeroing the MTA\n");
1122 	for (i = 0; i < mac->mta_reg_count; i++)
1123 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1124 
1125 	/* Setup link and flow control */
1126 	ret_val = mac->ops.setup_link(hw);
1127 
1128 	/* Set the transmit descriptor write-back policy */
1129 	reg_data = er32(TXDCTL(0));
1130 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1131 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1132 	ew32(TXDCTL(0), reg_data);
1133 
1134 	/* ...for both queues. */
1135 	switch (mac->type) {
1136 	case e1000_82573:
1137 		e1000e_enable_tx_pkt_filtering(hw);
1138 		/* fall through */
1139 	case e1000_82574:
1140 	case e1000_82583:
1141 		reg_data = er32(GCR);
1142 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1143 		ew32(GCR, reg_data);
1144 		break;
1145 	default:
1146 		reg_data = er32(TXDCTL(1));
1147 		reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1148 			    E1000_TXDCTL_FULL_TX_DESC_WB |
1149 			    E1000_TXDCTL_COUNT_DESC);
1150 		ew32(TXDCTL(1), reg_data);
1151 		break;
1152 	}
1153 
1154 	/* Clear all of the statistics registers (clear on read).  It is
1155 	 * important that we do this after we have tried to establish link
1156 	 * because the symbol error count will increment wildly if there
1157 	 * is no link.
1158 	 */
1159 	e1000_clear_hw_cntrs_82571(hw);
1160 
1161 	return ret_val;
1162 }
1163 
1164 /**
1165  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1166  *  @hw: pointer to the HW structure
1167  *
1168  *  Initializes required hardware-dependent bits needed for normal operation.
1169  **/
1170 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1171 {
1172 	u32 reg;
1173 
1174 	/* Transmit Descriptor Control 0 */
1175 	reg = er32(TXDCTL(0));
1176 	reg |= (1 << 22);
1177 	ew32(TXDCTL(0), reg);
1178 
1179 	/* Transmit Descriptor Control 1 */
1180 	reg = er32(TXDCTL(1));
1181 	reg |= (1 << 22);
1182 	ew32(TXDCTL(1), reg);
1183 
1184 	/* Transmit Arbitration Control 0 */
1185 	reg = er32(TARC(0));
1186 	reg &= ~(0xF << 27);	/* 30:27 */
1187 	switch (hw->mac.type) {
1188 	case e1000_82571:
1189 	case e1000_82572:
1190 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1191 		break;
1192 	case e1000_82574:
1193 	case e1000_82583:
1194 		reg |= (1 << 26);
1195 		break;
1196 	default:
1197 		break;
1198 	}
1199 	ew32(TARC(0), reg);
1200 
1201 	/* Transmit Arbitration Control 1 */
1202 	reg = er32(TARC(1));
1203 	switch (hw->mac.type) {
1204 	case e1000_82571:
1205 	case e1000_82572:
1206 		reg &= ~((1 << 29) | (1 << 30));
1207 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1208 		if (er32(TCTL) & E1000_TCTL_MULR)
1209 			reg &= ~(1 << 28);
1210 		else
1211 			reg |= (1 << 28);
1212 		ew32(TARC(1), reg);
1213 		break;
1214 	default:
1215 		break;
1216 	}
1217 
1218 	/* Device Control */
1219 	switch (hw->mac.type) {
1220 	case e1000_82573:
1221 	case e1000_82574:
1222 	case e1000_82583:
1223 		reg = er32(CTRL);
1224 		reg &= ~(1 << 29);
1225 		ew32(CTRL, reg);
1226 		break;
1227 	default:
1228 		break;
1229 	}
1230 
1231 	/* Extended Device Control */
1232 	switch (hw->mac.type) {
1233 	case e1000_82573:
1234 	case e1000_82574:
1235 	case e1000_82583:
1236 		reg = er32(CTRL_EXT);
1237 		reg &= ~(1 << 23);
1238 		reg |= (1 << 22);
1239 		ew32(CTRL_EXT, reg);
1240 		break;
1241 	default:
1242 		break;
1243 	}
1244 
1245 	if (hw->mac.type == e1000_82571) {
1246 		reg = er32(PBA_ECC);
1247 		reg |= E1000_PBA_ECC_CORR_EN;
1248 		ew32(PBA_ECC, reg);
1249 	}
1250 
1251 	/* Workaround for hardware errata.
