1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 #include "e1000.h" 30 #include <net/ip6_checksum.h> 31 #include <linux/io.h> 32 #include <linux/prefetch.h> 33 #include <linux/bitops.h> 34 #include <linux/if_vlan.h> 35 36 char e1000_driver_name[] = "e1000"; 37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 38 #define DRV_VERSION "7.3.21-k8-NAPI" 39 const char e1000_driver_version[] = DRV_VERSION; 40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 41 42 /* e1000_pci_tbl - PCI Device ID Table 43 * 44 * Last entry must be all 0s 45 * 46 * Macro expands to... 47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 48 */ 49 static const struct pci_device_id e1000_pci_tbl[] = { 50 INTEL_E1000_ETHERNET_DEVICE(0x1000), 51 INTEL_E1000_ETHERNET_DEVICE(0x1001), 52 INTEL_E1000_ETHERNET_DEVICE(0x1004), 53 INTEL_E1000_ETHERNET_DEVICE(0x1008), 54 INTEL_E1000_ETHERNET_DEVICE(0x1009), 55 INTEL_E1000_ETHERNET_DEVICE(0x100C), 56 INTEL_E1000_ETHERNET_DEVICE(0x100D), 57 INTEL_E1000_ETHERNET_DEVICE(0x100E), 58 INTEL_E1000_ETHERNET_DEVICE(0x100F), 59 INTEL_E1000_ETHERNET_DEVICE(0x1010), 60 INTEL_E1000_ETHERNET_DEVICE(0x1011), 61 INTEL_E1000_ETHERNET_DEVICE(0x1012), 62 INTEL_E1000_ETHERNET_DEVICE(0x1013), 63 INTEL_E1000_ETHERNET_DEVICE(0x1014), 64 INTEL_E1000_ETHERNET_DEVICE(0x1015), 65 INTEL_E1000_ETHERNET_DEVICE(0x1016), 66 INTEL_E1000_ETHERNET_DEVICE(0x1017), 67 INTEL_E1000_ETHERNET_DEVICE(0x1018), 68 INTEL_E1000_ETHERNET_DEVICE(0x1019), 69 INTEL_E1000_ETHERNET_DEVICE(0x101A), 70 INTEL_E1000_ETHERNET_DEVICE(0x101D), 71 INTEL_E1000_ETHERNET_DEVICE(0x101E), 72 INTEL_E1000_ETHERNET_DEVICE(0x1026), 73 INTEL_E1000_ETHERNET_DEVICE(0x1027), 74 INTEL_E1000_ETHERNET_DEVICE(0x1028), 75 INTEL_E1000_ETHERNET_DEVICE(0x1075), 76 INTEL_E1000_ETHERNET_DEVICE(0x1076), 77 INTEL_E1000_ETHERNET_DEVICE(0x1077), 78 INTEL_E1000_ETHERNET_DEVICE(0x1078), 79 INTEL_E1000_ETHERNET_DEVICE(0x1079), 80 INTEL_E1000_ETHERNET_DEVICE(0x107A), 81 INTEL_E1000_ETHERNET_DEVICE(0x107B), 82 INTEL_E1000_ETHERNET_DEVICE(0x107C), 83 INTEL_E1000_ETHERNET_DEVICE(0x108A), 84 INTEL_E1000_ETHERNET_DEVICE(0x1099), 85 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 87 /* required last entry */ 88 {0,} 89 }; 90 91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 92 93 int e1000_up(struct e1000_adapter *adapter); 94 void e1000_down(struct e1000_adapter *adapter); 95 void e1000_reinit_locked(struct e1000_adapter *adapter); 96 void e1000_reset(struct e1000_adapter *adapter); 97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 102 struct e1000_tx_ring *txdr); 103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 104 struct e1000_rx_ring *rxdr); 105 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 106 struct e1000_tx_ring *tx_ring); 107 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 108 struct e1000_rx_ring *rx_ring); 109 void e1000_update_stats(struct e1000_adapter *adapter); 110 111 static int e1000_init_module(void); 112 static void e1000_exit_module(void); 113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 114 static void e1000_remove(struct pci_dev *pdev); 115 static int e1000_alloc_queues(struct e1000_adapter *adapter); 116 static int e1000_sw_init(struct e1000_adapter *adapter); 117 static int e1000_open(struct net_device *netdev); 118 static int e1000_close(struct net_device *netdev); 119 static void e1000_configure_tx(struct e1000_adapter *adapter); 120 static void e1000_configure_rx(struct e1000_adapter *adapter); 121 static void e1000_setup_rctl(struct e1000_adapter *adapter); 122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 125 struct e1000_tx_ring *tx_ring); 126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 127 struct e1000_rx_ring *rx_ring); 128 static void e1000_set_rx_mode(struct net_device *netdev); 129 static void e1000_update_phy_info_task(struct work_struct *work); 130 static void e1000_watchdog(struct work_struct *work); 131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 133 struct net_device *netdev); 134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); 135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 136 static int e1000_set_mac(struct net_device *netdev, void *p); 137 static irqreturn_t e1000_intr(int irq, void *data); 138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 139 struct e1000_tx_ring *tx_ring); 140 static int e1000_clean(struct napi_struct *napi, int budget); 141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 142 struct e1000_rx_ring *rx_ring, 143 int *work_done, int work_to_do); 144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 145 struct e1000_rx_ring *rx_ring, 146 int *work_done, int work_to_do); 147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 148 struct e1000_rx_ring *rx_ring, 149 int cleaned_count); 150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 151 struct e1000_rx_ring *rx_ring, 152 int cleaned_count); 153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 155 int cmd); 156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 158 static void e1000_tx_timeout(struct net_device *dev); 159 static void e1000_reset_task(struct work_struct *work); 160 static void e1000_smartspeed(struct e1000_adapter *adapter); 161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 162 struct sk_buff *skb); 163 164 static bool e1000_vlan_used(struct e1000_adapter *adapter); 165 static void e1000_vlan_mode(struct net_device *netdev, 166 netdev_features_t features); 167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 168 bool filter_on); 169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 170 __be16 proto, u16 vid); 171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 172 __be16 proto, u16 vid); 173 static void e1000_restore_vlan(struct e1000_adapter *adapter); 174 175 #ifdef CONFIG_PM 176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 177 static int e1000_resume(struct pci_dev *pdev); 178 #endif 179 static void e1000_shutdown(struct pci_dev *pdev); 180 181 #ifdef CONFIG_NET_POLL_CONTROLLER 182 /* for netdump / net console */ 183 static void e1000_netpoll (struct net_device *netdev); 184 #endif 185 186 #define COPYBREAK_DEFAULT 256 187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 188 module_param(copybreak, uint, 0644); 189 MODULE_PARM_DESC(copybreak, 190 "Maximum size of packet that is copied to a new buffer on receive"); 191 192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 193 pci_channel_state_t state); 194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 195 static void e1000_io_resume(struct pci_dev *pdev); 196 197 static const struct pci_error_handlers e1000_err_handler = { 198 .error_detected = e1000_io_error_detected, 199 .slot_reset = e1000_io_slot_reset, 200 .resume = e1000_io_resume, 201 }; 202 203 static struct pci_driver e1000_driver = { 204 .name = e1000_driver_name, 205 .id_table = e1000_pci_tbl, 206 .probe = e1000_probe, 207 .remove = e1000_remove, 208 #ifdef CONFIG_PM 209 /* Power Management Hooks */ 210 .suspend = e1000_suspend, 211 .resume = e1000_resume, 212 #endif 213 .shutdown = e1000_shutdown, 214 .err_handler = &e1000_err_handler 215 }; 216 217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 219 MODULE_LICENSE("GPL"); 220 MODULE_VERSION(DRV_VERSION); 221 222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 223 static int debug = -1; 224 module_param(debug, int, 0); 225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 226 227 /** 228 * e1000_get_hw_dev - return device 229 * used by hardware layer to print debugging information 230 * 231 **/ 232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 233 { 234 struct e1000_adapter *adapter = hw->back; 235 return adapter->netdev; 236 } 237 238 /** 239 * e1000_init_module - Driver Registration Routine 240 * 241 * e1000_init_module is the first routine called when the driver is 242 * loaded. All it does is register with the PCI subsystem. 243 **/ 244 static int __init e1000_init_module(void) 245 { 246 int ret; 247 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); 248 249 pr_info("%s\n", e1000_copyright); 250 251 ret = pci_register_driver(&e1000_driver); 252 if (copybreak != COPYBREAK_DEFAULT) { 253 if (copybreak == 0) 254 pr_info("copybreak disabled\n"); 255 else 256 pr_info("copybreak enabled for " 257 "packets <= %u bytes\n", copybreak); 258 } 259 return ret; 260 } 261 262 module_init(e1000_init_module); 263 264 /** 265 * e1000_exit_module - Driver Exit Cleanup Routine 266 * 267 * e1000_exit_module is called just before the driver is removed 268 * from memory. 