1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2015 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  */
22 
23 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
24  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
25  */
26 
27 #include "e1000.h"
28 
29 /* A table for the GG82563 cable length where the range is defined
30  * with a lower bound at "index" and the upper bound at
31  * "index + 5".
32  */
33 static const u16 e1000_gg82563_cable_length_table[] = {
34 	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
35 };
36 
37 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
38 		ARRAY_SIZE(e1000_gg82563_cable_length_table)
39 
40 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
41 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
42 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
43 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
44 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
45 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
46 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
47 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
48 					   u16 *data);
49 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
50 					    u16 data);
51 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
52 
53 /**
54  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
55  *  @hw: pointer to the HW structure
56  **/
57 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
58 {
59 	struct e1000_phy_info *phy = &hw->phy;
60 	s32 ret_val;
61 
62 	if (hw->phy.media_type != e1000_media_type_copper) {
63 		phy->type = e1000_phy_none;
64 		return 0;
65 	} else {
66 		phy->ops.power_up = e1000_power_up_phy_copper;
67 		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
68 	}
69 
70 	phy->addr = 1;
71 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
72 	phy->reset_delay_us = 100;
73 	phy->type = e1000_phy_gg82563;
74 
75 	/* This can only be done after all function pointers are setup. */
76 	ret_val = e1000e_get_phy_id(hw);
77 
78 	/* Verify phy id */
79 	if (phy->id != GG82563_E_PHY_ID)
80 		return -E1000_ERR_PHY;
81 
82 	return ret_val;
83 }
84 
85 /**
86  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
87  *  @hw: pointer to the HW structure
88  **/
89 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
90 {
91 	struct e1000_nvm_info *nvm = &hw->nvm;
92 	u32 eecd = er32(EECD);
93 	u16 size;
94 
95 	nvm->opcode_bits = 8;
96 	nvm->delay_usec = 1;
97 	switch (nvm->override) {
98 	case e1000_nvm_override_spi_large:
99 		nvm->page_size = 32;
100 		nvm->address_bits = 16;
101 		break;
102 	case e1000_nvm_override_spi_small:
103 		nvm->page_size = 8;
104 		nvm->address_bits = 8;
105 		break;
106 	default:
107 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
108 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
109 		break;
110 	}
111 
112 	nvm->type = e1000_nvm_eeprom_spi;
113 
114 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
115 		     E1000_EECD_SIZE_EX_SHIFT);
116 
117 	/* Added to a constant, "size" becomes the left-shift value
118 	 * for setting word_size.
119 	 */
120 	size += NVM_WORD_SIZE_BASE_SHIFT;
121 
122 	/* EEPROM access above 16k is unsupported */
123 	if (size > 14)
124 		size = 14;
125 	nvm->word_size = BIT(size);
126 
127 	return 0;
128 }
129 
130 /**
131  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
132  *  @hw: pointer to the HW structure
133  **/
134 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
135 {
136 	struct e1000_mac_info *mac = &hw->mac;
137 
138 	/* Set media type and media-dependent function pointers */
139 	switch (hw->adapter->pdev->device) {
140 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
141 		hw->phy.media_type = e1000_media_type_internal_serdes;
142 		mac->ops.check_for_link = e1000e_check_for_serdes_link;
143 		mac->ops.setup_physical_interface =
144 		    e1000e_setup_fiber_serdes_link;
145 		break;
146 	default:
147 		hw->phy.media_type = e1000_media_type_copper;
148 		mac->ops.check_for_link = e1000e_check_for_copper_link;
149 		mac->ops.setup_physical_interface =
150 		    e1000_setup_copper_link_80003es2lan;
151 		break;
152 	}
153 
154 	/* Set mta register count */
155 	mac->mta_reg_count = 128;
156 	/* Set rar entry count */
157 	mac->rar_entry_count = E1000_RAR_ENTRIES;
158 	/* FWSM register */
159 	mac->has_fwsm = true;
160 	/* ARC supported; valid only if manageability features are enabled. */
161 	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
162 	/* Adaptive IFS not supported */
163 	mac->adaptive_ifs = false;
164 
165 	/* set lan id for port to determine which phy lock to use */
166 	hw->mac.ops.set_lan_id(hw);
167 
168 	return 0;
169 }
170 
171 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
172 {
173 	struct e1000_hw *hw = &adapter->hw;
174 	s32 rc;
175 
176 	rc = e1000_init_mac_params_80003es2lan(hw);
177 	if (rc)
178 		return rc;
179 
180 	rc = e1000_init_nvm_params_80003es2lan(hw);
181 	if (rc)
182 		return rc;
183 
184 	rc = e1000_init_phy_params_80003es2lan(hw);
185 	if (rc)
186 		return rc;
187 
188 	return 0;
189 }
190 
191 /**
192  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
193  *  @hw: pointer to the HW structure
194  *
195  *  A wrapper to acquire access rights to the correct PHY.
