1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* 82571EB Gigabit Ethernet Controller 5 * 82571EB Gigabit Ethernet Controller (Copper) 6 * 82571EB Gigabit Ethernet Controller (Fiber) 7 * 82571EB Dual Port Gigabit Mezzanine Adapter 8 * 82571EB Quad Port Gigabit Mezzanine Adapter 9 * 82571PT Gigabit PT Quad Port Server ExpressModule 10 * 82572EI Gigabit Ethernet Controller (Copper) 11 * 82572EI Gigabit Ethernet Controller (Fiber) 12 * 82572EI Gigabit Ethernet Controller 13 * 82573V Gigabit Ethernet Controller (Copper) 14 * 82573E Gigabit Ethernet Controller (Copper) 15 * 82573L Gigabit Ethernet Controller 16 * 82574L Gigabit Network Connection 17 * 82583V Gigabit Network Connection 18 */ 19 20 #include "e1000.h" 21 22 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); 23 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); 24 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); 25 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); 26 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, 27 u16 words, u16 *data); 28 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); 29 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); 30 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); 31 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); 32 static s32 e1000_led_on_82574(struct e1000_hw *hw); 33 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); 34 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); 35 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); 36 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); 37 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); 38 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active); 39 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active); 40 41 /** 42 * e1000_init_phy_params_82571 - Init PHY func ptrs. 43 * @hw: pointer to the HW structure 44 **/ 45 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) 46 { 47 struct e1000_phy_info *phy = &hw->phy; 48 s32 ret_val; 49 50 if (hw->phy.media_type != e1000_media_type_copper) { 51 phy->type = e1000_phy_none; 52 return 0; 53 } 54 55 phy->addr = 1; 56 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 57 phy->reset_delay_us = 100; 58 59 phy->ops.power_up = e1000_power_up_phy_copper; 60 phy->ops.power_down = e1000_power_down_phy_copper_82571; 61 62 switch (hw->mac.type) { 63 case e1000_82571: 64 case e1000_82572: 65 phy->type = e1000_phy_igp_2; 66 break; 67 case e1000_82573: 68 phy->type = e1000_phy_m88; 69 break; 70 case e1000_82574: 71 case e1000_82583: 72 phy->type = e1000_phy_bm; 73 phy->ops.acquire = e1000_get_hw_semaphore_82574; 74 phy->ops.release = e1000_put_hw_semaphore_82574; 75 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; 76 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; 77 break; 78 default: 79 return -E1000_ERR_PHY; 80 } 81 82 /* This can only be done after all function pointers are setup. */ 83 ret_val = e1000_get_phy_id_82571(hw); 84 if (ret_val) { 85 e_dbg("Error getting PHY ID\n"); 86 return ret_val; 87 } 88 89 /* Verify phy id */ 90 switch (hw->mac.type) { 91 case e1000_82571: 92 case e1000_82572: 93 if (phy->id != IGP01E1000_I_PHY_ID) 94 ret_val = -E1000_ERR_PHY; 95 break; 96 case e1000_82573: 97 if (phy->id != M88E1111_I_PHY_ID) 98 ret_val = -E1000_ERR_PHY; 99 break; 100 case e1000_82574: 101 case e1000_82583: 102 if (phy->id != BME1000_E_PHY_ID_R2) 103 ret_val = -E1000_ERR_PHY; 104 break; 105 default: 106 ret_val = -E1000_ERR_PHY; 107 break; 108 } 109 110 if (ret_val) 111 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id); 112 113 return ret_val; 114 } 115 116 /** 117 * e1000_init_nvm_params_82571 - Init NVM func ptrs. 118 * @hw: pointer to the HW structure 119 **/ 120 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) 121 { 122 struct e1000_nvm_info *nvm = &hw->nvm; 123 u32 eecd = er32(EECD); 124 u16 size; 125 126 nvm->opcode_bits = 8; 127 nvm->delay_usec = 1; 128 switch (nvm->override) { 129 case e1000_nvm_override_spi_large: 130 nvm->page_size = 32; 131 nvm->address_bits = 16; 132 break; 133 case e1000_nvm_override_spi_small: 134 nvm->page_size = 8; 135 nvm->address_bits = 8; 136 break; 137 default: 138 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; 139 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; 140 break; 141 } 142 143 switch (hw->mac.type) { 144 case e1000_82573: 145 case e1000_82574: 146 case e1000_82583: 147 if (((eecd >> 15) & 0x3) == 0x3) { 148 nvm->type = e1000_nvm_flash_hw; 149 nvm->word_size = 2048; 150 /* Autonomous Flash update bit must be cleared due 151 * to Flash update issue. 152 */ 153 eecd &= ~E1000_EECD_AUPDEN; 154 ew32(EECD, eecd); 155 break; 156 } 157 fallthrough; 158 default: 159 nvm->type = e1000_nvm_eeprom_spi; 160 size = (u16)FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd); 161 /* Added to a constant, "size" becomes the left-shift value 162 * for setting word_size. 163 */ 164 size += NVM_WORD_SIZE_BASE_SHIFT; 165 166 /* EEPROM access above 16k is unsupported */ 167 if (size > 14) 168 size = 14; 169 nvm->word_size = BIT(size); 170 break; 171 } 172 173 /* Function Pointers */ 174 switch (hw->mac.type) { 175 case e1000_82574: 176 case e1000_82583: 177 nvm->ops.acquire = e1000_get_hw_semaphore_82574; 178 nvm->ops.release = e1000_put_hw_semaphore_82574; 179 break; 180 default: 181 break; 182 } 183 184 return 0; 185 } 186 187 /** 188 * e1000_init_mac_params_82571 - Init MAC func ptrs. 189 * @hw: pointer to the HW structure 190 **/ 191 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw) 192 { 193 struct e1000_mac_info *mac = &hw->mac; 194 u32 swsm = 0; 195 u32 swsm2 = 0; 196 bool force_clear_smbi = false; 197 198 /* Set media type and media-dependent function pointers */ 199 switch (hw->adapter->pdev->device) { 200 case E1000_DEV_ID_82571EB_FIBER: 201 case E1000_DEV_ID_82572EI_FIBER: 202 case E1000_DEV_ID_82571EB_QUAD_FIBER: 203 hw->phy.media_type = e1000_media_type_fiber; 204 mac->ops.setup_physical_interface = 205 e1000_setup_fiber_serdes_link_82571; 206 mac->ops.check_for_link = e1000e_check_for_fiber_link; 207 mac->ops.get_link_up_info = 208 e1000e_get_speed_and_duplex_fiber_serdes; 209 break; 210 case E1000_DEV_ID_82571EB_SERDES: 211 case E1000_DEV_ID_82571EB_SERDES_DUAL: 212 case E1000_DEV_ID_82571EB_SERDES_QUAD: 213 case E1000_DEV_ID_82572EI_SERDES: 214 hw->phy.media_type = e1000_media_type_internal_serdes; 215 mac->ops.setup_physical_interface = 216 e1000_setup_fiber_serdes_link_82571; 217 mac->ops.check_for_link = e1000_check_for_serdes_link_82571; 218 mac->ops.get_link_up_info = 219 e1000e_get_speed_and_duplex_fiber_serdes; 220 break; 221 default: 222 hw->phy.media_type = e1000_media_type_copper; 223 mac->ops.setup_physical_interface = 224 e1000_setup_copper_link_82571; 225 mac->ops.check_for_link = e1000e_check_for_copper_link; 226 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper; 227 break; 228 } 229 230 /* Set mta register count */ 231 mac->mta_reg_count = 128; 232 /* Set rar entry count */ 233 mac->rar_entry_count = E1000_RAR_ENTRIES; 234 /* Adaptive IFS supported */ 235 mac->adaptive_ifs = true; 236 237 /* MAC-specific function pointers */ 238 switch (hw->mac.type) { 239 case e1000_82573: 240 mac->ops.set_lan_id = e1000_set_lan_id_single_port; 241 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; 242 mac->ops.led_on = e1000e_led_on_generic; 243 mac->ops.blink_led = e1000e_blink_led_generic; 244 245 /* FWSM register */ 246 mac->has_fwsm = true; 247 /* ARC supported; valid only if manageability features are 248 * enabled. 