1252 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1253 	 */
1254 	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1255 		reg = er32(CTRL_EXT);
1256 		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1257 		ew32(CTRL_EXT, reg);
1258 	}
1259 
1260 	/* Disable IPv6 extension header parsing because some malformed
1261 	 * IPv6 headers can hang the Rx.
1262 	 */
1263 	if (hw->mac.type <= e1000_82573) {
1264 		reg = er32(RFCTL);
1265 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1266 		ew32(RFCTL, reg);
1267 	}
1268 
1269 	/* PCI-Ex Control Registers */
1270 	switch (hw->mac.type) {
1271 	case e1000_82574:
1272 	case e1000_82583:
1273 		reg = er32(GCR);
1274 		reg |= (1 << 22);
1275 		ew32(GCR, reg);
1276 
1277 		/* Workaround for hardware errata.
1278 		 * apply workaround for hardware errata documented in errata
1279 		 * docs Fixes issue where some error prone or unreliable PCIe
1280 		 * completions are occurring, particularly with ASPM enabled.
1281 		 * Without fix, issue can cause Tx timeouts.
1282 		 */
1283 		reg = er32(GCR2);
1284 		reg |= 1;
1285 		ew32(GCR2, reg);
1286 		break;
1287 	default:
1288 		break;
1289 	}
1290 }
1291 
1292 /**
1293  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1294  *  @hw: pointer to the HW structure
1295  *
1296  *  Clears the register array which contains the VLAN filter table by
1297  *  setting all the values to 0.
1298  **/
1299 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1300 {
1301 	u32 offset;
1302 	u32 vfta_value = 0;
1303 	u32 vfta_offset = 0;
1304 	u32 vfta_bit_in_reg = 0;
1305 
1306 	switch (hw->mac.type) {
1307 	case e1000_82573:
1308 	case e1000_82574:
1309 	case e1000_82583:
1310 		if (hw->mng_cookie.vlan_id != 0) {
1311 			/* The VFTA is a 4096b bit-field, each identifying
1312 			 * a single VLAN ID.  The following operations
1313 			 * determine which 32b entry (i.e. offset) into the
1314 			 * array we want to set the VLAN ID (i.e. bit) of
1315 			 * the manageability unit.
1316 			 */
1317 			vfta_offset = (hw->mng_cookie.vlan_id >>
1318 				       E1000_VFTA_ENTRY_SHIFT) &
1319 			    E1000_VFTA_ENTRY_MASK;
1320 			vfta_bit_in_reg =
1321 			    1 << (hw->mng_cookie.vlan_id &
1322 				  E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1323 		}
1324 		break;
1325 	default:
1326 		break;
1327 	}
1328 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1329 		/* If the offset we want to clear is the same offset of the
1330 		 * manageability VLAN ID, then clear all bits except that of
1331 		 * the manageability unit.
1332 		 */
1333 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1334 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1335 		e1e_flush();
1336 	}
1337 }
1338 
1339 /**
1340  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1341  *  @hw: pointer to the HW structure
1342  *
1343  *  Reads the NVM Initialization Control Word 2 and returns true
1344  *  (>0) if any manageability is enabled, else false (0).
1345  **/
1346 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1347 {
1348 	u16 data;
1349 
1350 	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1351 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1352 }
1353 
1354 /**
1355  *  e1000_led_on_82574 - Turn LED on
1356  *  @hw: pointer to the HW structure
1357  *
1358  *  Turn LED on.
1359  **/
1360 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1361 {
1362 	u32 ctrl;
1363 	u32 i;
1364 
1365 	ctrl = hw->mac.ledctl_mode2;
1366 	if (!(E1000_STATUS_LU & er32(STATUS))) {
1367 		/* If no link, then turn LED on by setting the invert bit
1368 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1369 		 */
1370 		for (i = 0; i < 4; i++)
1371 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1372 			    E1000_LEDCTL_MODE_LED_ON)
1373 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1374 	}
1375 	ew32(LEDCTL, ctrl);
1376 
1377 	return 0;
1378 }
1379 
1380 /**
1381  *  e1000_check_phy_82574 - check 82574 phy hung state
1382  *  @hw: pointer to the HW structure
1383  *
1384  *  Returns whether phy is hung or not
1385  **/
1386 bool e1000_check_phy_82574(struct e1000_hw *hw)
1387 {
1388 	u16 status_1kbt = 0;
1389 	u16 receive_errors = 0;
1390 	s32 ret_val;
1391 
1392 	/* Read PHY Receive Error counter first, if its is max - all F's then
1393 	 * read the Base1000T status register If both are max then PHY is hung.