269 **/ 270 static void __exit e1000_exit_module(void) 271 { 272 pci_unregister_driver(&e1000_driver); 273 } 274 275 module_exit(e1000_exit_module); 276 277 static int e1000_request_irq(struct e1000_adapter *adapter) 278 { 279 struct net_device *netdev = adapter->netdev; 280 irq_handler_t handler = e1000_intr; 281 int irq_flags = IRQF_SHARED; 282 int err; 283 284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 285 netdev); 286 if (err) { 287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 288 } 289 290 return err; 291 } 292 293 static void e1000_free_irq(struct e1000_adapter *adapter) 294 { 295 struct net_device *netdev = adapter->netdev; 296 297 free_irq(adapter->pdev->irq, netdev); 298 } 299 300 /** 301 * e1000_irq_disable - Mask off interrupt generation on the NIC 302 * @adapter: board private structure 303 **/ 304 static void e1000_irq_disable(struct e1000_adapter *adapter) 305 { 306 struct e1000_hw *hw = &adapter->hw; 307 308 ew32(IMC, ~0); 309 E1000_WRITE_FLUSH(); 310 synchronize_irq(adapter->pdev->irq); 311 } 312 313 /** 314 * e1000_irq_enable - Enable default interrupt generation settings 315 * @adapter: board private structure 316 **/ 317 static void e1000_irq_enable(struct e1000_adapter *adapter) 318 { 319 struct e1000_hw *hw = &adapter->hw; 320 321 ew32(IMS, IMS_ENABLE_MASK); 322 E1000_WRITE_FLUSH(); 323 } 324 325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 326 { 327 struct e1000_hw *hw = &adapter->hw; 328 struct net_device *netdev = adapter->netdev; 329 u16 vid = hw->mng_cookie.vlan_id; 330 u16 old_vid = adapter->mng_vlan_id; 331 332 if (!e1000_vlan_used(adapter)) 333 return; 334 335 if (!test_bit(vid, adapter->active_vlans)) { 336 if (hw->mng_cookie.status & 337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 338 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 339 adapter->mng_vlan_id = vid; 340 } else { 341 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 342 } 343 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 344 (vid != old_vid) && 345 !test_bit(old_vid, adapter->active_vlans)) 346 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 347 old_vid); 348 } else { 349 adapter->mng_vlan_id = vid; 350 } 351 } 352 353 static void e1000_init_manageability(struct e1000_adapter *adapter) 354 { 355 struct e1000_hw *hw = &adapter->hw; 356 357 if (adapter->en_mng_pt) { 358 u32 manc = er32(MANC); 359 360 /* disable hardware interception of ARP */ 361 manc &= ~(E1000_MANC_ARP_EN); 362 363 ew32(MANC, manc); 364 } 365 } 366 367 static void e1000_release_manageability(struct e1000_adapter *adapter) 368 { 369 struct e1000_hw *hw = &adapter->hw; 370 371 if (adapter->en_mng_pt) { 372 u32 manc = er32(MANC); 373 374 /* re-enable hardware interception of ARP */ 375 manc |= E1000_MANC_ARP_EN; 376 377 ew32(MANC, manc); 378 } 379 } 380 381 /** 382 * e1000_configure - configure the hardware for RX and TX 383 * @adapter = private board structure 384 **/ 385 static void e1000_configure(struct e1000_adapter *adapter) 386 { 387 struct net_device *netdev = adapter->netdev; 388 int i; 389 390 e1000_set_rx_mode(netdev); 391 392 e1000_restore_vlan(adapter); 393 e1000_init_manageability(adapter); 394 395 e1000_configure_tx(adapter); 396 e1000_setup_rctl(adapter); 397 e1000_configure_rx(adapter); 398 /* call E1000_DESC_UNUSED which always leaves 399 * at least 1 descriptor unused to make sure 400 * next_to_use != next_to_clean 401 */ 402 for (i = 0; i < adapter->num_rx_queues; i++) { 403 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 404 adapter->alloc_rx_buf(adapter, ring, 405 E1000_DESC_UNUSED(ring)); 406 } 407 } 408 409 int e1000_up(struct e1000_adapter *adapter) 410 { 411 struct e1000_hw *hw = &adapter->hw; 412 413 /* hardware has been reset, we need to reload some things */ 414 e1000_configure(adapter); 415 416 clear_bit(__E1000_DOWN, &adapter->flags); 417 418 napi_enable(&adapter->napi); 419 420 e1000_irq_enable(adapter); 421 422 netif_wake_queue(adapter->netdev); 423 424 /* fire a link change interrupt to start the watchdog */ 425 ew32(ICS, E1000_ICS_LSC); 426 return 0; 427 } 428 429 /** 430 * e1000_power_up_phy - restore link in case the phy was powered down 431 * @adapter: address of board private structure 432 * 433 * The phy may be powered down to save power and turn off link when the 434 * driver is unloaded and wake on lan is not enabled (among others) 435 * *** this routine MUST be followed by a call to e1000_reset *** 436 **/ 437 void e1000_power_up_phy(struct e1000_adapter *adapter) 438 { 439 struct e1000_hw *hw = &adapter->hw; 440 u16 mii_reg = 0; 441 442 /* Just clear the power down bit to wake the phy back up */ 443 if (hw->media_type == e1000_media_type_copper) { 444 /* according to the manual, the phy will retain its 445 * settings across a power-down/up cycle 446 */ 447 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 448 mii_reg &= ~MII_CR_POWER_DOWN; 449 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 450 } 451 } 452 453 static void e1000_power_down_phy(struct e1000_adapter *adapter) 454 { 455 struct e1000_hw *hw = &adapter->hw; 456 457 /* Power down the PHY so no link is implied when interface is down * 458 * The PHY cannot be powered down if any of the following is true * 459 * (a) WoL is enabled 460 * (b) AMT is active 461 * (c) SoL/IDER session is active 462 */ 463 if (!adapter->wol && hw->mac_type >= e1000_82540 && 464 hw->media_type == e1000_media_type_copper) { 465 u16 mii_reg = 0; 466 467 switch (hw->mac_type) { 468 case e1000_82540: 469 case e1000_82545: 470 case e1000_82545_rev_3: 471 case e1000_82546: 472 case e1000_ce4100: 473 case e1000_82546_rev_3: 474 case e1000_82541: 475 case e1000_82541_rev_2: 476 case e1000_82547: 477 case e1000_82547_rev_2: 478 if (er32(MANC) & E1000_MANC_SMBUS_EN) 479 goto out; 480 break; 481 default: 482 goto out; 483 } 484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 485 mii_reg |= MII_CR_POWER_DOWN; 486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 487 msleep(1); 488 } 489 out: 490 return; 491 } 492 493 static void e1000_down_and_stop(struct e1000_adapter *adapter) 494 { 495 set_bit(__E1000_DOWN, &adapter->flags); 496 497 cancel_delayed_work_sync(&adapter->watchdog_task); 498 499 /* 500 * Since the watchdog task can reschedule other tasks, we should cancel 501 * it first, otherwise we can run into the situation when a work is 502 * still running after the adapter has been turned down. 503 */ 504 505 cancel_delayed_work_sync(&adapter->phy_info_task); 506 cancel_delayed_work_sync(&adapter->fifo_stall_task); 507 508 /* Only kill reset task if adapter is not resetting */ 509 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 510 cancel_work_sync(&adapter->reset_task); 511 } 512 513 void e1000_down(struct e1000_adapter *adapter) 514 { 515 struct e1000_hw *hw = &adapter->hw; 516 struct net_device *netdev = adapter->netdev; 517 u32 rctl, tctl; 518 519 520 /* disable receives in the hardware */ 521 rctl = er32(RCTL); 522 ew32(RCTL, rctl & ~E1000_RCTL_EN); 523 /* flush and sleep below */ 524 525 netif_tx_disable(netdev); 526 527 /* disable transmits in the hardware */ 528 tctl = er32(TCTL); 529 tctl &= ~E1000_TCTL_EN; 530 ew32(TCTL, tctl); 531 /* flush both disables and wait for them to finish */ 532 E1000_WRITE_FLUSH(); 533 msleep(10); 534 535 napi_disable(&adapter->napi); 536 537 e1000_irq_disable(adapter); 538 539 /* Setting DOWN must be after irq_disable to prevent 540 * a screaming interrupt. Setting DOWN also prevents 541 * tasks from rescheduling. 542 */ 543 e1000_down_and_stop(adapter); 544 545 adapter->link_speed = 0; 546 adapter->link_duplex = 0; 547 netif_carrier_off(netdev); 548 549 e1000_reset(adapter); 550 e1000_clean_all_tx_rings(adapter); 551 e1000_clean_all_rx_rings(adapter); 552 } 553 554 void e1000_reinit_locked(struct e1000_adapter *adapter) 555 { 556 WARN_ON(in_interrupt()); 557 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 558 msleep(1); 559 e1000_down(adapter); 560 e1000_up(adapter); 561 clear_bit(__E1000_RESETTING, &adapter->flags); 562 } 563 564 void e1000_reset(struct e1000_adapter *adapter) 565 { 566 struct e1000_hw *hw = &adapter->hw; 567 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 568 bool legacy_pba_adjust = false; 569 u16 hwm; 570 571 /* Repartition Pba for greater than 9k mtu 572 * To take effect CTRL.RST is required. 573 */ 574 575 switch (hw->mac_type) { 576 case e1000_82542_rev2_0: 577 case e1000_82542_rev2_1: 578 case e1000_82543: 579 case e1000_82544: 580 case e1000_82540: 581 case e1000_82541: 582 case e1000_82541_rev_2: 583 legacy_pba_adjust = true; 584 pba = E1000_PBA_48K; 585 break; 586 case e1000_82545: 587 case e1000_82545_rev_3: 588 case e1000_82546: 589 case e1000_ce4100: 590 case e1000_82546_rev_3: 591 pba = E1000_PBA_48K; 592 break; 593 case e1000_82547: 594 case e1000_82547_rev_2: 595 legacy_pba_adjust = true; 596 pba = E1000_PBA_30K; 597 break; 598 case e1000_undefined: 599 case e1000_num_macs: 600 break; 601 } 602 603 if (legacy_pba_adjust) { 604 if (hw->max_frame_size > E1000_RXBUFFER_8192) 605 pba -= 8; /* allocate more FIFO for Tx */ 606 607 if (hw->mac_type == e1000_82547) { 608 adapter->tx_fifo_head = 0; 609 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 610 adapter->tx_fifo_size = 611 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 612 atomic_set(&adapter->tx_fifo_stall, 0); 613 } 614 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 615 /* adjust PBA for jumbo frames */ 616 ew32(PBA, pba); 617 618 /* To maintain wire speed transmits, the Tx FIFO should be 619 * large enough to accommodate two full transmit packets, 620 * rounded up to the next 1KB and expressed in KB. Likewise, 621 * the Rx FIFO should be large enough to accommodate at least 622 * one full receive packet and is similarly rounded up and 623 * expressed in KB. 624 */ 625 pba = er32(PBA); 626 /* upper 16 bits has Tx packet buffer allocation size in KB */ 627 tx_space = pba >> 16; 628 /* lower 16 bits has Rx packet buffer allocation size in KB */ 629 pba &= 0xffff; 630 /* the Tx fifo also stores 16 bytes of