196  **/
197 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
198 {
199 	u16 mask;
200 
201 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
202 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
203 }
204 
205 /**
206  *  e1000_release_phy_80003es2lan - Release rights to access PHY
207  *  @hw: pointer to the HW structure
208  *
209  *  A wrapper to release access rights to the correct PHY.
210  **/
211 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
212 {
213 	u16 mask;
214 
215 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
216 	e1000_release_swfw_sync_80003es2lan(hw, mask);
217 }
218 
219 /**
220  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
221  *  @hw: pointer to the HW structure
222  *
223  *  Acquire the semaphore to access the Kumeran interface.
224  *
225  **/
226 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
227 {
228 	u16 mask;
229 
230 	mask = E1000_SWFW_CSR_SM;
231 
232 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
233 }
234 
235 /**
236  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
237  *  @hw: pointer to the HW structure
238  *
239  *  Release the semaphore used to access the Kumeran interface
240  **/
241 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
242 {
243 	u16 mask;
244 
245 	mask = E1000_SWFW_CSR_SM;
246 
247 	e1000_release_swfw_sync_80003es2lan(hw, mask);
248 }
249 
250 /**
251  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
252  *  @hw: pointer to the HW structure
253  *
254  *  Acquire the semaphore to access the EEPROM.
255  **/
256 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
257 {
258 	s32 ret_val;
259 
260 	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
261 	if (ret_val)
262 		return ret_val;
263 
264 	ret_val = e1000e_acquire_nvm(hw);
265 
266 	if (ret_val)
267 		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
268 
269 	return ret_val;
270 }
271 
272 /**
273  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
274  *  @hw: pointer to the HW structure
275  *
276  *  Release the semaphore used to access the EEPROM.
277  **/
278 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
279 {
280 	e1000e_release_nvm(hw);
281 	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
282 }
283 
284 /**
285  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
286  *  @hw: pointer to the HW structure
287  *  @mask: specifies which semaphore to acquire
288  *
289  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
290  *  will also specify which port we're acquiring the lock for.
291  **/
292 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
293 {
294 	u32 swfw_sync;
295 	u32 swmask = mask;
296 	u32 fwmask = mask << 16;
297 	s32 i = 0;
298 	s32 timeout = 50;
299 
300 	while (i < timeout) {
301 		if (e1000e_get_hw_semaphore(hw))
302 			return -E1000_ERR_SWFW_SYNC;
303 
304 		swfw_sync = er32(SW_FW_SYNC);
305 		if (!(swfw_sync & (fwmask | swmask)))
306 			break;
307 
308 		/* Firmware currently using resource (fwmask)
309 		 * or other software thread using resource (swmask)
310 		 */
311 		e1000e_put_hw_semaphore(hw);
312 		mdelay(5);
313 		i++;
314 	}
315 
316 	if (i == timeout) {
317 		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
318 		return -E1000_ERR_SWFW_SYNC;
319 	}
320 
321 	swfw_sync |= swmask;
322 	ew32(SW_FW_SYNC, swfw_sync);
323 
324 	e1000e_put_hw_semaphore(hw);
325 
326 	return 0;
327 }
328 
329 /**
330  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
331  *  @hw: pointer to the HW structure
332  *  @mask: specifies which semaphore to acquire
333  *
334  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
335  *  will also specify which port we're releasing the lock for.
336  **/
337 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
338 {
339 	u32 swfw_sync;
340 
341 	while (e1000e_get_hw_semaphore(hw) != 0)
342 		; /* Empty */
343 
344 	swfw_sync = er32(SW_FW_SYNC);
345 	swfw_sync &= ~mask;
346 	ew32(SW_FW_SYNC, swfw_sync);
347 
348 	e1000e_put_hw_semaphore(hw);
349 }
350 
351 /**
352  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
353  *  @hw: pointer to the HW structure
354  *  @offset: offset of the register to read
355  *  @data: pointer to the data returned from the operation
356  *
357  *  Read the GG82563 PHY register.
358  **/
359 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
360 						  u32 offset, u16 *data)
361 {
362 	s32 ret_val;
363 	u32 page_select;
364 	u16 temp;
365 
366 	ret_val = e1000_acquire_phy_80003es2lan(hw);
367 	if (ret_val)
368 		return ret_val;
369 
370 	/* Select Configuration Page */
371 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
372 		page_select = GG82563_PHY_PAGE_SELECT;
373 	} else {
374 		/* Use Alternative Page Select register to access
375 		 * registers 30 and 31
376 		 */
377 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
378 	}
379 
380 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
381 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
382 	if (ret_val) {
383 		e1000_release_phy_80003es2lan(hw);
384 		return ret_val;
385 	}
386 
387 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
388 		/* The "ready" bit in the MDIC register may be incorrectly set
389 		 * before the device has completed the "Page Select" MDI
390 		 * transaction.  So we wait 200us after each MDI command...
