1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82571EB Gigabit Ethernet Controller
23  * 82571EB Gigabit Ethernet Controller (Copper)
24  * 82571EB Gigabit Ethernet Controller (Fiber)
25  * 82571EB Dual Port Gigabit Mezzanine Adapter
26  * 82571EB Quad Port Gigabit Mezzanine Adapter
27  * 82571PT Gigabit PT Quad Port Server ExpressModule
28  * 82572EI Gigabit Ethernet Controller (Copper)
29  * 82572EI Gigabit Ethernet Controller (Fiber)
30  * 82572EI Gigabit Ethernet Controller
31  * 82573V Gigabit Ethernet Controller (Copper)
32  * 82573E Gigabit Ethernet Controller (Copper)
33  * 82573L Gigabit Ethernet Controller
34  * 82574L Gigabit Network Connection
35  * 82583V Gigabit Network Connection
36  */
37 
38 #include "e1000.h"
39 
40 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
41 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
42 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
43 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
44 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
45 				      u16 words, u16 *data);
46 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
47 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
48 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
49 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
50 static s32 e1000_led_on_82574(struct e1000_hw *hw);
51 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
52 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
53 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
54 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
55 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
56 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
57 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
58 
59 /**
60  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
61  *  @hw: pointer to the HW structure
62  **/
63 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
64 {
65 	struct e1000_phy_info *phy = &hw->phy;
66 	s32 ret_val;
67 
68 	if (hw->phy.media_type != e1000_media_type_copper) {
69 		phy->type = e1000_phy_none;
70 		return 0;
71 	}
72 
73 	phy->addr = 1;
74 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
75 	phy->reset_delay_us = 100;
76 
77 	phy->ops.power_up = e1000_power_up_phy_copper;
78 	phy->ops.power_down = e1000_power_down_phy_copper_82571;
79 
80 	switch (hw->mac.type) {
81 	case e1000_82571:
82 	case e1000_82572:
83 		phy->type = e1000_phy_igp_2;
84 		break;
85 	case e1000_82573:
86 		phy->type = e1000_phy_m88;
87 		break;
88 	case e1000_82574:
89 	case e1000_82583:
90 		phy->type = e1000_phy_bm;
91 		phy->ops.acquire = e1000_get_hw_semaphore_82574;
92 		phy->ops.release = e1000_put_hw_semaphore_82574;
93 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
94 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
95 		break;
96 	default:
97 		return -E1000_ERR_PHY;
98 		break;
99 	}
100 
101 	/* This can only be done after all function pointers are setup. */
102 	ret_val = e1000_get_phy_id_82571(hw);
103 	if (ret_val) {
104 		e_dbg("Error getting PHY ID\n");
105 		return ret_val;
106 	}
107 
108 	/* Verify phy id */
109 	switch (hw->mac.type) {
110 	case e1000_82571:
111 	case e1000_82572:
112 		if (phy->id != IGP01E1000_I_PHY_ID)
113 			ret_val = -E1000_ERR_PHY;
114 		break;
115 	case e1000_82573:
116 		if (phy->id != M88E1111_I_PHY_ID)
117 			ret_val = -E1000_ERR_PHY;
118 		break;
119 	case e1000_82574:
120 	case e1000_82583:
121 		if (phy->id != BME1000_E_PHY_ID_R2)
122 			ret_val = -E1000_ERR_PHY;
123 		break;
124 	default:
125 		ret_val = -E1000_ERR_PHY;
126 		break;
127 	}
128 
129 	if (ret_val)
130 		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
131 
132 	return ret_val;
133 }
134 
135 /**
136  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
137  *  @hw: pointer to the HW structure
138  **/
139 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
140 {
141 	struct e1000_nvm_info *nvm = &hw->nvm;
142 	u32 eecd = er32(EECD);
143 	u16 size;
144 
145 	nvm->opcode_bits = 8;
146 	nvm->delay_usec = 1;
147 	switch (nvm->override) {
148 	case e1000_nvm_override_spi_large:
149 		nvm->page_size = 32;
150 		nvm->address_bits = 16;
151 		break;
152 	case e1000_nvm_override_spi_small:
153 		nvm->page_size = 8;
154 		nvm->address_bits = 8;
155 		break;
156 	default:
157 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
158 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
159 		break;
160 	}
161 
162 	switch (hw->mac.type) {
163 	case e1000_82573:
164 	case e1000_82574:
165 	case e1000_82583:
166 		if (((eecd >> 15) & 0x3) == 0x3) {
167 			nvm->type = e1000_nvm_flash_hw;
168 			nvm->word_size = 2048;
169 			/* Autonomous Flash update bit must be cleared due
170 			 * to Flash update issue.
171 			 */
172 			eecd &= ~E1000_EECD_AUPDEN;
173 			ew32(EECD, eecd);
174 			break;
175 		}
176 		/* Fall Through */
177 	default:
178 		nvm->type = e1000_nvm_eeprom_spi;
179 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
180 			     E1000_EECD_SIZE_EX_SHIFT);
181 		/* Added to a constant, "size" becomes the left-shift value
182 		 * for setting word_size.
183 		 */
184 		size += NVM_WORD_SIZE_BASE_SHIFT;
185 
186 		/* EEPROM access above 16k is unsupported */
187 		if (size > 14)
188 			size = 14;
189 		nvm->word_size = 1 << size;
190 		break;
191 	}
192 
193 	/* Function Pointers */
194 	switch (hw->mac.type) {
195 	case e1000_82574:
196 	case e1000_82583:
197 		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
198 		nvm->ops.release = e1000_put_hw_semaphore_82574;
199 		break;
200 	default:
201 		break;
202 	}
203 
204 	return 0;
205 }
206 
207 /**
208  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
209  *  @hw: pointer to the HW structure
210  **/
211 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
212 {
213 	struct e1000_mac_info *mac = &hw->mac;
214 	u32 swsm = 0;
215 	u32 swsm2 = 0;
216 	bool force_clear_smbi = false;
217 
218 	/* Set media type and media-dependent function pointers */
219 	switch (hw->adapter->pdev->device) {
220 	case E1000_DEV_ID_82571EB_FIBER:
221 	case E1000_DEV_ID_82572EI_FIBER:
222 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
223 		hw->phy.media_type = e1000_media_type_fiber;
224 		mac->ops.setup_physical_interface =
225 		    e1000_setup_fiber_serdes_link_82571;
226 		mac->ops.check_for_link = e1000e_check_for_fiber_link;
227 		mac->ops.get_link_up_info =
228 		    e1000e_get_speed_and_duplex_fiber_serdes;
229 		break;
230 	case E1000_DEV_ID_82571EB_SERDES:
231 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
232 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
233 	case E1000_DEV_ID_82572EI_SERDES:
234 		hw->phy.media_type = e1000_media_type_internal_serdes;
235 		mac->ops.setup_physical_interface =
236 		    e1000_setup_fiber_serdes_link_82571;
237 		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
238 		mac->ops.get_link_up_info =
239 		    e1000e_get_speed_and_duplex_fiber_serdes;
240 		break;
241 	default:
242 		hw->phy.media_type = e1000_media_type_copper;
243 		mac->ops.setup_physical_interface =
244 		    e1000_setup_copper_link_82571;
245 		mac->ops.check_for_link = e1000e_check_for_copper_link;
246 		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
247 		break;
248 	}
249 
250 	/* Set mta register count */
251 	mac->mta_reg_count = 128;
252 	/* Set rar entry count */
253 	mac->rar_entry_count = E1000_RAR_ENTRIES;
254 	/* Adaptive IFS supported */
255 	mac->adaptive_ifs = true;
256 
257 	/* MAC-specific function pointers */
258 	switch (hw->mac.type) {
259 	case e1000_82573:
260 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
261 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
262 		mac->ops.led_on = e1000e_led_on_generic;
263 		mac->ops.blink_led = e1000e_blink_led_generic;
264 
265 		/* FWSM register */
266 		mac->has_fwsm = true;
267 		/* ARC supported; valid only if manageability features are
268 		 * enabled.
