1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
30  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
31  */
32 
33 #include "e1000.h"
34 
35 /* A table for the GG82563 cable length where the range is defined
36  * with a lower bound at "index" and the upper bound at
37  * "index + 5".
38  */
39 static const u16 e1000_gg82563_cable_length_table[] = {
40 	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
41 };
42 
43 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
44 		ARRAY_SIZE(e1000_gg82563_cable_length_table)
45 
46 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
47 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
48 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
49 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
50 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
51 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
52 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
53 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
54 					   u16 *data);
55 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
56 					    u16 data);
57 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
58 
59 /**
60  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
61  *  @hw: pointer to the HW structure
62  **/
63 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
64 {
65 	struct e1000_phy_info *phy = &hw->phy;
66 	s32 ret_val;
67 
68 	if (hw->phy.media_type != e1000_media_type_copper) {
69 		phy->type	= e1000_phy_none;
70 		return 0;
71 	} else {
72 		phy->ops.power_up = e1000_power_up_phy_copper;
73 		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
74 	}
75 
76 	phy->addr		= 1;
77 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
78 	phy->reset_delay_us      = 100;
79 	phy->type		= e1000_phy_gg82563;
80 
81 	/* This can only be done after all function pointers are setup. */
82 	ret_val = e1000e_get_phy_id(hw);
83 
84 	/* Verify phy id */
85 	if (phy->id != GG82563_E_PHY_ID)
86 		return -E1000_ERR_PHY;
87 
88 	return ret_val;
89 }
90 
91 /**
92  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
93  *  @hw: pointer to the HW structure
94  **/
95 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
96 {
97 	struct e1000_nvm_info *nvm = &hw->nvm;
98 	u32 eecd = er32(EECD);
99 	u16 size;
100 
101 	nvm->opcode_bits	= 8;
102 	nvm->delay_usec	 = 1;
103 	switch (nvm->override) {
104 	case e1000_nvm_override_spi_large:
105 		nvm->page_size    = 32;
106 		nvm->address_bits = 16;
107 		break;
108 	case e1000_nvm_override_spi_small:
109 		nvm->page_size    = 8;
110 		nvm->address_bits = 8;
111 		break;
112 	default:
113 		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
114 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
115 		break;
116 	}
117 
118 	nvm->type = e1000_nvm_eeprom_spi;
119 
120 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
121 		     E1000_EECD_SIZE_EX_SHIFT);
122 
123 	/* Added to a constant, "size" becomes the left-shift value
124 	 * for setting word_size.
125 	 */
126 	size += NVM_WORD_SIZE_BASE_SHIFT;
127 
128 	/* EEPROM access above 16k is unsupported */
129 	if (size > 14)
130 		size = 14;
131 	nvm->word_size	= 1 << size;
132 
133 	return 0;
134 }
135 
136 /**
137  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
138  *  @hw: pointer to the HW structure
139  **/
140 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
141 {
142 	struct e1000_mac_info *mac = &hw->mac;
143 
144 	/* Set media type and media-dependent function pointers */
145 	switch (hw->adapter->pdev->device) {
146 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
147 		hw->phy.media_type = e1000_media_type_internal_serdes;
148 		mac->ops.check_for_link = e1000e_check_for_serdes_link;
149 		mac->ops.setup_physical_interface =
150 		    e1000e_setup_fiber_serdes_link;
151 		break;
152 	default:
153 		hw->phy.media_type = e1000_media_type_copper;
154 		mac->ops.check_for_link = e1000e_check_for_copper_link;
155 		mac->ops.setup_physical_interface =
156 		    e1000_setup_copper_link_80003es2lan;
157 		break;
158 	}
159 
160 	/* Set mta register count */
161 	mac->mta_reg_count = 128;
162 	/* Set rar entry count */
163 	mac->rar_entry_count = E1000_RAR_ENTRIES;
164 	/* FWSM register */
165 	mac->has_fwsm = true;
166 	/* ARC supported; valid only if manageability features are enabled. */
167 	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
168 	/* Adaptive IFS not supported */
169 	mac->adaptive_ifs = false;
170 
171 	/* set lan id for port to determine which phy lock to use */
172 	hw->mac.ops.set_lan_id(hw);
173 
174 	return 0;
175 }
176 
177 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
178 {
179 	struct e1000_hw *hw = &adapter->hw;
180 	s32 rc;
181 
182 	rc = e1000_init_mac_params_80003es2lan(hw);
183 	if (rc)
184 		return rc;
185 
186 	rc = e1000_init_nvm_params_80003es2lan(hw);
187 	if (rc)
188 		return rc;
189 
190 	rc = e1000_init_phy_params_80003es2lan(hw);
191 	if (rc)
192 		return rc;
193 
194 	return 0;
195 }
196 
197 /**
198  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
199  *  @hw: pointer to the HW structure
200  *
201  *  A wrapper to acquire access rights to the correct PHY.