391 		 */
392 		usleep_range(200, 400);
393 
394 		/* ...and verify the command was successful. */
395 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
396 
397 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
398 			e1000_release_phy_80003es2lan(hw);
399 			return -E1000_ERR_PHY;
400 		}
401 
402 		usleep_range(200, 400);
403 
404 		ret_val = e1000e_read_phy_reg_mdic(hw,
405 						   MAX_PHY_REG_ADDRESS & offset,
406 						   data);
407 
408 		usleep_range(200, 400);
409 	} else {
410 		ret_val = e1000e_read_phy_reg_mdic(hw,
411 						   MAX_PHY_REG_ADDRESS & offset,
412 						   data);
413 	}
414 
415 	e1000_release_phy_80003es2lan(hw);
416 
417 	return ret_val;
418 }
419 
420 /**
421  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
422  *  @hw: pointer to the HW structure
423  *  @offset: offset of the register to read
424  *  @data: value to write to the register
425  *
426  *  Write to the GG82563 PHY register.
427  **/
428 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
429 						   u32 offset, u16 data)
430 {
431 	s32 ret_val;
432 	u32 page_select;
433 	u16 temp;
434 
435 	ret_val = e1000_acquire_phy_80003es2lan(hw);
436 	if (ret_val)
437 		return ret_val;
438 
439 	/* Select Configuration Page */
440 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
441 		page_select = GG82563_PHY_PAGE_SELECT;
442 	} else {
443 		/* Use Alternative Page Select register to access
444 		 * registers 30 and 31
445 		 */
446 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
447 	}
448 
449 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
450 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
451 	if (ret_val) {
452 		e1000_release_phy_80003es2lan(hw);
453 		return ret_val;
454 	}
455 
456 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
457 		/* The "ready" bit in the MDIC register may be incorrectly set
458 		 * before the device has completed the "Page Select" MDI
459 		 * transaction.  So we wait 200us after each MDI command...
460 		 */
461 		usleep_range(200, 400);
462 
463 		/* ...and verify the command was successful. */
464 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
465 
466 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
467 			e1000_release_phy_80003es2lan(hw);
468 			return -E1000_ERR_PHY;
469 		}
470 
471 		usleep_range(200, 400);
472 
473 		ret_val = e1000e_write_phy_reg_mdic(hw,
474 						    MAX_PHY_REG_ADDRESS &
475 						    offset, data);
476 
477 		usleep_range(200, 400);
478 	} else {
479 		ret_val = e1000e_write_phy_reg_mdic(hw,
480 						    MAX_PHY_REG_ADDRESS &
481 						    offset, data);
482 	}
483 
484 	e1000_release_phy_80003es2lan(hw);
485 
486 	return ret_val;
487 }
488 
489 /**
490  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
491  *  @hw: pointer to the HW structure
492  *  @offset: offset of the register to read
493  *  @words: number of words to write
494  *  @data: buffer of data to write to the NVM
495  *
496  *  Write "words" of data to the ESB2 NVM.
497  **/
498 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
499 				       u16 words, u16 *data)
500 {
501 	return e1000e_write_nvm_spi(hw, offset, words, data);
502 }
503 
504 /**
505  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
506  *  @hw: pointer to the HW structure
507  *
508  *  Wait a specific amount of time for manageability processes to complete.
509  *  This is a function pointer entry point called by the phy module.
510  **/
511 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
512 {
513 	s32 timeout = PHY_CFG_TIMEOUT;
514 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
515 
516 	if (hw->bus.func == 1)
517 		mask = E1000_NVM_CFG_DONE_PORT_1;
518 
519 	while (timeout) {
520 		if (er32(EEMNGCTL) & mask)
521 			break;
522 		usleep_range(1000, 2000);
523 		timeout--;
524 	}
525 	if (!timeout) {
526 		e_dbg("MNG configuration cycle has not completed.\n");
527 		return -E1000_ERR_RESET;
528 	}
529 
530 	return 0;
531 }
532 
533 /**
534  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
535  *  @hw: pointer to the HW structure
536  *
537  *  Force the speed and duplex settings onto the PHY.  This is a
538  *  function pointer entry point called by the phy module.
539  **/
540 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
541 {
542 	s32 ret_val;
543 	u16 phy_data;
544 	bool link;
545 
546 	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
547 	 * forced whenever speed and duplex are forced.
548 	 */
549 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
550 	if (ret_val)
551 		return ret_val;
552 
553 	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
554 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
555 	if (ret_val)
556 		return ret_val;
557 
558 	e_dbg("GG82563 PSCR: %X\n", phy_data);
559 
560 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
561 	if (ret_val)
562 		return ret_val;
563 
564 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
565 
566 	/* Reset the phy to commit changes. */
567 	phy_data |= BMCR_RESET;
568 
569 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
570 	if (ret_val)
571 		return ret_val;
572 
573 	udelay(1);
574 
575 	if (hw->phy.autoneg_wait_to_complete) {
576 		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
577 
578 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
579 						      100000, &link);
580 		if (ret_val)
581 			return ret_val;
582 
583 		if (!link) {
584 			/* We didn't get link.