information about the Tx 631 * but don't include ethernet FCS because hardware appends it 632 */ 633 min_tx_space = (hw->max_frame_size + 634 sizeof(struct e1000_tx_desc) - 635 ETH_FCS_LEN) * 2; 636 min_tx_space = ALIGN(min_tx_space, 1024); 637 min_tx_space >>= 10; 638 /* software strips receive CRC, so leave room for it */ 639 min_rx_space = hw->max_frame_size; 640 min_rx_space = ALIGN(min_rx_space, 1024); 641 min_rx_space >>= 10; 642 643 /* If current Tx allocation is less than the min Tx FIFO size, 644 * and the min Tx FIFO size is less than the current Rx FIFO 645 * allocation, take space away from current Rx allocation 646 */ 647 if (tx_space < min_tx_space && 648 ((min_tx_space - tx_space) < pba)) { 649 pba = pba - (min_tx_space - tx_space); 650 651 /* PCI/PCIx hardware has PBA alignment constraints */ 652 switch (hw->mac_type) { 653 case e1000_82545 ... e1000_82546_rev_3: 654 pba &= ~(E1000_PBA_8K - 1); 655 break; 656 default: 657 break; 658 } 659 660 /* if short on Rx space, Rx wins and must trump Tx 661 * adjustment or use Early Receive if available 662 */ 663 if (pba < min_rx_space) 664 pba = min_rx_space; 665 } 666 } 667 668 ew32(PBA, pba); 669 670 /* flow control settings: 671 * The high water mark must be low enough to fit one full frame 672 * (or the size used for early receive) above it in the Rx FIFO. 673 * Set it to the lower of: 674 * - 90% of the Rx FIFO size, and 675 * - the full Rx FIFO size minus the early receive size (for parts 676 * with ERT support assuming ERT set to E1000_ERT_2048), or 677 * - the full Rx FIFO size minus one full frame 678 */ 679 hwm = min(((pba << 10) * 9 / 10), 680 ((pba << 10) - hw->max_frame_size)); 681 682 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 683 hw->fc_low_water = hw->fc_high_water - 8; 684 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 685 hw->fc_send_xon = 1; 686 hw->fc = hw->original_fc; 687 688 /* Allow time for pending master requests to run */ 689 e1000_reset_hw(hw); 690 if (hw->mac_type >= e1000_82544) 691 ew32(WUC, 0); 692 693 if (e1000_init_hw(hw)) 694 e_dev_err("Hardware Error\n"); 695 e1000_update_mng_vlan(adapter); 696 697 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 698 if (hw->mac_type >= e1000_82544 && 699 hw->autoneg == 1 && 700 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 701 u32 ctrl = er32(CTRL); 702 /* clear phy power management bit if we are in gig only mode, 703 * which if enabled will attempt negotiation to 100Mb, which 704 * can cause a loss of link at power off or driver unload 705 */ 706 ctrl &= ~E1000_CTRL_SWDPIN3; 707 ew32(CTRL, ctrl); 708 } 709 710 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 711 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 712 713 e1000_reset_adaptive(hw); 714 e1000_phy_get_info(hw, &adapter->phy_info); 715 716 e1000_release_manageability(adapter); 717 } 718 719 /* Dump the eeprom for users having checksum issues */ 720 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 721 { 722 struct net_device *netdev = adapter->netdev; 723 struct ethtool_eeprom eeprom; 724 const struct ethtool_ops *ops = netdev->ethtool_ops; 725 u8 *data; 726 int i; 727 u16 csum_old, csum_new = 0; 728 729 eeprom.len = ops->get_eeprom_len(netdev); 730 eeprom.offset = 0; 731 732 data = kmalloc(eeprom.len, GFP_KERNEL); 733 if (!data) 734 return; 735 736 ops->get_eeprom(netdev, &eeprom, data); 737 738 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 739 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 740 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 741 csum_new += data[i] + (data[i + 1] << 8); 742 csum_new = EEPROM_SUM - csum_new; 743 744 pr_err("/*********************/\n"); 745 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 746 pr_err("Calculated : 0x%04x\n", csum_new); 747 748 pr_err("Offset Values\n"); 749 pr_err("======== ======\n"); 750 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 751 752 pr_err("Include this output when contacting your support provider.\n"); 753 pr_err("This is not a software error! Something bad happened to\n"); 754 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 755 pr_err("result in further problems, possibly loss of data,\n"); 756 pr_err("corruption or system hangs!\n"); 757 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 758 pr_err("which is invalid and requires you to set the proper MAC\n"); 759 pr_err("address manually before continuing to enable this network\n"); 760 pr_err("device. Please inspect the EEPROM dump and report the\n"); 761 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 762 pr_err("/*********************/\n"); 763 764 kfree(data); 765 } 766 767 /** 768 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 769 * @pdev: PCI device information struct 770 * 771 * Return true if an adapter needs ioport resources 772 **/ 773 static int e1000_is_need_ioport(struct pci_dev *pdev) 774 { 775 switch (pdev->device) { 776 case E1000_DEV_ID_82540EM: 777 case E1000_DEV_ID_82540EM_LOM: 778 case E1000_DEV_ID_82540EP: 779 case E1000_DEV_ID_82540EP_LOM: 780 case E1000_DEV_ID_82540EP_LP: 781 case E1000_DEV_ID_82541EI: 782 case E1000_DEV_ID_82541EI_MOBILE: 783 case E1000_DEV_ID_82541ER: 784 case E1000_DEV_ID_82541ER_LOM: 785 case E1000_DEV_ID_82541GI: 786 case E1000_DEV_ID_82541GI_LF: 787 case E1000_DEV_ID_82541GI_MOBILE: 788 case E1000_DEV_ID_82544EI_COPPER: 789 case E1000_DEV_ID_82544EI_FIBER: 790 case E1000_DEV_ID_82544GC_COPPER: 791 case E1000_DEV_ID_82544GC_LOM: 792 case E1000_DEV_ID_82545EM_COPPER: 793 case E1000_DEV_ID_82545EM_FIBER: 794 case E1000_DEV_ID_82546EB_COPPER: 795 case E1000_DEV_ID_82546EB_FIBER: 796 case E1000_DEV_ID_82546EB_QUAD_COPPER: 797 return true; 798 default: 799 return false; 800 } 801 } 802 803 static netdev_features_t e1000_fix_features(struct net_device *netdev, 804 netdev_features_t features) 805 { 806 /* Since there is no support for separate Rx/Tx vlan accel 807 * enable/disable make sure Tx flag is always in same state as Rx. 808 */ 809 if (features & NETIF_F_HW_VLAN_CTAG_RX) 810 features |= NETIF_F_HW_VLAN_CTAG_TX; 811 else 812 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 813 814 return features; 815 } 816 817 static int e1000_set_features(struct net_device *netdev, 818 netdev_features_t features) 819 { 820 struct e1000_adapter *adapter = netdev_priv(netdev); 821 netdev_features_t changed = features ^ netdev->features; 822 823 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 824 e1000_vlan_mode(netdev, features); 825 826 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 827 return 0; 828 829 netdev->features = features; 830 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 831 832 if (netif_running(netdev)) 833 e1000_reinit_locked(adapter); 834 else 835 e1000_reset(adapter); 836 837 return 0; 838 } 839 840 static const struct net_device_ops e1000_netdev_ops = { 841 .ndo_open = e1000_open, 842 .ndo_stop = e1000_close, 843 .ndo_start_xmit = e1000_xmit_frame, 844 .ndo_get_stats = e1000_get_stats, 845 .ndo_set_rx_mode = e1000_set_rx_mode, 846 .ndo_set_mac_address = e1000_set_mac, 847 .ndo_tx_timeout = e1000_tx_timeout, 848 .ndo_change_mtu = e1000_change_mtu, 849 .ndo_do_ioctl = e1000_ioctl, 850 .ndo_validate_addr = eth_validate_addr, 851 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 852 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 853 #ifdef CONFIG_NET_POLL_CONTROLLER 854 .ndo_poll_controller = e1000_netpoll, 855 #endif 856 .ndo_fix_features = e1000_fix_features, 857 .ndo_set_features = e1000_set_features, 858 }; 859 860 /** 861 * e1000_init_hw_struct - initialize members of hw struct 862 * @adapter: board private struct 863 * @hw: structure used by e1000_hw.c 864 * 865 * Factors out initialization of the e1000_hw struct to its own function 866 * that can be called very early at init (just after struct allocation). 867 * Fields are initialized based on PCI device information and 868 * OS network device settings (MTU size). 869 * Returns negative error codes if MAC type setup fails. 870 */ 871 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 872 struct e1000_hw *hw) 873 { 874 struct pci_dev *pdev = adapter->pdev; 875 876 /* PCI config space info */ 877 hw->vendor_id = pdev->vendor; 878 hw->device_id = pdev->device; 879 hw->subsystem_vendor_id = pdev->subsystem_vendor; 880 hw->subsystem_id = pdev->subsystem_device; 881 hw->revision_id = pdev->revision; 882 883 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 884 885 hw->max_frame_size = adapter->netdev->mtu + 886 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 887 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 888 889 /* identify the MAC */ 890 if (e1000_set_mac_type(hw)) { 891 e_err(probe, "Unknown MAC Type\n"); 892 return -EIO; 893 } 894 895 switch (hw->mac_type) { 896 default: 897 break; 898 case e1000_82541: 899 case e1000_82547: 900 case e1000_82541_rev_2: 901 case e1000_82547_rev_2: 902 hw->phy_init_script = 1; 903 break; 904 } 905 906 e1000_set_media_type(hw); 907 e1000_get_bus_info(hw); 908 909 hw->wait_autoneg_complete = false; 910 hw->tbi_compatibility_en = true; 911 hw->adaptive_ifs = true; 912 913 /* Copper options */ 914 915 if (hw->media_type == e1000_media_type_copper) { 916 hw->mdix = AUTO_ALL_MODES; 917 hw->disable_polarity_correction = false; 918 hw->master_slave = E1000_MASTER_SLAVE; 919 } 920 921 return 0; 922 } 923 924 /** 925 * e1000_probe - Device Initialization Routine 926 * @pdev: PCI device information struct 927 * @ent: entry in e1000_pci_tbl 928 * 929 * Returns 0 on success, negative on failure 930 * 931 * e1000_probe initializes an adapter identified by a pci_dev structure. 