202  **/
203 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
204 {
205 	u16 mask;
206 
207 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
208 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
209 }
210 
211 /**
212  *  e1000_release_phy_80003es2lan - Release rights to access PHY
213  *  @hw: pointer to the HW structure
214  *
215  *  A wrapper to release access rights to the correct PHY.
216  **/
217 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
218 {
219 	u16 mask;
220 
221 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
222 	e1000_release_swfw_sync_80003es2lan(hw, mask);
223 }
224 
225 /**
226  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
227  *  @hw: pointer to the HW structure
228  *
229  *  Acquire the semaphore to access the Kumeran interface.
230  *
231  **/
232 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
233 {
234 	u16 mask;
235 
236 	mask = E1000_SWFW_CSR_SM;
237 
238 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
239 }
240 
241 /**
242  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
243  *  @hw: pointer to the HW structure
244  *
245  *  Release the semaphore used to access the Kumeran interface
246  **/
247 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
248 {
249 	u16 mask;
250 
251 	mask = E1000_SWFW_CSR_SM;
252 
253 	e1000_release_swfw_sync_80003es2lan(hw, mask);
254 }
255 
256 /**
257  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
258  *  @hw: pointer to the HW structure
259  *
260  *  Acquire the semaphore to access the EEPROM.
261  **/
262 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
263 {
264 	s32 ret_val;
265 
266 	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
267 	if (ret_val)
268 		return ret_val;
269 
270 	ret_val = e1000e_acquire_nvm(hw);
271 
272 	if (ret_val)
273 		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
274 
275 	return ret_val;
276 }
277 
278 /**
279  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
280  *  @hw: pointer to the HW structure
281  *
282  *  Release the semaphore used to access the EEPROM.
283  **/
284 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
285 {
286 	e1000e_release_nvm(hw);
287 	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
288 }
289 
290 /**
291  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
292  *  @hw: pointer to the HW structure
293  *  @mask: specifies which semaphore to acquire
294  *
295  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
296  *  will also specify which port we're acquiring the lock for.
297  **/
298 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
299 {
300 	u32 swfw_sync;
301 	u32 swmask = mask;
302 	u32 fwmask = mask << 16;
303 	s32 i = 0;
304 	s32 timeout = 50;
305 
306 	while (i < timeout) {
307 		if (e1000e_get_hw_semaphore(hw))
308 			return -E1000_ERR_SWFW_SYNC;
309 
310 		swfw_sync = er32(SW_FW_SYNC);
311 		if (!(swfw_sync & (fwmask | swmask)))
312 			break;
313 
314 		/* Firmware currently using resource (fwmask)
315 		 * or other software thread using resource (swmask)
316 		 */
317 		e1000e_put_hw_semaphore(hw);
318 		mdelay(5);
319 		i++;
320 	}
321 
322 	if (i == timeout) {
323 		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
324 		return -E1000_ERR_SWFW_SYNC;
325 	}
326 
327 	swfw_sync |= swmask;
328 	ew32(SW_FW_SYNC, swfw_sync);
329 
330 	e1000e_put_hw_semaphore(hw);
331 
332 	return 0;
333 }
334 
335 /**
336  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
337  *  @hw: pointer to the HW structure
338  *  @mask: specifies which semaphore to acquire
339  *
340  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
341  *  will also specify which port we're releasing the lock for.
342  **/
343 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
344 {
345 	u32 swfw_sync;
346 
347 	while (e1000e_get_hw_semaphore(hw) != 0)
348 		; /* Empty */
349 
350 	swfw_sync = er32(SW_FW_SYNC);
351 	swfw_sync &= ~mask;
352 	ew32(SW_FW_SYNC, swfw_sync);
353 
354 	e1000e_put_hw_semaphore(hw);
355 }
356 
357 /**
358  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
359  *  @hw: pointer to the HW structure
360  *  @offset: offset of the register to read
361  *  @data: pointer to the data returned from the operation
362  *
363  *  Read the GG82563 PHY register.
364  **/
365 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
366 						  u32 offset, u16 *data)
367 {
368 	s32 ret_val;
369 	u32 page_select;
370 	u16 temp;
371 
372 	ret_val = e1000_acquire_phy_80003es2lan(hw);
373 	if (ret_val)
374 		return ret_val;
375 
376 	/* Select Configuration Page */
377 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
378 		page_select = GG82563_PHY_PAGE_SELECT;
379 	} else {
380 		/* Use Alternative Page Select register to access
381 		 * registers 30 and 31
382 		 */
383 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
384 	}
385 
386 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
387 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
388 	if (ret_val) {
389 		e1000_release_phy_80003es2lan(hw);
390 		return ret_val;
391 	}
392 
393 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
394 		/* The "ready" bit in the MDIC register may be incorrectly set
395 		 * before the device has completed the "Page Select" MDI
396 		 * transaction.  So we wait 200us after each MDI command...