269 		 */
270 		mac->arc_subsystem_valid = !!(er32(FWSM) &
271 					      E1000_FWSM_MODE_MASK);
272 		break;
273 	case e1000_82574:
274 	case e1000_82583:
275 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
276 		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
277 		mac->ops.led_on = e1000_led_on_82574;
278 		break;
279 	default:
280 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
281 		mac->ops.led_on = e1000e_led_on_generic;
282 		mac->ops.blink_led = e1000e_blink_led_generic;
283 
284 		/* FWSM register */
285 		mac->has_fwsm = true;
286 		break;
287 	}
288 
289 	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
290 	 * first NVM or PHY access. This should be done for single-port
291 	 * devices, and for one port only on dual-port devices so that
292 	 * for those devices we can still use the SMBI lock to synchronize
293 	 * inter-port accesses to the PHY & NVM.
294 	 */
295 	switch (hw->mac.type) {
296 	case e1000_82571:
297 	case e1000_82572:
298 		swsm2 = er32(SWSM2);
299 
300 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
301 			/* Only do this for the first interface on this card */
302 			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
303 			force_clear_smbi = true;
304 		} else {
305 			force_clear_smbi = false;
306 		}
307 		break;
308 	default:
309 		force_clear_smbi = true;
310 		break;
311 	}
312 
313 	if (force_clear_smbi) {
314 		/* Make sure SWSM.SMBI is clear */
315 		swsm = er32(SWSM);
316 		if (swsm & E1000_SWSM_SMBI) {
317 			/* This bit should not be set on a first interface, and
318 			 * indicates that the bootagent or EFI code has
319 			 * improperly left this bit enabled
320 			 */
321 			e_dbg("Please update your 82571 Bootagent\n");
322 		}
323 		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
324 	}
325 
326 	/* Initialize device specific counter of SMBI acquisition timeouts. */
327 	hw->dev_spec.e82571.smb_counter = 0;
328 
329 	return 0;
330 }
331 
332 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
333 {
334 	struct e1000_hw *hw = &adapter->hw;
335 	static int global_quad_port_a;	/* global port a indication */
336 	struct pci_dev *pdev = adapter->pdev;
337 	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
338 	s32 rc;
339 
340 	rc = e1000_init_mac_params_82571(hw);
341 	if (rc)
342 		return rc;
343 
344 	rc = e1000_init_nvm_params_82571(hw);
345 	if (rc)
346 		return rc;
347 
348 	rc = e1000_init_phy_params_82571(hw);
349 	if (rc)
350 		return rc;
351 
352 	/* tag quad port adapters first, it's used below */
353 	switch (pdev->device) {
354 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
355 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
356 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
357 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
358 		adapter->flags |= FLAG_IS_QUAD_PORT;
359 		/* mark the first port */
360 		if (global_quad_port_a == 0)
361 			adapter->flags |= FLAG_IS_QUAD_PORT_A;
362 		/* Reset for multiple quad port adapters */
363 		global_quad_port_a++;
364 		if (global_quad_port_a == 4)
365 			global_quad_port_a = 0;
366 		break;
367 	default:
368 		break;
369 	}
370 
371 	switch (adapter->hw.mac.type) {
372 	case e1000_82571:
373 		/* these dual ports don't have WoL on port B at all */
374 		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
375 		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
376 		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
377 		    (is_port_b))
378 			adapter->flags &= ~FLAG_HAS_WOL;
379 		/* quad ports only support WoL on port A */
380 		if (adapter->flags & FLAG_IS_QUAD_PORT &&
381 		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
382 			adapter->flags &= ~FLAG_HAS_WOL;
383 		/* Does not support WoL on any port */
384 		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
385 			adapter->flags &= ~FLAG_HAS_WOL;
386 		break;
387 	case e1000_82573:
388 		if (pdev->device == E1000_DEV_ID_82573L) {
389 			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
390 			adapter->max_hw_frame_size = DEFAULT_JUMBO;
391 		}
392 		break;
393 	default:
394 		break;
395 	}
396 
397 	return 0;
398 }
399 
400 /**
401  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
402  *  @hw: pointer to the HW structure
403  *
404  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
405  *  revision in the hardware structure.
406  **/
407 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
408 {
409 	struct e1000_phy_info *phy = &hw->phy;
410 	s32 ret_val;
411 	u16 phy_id = 0;
412 
413 	switch (hw->mac.type) {
414 	case e1000_82571:
415 	case e1000_82572:
416 		/* The 82571 firmware may still be configuring the PHY.
417 		 * In this case, we cannot access the PHY until the
418 		 * configuration is done.  So we explicitly set the
419 		 * PHY ID.
420 		 */
421 		phy->id = IGP01E1000_I_PHY_ID;
422 		break;
423 	case e1000_82573:
424 		return e1000e_get_phy_id(hw);
425 		break;
426 	case e1000_82574:
427 	case e1000_82583:
428 		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
429 		if (ret_val)
430 			return ret_val;
431 
432 		phy->id = (u32)(phy_id << 16);
433 		usleep_range(20, 40);
434 		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
435 		if (ret_val)
436 			return ret_val;
437 
438 		phy->id |= (u32)(phy_id);
439 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
440 		break;
441 	default:
442 		return -E1000_ERR_PHY;
443 		break;
444 	}
445 
446 	return 0;
447 }
448 
449 /**
450  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
451  *  @hw: pointer to the HW structure
452  *
453  *  Acquire the HW semaphore to access the PHY or NVM
454  **/
455 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
456 {
457 	u32 swsm;
458 	s32 sw_timeout = hw->nvm.word_size + 1;
459 	s32 fw_timeout = hw->nvm.word_size + 1;
460 	s32 i = 0;
461 
462 	/* If we have timedout 3 times on trying to acquire
463 	 * the inter-port SMBI semaphore, there is old code
464 	 * operating on the other port, and it is not
465 	 * releasing SMBI. Modify the number of times that
466 	 * we try for the semaphore to interwork with this
467 	 * older code.
468 	 */
469 	if (hw->dev_spec.e82571.smb_counter > 2)
470 		sw_timeout = 1;
471 
472 	/* Get the SW semaphore */
473 	while (i < sw_timeout) {
474 		swsm = er32(SWSM);
475 		if (!(swsm & E1000_SWSM_SMBI))
476 			break;
477 
478 		usleep_range(50, 100);
479 		i++;
480 	}
481 
482 	if (i == sw_timeout) {
483 		e_dbg("Driver can't access device - SMBI bit is set.\n");
484 		hw->dev_spec.e82571.smb_counter++;
485 	}
486 	/* Get the FW semaphore. */
487 	for (i = 0; i < fw_timeout; i++) {
488 		swsm = er32(SWSM);
489 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
490 
491 		/* Semaphore acquired if bit latched */
492 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
493 			break;
494 
495 		usleep_range(50, 100);
496 	}
497 
498 	if (i == fw_timeout) {
499 		/* Release semaphores */
500 		e1000_put_hw_semaphore_82571(hw);
501 		e_dbg("Driver can't access the NVM\n");
502 		return -E1000_ERR_NVM;
503 	}
504 
505 	return 0;
506 }
507 
508 /**
509  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
510  *  @hw: pointer to the HW structure
511  *
512  *  Release hardware semaphore used to access the PHY or NVM
513  **/
514 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
515 {
516 	u32 swsm;
517 
518 	swsm = er32(SWSM);
519 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
520 	ew32(SWSM, swsm);
521 }
522 
523 /**
524  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
525  *  @hw: pointer to the HW structure
526  *
527  *  Acquire the HW semaphore during reset.
528  *
529  **/
530 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
531 {
532 	u32 extcnf_ctrl;
533 	s32 i = 0;
534 
535 	extcnf_ctrl = er32(EXTCNF_CTRL);
536 	do {
537 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
538 		ew32(EXTCNF_CTRL, extcnf_ctrl);
539 		extcnf_ctrl = er32(EXTCNF_CTRL);
540 
541 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
542 			break;
543 
544 		usleep_range(2000, 4000);
545 		i++;
546 	} while (i < MDIO_OWNERSHIP_TIMEOUT);
547 
548 	if (i == MDIO_OWNERSHIP_TIMEOUT) {
549 		/* Release semaphores */
550 		e1000_put_hw_semaphore_82573(hw);
551 		e_dbg("Driver can't access the PHY\n");
552 		return -E1000_ERR_PHY;
553 	}
554 
555 	return 0;
556 }
557 
558 /**
559  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
560  *  @hw: pointer to the HW structure
561  *
562  *  Release hardware semaphore used during reset.