1394 	 */
1395 	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1396 	if (ret_val)
1397 		return false;
1398 	if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1399 		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1400 		if (ret_val)
1401 			return false;
1402 		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1403 		    E1000_IDLE_ERROR_COUNT_MASK)
1404 			return true;
1405 	}
1406 
1407 	return false;
1408 }
1409 
1410 /**
1411  *  e1000_setup_link_82571 - Setup flow control and link settings
1412  *  @hw: pointer to the HW structure
1413  *
1414  *  Determines which flow control settings to use, then configures flow
1415  *  control.  Calls the appropriate media-specific link configuration
1416  *  function.  Assuming the adapter has a valid link partner, a valid link
1417  *  should be established.  Assumes the hardware has previously been reset
1418  *  and the transmitter and receiver are not enabled.
1419  **/
1420 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1421 {
1422 	/* 82573 does not have a word in the NVM to determine
1423 	 * the default flow control setting, so we explicitly
1424 	 * set it to full.
1425 	 */
1426 	switch (hw->mac.type) {
1427 	case e1000_82573:
1428 	case e1000_82574:
1429 	case e1000_82583:
1430 		if (hw->fc.requested_mode == e1000_fc_default)
1431 			hw->fc.requested_mode = e1000_fc_full;
1432 		break;
1433 	default:
1434 		break;
1435 	}
1436 
1437 	return e1000e_setup_link_generic(hw);
1438 }
1439 
1440 /**
1441  *  e1000_setup_copper_link_82571 - Configure copper link settings
1442  *  @hw: pointer to the HW structure
1443  *
1444  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1445  *  for link, once link is established calls to configure collision distance
1446  *  and flow control are called.
1447  **/
1448 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1449 {
1450 	u32 ctrl;
1451 	s32 ret_val;
1452 
1453 	ctrl = er32(CTRL);
1454 	ctrl |= E1000_CTRL_SLU;
1455 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1456 	ew32(CTRL, ctrl);
1457 
1458 	switch (hw->phy.type) {
1459 	case e1000_phy_m88:
1460 	case e1000_phy_bm:
1461 		ret_val = e1000e_copper_link_setup_m88(hw);
1462 		break;
1463 	case e1000_phy_igp_2:
1464 		ret_val = e1000e_copper_link_setup_igp(hw);
1465 		break;
1466 	default:
1467 		return -E1000_ERR_PHY;
1468 		break;
1469 	}
1470 
1471 	if (ret_val)
1472 		return ret_val;
1473 
1474 	return e1000e_setup_copper_link(hw);
1475 }
1476 
1477 /**
1478  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1479  *  @hw: pointer to the HW structure
1480  *
1481  *  Configures collision distance and flow control for fiber and serdes links.
1482  *  Upon successful setup, poll for link.
1483  **/
1484 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1485 {
1486 	switch (hw->mac.type) {
1487 	case e1000_82571:
1488 	case e1000_82572:
1489 		/* If SerDes loopback mode is entered, there is no form
1490 		 * of reset to take the adapter out of that mode.  So we
1491 		 * have to explicitly take the adapter out of loopback
1492 		 * mode.  This prevents drivers from twiddling their thumbs
1493 		 * if another tool failed to take it out of loopback mode.
1494 		 */
1495 		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1496 		break;
1497 	default:
1498 		break;
1499 	}
1500 
1501 	return e1000e_setup_fiber_serdes_link(hw);
1502 }
1503 
1504 /**
1505  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1506  *  @hw: pointer to the HW structure
1507  *
1508  *  Reports the link state as up or down.
1509  *
1510  *  If autonegotiation is supported by the link partner, the link state is
1511  *  determined by the result of autonegotiation. This is the most likely case.
1512  *  If autonegotiation is not supported by the link partner, and the link
1513  *  has a valid signal, force the link up.