397 		 */
398 		usleep_range(200, 400);
399 
400 		/* ...and verify the command was successful. */
401 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
402 
403 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
404 			e1000_release_phy_80003es2lan(hw);
405 			return -E1000_ERR_PHY;
406 		}
407 
408 		usleep_range(200, 400);
409 
410 		ret_val = e1000e_read_phy_reg_mdic(hw,
411 						   MAX_PHY_REG_ADDRESS & offset,
412 						   data);
413 
414 		usleep_range(200, 400);
415 	} else {
416 		ret_val = e1000e_read_phy_reg_mdic(hw,
417 						   MAX_PHY_REG_ADDRESS & offset,
418 						   data);
419 	}
420 
421 	e1000_release_phy_80003es2lan(hw);
422 
423 	return ret_val;
424 }
425 
426 /**
427  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
428  *  @hw: pointer to the HW structure
429  *  @offset: offset of the register to read
430  *  @data: value to write to the register
431  *
432  *  Write to the GG82563 PHY register.
433  **/
434 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
435 						   u32 offset, u16 data)
436 {
437 	s32 ret_val;
438 	u32 page_select;
439 	u16 temp;
440 
441 	ret_val = e1000_acquire_phy_80003es2lan(hw);
442 	if (ret_val)
443 		return ret_val;
444 
445 	/* Select Configuration Page */
446 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
447 		page_select = GG82563_PHY_PAGE_SELECT;
448 	} else {
449 		/* Use Alternative Page Select register to access
450 		 * registers 30 and 31
451 		 */
452 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
453 	}
454 
455 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
456 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
457 	if (ret_val) {
458 		e1000_release_phy_80003es2lan(hw);
459 		return ret_val;
460 	}
461 
462 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
463 		/* The "ready" bit in the MDIC register may be incorrectly set
464 		 * before the device has completed the "Page Select" MDI
465 		 * transaction.  So we wait 200us after each MDI command...
466 		 */
467 		usleep_range(200, 400);
468 
469 		/* ...and verify the command was successful. */
470 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
471 
472 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
473 			e1000_release_phy_80003es2lan(hw);
474 			return -E1000_ERR_PHY;
475 		}
476 
477 		usleep_range(200, 400);
478 
479 		ret_val = e1000e_write_phy_reg_mdic(hw,
480 						    MAX_PHY_REG_ADDRESS &
481 						    offset, data);
482 
483 		usleep_range(200, 400);
484 	} else {
485 		ret_val = e1000e_write_phy_reg_mdic(hw,
486 						    MAX_PHY_REG_ADDRESS &
487 						    offset, data);
488 	}
489 
490 	e1000_release_phy_80003es2lan(hw);
491 
492 	return ret_val;
493 }
494 
495 /**
496  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
497  *  @hw: pointer to the HW structure
498  *  @offset: offset of the register to read
499  *  @words: number of words to write
500  *  @data: buffer of data to write to the NVM
501  *
502  *  Write "words" of data to the ESB2 NVM.
503  **/
504 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
505 				       u16 words, u16 *data)
506 {
507 	return e1000e_write_nvm_spi(hw, offset, words, data);
508 }
509 
510 /**
511  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
512  *  @hw: pointer to the HW structure
513  *
514  *  Wait a specific amount of time for manageability processes to complete.
515  *  This is a function pointer entry point called by the phy module.
516  **/
517 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
518 {
519 	s32 timeout = PHY_CFG_TIMEOUT;
520 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
521 
522 	if (hw->bus.func == 1)
523 		mask = E1000_NVM_CFG_DONE_PORT_1;
524 
525 	while (timeout) {
526 		if (er32(EEMNGCTL) & mask)
527 			break;
528 		usleep_range(1000, 2000);
529 		timeout--;
530 	}
531 	if (!timeout) {
532 		e_dbg("MNG configuration cycle has not completed.\n");
533 		return -E1000_ERR_RESET;
534 	}
535 
536 	return 0;
537 }
538 
539 /**
540  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
541  *  @hw: pointer to the HW structure
542  *
543  *  Force the speed and duplex settings onto the PHY.  This is a
544  *  function pointer entry point called by the phy module.
545  **/
546 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
547 {
548 	s32 ret_val;
549 	u16 phy_data;
550 	bool link;
551 
552 	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
553 	 * forced whenever speed and duplex are forced.
554 	 */
555 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
556 	if (ret_val)
557 		return ret_val;
558 
559 	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
560 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
561 	if (ret_val)
562 		return ret_val;
563 
564 	e_dbg("GG82563 PSCR: %X\n", phy_data);
565 
566 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
567 	if (ret_val)
568 		return ret_val;
569 
570 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
571 
572 	/* Reset the phy to commit changes. */
573 	phy_data |= BMCR_RESET;
574 
575 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
576 	if (ret_val)
577 		return ret_val;
578 
579 	udelay(1);
580 
581 	if (hw->phy.autoneg_wait_to_complete) {
582 		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
583 
584 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
585 						      100000, &link);
586 		if (ret_val)
587 			return ret_val;
588 
589 		if (!link) {
590 			/* We didn't get link.