563  *
564  **/
565 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
566 {
567 	u32 extcnf_ctrl;
568 
569 	extcnf_ctrl = er32(EXTCNF_CTRL);
570 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
571 	ew32(EXTCNF_CTRL, extcnf_ctrl);
572 }
573 
574 static DEFINE_MUTEX(swflag_mutex);
575 
576 /**
577  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
578  *  @hw: pointer to the HW structure
579  *
580  *  Acquire the HW semaphore to access the PHY or NVM.
581  *
582  **/
583 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
584 {
585 	s32 ret_val;
586 
587 	mutex_lock(&swflag_mutex);
588 	ret_val = e1000_get_hw_semaphore_82573(hw);
589 	if (ret_val)
590 		mutex_unlock(&swflag_mutex);
591 	return ret_val;
592 }
593 
594 /**
595  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
596  *  @hw: pointer to the HW structure
597  *
598  *  Release hardware semaphore used to access the PHY or NVM
599  *
600  **/
601 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
602 {
603 	e1000_put_hw_semaphore_82573(hw);
604 	mutex_unlock(&swflag_mutex);
605 }
606 
607 /**
608  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
609  *  @hw: pointer to the HW structure
610  *  @active: true to enable LPLU, false to disable
611  *
612  *  Sets the LPLU D0 state according to the active flag.
613  *  LPLU will not be activated unless the
614  *  device autonegotiation advertisement meets standards of
615  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
616  *  This is a function pointer entry point only called by
617  *  PHY setup routines.
618  **/
619 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
620 {
621 	u32 data = er32(POEMB);
622 
623 	if (active)
624 		data |= E1000_PHY_CTRL_D0A_LPLU;
625 	else
626 		data &= ~E1000_PHY_CTRL_D0A_LPLU;
627 
628 	ew32(POEMB, data);
629 	return 0;
630 }
631 
632 /**
633  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
634  *  @hw: pointer to the HW structure
635  *  @active: boolean used to enable/disable lplu
636  *
637  *  The low power link up (lplu) state is set to the power management level D3
638  *  when active is true, else clear lplu for D3. LPLU
639  *  is used during Dx states where the power conservation is most important.
640  *  During driver activity, SmartSpeed should be enabled so performance is
641  *  maintained.
642  **/
643 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
644 {
645 	u32 data = er32(POEMB);
646 
647 	if (!active) {
648 		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
649 	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
650 		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
651 		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
652 		data |= E1000_PHY_CTRL_NOND0A_LPLU;
653 	}
654 
655 	ew32(POEMB, data);
656 	return 0;
657 }
658 
659 /**
660  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
661  *  @hw: pointer to the HW structure
662  *
663  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
664  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
665  *  for EEPROM access grant bit.  If the access grant bit is not set, release
666  *  hardware semaphore.
667  **/
668 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
669 {
670 	s32 ret_val;
671 
672 	ret_val = e1000_get_hw_semaphore_82571(hw);
673 	if (ret_val)
674 		return ret_val;
675 
676 	switch (hw->mac.type) {
677 	case e1000_82573:
678 		break;
679 	default:
680 		ret_val = e1000e_acquire_nvm(hw);
681 		break;
682 	}
683 
684 	if (ret_val)
685 		e1000_put_hw_semaphore_82571(hw);
686 
687 	return ret_val;
688 }
689 
690 /**
691  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
692  *  @hw: pointer to the HW structure
693  *
694  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
695  **/
696 static void e1000_release_nvm_82571(struct e1000_hw *hw)
697 {
698 	e1000e_release_nvm(hw);
699 	e1000_put_hw_semaphore_82571(hw);
700 }
701 
702 /**
703  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
704  *  @hw: pointer to the HW structure
705  *  @offset: offset within the EEPROM to be written to
706  *  @words: number of words to write
707  *  @data: 16 bit word(s) to be written to the EEPROM
708  *
709  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
710  *
711  *  If e1000e_update_nvm_checksum is not called after this function, the
712  *  EEPROM will most likely contain an invalid checksum.
713  **/
714 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
715 				 u16 *data)
716 {
717 	s32 ret_val;
718 
719 	switch (hw->mac.type) {
720 	case e1000_82573:
721 	case e1000_82574:
722 	case e1000_82583:
723 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
724 		break;
725 	case e1000_82571:
726 	case e1000_82572:
727 		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
728 		break;
729 	default:
730 		ret_val = -E1000_ERR_NVM;
731 		break;
732 	}
733 
734 	return ret_val;
735 }
736 
737 /**
738  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
739  *  @hw: pointer to the HW structure
740  *
741  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
742  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
743  *  value to the EEPROM.
744  **/
745 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
746 {
747 	u32 eecd;
748 	s32 ret_val;
749 	u16 i;
750 
751 	ret_val = e1000e_update_nvm_checksum_generic(hw);
752 	if (ret_val)
753 		return ret_val;
754 
755 	/* If our nvm is an EEPROM, then we're done
756 	 * otherwise, commit the checksum to the flash NVM.
757 	 */
758 	if (hw->nvm.type != e1000_nvm_flash_hw)
759 		return 0;
760 
761 	/* Check for pending operations. */
762 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
763 		usleep_range(1000, 2000);
764 		if (!(er32(EECD) & E1000_EECD_FLUPD))
765 			break;
766 	}
767 
768 	if (i == E1000_FLASH_UPDATES)
769 		return -E1000_ERR_NVM;
770 
771 	/* Reset the firmware if using STM opcode. */
772 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
773 		/* The enabling of and the actual reset must be done
774 		 * in two write cycles.
775 		 */
776 		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
777 		e1e_flush();
778 		ew32(HICR, E1000_HICR_FW_RESET);
779 	}
780 
781 	/* Commit the write to flash */
782 	eecd = er32(EECD) | E1000_EECD_FLUPD;
783 	ew32(EECD, eecd);
784 
785 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
786 		usleep_range(1000, 2000);
787 		if (!(er32(EECD) & E1000_EECD_FLUPD))
788 			break;
789 	}
790 
791 	if (i == E1000_FLASH_UPDATES)
792 		return -E1000_ERR_NVM;
793 
794 	return 0;
795 }
796 
797 /**
798  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
799  *  @hw: pointer to the HW structure
800  *
801  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
802  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
803  **/
804 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
805 {
806 	if (hw->nvm.type == e1000_nvm_flash_hw)
807 		e1000_fix_nvm_checksum_82571(hw);
808 
809 	return e1000e_validate_nvm_checksum_generic(hw);
810 }
811 
812 /**
813  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
814  *  @hw: pointer to the HW structure
815  *  @offset: offset within the EEPROM to be written to
816  *  @words: number of words to write
817  *  @data: 16 bit word(s) to be written to the EEPROM
818  *
819  *  After checking for invalid values, poll the EEPROM to ensure the previous
820  *  command has completed before trying to write the next word.  After write
821  *  poll for completion.
822  *
823  *  If e1000e_update_nvm_checksum is not called after this function, the
824  *  EEPROM will most likely contain an invalid checksum.
825  **/
826 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
827 				      u16 words, u16 *data)
828 {
829 	struct e1000_nvm_info *nvm = &hw->nvm;
830 	u32 i, eewr = 0;
831 	s32 ret_val = 0;
832 
833 	/* A check for invalid values:  offset too large, too many words,
834 	 * and not enough words.
835 	 */
836 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
837 	    (words == 0)) {
838 		e_dbg("nvm parameter(s) out of bounds\n");
839 		return -E1000_ERR_NVM;
840 	}
841 
842 	for (i = 0; i < words; i++) {
843 		eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
844 			((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
845 			E1000_NVM_RW_REG_START);
846 
847 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
848 		if (ret_val)
849 			break;
850 
851 		ew32(EEWR, eewr);
852 
853 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
854 		if (ret_val)
855 			break;
856 	}
857 
858 	return ret_val;
859 }
860 
861 /**
862  *  e1000_get_cfg_done_82571 - Poll for configuration done
863  *  @hw: pointer to the HW structure
864  *
865  *  Reads the management control register for the config done bit to be set.
866  **/
867 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
868 {
869 	s32 timeout = PHY_CFG_TIMEOUT;
870 
871 	while (timeout) {
872 		if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
873 			break;
874 		usleep_range(1000, 2000);
875 		timeout--;
876 	}
877 	if (!timeout) {
878 		e_dbg("MNG configuration cycle has not completed.\n");
879 		return -E1000_ERR_RESET;
880 	}
881 
882 	return 0;
883 }
884 
885 /**
886  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
887  *  @hw: pointer to the HW structure
888  *  @active: true to enable LPLU, false to disable
889  *
890  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
891  *  this function also disables smart speed and vice versa.  LPLU will not be
892  *  activated unless the device autonegotiation advertisement meets standards
893  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
894  *  pointer entry point only called by PHY setup routines.