1514  *
1515  *  The link state is represented internally here by 4 states:
1516  *
1517  *  1) down
1518  *  2) autoneg_progress
1519  *  3) autoneg_complete (the link successfully autonegotiated)
1520  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1521  *
1522  **/
1523 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1524 {
1525 	struct e1000_mac_info *mac = &hw->mac;
1526 	u32 rxcw;
1527 	u32 ctrl;
1528 	u32 status;
1529 	u32 txcw;
1530 	u32 i;
1531 	s32 ret_val = 0;
1532 
1533 	ctrl = er32(CTRL);
1534 	status = er32(STATUS);
1535 	er32(RXCW);
1536 	/* SYNCH bit and IV bit are sticky */
1537 	usleep_range(10, 20);
1538 	rxcw = er32(RXCW);
1539 
1540 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1541 		/* Receiver is synchronized with no invalid bits.  */
1542 		switch (mac->serdes_link_state) {
1543 		case e1000_serdes_link_autoneg_complete:
1544 			if (!(status & E1000_STATUS_LU)) {
1545 				/* We have lost link, retry autoneg before
1546 				 * reporting link failure
1547 				 */
1548 				mac->serdes_link_state =
1549 				    e1000_serdes_link_autoneg_progress;
1550 				mac->serdes_has_link = false;
1551 				e_dbg("AN_UP     -> AN_PROG\n");
1552 			} else {
1553 				mac->serdes_has_link = true;
1554 			}
1555 			break;
1556 
1557 		case e1000_serdes_link_forced_up:
1558 			/* If we are receiving /C/ ordered sets, re-enable
1559 			 * auto-negotiation in the TXCW register and disable
1560 			 * forced link in the Device Control register in an
1561 			 * attempt to auto-negotiate with our link partner.
1562 			 */
1563 			if (rxcw & E1000_RXCW_C) {
1564 				/* Enable autoneg, and unforce link up */
1565 				ew32(TXCW, mac->txcw);
1566 				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1567 				mac->serdes_link_state =
1568 				    e1000_serdes_link_autoneg_progress;
1569 				mac->serdes_has_link = false;
1570 				e_dbg("FORCED_UP -> AN_PROG\n");
1571 			} else {
1572 				mac->serdes_has_link = true;
1573 			}
1574 			break;
1575 
1576 		case e1000_serdes_link_autoneg_progress:
1577 			if (rxcw & E1000_RXCW_C) {
1578 				/* We received /C/ ordered sets, meaning the
1579 				 * link partner has autonegotiated, and we can
1580 				 * trust the Link Up (LU) status bit.
1581 				 */
1582 				if (status & E1000_STATUS_LU) {
1583 					mac->serdes_link_state =
1584 					    e1000_serdes_link_autoneg_complete;
1585 					e_dbg("AN_PROG   -> AN_UP\n");
1586 					mac->serdes_has_link = true;
1587 				} else {
1588 					/* Autoneg completed, but failed. */
1589 					mac->serdes_link_state =
1590 					    e1000_serdes_link_down;
1591 					e_dbg("AN_PROG   -> DOWN\n");
1592 				}
1593 			} else {
1594 				/* The link partner did not autoneg.
1595 				 * Force link up and full duplex, and change
1596 				 * state to forced.
1597 				 */
1598 				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1599 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1600 				ew32(CTRL, ctrl);
1601 
1602 				/* Configure Flow Control after link up. */
1603 				ret_val = e1000e_config_fc_after_link_up(hw);
1604 				if (ret_val) {
1605 					e_dbg("Error config flow control\n");
1606 					break;
1607 				}
1608 				mac->serdes_link_state =
1609 				    e1000_serdes_link_forced_up;
1610 				mac->serdes_has_link = true;
1611 				e_dbg("AN_PROG   -> FORCED_UP\n");
1612 			}
1613 			break;
1614 
1615 		case e1000_serdes_link_down:
1616 		default:
1617 			/* The link was down but the receiver has now gained
1618 			 * valid sync, so lets see if we can bring the link
1619 			 * up.