932 * The OS initialization, configuring of the adapter private structure, 933 * and a hardware reset occur. 934 **/ 935 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 936 { 937 struct net_device *netdev; 938 struct e1000_adapter *adapter; 939 struct e1000_hw *hw; 940 941 static int cards_found = 0; 942 static int global_quad_port_a = 0; /* global ksp3 port a indication */ 943 int i, err, pci_using_dac; 944 u16 eeprom_data = 0; 945 u16 tmp = 0; 946 u16 eeprom_apme_mask = E1000_EEPROM_APME; 947 int bars, need_ioport; 948 949 /* do not allocate ioport bars when not needed */ 950 need_ioport = e1000_is_need_ioport(pdev); 951 if (need_ioport) { 952 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 953 err = pci_enable_device(pdev); 954 } else { 955 bars = pci_select_bars(pdev, IORESOURCE_MEM); 956 err = pci_enable_device_mem(pdev); 957 } 958 if (err) 959 return err; 960 961 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 962 if (err) 963 goto err_pci_reg; 964 965 pci_set_master(pdev); 966 err = pci_save_state(pdev); 967 if (err) 968 goto err_alloc_etherdev; 969 970 err = -ENOMEM; 971 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 972 if (!netdev) 973 goto err_alloc_etherdev; 974 975 SET_NETDEV_DEV(netdev, &pdev->dev); 976 977 pci_set_drvdata(pdev, netdev); 978 adapter = netdev_priv(netdev); 979 adapter->netdev = netdev; 980 adapter->pdev = pdev; 981 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 982 adapter->bars = bars; 983 adapter->need_ioport = need_ioport; 984 985 hw = &adapter->hw; 986 hw->back = adapter; 987 988 err = -EIO; 989 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 990 if (!hw->hw_addr) 991 goto err_ioremap; 992 993 if (adapter->need_ioport) { 994 for (i = BAR_1; i <= BAR_5; i++) { 995 if (pci_resource_len(pdev, i) == 0) 996 continue; 997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 998 hw->io_base = pci_resource_start(pdev, i); 999 break; 1000 } 1001 } 1002 } 1003 1004 /* make ready for any if (hw->...) below */ 1005 err = e1000_init_hw_struct(adapter, hw); 1006 if (err) 1007 goto err_sw_init; 1008 1009 /* there is a workaround being applied below that limits 1010 * 64-bit DMA addresses to 64-bit hardware. There are some 1011 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 1012 */ 1013 pci_using_dac = 0; 1014 if ((hw->bus_type == e1000_bus_type_pcix) && 1015 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1016 pci_using_dac = 1; 1017 } else { 1018 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1019 if (err) { 1020 pr_err("No usable DMA config, aborting\n"); 1021 goto err_dma; 1022 } 1023 } 1024 1025 netdev->netdev_ops = &e1000_netdev_ops; 1026 e1000_set_ethtool_ops(netdev); 1027 netdev->watchdog_timeo = 5 * HZ; 1028 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1029 1030 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1031 1032 adapter->bd_number = cards_found; 1033 1034 /* setup the private structure */ 1035 1036 err = e1000_sw_init(adapter); 1037 if (err) 1038 goto err_sw_init; 1039 1040 err = -EIO; 1041 if (hw->mac_type == e1000_ce4100) { 1042 hw->ce4100_gbe_mdio_base_virt = 1043 ioremap(pci_resource_start(pdev, BAR_1), 1044 pci_resource_len(pdev, BAR_1)); 1045 1046 if (!hw->ce4100_gbe_mdio_base_virt) 1047 goto err_mdio_ioremap; 1048 } 1049 1050 if (hw->mac_type >= e1000_82543) { 1051 netdev->hw_features = NETIF_F_SG | 1052 NETIF_F_HW_CSUM | 1053 NETIF_F_HW_VLAN_CTAG_RX; 1054 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1055 NETIF_F_HW_VLAN_CTAG_FILTER; 1056 } 1057 1058 if ((hw->mac_type >= e1000_82544) && 1059 (hw->mac_type != e1000_82547)) 1060 netdev->hw_features |= NETIF_F_TSO; 1061 1062 netdev->priv_flags |= IFF_SUPP_NOFCS; 1063 1064 netdev->features |= netdev->hw_features; 1065 netdev->hw_features |= (NETIF_F_RXCSUM | 1066 NETIF_F_RXALL | 1067 NETIF_F_RXFCS); 1068 1069 if (pci_using_dac) { 1070 netdev->features |= NETIF_F_HIGHDMA; 1071 netdev->vlan_features |= NETIF_F_HIGHDMA; 1072 } 1073 1074 netdev->vlan_features |= (NETIF_F_TSO | 1075 NETIF_F_HW_CSUM | 1076 NETIF_F_SG); 1077 1078 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1079 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1080 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1081 netdev->priv_flags |= IFF_UNICAST_FLT; 1082 1083 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1084 1085 /* initialize eeprom parameters */ 1086 if (e1000_init_eeprom_params(hw)) { 1087 e_err(probe, "EEPROM initialization failed\n"); 1088 goto err_eeprom; 1089 } 1090 1091 /* before reading the EEPROM, reset the controller to 1092 * put the device in a known good starting state 1093 */ 1094 1095 e1000_reset_hw(hw); 1096 1097 /* make sure the EEPROM is good */ 1098 if (e1000_validate_eeprom_checksum(hw) < 0) { 1099 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1100 e1000_dump_eeprom(adapter); 1101 /* set MAC address to all zeroes to invalidate and temporary 1102 * disable this device for the user. This blocks regular 1103 * traffic while still permitting ethtool ioctls from reaching 1104 * the hardware as well as allowing the user to run the 1105 * interface after manually setting a hw addr using 1106 * `ip set address` 1107 */ 1108 memset(hw->mac_addr, 0, netdev->addr_len); 1109 } else { 1110 /* copy the MAC address out of the EEPROM */ 1111 if (e1000_read_mac_addr(hw)) 1112 e_err(probe, "EEPROM Read Error\n"); 1113 } 1114 /* don't block initalization here due to bad MAC address */ 1115 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1116 1117 if (!is_valid_ether_addr(netdev->dev_addr)) 1118 e_err(probe, "Invalid MAC Address\n"); 1119 1120 1121 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1122 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1123 e1000_82547_tx_fifo_stall_task); 1124 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1125 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1126 1127 e1000_check_options(adapter); 1128 1129 /* Initial Wake on LAN setting 1130 * If APM wake is enabled in the EEPROM, 1131 * enable the ACPI Magic Packet filter 1132 */ 1133 1134 switch (hw->mac_type) { 1135 case e1000_82542_rev2_0: 1136 case e1000_82542_rev2_1: 1137 case e1000_82543: 1138 break; 1139 case e1000_82544: 1140 e1000_read_eeprom(hw, 1141 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1142 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1143 break; 1144 case e1000_82546: 1145 case e1000_82546_rev_3: 1146 if (er32(STATUS) & E1000_STATUS_FUNC_1){ 1147 e1000_read_eeprom(hw, 1148 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1149 break; 1150 } 1151 /* Fall Through */ 1152 default: 1153 e1000_read_eeprom(hw, 1154 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1155 break; 1156 } 1157 if (eeprom_data & eeprom_apme_mask) 1158 adapter->eeprom_wol |= E1000_WUFC_MAG; 1159 1160 /* now that we have the eeprom settings, apply the special cases 1161 * where the eeprom may be wrong or the board simply won't support 1162 * wake on lan on a particular port 1163 */ 1164 switch (pdev->device) { 1165 case E1000_DEV_ID_82546GB_PCIE: 1166 adapter->eeprom_wol = 0; 1167 break; 1168 case E1000_DEV_ID_82546EB_FIBER: 1169 case E1000_DEV_ID_82546GB_FIBER: 1170 /* Wake events only supported on port A for dual fiber 1171 * regardless of eeprom setting 1172 */ 1173 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1174 adapter->eeprom_wol = 0; 1175 break; 1176 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1177 /* if quad port adapter, disable WoL on all but port A */ 1178 if (global_quad_port_a != 0) 1179 adapter->eeprom_wol = 0; 1180 else 1181 adapter->quad_port_a = true; 1182 /* Reset for multiple quad port adapters */ 1183 if (++global_quad_port_a == 4) 1184 global_quad_port_a = 0; 1185 break; 1186 } 1187 1188 /* initialize the wol settings based on the eeprom settings */ 1189 adapter->wol = adapter->eeprom_wol; 1190 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1191 1192 /* Auto detect PHY address */ 1193 if (hw->mac_type == e1000_ce4100) { 1194 for (i = 0; i < 32; i++) { 1195 hw->phy_addr = i; 1196 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1197 if (tmp == 0 || tmp == 0xFF) { 1198 if (i == 31) 1199 goto err_eeprom; 1200 continue; 1201 } else 1202 break; 1203 } 1204 } 1205 1206 /* reset the hardware with the new settings */ 1207 e1000_reset(adapter); 1208 1209 strcpy(netdev->name, "eth%d"); 1210 err = register_netdev(netdev); 1211 if (err) 1212 goto err_register; 1213 1214 e1000_vlan_filter_on_off(adapter, false); 1215 1216 /* print bus type/speed/width info */ 1217 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1218 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1219 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1220 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1221 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1222 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1223 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1224 netdev->dev_addr); 1225 1226 /* carrier off reporting is important to ethtool even BEFORE open */ 1227 netif_carrier_off(netdev); 1228 1229 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1230 1231 cards_found++; 1232 return 0; 1233 1234 err_register: 1235 err_eeprom: 1236 e1000_phy_hw_reset(hw); 1237 1238 if (hw->flash_address) 1239 iounmap(hw->flash_address); 1240 kfree(adapter->tx_ring); 1241 kfree(adapter->rx_ring); 1242 err_dma: 1243 err_sw_init: 1244 err_mdio_ioremap: 1245 iounmap(hw->ce4100_gbe_mdio_base_virt); 1246 iounmap(hw->hw_addr); 1247 err_ioremap: 1248 free_netdev(netdev); 1249 err_alloc_etherdev: 1250 pci_release_selected_regions(pdev, bars); 1251 err_pci_reg: 1252 pci_disable_device(pdev); 1253 return err; 1254 } 1255 1256 /** 1257 * e1000_remove - Device Removal Routine 1258 * @pdev: PCI device information struct 1259 * 1260 * e1000_remove is called by the PCI subsystem to alert the driver 1261 * that it should release a PCI device. The could be caused by a 1262 * Hot-Plug event, or because the driver is going to be removed from 1263 * memory. 