1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45 
46 #include "e1000.h"
47 
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 			      (ID_LED_OFF1_ON2  <<  8) | \
51 			      (ID_LED_DEF1_DEF2 <<  4) | \
52 			      (ID_LED_DEF1_DEF2))
53 
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT          5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS          10
57 #define E1000_IDLE_ERROR_COUNT_MASK     0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER     21
59 #define E1000_RECEIVE_ERROR_MAX         0xFFFF
60 
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62 
63 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68 				      u16 words, u16 *data);
69 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75 static s32 e1000_led_on_82574(struct e1000_hw *hw);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83 
84 /**
85  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
86  *  @hw: pointer to the HW structure
87  **/
88 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89 {
90 	struct e1000_phy_info *phy = &hw->phy;
91 	s32 ret_val;
92 
93 	if (hw->phy.media_type != e1000_media_type_copper) {
94 		phy->type = e1000_phy_none;
95 		return 0;
96 	}
97 
98 	phy->addr			 = 1;
99 	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100 	phy->reset_delay_us		 = 100;
101 
102 	phy->ops.power_up		 = e1000_power_up_phy_copper;
103 	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;
104 
105 	switch (hw->mac.type) {
106 	case e1000_82571:
107 	case e1000_82572:
108 		phy->type		 = e1000_phy_igp_2;
109 		break;
110 	case e1000_82573:
111 		phy->type		 = e1000_phy_m88;
112 		break;
113 	case e1000_82574:
114 	case e1000_82583:
115 		phy->type		 = e1000_phy_bm;
116 		phy->ops.acquire = e1000_get_hw_semaphore_82574;
117 		phy->ops.release = e1000_put_hw_semaphore_82574;
118 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120 		break;
121 	default:
122 		return -E1000_ERR_PHY;
123 		break;
124 	}
125 
126 	/* This can only be done after all function pointers are setup. */
127 	ret_val = e1000_get_phy_id_82571(hw);
128 	if (ret_val) {
129 		e_dbg("Error getting PHY ID\n");
130 		return ret_val;
131 	}
132 
133 	/* Verify phy id */
134 	switch (hw->mac.type) {
135 	case e1000_82571:
136 	case e1000_82572:
137 		if (phy->id != IGP01E1000_I_PHY_ID)
138 			ret_val = -E1000_ERR_PHY;
139 		break;
140 	case e1000_82573:
141 		if (phy->id != M88E1111_I_PHY_ID)
142 			ret_val = -E1000_ERR_PHY;
143 		break;
144 	case e1000_82574:
145 	case e1000_82583:
146 		if (phy->id != BME1000_E_PHY_ID_R2)
147 			ret_val = -E1000_ERR_PHY;
148 		break;
149 	default:
150 		ret_val = -E1000_ERR_PHY;
151 		break;
152 	}
153 
154 	if (ret_val)
155 		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156 
157 	return ret_val;
158 }
159 
160 /**
161  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
162  *  @hw: pointer to the HW structure
163  **/
164 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165 {
166 	struct e1000_nvm_info *nvm = &hw->nvm;
167 	u32 eecd = er32(EECD);
168 	u16 size;
169 
170 	nvm->opcode_bits = 8;
171 	nvm->delay_usec = 1;
172 	switch (nvm->override) {
173 	case e1000_nvm_override_spi_large:
174 		nvm->page_size = 32;
175 		nvm->address_bits = 16;
176 		break;
177 	case e1000_nvm_override_spi_small:
178 		nvm->page_size = 8;
179 		nvm->address_bits = 8;
180 		break;
181 	default:
182 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184 		break;
185 	}
186 
187 	switch (hw->mac.type) {
188 	case e1000_82573:
189 	case e1000_82574:
190 	case e1000_82583:
191 		if (((eecd >> 15) & 0x3) == 0x3) {
192 			nvm->type = e1000_nvm_flash_hw;
193 			nvm->word_size = 2048;
194 			/*
195 			 * Autonomous Flash update bit must be cleared due
196 			 * to Flash update issue.
197 			 */
198 			eecd &= ~E1000_EECD_AUPDEN;
199 			ew32(EECD, eecd);
200 			break;
201 		}
202 		/* Fall Through */
203 	default:
204 		nvm->type = e1000_nvm_eeprom_spi;
205 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206 				  E1000_EECD_SIZE_EX_SHIFT);
207 		/*
208 		 * Added to a constant, "size" becomes the left-shift value
209 		 * for setting word_size.
210 		 */
211 		size += NVM_WORD_SIZE_BASE_SHIFT;
212 
213 		/* EEPROM access above 16k is unsupported */
214 		if (size > 14)
215 			size = 14;
216 		nvm->word_size	= 1 << size;
217 		break;
218 	}
219 
220 	/* Function Pointers */
221 	switch (hw->mac.type) {
222 	case e1000_82574:
223 	case e1000_82583:
224 		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225 		nvm->ops.release = e1000_put_hw_semaphore_82574;
226 		break;
227 	default:
228 		break;
229 	}
230 
231 	return 0;
232 }
233 
234 /**
235  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
236  *  @hw: pointer to the HW structure
237  **/
238 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
239 {
240 	struct e1000_mac_info *mac = &hw->mac;
241 	u32 swsm = 0;
242 	u32 swsm2 = 0;
243 	bool force_clear_smbi = false;
244 
245 	/* Set media type and media-dependent function pointers */
246 	switch (hw->adapter->pdev->device) {
247 	case E1000_DEV_ID_82571EB_FIBER:
248 	case E1000_DEV_ID_82572EI_FIBER:
249 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
250 		hw->phy.media_type = e1000_media_type_fiber;
251 		mac->ops.setup_physical_interface =
252 		    e1000_setup_fiber_serdes_link_82571;
253 		mac->ops.check_for_link = e1000e_check_for_fiber_link;
254 		mac->ops.get_link_up_info =
255 		    e1000e_get_speed_and_duplex_fiber_serdes;
256 		break;
257 	case E1000_DEV_ID_82571EB_SERDES:
258 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
259 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
260 	case E1000_DEV_ID_82572EI_SERDES:
261 		hw->phy.media_type = e1000_media_type_internal_serdes;
262 		mac->ops.setup_physical_interface =
263 		    e1000_setup_fiber_serdes_link_82571;
264 		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
265 		mac->ops.get_link_up_info =
266 		    e1000e_get_speed_and_duplex_fiber_serdes;
267 		break;
268 	default:
269 		hw->phy.media_type = e1000_media_type_copper;
270 		mac->ops.setup_physical_interface =
271 		    e1000_setup_copper_link_82571;
272 		mac->ops.check_for_link = e1000e_check_for_copper_link;
273 		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
274 		break;
275 	}
276 
277 	/* Set mta register count */
278 	mac->mta_reg_count = 128;
279 	/* Set rar entry count */
280 	mac->rar_entry_count = E1000_RAR_ENTRIES;
281 	/* Adaptive IFS supported */
282 	mac->adaptive_ifs = true;
283 
284 	/* MAC-specific function pointers */
285 	switch (hw->mac.type) {
286 	case e1000_82573:
287 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
288 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
289 		mac->ops.led_on = e1000e_led_on_generic;
290 		mac->ops.blink_led = e1000e_blink_led_generic;
291 
292 		/* FWSM register */
293 		mac->has_fwsm = true;
294 		/*
295 		 * ARC supported; valid only if manageability features are
296 		 * enabled.
297 		 */
298 		mac->arc_subsystem_valid = !!(er32(FWSM) &
299 					      E1000_FWSM_MODE_MASK);
300 		break;
301 	case e1000_82574:
302 	case e1000_82583:
303 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
304 		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
305 		mac->ops.led_on = e1000_led_on_82574;
306 		break;
307 	default:
308 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
309 		mac->ops.led_on = e1000e_led_on_generic;
310 		mac->ops.blink_led = e1000e_blink_led_generic;
311 
312 		/* FWSM register */
313 		mac->has_fwsm = true;
314 		break;
315 	}
316 
317 	/*
318 	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
319 	 * first NVM or PHY access. This should be done for single-port
320 	 * devices, and for one port only on dual-port devices so that
321 	 * for those devices we can still use the SMBI lock to synchronize
322 	 * inter-port accesses to the PHY & NVM.