249 */ 250 mac->arc_subsystem_valid = !!(er32(FWSM) & 251 E1000_FWSM_MODE_MASK); 252 break; 253 case e1000_82574: 254 case e1000_82583: 255 mac->ops.set_lan_id = e1000_set_lan_id_single_port; 256 mac->ops.check_mng_mode = e1000_check_mng_mode_82574; 257 mac->ops.led_on = e1000_led_on_82574; 258 break; 259 default: 260 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; 261 mac->ops.led_on = e1000e_led_on_generic; 262 mac->ops.blink_led = e1000e_blink_led_generic; 263 264 /* FWSM register */ 265 mac->has_fwsm = true; 266 break; 267 } 268 269 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before 270 * first NVM or PHY access. This should be done for single-port 271 * devices, and for one port only on dual-port devices so that 272 * for those devices we can still use the SMBI lock to synchronize 273 * inter-port accesses to the PHY & NVM. 274 */ 275 switch (hw->mac.type) { 276 case e1000_82571: 277 case e1000_82572: 278 swsm2 = er32(SWSM2); 279 280 if (!(swsm2 & E1000_SWSM2_LOCK)) { 281 /* Only do this for the first interface on this card */ 282 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK); 283 force_clear_smbi = true; 284 } else { 285 force_clear_smbi = false; 286 } 287 break; 288 default: 289 force_clear_smbi = true; 290 break; 291 } 292 293 if (force_clear_smbi) { 294 /* Make sure SWSM.SMBI is clear */ 295 swsm = er32(SWSM); 296 if (swsm & E1000_SWSM_SMBI) { 297 /* This bit should not be set on a first interface, and 298 * indicates that the bootagent or EFI code has 299 * improperly left this bit enabled 300 */ 301 e_dbg("Please update your 82571 Bootagent\n"); 302 } 303 ew32(SWSM, swsm & ~E1000_SWSM_SMBI); 304 } 305 306 /* Initialize device specific counter of SMBI acquisition timeouts. */ 307 hw->dev_spec.e82571.smb_counter = 0; 308 309 return 0; 310 } 311 312 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) 313 { 314 struct e1000_hw *hw = &adapter->hw; 315 static int global_quad_port_a; /* global port a indication */ 316 struct pci_dev *pdev = adapter->pdev; 317 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; 318 s32 rc; 319 320 rc = e1000_init_mac_params_82571(hw); 321 if (rc) 322 return rc; 323 324 rc = e1000_init_nvm_params_82571(hw); 325 if (rc) 326 return rc; 327 328 rc = e1000_init_phy_params_82571(hw); 329 if (rc) 330 return rc; 331 332 /* tag quad port adapters first, it's used below */ 333 switch (pdev->device) { 334 case E1000_DEV_ID_82571EB_QUAD_COPPER: 335 case E1000_DEV_ID_82571EB_QUAD_FIBER: 336 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 337 case E1000_DEV_ID_82571PT_QUAD_COPPER: 338 adapter->flags |= FLAG_IS_QUAD_PORT; 339 /* mark the first port */ 340 if (global_quad_port_a == 0) 341 adapter->flags |= FLAG_IS_QUAD_PORT_A; 342 /* Reset for multiple quad port adapters */ 343 global_quad_port_a++; 344 if (global_quad_port_a == 4) 345 global_quad_port_a = 0; 346 break; 347 default: 348 break; 349 } 350 351 switch (adapter->hw.mac.type) { 352 case e1000_82571: 353 /* these dual ports don't have WoL on port B at all */ 354 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || 355 (pdev->device == E1000_DEV_ID_82571EB_SERDES) || 356 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && 357 (is_port_b)) 358 adapter->flags &= ~FLAG_HAS_WOL; 359 /* quad ports only support WoL on port A */ 360 if (adapter->flags & FLAG_IS_QUAD_PORT && 361 (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) 362 adapter->flags &= ~FLAG_HAS_WOL; 363 /* Does not support WoL on any port */ 364 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) 365 adapter->flags &= ~FLAG_HAS_WOL; 366 break; 367 case e1000_82573: 368 if (pdev->device == E1000_DEV_ID_82573L) { 369 adapter->flags |= FLAG_HAS_JUMBO_FRAMES; 370 adapter->max_hw_frame_size = DEFAULT_JUMBO; 371 } 372 break; 373 default: 374 break; 375 } 376 377 return 0; 378 } 379 380 /** 381 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision 382 * @hw: pointer to the HW structure 383 * 384 * Reads the PHY registers and stores the PHY ID and possibly the PHY 385 * revision in the hardware structure. 386 **/ 387 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) 388 { 389 struct e1000_phy_info *phy = &hw->phy; 390 s32 ret_val; 391 u16 phy_id = 0; 392 393 switch (hw->mac.type) { 394 case e1000_82571: 395 case e1000_82572: 396 /* The 82571 firmware may still be configuring the PHY. 397 * In this case, we cannot access the PHY until the 398 * configuration is done. So we explicitly set the 399 * PHY ID. 400 */ 401 phy->id = IGP01E1000_I_PHY_ID; 402 break; 403 case e1000_82573: 404 return e1000e_get_phy_id(hw); 405 case e1000_82574: 406 case e1000_82583: 407 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); 408 if (ret_val) 409 return ret_val; 410 411 phy->id = (u32)(phy_id << 16); 412 usleep_range(20, 40); 413 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); 414 if (ret_val) 415 return ret_val; 416 417 phy->id |= (u32)(phy_id); 418 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 419 break; 420 default: 421 return -E1000_ERR_PHY; 422 } 423 424 return 0; 425 } 426 427 /** 428 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore 429 * @hw: pointer to the HW structure 430 * 431 * Acquire the HW semaphore to access the PHY or NVM 432 **/ 433 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) 434 { 435 u32 swsm; 436 s32 sw_timeout = hw->nvm.word_size + 1; 437 s32 fw_timeout = hw->nvm.word_size + 1; 438 s32 i = 0; 439 440 /* If we have timedout 3 times on trying to acquire 441 * the inter-port SMBI semaphore, there is old code 442 * operating on the other port, and it is not 443 * releasing SMBI. Modify the number of times that 444 * we try for the semaphore to interwork with this 445 * older code. 446 */ 447 if (hw->dev_spec.e82571.smb_counter > 2) 448 sw_timeout = 1; 449 450 /* Get the SW semaphore */ 451 while (i < sw_timeout) { 452 swsm = er32(SWSM); 453 if (!(swsm & E1000_SWSM_SMBI)) 454 break; 455 456 usleep_range(50, 100); 457 i++; 458 } 459 460 if (i == sw_timeout) { 461 e_dbg("Driver can't access device - SMBI bit is set.\n"); 462 hw->dev_spec.e82571.smb_counter++; 463 } 464 /* Get the FW semaphore. */ 465 for (i = 0; i < fw_timeout; i++) { 466 swsm = er32(SWSM); 467 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); 468 469 /* Semaphore acquired if bit latched */ 470 if (er32(SWSM) & E1000_SWSM_SWESMBI) 471 break; 472 473 usleep_range(50, 100); 474 } 475 476 if (i == fw_timeout) { 477 /* Release semaphores */ 478 e1000_put_hw_semaphore_82571(hw); 479 e_dbg("Driver can't access the NVM\n"); 480 return -E1000_ERR_NVM; 481 } 482 483 return 0; 484 } 485 486 /** 487 * e1000_put_hw_semaphore_82571 - Release hardware semaphore 488 * @hw: pointer to the HW structure 489 * 490 * Release hardware semaphore used to access the PHY or NVM 491 **/ 492 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) 493 { 494 u32 swsm; 495 496 swsm = er32(SWSM); 497 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 498 ew32(SWSM, swsm); 499 } 500 501 /** 502 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore 503 * @hw: pointer to the HW structure 504 * 505 * Acquire the HW semaphore during reset. 