585 			 * Reset the DSP and cross our fingers.
586 			 */
587 			ret_val = e1000e_phy_reset_dsp(hw);
588 			if (ret_val)
589 				return ret_val;
590 		}
591 
592 		/* Try once more */
593 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
594 						      100000, &link);
595 		if (ret_val)
596 			return ret_val;
597 	}
598 
599 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
600 	if (ret_val)
601 		return ret_val;
602 
603 	/* Resetting the phy means we need to verify the TX_CLK corresponds
604 	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
605 	 */
606 	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
607 	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
608 		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
609 	else
610 		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
611 
612 	/* In addition, we must re-enable CRS on Tx for both half and full
613 	 * duplex.
614 	 */
615 	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
616 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
617 
618 	return ret_val;
619 }
620 
621 /**
622  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
623  *  @hw: pointer to the HW structure
624  *
625  *  Find the approximate cable length as measured by the GG82563 PHY.
626  *  This is a function pointer entry point called by the phy module.
627  **/
628 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
629 {
630 	struct e1000_phy_info *phy = &hw->phy;
631 	s32 ret_val;
632 	u16 phy_data, index;
633 
634 	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
635 	if (ret_val)
636 		return ret_val;
637 
638 	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
639 
640 	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
641 		return -E1000_ERR_PHY;
642 
643 	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
644 	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
645 
646 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
647 
648 	return 0;
649 }
650 
651 /**
652  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
653  *  @hw: pointer to the HW structure
654  *  @speed: pointer to speed buffer
655  *  @duplex: pointer to duplex buffer
656  *
657  *  Retrieve the current speed and duplex configuration.
658  **/
659 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
660 					      u16 *duplex)
661 {
662 	s32 ret_val;
663 
664 	if (hw->phy.media_type == e1000_media_type_copper) {
665 		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
666 		hw->phy.ops.cfg_on_link_up(hw);
667 	} else {
668 		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
669 								   speed,
670 								   duplex);
671 	}
672 
673 	return ret_val;
674 }
675 
676 /**
677  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
678  *  @hw: pointer to the HW structure
679  *
680  *  Perform a global reset to the ESB2 controller.
681  **/
682 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
683 {
684 	u32 ctrl;
685 	s32 ret_val;
686 	u16 kum_reg_data;
687 
688 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
689 	 * on the last TLP read/write transaction when MAC is reset.
690 	 */
691 	ret_val = e1000e_disable_pcie_master(hw);
692 	if (ret_val)
693 		e_dbg("PCI-E Master disable polling has failed.\n");
694 
695 	e_dbg("Masking off all interrupts\n");
696 	ew32(IMC, 0xffffffff);
697 
698 	ew32(RCTL, 0);
699 	ew32(TCTL, E1000_TCTL_PSP);
700 	e1e_flush();
701 
702 	usleep_range(10000, 20000);
703 
704 	ctrl = er32(CTRL);
705 
706 	ret_val = e1000_acquire_phy_80003es2lan(hw);
707 	if (ret_val)
708 		return ret_val;
709 
710 	e_dbg("Issuing a global reset to MAC\n");
711 	ew32(CTRL, ctrl | E1000_CTRL_RST);
712 	e1000_release_phy_80003es2lan(hw);
713 
714 	/* Disable IBIST slave mode (far-end loopback) */
715 	ret_val =
716 	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
717 					    &kum_reg_data);
718 	if (ret_val)
719 		return ret_val;
720 	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
721 	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
722 					 kum_reg_data);
723 
724 	ret_val = e1000e_get_auto_rd_done(hw);
725 	if (ret_val)
726 		/* We don't want to continue accessing MAC registers. */
727 		return ret_val;
728 
729 	/* Clear any pending interrupt events. */
730 	ew32(IMC, 0xffffffff);
731 	er32(ICR);
732 
733 	return e1000_check_alt_mac_addr_generic(hw);
734 }
735 
736 /**
737  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