323 	 */
324 	switch (hw->mac.type) {
325 	case e1000_82571:
326 	case e1000_82572:
327 		swsm2 = er32(SWSM2);
328 
329 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
330 			/* Only do this for the first interface on this card */
331 			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
332 			force_clear_smbi = true;
333 		} else {
334 			force_clear_smbi = false;
335 		}
336 		break;
337 	default:
338 		force_clear_smbi = true;
339 		break;
340 	}
341 
342 	if (force_clear_smbi) {
343 		/* Make sure SWSM.SMBI is clear */
344 		swsm = er32(SWSM);
345 		if (swsm & E1000_SWSM_SMBI) {
346 			/* This bit should not be set on a first interface, and
347 			 * indicates that the bootagent or EFI code has
348 			 * improperly left this bit enabled
349 			 */
350 			e_dbg("Please update your 82571 Bootagent\n");
351 		}
352 		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
353 	}
354 
355 	/*
356 	 * Initialize device specific counter of SMBI acquisition
357 	 * timeouts.
358 	 */
359 	 hw->dev_spec.e82571.smb_counter = 0;
360 
361 	return 0;
362 }
363 
364 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
365 {
366 	struct e1000_hw *hw = &adapter->hw;
367 	static int global_quad_port_a; /* global port a indication */
368 	struct pci_dev *pdev = adapter->pdev;
369 	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
370 	s32 rc;
371 
372 	rc = e1000_init_mac_params_82571(hw);
373 	if (rc)
374 		return rc;
375 
376 	rc = e1000_init_nvm_params_82571(hw);
377 	if (rc)
378 		return rc;
379 
380 	rc = e1000_init_phy_params_82571(hw);
381 	if (rc)
382 		return rc;
383 
384 	/* tag quad port adapters first, it's used below */
385 	switch (pdev->device) {
386 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
387 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
388 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
389 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
390 		adapter->flags |= FLAG_IS_QUAD_PORT;
391 		/* mark the first port */
392 		if (global_quad_port_a == 0)
393 			adapter->flags |= FLAG_IS_QUAD_PORT_A;
394 		/* Reset for multiple quad port adapters */
395 		global_quad_port_a++;
396 		if (global_quad_port_a == 4)
397 			global_quad_port_a = 0;
398 		break;
399 	default:
400 		break;
401 	}
402 
403 	switch (adapter->hw.mac.type) {
404 	case e1000_82571:
405 		/* these dual ports don't have WoL on port B at all */
406 		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
407 		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
408 		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
409 		    (is_port_b))
410 			adapter->flags &= ~FLAG_HAS_WOL;
411 		/* quad ports only support WoL on port A */
412 		if (adapter->flags & FLAG_IS_QUAD_PORT &&
413 		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
414 			adapter->flags &= ~FLAG_HAS_WOL;
415 		/* Does not support WoL on any port */
416 		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
417 			adapter->flags &= ~FLAG_HAS_WOL;
418 		break;
419 	case e1000_82573:
420 		if (pdev->device == E1000_DEV_ID_82573L) {
421 			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
422 			adapter->max_hw_frame_size = DEFAULT_JUMBO;
423 		}
424 		break;
425 	default:
426 		break;
427 	}
428 
429 	return 0;
430 }
431 
432 /**
433  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
434  *  @hw: pointer to the HW structure
435  *
436  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
437  *  revision in the hardware structure.
438  **/
439 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
440 {
441 	struct e1000_phy_info *phy = &hw->phy;
442 	s32 ret_val;
443 	u16 phy_id = 0;
444 
445 	switch (hw->mac.type) {
446 	case e1000_82571:
447 	case e1000_82572:
448 		/*
449 		 * The 82571 firmware may still be configuring the PHY.
450 		 * In this case, we cannot access the PHY until the
451 		 * configuration is done.  So we explicitly set the
452 		 * PHY ID.
453 		 */
454 		phy->id = IGP01E1000_I_PHY_ID;
455 		break;
456 	case e1000_82573:
457 		return e1000e_get_phy_id(hw);
458 		break;
459 	case e1000_82574:
460 	case e1000_82583:
461 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
462 		if (ret_val)
463 			return ret_val;
464 
465 		phy->id = (u32)(phy_id << 16);
466 		udelay(20);
467 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
468 		if (ret_val)
469 			return ret_val;
470 
471 		phy->id |= (u32)(phy_id);
472 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
473 		break;
474 	default:
475 		return -E1000_ERR_PHY;
476 		break;
477 	}
478 
479 	return 0;
480 }
481 
482 /**
483  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
484  *  @hw: pointer to the HW structure
485  *
486  *  Acquire the HW semaphore to access the PHY or NVM
487  **/
488 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
489 {
490 	u32 swsm;
491 	s32 sw_timeout = hw->nvm.word_size + 1;
492 	s32 fw_timeout = hw->nvm.word_size + 1;
493 	s32 i = 0;
494 
495 	/*
496 	 * If we have timedout 3 times on trying to acquire
497 	 * the inter-port SMBI semaphore, there is old code
498 	 * operating on the other port, and it is not
499 	 * releasing SMBI. Modify the number of times that
500 	 * we try for the semaphore to interwork with this
501 	 * older code.
502 	 */
503 	if (hw->dev_spec.e82571.smb_counter > 2)
504 		sw_timeout = 1;
505 
506 	/* Get the SW semaphore */
507 	while (i < sw_timeout) {
508 		swsm = er32(SWSM);
509 		if (!(swsm & E1000_SWSM_SMBI))
510 			break;
511 
512 		udelay(50);
513 		i++;
514 	}
515 
516 	if (i == sw_timeout) {
517 		e_dbg("Driver can't access device - SMBI bit is set.\n");
518 		hw->dev_spec.e82571.smb_counter++;
519 	}
520 	/* Get the FW semaphore. */
521 	for (i = 0; i < fw_timeout; i++) {
522 		swsm = er32(SWSM);
523 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
524 
525 		/* Semaphore acquired if bit latched */
526 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
527 			break;
528 
529 		udelay(50);
530 	}
531 
532 	if (i == fw_timeout) {
533 		/* Release semaphores */
534 		e1000_put_hw_semaphore_82571(hw);
535 		e_dbg("Driver can't access the NVM\n");
536 		return -E1000_ERR_NVM;
537 	}
538 
539 	return 0;
540 }
541 
542 /**
543  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
544  *  @hw: pointer to the HW structure
545  *
546  *  Release hardware semaphore used to access the PHY or NVM
547  **/
548 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
549 {
550 	u32 swsm;
551 
552 	swsm = er32(SWSM);
553 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
554 	ew32(SWSM, swsm);
555 }
556 /**
557  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
558  *  @hw: pointer to the HW structure
559  *
560  *  Acquire the HW semaphore during reset.
561  *
562  **/
563 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
564 {
565 	u32 extcnf_ctrl;
566 	s32 i = 0;
567 
568 	extcnf_ctrl = er32(EXTCNF_CTRL);
569 	extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
570 	do {
571 		ew32(EXTCNF_CTRL, extcnf_ctrl);
572 		extcnf_ctrl = er32(EXTCNF_CTRL);
573 
574 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
575 			break;
576 
577 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
578 
579 		usleep_range(2000, 4000);
580 		i++;
581 	} while (i < MDIO_OWNERSHIP_TIMEOUT);
582 
583 	if (i == MDIO_OWNERSHIP_TIMEOUT) {
584 		/* Release semaphores */
585 		e1000_put_hw_semaphore_82573(hw);
586 		e_dbg("Driver can't access the PHY\n");
587 		return -E1000_ERR_PHY;
588 	}
589 
590 	return 0;
591 }
592 
593 /**
594  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
595  *  @hw: pointer to the HW structure
596  *
597  *  Release hardware semaphore used during reset.
598  *
599  **/
600 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
601 {
602 	u32 extcnf_ctrl;
603 
604 	extcnf_ctrl = er32(EXTCNF_CTRL);
605 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
606 	ew32(EXTCNF_CTRL, extcnf_ctrl);
607 }
608 
609 static DEFINE_MUTEX(swflag_mutex);
610 
611 /**
612  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
613  *  @hw: pointer to the HW structure
614  *
615  *  Acquire the HW semaphore to access the PHY or NVM.