1264 **/ 1265 static void e1000_remove(struct pci_dev *pdev) 1266 { 1267 struct net_device *netdev = pci_get_drvdata(pdev); 1268 struct e1000_adapter *adapter = netdev_priv(netdev); 1269 struct e1000_hw *hw = &adapter->hw; 1270 1271 e1000_down_and_stop(adapter); 1272 e1000_release_manageability(adapter); 1273 1274 unregister_netdev(netdev); 1275 1276 e1000_phy_hw_reset(hw); 1277 1278 kfree(adapter->tx_ring); 1279 kfree(adapter->rx_ring); 1280 1281 if (hw->mac_type == e1000_ce4100) 1282 iounmap(hw->ce4100_gbe_mdio_base_virt); 1283 iounmap(hw->hw_addr); 1284 if (hw->flash_address) 1285 iounmap(hw->flash_address); 1286 pci_release_selected_regions(pdev, adapter->bars); 1287 1288 free_netdev(netdev); 1289 1290 pci_disable_device(pdev); 1291 } 1292 1293 /** 1294 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1295 * @adapter: board private structure to initialize 1296 * 1297 * e1000_sw_init initializes the Adapter private data structure. 1298 * e1000_init_hw_struct MUST be called before this function 1299 **/ 1300 static int e1000_sw_init(struct e1000_adapter *adapter) 1301 { 1302 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1303 1304 adapter->num_tx_queues = 1; 1305 adapter->num_rx_queues = 1; 1306 1307 if (e1000_alloc_queues(adapter)) { 1308 e_err(probe, "Unable to allocate memory for queues\n"); 1309 return -ENOMEM; 1310 } 1311 1312 /* Explicitly disable IRQ since the NIC can be in any state. */ 1313 e1000_irq_disable(adapter); 1314 1315 spin_lock_init(&adapter->stats_lock); 1316 1317 set_bit(__E1000_DOWN, &adapter->flags); 1318 1319 return 0; 1320 } 1321 1322 /** 1323 * e1000_alloc_queues - Allocate memory for all rings 1324 * @adapter: board private structure to initialize 1325 * 1326 * We allocate one ring per queue at run-time since we don't know the 1327 * number of queues at compile-time. 1328 **/ 1329 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1330 { 1331 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1332 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1333 if (!adapter->tx_ring) 1334 return -ENOMEM; 1335 1336 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1337 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1338 if (!adapter->rx_ring) { 1339 kfree(adapter->tx_ring); 1340 return -ENOMEM; 1341 } 1342 1343 return E1000_SUCCESS; 1344 } 1345 1346 /** 1347 * e1000_open - Called when a network interface is made active 1348 * @netdev: network interface device structure 1349 * 1350 * Returns 0 on success, negative value on failure 1351 * 1352 * The open entry point is called when a network interface is made 1353 * active by the system (IFF_UP). At this point all resources needed 1354 * for transmit and receive operations are allocated, the interrupt 1355 * handler is registered with the OS, the watchdog task is started, 1356 * and the stack is notified that the interface is ready. 1357 **/ 1358 static int e1000_open(struct net_device *netdev) 1359 { 1360 struct e1000_adapter *adapter = netdev_priv(netdev); 1361 struct e1000_hw *hw = &adapter->hw; 1362 int err; 1363 1364 /* disallow open during test */ 1365 if (test_bit(__E1000_TESTING, &adapter->flags)) 1366 return -EBUSY; 1367 1368 netif_carrier_off(netdev); 1369 1370 /* allocate transmit descriptors */ 1371 err = e1000_setup_all_tx_resources(adapter); 1372 if (err) 1373 goto err_setup_tx; 1374 1375 /* allocate receive descriptors */ 1376 err = e1000_setup_all_rx_resources(adapter); 1377 if (err) 1378 goto err_setup_rx; 1379 1380 e1000_power_up_phy(adapter); 1381 1382 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1383 if ((hw->mng_cookie.status & 1384 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1385 e1000_update_mng_vlan(adapter); 1386 } 1387 1388 /* before we allocate an interrupt, we must be ready to handle it. 1389 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1390 * as soon as we call pci_request_irq, so we have to setup our 1391 * clean_rx handler before we do so. 1392 */ 1393 e1000_configure(adapter); 1394 1395 err = e1000_request_irq(adapter); 1396 if (err) 1397 goto err_req_irq; 1398 1399 /* From here on the code is the same as e1000_up() */ 1400 clear_bit(__E1000_DOWN, &adapter->flags); 1401 1402 napi_enable(&adapter->napi); 1403 1404 e1000_irq_enable(adapter); 1405 1406 netif_start_queue(netdev); 1407 1408 /* fire a link status change interrupt to start the watchdog */ 1409 ew32(ICS, E1000_ICS_LSC); 1410 1411 return E1000_SUCCESS; 1412 1413 err_req_irq: 1414 e1000_power_down_phy(adapter); 1415 e1000_free_all_rx_resources(adapter); 1416 err_setup_rx: 1417 e1000_free_all_tx_resources(adapter); 1418 err_setup_tx: 1419 e1000_reset(adapter); 1420 1421 return err; 1422 } 1423 1424 /** 1425 * e1000_close - Disables a network interface 1426 * @netdev: network interface device structure 1427 * 1428 * Returns 0, this is not allowed to fail 1429 * 1430 * The close entry point is called when an interface is de-activated 1431 * by the OS. The hardware is still under the drivers control, but 1432 * needs to be disabled. A global MAC reset is issued to stop the 1433 * hardware, and all transmit and receive resources are freed. 1434 **/ 1435 static int e1000_close(struct net_device *netdev) 1436 { 1437 struct e1000_adapter *adapter = netdev_priv(netdev); 1438 struct e1000_hw *hw = &adapter->hw; 1439 int count = E1000_CHECK_RESET_COUNT; 1440 1441 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 1442 usleep_range(10000, 20000); 1443 1444 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 1445 e1000_down(adapter); 1446 e1000_power_down_phy(adapter); 1447 e1000_free_irq(adapter); 1448 1449 e1000_free_all_tx_resources(adapter); 1450 e1000_free_all_rx_resources(adapter); 1451 1452 /* kill manageability vlan ID if supported, but not if a vlan with 1453 * the same ID is registered on the host OS (let 8021q kill it) 1454 */ 1455 if ((hw->mng_cookie.status & 1456 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1457 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1458 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1459 adapter->mng_vlan_id); 1460 } 1461 1462 return 0; 1463 } 1464 1465 /** 1466 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1467 * @adapter: address of board private structure 1468 * @start: address of beginning of memory 1469 * @len: length of memory 1470 **/ 1471 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1472 unsigned long len) 1473 { 1474 struct e1000_hw *hw = &adapter->hw; 1475 unsigned long begin = (unsigned long)start; 1476 unsigned long end = begin + len; 1477 1478 /* First rev 82545 and 82546 need to not allow any memory 1479 * write location to cross 64k boundary due to errata 23 1480 */ 1481 if (hw->mac_type == e1000_82545 || 1482 hw->mac_type == e1000_ce4100 || 1483 hw->mac_type == e1000_82546) { 1484 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; 1485 } 1486 1487 return true; 1488 } 1489 1490 /** 1491 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1492 * @adapter: board private structure 1493 * @txdr: tx descriptor ring (for a specific queue) to setup 1494 * 1495 * Return 0 on success, negative on failure 1496 **/ 1497 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1498 struct e1000_tx_ring *txdr) 1499 { 1500 struct pci_dev *pdev = adapter->pdev; 1501 int size; 1502 1503 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1504 txdr->buffer_info = vzalloc(size); 1505 if (!txdr->buffer_info) 1506 return -ENOMEM; 1507 1508 /* round up to nearest 4K */ 1509 1510 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1511 txdr->size = ALIGN(txdr->size, 4096); 1512 1513 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1514 GFP_KERNEL); 1515 if (!txdr->desc) { 1516 setup_tx_desc_die: 1517 vfree(txdr->buffer_info); 1518 return -ENOMEM; 1519 } 1520 1521 /* Fix for errata 23, can't cross 64kB boundary */ 1522 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1523 void *olddesc = txdr->desc; 1524 dma_addr_t olddma = txdr->dma; 1525 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1526 txdr->size, txdr->desc); 1527 /* Try again, without freeing the previous */ 1528 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1529 &txdr->dma, GFP_KERNEL); 1530 /* Failed allocation, critical