591 			 * Reset the DSP and cross our fingers.
592 			 */
593 			ret_val = e1000e_phy_reset_dsp(hw);
594 			if (ret_val)
595 				return ret_val;
596 		}
597 
598 		/* Try once more */
599 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
600 						      100000, &link);
601 		if (ret_val)
602 			return ret_val;
603 	}
604 
605 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
606 	if (ret_val)
607 		return ret_val;
608 
609 	/* Resetting the phy means we need to verify the TX_CLK corresponds
610 	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
611 	 */
612 	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
613 	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
614 		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
615 	else
616 		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
617 
618 	/* In addition, we must re-enable CRS on Tx for both half and full
619 	 * duplex.
620 	 */
621 	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
622 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
623 
624 	return ret_val;
625 }
626 
627 /**
628  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
629  *  @hw: pointer to the HW structure
630  *
631  *  Find the approximate cable length as measured by the GG82563 PHY.
632  *  This is a function pointer entry point called by the phy module.
633  **/
634 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
635 {
636 	struct e1000_phy_info *phy = &hw->phy;
637 	s32 ret_val;
638 	u16 phy_data, index;
639 
640 	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
641 	if (ret_val)
642 		return ret_val;
643 
644 	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
645 
646 	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
647 		return -E1000_ERR_PHY;
648 
649 	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
650 	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
651 
652 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
653 
654 	return 0;
655 }
656 
657 /**
658  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
659  *  @hw: pointer to the HW structure
660  *  @speed: pointer to speed buffer
661  *  @duplex: pointer to duplex buffer
662  *
663  *  Retrieve the current speed and duplex configuration.
664  **/
665 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
666 					      u16 *duplex)
667 {
668 	s32 ret_val;
669 
670 	if (hw->phy.media_type == e1000_media_type_copper) {
671 		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
672 		hw->phy.ops.cfg_on_link_up(hw);
673 	} else {
674 		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
675 								   speed,
676 								   duplex);
677 	}
678 
679 	return ret_val;
680 }
681 
682 /**
683  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
684  *  @hw: pointer to the HW structure
685  *
686  *  Perform a global reset to the ESB2 controller.
687  **/
688 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
689 {
690 	u32 ctrl;
691 	s32 ret_val;
692 	u16 kum_reg_data;
693 
694 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
695 	 * on the last TLP read/write transaction when MAC is reset.
696 	 */
697 	ret_val = e1000e_disable_pcie_master(hw);
698 	if (ret_val)
699 		e_dbg("PCI-E Master disable polling has failed.\n");
700 
701 	e_dbg("Masking off all interrupts\n");
702 	ew32(IMC, 0xffffffff);
703 
704 	ew32(RCTL, 0);
705 	ew32(TCTL, E1000_TCTL_PSP);
706 	e1e_flush();
707 
708 	usleep_range(10000, 20000);
709 
710 	ctrl = er32(CTRL);
711 
712 	ret_val = e1000_acquire_phy_80003es2lan(hw);
713 	if (ret_val)
714 		return ret_val;
715 
716 	e_dbg("Issuing a global reset to MAC\n");
717 	ew32(CTRL, ctrl | E1000_CTRL_RST);
718 	e1000_release_phy_80003es2lan(hw);
719 
720 	/* Disable IBIST slave mode (far-end loopback) */
721 	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
722 					&kum_reg_data);
723 	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
724 	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
725 					 kum_reg_data);
726 
727 	ret_val = e1000e_get_auto_rd_done(hw);
728 	if (ret_val)
729 		/* We don't want to continue accessing MAC registers. */
730 		return ret_val;
731 
732 	/* Clear any pending interrupt events. */
733 	ew32(IMC, 0xffffffff);
734 	er32(ICR);
735 
736 	return e1000_check_alt_mac_addr_generic(hw);
737 }
738 
739 /**
740  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
741  *  @hw: pointer to the HW structure