616  *
617  **/
618 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
619 {
620 	s32 ret_val;
621 
622 	mutex_lock(&swflag_mutex);
623 	ret_val = e1000_get_hw_semaphore_82573(hw);
624 	if (ret_val)
625 		mutex_unlock(&swflag_mutex);
626 	return ret_val;
627 }
628 
629 /**
630  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
631  *  @hw: pointer to the HW structure
632  *
633  *  Release hardware semaphore used to access the PHY or NVM
634  *
635  **/
636 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
637 {
638 	e1000_put_hw_semaphore_82573(hw);
639 	mutex_unlock(&swflag_mutex);
640 }
641 
642 /**
643  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
644  *  @hw: pointer to the HW structure
645  *  @active: true to enable LPLU, false to disable
646  *
647  *  Sets the LPLU D0 state according to the active flag.
648  *  LPLU will not be activated unless the
649  *  device autonegotiation advertisement meets standards of
650  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
651  *  This is a function pointer entry point only called by
652  *  PHY setup routines.
653  **/
654 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
655 {
656 	u16 data = er32(POEMB);
657 
658 	if (active)
659 		data |= E1000_PHY_CTRL_D0A_LPLU;
660 	else
661 		data &= ~E1000_PHY_CTRL_D0A_LPLU;
662 
663 	ew32(POEMB, data);
664 	return 0;
665 }
666 
667 /**
668  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
669  *  @hw: pointer to the HW structure
670  *  @active: boolean used to enable/disable lplu
671  *
672  *  The low power link up (lplu) state is set to the power management level D3
673  *  when active is true, else clear lplu for D3. LPLU
674  *  is used during Dx states where the power conservation is most important.
675  *  During driver activity, SmartSpeed should be enabled so performance is
676  *  maintained.
677  **/
678 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
679 {
680 	u16 data = er32(POEMB);
681 
682 	if (!active) {
683 		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
684 	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
685 		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
686 		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
687 		data |= E1000_PHY_CTRL_NOND0A_LPLU;
688 	}
689 
690 	ew32(POEMB, data);
691 	return 0;
692 }
693 
694 /**
695  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
696  *  @hw: pointer to the HW structure
697  *
698  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
699  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
700  *  for EEPROM access grant bit.  If the access grant bit is not set, release
701  *  hardware semaphore.
702  **/
703 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
704 {
705 	s32 ret_val;
706 
707 	ret_val = e1000_get_hw_semaphore_82571(hw);
708 	if (ret_val)
709 		return ret_val;
710 
711 	switch (hw->mac.type) {
712 	case e1000_82573:
713 		break;
714 	default:
715 		ret_val = e1000e_acquire_nvm(hw);
716 		break;
717 	}
718 
719 	if (ret_val)
720 		e1000_put_hw_semaphore_82571(hw);
721 
722 	return ret_val;
723 }
724 
725 /**
726  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
727  *  @hw: pointer to the HW structure
728  *
729  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
730  **/
731 static void e1000_release_nvm_82571(struct e1000_hw *hw)
732 {
733 	e1000e_release_nvm(hw);
734 	e1000_put_hw_semaphore_82571(hw);
735 }
736 
737 /**
738  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
739  *  @hw: pointer to the HW structure
740  *  @offset: offset within the EEPROM to be written to
741  *  @words: number of words to write
742  *  @data: 16 bit word(s) to be written to the EEPROM
743  *
744  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
745  *
746  *  If e1000e_update_nvm_checksum is not called after this function, the
747  *  EEPROM will most likely contain an invalid checksum.
748  **/
749 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
750 				 u16 *data)
751 {
752 	s32 ret_val;
753 
754 	switch (hw->mac.type) {
755 	case e1000_82573:
756 	case e1000_82574:
757 	case e1000_82583:
758 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
759 		break;
760 	case e1000_82571:
761 	case e1000_82572:
762 		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
763 		break;
764 	default:
765 		ret_val = -E1000_ERR_NVM;
766 		break;
767 	}
768 
769 	return ret_val;
770 }
771 
772 /**
773  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
774  *  @hw: pointer to the HW structure
775  *
776  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
777  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
778  *  value to the EEPROM.
779  **/
780 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
781 {
782 	u32 eecd;
783 	s32 ret_val;
784 	u16 i;
785 
786 	ret_val = e1000e_update_nvm_checksum_generic(hw);
787 	if (ret_val)
788 		return ret_val;
789 
790 	/*
791 	 * If our nvm is an EEPROM, then we're done
792 	 * otherwise, commit the checksum to the flash NVM.
793 	 */
794 	if (hw->nvm.type != e1000_nvm_flash_hw)
795 		return 0;
796 
797 	/* Check for pending operations. */
798 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
799 		usleep_range(1000, 2000);
800 		if (!(er32(EECD) & E1000_EECD_FLUPD))
801 			break;
802 	}
803 
804 	if (i == E1000_FLASH_UPDATES)
805 		return -E1000_ERR_NVM;
806 
807 	/* Reset the firmware if using STM opcode. */
808 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
809 		/*
810 		 * The enabling of and the actual reset must be done
811 		 * in two write cycles.
812 		 */
813 		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
814 		e1e_flush();
815 		ew32(HICR, E1000_HICR_FW_RESET);
816 	}
817 
818 	/* Commit the write to flash */
819 	eecd = er32(EECD) | E1000_EECD_FLUPD;
820 	ew32(EECD, eecd);
821 
822 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
823 		usleep_range(1000, 2000);
824 		if (!(er32(EECD) & E1000_EECD_FLUPD))
825 			break;
826 	}
827 
828 	if (i == E1000_FLASH_UPDATES)
829 		return -E1000_ERR_NVM;
830 
831 	return 0;
832 }
833 
834 /**
835  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
836  *  @hw: pointer to the HW structure
837  *
838  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
839  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
840  **/
841 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
842 {
843 	if (hw->nvm.type == e1000_nvm_flash_hw)
844 		e1000_fix_nvm_checksum_82571(hw);
845 
846 	return e1000e_validate_nvm_checksum_generic(hw);
847 }
848 
849 /**
850  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
851  *  @hw: pointer to the HW structure
852  *  @offset: offset within the EEPROM to be written to
853  *  @words: number of words to write
854  *  @data: 16 bit word(s) to be written to the EEPROM
855  *
856  *  After checking for invalid values, poll the EEPROM to ensure the previous
857  *  command has completed before trying to write the next word.  After write
858  *  poll for completion.
859  *
860  *  If e1000e_update_nvm_checksum is not called after this function, the
861  *  EEPROM will most likely contain an invalid checksum.
862  **/
863 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
864 				      u16 words, u16 *data)
865 {
866 	struct e1000_nvm_info *nvm = &hw->nvm;
867 	u32 i, eewr = 0;
868 	s32 ret_val = 0;
869 
870 	/*
871 	 * A check for invalid values:  offset too large, too many words,
872 	 * and not enough words.
873 	 */
874 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
875 	    (words == 0)) {
876 		e_dbg("nvm parameter(s) out of bounds\n");
877 		return -E1000_ERR_NVM;
878 	}
879 
880 	for (i = 0; i < words; i++) {
881 		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
882 		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
883 		       E1000_NVM_RW_REG_START;
884 
885 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
886 		if (ret_val)
887 			break;
888 
889 		ew32(EEWR, eewr);
890 
891 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
892 		if (ret_val)
893 			break;
894 	}
895 
896 	return ret_val;
897 }
898 
899 /**
900  *  e1000_get_cfg_done_82571 - Poll for configuration done
901  *  @hw: pointer to the HW structure
902  *
903  *  Reads the management control register for the config done bit to be set.
904  **/
905 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
906 {
907 	s32 timeout = PHY_CFG_TIMEOUT;
908 
909 	while (timeout) {
910 		if (er32(EEMNGCTL) &
911 		    E1000_NVM_CFG_DONE_PORT_0)
912 			break;
913 		usleep_range(1000, 2000);
914 		timeout--;
915 	}
916 	if (!timeout) {
917 		e_dbg("MNG configuration cycle has not completed.\n");
918 		return -E1000_ERR_RESET;
919 	}
920 
921 	return 0;
922 }
923 
924 /**
925  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
926  *  @hw: pointer to the HW structure
927  *  @active: true to enable LPLU, false to disable
928  *
929  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
930  *  this function also disables smart speed and vice versa.  LPLU will not be
931  *  activated unless the device autonegotiation advertisement meets standards
932  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
933  *  pointer entry point only called by PHY setup routines.