895  **/
896 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
897 {
898 	struct e1000_phy_info *phy = &hw->phy;
899 	s32 ret_val;
900 	u16 data;
901 
902 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
903 	if (ret_val)
904 		return ret_val;
905 
906 	if (active) {
907 		data |= IGP02E1000_PM_D0_LPLU;
908 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
909 		if (ret_val)
910 			return ret_val;
911 
912 		/* When LPLU is enabled, we should disable SmartSpeed */
913 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
914 		if (ret_val)
915 			return ret_val;
916 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
917 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
918 		if (ret_val)
919 			return ret_val;
920 	} else {
921 		data &= ~IGP02E1000_PM_D0_LPLU;
922 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
923 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
924 		 * during Dx states where the power conservation is most
925 		 * important.  During driver activity we should enable
926 		 * SmartSpeed, so performance is maintained.
927 		 */
928 		if (phy->smart_speed == e1000_smart_speed_on) {
929 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
930 					   &data);
931 			if (ret_val)
932 				return ret_val;
933 
934 			data |= IGP01E1000_PSCFR_SMART_SPEED;
935 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
936 					   data);
937 			if (ret_val)
938 				return ret_val;
939 		} else if (phy->smart_speed == e1000_smart_speed_off) {
940 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
941 					   &data);
942 			if (ret_val)
943 				return ret_val;
944 
945 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
946 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
947 					   data);
948 			if (ret_val)
949 				return ret_val;
950 		}
951 	}
952 
953 	return 0;
954 }
955 
956 /**
957  *  e1000_reset_hw_82571 - Reset hardware
958  *  @hw: pointer to the HW structure
959  *
960  *  This resets the hardware into a known state.
961  **/
962 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
963 {
964 	u32 ctrl, ctrl_ext, eecd, tctl;
965 	s32 ret_val;
966 
967 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
968 	 * on the last TLP read/write transaction when MAC is reset.
969 	 */
970 	ret_val = e1000e_disable_pcie_master(hw);
971 	if (ret_val)
972 		e_dbg("PCI-E Master disable polling has failed.\n");
973 
974 	e_dbg("Masking off all interrupts\n");
975 	ew32(IMC, 0xffffffff);
976 
977 	ew32(RCTL, 0);
978 	tctl = er32(TCTL);
979 	tctl &= ~E1000_TCTL_EN;
980 	ew32(TCTL, tctl);
981 	e1e_flush();
982 
983 	usleep_range(10000, 20000);
984 
985 	/* Must acquire the MDIO ownership before MAC reset.
986 	 * Ownership defaults to firmware after a reset.
987 	 */
988 	switch (hw->mac.type) {
989 	case e1000_82573:
990 		ret_val = e1000_get_hw_semaphore_82573(hw);
991 		break;
992 	case e1000_82574:
993 	case e1000_82583:
994 		ret_val = e1000_get_hw_semaphore_82574(hw);
995 		break;
996 	default:
997 		break;
998 	}
999 
1000 	ctrl = er32(CTRL);
1001 
1002 	e_dbg("Issuing a global reset to MAC\n");
1003 	ew32(CTRL, ctrl | E1000_CTRL_RST);
1004 
1005 	/* Must release MDIO ownership and mutex after MAC reset. */
1006 	switch (hw->mac.type) {
1007 	case e1000_82573:
1008 		/* Release mutex only if the hw semaphore is acquired */
1009 		if (!ret_val)
1010 			e1000_put_hw_semaphore_82573(hw);
1011 		break;
1012 	case e1000_82574:
1013 	case e1000_82583:
1014 		/* Release mutex only if the hw semaphore is acquired */
1015 		if (!ret_val)
1016 			e1000_put_hw_semaphore_82574(hw);
1017 		break;
1018 	default:
1019 		break;
1020 	}
1021 
1022 	if (hw->nvm.type == e1000_nvm_flash_hw) {
1023 		usleep_range(10, 20);
1024 		ctrl_ext = er32(CTRL_EXT);
1025 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1026 		ew32(CTRL_EXT, ctrl_ext);
1027 		e1e_flush();
1028 	}
1029 
1030 	ret_val = e1000e_get_auto_rd_done(hw);
1031 	if (ret_val)
1032 		/* We don't want to continue accessing MAC registers. */
1033 		return ret_val;
1034 
1035 	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1036 	 * Need to wait for Phy configuration completion before accessing
1037 	 * NVM and Phy.
1038 	 */
1039 
1040 	switch (hw->mac.type) {
1041 	case e1000_82571:
1042 	case e1000_82572:
1043 		/* REQ and GNT bits need to be cleared when using AUTO_RD
1044 		 * to access the EEPROM.
1045 		 */
1046 		eecd = er32(EECD);
1047 		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1048 		ew32(EECD, eecd);
1049 		break;
1050 	case e1000_82573:
1051 	case e1000_82574:
1052 	case e1000_82583:
1053 		msleep(25);
1054 		break;
1055 	default:
1056 		break;
1057 	}
1058 
1059 	/* Clear any pending interrupt events. */
1060 	ew32(IMC, 0xffffffff);
1061 	er32(ICR);
1062 
1063 	if (hw->mac.type == e1000_82571) {
1064 		/* Install any alternate MAC address into RAR0 */
1065 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1066 		if (ret_val)
1067 			return ret_val;
1068 
1069 		e1000e_set_laa_state_82571(hw, true);
1070 	}
1071 
1072 	/* Reinitialize the 82571 serdes link state machine */
1073 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
1074 		hw->mac.serdes_link_state = e1000_serdes_link_down;
1075 
1076 	return 0;
1077 }
1078 
1079 /**
1080  *  e1000_init_hw_82571 - Initialize hardware
1081  *  @hw: pointer to the HW structure
1082  *
1083  *  This inits the hardware readying it for operation.
1084  **/
1085 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1086 {
1087 	struct e1000_mac_info *mac = &hw->mac;
1088 	u32 reg_data;
1089 	s32 ret_val;
1090 	u16 i, rar_count = mac->rar_entry_count;
1091 
1092 	e1000_initialize_hw_bits_82571(hw);
1093 
1094 	/* Initialize identification LED */
1095 	ret_val = mac->ops.id_led_init(hw);
1096 	/* An error is not fatal and we should not stop init due to this */
1097 	if (ret_val)
1098 		e_dbg("Error initializing identification LED\n");
1099 
1100 	/* Disabling VLAN filtering */
1101 	e_dbg("Initializing the IEEE VLAN\n");
1102 	mac->ops.clear_vfta(hw);
1103 
1104 	/* Setup the receive address.
1105 	 * If, however, a locally administered address was assigned to the
1106 	 * 82571, we must reserve a RAR for it to work around an issue where
1107 	 * resetting one port will reload the MAC on the other port.
1108 	 */
1109 	if (e1000e_get_laa_state_82571(hw))
1110 		rar_count--;
1111 	e1000e_init_rx_addrs(hw, rar_count);
1112 
1113 	/* Zero out the Multicast HASH table */
1114 	e_dbg("Zeroing the MTA\n");
1115 	for (i = 0; i < mac->mta_reg_count; i++)
1116 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1117 
1118 	/* Setup link and flow control */
1119 	ret_val = mac->ops.setup_link(hw);
1120 
1121 	/* Set the transmit descriptor write-back policy */
1122 	reg_data = er32(TXDCTL(0));
1123 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1124 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1125 	ew32(TXDCTL(0), reg_data);
1126 
1127 	/* ...for both queues. */
1128 	switch (mac->type) {
1129 	case e1000_82573:
1130 		e1000e_enable_tx_pkt_filtering(hw);
1131 		/* fall through */
1132 	case e1000_82574:
1133 	case e1000_82583:
1134 		reg_data = er32(GCR);
1135 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1136 		ew32(GCR, reg_data);
1137 		break;
1138 	default:
1139 		reg_data = er32(TXDCTL(1));
1140 		reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1141 			    E1000_TXDCTL_FULL_TX_DESC_WB |
1142 			    E1000_TXDCTL_COUNT_DESC);
1143 		ew32(TXDCTL(1), reg_data);
1144 		break;
1145 	}
1146 
1147 	/* Clear all of the statistics registers (clear on read).  It is
1148 	 * important that we do this after we have tried to establish link
1149 	 * because the symbol error count will increment wildly if there
1150 	 * is no link.