738  *  @hw: pointer to the HW structure
739  *
740  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
741  **/
742 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
743 {
744 	struct e1000_mac_info *mac = &hw->mac;
745 	u32 reg_data;
746 	s32 ret_val;
747 	u16 kum_reg_data;
748 	u16 i;
749 
750 	e1000_initialize_hw_bits_80003es2lan(hw);
751 
752 	/* Initialize identification LED */
753 	ret_val = mac->ops.id_led_init(hw);
754 	/* An error is not fatal and we should not stop init due to this */
755 	if (ret_val)
756 		e_dbg("Error initializing identification LED\n");
757 
758 	/* Disabling VLAN filtering */
759 	e_dbg("Initializing the IEEE VLAN\n");
760 	mac->ops.clear_vfta(hw);
761 
762 	/* Setup the receive address. */
763 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
764 
765 	/* Zero out the Multicast HASH table */
766 	e_dbg("Zeroing the MTA\n");
767 	for (i = 0; i < mac->mta_reg_count; i++)
768 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
769 
770 	/* Setup link and flow control */
771 	ret_val = mac->ops.setup_link(hw);
772 	if (ret_val)
773 		return ret_val;
774 
775 	/* Disable IBIST slave mode (far-end loopback) */
776 	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
777 					&kum_reg_data);
778 	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
779 	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
780 					 kum_reg_data);
781 
782 	/* Set the transmit descriptor write-back policy */
783 	reg_data = er32(TXDCTL(0));
784 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
785 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
786 	ew32(TXDCTL(0), reg_data);
787 
788 	/* ...for both queues. */
789 	reg_data = er32(TXDCTL(1));
790 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
791 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
792 	ew32(TXDCTL(1), reg_data);
793 
794 	/* Enable retransmit on late collisions */
795 	reg_data = er32(TCTL);
796 	reg_data |= E1000_TCTL_RTLC;
797 	ew32(TCTL, reg_data);
798 
799 	/* Configure Gigabit Carry Extend Padding */
800 	reg_data = er32(TCTL_EXT);
801 	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
802 	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
803 	ew32(TCTL_EXT, reg_data);
804 
805 	/* Configure Transmit Inter-Packet Gap */
806 	reg_data = er32(TIPG);
807 	reg_data &= ~E1000_TIPG_IPGT_MASK;
808 	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
809 	ew32(TIPG, reg_data);
810 
811 	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
812 	reg_data &= ~0x00100000;
813 	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
814 
815 	/* default to true to enable the MDIC W/A */
816 	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
817 
818 	ret_val =
819 	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
820 					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
821 	if (!ret_val) {
822 		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
823 		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
824 			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
825 	}
826 
827 	/* Clear all of the statistics registers (clear on read).  It is
828 	 * important that we do this after we have tried to establish link
829 	 * because the symbol error count will increment wildly if there
830 	 * is no link.
831 	 */
832 	e1000_clear_hw_cntrs_80003es2lan(hw);
833 
834 	return ret_val;
835 }
836 
837 /**
838  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
839  *  @hw: pointer to the HW structure
840  *
841  *  Initializes required hardware-dependent bits needed for normal operation.
842  **/
843 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
844 {
845 	u32 reg;
846 
847 	/* Transmit Descriptor Control 0 */
848 	reg = er32(TXDCTL(0));
849 	reg |= BIT(22);
850 	ew32(TXDCTL(0), reg);
851 
852 	/* Transmit Descriptor Control 1 */
853 	reg = er32(TXDCTL(1));
854 	reg |= BIT(22);
855 	ew32(TXDCTL(1), reg);
856 
857 	/* Transmit Arbitration Control 0 */
858 	reg = er32(TARC(0));
859 	reg &= ~(0xF << 27);	/* 30:27 */
860 	if (hw->phy.media_type != e1000_media_type_copper)
861 		reg &= ~BIT(20);
862 	ew32(TARC(0), reg);
863 
864 	/* Transmit Arbitration Control 1 */
865 	reg = er32(TARC(1));
866 	if (er32(TCTL) & E1000_TCTL_MULR)
867 		reg &= ~BIT(28);
868 	else
869 		reg |= BIT(28);
870 	ew32(TARC(1), reg);
871 
872 	/* Disable IPv6 extension header parsing because some malformed
873 	 * IPv6 headers can hang the Rx.