934  **/
935 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
936 {
937 	struct e1000_phy_info *phy = &hw->phy;
938 	s32 ret_val;
939 	u16 data;
940 
941 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
942 	if (ret_val)
943 		return ret_val;
944 
945 	if (active) {
946 		data |= IGP02E1000_PM_D0_LPLU;
947 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
948 		if (ret_val)
949 			return ret_val;
950 
951 		/* When LPLU is enabled, we should disable SmartSpeed */
952 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
953 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
954 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
955 		if (ret_val)
956 			return ret_val;
957 	} else {
958 		data &= ~IGP02E1000_PM_D0_LPLU;
959 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
960 		/*
961 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
962 		 * during Dx states where the power conservation is most
963 		 * important.  During driver activity we should enable
964 		 * SmartSpeed, so performance is maintained.
965 		 */
966 		if (phy->smart_speed == e1000_smart_speed_on) {
967 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
968 					   &data);
969 			if (ret_val)
970 				return ret_val;
971 
972 			data |= IGP01E1000_PSCFR_SMART_SPEED;
973 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
974 					   data);
975 			if (ret_val)
976 				return ret_val;
977 		} else if (phy->smart_speed == e1000_smart_speed_off) {
978 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
979 					   &data);
980 			if (ret_val)
981 				return ret_val;
982 
983 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
984 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
985 					   data);
986 			if (ret_val)
987 				return ret_val;
988 		}
989 	}
990 
991 	return 0;
992 }
993 
994 /**
995  *  e1000_reset_hw_82571 - Reset hardware
996  *  @hw: pointer to the HW structure
997  *
998  *  This resets the hardware into a known state.
999  **/
1000 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1001 {
1002 	u32 ctrl, ctrl_ext, eecd, tctl;
1003 	s32 ret_val;
1004 
1005 	/*
1006 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1007 	 * on the last TLP read/write transaction when MAC is reset.
1008 	 */
1009 	ret_val = e1000e_disable_pcie_master(hw);
1010 	if (ret_val)
1011 		e_dbg("PCI-E Master disable polling has failed.\n");
1012 
1013 	e_dbg("Masking off all interrupts\n");
1014 	ew32(IMC, 0xffffffff);
1015 
1016 	ew32(RCTL, 0);
1017 	tctl = er32(TCTL);
1018 	tctl &= ~E1000_TCTL_EN;
1019 	ew32(TCTL, tctl);
1020 	e1e_flush();
1021 
1022 	usleep_range(10000, 20000);
1023 
1024 	/*
1025 	 * Must acquire the MDIO ownership before MAC reset.
1026 	 * Ownership defaults to firmware after a reset.
1027 	 */
1028 	switch (hw->mac.type) {
1029 	case e1000_82573:
1030 		ret_val = e1000_get_hw_semaphore_82573(hw);
1031 		break;
1032 	case e1000_82574:
1033 	case e1000_82583:
1034 		ret_val = e1000_get_hw_semaphore_82574(hw);
1035 		break;
1036 	default:
1037 		break;
1038 	}
1039 	if (ret_val)
1040 		e_dbg("Cannot acquire MDIO ownership\n");
1041 
1042 	ctrl = er32(CTRL);
1043 
1044 	e_dbg("Issuing a global reset to MAC\n");
1045 	ew32(CTRL, ctrl | E1000_CTRL_RST);
1046 
1047 	/* Must release MDIO ownership and mutex after MAC reset. */
1048 	switch (hw->mac.type) {
1049 	case e1000_82574:
1050 	case e1000_82583:
1051 		e1000_put_hw_semaphore_82574(hw);
1052 		break;
1053 	default:
1054 		break;
1055 	}
1056 
1057 	if (hw->nvm.type == e1000_nvm_flash_hw) {
1058 		udelay(10);
1059 		ctrl_ext = er32(CTRL_EXT);
1060 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1061 		ew32(CTRL_EXT, ctrl_ext);
1062 		e1e_flush();
1063 	}
1064 
1065 	ret_val = e1000e_get_auto_rd_done(hw);
1066 	if (ret_val)
1067 		/* We don't want to continue accessing MAC registers. */
1068 		return ret_val;
1069 
1070 	/*
1071 	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1072 	 * Need to wait for Phy configuration completion before accessing
1073 	 * NVM and Phy.
1074 	 */
1075 
1076 	switch (hw->mac.type) {
1077 	case e1000_82571:
1078 	case e1000_82572:
1079 		/*
1080 		 * REQ and GNT bits need to be cleared when using AUTO_RD
1081 		 * to access the EEPROM.
1082 		 */
1083 		eecd = er32(EECD);
1084 		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1085 		ew32(EECD, eecd);
1086 		break;
1087 	case e1000_82573:
1088 	case e1000_82574:
1089 	case e1000_82583:
1090 		msleep(25);
1091 		break;
1092 	default:
1093 		break;
1094 	}
1095 
1096 	/* Clear any pending interrupt events. */
1097 	ew32(IMC, 0xffffffff);
1098 	er32(ICR);
1099 
1100 	if (hw->mac.type == e1000_82571) {
1101 		/* Install any alternate MAC address into RAR0 */
1102 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1103 		if (ret_val)
1104 			return ret_val;
1105 
1106 		e1000e_set_laa_state_82571(hw, true);
1107 	}
1108 
1109 	/* Reinitialize the 82571 serdes link state machine */
1110 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
1111 		hw->mac.serdes_link_state = e1000_serdes_link_down;
1112 
1113 	return 0;
1114 }
1115 
1116 /**
1117  *  e1000_init_hw_82571 - Initialize hardware
1118  *  @hw: pointer to the HW structure
1119  *
1120  *  This inits the hardware readying it for operation.
1121  **/
1122 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1123 {
1124 	struct e1000_mac_info *mac = &hw->mac;
1125 	u32 reg_data;
1126 	s32 ret_val;
1127 	u16 i, rar_count = mac->rar_entry_count;
1128 
1129 	e1000_initialize_hw_bits_82571(hw);
1130 
1131 	/* Initialize identification LED */
1132 	ret_val = mac->ops.id_led_init(hw);
1133 	if (ret_val)
1134 		e_dbg("Error initializing identification LED\n");
1135 		/* This is not fatal and we should not stop init due to this */
1136 
1137 	/* Disabling VLAN filtering */
1138 	e_dbg("Initializing the IEEE VLAN\n");
1139 	mac->ops.clear_vfta(hw);
1140 
1141 	/* Setup the receive address. */
1142 	/*
1143 	 * If, however, a locally administered address was assigned to the
1144 	 * 82571, we must reserve a RAR for it to work around an issue where
1145 	 * resetting one port will reload the MAC on the other port.
1146 	 */
1147 	if (e1000e_get_laa_state_82571(hw))
1148 		rar_count--;
1149 	e1000e_init_rx_addrs(hw, rar_count);
1150 
1151 	/* Zero out the Multicast HASH table */
1152 	e_dbg("Zeroing the MTA\n");
1153 	for (i = 0; i < mac->mta_reg_count; i++)
1154 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1155 
1156 	/* Setup link and flow control */
1157 	ret_val = mac->ops.setup_link(hw);
1158 
1159 	/* Set the transmit descriptor write-back policy */
1160 	reg_data = er32(TXDCTL(0));
1161 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1162 		   E1000_TXDCTL_FULL_TX_DESC_WB |
1163 		   E1000_TXDCTL_COUNT_DESC;
1164 	ew32(TXDCTL(0), reg_data);
1165 
1166 	/* ...for both queues. */
1167 	switch (mac->type) {
1168 	case e1000_82573:
1169 		e1000e_enable_tx_pkt_filtering(hw);
1170 		/* fall through */
1171 	case e1000_82574:
1172 	case e1000_82583:
1173 		reg_data = er32(GCR);
1174 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1175 		ew32(GCR, reg_data);
1176 		break;
1177 	default:
1178 		reg_data = er32(TXDCTL(1));
1179 		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1180 			   E1000_TXDCTL_FULL_TX_DESC_WB |
1181 			   E1000_TXDCTL_COUNT_DESC;
1182 		ew32(TXDCTL(1), reg_data);
1183 		break;
1184 	}
1185 
1186 	/*
1187 	 * Clear all of the statistics registers (clear on read).  It is
1188 	 * important that we do this after we have tried to establish link
1189 	 * because the symbol error count will increment wildly if there
1190 	 * is no link.