506 * 507 **/ 508 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) 509 { 510 u32 extcnf_ctrl; 511 s32 i = 0; 512 513 extcnf_ctrl = er32(EXTCNF_CTRL); 514 do { 515 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; 516 ew32(EXTCNF_CTRL, extcnf_ctrl); 517 extcnf_ctrl = er32(EXTCNF_CTRL); 518 519 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) 520 break; 521 522 usleep_range(2000, 4000); 523 i++; 524 } while (i < MDIO_OWNERSHIP_TIMEOUT); 525 526 if (i == MDIO_OWNERSHIP_TIMEOUT) { 527 /* Release semaphores */ 528 e1000_put_hw_semaphore_82573(hw); 529 e_dbg("Driver can't access the PHY\n"); 530 return -E1000_ERR_PHY; 531 } 532 533 return 0; 534 } 535 536 /** 537 * e1000_put_hw_semaphore_82573 - Release hardware semaphore 538 * @hw: pointer to the HW structure 539 * 540 * Release hardware semaphore used during reset. 541 * 542 **/ 543 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) 544 { 545 u32 extcnf_ctrl; 546 547 extcnf_ctrl = er32(EXTCNF_CTRL); 548 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; 549 ew32(EXTCNF_CTRL, extcnf_ctrl); 550 } 551 552 static DEFINE_MUTEX(swflag_mutex); 553 554 /** 555 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore 556 * @hw: pointer to the HW structure 557 * 558 * Acquire the HW semaphore to access the PHY or NVM. 559 * 560 **/ 561 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) 562 { 563 s32 ret_val; 564 565 mutex_lock(&swflag_mutex); 566 ret_val = e1000_get_hw_semaphore_82573(hw); 567 if (ret_val) 568 mutex_unlock(&swflag_mutex); 569 return ret_val; 570 } 571 572 /** 573 * e1000_put_hw_semaphore_82574 - Release hardware semaphore 574 * @hw: pointer to the HW structure 575 * 576 * Release hardware semaphore used to access the PHY or NVM 577 * 578 **/ 579 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) 580 { 581 e1000_put_hw_semaphore_82573(hw); 582 mutex_unlock(&swflag_mutex); 583 } 584 585 /** 586 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state 587 * @hw: pointer to the HW structure 588 * @active: true to enable LPLU, false to disable 589 * 590 * Sets the LPLU D0 state according to the active flag. 591 * LPLU will not be activated unless the 592 * device autonegotiation advertisement meets standards of 593 * either 10 or 10/100 or 10/100/1000 at all duplexes. 594 * This is a function pointer entry point only called by 595 * PHY setup routines. 596 **/ 597 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) 598 { 599 u32 data = er32(POEMB); 600 601 if (active) 602 data |= E1000_PHY_CTRL_D0A_LPLU; 603 else 604 data &= ~E1000_PHY_CTRL_D0A_LPLU; 605 606 ew32(POEMB, data); 607 return 0; 608 } 609 610 /** 611 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 612 * @hw: pointer to the HW structure 613 * @active: boolean used to enable/disable lplu 614 * 615 * The low power link up (lplu) state is set to the power management level D3 616 * when active is true, else clear lplu for D3. LPLU 617 * is used during Dx states where the power conservation is most important. 618 * During driver activity, SmartSpeed should be enabled so performance is 619 * maintained. 620 **/ 621 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) 622 { 623 u32 data = er32(POEMB); 624 625 if (!active) { 626 data &= ~E1000_PHY_CTRL_NOND0A_LPLU; 627 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 628 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || 629 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { 630 data |= E1000_PHY_CTRL_NOND0A_LPLU; 631 } 632 633 ew32(POEMB, data); 634 return 0; 635 } 636 637 /** 638 * e1000_acquire_nvm_82571 - Request for access to the EEPROM 639 * @hw: pointer to the HW structure 640 * 641 * To gain access to the EEPROM, first we must obtain a hardware semaphore. 642 * Then for non-82573 hardware, set the EEPROM access request bit and wait 643 * for EEPROM access grant bit. If the access grant bit is not set, release 644 * hardware semaphore. 645 **/ 646 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) 647 { 648 s32 ret_val; 649 650 ret_val = e1000_get_hw_semaphore_82571(hw); 651 if (ret_val) 652 return ret_val; 653 654 switch (hw->mac.type) { 655 case e1000_82573: 656 break; 657 default: 658 ret_val = e1000e_acquire_nvm(hw); 659 break; 660 } 661 662 if (ret_val) 663 e1000_put_hw_semaphore_82571(hw); 664 665 return ret_val; 666 } 667 668 /** 669 * e1000_release_nvm_82571 - Release exclusive access to EEPROM 670 * @hw: pointer to the HW structure 671 * 672 * Stop any current commands to the EEPROM and clear the EEPROM request bit. 673 **/ 674 static void e1000_release_nvm_82571(struct e1000_hw *hw) 675 { 676 e1000e_release_nvm(hw); 677 e1000_put_hw_semaphore_82571(hw); 678 } 679 680 /** 681 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface 682 * @hw: pointer to the HW structure 683 * @offset: offset within the EEPROM to be written to 684 * @words: number of words to write 685 * @data: 16 bit word(s) to be written to the EEPROM 686 * 687 * For non-82573 silicon, write data to EEPROM at offset using SPI interface. 688 * 689 * If e1000e_update_nvm_checksum is not called after this function, the 690 * EEPROM will most likely contain an invalid checksum. 691 **/ 692 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, 693 u16 *data) 694 { 695 s32 ret_val; 696 697 switch (hw->mac.type) { 698 case e1000_82573: 699 case e1000_82574: 700 case e1000_82583: 701 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); 702 break; 703 case e1000_82571: 704 case e1000_82572: 705 ret_val = e1000e_write_nvm_spi(hw, offset, words, data); 706 break; 707 default: 708 ret_val = -E1000_ERR_NVM; 709 break; 710 } 711 712 return ret_val; 713 } 714 715 /** 716 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum 717 * @hw: pointer to the HW structure 718 * 719 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 720 * up to the checksum. Then calculates the EEPROM checksum and writes the 721 * value to the EEPROM. 722 **/ 723 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) 724 { 725 u32 eecd; 726 s32 ret_val; 727 u16 i; 728 729 ret_val = e1000e_update_nvm_checksum_generic(hw); 730 if (ret_val) 731 return ret_val; 732 733 /* If our nvm is an EEPROM, then we're done 734 * otherwise, commit the checksum to the flash NVM. 735 */ 736 if (hw->nvm.type != e1000_nvm_flash_hw) 737 return 0; 738 739 /* Check for pending operations. */ 740 for (i = 0; i < E1000_FLASH_UPDATES; i++) { 741 usleep_range(1000, 2000); 742 if (!(er32(EECD) & E1000_EECD_FLUPD)) 743 break; 744 } 745 746 if (i == E1000_FLASH_UPDATES) 747 return -E1000_ERR_NVM; 748 749 /* Reset the firmware if using STM opcode. */ 750 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { 751 /* The enabling of and the actual reset must be done 752 * in two write cycles. 753 */ 754 ew32(HICR, E1000_HICR_FW_RESET_ENABLE); 755 e1e_flush(); 756 ew32(HICR, E1000_HICR_FW_RESET); 757 } 758 759 /* Commit the write to flash */ 760 eecd = er32(EECD) | E1000_EECD_FLUPD; 761 ew32(EECD, eecd); 762 763 for (i = 0; i < E1000_FLASH_UPDATES; i++) { 764 usleep_range(1000, 2000); 765 if (!(er32(EECD) & E1000_EECD_FLUPD)) 766 break; 767 } 768 769 if (i == E1000_FLASH_UPDATES) 770 return -E1000_ERR_NVM; 771 772 return 0; 773 } 774 775 /** 776 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum 777 * @hw: pointer to the HW structure 778 * 779 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 780 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 781 **/ 782 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) 783 { 784 if (hw->nvm.type == e1000_nvm_flash_hw) 785 e1000_fix_nvm_checksum_82571(hw); 786 787 return e1000e_validate_nvm_checksum_generic(hw); 788 } 789 790 /** 791 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon 792 * @hw: pointer to the HW structure 793 * @offset: offset within the EEPROM to be written to 794 * @words: number of words to write 795 * @data: 16 bit word(s) to be written to the EEPROM 796 * 797 * After checking for invalid values, poll the EEPROM to ensure the previous 798 * command has completed before trying to write the next word. After write 799 * poll for completion. 