1620 			 */
1621 			ew32(TXCW, mac->txcw);
1622 			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1623 			mac->serdes_link_state =
1624 			    e1000_serdes_link_autoneg_progress;
1625 			mac->serdes_has_link = false;
1626 			e_dbg("DOWN      -> AN_PROG\n");
1627 			break;
1628 		}
1629 	} else {
1630 		if (!(rxcw & E1000_RXCW_SYNCH)) {
1631 			mac->serdes_has_link = false;
1632 			mac->serdes_link_state = e1000_serdes_link_down;
1633 			e_dbg("ANYSTATE  -> DOWN\n");
1634 		} else {
1635 			/* Check several times, if SYNCH bit and CONFIG
1636 			 * bit both are consistently 1 then simply ignore
1637 			 * the IV bit and restart Autoneg
1638 			 */
1639 			for (i = 0; i < AN_RETRY_COUNT; i++) {
1640 				usleep_range(10, 20);
1641 				rxcw = er32(RXCW);
1642 				if ((rxcw & E1000_RXCW_SYNCH) &&
1643 				    (rxcw & E1000_RXCW_C))
1644 					continue;
1645 
1646 				if (rxcw & E1000_RXCW_IV) {
1647 					mac->serdes_has_link = false;
1648 					mac->serdes_link_state =
1649 					    e1000_serdes_link_down;
1650 					e_dbg("ANYSTATE  -> DOWN\n");
1651 					break;
1652 				}
1653 			}
1654 
1655 			if (i == AN_RETRY_COUNT) {
1656 				txcw = er32(TXCW);
1657 				txcw |= E1000_TXCW_ANE;
1658 				ew32(TXCW, txcw);
1659 				mac->serdes_link_state =
1660 				    e1000_serdes_link_autoneg_progress;
1661 				mac->serdes_has_link = false;
1662 				e_dbg("ANYSTATE  -> AN_PROG\n");
1663 			}
1664 		}
1665 	}
1666 
1667 	return ret_val;
1668 }
1669 
1670 /**
1671  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1672  *  @hw: pointer to the HW structure
1673  *  @data: pointer to the NVM (EEPROM)
1674  *
1675  *  Read the EEPROM for the current default LED configuration.  If the
1676  *  LED configuration is not valid, set to a valid LED configuration.
1677  **/
1678 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1679 {
1680 	s32 ret_val;
1681 
1682 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1683 	if (ret_val) {
1684 		e_dbg("NVM Read Error\n");
1685 		return ret_val;
1686 	}
1687 
1688 	switch (hw->mac.type) {
1689 	case e1000_82573:
1690 	case e1000_82574:
1691 	case e1000_82583:
1692 		if (*data == ID_LED_RESERVED_F746)
1693 			*data = ID_LED_DEFAULT_82573;
1694 		break;
1695 	default:
1696 		if (*data == ID_LED_RESERVED_0000 ||
1697 		    *data == ID_LED_RESERVED_FFFF)
1698 			*data = ID_LED_DEFAULT;
1699 		break;
1700 	}
1701 
1702 	return 0;
1703 }
1704 
1705 /**
1706  *  e1000e_get_laa_state_82571 - Get locally administered address state
1707  *  @hw: pointer to the HW structure
1708  *
1709  *  Retrieve and return the current locally administered address state.
1710  **/
1711 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1712 {
1713 	if (hw->mac.type != e1000_82571)
1714 		return false;
1715 
1716 	return hw->dev_spec.e82571.laa_is_present;
1717 }
1718 
1719 /**
1720  *  e1000e_set_laa_state_82571 - Set locally administered address state
1721  *  @hw: pointer to the HW structure
1722  *  @state: enable/disable locally administered address
1723  *
1724  *  Enable/Disable the current locally administered address state.
1725  **/
1726 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1727 {
1728 	if (hw->mac.type != e1000_82571)
1729 		return;
1730 
1731 	hw->dev_spec.e82571.laa_is_present = state;
1732 
1733 	/* If workaround is activated... */
1734 	if (state)
1735 		/* Hold a copy of the LAA in RAR[14] This is done so that
1736 		 * between the time RAR[0] gets clobbered and the time it
1737 		 * gets fixed, the actual LAA is in one of the RARs and no
1738 		 * incoming packets directed to this port are dropped.
1739 		 * Eventually the LAA will be in RAR[0] and RAR[14].
1740 		 */
1741 		hw->mac.ops.rar_set(hw, hw->mac.addr,
1742 				    hw->mac.rar_entry_count - 1);
1743 }
1744 
1745 /**
1746  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1747  *  @hw: pointer to the HW structure
1748  *
1749  *  Verifies that the EEPROM has completed the update.  After updating the
1750  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1751  *  the checksum fix is not implemented, we need to set the bit and update
1752  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1753  *  we need to return bad checksum.
1754  **/
1755 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1756 {
1757 	struct e1000_nvm_info *nvm = &hw->nvm;
1758 	s32 ret_val;
1759 	u16 data;
1760 
1761 	if (nvm->type != e1000_nvm_flash_hw)
1762 		return 0;
1763 
1764 	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1765 	 * 10h-12h.  Checksum may need to be fixed.