1191 	 */
1192 	e1000_clear_hw_cntrs_82571(hw);
1193 
1194 	return ret_val;
1195 }
1196 
1197 /**
1198  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1199  *  @hw: pointer to the HW structure
1200  *
1201  *  Initializes required hardware-dependent bits needed for normal operation.
1202  **/
1203 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1204 {
1205 	u32 reg;
1206 
1207 	/* Transmit Descriptor Control 0 */
1208 	reg = er32(TXDCTL(0));
1209 	reg |= (1 << 22);
1210 	ew32(TXDCTL(0), reg);
1211 
1212 	/* Transmit Descriptor Control 1 */
1213 	reg = er32(TXDCTL(1));
1214 	reg |= (1 << 22);
1215 	ew32(TXDCTL(1), reg);
1216 
1217 	/* Transmit Arbitration Control 0 */
1218 	reg = er32(TARC(0));
1219 	reg &= ~(0xF << 27); /* 30:27 */
1220 	switch (hw->mac.type) {
1221 	case e1000_82571:
1222 	case e1000_82572:
1223 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1224 		break;
1225 	case e1000_82574:
1226 	case e1000_82583:
1227 		reg |= (1 << 26);
1228 		break;
1229 	default:
1230 		break;
1231 	}
1232 	ew32(TARC(0), reg);
1233 
1234 	/* Transmit Arbitration Control 1 */
1235 	reg = er32(TARC(1));
1236 	switch (hw->mac.type) {
1237 	case e1000_82571:
1238 	case e1000_82572:
1239 		reg &= ~((1 << 29) | (1 << 30));
1240 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1241 		if (er32(TCTL) & E1000_TCTL_MULR)
1242 			reg &= ~(1 << 28);
1243 		else
1244 			reg |= (1 << 28);
1245 		ew32(TARC(1), reg);
1246 		break;
1247 	default:
1248 		break;
1249 	}
1250 
1251 	/* Device Control */
1252 	switch (hw->mac.type) {
1253 	case e1000_82573:
1254 	case e1000_82574:
1255 	case e1000_82583:
1256 		reg = er32(CTRL);
1257 		reg &= ~(1 << 29);
1258 		ew32(CTRL, reg);
1259 		break;
1260 	default:
1261 		break;
1262 	}
1263 
1264 	/* Extended Device Control */
1265 	switch (hw->mac.type) {
1266 	case e1000_82573:
1267 	case e1000_82574:
1268 	case e1000_82583:
1269 		reg = er32(CTRL_EXT);
1270 		reg &= ~(1 << 23);
1271 		reg |= (1 << 22);
1272 		ew32(CTRL_EXT, reg);
1273 		break;
1274 	default:
1275 		break;
1276 	}
1277 
1278 	if (hw->mac.type == e1000_82571) {
1279 		reg = er32(PBA_ECC);
1280 		reg |= E1000_PBA_ECC_CORR_EN;
1281 		ew32(PBA_ECC, reg);
1282 	}
1283 
1284 	/*
1285 	 * Workaround for hardware errata.
1286 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1287 	 */
1288 	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1289 		reg = er32(CTRL_EXT);
1290 		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1291 		ew32(CTRL_EXT, reg);
1292 	}
1293 
1294 	/*
1295 	 * Disable IPv6 extension header parsing because some malformed
1296 	 * IPv6 headers can hang the Rx.
1297 	 */
1298 	if (hw->mac.type <= e1000_82573) {
1299 		reg = er32(RFCTL);
1300 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1301 		ew32(RFCTL, reg);
1302 	}
1303 
1304 	/* PCI-Ex Control Registers */
1305 	switch (hw->mac.type) {
1306 	case e1000_82574:
1307 	case e1000_82583:
1308 		reg = er32(GCR);
1309 		reg |= (1 << 22);
1310 		ew32(GCR, reg);
1311 
1312 		/*
1313 		 * Workaround for hardware errata.
1314 		 * apply workaround for hardware errata documented in errata
1315 		 * docs Fixes issue where some error prone or unreliable PCIe
1316 		 * completions are occurring, particularly with ASPM enabled.
1317 		 * Without fix, issue can cause Tx timeouts.
1318 		 */
1319 		reg = er32(GCR2);
1320 		reg |= 1;
1321 		ew32(GCR2, reg);
1322 		break;
1323 	default:
1324 		break;
1325 	}
1326 }
1327 
1328 /**
1329  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1330  *  @hw: pointer to the HW structure
1331  *
1332  *  Clears the register array which contains the VLAN filter table by
1333  *  setting all the values to 0.
1334  **/
1335 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1336 {
1337 	u32 offset;
1338 	u32 vfta_value = 0;
1339 	u32 vfta_offset = 0;
1340 	u32 vfta_bit_in_reg = 0;
1341 
1342 	switch (hw->mac.type) {
1343 	case e1000_82573:
1344 	case e1000_82574:
1345 	case e1000_82583:
1346 		if (hw->mng_cookie.vlan_id != 0) {
1347 			/*
1348 			 * The VFTA is a 4096b bit-field, each identifying
1349 			 * a single VLAN ID.  The following operations
1350 			 * determine which 32b entry (i.e. offset) into the
1351 			 * array we want to set the VLAN ID (i.e. bit) of
1352 			 * the manageability unit.
1353 			 */
1354 			vfta_offset = (hw->mng_cookie.vlan_id >>
1355 				       E1000_VFTA_ENTRY_SHIFT) &
1356 				      E1000_VFTA_ENTRY_MASK;
1357 			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1358 					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1359 		}
1360 		break;
1361 	default:
1362 		break;
1363 	}
1364 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1365 		/*
1366 		 * If the offset we want to clear is the same offset of the
1367 		 * manageability VLAN ID, then clear all bits except that of
1368 		 * the manageability unit.
1369 		 */
1370 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1371 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1372 		e1e_flush();
1373 	}
1374 }
1375 
1376 /**
1377  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1378  *  @hw: pointer to the HW structure
1379  *
1380  *  Reads the NVM Initialization Control Word 2 and returns true
1381  *  (>0) if any manageability is enabled, else false (0).
1382  **/
1383 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1384 {
1385 	u16 data;
1386 
1387 	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1388 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1389 }
1390 
1391 /**
1392  *  e1000_led_on_82574 - Turn LED on
1393  *  @hw: pointer to the HW structure
1394  *
1395  *  Turn LED on.
1396  **/
1397 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1398 {
1399 	u32 ctrl;
1400 	u32 i;
1401 
1402 	ctrl = hw->mac.ledctl_mode2;
1403 	if (!(E1000_STATUS_LU & er32(STATUS))) {
1404 		/*
1405 		 * If no link, then turn LED on by setting the invert bit
1406 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1407 		 */
1408 		for (i = 0; i < 4; i++)
1409 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1410 			    E1000_LEDCTL_MODE_LED_ON)
1411 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1412 	}
1413 	ew32(LEDCTL, ctrl);
1414 
1415 	return 0;
1416 }
1417 
1418 /**
1419  *  e1000_check_phy_82574 - check 82574 phy hung state
1420  *  @hw: pointer to the HW structure
1421  *
1422  *  Returns whether phy is hung or not
1423  **/
1424 bool e1000_check_phy_82574(struct e1000_hw *hw)
1425 {
1426 	u16 status_1kbt = 0;
1427 	u16 receive_errors = 0;
1428 	s32 ret_val = 0;
1429 
1430 	/*
1431 	 * Read PHY Receive Error counter first, if its is max - all F's then
1432 	 * read the Base1000T status register If both are max then PHY is hung.
1433 	 */
1434 	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1435 	if (ret_val)
1436 		return false;
1437 	if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
1438 		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1439 		if (ret_val)
1440 			return false;
1441 		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1442 		    E1000_IDLE_ERROR_COUNT_MASK)
1443 			return true;
1444 	}
1445 
1446 	return false;
1447 }
1448 
1449 /**
1450  *  e1000_setup_link_82571 - Setup flow control and link settings
1451  *  @hw: pointer to the HW structure
1452  *
1453  *  Determines which flow control settings to use, then configures flow
1454  *  control.  Calls the appropriate media-specific link configuration
1455  *  function.  Assuming the adapter has a valid link partner, a valid link
1456  *  should be established.  Assumes the hardware has previously been reset
1457  *  and the transmitter and receiver are not enabled.