800 * 801 * If e1000e_update_nvm_checksum is not called after this function, the 802 * EEPROM will most likely contain an invalid checksum. 803 **/ 804 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, 805 u16 words, u16 *data) 806 { 807 struct e1000_nvm_info *nvm = &hw->nvm; 808 u32 i, eewr = 0; 809 s32 ret_val = 0; 810 811 /* A check for invalid values: offset too large, too many words, 812 * and not enough words. 813 */ 814 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 815 (words == 0)) { 816 e_dbg("nvm parameter(s) out of bounds\n"); 817 return -E1000_ERR_NVM; 818 } 819 820 for (i = 0; i < words; i++) { 821 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) | 822 ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) | 823 E1000_NVM_RW_REG_START); 824 825 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); 826 if (ret_val) 827 break; 828 829 ew32(EEWR, eewr); 830 831 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); 832 if (ret_val) 833 break; 834 } 835 836 return ret_val; 837 } 838 839 /** 840 * e1000_get_cfg_done_82571 - Poll for configuration done 841 * @hw: pointer to the HW structure 842 * 843 * Reads the management control register for the config done bit to be set. 844 **/ 845 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) 846 { 847 s32 timeout = PHY_CFG_TIMEOUT; 848 849 while (timeout) { 850 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0) 851 break; 852 usleep_range(1000, 2000); 853 timeout--; 854 } 855 if (!timeout) { 856 e_dbg("MNG configuration cycle has not completed.\n"); 857 return -E1000_ERR_RESET; 858 } 859 860 return 0; 861 } 862 863 /** 864 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state 865 * @hw: pointer to the HW structure 866 * @active: true to enable LPLU, false to disable 867 * 868 * Sets the LPLU D0 state according to the active flag. When activating LPLU 869 * this function also disables smart speed and vice versa. LPLU will not be 870 * activated unless the device autonegotiation advertisement meets standards 871 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function 872 * pointer entry point only called by PHY setup routines. 873 **/ 874 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) 875 { 876 struct e1000_phy_info *phy = &hw->phy; 877 s32 ret_val; 878 u16 data; 879 880 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); 881 if (ret_val) 882 return ret_val; 883 884 if (active) { 885 data |= IGP02E1000_PM_D0_LPLU; 886 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 887 if (ret_val) 888 return ret_val; 889 890 /* When LPLU is enabled, we should disable SmartSpeed */ 891 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 892 if (ret_val) 893 return ret_val; 894 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 895 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 896 if (ret_val) 897 return ret_val; 898 } else { 899 data &= ~IGP02E1000_PM_D0_LPLU; 900 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 901 if (ret_val) 902 return ret_val; 903 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 904 * during Dx states where the power conservation is most 905 * important. During driver activity we should enable 906 * SmartSpeed, so performance is maintained. 907 */ 908 if (phy->smart_speed == e1000_smart_speed_on) { 909 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 910 &data); 911 if (ret_val) 912 return ret_val; 913 914 data |= IGP01E1000_PSCFR_SMART_SPEED; 915 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 916 data); 917 if (ret_val) 918 return ret_val; 919 } else if (phy->smart_speed == e1000_smart_speed_off) { 920 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 921 &data); 922 if (ret_val) 923 return ret_val; 924 925 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 926 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 927 data); 928 if (ret_val) 929 return ret_val; 930 } 931 } 932 933 return 0; 934 } 935 936 /** 937 * e1000_reset_hw_82571 - Reset hardware 938 * @hw: pointer to the HW structure 939 * 940 * This resets the hardware into a known state. 941 **/ 942 static s32 e1000_reset_hw_82571(struct e1000_hw *hw) 943 { 944 u32 ctrl, ctrl_ext, eecd, tctl; 945 s32 ret_val; 946 947 /* Prevent the PCI-E bus from sticking if there is no TLP connection 948 * on the last TLP read/write transaction when MAC is reset. 949 */ 950 ret_val = e1000e_disable_pcie_master(hw); 951 if (ret_val) 952 e_dbg("PCI-E Master disable polling has failed.\n"); 953 954 e_dbg("Masking off all interrupts\n"); 955 ew32(IMC, 0xffffffff); 956 957 ew32(RCTL, 0); 958 tctl = er32(TCTL); 959 tctl &= ~E1000_TCTL_EN; 960 ew32(TCTL, tctl); 961 e1e_flush(); 962 963 usleep_range(10000, 11000); 964 965 /* Must acquire the MDIO ownership before MAC reset. 966 * Ownership defaults to firmware after a reset. 967 */ 968 switch (hw->mac.type) { 969 case e1000_82573: 970 ret_val = e1000_get_hw_semaphore_82573(hw); 971 break; 972 case e1000_82574: 973 case e1000_82583: 974 ret_val = e1000_get_hw_semaphore_82574(hw); 975 break; 976 default: 977 break; 978 } 979 980 ctrl = er32(CTRL); 981 982 e_dbg("Issuing a global reset to MAC\n"); 983 ew32(CTRL, ctrl | E1000_CTRL_RST); 984 985 /* Must release MDIO ownership and mutex after MAC reset. */ 986 switch (hw->mac.type) { 987 case e1000_82573: 988 /* Release mutex only if the hw semaphore is acquired */ 989 if (!ret_val) 990 e1000_put_hw_semaphore_82573(hw); 991 break; 992 case e1000_82574: 993 case e1000_82583: 994 /* Release mutex only if the hw semaphore is acquired */ 995 if (!ret_val) 996 e1000_put_hw_semaphore_82574(hw); 997 break; 998 default: 999 break; 1000 } 1001 1002 if (hw->nvm.type == e1000_nvm_flash_hw) { 1003 usleep_range(10, 20); 1004 ctrl_ext = er32(CTRL_EXT); 1005 ctrl_ext |= E1000_CTRL_EXT_EE_RST; 1006 ew32(CTRL_EXT, ctrl_ext); 1007 e1e_flush(); 1008 } 1009 1010 ret_val = e1000e_get_auto_rd_done(hw); 1011 if (ret_val) 1012 /* We don't want to continue accessing MAC registers. */ 1013 return ret_val; 1014 1015 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. 1016 * Need to wait for Phy configuration completion before accessing 1017 * NVM and Phy. 1018 */ 1019 1020 switch (hw->mac.type) { 1021 case e1000_82571: 1022 case e1000_82572: 1023 /* REQ and GNT bits need to be cleared when using AUTO_RD 1024 * to access the EEPROM. 1025 */ 1026 eecd = er32(EECD); 1027 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT); 1028 ew32(EECD, eecd); 1029 break; 1030 case e1000_82573: 1031 case e1000_82574: 1032 case e1000_82583: 1033 msleep(25); 1034 break; 1035 default: 1036 break; 1037 } 1038 1039 /* Clear any pending interrupt events. */ 1040 ew32(IMC, 0xffffffff); 1041 er32(ICR); 1042 1043 if (hw->mac.type == e1000_82571) { 1044 /* Install any alternate MAC address into RAR0 */ 1045 ret_val = e1000_check_alt_mac_addr_generic(hw); 1046 if (ret_val) 1047 return ret_val; 1048 1049 e1000e_set_laa_state_82571(hw, true); 1050 } 1051 1052 /* Reinitialize the 82571 serdes link state machine */ 1053 if (hw->phy.media_type == e1000_media_type_internal_serdes) 1054 hw->mac.serdes_link_state = e1000_serdes_link_down; 1055 1056 return 0; 1057 } 1058 1059 /** 1060 * e1000_init_hw_82571 - Initialize hardware 1061 * @hw: pointer to the HW structure 1062 * 1063 * This inits the hardware readying it for operation. 