742  *
743  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
744  **/
745 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
746 {
747 	struct e1000_mac_info *mac = &hw->mac;
748 	u32 reg_data;
749 	s32 ret_val;
750 	u16 kum_reg_data;
751 	u16 i;
752 
753 	e1000_initialize_hw_bits_80003es2lan(hw);
754 
755 	/* Initialize identification LED */
756 	ret_val = mac->ops.id_led_init(hw);
757 	/* An error is not fatal and we should not stop init due to this */
758 	if (ret_val)
759 		e_dbg("Error initializing identification LED\n");
760 
761 	/* Disabling VLAN filtering */
762 	e_dbg("Initializing the IEEE VLAN\n");
763 	mac->ops.clear_vfta(hw);
764 
765 	/* Setup the receive address. */
766 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
767 
768 	/* Zero out the Multicast HASH table */
769 	e_dbg("Zeroing the MTA\n");
770 	for (i = 0; i < mac->mta_reg_count; i++)
771 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
772 
773 	/* Setup link and flow control */
774 	ret_val = mac->ops.setup_link(hw);
775 	if (ret_val)
776 		return ret_val;
777 
778 	/* Disable IBIST slave mode (far-end loopback) */
779 	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
780 					&kum_reg_data);
781 	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
782 	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
783 					 kum_reg_data);
784 
785 	/* Set the transmit descriptor write-back policy */
786 	reg_data = er32(TXDCTL(0));
787 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
788 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
789 	ew32(TXDCTL(0), reg_data);
790 
791 	/* ...for both queues. */
792 	reg_data = er32(TXDCTL(1));
793 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
794 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
795 	ew32(TXDCTL(1), reg_data);
796 
797 	/* Enable retransmit on late collisions */
798 	reg_data = er32(TCTL);
799 	reg_data |= E1000_TCTL_RTLC;
800 	ew32(TCTL, reg_data);
801 
802 	/* Configure Gigabit Carry Extend Padding */
803 	reg_data = er32(TCTL_EXT);
804 	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
805 	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
806 	ew32(TCTL_EXT, reg_data);
807 
808 	/* Configure Transmit Inter-Packet Gap */
809 	reg_data = er32(TIPG);
810 	reg_data &= ~E1000_TIPG_IPGT_MASK;
811 	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
812 	ew32(TIPG, reg_data);
813 
814 	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
815 	reg_data &= ~0x00100000;
816 	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
817 
818 	/* default to true to enable the MDIC W/A */
819 	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
820 
821 	ret_val =
822 	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
823 					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
824 	if (!ret_val) {
825 		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
826 		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
827 			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
828 	}
829 
830 	/* Clear all of the statistics registers (clear on read).  It is
831 	 * important that we do this after we have tried to establish link
832 	 * because the symbol error count will increment wildly if there
833 	 * is no link.
834 	 */
835 	e1000_clear_hw_cntrs_80003es2lan(hw);
836 
837 	return ret_val;
838 }
839 
840 /**
841  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
842  *  @hw: pointer to the HW structure
843  *
844  *  Initializes required hardware-dependent bits needed for normal operation.
845  **/
846 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
847 {
848 	u32 reg;
849 
850 	/* Transmit Descriptor Control 0 */
851 	reg = er32(TXDCTL(0));
852 	reg |= (1 << 22);
853 	ew32(TXDCTL(0), reg);
854 
855 	/* Transmit Descriptor Control 1 */
856 	reg = er32(TXDCTL(1));
857 	reg |= (1 << 22);
858 	ew32(TXDCTL(1), reg);
859 
860 	/* Transmit Arbitration Control 0 */
861 	reg = er32(TARC(0));
862 	reg &= ~(0xF << 27); /* 30:27 */
863 	if (hw->phy.media_type != e1000_media_type_copper)
864 		reg &= ~(1 << 20);
865 	ew32(TARC(0), reg);
866 
867 	/* Transmit Arbitration Control 1 */
868 	reg = er32(TARC(1));
869 	if (er32(TCTL) & E1000_TCTL_MULR)
870 		reg &= ~(1 << 28);
871 	else
872 		reg |= (1 << 28);
873 	ew32(TARC(1), reg);
874 
875 	/* Disable IPv6 extension header parsing because some malformed
876 	 * IPv6 headers can hang the Rx.