1766 	 */
1767 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1768 	if (ret_val)
1769 		return ret_val;
1770 
1771 	if (!(data & 0x10)) {
1772 		/* Read 0x23 and check bit 15.  This bit is a 1
1773 		 * when the checksum has already been fixed.  If
1774 		 * the checksum is still wrong and this bit is a
1775 		 * 1, we need to return bad checksum.  Otherwise,
1776 		 * we need to set this bit to a 1 and update the
1777 		 * checksum.
1778 		 */
1779 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1780 		if (ret_val)
1781 			return ret_val;
1782 
1783 		if (!(data & 0x8000)) {
1784 			data |= 0x8000;
1785 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1786 			if (ret_val)
1787 				return ret_val;
1788 			ret_val = e1000e_update_nvm_checksum(hw);
1789 			if (ret_val)
1790 				return ret_val;
1791 		}
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 /**
1798  *  e1000_read_mac_addr_82571 - Read device MAC address
1799  *  @hw: pointer to the HW structure
1800  **/
1801 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1802 {
1803 	if (hw->mac.type == e1000_82571) {
1804 		s32 ret_val;
1805 
1806 		/* If there's an alternate MAC address place it in RAR0
1807 		 * so that it will override the Si installed default perm
1808 		 * address.
1809 		 */
1810 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1811 		if (ret_val)
1812 			return ret_val;
1813 	}
1814 
1815 	return e1000_read_mac_addr_generic(hw);
1816 }
1817 
1818 /**
1819  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1820  * @hw: pointer to the HW structure
1821  *
1822  * In the case of a PHY power down to save power, or to turn off link during a
1823  * driver unload, or wake on lan is not enabled, remove the link.
1824  **/
1825 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1826 {
1827 	struct e1000_phy_info *phy = &hw->phy;
1828 	struct e1000_mac_info *mac = &hw->mac;
1829 
1830 	if (!phy->ops.check_reset_block)
1831 		return;
1832 
1833 	/* If the management interface is not enabled, then power down */
1834 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1835 		e1000_power_down_phy_copper(hw);
1836 }
1837 
1838 /**
1839  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1840  *  @hw: pointer to the HW structure
1841  *
1842  *  Clears the hardware counters by reading the counter registers.
1843  **/
1844 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1845 {
1846 	e1000e_clear_hw_cntrs_base(hw);
1847 
1848 	er32(PRC64);
1849 	er32(PRC127);
1850 	er32(PRC255);
1851 	er32(PRC511);
1852 	er32(PRC1023);
1853 	er32(PRC1522);
1854 	er32(PTC64);
1855 	er32(PTC127);
1856 	er32(PTC255);
1857 	er32(PTC511);
1858 	er32(PTC1023);
1859 	er32(PTC1522);
1860 
1861 	er32(ALGNERRC);
1862 	er32(RXERRC);
1863 	er32(TNCRS);
1864 	er32(CEXTERR);
1865 	er32(TSCTC);
1866 	er32(TSCTFC);
1867 
1868 	er32(MGTPRC);
1869 	er32(MGTPDC);
1870 	er32(MGTPTC);
1871 
1872 	er32(IAC);
1873 	er32(ICRXOC);
1874 
1875 	er32(ICRXPTC);
1876 	er32(ICRXATC);
1877 	er32(ICTXPTC);
1878 	er32(ICTXATC);
1879 	er32(ICTXQEC);
1880 	er32(ICTXQMTC);
1881 	er32(ICRXDMTC);
1882 }
1883 
1884 static const struct e1000_mac_operations e82571_mac_ops = {
1885 	/* .check_mng_mode: mac type dependent */
1886 	/* .check_for_link: media type dependent */
1887 	.id_led_init		= e1000e_id_led_init_generic,
1888 	.cleanup_led		= e1000e_cleanup_led_generic,
1889 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
1890 	.get_bus_info		= e1000e_get_bus_info_pcie,
1891 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1892 	/* .get_link_up_info: media type dependent */