1064 **/ 1065 static s32 e1000_init_hw_82571(struct e1000_hw *hw) 1066 { 1067 struct e1000_mac_info *mac = &hw->mac; 1068 u32 reg_data; 1069 s32 ret_val; 1070 u16 i, rar_count = mac->rar_entry_count; 1071 1072 e1000_initialize_hw_bits_82571(hw); 1073 1074 /* Initialize identification LED */ 1075 ret_val = mac->ops.id_led_init(hw); 1076 /* An error is not fatal and we should not stop init due to this */ 1077 if (ret_val) 1078 e_dbg("Error initializing identification LED\n"); 1079 1080 /* Disabling VLAN filtering */ 1081 e_dbg("Initializing the IEEE VLAN\n"); 1082 mac->ops.clear_vfta(hw); 1083 1084 /* Setup the receive address. 1085 * If, however, a locally administered address was assigned to the 1086 * 82571, we must reserve a RAR for it to work around an issue where 1087 * resetting one port will reload the MAC on the other port. 1088 */ 1089 if (e1000e_get_laa_state_82571(hw)) 1090 rar_count--; 1091 e1000e_init_rx_addrs(hw, rar_count); 1092 1093 /* Zero out the Multicast HASH table */ 1094 e_dbg("Zeroing the MTA\n"); 1095 for (i = 0; i < mac->mta_reg_count; i++) 1096 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 1097 1098 /* Setup link and flow control */ 1099 ret_val = mac->ops.setup_link(hw); 1100 1101 /* Set the transmit descriptor write-back policy */ 1102 reg_data = er32(TXDCTL(0)); 1103 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | 1104 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); 1105 ew32(TXDCTL(0), reg_data); 1106 1107 /* ...for both queues. */ 1108 switch (mac->type) { 1109 case e1000_82573: 1110 e1000e_enable_tx_pkt_filtering(hw); 1111 fallthrough; 1112 case e1000_82574: 1113 case e1000_82583: 1114 reg_data = er32(GCR); 1115 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; 1116 ew32(GCR, reg_data); 1117 break; 1118 default: 1119 reg_data = er32(TXDCTL(1)); 1120 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | 1121 E1000_TXDCTL_FULL_TX_DESC_WB | 1122 E1000_TXDCTL_COUNT_DESC); 1123 ew32(TXDCTL(1), reg_data); 1124 break; 1125 } 1126 1127 /* Clear all of the statistics registers (clear on read). It is 1128 * important that we do this after we have tried to establish link 1129 * because the symbol error count will increment wildly if there 1130 * is no link. 1131 */ 1132 e1000_clear_hw_cntrs_82571(hw); 1133 1134 return ret_val; 1135 } 1136 1137 /** 1138 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits 1139 * @hw: pointer to the HW structure 1140 * 1141 * Initializes required hardware-dependent bits needed for normal operation. 1142 **/ 1143 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) 1144 { 1145 u32 reg; 1146 1147 /* Transmit Descriptor Control 0 */ 1148 reg = er32(TXDCTL(0)); 1149 reg |= BIT(22); 1150 ew32(TXDCTL(0), reg); 1151 1152 /* Transmit Descriptor Control 1 */ 1153 reg = er32(TXDCTL(1)); 1154 reg |= BIT(22); 1155 ew32(TXDCTL(1), reg); 1156 1157 /* Transmit Arbitration Control 0 */ 1158 reg = er32(TARC(0)); 1159 reg &= ~(0xF << 27); /* 30:27 */ 1160 switch (hw->mac.type) { 1161 case e1000_82571: 1162 case e1000_82572: 1163 reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26); 1164 break; 1165 case e1000_82574: 1166 case e1000_82583: 1167 reg |= BIT(26); 1168 break; 1169 default: 1170 break; 1171 } 1172 ew32(TARC(0), reg); 1173 1174 /* Transmit Arbitration Control 1 */ 1175 reg = er32(TARC(1)); 1176 switch (hw->mac.type) { 1177 case e1000_82571: 1178 case e1000_82572: 1179 reg &= ~(BIT(29) | BIT(30)); 1180 reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26); 1181 if (er32(TCTL) & E1000_TCTL_MULR) 1182 reg &= ~BIT(28); 1183 else 1184 reg |= BIT(28); 1185 ew32(TARC(1), reg); 1186 break; 1187 default: 1188 break; 1189 } 1190 1191 /* Device Control */ 1192 switch (hw->mac.type) { 1193 case e1000_82573: 1194 case e1000_82574: 1195 case e1000_82583: 1196 reg = er32(CTRL); 1197 reg &= ~BIT(29); 1198 ew32(CTRL, reg); 1199 break; 1200 default: 1201 break; 1202 } 1203 1204 /* Extended Device Control */ 1205 switch (hw->mac.type) { 1206 case e1000_82573: 1207 case e1000_82574: 1208 case e1000_82583: 1209 reg = er32(CTRL_EXT); 1210 reg &= ~BIT(23); 1211 reg |= BIT(22); 1212 ew32(CTRL_EXT, reg); 1213 break; 1214 default: 1215 break; 1216 } 1217 1218 if (hw->mac.type == e1000_82571) { 1219 reg = er32(PBA_ECC); 1220 reg |= E1000_PBA_ECC_CORR_EN; 1221 ew32(PBA_ECC, reg); 1222 } 1223 1224 /* Workaround for hardware errata. 1225 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 1226 */ 1227 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) { 1228 reg = er32(CTRL_EXT); 1229 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; 1230 ew32(CTRL_EXT, reg); 1231 } 1232 1233 /* Disable IPv6 extension header parsing because some malformed 1234 * IPv6 headers can hang the Rx. 1235 */ 1236 if (hw->mac.type <= e1000_82573) { 1237 reg = er32(RFCTL); 1238 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 1239 ew32(RFCTL, reg); 1240 } 1241 1242 /* PCI-Ex Control Registers */ 1243 switch (hw->mac.type) { 1244 case e1000_82574: 1245 case e1000_82583: 1246 reg = er32(GCR); 1247 reg |= BIT(22); 1248 ew32(GCR, reg); 1249 1250 /* Workaround for hardware errata. 1251 * apply workaround for hardware errata documented in errata 1252 * docs Fixes issue where some error prone or unreliable PCIe 1253 * completions are occurring, particularly with ASPM enabled. 1254 * Without fix, issue can cause Tx timeouts. 1255 */ 1256 reg = er32(GCR2); 1257 reg |= 1; 1258 ew32(GCR2, reg); 1259 break; 1260 default: 1261 break; 1262 } 1263 } 1264 1265 /** 1266 * e1000_clear_vfta_82571 - Clear VLAN filter table 1267 * @hw: pointer to the HW structure 1268 * 1269 * Clears the register array which contains the VLAN filter table by 1270 * setting all the values to 0. 1271 **/ 1272 static void e1000_clear_vfta_82571(struct e1000_hw *hw) 1273 { 1274 u32 offset; 1275 u32 vfta_value = 0; 1276 u32 vfta_offset = 0; 1277 u32 vfta_bit_in_reg = 0; 1278 1279 switch (hw->mac.type) { 1280 case e1000_82573: 1281 case e1000_82574: 1282 case e1000_82583: 1283 if (hw->mng_cookie.vlan_id != 0) { 1284 /* The VFTA is a 4096b bit-field, each identifying 1285 * a single VLAN ID. The following operations 1286 * determine which 32b entry (i.e. offset) into the 1287 * array we want to set the VLAN ID (i.e. bit) of 1288 * the manageability unit. 1289 */ 1290 vfta_offset = (hw->mng_cookie.vlan_id >> 1291 E1000_VFTA_ENTRY_SHIFT) & 1292 E1000_VFTA_ENTRY_MASK; 1293 vfta_bit_in_reg = 1294 BIT(hw->mng_cookie.vlan_id & 1295 E1000_VFTA_ENTRY_BIT_SHIFT_MASK); 1296 } 1297 break; 1298 default: 1299 break; 1300 } 1301 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { 1302 /* If the offset we want to clear is the same offset of the 1303 * manageability VLAN ID, then clear all bits except that of 1304 * the manageability unit. 1305 */ 1306 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; 1307 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); 1308 e1e_flush(); 1309 } 1310 } 1311 1312 /** 1313 * e1000_check_mng_mode_82574 - Check manageability is enabled 1314 * @hw: pointer to the HW structure 1315 * 1316 * Reads the NVM Initialization Control Word 2 and returns true 1317 * (>0) if any manageability is enabled, else false (0). 