877 	 */
878 	reg = er32(RFCTL);
879 	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
880 	ew32(RFCTL, reg);
881 }
882 
883 /**
884  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
885  *  @hw: pointer to the HW structure
886  *
887  *  Setup some GG82563 PHY registers for obtaining link
888  **/
889 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
890 {
891 	struct e1000_phy_info *phy = &hw->phy;
892 	s32 ret_val;
893 	u32 reg;
894 	u16 data;
895 
896 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
897 	if (ret_val)
898 		return ret_val;
899 
900 	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
901 	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
902 	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
903 
904 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
905 	if (ret_val)
906 		return ret_val;
907 
908 	/* Options:
909 	 *   MDI/MDI-X = 0 (default)
910 	 *   0 - Auto for all speeds
911 	 *   1 - MDI mode
912 	 *   2 - MDI-X mode
913 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
914 	 */
915 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
916 	if (ret_val)
917 		return ret_val;
918 
919 	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
920 
921 	switch (phy->mdix) {
922 	case 1:
923 		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
924 		break;
925 	case 2:
926 		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
927 		break;
928 	case 0:
929 	default:
930 		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
931 		break;
932 	}
933 
934 	/* Options:
935 	 *   disable_polarity_correction = 0 (default)
936 	 *       Automatic Correction for Reversed Cable Polarity
937 	 *   0 - Disabled
938 	 *   1 - Enabled
939 	 */
940 	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
941 	if (phy->disable_polarity_correction)
942 		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
943 
944 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
945 	if (ret_val)
946 		return ret_val;
947 
948 	/* SW Reset the PHY so all changes take effect */
949 	ret_val = hw->phy.ops.commit(hw);
950 	if (ret_val) {
951 		e_dbg("Error Resetting the PHY\n");
952 		return ret_val;
953 	}
954 
955 	/* Bypass Rx and Tx FIFO's */
956 	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
957 	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
958 		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
959 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
960 	if (ret_val)
961 		return ret_val;
962 
963 	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
964 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
965 	if (ret_val)
966 		return ret_val;
967 	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
968 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
969 	if (ret_val)
970 		return ret_val;
971 
972 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
973 	if (ret_val)
974 		return ret_val;
975 
976 	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
977 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
978 	if (ret_val)
979 		return ret_val;
980 
981 	reg = er32(CTRL_EXT);
982 	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
983 	ew32(CTRL_EXT, reg);
984 
985 	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
986 	if (ret_val)
987 		return ret_val;
988 
989 	/* Do not init these registers when the HW is in IAMT mode, since the
990 	 * firmware will have already initialized them.  We only initialize
991 	 * them if the HW is not in IAMT mode.
992 	 */
993 	if (!hw->mac.ops.check_mng_mode(hw)) {
994 		/* Enable Electrical Idle on the PHY */
995 		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
996 		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
997 		if (ret_val)
998 			return ret_val;
999 
1000 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1001 		if (ret_val)
1002 			return ret_val;
1003 
1004 		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1005 		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1006 		if (ret_val)
1007 			return ret_val;
1008 	}
1009 
1010 	/* Workaround: Disable padding in Kumeran interface in the MAC
1011 	 * and in the PHY to avoid CRC errors.
1012 	 */
1013 	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1014 	if (ret_val)
1015 		return ret_val;
1016 
1017 	data |= GG82563_ICR_DIS_PADDING;
1018 	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1019 	if (ret_val)
1020 		return ret_val;
1021 
1022 	return 0;
1023 }
1024 
1025 /**
1026  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1027  *  @hw: pointer to the HW structure
1028  *
1029  *  Essentially a wrapper for setting up all things "copper" related.
1030  *  This is a function pointer entry point called by the mac module.
1031  **/
1032 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1033 {
1034 	u32 ctrl;
1035 	s32 ret_val;
1036 	u16 reg_data;
1037 
1038 	ctrl = er32(CTRL);
1039 	ctrl |= E1000_CTRL_SLU;
1040 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1041 	ew32(CTRL, ctrl);
1042 
1043 	/* Set the mac to wait the maximum time between each
1044 	 * iteration and increase the max iterations when
1045 	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1046 	 */
1047 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1048 						   0xFFFF);
1049 	if (ret_val)
1050 		return ret_val;
1051 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1052 						  &reg_data);
1053 	if (ret_val)
1054 		return ret_val;
1055 	reg_data |= 0x3F;
1056 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1057 						   reg_data);
1058 	if (ret_val)
1059 		return ret_val;
1060 	ret_val =
1061 	    e1000_read_kmrn_reg_80003es2lan(hw,
1062 					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1063 					    &reg_data);
1064 	if (ret_val)
1065 		return ret_val;
1066 	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1067 	ret_val =
1068 	    e1000_write_kmrn_reg_80003es2lan(hw,
1069 					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1070 					     reg_data);
1071 	if (ret_val)
1072 		return ret_val;
1073 
1074 	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1075 	if (ret_val)
1076 		return ret_val;
1077 
1078 	return e1000e_setup_copper_link(hw);
1079 }
1080 
1081 /**
1082  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1083  *  @hw: pointer to the HW structure
1084  *  @duplex: current duplex setting
1085  *
1086  *  Configure the KMRN interface by applying last minute quirks for
1087  *  10/100 operation.
1088  **/
1089 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1090 {
1091 	s32 ret_val = 0;
1092 	u16 speed;
1093 	u16 duplex;
1094 
1095 	if (hw->phy.media_type == e1000_media_type_copper) {
1096 		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1097 							     &duplex);
1098 		if (ret_val)
1099 			return ret_val;
1100 
1101 		if (speed == SPEED_1000)
1102 			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1103 		else
1104 			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1105 	}
1106 
1107 	return ret_val;
1108 }
1109 
1110 /**
1111  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1112  *  @hw: pointer to the HW structure
1113  *  @duplex: current duplex setting
1114  *
1115  *  Configure the KMRN interface by applying last minute quirks for
1116  *  10/100 operation.