1893 	/* .led_on: mac type dependent */
1894 	.led_off		= e1000e_led_off_generic,
1895 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1896 	.write_vfta		= e1000_write_vfta_generic,
1897 	.clear_vfta		= e1000_clear_vfta_82571,
1898 	.reset_hw		= e1000_reset_hw_82571,
1899 	.init_hw		= e1000_init_hw_82571,
1900 	.setup_link		= e1000_setup_link_82571,
1901 	/* .setup_physical_interface: media type dependent */
1902 	.setup_led		= e1000e_setup_led_generic,
1903 	.config_collision_dist	= e1000e_config_collision_dist_generic,
1904 	.read_mac_addr		= e1000_read_mac_addr_82571,
1905 	.rar_set		= e1000e_rar_set_generic,
1906 };
1907 
1908 static const struct e1000_phy_operations e82_phy_ops_igp = {
1909 	.acquire		= e1000_get_hw_semaphore_82571,
1910 	.check_polarity		= e1000_check_polarity_igp,
1911 	.check_reset_block	= e1000e_check_reset_block_generic,
1912 	.commit			= NULL,
1913 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
1914 	.get_cfg_done		= e1000_get_cfg_done_82571,
1915 	.get_cable_length	= e1000e_get_cable_length_igp_2,
1916 	.get_info		= e1000e_get_phy_info_igp,
1917 	.read_reg		= e1000e_read_phy_reg_igp,
1918 	.release		= e1000_put_hw_semaphore_82571,
1919 	.reset			= e1000e_phy_hw_reset_generic,
1920 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1921 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1922 	.write_reg		= e1000e_write_phy_reg_igp,
1923 	.cfg_on_link_up		= NULL,
1924 };
1925 
1926 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1927 	.acquire		= e1000_get_hw_semaphore_82571,
1928 	.check_polarity		= e1000_check_polarity_m88,
1929 	.check_reset_block	= e1000e_check_reset_block_generic,
1930 	.commit			= e1000e_phy_sw_reset,
1931 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1932 	.get_cfg_done		= e1000e_get_cfg_done_generic,
1933 	.get_cable_length	= e1000e_get_cable_length_m88,
1934 	.get_info		= e1000e_get_phy_info_m88,
1935 	.read_reg		= e1000e_read_phy_reg_m88,
1936 	.release		= e1000_put_hw_semaphore_82571,
1937 	.reset			= e1000e_phy_hw_reset_generic,
1938 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1939 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1940 	.write_reg		= e1000e_write_phy_reg_m88,
1941 	.cfg_on_link_up		= NULL,
1942 };
1943 
1944 static const struct e1000_phy_operations e82_phy_ops_bm = {
1945 	.acquire		= e1000_get_hw_semaphore_82571,
1946 	.check_polarity		= e1000_check_polarity_m88,
1947 	.check_reset_block	= e1000e_check_reset_block_generic,
1948 	.commit			= e1000e_phy_sw_reset,
1949 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1950 	.get_cfg_done		= e1000e_get_cfg_done_generic,
1951 	.get_cable_length	= e1000e_get_cable_length_m88,
1952 	.get_info		= e1000e_get_phy_info_m88,
1953 	.read_reg		= e1000e_read_phy_reg_bm2,
1954 	.release		= e1000_put_hw_semaphore_82571,
1955 	.reset			= e1000e_phy_hw_reset_generic,
1956 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1957 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1958 	.write_reg		= e1000e_write_phy_reg_bm2,
1959 	.cfg_on_link_up		= NULL,
1960 };
1961 
1962 static const struct e1000_nvm_operations e82571_nvm_ops = {
1963 	.acquire		= e1000_acquire_nvm_82571,
1964 	.read			= e1000e_read_nvm_eerd,
1965 	.release		= e1000_release_nvm_82571,
1966 	.reload			= e1000e_reload_nvm_generic,
1967 	.update			= e1000_update_nvm_checksum_82571,
1968 	.valid_led_default	= e1000_valid_led_default_82571,
1969 	.validate		= e1000_validate_nvm_checksum_82571,
1970 	.write			= e1000_write_nvm_82571,
1971 };
1972 
1973 const struct e1000_info e1000_82571_info = {