1151 	 */
1152 	e1000_clear_hw_cntrs_82571(hw);
1153 
1154 	return ret_val;
1155 }
1156 
1157 /**
1158  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1159  *  @hw: pointer to the HW structure
1160  *
1161  *  Initializes required hardware-dependent bits needed for normal operation.
1162  **/
1163 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1164 {
1165 	u32 reg;
1166 
1167 	/* Transmit Descriptor Control 0 */
1168 	reg = er32(TXDCTL(0));
1169 	reg |= (1 << 22);
1170 	ew32(TXDCTL(0), reg);
1171 
1172 	/* Transmit Descriptor Control 1 */
1173 	reg = er32(TXDCTL(1));
1174 	reg |= (1 << 22);
1175 	ew32(TXDCTL(1), reg);
1176 
1177 	/* Transmit Arbitration Control 0 */
1178 	reg = er32(TARC(0));
1179 	reg &= ~(0xF << 27);	/* 30:27 */
1180 	switch (hw->mac.type) {
1181 	case e1000_82571:
1182 	case e1000_82572:
1183 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1184 		break;
1185 	case e1000_82574:
1186 	case e1000_82583:
1187 		reg |= (1 << 26);
1188 		break;
1189 	default:
1190 		break;
1191 	}
1192 	ew32(TARC(0), reg);
1193 
1194 	/* Transmit Arbitration Control 1 */
1195 	reg = er32(TARC(1));
1196 	switch (hw->mac.type) {
1197 	case e1000_82571:
1198 	case e1000_82572:
1199 		reg &= ~((1 << 29) | (1 << 30));
1200 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1201 		if (er32(TCTL) & E1000_TCTL_MULR)
1202 			reg &= ~(1 << 28);
1203 		else
1204 			reg |= (1 << 28);
1205 		ew32(TARC(1), reg);
1206 		break;
1207 	default:
1208 		break;
1209 	}
1210 
1211 	/* Device Control */
1212 	switch (hw->mac.type) {
1213 	case e1000_82573:
1214 	case e1000_82574:
1215 	case e1000_82583:
1216 		reg = er32(CTRL);
1217 		reg &= ~(1 << 29);
1218 		ew32(CTRL, reg);
1219 		break;
1220 	default:
1221 		break;
1222 	}
1223 
1224 	/* Extended Device Control */
1225 	switch (hw->mac.type) {
1226 	case e1000_82573:
1227 	case e1000_82574:
1228 	case e1000_82583:
1229 		reg = er32(CTRL_EXT);
1230 		reg &= ~(1 << 23);
1231 		reg |= (1 << 22);
1232 		ew32(CTRL_EXT, reg);
1233 		break;
1234 	default:
1235 		break;
1236 	}
1237 
1238 	if (hw->mac.type == e1000_82571) {
1239 		reg = er32(PBA_ECC);
1240 		reg |= E1000_PBA_ECC_CORR_EN;
1241 		ew32(PBA_ECC, reg);
1242 	}
1243 
1244 	/* Workaround for hardware errata.
1245 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1246 	 */
1247 	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1248 		reg = er32(CTRL_EXT);
1249 		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1250 		ew32(CTRL_EXT, reg);
1251 	}
1252 
1253 	/* Disable IPv6 extension header parsing because some malformed
1254 	 * IPv6 headers can hang the Rx.
1255 	 */
1256 	if (hw->mac.type <= e1000_82573) {
1257 		reg = er32(RFCTL);
1258 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1259 		ew32(RFCTL, reg);
1260 	}
1261 
1262 	/* PCI-Ex Control Registers */
1263 	switch (hw->mac.type) {
1264 	case e1000_82574:
1265 	case e1000_82583:
1266 		reg = er32(GCR);
1267 		reg |= (1 << 22);
1268 		ew32(GCR, reg);
1269 
1270 		/* Workaround for hardware errata.
1271 		 * apply workaround for hardware errata documented in errata
1272 		 * docs Fixes issue where some error prone or unreliable PCIe
1273 		 * completions are occurring, particularly with ASPM enabled.
1274 		 * Without fix, issue can cause Tx timeouts.
1275 		 */
1276 		reg = er32(GCR2);
1277 		reg |= 1;
1278 		ew32(GCR2, reg);
1279 		break;
1280 	default:
1281 		break;
1282 	}
1283 }
1284 
1285 /**
1286  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1287  *  @hw: pointer to the HW structure
1288  *
1289  *  Clears the register array which contains the VLAN filter table by
1290  *  setting all the values to 0.
1291  **/
1292 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1293 {
1294 	u32 offset;
1295 	u32 vfta_value = 0;
1296 	u32 vfta_offset = 0;
1297 	u32 vfta_bit_in_reg = 0;
1298 
1299 	switch (hw->mac.type) {
1300 	case e1000_82573:
1301 	case e1000_82574:
1302 	case e1000_82583:
1303 		if (hw->mng_cookie.vlan_id != 0) {
1304 			/* The VFTA is a 4096b bit-field, each identifying
1305 			 * a single VLAN ID.  The following operations
1306 			 * determine which 32b entry (i.e. offset) into the
1307 			 * array we want to set the VLAN ID (i.e. bit) of
1308 			 * the manageability unit.
1309 			 */
1310 			vfta_offset = (hw->mng_cookie.vlan_id >>
1311 				       E1000_VFTA_ENTRY_SHIFT) &
1312 			    E1000_VFTA_ENTRY_MASK;
1313 			vfta_bit_in_reg =
1314 			    1 << (hw->mng_cookie.vlan_id &
1315 				  E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1316 		}
1317 		break;
1318 	default:
1319 		break;
1320 	}
1321 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1322 		/* If the offset we want to clear is the same offset of the
1323 		 * manageability VLAN ID, then clear all bits except that of
1324 		 * the manageability unit.
1325 		 */
1326 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1327 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1328 		e1e_flush();
1329 	}
1330 }
1331 
1332 /**
1333  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1334  *  @hw: pointer to the HW structure
1335  *
1336  *  Reads the NVM Initialization Control Word 2 and returns true
1337  *  (>0) if any manageability is enabled, else false (0).
1338  **/
1339 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1340 {
1341 	u16 data;
1342 
1343 	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1344 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1345 }
1346 
1347 /**
1348  *  e1000_led_on_82574 - Turn LED on
1349  *  @hw: pointer to the HW structure
1350  *
1351  *  Turn LED on.
1352  **/
1353 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1354 {
1355 	u32 ctrl;
1356 	u32 i;
1357 
1358 	ctrl = hw->mac.ledctl_mode2;
1359 	if (!(E1000_STATUS_LU & er32(STATUS))) {
1360 		/* If no link, then turn LED on by setting the invert bit
1361 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1362 		 */
1363 		for (i = 0; i < 4; i++)
1364 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1365 			    E1000_LEDCTL_MODE_LED_ON)
1366 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1367 	}
1368 	ew32(LEDCTL, ctrl);
1369 
1370 	return 0;
1371 }
1372 
1373 /**
1374  *  e1000_check_phy_82574 - check 82574 phy hung state
1375  *  @hw: pointer to the HW structure
1376  *
1377  *  Returns whether phy is hung or not
1378  **/
1379 bool e1000_check_phy_82574(struct e1000_hw *hw)
1380 {
1381 	u16 status_1kbt = 0;
1382 	u16 receive_errors = 0;
1383 	s32 ret_val;
1384 
1385 	/* Read PHY Receive Error counter first, if its is max - all F's then
1386 	 * read the Base1000T status register If both are max then PHY is hung.
1387 	 */
1388 	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1389 	if (ret_val)
1390 		return false;
1391 	if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1392 		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1393 		if (ret_val)
1394 			return false;
1395 		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1396 		    E1000_IDLE_ERROR_COUNT_MASK)
1397 			return true;
1398 	}
1399 
1400 	return false;
1401 }
1402 
1403 /**
1404  *  e1000_setup_link_82571 - Setup flow control and link settings
1405  *  @hw: pointer to the HW structure
1406  *
1407  *  Determines which flow control settings to use, then configures flow
1408  *  control.  Calls the appropriate media-specific link configuration
1409  *  function.  Assuming the adapter has a valid link partner, a valid link
1410  *  should be established.  Assumes the hardware has previously been reset
1411  *  and the transmitter and receiver are not enabled.