1318 **/ 1319 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) 1320 { 1321 u16 data; 1322 1323 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); 1324 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; 1325 } 1326 1327 /** 1328 * e1000_led_on_82574 - Turn LED on 1329 * @hw: pointer to the HW structure 1330 * 1331 * Turn LED on. 1332 **/ 1333 static s32 e1000_led_on_82574(struct e1000_hw *hw) 1334 { 1335 u32 ctrl; 1336 u32 i; 1337 1338 ctrl = hw->mac.ledctl_mode2; 1339 if (!(E1000_STATUS_LU & er32(STATUS))) { 1340 /* If no link, then turn LED on by setting the invert bit 1341 * for each LED that's "on" (0x0E) in ledctl_mode2. 1342 */ 1343 for (i = 0; i < 4; i++) 1344 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == 1345 E1000_LEDCTL_MODE_LED_ON) 1346 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); 1347 } 1348 ew32(LEDCTL, ctrl); 1349 1350 return 0; 1351 } 1352 1353 /** 1354 * e1000_check_phy_82574 - check 82574 phy hung state 1355 * @hw: pointer to the HW structure 1356 * 1357 * Returns whether phy is hung or not 1358 **/ 1359 bool e1000_check_phy_82574(struct e1000_hw *hw) 1360 { 1361 u16 status_1kbt = 0; 1362 u16 receive_errors = 0; 1363 s32 ret_val; 1364 1365 /* Read PHY Receive Error counter first, if its is max - all F's then 1366 * read the Base1000T status register If both are max then PHY is hung. 1367 */ 1368 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors); 1369 if (ret_val) 1370 return false; 1371 if (receive_errors == E1000_RECEIVE_ERROR_MAX) { 1372 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt); 1373 if (ret_val) 1374 return false; 1375 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == 1376 E1000_IDLE_ERROR_COUNT_MASK) 1377 return true; 1378 } 1379 1380 return false; 1381 } 1382 1383 /** 1384 * e1000_setup_link_82571 - Setup flow control and link settings 1385 * @hw: pointer to the HW structure 1386 * 1387 * Determines which flow control settings to use, then configures flow 1388 * control. Calls the appropriate media-specific link configuration 1389 * function. Assuming the adapter has a valid link partner, a valid link 1390 * should be established. Assumes the hardware has previously been reset 1391 * and the transmitter and receiver are not enabled. 1392 **/ 1393 static s32 e1000_setup_link_82571(struct e1000_hw *hw) 1394 { 1395 /* 82573 does not have a word in the NVM to determine 1396 * the default flow control setting, so we explicitly 1397 * set it to full. 1398 */ 1399 switch (hw->mac.type) { 1400 case e1000_82573: 1401 case e1000_82574: 1402 case e1000_82583: 1403 if (hw->fc.requested_mode == e1000_fc_default) 1404 hw->fc.requested_mode = e1000_fc_full; 1405 break; 1406 default: 1407 break; 1408 } 1409 1410 return e1000e_setup_link_generic(hw); 1411 } 1412 1413 /** 1414 * e1000_setup_copper_link_82571 - Configure copper link settings 1415 * @hw: pointer to the HW structure 1416 * 1417 * Configures the link for auto-neg or forced speed and duplex. Then we check 1418 * for link, once link is established calls to configure collision distance 1419 * and flow control are called. 1420 **/ 1421 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) 1422 { 1423 u32 ctrl; 1424 s32 ret_val; 1425 1426 ctrl = er32(CTRL); 1427 ctrl |= E1000_CTRL_SLU; 1428 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1429 ew32(CTRL, ctrl); 1430 1431 switch (hw->phy.type) { 1432 case e1000_phy_m88: 1433 case e1000_phy_bm: 1434 ret_val = e1000e_copper_link_setup_m88(hw); 1435 break; 1436 case e1000_phy_igp_2: 1437 ret_val = e1000e_copper_link_setup_igp(hw); 1438 break; 1439 default: 1440 return -E1000_ERR_PHY; 1441 } 1442 1443 if (ret_val) 1444 return ret_val; 1445 1446 return e1000e_setup_copper_link(hw); 1447 } 1448 1449 /** 1450 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes 1451 * @hw: pointer to the HW structure 1452 * 1453 * Configures collision distance and flow control for fiber and serdes links. 1454 * Upon successful setup, poll for link. 1455 **/ 1456 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) 1457 { 1458 switch (hw->mac.type) { 1459 case e1000_82571: 1460 case e1000_82572: 1461 /* If SerDes loopback mode is entered, there is no form 1462 * of reset to take the adapter out of that mode. So we 1463 * have to explicitly take the adapter out of loopback 1464 * mode. This prevents drivers from twiddling their thumbs 1465 * if another tool failed to take it out of loopback mode. 1466 */ 1467 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1468 break; 1469 default: 1470 break; 1471 } 1472 1473 return e1000e_setup_fiber_serdes_link(hw); 1474 } 1475 1476 /** 1477 * e1000_check_for_serdes_link_82571 - Check for link (Serdes) 1478 * @hw: pointer to the HW structure 1479 * 1480 * Reports the link state as up or down. 1481 * 1482 * If autonegotiation is supported by the link partner, the link state is 1483 * determined by the result of autonegotiation. This is the most likely case. 1484 * If autonegotiation is not supported by the link partner, and the link 1485 * has a valid signal, force the link up. 1486 * 1487 * The link state is represented internally here by 4 states: 1488 * 1489 * 1) down 1490 * 2) autoneg_progress 1491 * 3) autoneg_complete (the link successfully autonegotiated) 1492 * 4) forced_up (the link has been forced up, it did not autonegotiate) 1493 * 1494 **/ 1495 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) 1496 { 1497 struct e1000_mac_info *mac = &hw->mac; 1498 u32 rxcw; 1499 u32 ctrl; 1500 u32 status; 1501 u32 txcw; 1502 u32 i; 1503 s32 ret_val = 0; 1504 1505 ctrl = er32(CTRL); 1506 status = er32(STATUS); 1507 er32(RXCW); 1508 /* SYNCH bit and IV bit are sticky */ 1509 usleep_range(10, 20); 1510 rxcw = er32(RXCW); 1511 1512 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { 1513 /* Receiver is synchronized with no invalid bits. */ 1514 switch (mac->serdes_link_state) { 1515 case e1000_serdes_link_autoneg_complete: 1516 if (!(status & E1000_STATUS_LU)) { 1517 /* We have lost link, retry autoneg before 1518 * reporting link failure 1519 */ 1520 mac->serdes_link_state = 1521 e1000_serdes_link_autoneg_progress; 1522 mac->serdes_has_link = false; 1523 e_dbg("AN_UP -> AN_PROG\n"); 1524 } else { 1525 mac->serdes_has_link = true; 1526 } 1527 break; 1528 1529 case e1000_serdes_link_forced_up: 1530 /* If we are receiving /C/ ordered sets, re-enable 1531 * auto-negotiation in the TXCW register and disable 1532 * forced link in the Device Control register in an 1533 * attempt to auto-negotiate with our link partner. 1534 */ 1535 if (rxcw & E1000_RXCW_C) { 1536 /* Enable autoneg, and unforce link up */ 1537 ew32(TXCW, mac->txcw); 1538 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 1539 mac->serdes_link_state = 1540 e1000_serdes_link_autoneg_progress; 1541 mac->serdes_has_link = false; 1542 e_dbg("FORCED_UP -> AN_PROG\n"); 1543 } else { 1544 mac->serdes_has_link = true; 1545 } 1546 break; 1547 1548 case e1000_serdes_link_autoneg_progress: 1549 if (rxcw & E1000_RXCW_C) { 1550 /* We received /C/ ordered sets, meaning the 1551 * link partner has autonegotiated, and we can 1552 * trust the Link Up (LU) status bit. 1553 */ 1554 if (status & E1000_STATUS_LU) { 1555 mac->serdes_link_state = 1556 e1000_serdes_link_autoneg_complete; 1557 e_dbg("AN_PROG -> AN_UP\n"); 1558 mac->serdes_has_link = true; 1559 } else { 1560 /* Autoneg completed, but failed. */ 1561 mac->serdes_link_state = 1562 e1000_serdes_link_down; 1563 e_dbg("AN_PROG -> DOWN\n"); 1564 } 1565 } else { 1566 /* The link partner did not autoneg. 1567 * Force link up and full duplex, and change 1568 * state to forced. 