874 	 */
875 	reg = er32(RFCTL);
876 	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
877 	ew32(RFCTL, reg);
878 }
879 
880 /**
881  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
882  *  @hw: pointer to the HW structure
883  *
884  *  Setup some GG82563 PHY registers for obtaining link
885  **/
886 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
887 {
888 	struct e1000_phy_info *phy = &hw->phy;
889 	s32 ret_val;
890 	u32 reg;
891 	u16 data;
892 
893 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
894 	if (ret_val)
895 		return ret_val;
896 
897 	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
898 	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
899 	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
900 
901 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
902 	if (ret_val)
903 		return ret_val;
904 
905 	/* Options:
906 	 *   MDI/MDI-X = 0 (default)
907 	 *   0 - Auto for all speeds
908 	 *   1 - MDI mode
909 	 *   2 - MDI-X mode
910 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
911 	 */
912 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
913 	if (ret_val)
914 		return ret_val;
915 
916 	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
917 
918 	switch (phy->mdix) {
919 	case 1:
920 		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
921 		break;
922 	case 2:
923 		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
924 		break;
925 	case 0:
926 	default:
927 		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
928 		break;
929 	}
930 
931 	/* Options:
932 	 *   disable_polarity_correction = 0 (default)
933 	 *       Automatic Correction for Reversed Cable Polarity
934 	 *   0 - Disabled
935 	 *   1 - Enabled
936 	 */
937 	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
938 	if (phy->disable_polarity_correction)
939 		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
940 
941 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
942 	if (ret_val)
943 		return ret_val;
944 
945 	/* SW Reset the PHY so all changes take effect */
946 	ret_val = hw->phy.ops.commit(hw);
947 	if (ret_val) {
948 		e_dbg("Error Resetting the PHY\n");
949 		return ret_val;
950 	}
951 
952 	/* Bypass Rx and Tx FIFO's */
953 	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
954 	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
955 		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
956 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
957 	if (ret_val)
958 		return ret_val;
959 
960 	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
961 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
962 	if (ret_val)
963 		return ret_val;
964 	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
965 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
966 	if (ret_val)
967 		return ret_val;
968 
969 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
970 	if (ret_val)
971 		return ret_val;
972 
973 	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
974 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
975 	if (ret_val)
976 		return ret_val;
977 
978 	reg = er32(CTRL_EXT);
979 	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
980 	ew32(CTRL_EXT, reg);
981 
982 	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
983 	if (ret_val)
984 		return ret_val;
985 
986 	/* Do not init these registers when the HW is in IAMT mode, since the
987 	 * firmware will have already initialized them.  We only initialize
988 	 * them if the HW is not in IAMT mode.
989 	 */
990 	if (!hw->mac.ops.check_mng_mode(hw)) {
991 		/* Enable Electrical Idle on the PHY */
992 		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
993 		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
994 		if (ret_val)
995 			return ret_val;
996 
997 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
998 		if (ret_val)
999 			return ret_val;
1000 
1001 		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1002 		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1003 		if (ret_val)
1004 			return ret_val;
1005 	}
1006 
1007 	/* Workaround: Disable padding in Kumeran interface in the MAC
1008 	 * and in the PHY to avoid CRC errors.
1009 	 */
1010 	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1011 	if (ret_val)
1012 		return ret_val;
1013 
1014 	data |= GG82563_ICR_DIS_PADDING;
1015 	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1016 	if (ret_val)
1017 		return ret_val;
1018 
1019 	return 0;
1020 }
1021 
1022 /**
1023  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1024  *  @hw: pointer to the HW structure
1025  *
1026  *  Essentially a wrapper for setting up all things "copper" related.
1027  *  This is a function pointer entry point called by the mac module.
1028  **/
1029 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1030 {
1031 	u32 ctrl;
1032 	s32 ret_val;
1033 	u16 reg_data;
1034 
1035 	ctrl = er32(CTRL);
1036 	ctrl |= E1000_CTRL_SLU;
1037 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1038 	ew32(CTRL, ctrl);
1039 
1040 	/* Set the mac to wait the maximum time between each
1041 	 * iteration and increase the max iterations when
1042 	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1043 	 */
1044 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1045 						   0xFFFF);
1046 	if (ret_val)
1047 		return ret_val;
1048 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1049 						  &reg_data);
1050 	if (ret_val)
1051 		return ret_val;
1052 	reg_data |= 0x3F;
1053 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1054 						   reg_data);
1055 	if (ret_val)
1056 		return ret_val;
1057 	ret_val =
1058 	    e1000_read_kmrn_reg_80003es2lan(hw,
1059 					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1060 					    &reg_data);
1061 	if (ret_val)
1062 		return ret_val;
1063 	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1064 	ret_val =
1065 	    e1000_write_kmrn_reg_80003es2lan(hw,
1066 					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1067 					     reg_data);
1068 	if (ret_val)
1069 		return ret_val;
1070 
1071 	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1072 	if (ret_val)
1073 		return ret_val;
1074 
1075 	return e1000e_setup_copper_link(hw);
1076 }
1077 
1078 /**
1079  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1080  *  @hw: pointer to the HW structure
1081  *  @duplex: current duplex setting
1082  *
1083  *  Configure the KMRN interface by applying last minute quirks for
1084  *  10/100 operation.
1085  **/
1086 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1087 {
1088 	s32 ret_val = 0;
1089 	u16 speed;
1090 	u16 duplex;
1091 
1092 	if (hw->phy.media_type == e1000_media_type_copper) {
1093 		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1094 							     &duplex);
1095 		if (ret_val)
1096 			return ret_val;
1097 
1098 		if (speed == SPEED_1000)
1099 			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1100 		else
1101 			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1102 	}
1103 
1104 	return ret_val;
1105 }
1106 
1107 /**
1108  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1109  *  @hw: pointer to the HW structure
1110  *  @duplex: current duplex setting
1111  *
1112  *  Configure the KMRN interface by applying last minute quirks for
1113  *  10/100 operation.