1117  **/
1118 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1119 {
1120 	s32 ret_val;
1121 	u32 tipg;
1122 	u32 i = 0;
1123 	u16 reg_data, reg_data2;
1124 
1125 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1126 	ret_val =
1127 	    e1000_write_kmrn_reg_80003es2lan(hw,
1128 					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1129 					     reg_data);
1130 	if (ret_val)
1131 		return ret_val;
1132 
1133 	/* Configure Transmit Inter-Packet Gap */
1134 	tipg = er32(TIPG);
1135 	tipg &= ~E1000_TIPG_IPGT_MASK;
1136 	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1137 	ew32(TIPG, tipg);
1138 
1139 	do {
1140 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1141 		if (ret_val)
1142 			return ret_val;
1143 
1144 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1145 		if (ret_val)
1146 			return ret_val;
1147 		i++;
1148 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1149 
1150 	if (duplex == HALF_DUPLEX)
1151 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1152 	else
1153 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1154 
1155 	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1156 }
1157 
1158 /**
1159  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1160  *  @hw: pointer to the HW structure
1161  *
1162  *  Configure the KMRN interface by applying last minute quirks for
1163  *  gigabit operation.
1164  **/
1165 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1166 {
1167 	s32 ret_val;
1168 	u16 reg_data, reg_data2;
1169 	u32 tipg;
1170 	u32 i = 0;
1171 
1172 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1173 	ret_val =
1174 	    e1000_write_kmrn_reg_80003es2lan(hw,
1175 					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1176 					     reg_data);
1177 	if (ret_val)
1178 		return ret_val;
1179 
1180 	/* Configure Transmit Inter-Packet Gap */
1181 	tipg = er32(TIPG);
1182 	tipg &= ~E1000_TIPG_IPGT_MASK;
1183 	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1184 	ew32(TIPG, tipg);
1185 
1186 	do {
1187 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1188 		if (ret_val)
1189 			return ret_val;
1190 
1191 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1192 		if (ret_val)
1193 			return ret_val;
1194 		i++;
1195 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1196 
1197 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1198 
1199 	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1200 }
1201 
1202 /**
1203  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1204  *  @hw: pointer to the HW structure
1205  *  @offset: register offset to be read
1206  *  @data: pointer to the read data
1207  *
1208  *  Acquire semaphore, then read the PHY register at offset
1209  *  using the kumeran interface.  The information retrieved is stored in data.
1210  *  Release the semaphore before exiting.
1211  **/
1212 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1213 					   u16 *data)
1214 {
1215 	u32 kmrnctrlsta;
1216 	s32 ret_val;
1217 
1218 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1219 	if (ret_val)
1220 		return ret_val;
1221 
1222 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1223 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1224 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1225 	e1e_flush();
1226 
1227 	udelay(2);
1228 
1229 	kmrnctrlsta = er32(KMRNCTRLSTA);
1230 	*data = (u16)kmrnctrlsta;
1231 
1232 	e1000_release_mac_csr_80003es2lan(hw);
1233 
1234 	return ret_val;
1235 }
1236 
1237 /**
1238  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1239  *  @hw: pointer to the HW structure
1240  *  @offset: register offset to write to
1241  *  @data: data to write at register offset
1242  *
1243  *  Acquire semaphore, then write the data to PHY register
1244  *  at the offset using the kumeran interface.  Release semaphore
1245  *  before exiting.
1246  **/
1247 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1248 					    u16 data)
1249 {
1250 	u32 kmrnctrlsta;
1251 	s32 ret_val;
1252 
1253 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1254 	if (ret_val)
1255 		return ret_val;
1256 
1257 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1258 		       E1000_KMRNCTRLSTA_OFFSET) | data;
1259 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1260 	e1e_flush();
1261 
1262 	udelay(2);
1263 
1264 	e1000_release_mac_csr_80003es2lan(hw);
1265 
1266 	return ret_val;
1267 }
1268 
1269 /**
1270  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1271  *  @hw: pointer to the HW structure
1272  **/
1273 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1274 {
1275 	s32 ret_val;
1276 
1277 	/* If there's an alternate MAC address place it in RAR0
1278 	 * so that it will override the Si installed default perm
1279 	 * address.
1280 	 */
1281 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1282 	if (ret_val)
1283 		return ret_val;
1284 
1285 	return e1000_read_mac_addr_generic(hw);
1286 }
1287 
1288 /**
1289  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1290  * @hw: pointer to the HW structure
1291  *
1292  * In the case of a PHY power down to save power, or to turn off link during a
1293  * driver unload, or wake on lan is not enabled, remove the link.
1294  **/
1295 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1296 {
1297 	/* If the management interface is not enabled, then power down */
1298 	if (!(hw->mac.ops.check_mng_mode(hw) ||
1299 	      hw->phy.ops.check_reset_block(hw)))
1300 		e1000_power_down_phy_copper(hw);
1301 }
1302 
1303 /**
1304  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1305  *  @hw: pointer to the HW structure
1306  *
1307  *  Clears the hardware counters by reading the counter registers.