1412  **/
1413 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1414 {
1415 	/* 82573 does not have a word in the NVM to determine
1416 	 * the default flow control setting, so we explicitly
1417 	 * set it to full.
1418 	 */
1419 	switch (hw->mac.type) {
1420 	case e1000_82573:
1421 	case e1000_82574:
1422 	case e1000_82583:
1423 		if (hw->fc.requested_mode == e1000_fc_default)
1424 			hw->fc.requested_mode = e1000_fc_full;
1425 		break;
1426 	default:
1427 		break;
1428 	}
1429 
1430 	return e1000e_setup_link_generic(hw);
1431 }
1432 
1433 /**
1434  *  e1000_setup_copper_link_82571 - Configure copper link settings
1435  *  @hw: pointer to the HW structure
1436  *
1437  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1438  *  for link, once link is established calls to configure collision distance
1439  *  and flow control are called.
1440  **/
1441 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1442 {
1443 	u32 ctrl;
1444 	s32 ret_val;
1445 
1446 	ctrl = er32(CTRL);
1447 	ctrl |= E1000_CTRL_SLU;
1448 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1449 	ew32(CTRL, ctrl);
1450 
1451 	switch (hw->phy.type) {
1452 	case e1000_phy_m88:
1453 	case e1000_phy_bm:
1454 		ret_val = e1000e_copper_link_setup_m88(hw);
1455 		break;
1456 	case e1000_phy_igp_2:
1457 		ret_val = e1000e_copper_link_setup_igp(hw);
1458 		break;
1459 	default:
1460 		return -E1000_ERR_PHY;
1461 		break;
1462 	}
1463 
1464 	if (ret_val)
1465 		return ret_val;
1466 
1467 	return e1000e_setup_copper_link(hw);
1468 }
1469 
1470 /**
1471  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1472  *  @hw: pointer to the HW structure
1473  *
1474  *  Configures collision distance and flow control for fiber and serdes links.
1475  *  Upon successful setup, poll for link.
1476  **/
1477 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1478 {
1479 	switch (hw->mac.type) {
1480 	case e1000_82571:
1481 	case e1000_82572:
1482 		/* If SerDes loopback mode is entered, there is no form
1483 		 * of reset to take the adapter out of that mode.  So we
1484 		 * have to explicitly take the adapter out of loopback
1485 		 * mode.  This prevents drivers from twiddling their thumbs
1486 		 * if another tool failed to take it out of loopback mode.
1487 		 */
1488 		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1489 		break;
1490 	default:
1491 		break;
1492 	}
1493 
1494 	return e1000e_setup_fiber_serdes_link(hw);
1495 }
1496 
1497 /**
1498  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1499  *  @hw: pointer to the HW structure
1500  *
1501  *  Reports the link state as up or down.
1502  *
1503  *  If autonegotiation is supported by the link partner, the link state is
1504  *  determined by the result of autonegotiation. This is the most likely case.
1505  *  If autonegotiation is not supported by the link partner, and the link
1506  *  has a valid signal, force the link up.
1507  *
1508  *  The link state is represented internally here by 4 states:
1509  *
1510  *  1) down
1511  *  2) autoneg_progress
1512  *  3) autoneg_complete (the link successfully autonegotiated)
1513  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1514  *
1515  **/
1516 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1517 {
1518 	struct e1000_mac_info *mac = &hw->mac;
1519 	u32 rxcw;
1520 	u32 ctrl;
1521 	u32 status;
1522 	u32 txcw;
1523 	u32 i;
1524 	s32 ret_val = 0;
1525 
1526 	ctrl = er32(CTRL);
1527 	status = er32(STATUS);
1528 	er32(RXCW);
1529 	/* SYNCH bit and IV bit are sticky */
1530 	usleep_range(10, 20);
1531 	rxcw = er32(RXCW);
1532 
1533 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1534 		/* Receiver is synchronized with no invalid bits.  */
1535 		switch (mac->serdes_link_state) {
1536 		case e1000_serdes_link_autoneg_complete:
1537 			if (!(status & E1000_STATUS_LU)) {
1538 				/* We have lost link, retry autoneg before
1539 				 * reporting link failure
1540 				 */
1541 				mac->serdes_link_state =
1542 				    e1000_serdes_link_autoneg_progress;
1543 				mac->serdes_has_link = false;
1544 				e_dbg("AN_UP     -> AN_PROG\n");
1545 			} else {
1546 				mac->serdes_has_link = true;
1547 			}
1548 			break;
1549 
1550 		case e1000_serdes_link_forced_up:
1551 			/* If we are receiving /C/ ordered sets, re-enable
1552 			 * auto-negotiation in the TXCW register and disable
1553 			 * forced link in the Device Control register in an
1554 			 * attempt to auto-negotiate with our link partner.
1555 			 */
1556 			if (rxcw & E1000_RXCW_C) {
1557 				/* Enable autoneg, and unforce link up */
1558 				ew32(TXCW, mac->txcw);
1559 				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1560 				mac->serdes_link_state =
1561 				    e1000_serdes_link_autoneg_progress;
1562 				mac->serdes_has_link = false;
1563 				e_dbg("FORCED_UP -> AN_PROG\n");
1564 			} else {
1565 				mac->serdes_has_link = true;
1566 			}
1567 			break;
1568 
1569 		case e1000_serdes_link_autoneg_progress:
1570 			if (rxcw & E1000_RXCW_C) {
1571 				/* We received /C/ ordered sets, meaning the
1572 				 * link partner has autonegotiated, and we can
1573 				 * trust the Link Up (LU) status bit.
1574 				 */
1575 				if (status & E1000_STATUS_LU) {
1576 					mac->serdes_link_state =
1577 					    e1000_serdes_link_autoneg_complete;
1578 					e_dbg("AN_PROG   -> AN_UP\n");
1579 					mac->serdes_has_link = true;
1580 				} else {
1581 					/* Autoneg completed, but failed. */
1582 					mac->serdes_link_state =
1583 					    e1000_serdes_link_down;
1584 					e_dbg("AN_PROG   -> DOWN\n");
1585 				}
1586 			} else {
1587 				/* The link partner did not autoneg.
1588 				 * Force link up and full duplex, and change
1589 				 * state to forced.
1590 				 */
1591 				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1592 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1593 				ew32(CTRL, ctrl);
1594 
1595 				/* Configure Flow Control after link up. */
1596 				ret_val = e1000e_config_fc_after_link_up(hw);
1597 				if (ret_val) {
1598 					e_dbg("Error config flow control\n");
1599 					break;
1600 				}
1601 				mac->serdes_link_state =
1602 				    e1000_serdes_link_forced_up;
1603 				mac->serdes_has_link = true;
1604 				e_dbg("AN_PROG   -> FORCED_UP\n");
1605 			}
1606 			break;
1607 
1608 		case e1000_serdes_link_down:
1609 		default:
1610 			/* The link was down but the receiver has now gained
1611 			 * valid sync, so lets see if we can bring the link
1612 			 * up.
1613 			 */
1614 			ew32(TXCW, mac->txcw);
1615 			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1616 			mac->serdes_link_state =
1617 			    e1000_serdes_link_autoneg_progress;
1618 			mac->serdes_has_link = false;
1619 			e_dbg("DOWN      -> AN_PROG\n");
1620 			break;
1621 		}
1622 	} else {
1623 		if (!(rxcw & E1000_RXCW_SYNCH)) {
1624 			mac->serdes_has_link = false;
1625 			mac->serdes_link_state = e1000_serdes_link_down;
1626 			e_dbg("ANYSTATE  -> DOWN\n");
1627 		} else {
1628 			/* Check several times, if SYNCH bit and CONFIG
1629 			 * bit both are consistently 1 then simply ignore
1630 			 * the IV bit and restart Autoneg
1631 			 */
1632 			for (i = 0; i < AN_RETRY_COUNT; i++) {
1633 				usleep_range(10, 20);
1634 				rxcw = er32(RXCW);
1635 				if ((rxcw & E1000_RXCW_SYNCH) &&
1636 				    (rxcw & E1000_RXCW_C))
1637 					continue;
1638 
1639 				if (rxcw & E1000_RXCW_IV) {
1640 					mac->serdes_has_link = false;
1641 					mac->serdes_link_state =
1642 					    e1000_serdes_link_down;
1643 					e_dbg("ANYSTATE  -> DOWN\n");
1644 					break;
1645 				}
1646 			}
1647 
1648 			if (i == AN_RETRY_COUNT) {
1649 				txcw = er32(TXCW);
1650 				txcw |= E1000_TXCW_ANE;
1651 				ew32(TXCW, txcw);
1652 				mac->serdes_link_state =
1653 				    e1000_serdes_link_autoneg_progress;
1654 				mac->serdes_has_link = false;
1655 				e_dbg("ANYSTATE  -> AN_PROG\n");
1656 			}
1657 		}
1658 	}
1659 
1660 	return ret_val;
1661 }
1662 
1663 /**
1664  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1665  *  @hw: pointer to the HW structure
1666  *  @data: pointer to the NVM (EEPROM)
1667  *
1668  *  Read the EEPROM for the current default LED configuration.  If the
1669  *  LED configuration is not valid, set to a valid LED configuration.