1458  **/
1459 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1460 {
1461 	/*
1462 	 * 82573 does not have a word in the NVM to determine
1463 	 * the default flow control setting, so we explicitly
1464 	 * set it to full.
1465 	 */
1466 	switch (hw->mac.type) {
1467 	case e1000_82573:
1468 	case e1000_82574:
1469 	case e1000_82583:
1470 		if (hw->fc.requested_mode == e1000_fc_default)
1471 			hw->fc.requested_mode = e1000_fc_full;
1472 		break;
1473 	default:
1474 		break;
1475 	}
1476 
1477 	return e1000e_setup_link_generic(hw);
1478 }
1479 
1480 /**
1481  *  e1000_setup_copper_link_82571 - Configure copper link settings
1482  *  @hw: pointer to the HW structure
1483  *
1484  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1485  *  for link, once link is established calls to configure collision distance
1486  *  and flow control are called.
1487  **/
1488 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1489 {
1490 	u32 ctrl;
1491 	s32 ret_val;
1492 
1493 	ctrl = er32(CTRL);
1494 	ctrl |= E1000_CTRL_SLU;
1495 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1496 	ew32(CTRL, ctrl);
1497 
1498 	switch (hw->phy.type) {
1499 	case e1000_phy_m88:
1500 	case e1000_phy_bm:
1501 		ret_val = e1000e_copper_link_setup_m88(hw);
1502 		break;
1503 	case e1000_phy_igp_2:
1504 		ret_val = e1000e_copper_link_setup_igp(hw);
1505 		break;
1506 	default:
1507 		return -E1000_ERR_PHY;
1508 		break;
1509 	}
1510 
1511 	if (ret_val)
1512 		return ret_val;
1513 
1514 	return e1000e_setup_copper_link(hw);
1515 }
1516 
1517 /**
1518  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1519  *  @hw: pointer to the HW structure
1520  *
1521  *  Configures collision distance and flow control for fiber and serdes links.
1522  *  Upon successful setup, poll for link.
1523  **/
1524 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1525 {
1526 	switch (hw->mac.type) {
1527 	case e1000_82571:
1528 	case e1000_82572:
1529 		/*
1530 		 * If SerDes loopback mode is entered, there is no form
1531 		 * of reset to take the adapter out of that mode.  So we
1532 		 * have to explicitly take the adapter out of loopback
1533 		 * mode.  This prevents drivers from twiddling their thumbs
1534 		 * if another tool failed to take it out of loopback mode.
1535 		 */
1536 		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1537 		break;
1538 	default:
1539 		break;
1540 	}
1541 
1542 	return e1000e_setup_fiber_serdes_link(hw);
1543 }
1544 
1545 /**
1546  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1547  *  @hw: pointer to the HW structure
1548  *
1549  *  Reports the link state as up or down.
1550  *
1551  *  If autonegotiation is supported by the link partner, the link state is
1552  *  determined by the result of autonegotiation. This is the most likely case.
1553  *  If autonegotiation is not supported by the link partner, and the link
1554  *  has a valid signal, force the link up.
1555  *
1556  *  The link state is represented internally here by 4 states:
1557  *
1558  *  1) down
1559  *  2) autoneg_progress
1560  *  3) autoneg_complete (the link successfully autonegotiated)
1561  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1562  *
1563  **/
1564 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1565 {
1566 	struct e1000_mac_info *mac = &hw->mac;
1567 	u32 rxcw;
1568 	u32 ctrl;
1569 	u32 status;
1570 	u32 txcw;
1571 	u32 i;
1572 	s32 ret_val = 0;
1573 
1574 	ctrl = er32(CTRL);
1575 	status = er32(STATUS);
1576 	rxcw = er32(RXCW);
1577 	/* SYNCH bit and IV bit are sticky */
1578 	udelay(10);
1579 	rxcw = er32(RXCW);
1580 
1581 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1582 
1583 		/* Receiver is synchronized with no invalid bits.  */
1584 		switch (mac->serdes_link_state) {
1585 		case e1000_serdes_link_autoneg_complete:
1586 			if (!(status & E1000_STATUS_LU)) {
1587 				/*
1588 				 * We have lost link, retry autoneg before
1589 				 * reporting link failure
1590 				 */
1591 				mac->serdes_link_state =
1592 				    e1000_serdes_link_autoneg_progress;
1593 				mac->serdes_has_link = false;
1594 				e_dbg("AN_UP     -> AN_PROG\n");
1595 			} else {
1596 				mac->serdes_has_link = true;
1597 			}
1598 			break;
1599 
1600 		case e1000_serdes_link_forced_up:
1601 			/*
1602 			 * If we are receiving /C/ ordered sets, re-enable
1603 			 * auto-negotiation in the TXCW register and disable
1604 			 * forced link in the Device Control register in an
1605 			 * attempt to auto-negotiate with our link partner.
1606 			 */
1607 			if (rxcw & E1000_RXCW_C) {
1608 				/* Enable autoneg, and unforce link up */
1609 				ew32(TXCW, mac->txcw);
1610 				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1611 				mac->serdes_link_state =
1612 				    e1000_serdes_link_autoneg_progress;
1613 				mac->serdes_has_link = false;
1614 				e_dbg("FORCED_UP -> AN_PROG\n");
1615 			} else {
1616 				mac->serdes_has_link = true;
1617 			}
1618 			break;
1619 
1620 		case e1000_serdes_link_autoneg_progress:
1621 			if (rxcw & E1000_RXCW_C) {
1622 				/*
1623 				 * We received /C/ ordered sets, meaning the
1624 				 * link partner has autonegotiated, and we can
1625 				 * trust the Link Up (LU) status bit.
1626 				 */
1627 				if (status & E1000_STATUS_LU) {
1628 					mac->serdes_link_state =
1629 					    e1000_serdes_link_autoneg_complete;
1630 					e_dbg("AN_PROG   -> AN_UP\n");
1631 					mac->serdes_has_link = true;
1632 				} else {
1633 					/* Autoneg completed, but failed. */
1634 					mac->serdes_link_state =
1635 					    e1000_serdes_link_down;
1636 					e_dbg("AN_PROG   -> DOWN\n");
1637 				}
1638 			} else {
1639 				/*
1640 				 * The link partner did not autoneg.
1641 				 * Force link up and full duplex, and change
1642 				 * state to forced.
1643 				 */
1644 				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1645 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1646 				ew32(CTRL, ctrl);
1647 
1648 				/* Configure Flow Control after link up. */
1649 				ret_val = e1000e_config_fc_after_link_up(hw);
1650 				if (ret_val) {
1651 					e_dbg("Error config flow control\n");
1652 					break;
1653 				}
1654 				mac->serdes_link_state =
1655 				    e1000_serdes_link_forced_up;
1656 				mac->serdes_has_link = true;
1657 				e_dbg("AN_PROG   -> FORCED_UP\n");
1658 			}
1659 			break;
1660 
1661 		case e1000_serdes_link_down:
1662 		default:
1663 			/*
1664 			 * The link was down but the receiver has now gained
1665 			 * valid sync, so lets see if we can bring the link
1666 			 * up.
1667 			 */
1668 			ew32(TXCW, mac->txcw);
1669 			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1670 			mac->serdes_link_state =
1671 			    e1000_serdes_link_autoneg_progress;
1672 			mac->serdes_has_link = false;
1673 			e_dbg("DOWN      -> AN_PROG\n");
1674 			break;
1675 		}
1676 	} else {
1677 		if (!(rxcw & E1000_RXCW_SYNCH)) {
1678 			mac->serdes_has_link = false;
1679 			mac->serdes_link_state = e1000_serdes_link_down;
1680 			e_dbg("ANYSTATE  -> DOWN\n");
1681 		} else {
1682 			/*
1683 			 * Check several times, if SYNCH bit and CONFIG
1684 			 * bit both are consistently 1 then simply ignore
1685 			 * the IV bit and restart Autoneg
1686 			 */
1687 			for (i = 0; i < AN_RETRY_COUNT; i++) {
1688 				udelay(10);
1689 				rxcw = er32(RXCW);
1690 				if ((rxcw & E1000_RXCW_SYNCH) &&
1691 				    (rxcw & E1000_RXCW_C))
1692 					continue;
1693 
1694 				if (rxcw & E1000_RXCW_IV) {
1695 					mac->serdes_has_link = false;
1696 					mac->serdes_link_state =
1697 					    e1000_serdes_link_down;
1698 					e_dbg("ANYSTATE  -> DOWN\n");
1699 					break;
1700 				}
1701 			}
1702 
1703 			if (i == AN_RETRY_COUNT) {
1704 				txcw = er32(TXCW);
1705 				txcw |= E1000_TXCW_ANE;
1706 				ew32(TXCW, txcw);
1707 				mac->serdes_link_state =
1708 				    e1000_serdes_link_autoneg_progress;
1709 				mac->serdes_has_link = false;
1710 				e_dbg("ANYSTATE  -> AN_PROG\n");
1711 			}
1712 		}
1713 	}
1714 
1715 	return ret_val;
1716 }
1717 
1718 /**
1719  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1720  *  @hw: pointer to the HW structure
1721  *  @data: pointer to the NVM (EEPROM)
1722  *
1723  *  Read the EEPROM for the current default LED configuration.  If the
1724  *  LED configuration is not valid, set to a valid LED configuration.