1308  **/
1309 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1310 {
1311 	e1000e_clear_hw_cntrs_base(hw);
1312 
1313 	er32(PRC64);
1314 	er32(PRC127);
1315 	er32(PRC255);
1316 	er32(PRC511);
1317 	er32(PRC1023);
1318 	er32(PRC1522);
1319 	er32(PTC64);
1320 	er32(PTC127);
1321 	er32(PTC255);
1322 	er32(PTC511);
1323 	er32(PTC1023);
1324 	er32(PTC1522);
1325 
1326 	er32(ALGNERRC);
1327 	er32(RXERRC);
1328 	er32(TNCRS);
1329 	er32(CEXTERR);
1330 	er32(TSCTC);
1331 	er32(TSCTFC);
1332 
1333 	er32(MGTPRC);
1334 	er32(MGTPDC);
1335 	er32(MGTPTC);
1336 
1337 	er32(IAC);
1338 	er32(ICRXOC);
1339 
1340 	er32(ICRXPTC);
1341 	er32(ICRXATC);
1342 	er32(ICTXPTC);
1343 	er32(ICTXATC);
1344 	er32(ICTXQEC);
1345 	er32(ICTXQMTC);
1346 	er32(ICRXDMTC);
1347 }
1348 
1349 static const struct e1000_mac_operations es2_mac_ops = {
1350 	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1351 	.id_led_init		= e1000e_id_led_init_generic,
1352 	.blink_led		= e1000e_blink_led_generic,
1353 	.check_mng_mode		= e1000e_check_mng_mode_generic,
1354 	/* check_for_link dependent on media type */
1355 	.cleanup_led		= e1000e_cleanup_led_generic,
1356 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1357 	.get_bus_info		= e1000e_get_bus_info_pcie,
1358 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1359 	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1360 	.led_on			= e1000e_led_on_generic,
1361 	.led_off		= e1000e_led_off_generic,
1362 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1363 	.write_vfta		= e1000_write_vfta_generic,
1364 	.clear_vfta		= e1000_clear_vfta_generic,
1365 	.reset_hw		= e1000_reset_hw_80003es2lan,
1366 	.init_hw		= e1000_init_hw_80003es2lan,
1367 	.setup_link		= e1000e_setup_link_generic,
1368 	/* setup_physical_interface dependent on media type */
1369 	.setup_led		= e1000e_setup_led_generic,
1370 	.config_collision_dist	= e1000e_config_collision_dist_generic,
1371 	.rar_set		= e1000e_rar_set_generic,
1372 };
1373 
1374 static const struct e1000_phy_operations es2_phy_ops = {
1375 	.acquire		= e1000_acquire_phy_80003es2lan,
1376 	.check_polarity		= e1000_check_polarity_m88,
1377 	.check_reset_block	= e1000e_check_reset_block_generic,
1378 	.commit			= e1000e_phy_sw_reset,
1379 	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1380 	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1381 	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1382 	.get_info		= e1000e_get_phy_info_m88,
1383 	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1384 	.release		= e1000_release_phy_80003es2lan,
1385 	.reset			= e1000e_phy_hw_reset_generic,
1386 	.set_d0_lplu_state	= NULL,
1387 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1388 	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1389 	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1390 };
1391 
1392 static const struct e1000_nvm_operations es2_nvm_ops = {
1393 	.acquire		= e1000_acquire_nvm_80003es2lan,
1394 	.read			= e1000e_read_nvm_eerd,
1395 	.release		= e1000_release_nvm_80003es2lan,
1396 	.reload			= e1000e_reload_nvm_generic,
1397 	.update			= e1000e_update_nvm_checksum_generic,
1398 	.valid_led_default	= e1000e_valid_led_default,
1399 	.validate		= e1000e_validate_nvm_checksum_generic,
1400 	.write			= e1000_write_nvm_80003es2lan,
1401 };
1402 
1403 const struct e1000_info e1000_es2_info = {
1404 	.mac			= e1000_80003es2lan,
1405 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1406 				  | FLAG_HAS_JUMBO_FRAMES
1407 				  | FLAG_HAS_WOL
1408 				  | FLAG_APME_IN_CTRL3
1409 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1410 				  | FLAG_RX_NEEDS_RESTART /* errata */
1411 				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1412 				  | FLAG_APME_CHECK_PORT_B
1413 				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1414 	.flags2			= FLAG2_DMA_BURST,
1415 	.pba			= 38,
1416 	.max_hw_frame_size	= DEFAULT_JUMBO,
1417 	.get_variants		= e1000_get_variants_80003es2lan,
1418 	.mac_ops		= &es2_mac_ops,
1419 	.phy_ops		= &es2_phy_ops,
1420 	.nvm_ops		= &es2_nvm_ops,
1421 };
1422