1670  **/
1671 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1672 {
1673 	s32 ret_val;
1674 
1675 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1676 	if (ret_val) {
1677 		e_dbg("NVM Read Error\n");
1678 		return ret_val;
1679 	}
1680 
1681 	switch (hw->mac.type) {
1682 	case e1000_82573:
1683 	case e1000_82574:
1684 	case e1000_82583:
1685 		if (*data == ID_LED_RESERVED_F746)
1686 			*data = ID_LED_DEFAULT_82573;
1687 		break;
1688 	default:
1689 		if (*data == ID_LED_RESERVED_0000 ||
1690 		    *data == ID_LED_RESERVED_FFFF)
1691 			*data = ID_LED_DEFAULT;
1692 		break;
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 /**
1699  *  e1000e_get_laa_state_82571 - Get locally administered address state
1700  *  @hw: pointer to the HW structure
1701  *
1702  *  Retrieve and return the current locally administered address state.
1703  **/
1704 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1705 {
1706 	if (hw->mac.type != e1000_82571)
1707 		return false;
1708 
1709 	return hw->dev_spec.e82571.laa_is_present;
1710 }
1711 
1712 /**
1713  *  e1000e_set_laa_state_82571 - Set locally administered address state
1714  *  @hw: pointer to the HW structure
1715  *  @state: enable/disable locally administered address
1716  *
1717  *  Enable/Disable the current locally administered address state.
1718  **/
1719 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1720 {
1721 	if (hw->mac.type != e1000_82571)
1722 		return;
1723 
1724 	hw->dev_spec.e82571.laa_is_present = state;
1725 
1726 	/* If workaround is activated... */
1727 	if (state)
1728 		/* Hold a copy of the LAA in RAR[14] This is done so that
1729 		 * between the time RAR[0] gets clobbered and the time it
1730 		 * gets fixed, the actual LAA is in one of the RARs and no
1731 		 * incoming packets directed to this port are dropped.
1732 		 * Eventually the LAA will be in RAR[0] and RAR[14].
1733 		 */
1734 		hw->mac.ops.rar_set(hw, hw->mac.addr,
1735 				    hw->mac.rar_entry_count - 1);
1736 }
1737 
1738 /**
1739  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1740  *  @hw: pointer to the HW structure
1741  *
1742  *  Verifies that the EEPROM has completed the update.  After updating the
1743  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1744  *  the checksum fix is not implemented, we need to set the bit and update
1745  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1746  *  we need to return bad checksum.
1747  **/
1748 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1749 {
1750 	struct e1000_nvm_info *nvm = &hw->nvm;
1751 	s32 ret_val;
1752 	u16 data;
1753 
1754 	if (nvm->type != e1000_nvm_flash_hw)
1755 		return 0;
1756 
1757 	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1758 	 * 10h-12h.  Checksum may need to be fixed.
1759 	 */
1760 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1761 	if (ret_val)
1762 		return ret_val;
1763 
1764 	if (!(data & 0x10)) {
1765 		/* Read 0x23 and check bit 15.  This bit is a 1
1766 		 * when the checksum has already been fixed.  If
1767 		 * the checksum is still wrong and this bit is a
1768 		 * 1, we need to return bad checksum.  Otherwise,
1769 		 * we need to set this bit to a 1 and update the
1770 		 * checksum.
1771 		 */
1772 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1773 		if (ret_val)
1774 			return ret_val;
1775 
1776 		if (!(data & 0x8000)) {
1777 			data |= 0x8000;
1778 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1779 			if (ret_val)
1780 				return ret_val;
1781 			ret_val = e1000e_update_nvm_checksum(hw);
1782 			if (ret_val)
1783 				return ret_val;
1784 		}
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 /**
1791  *  e1000_read_mac_addr_82571 - Read device MAC address
1792  *  @hw: pointer to the HW structure
1793  **/
1794 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1795 {
1796 	if (hw->mac.type == e1000_82571) {
1797 		s32 ret_val;
1798 
1799 		/* If there's an alternate MAC address place it in RAR0
1800 		 * so that it will override the Si installed default perm
1801 		 * address.
1802 		 */
1803 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1804 		if (ret_val)
1805 			return ret_val;
1806 	}
1807 
1808 	return e1000_read_mac_addr_generic(hw);
1809 }
1810 
1811 /**
1812  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1813  * @hw: pointer to the HW structure
1814  *
1815  * In the case of a PHY power down to save power, or to turn off link during a
1816  * driver unload, or wake on lan is not enabled, remove the link.
1817  **/
1818 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1819 {
1820 	struct e1000_phy_info *phy = &hw->phy;
1821 	struct e1000_mac_info *mac = &hw->mac;
1822 
1823 	if (!phy->ops.check_reset_block)
1824 		return;
1825 
1826 	/* If the management interface is not enabled, then power down */
1827 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1828 		e1000_power_down_phy_copper(hw);
1829 }
1830 
1831 /**
1832  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1833  *  @hw: pointer to the HW structure
1834  *
1835  *  Clears the hardware counters by reading the counter registers.