1114  **/
1115 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1116 {
1117 	s32 ret_val;
1118 	u32 tipg;
1119 	u32 i = 0;
1120 	u16 reg_data, reg_data2;
1121 
1122 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1123 	ret_val =
1124 	    e1000_write_kmrn_reg_80003es2lan(hw,
1125 					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1126 					     reg_data);
1127 	if (ret_val)
1128 		return ret_val;
1129 
1130 	/* Configure Transmit Inter-Packet Gap */
1131 	tipg = er32(TIPG);
1132 	tipg &= ~E1000_TIPG_IPGT_MASK;
1133 	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1134 	ew32(TIPG, tipg);
1135 
1136 	do {
1137 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1138 		if (ret_val)
1139 			return ret_val;
1140 
1141 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1142 		if (ret_val)
1143 			return ret_val;
1144 		i++;
1145 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1146 
1147 	if (duplex == HALF_DUPLEX)
1148 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1149 	else
1150 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1151 
1152 	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1153 }
1154 
1155 /**
1156  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1157  *  @hw: pointer to the HW structure
1158  *
1159  *  Configure the KMRN interface by applying last minute quirks for
1160  *  gigabit operation.
1161  **/
1162 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1163 {
1164 	s32 ret_val;
1165 	u16 reg_data, reg_data2;
1166 	u32 tipg;
1167 	u32 i = 0;
1168 
1169 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1170 	ret_val =
1171 	    e1000_write_kmrn_reg_80003es2lan(hw,
1172 					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1173 					     reg_data);
1174 	if (ret_val)
1175 		return ret_val;
1176 
1177 	/* Configure Transmit Inter-Packet Gap */
1178 	tipg = er32(TIPG);
1179 	tipg &= ~E1000_TIPG_IPGT_MASK;
1180 	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1181 	ew32(TIPG, tipg);
1182 
1183 	do {
1184 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1185 		if (ret_val)
1186 			return ret_val;
1187 
1188 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1189 		if (ret_val)
1190 			return ret_val;
1191 		i++;
1192 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1193 
1194 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1195 
1196 	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1197 }
1198 
1199 /**
1200  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1201  *  @hw: pointer to the HW structure
1202  *  @offset: register offset to be read
1203  *  @data: pointer to the read data
1204  *
1205  *  Acquire semaphore, then read the PHY register at offset
1206  *  using the kumeran interface.  The information retrieved is stored in data.
1207  *  Release the semaphore before exiting.
1208  **/
1209 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1210 					   u16 *data)
1211 {
1212 	u32 kmrnctrlsta;
1213 	s32 ret_val;
1214 
1215 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1216 	if (ret_val)
1217 		return ret_val;
1218 
1219 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1220 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1221 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1222 	e1e_flush();
1223 
1224 	udelay(2);
1225 
1226 	kmrnctrlsta = er32(KMRNCTRLSTA);
1227 	*data = (u16)kmrnctrlsta;
1228 
1229 	e1000_release_mac_csr_80003es2lan(hw);
1230 
1231 	return ret_val;
1232 }
1233 
1234 /**
1235  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1236  *  @hw: pointer to the HW structure
1237  *  @offset: register offset to write to
1238  *  @data: data to write at register offset
1239  *
1240  *  Acquire semaphore, then write the data to PHY register
1241  *  at the offset using the kumeran interface.  Release semaphore
1242  *  before exiting.
1243  **/
1244 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1245 					    u16 data)
1246 {
1247 	u32 kmrnctrlsta;
1248 	s32 ret_val;
1249 
1250 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1251 	if (ret_val)
1252 		return ret_val;
1253 
1254 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1255 		       E1000_KMRNCTRLSTA_OFFSET) | data;
1256 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1257 	e1e_flush();
1258 
1259 	udelay(2);
1260 
1261 	e1000_release_mac_csr_80003es2lan(hw);
1262 
1263 	return ret_val;
1264 }
1265 
1266 /**
1267  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1268  *  @hw: pointer to the HW structure
1269  **/
1270 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1271 {
1272 	s32 ret_val;
1273 
1274 	/* If there's an alternate MAC address place it in RAR0
1275 	 * so that it will override the Si installed default perm
1276 	 * address.
1277 	 */
1278 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1279 	if (ret_val)
1280 		return ret_val;
1281 
1282 	return e1000_read_mac_addr_generic(hw);
1283 }
1284 
1285 /**
1286  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1287  * @hw: pointer to the HW structure
1288  *
1289  * In the case of a PHY power down to save power, or to turn off link during a
1290  * driver unload, or wake on lan is not enabled, remove the link.
1291  **/
1292 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1293 {
1294 	/* If the management interface is not enabled, then power down */
1295 	if (!(hw->mac.ops.check_mng_mode(hw) ||
1296 	      hw->phy.ops.check_reset_block(hw)))
1297 		e1000_power_down_phy_copper(hw);
1298 }
1299 
1300 /**
1301  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1302  *  @hw: pointer to the HW structure
1303  *
1304  *  Clears the hardware counters by reading the counter registers.