1725  **/
1726 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1727 {
1728 	s32 ret_val;
1729 
1730 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1731 	if (ret_val) {
1732 		e_dbg("NVM Read Error\n");
1733 		return ret_val;
1734 	}
1735 
1736 	switch (hw->mac.type) {
1737 	case e1000_82573:
1738 	case e1000_82574:
1739 	case e1000_82583:
1740 		if (*data == ID_LED_RESERVED_F746)
1741 			*data = ID_LED_DEFAULT_82573;
1742 		break;
1743 	default:
1744 		if (*data == ID_LED_RESERVED_0000 ||
1745 		    *data == ID_LED_RESERVED_FFFF)
1746 			*data = ID_LED_DEFAULT;
1747 		break;
1748 	}
1749 
1750 	return 0;
1751 }
1752 
1753 /**
1754  *  e1000e_get_laa_state_82571 - Get locally administered address state
1755  *  @hw: pointer to the HW structure
1756  *
1757  *  Retrieve and return the current locally administered address state.
1758  **/
1759 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1760 {
1761 	if (hw->mac.type != e1000_82571)
1762 		return false;
1763 
1764 	return hw->dev_spec.e82571.laa_is_present;
1765 }
1766 
1767 /**
1768  *  e1000e_set_laa_state_82571 - Set locally administered address state
1769  *  @hw: pointer to the HW structure
1770  *  @state: enable/disable locally administered address
1771  *
1772  *  Enable/Disable the current locally administered address state.
1773  **/
1774 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1775 {
1776 	if (hw->mac.type != e1000_82571)
1777 		return;
1778 
1779 	hw->dev_spec.e82571.laa_is_present = state;
1780 
1781 	/* If workaround is activated... */
1782 	if (state)
1783 		/*
1784 		 * Hold a copy of the LAA in RAR[14] This is done so that
1785 		 * between the time RAR[0] gets clobbered and the time it
1786 		 * gets fixed, the actual LAA is in one of the RARs and no
1787 		 * incoming packets directed to this port are dropped.
1788 		 * Eventually the LAA will be in RAR[0] and RAR[14].
1789 		 */
1790 		hw->mac.ops.rar_set(hw, hw->mac.addr,
1791 				    hw->mac.rar_entry_count - 1);
1792 }
1793 
1794 /**
1795  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1796  *  @hw: pointer to the HW structure
1797  *
1798  *  Verifies that the EEPROM has completed the update.  After updating the
1799  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1800  *  the checksum fix is not implemented, we need to set the bit and update
1801  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1802  *  we need to return bad checksum.
1803  **/
1804 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1805 {
1806 	struct e1000_nvm_info *nvm = &hw->nvm;
1807 	s32 ret_val;
1808 	u16 data;
1809 
1810 	if (nvm->type != e1000_nvm_flash_hw)
1811 		return 0;
1812 
1813 	/*
1814 	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1815 	 * 10h-12h.  Checksum may need to be fixed.
1816 	 */
1817 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1818 	if (ret_val)
1819 		return ret_val;
1820 
1821 	if (!(data & 0x10)) {
1822 		/*
1823 		 * Read 0x23 and check bit 15.  This bit is a 1
1824 		 * when the checksum has already been fixed.  If
1825 		 * the checksum is still wrong and this bit is a
1826 		 * 1, we need to return bad checksum.  Otherwise,
1827 		 * we need to set this bit to a 1 and update the
1828 		 * checksum.
1829 		 */
1830 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1831 		if (ret_val)
1832 			return ret_val;
1833 
1834 		if (!(data & 0x8000)) {
1835 			data |= 0x8000;
1836 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1837 			if (ret_val)
1838 				return ret_val;
1839 			ret_val = e1000e_update_nvm_checksum(hw);
1840 		}
1841 	}
1842 
1843 	return 0;
1844 }
1845 
1846 /**
1847  *  e1000_read_mac_addr_82571 - Read device MAC address
1848  *  @hw: pointer to the HW structure
1849  **/
1850 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1851 {
1852 	if (hw->mac.type == e1000_82571) {
1853 		s32 ret_val = 0;
1854 
1855 		/*
1856 		 * If there's an alternate MAC address place it in RAR0
1857 		 * so that it will override the Si installed default perm
1858 		 * address.
1859 		 */
1860 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1861 		if (ret_val)
1862 			return ret_val;
1863 	}
1864 
1865 	return e1000_read_mac_addr_generic(hw);
1866 }
1867 
1868 /**
1869  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1870  * @hw: pointer to the HW structure
1871  *
1872  * In the case of a PHY power down to save power, or to turn off link during a
1873  * driver unload, or wake on lan is not enabled, remove the link.
1874  **/
1875 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1876 {
1877 	struct e1000_phy_info *phy = &hw->phy;
1878 	struct e1000_mac_info *mac = &hw->mac;
1879 
1880 	if (!phy->ops.check_reset_block)
1881 		return;
1882 
1883 	/* If the management interface is not enabled, then power down */
1884 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1885 		e1000_power_down_phy_copper(hw);
1886 }
1887 
1888 /**
1889  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1890  *  @hw: pointer to the HW structure
1891  *
1892  *  Clears the hardware counters by reading the counter registers.