1974 	.mac			= e1000_82571,
1975 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1976 				  | FLAG_HAS_JUMBO_FRAMES
1977 				  | FLAG_HAS_WOL
1978 				  | FLAG_APME_IN_CTRL3
1979 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1980 				  | FLAG_HAS_SMART_POWER_DOWN
1981 				  | FLAG_RESET_OVERWRITES_LAA /* errata */
1982 				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
1983 				  | FLAG_APME_CHECK_PORT_B,
1984 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1985 				  | FLAG2_DMA_BURST,
1986 	.pba			= 38,
1987 	.max_hw_frame_size	= DEFAULT_JUMBO,
1988 	.get_variants		= e1000_get_variants_82571,
1989 	.mac_ops		= &e82571_mac_ops,
1990 	.phy_ops		= &e82_phy_ops_igp,
1991 	.nvm_ops		= &e82571_nvm_ops,
1992 };
1993 
1994 const struct e1000_info e1000_82572_info = {
1995 	.mac			= e1000_82572,
1996 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1997 				  | FLAG_HAS_JUMBO_FRAMES
1998 				  | FLAG_HAS_WOL
1999 				  | FLAG_APME_IN_CTRL3
2000 				  | FLAG_HAS_CTRLEXT_ON_LOAD
2001 				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2002 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2003 				  | FLAG2_DMA_BURST,
2004 	.pba			= 38,
2005 	.max_hw_frame_size	= DEFAULT_JUMBO,
2006 	.get_variants		= e1000_get_variants_82571,
2007 	.mac_ops		= &e82571_mac_ops,
2008 	.phy_ops		= &e82_phy_ops_igp,
2009 	.nvm_ops		= &e82571_nvm_ops,
2010 };
2011 
2012 const struct e1000_info e1000_82573_info = {
2013 	.mac			= e1000_82573,
2014 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2015 				  | FLAG_HAS_WOL
2016 				  | FLAG_APME_IN_CTRL3
2017 				  | FLAG_HAS_SMART_POWER_DOWN
2018 				  | FLAG_HAS_AMT
2019 				  | FLAG_HAS_SWSM_ON_LOAD,
2020 	.flags2			= FLAG2_DISABLE_ASPM_L1
2021 				  | FLAG2_DISABLE_ASPM_L0S,
2022 	.pba			= 20,
2023 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
2024 	.get_variants		= e1000_get_variants_82571,
2025 	.mac_ops		= &e82571_mac_ops,
2026 	.phy_ops		= &e82_phy_ops_m88,
2027 	.nvm_ops		= &e82571_nvm_ops,
2028 };
2029 
2030 const struct e1000_info e1000_82574_info = {
2031 	.mac			= e1000_82574,
2032 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2033 				  | FLAG_HAS_MSIX
2034 				  | FLAG_HAS_JUMBO_FRAMES
2035 				  | FLAG_HAS_WOL
2036 				  | FLAG_HAS_HW_TIMESTAMP
2037 				  | FLAG_APME_IN_CTRL3
2038 				  | FLAG_HAS_SMART_POWER_DOWN
2039 				  | FLAG_HAS_AMT
2040 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2041 	.flags2			 = FLAG2_CHECK_PHY_HANG
2042 				  | FLAG2_DISABLE_ASPM_L0S
2043 				  | FLAG2_DISABLE_ASPM_L1
2044 				  | FLAG2_NO_DISABLE_RX
2045 				  | FLAG2_DMA_BURST,
2046 	.pba			= 32,
2047 	.max_hw_frame_size	= DEFAULT_JUMBO,
2048 	.get_variants		= e1000_get_variants_82571,
2049 	.mac_ops		= &e82571_mac_ops,
2050 	.phy_ops		= &e82_phy_ops_bm,
2051 	.nvm_ops		= &e82571_nvm_ops,
2052 };
2053 
2054 const struct e1000_info e1000_82583_info = {
2055 	.mac			= e1000_82583,
2056 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2057 				  | FLAG_HAS_WOL
2058 				  | FLAG_HAS_HW_TIMESTAMP
2059 				  | FLAG_APME_IN_CTRL3
2060 				  | FLAG_HAS_SMART_POWER_DOWN
2061 				  | FLAG_HAS_AMT
2062 				  | FLAG_HAS_JUMBO_FRAMES
2063 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2064 	.flags2			= FLAG2_DISABLE_ASPM_L0S
2065 				  | FLAG2_DISABLE_ASPM_L1
2066 				  | FLAG2_NO_DISABLE_RX,
2067 	.pba			= 32,
2068 	.max_hw_frame_size	= DEFAULT_JUMBO,
2069 	.get_variants		= e1000_get_variants_82571,
2070 	.mac_ops		= &e82571_mac_ops,
2071 	.phy_ops		= &e82_phy_ops_bm,
2072 	.nvm_ops		= &e82571_nvm_ops,
2073 };
2074