failure */ 1531 if (!txdr->desc) { 1532 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1533 olddma); 1534 goto setup_tx_desc_die; 1535 } 1536 1537 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1538 /* give up */ 1539 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1540 txdr->dma); 1541 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1542 olddma); 1543 e_err(probe, "Unable to allocate aligned memory " 1544 "for the transmit descriptor ring\n"); 1545 vfree(txdr->buffer_info); 1546 return -ENOMEM; 1547 } else { 1548 /* Free old allocation, new allocation was successful */ 1549 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1550 olddma); 1551 } 1552 } 1553 memset(txdr->desc, 0, txdr->size); 1554 1555 txdr->next_to_use = 0; 1556 txdr->next_to_clean = 0; 1557 1558 return 0; 1559 } 1560 1561 /** 1562 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1563 * (Descriptors) for all queues 1564 * @adapter: board private structure 1565 * 1566 * Return 0 on success, negative on failure 1567 **/ 1568 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1569 { 1570 int i, err = 0; 1571 1572 for (i = 0; i < adapter->num_tx_queues; i++) { 1573 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1574 if (err) { 1575 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1576 for (i-- ; i >= 0; i--) 1577 e1000_free_tx_resources(adapter, 1578 &adapter->tx_ring[i]); 1579 break; 1580 } 1581 } 1582 1583 return err; 1584 } 1585 1586 /** 1587 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1588 * @adapter: board private structure 1589 * 1590 * Configure the Tx unit of the MAC after a reset. 1591 **/ 1592 static void e1000_configure_tx(struct e1000_adapter *adapter) 1593 { 1594 u64 tdba; 1595 struct e1000_hw *hw = &adapter->hw; 1596 u32 tdlen, tctl, tipg; 1597 u32 ipgr1, ipgr2; 1598 1599 /* Setup the HW Tx Head and Tail descriptor pointers */ 1600 1601 switch (adapter->num_tx_queues) { 1602 case 1: 1603 default: 1604 tdba = adapter->tx_ring[0].dma; 1605 tdlen = adapter->tx_ring[0].count * 1606 sizeof(struct e1000_tx_desc); 1607 ew32(TDLEN, tdlen); 1608 ew32(TDBAH, (tdba >> 32)); 1609 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1610 ew32(TDT, 0); 1611 ew32(TDH, 0); 1612 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1613 E1000_TDH : E1000_82542_TDH); 1614 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1615 E1000_TDT : E1000_82542_TDT); 1616 break; 1617 } 1618 1619 /* Set the default values for the Tx Inter Packet Gap timer */ 1620 if ((hw->media_type == e1000_media_type_fiber || 1621 hw->media_type == e1000_media_type_internal_serdes)) 1622 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1623 else 1624 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1625 1626 switch (hw->mac_type) { 1627 case e1000_82542_rev2_0: 1628 case e1000_82542_rev2_1: 1629 tipg = DEFAULT_82542_TIPG_IPGT; 1630 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1631 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1632 break; 1633 default: 1634 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1635 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1636 break; 1637 } 1638 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1639 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1640 ew32(TIPG, tipg); 1641 1642 /* Set the Tx Interrupt Delay register */ 1643 1644 ew32(TIDV, adapter->tx_int_delay); 1645 if (hw->mac_type >= e1000_82540) 1646 ew32(TADV, adapter->tx_abs_int_delay); 1647 1648 /* Program the Transmit Control Register */ 1649 1650 tctl = er32(TCTL); 1651 tctl &= ~E1000_TCTL_CT; 1652 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1653 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1654 1655 e1000_config_collision_dist(hw); 1656 1657 /* Setup Transmit Descriptor Settings for eop descriptor */ 1658 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1659 1660 /* only set IDE if we are delaying interrupts using the timers */ 1661 if (adapter->tx_int_delay) 1662 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1663 1664 if (hw->mac_type < e1000_82543) 1665 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1666 else 1667 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1668 1669 /* Cache if we're 82544 running in PCI-X because we'll 1670 * need this to apply a workaround later in the send path. 1671 */ 1672 if (hw->mac_type == e1000_82544 && 1673 hw->bus_type == e1000_bus_type_pcix) 1674 adapter->pcix_82544 = true; 1675 1676 ew32(TCTL, tctl); 1677 1678 } 1679 1680 /** 1681 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1682 * @adapter: board private structure 1683 * @rxdr: rx descriptor ring (for a specific queue) to setup 1684 * 1685 * Returns 0 on success, negative on failure 1686 **/ 1687 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1688 struct e1000_rx_ring *rxdr) 1689 { 1690 struct pci_dev *pdev = adapter->pdev; 1691 int size, desc_len; 1692 1693 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1694 rxdr->buffer_info = vzalloc(size); 1695 if (!rxdr->buffer_info) 1696 return -ENOMEM; 1697 1698 desc_len = sizeof(struct e1000_rx_desc); 1699 1700 /* Round up to nearest 4K */ 1701 1702 rxdr->size = rxdr->count * desc_len; 1703 rxdr->size = ALIGN(rxdr->size, 4096); 1704 1705 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1706 GFP_KERNEL); 1707 if (!rxdr->desc) { 1708 setup_rx_desc_die: 1709 vfree(rxdr->buffer_info); 1710 return -ENOMEM; 1711 } 1712 1713 /* Fix for errata 23, can't cross 64kB boundary */ 1714 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1715 void *olddesc = rxdr->desc; 1716 dma_addr_t olddma = rxdr->dma; 1717 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1718 rxdr->size, rxdr->desc); 1719 /* Try again, without freeing the previous */ 1720 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1721 &rxdr->dma, GFP_KERNEL); 1722 /* Failed allocation, critical failure */ 1723 if (!rxdr->desc) { 1724 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1725 olddma); 1726 goto setup_rx_desc_die; 1727 } 1728 1729 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1730 /* give up */ 1731 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1732 rxdr->dma); 1733 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1734 olddma); 1735 e_err(probe, "Unable to allocate aligned memory for " 1736 "the Rx descriptor ring\n"); 1737 goto setup_rx_desc_die; 1738 } else { 1739 /* Free old allocation, new allocation was successful */ 1740 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1741 olddma); 1742 } 1743 } 1744 memset(rxdr->desc, 0, rxdr->size); 1745 1746 rxdr->next_to_clean = 0; 1747 rxdr->next_to_use = 0; 1748 rxdr->rx_skb_top = NULL; 1749 1750 return 0; 1751 } 1752 1753 /** 1754 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1755 * (Descriptors) for all queues 1756 * @adapter: board private structure 1757 * 1758 * Return 0 on success, negative on failure 1759 **/ 1760 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1761 { 1762 int i, err = 0; 1763 1764 for (i = 0; i < adapter->num_rx_queues; i++) { 1765 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1766 if (err) { 1767 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1768 for (i-- ; i >= 0; i--) 1769 e1000_free_rx_resources(adapter, 1770 &adapter->rx_ring[i]); 1771 break; 1772 } 1773 } 1774 1775 return err; 1776 } 1777 1778 /** 1779 * e1000_setup_rctl - configure the receive control registers 1780 * @adapter: Board private structure 1781 **/ 1782 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1783 { 1784 struct e1000_hw *hw = &adapter->hw; 1785 u32 rctl; 1786 1787 rctl = er32(RCTL); 1788 1789 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1790 1791 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1792 E1000_RCTL_RDMTS_HALF | 1793 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1794 1795 if (hw->tbi_compatibility_on == 1) 1796 rctl |= E1000_RCTL_SBP; 1797 else 1798 rctl &= ~E1000_RCTL_SBP; 1799 1800 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1801 rctl &= ~E1000_RCTL_LPE; 1802 else 1803 rctl |= E1000_RCTL_LPE; 1804 1805 /* Setup buffer sizes */ 1806 rctl &= ~E1000_RCTL_SZ_4096; 1807 rctl |= E1000_RCTL_BSEX; 1808 switch (adapter->rx_buffer_len) { 1809 case E1000_RXBUFFER_2048: 1810 default: 1811 rctl |= E1000_RCTL_SZ_2048; 1812 rctl &= ~E1000_RCTL_BSEX; 1813 break; 1814 case E1000_RXBUFFER_4096: 1815 rctl |= E1000_RCTL_SZ_4096; 1816 break; 1817 case E1000_RXBUFFER_8192: 1818 rctl |= E1000_RCTL_SZ_8192; 1819 break; 1820 case E1000_RXBUFFER_16384: 1821 rctl |= E1000_RCTL_SZ_16384; 1822 break; 1823 } 1824 1825 /* This is useful for sniffing bad packets. */ 1826 if (adapter->netdev->features & NETIF_F_RXALL) { 1827 /* UPE and MPE will be handled by normal PROMISC logic 1828 * in e1000e_set_rx_mode 1829 */ 1830 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1831 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1832 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1833 1834 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1835 E1000_RCTL_DPF | /* Allow filtered pause */ 1836 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1837 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1838 * and that breaks VLANs. 