1893  **/
1894 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1895 {
1896 	e1000e_clear_hw_cntrs_base(hw);
1897 
1898 	er32(PRC64);
1899 	er32(PRC127);
1900 	er32(PRC255);
1901 	er32(PRC511);
1902 	er32(PRC1023);
1903 	er32(PRC1522);
1904 	er32(PTC64);
1905 	er32(PTC127);
1906 	er32(PTC255);
1907 	er32(PTC511);
1908 	er32(PTC1023);
1909 	er32(PTC1522);
1910 
1911 	er32(ALGNERRC);
1912 	er32(RXERRC);
1913 	er32(TNCRS);
1914 	er32(CEXTERR);
1915 	er32(TSCTC);
1916 	er32(TSCTFC);
1917 
1918 	er32(MGTPRC);
1919 	er32(MGTPDC);
1920 	er32(MGTPTC);
1921 
1922 	er32(IAC);
1923 	er32(ICRXOC);
1924 
1925 	er32(ICRXPTC);
1926 	er32(ICRXATC);
1927 	er32(ICTXPTC);
1928 	er32(ICTXATC);
1929 	er32(ICTXQEC);
1930 	er32(ICTXQMTC);
1931 	er32(ICRXDMTC);
1932 }
1933 
1934 static const struct e1000_mac_operations e82571_mac_ops = {
1935 	/* .check_mng_mode: mac type dependent */
1936 	/* .check_for_link: media type dependent */
1937 	.id_led_init		= e1000e_id_led_init_generic,
1938 	.cleanup_led		= e1000e_cleanup_led_generic,
1939 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
1940 	.get_bus_info		= e1000e_get_bus_info_pcie,
1941 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1942 	/* .get_link_up_info: media type dependent */
1943 	/* .led_on: mac type dependent */
1944 	.led_off		= e1000e_led_off_generic,
1945 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1946 	.write_vfta		= e1000_write_vfta_generic,
1947 	.clear_vfta		= e1000_clear_vfta_82571,
1948 	.reset_hw		= e1000_reset_hw_82571,
1949 	.init_hw		= e1000_init_hw_82571,
1950 	.setup_link		= e1000_setup_link_82571,
1951 	/* .setup_physical_interface: media type dependent */
1952 	.setup_led		= e1000e_setup_led_generic,
1953 	.config_collision_dist	= e1000e_config_collision_dist_generic,
1954 	.read_mac_addr		= e1000_read_mac_addr_82571,
1955 	.rar_set		= e1000e_rar_set_generic,
1956 };
1957 
1958 static const struct e1000_phy_operations e82_phy_ops_igp = {
1959 	.acquire		= e1000_get_hw_semaphore_82571,
1960 	.check_polarity		= e1000_check_polarity_igp,
1961 	.check_reset_block	= e1000e_check_reset_block_generic,
1962 	.commit			= NULL,
1963 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
1964 	.get_cfg_done		= e1000_get_cfg_done_82571,
1965 	.get_cable_length	= e1000e_get_cable_length_igp_2,
1966 	.get_info		= e1000e_get_phy_info_igp,
1967 	.read_reg		= e1000e_read_phy_reg_igp,
1968 	.release		= e1000_put_hw_semaphore_82571,
1969 	.reset			= e1000e_phy_hw_reset_generic,
1970 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1971 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1972 	.write_reg		= e1000e_write_phy_reg_igp,
1973 	.cfg_on_link_up      	= NULL,
1974 };
1975 
1976 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1977 	.acquire		= e1000_get_hw_semaphore_82571,
1978 	.check_polarity		= e1000_check_polarity_m88,
1979 	.check_reset_block	= e1000e_check_reset_block_generic,
1980 	.commit			= e1000e_phy_sw_reset,
1981 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1982 	.get_cfg_done		= e1000e_get_cfg_done,
1983 	.get_cable_length	= e1000e_get_cable_length_m88,
1984 	.get_info		= e1000e_get_phy_info_m88,
1985 	.read_reg		= e1000e_read_phy_reg_m88,
1986 	.release		= e1000_put_hw_semaphore_82571,
1987 	.reset			= e1000e_phy_hw_reset_generic,
1988 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1989 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1990 	.write_reg		= e1000e_write_phy_reg_m88,
1991 	.cfg_on_link_up      	= NULL,
1992 };
1993 
1994 static const struct e1000_phy_operations e82_phy_ops_bm = {
1995 	.acquire		= e1000_get_hw_semaphore_82571,
1996 	.check_polarity		= e1000_check_polarity_m88,
1997 	.check_reset_block	= e1000e_check_reset_block_generic,
1998 	.commit			= e1000e_phy_sw_reset,
1999 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
2000 	.get_cfg_done		= e1000e_get_cfg_done,
2001 	.get_cable_length	= e1000e_get_cable_length_m88,
2002 	.get_info		= e1000e_get_phy_info_m88,
2003 	.read_reg		= e1000e_read_phy_reg_bm2,
2004 	.release		= e1000_put_hw_semaphore_82571,
2005 	.reset			= e1000e_phy_hw_reset_generic,
2006 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
2007 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
2008 	.write_reg		= e1000e_write_phy_reg_bm2,
2009 	.cfg_on_link_up      	= NULL,
2010 };
2011 
2012 static const struct e1000_nvm_operations e82571_nvm_ops = {
2013 	.acquire		= e1000_acquire_nvm_82571,
2014 	.read			= e1000e_read_nvm_eerd,
2015 	.release		= e1000_release_nvm_82571,
2016 	.reload			= e1000e_reload_nvm_generic,
2017 	.update			= e1000_update_nvm_checksum_82571,
2018 	.valid_led_default	= e1000_valid_led_default_82571,
2019 	.validate		= e1000_validate_nvm_checksum_82571,
2020 	.write			= e1000_write_nvm_82571,
2021 };
2022 
2023 const struct e1000_info e1000_82571_info = {
2024 	.mac			= e1000_82571,
2025 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2026 				  | FLAG_HAS_JUMBO_FRAMES
2027 				  | FLAG_HAS_WOL
2028 				  | FLAG_APME_IN_CTRL3
2029 				  | FLAG_HAS_CTRLEXT_ON_LOAD
2030 				  | FLAG_HAS_SMART_POWER_DOWN
2031 				  | FLAG_RESET_OVERWRITES_LAA /* errata */
2032 				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
2033 				  | FLAG_APME_CHECK_PORT_B,
2034 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2035 				  | FLAG2_DMA_BURST,
2036 	.pba			= 38,
2037 	.max_hw_frame_size	= DEFAULT_JUMBO,
2038 	.get_variants		= e1000_get_variants_82571,
2039 	.mac_ops		= &e82571_mac_ops,
2040 	.phy_ops		= &e82_phy_ops_igp,
2041 	.nvm_ops		= &e82571_nvm_ops,
2042 };
2043 
2044 const struct e1000_info e1000_82572_info = {
2045 	.mac			= e1000_82572,
2046 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2047 				  | FLAG_HAS_JUMBO_FRAMES
2048 				  | FLAG_HAS_WOL
2049 				  | FLAG_APME_IN_CTRL3
2050 				  | FLAG_HAS_CTRLEXT_ON_LOAD
2051 				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2052 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2053 				  | FLAG2_DMA_BURST,
2054 	.pba			= 38,
2055 	.max_hw_frame_size	= DEFAULT_JUMBO,
2056 	.get_variants		= e1000_get_variants_82571,
2057 	.mac_ops		= &e82571_mac_ops,
2058 	.phy_ops		= &e82_phy_ops_igp,
2059 	.nvm_ops		= &e82571_nvm_ops,
2060 };
2061 
2062 const struct e1000_info e1000_82573_info = {
2063 	.mac			= e1000_82573,
2064 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2065 				  | FLAG_HAS_WOL
2066 				  | FLAG_APME_IN_CTRL3
2067 				  | FLAG_HAS_SMART_POWER_DOWN
2068 				  | FLAG_HAS_AMT
2069 				  | FLAG_HAS_SWSM_ON_LOAD,
2070 	.flags2			= FLAG2_DISABLE_ASPM_L1
2071 				  | FLAG2_DISABLE_ASPM_L0S,
2072 	.pba			= 20,
2073 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
2074 	.get_variants		= e1000_get_variants_82571,
2075 	.mac_ops		= &e82571_mac_ops,
2076 	.phy_ops		= &e82_phy_ops_m88,
2077 	.nvm_ops		= &e82571_nvm_ops,
2078 };
2079 
2080 const struct e1000_info e1000_82574_info = {
2081 	.mac			= e1000_82574,
2082 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2083 				  | FLAG_HAS_MSIX
2084 				  | FLAG_HAS_JUMBO_FRAMES
2085 				  | FLAG_HAS_WOL
2086 				  | FLAG_APME_IN_CTRL3
2087 				  | FLAG_HAS_SMART_POWER_DOWN
2088 				  | FLAG_HAS_AMT
2089 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2090 	.flags2			 = FLAG2_CHECK_PHY_HANG
2091 				  | FLAG2_DISABLE_ASPM_L0S
2092 				  | FLAG2_DISABLE_ASPM_L1
2093 				  | FLAG2_NO_DISABLE_RX
2094 				  | FLAG2_DMA_BURST,
2095 	.pba			= 32,
2096 	.max_hw_frame_size	= DEFAULT_JUMBO,
2097 	.get_variants		= e1000_get_variants_82571,
2098 	.mac_ops		= &e82571_mac_ops,
2099 	.phy_ops		= &e82_phy_ops_bm,
2100 	.nvm_ops		= &e82571_nvm_ops,
2101 };
2102 
2103 const struct e1000_info e1000_82583_info = {
2104 	.mac			= e1000_82583,
2105 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2106 				  | FLAG_HAS_WOL
2107 				  | FLAG_APME_IN_CTRL3
2108 				  | FLAG_HAS_SMART_POWER_DOWN
2109 				  | FLAG_HAS_AMT
2110 				  | FLAG_HAS_JUMBO_FRAMES
2111 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2112 	.flags2			= FLAG2_DISABLE_ASPM_L0S
2113 				  | FLAG2_NO_DISABLE_RX,
2114 	.pba			= 32,
2115 	.max_hw_frame_size	= DEFAULT_JUMBO,
2116 	.get_variants		= e1000_get_variants_82571,
2117 	.mac_ops		= &e82571_mac_ops,
2118 	.phy_ops		= &e82_phy_ops_bm,
2119 	.nvm_ops		= &e82571_nvm_ops,
2120 };
2121 
2122