1569 */ 1570 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 1571 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 1572 ew32(CTRL, ctrl); 1573 1574 /* Configure Flow Control after link up. */ 1575 ret_val = e1000e_config_fc_after_link_up(hw); 1576 if (ret_val) { 1577 e_dbg("Error config flow control\n"); 1578 break; 1579 } 1580 mac->serdes_link_state = 1581 e1000_serdes_link_forced_up; 1582 mac->serdes_has_link = true; 1583 e_dbg("AN_PROG -> FORCED_UP\n"); 1584 } 1585 break; 1586 1587 case e1000_serdes_link_down: 1588 default: 1589 /* The link was down but the receiver has now gained 1590 * valid sync, so lets see if we can bring the link 1591 * up. 1592 */ 1593 ew32(TXCW, mac->txcw); 1594 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 1595 mac->serdes_link_state = 1596 e1000_serdes_link_autoneg_progress; 1597 mac->serdes_has_link = false; 1598 e_dbg("DOWN -> AN_PROG\n"); 1599 break; 1600 } 1601 } else { 1602 if (!(rxcw & E1000_RXCW_SYNCH)) { 1603 mac->serdes_has_link = false; 1604 mac->serdes_link_state = e1000_serdes_link_down; 1605 e_dbg("ANYSTATE -> DOWN\n"); 1606 } else { 1607 /* Check several times, if SYNCH bit and CONFIG 1608 * bit both are consistently 1 then simply ignore 1609 * the IV bit and restart Autoneg 1610 */ 1611 for (i = 0; i < AN_RETRY_COUNT; i++) { 1612 usleep_range(10, 20); 1613 rxcw = er32(RXCW); 1614 if ((rxcw & E1000_RXCW_SYNCH) && 1615 (rxcw & E1000_RXCW_C)) 1616 continue; 1617 1618 if (rxcw & E1000_RXCW_IV) { 1619 mac->serdes_has_link = false; 1620 mac->serdes_link_state = 1621 e1000_serdes_link_down; 1622 e_dbg("ANYSTATE -> DOWN\n"); 1623 break; 1624 } 1625 } 1626 1627 if (i == AN_RETRY_COUNT) { 1628 txcw = er32(TXCW); 1629 txcw |= E1000_TXCW_ANE; 1630 ew32(TXCW, txcw); 1631 mac->serdes_link_state = 1632 e1000_serdes_link_autoneg_progress; 1633 mac->serdes_has_link = false; 1634 e_dbg("ANYSTATE -> AN_PROG\n"); 1635 } 1636 } 1637 } 1638 1639 return ret_val; 1640 } 1641 1642 /** 1643 * e1000_valid_led_default_82571 - Verify a valid default LED config 1644 * @hw: pointer to the HW structure 1645 * @data: pointer to the NVM (EEPROM) 1646 * 1647 * Read the EEPROM for the current default LED configuration. If the 1648 * LED configuration is not valid, set to a valid LED configuration. 1649 **/ 1650 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) 1651 { 1652 s32 ret_val; 1653 1654 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 1655 if (ret_val) { 1656 e_dbg("NVM Read Error\n"); 1657 return ret_val; 1658 } 1659 1660 switch (hw->mac.type) { 1661 case e1000_82573: 1662 case e1000_82574: 1663 case e1000_82583: 1664 if (*data == ID_LED_RESERVED_F746) 1665 *data = ID_LED_DEFAULT_82573; 1666 break; 1667 default: 1668 if (*data == ID_LED_RESERVED_0000 || 1669 *data == ID_LED_RESERVED_FFFF) 1670 *data = ID_LED_DEFAULT; 1671 break; 1672 } 1673 1674 return 0; 1675 } 1676 1677 /** 1678 * e1000e_get_laa_state_82571 - Get locally administered address state 1679 * @hw: pointer to the HW structure 1680 * 1681 * Retrieve and return the current locally administered address state. 1682 **/ 1683 bool e1000e_get_laa_state_82571(struct e1000_hw *hw) 1684 { 1685 if (hw->mac.type != e1000_82571) 1686 return false; 1687 1688 return hw->dev_spec.e82571.laa_is_present; 1689 } 1690 1691 /** 1692 * e1000e_set_laa_state_82571 - Set locally administered address state 1693 * @hw: pointer to the HW structure 1694 * @state: enable/disable locally administered address 1695 * 1696 * Enable/Disable the current locally administered address state. 1697 **/ 1698 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) 1699 { 1700 if (hw->mac.type != e1000_82571) 1701 return; 1702 1703 hw->dev_spec.e82571.laa_is_present = state; 1704 1705 /* If workaround is activated... */ 1706 if (state) 1707 /* Hold a copy of the LAA in RAR[14] This is done so that 1708 * between the time RAR[0] gets clobbered and the time it 1709 * gets fixed, the actual LAA is in one of the RARs and no 1710 * incoming packets directed to this port are dropped. 1711 * Eventually the LAA will be in RAR[0] and RAR[14]. 1712 */ 1713 hw->mac.ops.rar_set(hw, hw->mac.addr, 1714 hw->mac.rar_entry_count - 1); 1715 } 1716 1717 /** 1718 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum 1719 * @hw: pointer to the HW structure 1720 * 1721 * Verifies that the EEPROM has completed the update. After updating the 1722 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If 1723 * the checksum fix is not implemented, we need to set the bit and update 1724 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, 1725 * we need to return bad checksum. 1726 **/ 1727 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) 1728 { 1729 struct e1000_nvm_info *nvm = &hw->nvm; 1730 s32 ret_val; 1731 u16 data; 1732 1733 if (nvm->type != e1000_nvm_flash_hw) 1734 return 0; 1735 1736 /* Check bit 4 of word 10h. If it is 0, firmware is done updating 1737 * 10h-12h. Checksum may need to be fixed. 1738 */ 1739 ret_val = e1000_read_nvm(hw, 0x10, 1, &data); 1740 if (ret_val) 1741 return ret_val; 1742 1743 if (!(data & 0x10)) { 1744 /* Read 0x23 and check bit 15. This bit is a 1 1745 * when the checksum has already been fixed. If 1746 * the checksum is still wrong and this bit is a 1747 * 1, we need to return bad checksum. Otherwise, 1748 * we need to set this bit to a 1 and update the 1749 * checksum. 1750 */ 1751 ret_val = e1000_read_nvm(hw, 0x23, 1, &data); 1752 if (ret_val) 1753 return ret_val; 1754 1755 if (!(data & 0x8000)) { 1756 data |= 0x8000; 1757 ret_val = e1000_write_nvm(hw, 0x23, 1, &data); 1758 if (ret_val) 1759 return ret_val; 1760 ret_val = e1000e_update_nvm_checksum(hw); 1761 if (ret_val) 1762 return ret_val; 1763 } 1764 } 1765 1766 return 0; 1767 } 1768 1769 /** 1770 * e1000_read_mac_addr_82571 - Read device MAC address 1771 * @hw: pointer to the HW structure 1772 **/ 1773 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) 1774 { 1775 if (hw->mac.type == e1000_82571) { 1776 s32 ret_val; 1777 1778 /* If there's an alternate MAC address place it in RAR0 1779 * so that it will override the Si installed default perm 1780 * address. 1781 */ 1782 ret_val = e1000_check_alt_mac_addr_generic(hw); 1783 if (ret_val) 1784 return ret_val; 1785 } 1786 1787 return e1000_read_mac_addr_generic(hw); 1788 } 1789 1790 /** 1791 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down 1792 * @hw: pointer to the HW structure 1793 * 1794 * In the case of a PHY power down to save power, or to turn off link during a 1795 * driver unload, or wake on lan is not enabled, remove the link. 1796 **/ 1797 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) 1798 { 1799 struct e1000_phy_info *phy = &hw->phy; 1800 struct e1000_mac_info *mac = &hw->mac; 1801 1802 if (!phy->ops.check_reset_block) 1803 return; 1804 1805 /* If the management interface is not enabled, then power down */ 1806 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) 1807 e1000_power_down_phy_copper(hw); 1808 } 1809 1810 /** 1811 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters 1812 * @hw: pointer to the HW structure 1813 * 1814 * Clears the hardware counters by reading the counter registers. 