1839 */ 1840 } 1841 1842 ew32(RCTL, rctl); 1843 } 1844 1845 /** 1846 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1847 * @adapter: board private structure 1848 * 1849 * Configure the Rx unit of the MAC after a reset. 1850 **/ 1851 static void e1000_configure_rx(struct e1000_adapter *adapter) 1852 { 1853 u64 rdba; 1854 struct e1000_hw *hw = &adapter->hw; 1855 u32 rdlen, rctl, rxcsum; 1856 1857 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1858 rdlen = adapter->rx_ring[0].count * 1859 sizeof(struct e1000_rx_desc); 1860 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1861 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1862 } else { 1863 rdlen = adapter->rx_ring[0].count * 1864 sizeof(struct e1000_rx_desc); 1865 adapter->clean_rx = e1000_clean_rx_irq; 1866 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1867 } 1868 1869 /* disable receives while setting up the descriptors */ 1870 rctl = er32(RCTL); 1871 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1872 1873 /* set the Receive Delay Timer Register */ 1874 ew32(RDTR, adapter->rx_int_delay); 1875 1876 if (hw->mac_type >= e1000_82540) { 1877 ew32(RADV, adapter->rx_abs_int_delay); 1878 if (adapter->itr_setting != 0) 1879 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1880 } 1881 1882 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1883 * the Base and Length of the Rx Descriptor Ring 1884 */ 1885 switch (adapter->num_rx_queues) { 1886 case 1: 1887 default: 1888 rdba = adapter->rx_ring[0].dma; 1889 ew32(RDLEN, rdlen); 1890 ew32(RDBAH, (rdba >> 32)); 1891 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1892 ew32(RDT, 0); 1893 ew32(RDH, 0); 1894 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1895 E1000_RDH : E1000_82542_RDH); 1896 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1897 E1000_RDT : E1000_82542_RDT); 1898 break; 1899 } 1900 1901 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1902 if (hw->mac_type >= e1000_82543) { 1903 rxcsum = er32(RXCSUM); 1904 if (adapter->rx_csum) 1905 rxcsum |= E1000_RXCSUM_TUOFL; 1906 else 1907 /* don't need to clear IPPCSE as it defaults to 0 */ 1908 rxcsum &= ~E1000_RXCSUM_TUOFL; 1909 ew32(RXCSUM, rxcsum); 1910 } 1911 1912 /* Enable Receives */ 1913 ew32(RCTL, rctl | E1000_RCTL_EN); 1914 } 1915 1916 /** 1917 * e1000_free_tx_resources - Free Tx Resources per Queue 1918 * @adapter: board private structure 1919 * @tx_ring: Tx descriptor ring for a specific queue 1920 * 1921 * Free all transmit software resources 1922 **/ 1923 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1924 struct e1000_tx_ring *tx_ring) 1925 { 1926 struct pci_dev *pdev = adapter->pdev; 1927 1928 e1000_clean_tx_ring(adapter, tx_ring); 1929 1930 vfree(tx_ring->buffer_info); 1931 tx_ring->buffer_info = NULL; 1932 1933 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1934 tx_ring->dma); 1935 1936 tx_ring->desc = NULL; 1937 } 1938 1939 /** 1940 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1941 * @adapter: board private structure 1942 * 1943 * Free all transmit software resources 1944 **/ 1945 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1946 { 1947 int i; 1948 1949 for (i = 0; i < adapter->num_tx_queues; i++) 1950 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1951 } 1952 1953 static void 1954 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1955 struct e1000_tx_buffer *buffer_info) 1956 { 1957 if (buffer_info->dma) { 1958 if (buffer_info->mapped_as_page) 1959 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1960 buffer_info->length, DMA_TO_DEVICE); 1961 else 1962 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1963 buffer_info->length, 1964 DMA_TO_DEVICE); 1965 buffer_info->dma = 0; 1966 } 1967 if (buffer_info->skb) { 1968 dev_kfree_skb_any(buffer_info->skb); 1969 buffer_info->skb = NULL; 1970 } 1971 buffer_info->time_stamp = 0; 1972 /* buffer_info must be completely set up in the transmit path */ 1973 } 1974 1975 /** 1976 * e1000_clean_tx_ring - Free Tx Buffers 1977 * @adapter: board private structure 1978 * @tx_ring: ring to be cleaned 1979 **/ 1980 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1981 struct e1000_tx_ring *tx_ring) 1982 { 1983 struct e1000_hw *hw = &adapter->hw; 1984 struct e1000_tx_buffer *buffer_info; 1985 unsigned long size; 1986 unsigned int i; 1987 1988 /* Free all the Tx ring sk_buffs */ 1989 1990 for (i = 0; i < tx_ring->count; i++) { 1991 buffer_info = &tx_ring->buffer_info[i]; 1992 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 1993 } 1994 1995 netdev_reset_queue(adapter->netdev); 1996 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 1997 memset(tx_ring->buffer_info, 0, size); 1998 1999 /* Zero out the descriptor ring */ 2000 2001 memset(tx_ring->desc, 0, tx_ring->size); 2002 2003 tx_ring->next_to_use = 0; 2004 tx_ring->next_to_clean = 0; 2005 tx_ring->last_tx_tso = false; 2006 2007 writel(0, hw->hw_addr + tx_ring->tdh); 2008 writel(0, hw->hw_addr + tx_ring->tdt); 2009 } 2010 2011 /** 2012 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2013 * @adapter: board private structure 2014 **/ 2015 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2016 { 2017 int i; 2018 2019 for (i = 0; i < adapter->num_tx_queues; i++) 2020 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2021 } 2022 2023 /** 2024 * e1000_free_rx_resources - Free Rx Resources 2025 * @adapter: board private structure 2026 * @rx_ring: ring to clean the resources from 2027 * 2028 * Free all receive software resources 2029 **/ 2030 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2031 struct e1000_rx_ring *rx_ring) 2032 { 2033 struct pci_dev *pdev = adapter->pdev; 2034 2035 e1000_clean_rx_ring(adapter, rx_ring); 2036 2037 vfree(rx_ring->buffer_info); 2038 rx_ring->buffer_info = NULL; 2039 2040 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2041 rx_ring->dma); 2042 2043 rx_ring->desc = NULL; 2044 } 2045 2046 /** 2047 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2048 * @adapter: board private structure 2049 * 2050 * Free all receive software resources 2051 **/ 2052 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2053 { 2054 int i; 2055 2056 for (i = 0; i < adapter->num_rx_queues; i++) 2057 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2058 } 2059 2060 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2061 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2062 { 2063 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2064 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2065 } 2066 2067 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2068 { 2069 unsigned int len = e1000_frag_len(a); 2070 u8 *data = netdev_alloc_frag(len); 2071 2072 if (likely(data)) 2073 data += E1000_HEADROOM; 2074 return data; 2075 } 2076 2077 static void e1000_free_frag(const void *data) 2078 { 2079 put_page(virt_to_head_page(data)); 2080 } 2081 2082 /** 2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2084 * @adapter: board private structure 2085 * @rx_ring: ring to free buffers from 2086 **/ 2087 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2088 struct e1000_rx_ring *rx_ring) 2089 { 2090 struct e1000_hw *hw = &adapter->hw; 2091 struct e1000_rx_buffer *buffer_info; 2092 struct pci_dev *pdev = adapter->pdev; 2093 unsigned long size; 2094 unsigned int i; 2095 2096 /* Free all the Rx netfrags */ 2097 for (i = 0; i < rx_ring->count; i++) { 2098 buffer_info = &rx_ring->buffer_info[i]; 2099 if (adapter->clean_rx == e1000_clean_rx_irq) { 2100 if (buffer_info->dma) 2101 dma_unmap_single(&pdev->dev, buffer_info->dma, 2102 adapter->rx_buffer_len, 2103 DMA_FROM_DEVICE); 2104 if (buffer_info->rxbuf.data) { 2105 e1000_free_frag(buffer_info->rxbuf.data); 2106 buffer_info->rxbuf.data = NULL; 2107 } 2108 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2109 if (buffer_info->dma) 2110 dma_unmap_page(&pdev->dev, buffer_info->dma, 2111 adapter->rx_buffer_len, 2112 DMA_FROM_DEVICE); 2113 if (buffer_info->rxbuf.page) { 2114 put_page(buffer_info->rxbuf.page); 2115 buffer_info->rxbuf.page = NULL; 2116 } 2117 } 2118 2119 buffer_info->dma = 0; 2120 } 2121 2122 /* there also may be some cached data from a chained receive */ 2123 napi_free_frags(&adapter->napi); 2124 rx_ring->rx_skb_top = NULL; 2125 2126 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2127 memset(rx_ring->buffer_info, 0, size); 2128 2129 /* Zero out the descriptor ring */ 2130 memset(rx_ring->desc, 0, rx_ring->size); 2131 2132 rx_ring->next_to_clean = 0; 2133 rx_ring->next_to_use = 0; 2134 2135 writel(0, hw->hw_addr + rx_ring->rdh); 2136 writel(0, hw->hw_addr + rx_ring->rdt); 2137 } 2138 2139 /** 2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2141 * @adapter: board private structure 2142 **/ 2143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2144 { 2145 int i; 2146 2147 for (i = 0; i < adapter->num_rx_queues; i++) 2148 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2149 } 2150 2151 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2152 * and memory write and invalidate disabled for certain operations 2153 */ 2154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2155 { 2156 struct e1000_hw *hw = &adapter->hw; 2157 struct net_device *netdev = adapter->netdev; 2158 u32 rctl; 2159 2160 e1000_pci_clear_mwi(hw); 2161 2162 rctl = er32(RCTL); 2163 rctl |= E1000_RCTL_RST; 2164 ew32(RCTL, rctl); 2165 E1000_WRITE_FLUSH(); 2166 mdelay(5); 2167 2168 