1836  **/
1837 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1838 {
1839 	e1000e_clear_hw_cntrs_base(hw);
1840 
1841 	er32(PRC64);
1842 	er32(PRC127);
1843 	er32(PRC255);
1844 	er32(PRC511);
1845 	er32(PRC1023);
1846 	er32(PRC1522);
1847 	er32(PTC64);
1848 	er32(PTC127);
1849 	er32(PTC255);
1850 	er32(PTC511);
1851 	er32(PTC1023);
1852 	er32(PTC1522);
1853 
1854 	er32(ALGNERRC);
1855 	er32(RXERRC);
1856 	er32(TNCRS);
1857 	er32(CEXTERR);
1858 	er32(TSCTC);
1859 	er32(TSCTFC);
1860 
1861 	er32(MGTPRC);
1862 	er32(MGTPDC);
1863 	er32(MGTPTC);
1864 
1865 	er32(IAC);
1866 	er32(ICRXOC);
1867 
1868 	er32(ICRXPTC);
1869 	er32(ICRXATC);
1870 	er32(ICTXPTC);
1871 	er32(ICTXATC);
1872 	er32(ICTXQEC);
1873 	er32(ICTXQMTC);
1874 	er32(ICRXDMTC);
1875 }
1876 
1877 static const struct e1000_mac_operations e82571_mac_ops = {
1878 	/* .check_mng_mode: mac type dependent */
1879 	/* .check_for_link: media type dependent */
1880 	.id_led_init		= e1000e_id_led_init_generic,
1881 	.cleanup_led		= e1000e_cleanup_led_generic,
1882 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
1883 	.get_bus_info		= e1000e_get_bus_info_pcie,
1884 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1885 	/* .get_link_up_info: media type dependent */
1886 	/* .led_on: mac type dependent */
1887 	.led_off		= e1000e_led_off_generic,
1888 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1889 	.write_vfta		= e1000_write_vfta_generic,
1890 	.clear_vfta		= e1000_clear_vfta_82571,
1891 	.reset_hw		= e1000_reset_hw_82571,
1892 	.init_hw		= e1000_init_hw_82571,
1893 	.setup_link		= e1000_setup_link_82571,
1894 	/* .setup_physical_interface: media type dependent */
1895 	.setup_led		= e1000e_setup_led_generic,
1896 	.config_collision_dist	= e1000e_config_collision_dist_generic,
1897 	.read_mac_addr		= e1000_read_mac_addr_82571,
1898 	.rar_set		= e1000e_rar_set_generic,
1899 };
1900 
1901 static const struct e1000_phy_operations e82_phy_ops_igp = {
1902 	.acquire		= e1000_get_hw_semaphore_82571,
1903 	.check_polarity		= e1000_check_polarity_igp,
1904 	.check_reset_block	= e1000e_check_reset_block_generic,
1905 	.commit			= NULL,
1906 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
1907 	.get_cfg_done		= e1000_get_cfg_done_82571,
1908 	.get_cable_length	= e1000e_get_cable_length_igp_2,
1909 	.get_info		= e1000e_get_phy_info_igp,
1910 	.read_reg		= e1000e_read_phy_reg_igp,
1911 	.release		= e1000_put_hw_semaphore_82571,
1912 	.reset			= e1000e_phy_hw_reset_generic,
1913 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1914 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1915 	.write_reg		= e1000e_write_phy_reg_igp,
1916 	.cfg_on_link_up		= NULL,
1917 };
1918 
1919 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1920 	.acquire		= e1000_get_hw_semaphore_82571,
1921 	.check_polarity		= e1000_check_polarity_m88,
1922 	.check_reset_block	= e1000e_check_reset_block_generic,
1923 	.commit			= e1000e_phy_sw_reset,
1924 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1925 	.get_cfg_done		= e1000e_get_cfg_done_generic,
1926 	.get_cable_length	= e1000e_get_cable_length_m88,
1927 	.get_info		= e1000e_get_phy_info_m88,
1928 	.read_reg		= e1000e_read_phy_reg_m88,
1929 	.release		= e1000_put_hw_semaphore_82571,
1930 	.reset			= e1000e_phy_hw_reset_generic,
1931 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1932 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1933 	.write_reg		= e1000e_write_phy_reg_m88,
1934 	.cfg_on_link_up		= NULL,
1935 };
1936 
1937 static const struct e1000_phy_operations e82_phy_ops_bm = {
1938 	.acquire		= e1000_get_hw_semaphore_82571,
1939 	.check_polarity		= e1000_check_polarity_m88,
1940 	.check_reset_block	= e1000e_check_reset_block_generic,
1941 	.commit			= e1000e_phy_sw_reset,
1942 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1943 	.get_cfg_done		= e1000e_get_cfg_done_generic,
1944 	.get_cable_length	= e1000e_get_cable_length_m88,
1945 	.get_info		= e1000e_get_phy_info_m88,
1946 	.read_reg		= e1000e_read_phy_reg_bm2,
1947 	.release		= e1000_put_hw_semaphore_82571,
1948 	.reset			= e1000e_phy_hw_reset_generic,
1949 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1950 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1951 	.write_reg		= e1000e_write_phy_reg_bm2,
1952 	.cfg_on_link_up		= NULL,
1953 };
1954 
1955 static const struct e1000_nvm_operations e82571_nvm_ops = {
1956 	.acquire		= e1000_acquire_nvm_82571,
1957 	.read			= e1000e_read_nvm_eerd,
1958 	.release		= e1000_release_nvm_82571,
1959 	.reload			= e1000e_reload_nvm_generic,
1960 	.update			= e1000_update_nvm_checksum_82571,
1961 	.valid_led_default	= e1000_valid_led_default_82571,
1962 	.validate		= e1000_validate_nvm_checksum_82571,
1963 	.write			= e1000_write_nvm_82571,
1964 };
1965 
1966 const struct e1000_info e1000_82571_info = {
1967 	.mac			= e1000_82571,
1968 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1969 				  | FLAG_HAS_JUMBO_FRAMES
1970 				  | FLAG_HAS_WOL
1971 				  | FLAG_APME_IN_CTRL3
1972 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1973 				  | FLAG_HAS_SMART_POWER_DOWN
1974 				  | FLAG_RESET_OVERWRITES_LAA /* errata */
1975 				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
1976 				  | FLAG_APME_CHECK_PORT_B,
1977 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1978 				  | FLAG2_DMA_BURST,
1979 	.pba			= 38,
1980 	.max_hw_frame_size	= DEFAULT_JUMBO,
1981 	.get_variants		= e1000_get_variants_82571,
1982 	.mac_ops		= &e82571_mac_ops,
1983 	.phy_ops		= &e82_phy_ops_igp,
1984 	.nvm_ops		= &e82571_nvm_ops,
1985 };
1986 
1987 const struct e1000_info e1000_82572_info = {
1988 	.mac			= e1000_82572,
1989 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1990 				  | FLAG_HAS_JUMBO_FRAMES
1991 				  | FLAG_HAS_WOL
1992 				  | FLAG_APME_IN_CTRL3
1993 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1994 				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1995 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1996 				  | FLAG2_DMA_BURST,
1997 	.pba			= 38,
1998 	.max_hw_frame_size	= DEFAULT_JUMBO,
1999 	.get_variants		= e1000_get_variants_82571,
2000 	.mac_ops		= &e82571_mac_ops,
2001 	.phy_ops		= &e82_phy_ops_igp,
2002 	.nvm_ops		= &e82571_nvm_ops,
2003 };
2004 
2005 const struct e1000_info e1000_82573_info = {
2006 	.mac			= e1000_82573,
2007 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2008 				  | FLAG_HAS_WOL
2009 				  | FLAG_APME_IN_CTRL3
2010 				  | FLAG_HAS_SMART_POWER_DOWN
2011 				  | FLAG_HAS_AMT
2012 				  | FLAG_HAS_SWSM_ON_LOAD,
2013 	.flags2			= FLAG2_DISABLE_ASPM_L1
2014 				  | FLAG2_DISABLE_ASPM_L0S,
2015 	.pba			= 20,
2016 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
2017 	.get_variants		= e1000_get_variants_82571,
2018 	.mac_ops		= &e82571_mac_ops,
2019 	.phy_ops		= &e82_phy_ops_m88,
2020 	.nvm_ops		= &e82571_nvm_ops,
2021 };
2022 
2023 const struct e1000_info e1000_82574_info = {
2024 	.mac			= e1000_82574,
2025 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2026 				  | FLAG_HAS_MSIX
2027 				  | FLAG_HAS_JUMBO_FRAMES
2028 				  | FLAG_HAS_WOL
2029 				  | FLAG_HAS_HW_TIMESTAMP
2030 				  | FLAG_APME_IN_CTRL3
2031 				  | FLAG_HAS_SMART_POWER_DOWN
2032 				  | FLAG_HAS_AMT
2033 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2034 	.flags2			 = FLAG2_CHECK_PHY_HANG
2035 				  | FLAG2_DISABLE_ASPM_L0S
2036 				  | FLAG2_DISABLE_ASPM_L1
2037 				  | FLAG2_NO_DISABLE_RX
2038 				  | FLAG2_DMA_BURST,
2039 	.pba			= 32,
2040 	.max_hw_frame_size	= DEFAULT_JUMBO,
2041 	.get_variants		= e1000_get_variants_82571,
2042 	.mac_ops		= &e82571_mac_ops,
2043 	.phy_ops		= &e82_phy_ops_bm,
2044 	.nvm_ops		= &e82571_nvm_ops,
2045 };
2046 
2047 const struct e1000_info e1000_82583_info = {
2048 	.mac			= e1000_82583,
2049 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2050 				  | FLAG_HAS_WOL
2051 				  | FLAG_HAS_HW_TIMESTAMP
2052 				  | FLAG_APME_IN_CTRL3
2053 				  | FLAG_HAS_SMART_POWER_DOWN
2054 				  | FLAG_HAS_AMT
2055 				  | FLAG_HAS_JUMBO_FRAMES
2056 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2057 	.flags2			= FLAG2_DISABLE_ASPM_L0S
2058 				  | FLAG2_DISABLE_ASPM_L1
2059 				  | FLAG2_NO_DISABLE_RX,
2060 	.pba			= 32,
2061 	.max_hw_frame_size	= DEFAULT_JUMBO,
2062 	.get_variants		= e1000_get_variants_82571,
2063 	.mac_ops		= &e82571_mac_ops,
2064 	.phy_ops		= &e82_phy_ops_bm,
2065 	.nvm_ops		= &e82571_nvm_ops,
2066 };
2067