1305  **/
1306 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1307 {
1308 	e1000e_clear_hw_cntrs_base(hw);
1309 
1310 	er32(PRC64);
1311 	er32(PRC127);
1312 	er32(PRC255);
1313 	er32(PRC511);
1314 	er32(PRC1023);
1315 	er32(PRC1522);
1316 	er32(PTC64);
1317 	er32(PTC127);
1318 	er32(PTC255);
1319 	er32(PTC511);
1320 	er32(PTC1023);
1321 	er32(PTC1522);
1322 
1323 	er32(ALGNERRC);
1324 	er32(RXERRC);
1325 	er32(TNCRS);
1326 	er32(CEXTERR);
1327 	er32(TSCTC);
1328 	er32(TSCTFC);
1329 
1330 	er32(MGTPRC);
1331 	er32(MGTPDC);
1332 	er32(MGTPTC);
1333 
1334 	er32(IAC);
1335 	er32(ICRXOC);
1336 
1337 	er32(ICRXPTC);
1338 	er32(ICRXATC);
1339 	er32(ICTXPTC);
1340 	er32(ICTXATC);
1341 	er32(ICTXQEC);
1342 	er32(ICTXQMTC);
1343 	er32(ICRXDMTC);
1344 }
1345 
1346 static const struct e1000_mac_operations es2_mac_ops = {
1347 	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1348 	.id_led_init		= e1000e_id_led_init_generic,
1349 	.blink_led		= e1000e_blink_led_generic,
1350 	.check_mng_mode		= e1000e_check_mng_mode_generic,
1351 	/* check_for_link dependent on media type */
1352 	.cleanup_led		= e1000e_cleanup_led_generic,
1353 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1354 	.get_bus_info		= e1000e_get_bus_info_pcie,
1355 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1356 	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1357 	.led_on			= e1000e_led_on_generic,
1358 	.led_off		= e1000e_led_off_generic,
1359 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1360 	.write_vfta		= e1000_write_vfta_generic,
1361 	.clear_vfta		= e1000_clear_vfta_generic,
1362 	.reset_hw		= e1000_reset_hw_80003es2lan,
1363 	.init_hw		= e1000_init_hw_80003es2lan,
1364 	.setup_link		= e1000e_setup_link_generic,
1365 	/* setup_physical_interface dependent on media type */
1366 	.setup_led		= e1000e_setup_led_generic,
1367 	.config_collision_dist	= e1000e_config_collision_dist_generic,
1368 	.rar_set		= e1000e_rar_set_generic,
1369 	.rar_get_count		= e1000e_rar_get_count_generic,
1370 };
1371 
1372 static const struct e1000_phy_operations es2_phy_ops = {
1373 	.acquire		= e1000_acquire_phy_80003es2lan,
1374 	.check_polarity		= e1000_check_polarity_m88,
1375 	.check_reset_block	= e1000e_check_reset_block_generic,
1376 	.commit			= e1000e_phy_sw_reset,
1377 	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1378 	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1379 	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1380 	.get_info		= e1000e_get_phy_info_m88,
1381 	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1382 	.release		= e1000_release_phy_80003es2lan,
1383 	.reset			= e1000e_phy_hw_reset_generic,
1384 	.set_d0_lplu_state	= NULL,
1385 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1386 	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1387 	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1388 };
1389 
1390 static const struct e1000_nvm_operations es2_nvm_ops = {
1391 	.acquire		= e1000_acquire_nvm_80003es2lan,
1392 	.read			= e1000e_read_nvm_eerd,
1393 	.release		= e1000_release_nvm_80003es2lan,
1394 	.reload			= e1000e_reload_nvm_generic,
1395 	.update			= e1000e_update_nvm_checksum_generic,
1396 	.valid_led_default	= e1000e_valid_led_default,
1397 	.validate		= e1000e_validate_nvm_checksum_generic,
1398 	.write			= e1000_write_nvm_80003es2lan,
1399 };
1400 
1401 const struct e1000_info e1000_es2_info = {
1402 	.mac			= e1000_80003es2lan,
1403 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1404 				  | FLAG_HAS_JUMBO_FRAMES
1405 				  | FLAG_HAS_WOL
1406 				  | FLAG_APME_IN_CTRL3
1407 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1408 				  | FLAG_RX_NEEDS_RESTART /* errata */
1409 				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1410 				  | FLAG_APME_CHECK_PORT_B
1411 				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1412 	.flags2			= FLAG2_DMA_BURST,
1413 	.pba			= 38,
1414 	.max_hw_frame_size	= DEFAULT_JUMBO,
1415 	.get_variants		= e1000_get_variants_80003es2lan,
1416 	.mac_ops		= &es2_mac_ops,
1417 	.phy_ops		= &es2_phy_ops,
1418 	.nvm_ops		= &es2_nvm_ops,
1419 };
1420