1815 **/ 1816 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) 1817 { 1818 e1000e_clear_hw_cntrs_base(hw); 1819 1820 er32(PRC64); 1821 er32(PRC127); 1822 er32(PRC255); 1823 er32(PRC511); 1824 er32(PRC1023); 1825 er32(PRC1522); 1826 er32(PTC64); 1827 er32(PTC127); 1828 er32(PTC255); 1829 er32(PTC511); 1830 er32(PTC1023); 1831 er32(PTC1522); 1832 1833 er32(ALGNERRC); 1834 er32(RXERRC); 1835 er32(TNCRS); 1836 er32(CEXTERR); 1837 er32(TSCTC); 1838 er32(TSCTFC); 1839 1840 er32(MGTPRC); 1841 er32(MGTPDC); 1842 er32(MGTPTC); 1843 1844 er32(IAC); 1845 er32(ICRXOC); 1846 1847 er32(ICRXPTC); 1848 er32(ICRXATC); 1849 er32(ICTXPTC); 1850 er32(ICTXATC); 1851 er32(ICTXQEC); 1852 er32(ICTXQMTC); 1853 er32(ICRXDMTC); 1854 } 1855 1856 static const struct e1000_mac_operations e82571_mac_ops = { 1857 /* .check_mng_mode: mac type dependent */ 1858 /* .check_for_link: media type dependent */ 1859 .id_led_init = e1000e_id_led_init_generic, 1860 .cleanup_led = e1000e_cleanup_led_generic, 1861 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, 1862 .get_bus_info = e1000e_get_bus_info_pcie, 1863 .set_lan_id = e1000_set_lan_id_multi_port_pcie, 1864 /* .get_link_up_info: media type dependent */ 1865 /* .led_on: mac type dependent */ 1866 .led_off = e1000e_led_off_generic, 1867 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 1868 .write_vfta = e1000_write_vfta_generic, 1869 .clear_vfta = e1000_clear_vfta_82571, 1870 .reset_hw = e1000_reset_hw_82571, 1871 .init_hw = e1000_init_hw_82571, 1872 .setup_link = e1000_setup_link_82571, 1873 /* .setup_physical_interface: media type dependent */ 1874 .setup_led = e1000e_setup_led_generic, 1875 .config_collision_dist = e1000e_config_collision_dist_generic, 1876 .read_mac_addr = e1000_read_mac_addr_82571, 1877 .rar_set = e1000e_rar_set_generic, 1878 .rar_get_count = e1000e_rar_get_count_generic, 1879 }; 1880 1881 static const struct e1000_phy_operations e82_phy_ops_igp = { 1882 .acquire = e1000_get_hw_semaphore_82571, 1883 .check_polarity = e1000_check_polarity_igp, 1884 .check_reset_block = e1000e_check_reset_block_generic, 1885 .commit = NULL, 1886 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, 1887 .get_cfg_done = e1000_get_cfg_done_82571, 1888 .get_cable_length = e1000e_get_cable_length_igp_2, 1889 .get_info = e1000e_get_phy_info_igp, 1890 .read_reg = e1000e_read_phy_reg_igp, 1891 .release = e1000_put_hw_semaphore_82571, 1892 .reset = e1000e_phy_hw_reset_generic, 1893 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, 1894 .set_d3_lplu_state = e1000e_set_d3_lplu_state, 1895 .write_reg = e1000e_write_phy_reg_igp, 1896 .cfg_on_link_up = NULL, 1897 }; 1898 1899 static const struct e1000_phy_operations e82_phy_ops_m88 = { 1900 .acquire = e1000_get_hw_semaphore_82571, 1901 .check_polarity = e1000_check_polarity_m88, 1902 .check_reset_block = e1000e_check_reset_block_generic, 1903 .commit = e1000e_phy_sw_reset, 1904 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, 1905 .get_cfg_done = e1000e_get_cfg_done_generic, 1906 .get_cable_length = e1000e_get_cable_length_m88, 1907 .get_info = e1000e_get_phy_info_m88, 1908 .read_reg = e1000e_read_phy_reg_m88, 1909 .release = e1000_put_hw_semaphore_82571, 1910 .reset = e1000e_phy_hw_reset_generic, 1911 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, 1912 .set_d3_lplu_state = e1000e_set_d3_lplu_state, 1913 .write_reg = e1000e_write_phy_reg_m88, 1914 .cfg_on_link_up = NULL, 1915 }; 1916 1917 static const struct e1000_phy_operations e82_phy_ops_bm = { 1918 .acquire = e1000_get_hw_semaphore_82571, 1919 .check_polarity = e1000_check_polarity_m88, 1920 .check_reset_block = e1000e_check_reset_block_generic, 1921 .commit = e1000e_phy_sw_reset, 1922 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, 1923 .get_cfg_done = e1000e_get_cfg_done_generic, 1924 .get_cable_length = e1000e_get_cable_length_m88, 1925 .get_info = e1000e_get_phy_info_m88, 1926 .read_reg = e1000e_read_phy_reg_bm2, 1927 .release = e1000_put_hw_semaphore_82571, 1928 .reset = e1000e_phy_hw_reset_generic, 1929 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, 1930 .set_d3_lplu_state = e1000e_set_d3_lplu_state, 1931 .write_reg = e1000e_write_phy_reg_bm2, 1932 .cfg_on_link_up = NULL, 1933 }; 1934 1935 static const struct e1000_nvm_operations e82571_nvm_ops = { 1936 .acquire = e1000_acquire_nvm_82571, 1937 .read = e1000e_read_nvm_eerd, 1938 .release = e1000_release_nvm_82571, 1939 .reload = e1000e_reload_nvm_generic, 1940 .update = e1000_update_nvm_checksum_82571, 1941 .valid_led_default = e1000_valid_led_default_82571, 1942 .validate = e1000_validate_nvm_checksum_82571, 1943 .write = e1000_write_nvm_82571, 1944 }; 1945 1946 const struct e1000_info e1000_82571_info = { 1947 .mac = e1000_82571, 1948 .flags = FLAG_HAS_HW_VLAN_FILTER 1949 | FLAG_HAS_JUMBO_FRAMES 1950 | FLAG_HAS_WOL 1951 | FLAG_APME_IN_CTRL3 1952 | FLAG_HAS_CTRLEXT_ON_LOAD 1953 | FLAG_HAS_SMART_POWER_DOWN 1954 | FLAG_RESET_OVERWRITES_LAA /* errata */ 1955 | FLAG_TARC_SPEED_MODE_BIT /* errata */ 1956 | FLAG_APME_CHECK_PORT_B, 1957 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ 1958 | FLAG2_DMA_BURST, 1959 .pba = 38, 1960 .max_hw_frame_size = DEFAULT_JUMBO, 1961 .get_variants = e1000_get_variants_82571, 1962 .mac_ops = &e82571_mac_ops, 1963 .phy_ops = &e82_phy_ops_igp, 1964 .nvm_ops = &e82571_nvm_ops, 1965 }; 1966 1967 const struct e1000_info e1000_82572_info = { 1968 .mac = e1000_82572, 1969 .flags = FLAG_HAS_HW_VLAN_FILTER 1970 | FLAG_HAS_JUMBO_FRAMES 1971 | FLAG_HAS_WOL 1972 | FLAG_APME_IN_CTRL3 1973 | FLAG_HAS_CTRLEXT_ON_LOAD 1974 | FLAG_TARC_SPEED_MODE_BIT, /* errata */ 1975 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ 1976 | FLAG2_DMA_BURST, 1977 .pba = 38, 1978 .max_hw_frame_size = DEFAULT_JUMBO, 1979 .get_variants = e1000_get_variants_82571, 1980 .mac_ops = &e82571_mac_ops, 1981 .phy_ops = &e82_phy_ops_igp, 1982 .nvm_ops = &e82571_nvm_ops, 1983 }; 1984 1985 const struct e1000_info e1000_82573_info = { 1986 .mac = e1000_82573, 1987 .flags = FLAG_HAS_HW_VLAN_FILTER 1988 | FLAG_HAS_WOL 1989 | FLAG_APME_IN_CTRL3 1990 | FLAG_HAS_SMART_POWER_DOWN 1991 | FLAG_HAS_AMT 1992 | FLAG_HAS_SWSM_ON_LOAD, 1993 .flags2 = FLAG2_DISABLE_ASPM_L1 1994 | FLAG2_DISABLE_ASPM_L0S, 1995 .pba = 20, 1996 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, 1997 .get_variants = e1000_get_variants_82571, 1998 .mac_ops = &e82571_mac_ops, 1999 .phy_ops = &e82_phy_ops_m88, 2000 .nvm_ops = &e82571_nvm_ops, 2001 }; 2002 2003 const struct e1000_info e1000_82574_info = { 2004 .mac = e1000_82574, 2005 .flags = FLAG_HAS_HW_VLAN_FILTER 2006 | FLAG_HAS_MSIX 2007 | FLAG_HAS_JUMBO_FRAMES 2008 | FLAG_HAS_WOL 2009 | FLAG_HAS_HW_TIMESTAMP 2010 | FLAG_APME_IN_CTRL3 2011 | FLAG_HAS_SMART_POWER_DOWN 2012 | FLAG_HAS_AMT 2013 | FLAG_HAS_CTRLEXT_ON_LOAD, 2014 .flags2 = FLAG2_CHECK_PHY_HANG 2015 | FLAG2_DISABLE_ASPM_L0S 2016 | FLAG2_DISABLE_ASPM_L1 2017 | FLAG2_NO_DISABLE_RX 2018 | FLAG2_DMA_BURST 2019 | FLAG2_CHECK_SYSTIM_OVERFLOW, 2020 .pba = 32, 2021 .max_hw_frame_size = DEFAULT_JUMBO, 2022 .get_variants = e1000_get_variants_82571, 2023 .mac_ops = &e82571_mac_ops, 2024 .phy_ops = &e82_phy_ops_bm, 2025 .nvm_ops = &e82571_nvm_ops, 2026 }; 2027 2028 const struct e1000_info e1000_82583_info = { 2029 .mac = e1000_82583, 2030 .flags = FLAG_HAS_HW_VLAN_FILTER 2031 | FLAG_HAS_WOL 2032 | FLAG_HAS_HW_TIMESTAMP 2033 | FLAG_APME_IN_CTRL3 2034 | FLAG_HAS_SMART_POWER_DOWN 2035 | FLAG_HAS_AMT 2036 | FLAG_HAS_JUMBO_FRAMES 2037 | FLAG_HAS_CTRLEXT_ON_LOAD, 2038 .flags2 = FLAG2_DISABLE_ASPM_L0S 2039 | FLAG2_DISABLE_ASPM_L1 2040 | FLAG2_NO_DISABLE_RX 2041 | FLAG2_CHECK_SYSTIM_OVERFLOW, 2042 .pba = 32, 2043 .max_hw_frame_size = DEFAULT_JUMBO, 2044 .get_variants = e1000_get_variants_82571, 2045 .mac_ops = &e82571_mac_ops, 2046 .phy_ops = &e82_phy_ops_bm, 2047 .nvm_ops = &e82571_nvm_ops, 2048 }; 2049