if (netif_running(netdev)) 2169 e1000_clean_all_rx_rings(adapter); 2170 } 2171 2172 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2173 { 2174 struct e1000_hw *hw = &adapter->hw; 2175 struct net_device *netdev = adapter->netdev; 2176 u32 rctl; 2177 2178 rctl = er32(RCTL); 2179 rctl &= ~E1000_RCTL_RST; 2180 ew32(RCTL, rctl); 2181 E1000_WRITE_FLUSH(); 2182 mdelay(5); 2183 2184 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2185 e1000_pci_set_mwi(hw); 2186 2187 if (netif_running(netdev)) { 2188 /* No need to loop, because 82542 supports only 1 queue */ 2189 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2190 e1000_configure_rx(adapter); 2191 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2192 } 2193 } 2194 2195 /** 2196 * e1000_set_mac - Change the Ethernet Address of the NIC 2197 * @netdev: network interface device structure 2198 * @p: pointer to an address structure 2199 * 2200 * Returns 0 on success, negative on failure 2201 **/ 2202 static int e1000_set_mac(struct net_device *netdev, void *p) 2203 { 2204 struct e1000_adapter *adapter = netdev_priv(netdev); 2205 struct e1000_hw *hw = &adapter->hw; 2206 struct sockaddr *addr = p; 2207 2208 if (!is_valid_ether_addr(addr->sa_data)) 2209 return -EADDRNOTAVAIL; 2210 2211 /* 82542 2.0 needs to be in reset to write receive address registers */ 2212 2213 if (hw->mac_type == e1000_82542_rev2_0) 2214 e1000_enter_82542_rst(adapter); 2215 2216 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2217 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2218 2219 e1000_rar_set(hw, hw->mac_addr, 0); 2220 2221 if (hw->mac_type == e1000_82542_rev2_0) 2222 e1000_leave_82542_rst(adapter); 2223 2224 return 0; 2225 } 2226 2227 /** 2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2229 * @netdev: network interface device structure 2230 * 2231 * The set_rx_mode entry point is called whenever the unicast or multicast 2232 * address lists or the network interface flags are updated. This routine is 2233 * responsible for configuring the hardware for proper unicast, multicast, 2234 * promiscuous mode, and all-multi behavior. 2235 **/ 2236 static void e1000_set_rx_mode(struct net_device *netdev) 2237 { 2238 struct e1000_adapter *adapter = netdev_priv(netdev); 2239 struct e1000_hw *hw = &adapter->hw; 2240 struct netdev_hw_addr *ha; 2241 bool use_uc = false; 2242 u32 rctl; 2243 u32 hash_value; 2244 int i, rar_entries = E1000_RAR_ENTRIES; 2245 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2246 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2247 2248 if (!mcarray) 2249 return; 2250 2251 /* Check for Promiscuous and All Multicast modes */ 2252 2253 rctl = er32(RCTL); 2254 2255 if (netdev->flags & IFF_PROMISC) { 2256 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2257 rctl &= ~E1000_RCTL_VFE; 2258 } else { 2259 if (netdev->flags & IFF_ALLMULTI) 2260 rctl |= E1000_RCTL_MPE; 2261 else 2262 rctl &= ~E1000_RCTL_MPE; 2263 /* Enable VLAN filter if there is a VLAN */ 2264 if (e1000_vlan_used(adapter)) 2265 rctl |= E1000_RCTL_VFE; 2266 } 2267 2268 if (netdev_uc_count(netdev) > rar_entries - 1) { 2269 rctl |= E1000_RCTL_UPE; 2270 } else if (!(netdev->flags & IFF_PROMISC)) { 2271 rctl &= ~E1000_RCTL_UPE; 2272 use_uc = true; 2273 } 2274 2275 ew32(RCTL, rctl); 2276 2277 /* 82542 2.0 needs to be in reset to write receive address registers */ 2278 2279 if (hw->mac_type == e1000_82542_rev2_0) 2280 e1000_enter_82542_rst(adapter); 2281 2282 /* load the first 14 addresses into the exact filters 1-14. Unicast 2283 * addresses take precedence to avoid disabling unicast filtering 2284 * when possible. 2285 * 2286 * RAR 0 is used for the station MAC address 2287 * if there are not 14 addresses, go ahead and clear the filters 2288 */ 2289 i = 1; 2290 if (use_uc) 2291 netdev_for_each_uc_addr(ha, netdev) { 2292 if (i == rar_entries) 2293 break; 2294 e1000_rar_set(hw, ha->addr, i++); 2295 } 2296 2297 netdev_for_each_mc_addr(ha, netdev) { 2298 if (i == rar_entries) { 2299 /* load any remaining addresses into the hash table */ 2300 u32 hash_reg, hash_bit, mta; 2301 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2302 hash_reg = (hash_value >> 5) & 0x7F; 2303 hash_bit = hash_value & 0x1F; 2304 mta = (1 << hash_bit); 2305 mcarray[hash_reg] |= mta; 2306 } else { 2307 e1000_rar_set(hw, ha->addr, i++); 2308 } 2309 } 2310 2311 for (; i < rar_entries; i++) { 2312 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2313 E1000_WRITE_FLUSH(); 2314 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2315 E1000_WRITE_FLUSH(); 2316 } 2317 2318 /* write the hash table completely, write from bottom to avoid 2319 * both stupid write combining chipsets, and flushing each write 2320 */ 2321 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2322 /* If we are on an 82544 has an errata where writing odd 2323 * offsets overwrites the previous even offset, but writing 2324 * backwards over the range solves the issue by always 2325 * writing the odd offset first 2326 */ 2327 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2328 } 2329 E1000_WRITE_FLUSH(); 2330 2331 if (hw->mac_type == e1000_82542_rev2_0) 2332 e1000_leave_82542_rst(adapter); 2333 2334 kfree(mcarray); 2335 } 2336 2337 /** 2338 * e1000_update_phy_info_task - get phy info 2339 * @work: work struct contained inside adapter struct 2340 * 2341 * Need to wait a few seconds after link up to get diagnostic information from 2342 * the phy 2343 */ 2344 static void e1000_update_phy_info_task(struct work_struct *work) 2345 { 2346 struct e1000_adapter *adapter = container_of(work, 2347 struct e1000_adapter, 2348 phy_info_task.work); 2349 2350 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2351 } 2352 2353 /** 2354 * e1000_82547_tx_fifo_stall_task - task to complete work 2355 * @work: work struct contained inside adapter struct 2356 **/ 2357 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2358 { 2359 struct e1000_adapter *adapter = container_of(work, 2360 struct e1000_adapter, 2361 fifo_stall_task.work); 2362 struct e1000_hw *hw = &adapter->hw; 2363 struct net_device *netdev = adapter->netdev; 2364 u32 tctl; 2365 2366 if (atomic_read(&adapter->tx_fifo_stall)) { 2367 if ((er32(TDT) == er32(TDH)) && 2368 (er32(TDFT) == er32(TDFH)) && 2369 (er32(TDFTS) == er32(TDFHS))) { 2370 tctl = er32(TCTL); 2371 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2372 ew32(TDFT, adapter->tx_head_addr); 2373 ew32(TDFH, adapter->tx_head_addr); 2374 ew32(TDFTS, adapter->tx_head_addr); 2375 ew32(TDFHS, adapter->tx_head_addr); 2376 ew32(TCTL, tctl); 2377 E1000_WRITE_FLUSH(); 2378 2379 adapter->tx_fifo_head = 0; 2380 atomic_set(&adapter->tx_fifo_stall, 0); 2381 netif_wake_queue(netdev); 2382 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2383 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2384 } 2385 } 2386 } 2387 2388 bool e1000_has_link(struct e1000_adapter *adapter) 2389 { 2390 struct e1000_hw *hw = &adapter->hw; 2391 bool link_active = false; 2392 2393 /* get_link_status is set on LSC (link status) interrupt or rx 2394 * sequence error interrupt (except on intel ce4100). 2395 * get_link_status will stay false until the 2396 * e1000_check_for_link establishes link for copper adapters 2397 * ONLY 2398 */ 2399 switch (hw->media_type) { 2400 case e1000_media_type_copper: 2401 if (hw->mac_type == e1000_ce4100) 2402 hw->get_link_status = 1; 2403 if (hw->get_link_status) { 2404 e1000_check_for_link(hw); 2405 link_active = !hw->get_link_status; 2406 } else { 2407 link_active = true; 2408 } 2409 break; 2410 case e1000_media_type_fiber: 2411 e1000_check_for_link(hw); 2412 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2413 break; 2414 case e1000_media_type_internal_serdes: 2415 e1000_check_for_link(hw); 2416 link_active = hw->serdes_has_link; 2417 break; 2418 default: 2419 break; 2420 } 2421 2422 return link_active; 2423 } 2424 2425 /** 2426 * e1000_watchdog - work function 2427 * @work: work struct contained inside adapter struct 2428 **/ 2429 static void e1000_watchdog(struct work_struct *work) 2430 { 2431 struct e1000_adapter *adapter = container_of(work, 2432 struct e1000_adapter, 2433 watchdog_task.work); 2434 struct e1000_hw *hw = &adapter->hw; 2435 struct net_device *netdev = adapter->netdev; 2436 struct e1000_tx_ring *txdr = adapter->tx_ring; 2437 u32 link, tctl; 2438 2439 link = e1000_has_link(adapter); 2440 if ((netif_carrier_ok(netdev)) && link) 2441 goto link_up; 2442 2443 if (link) { 2444 if (!netif_carrier_ok(netdev)) { 2445 u32 ctrl; 2446 bool txb2b = true; 2447 /* update snapshot of PHY registers on LSC */ 2448 e1000_get_speed_and_duplex(hw, 2449 &adapter->link_speed, 2450 &adapter->link_duplex); 2451 2452 ctrl = er32(CTRL); 2453 pr_info("%s NIC Link is Up %d Mbps %s, " 2454 "Flow Control: %s\n", 2455 netdev->name, 2456 adapter->link_speed, 2457 adapter->link_duplex == FULL_DUPLEX ? 2458 "Full Duplex" : "Half Duplex", 2459 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2460 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2461 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2462 E1000_CTRL_TFCE) ? "TX" : "None"))); 2463 2464 /* adjust timeout factor according to speed/duplex */ 2465 adapter->tx_timeout_factor = 1; 2466 switch (adapter->link_speed) { 2467 case SPEED_10: 2468 txb2b = false; 2469 adapter->tx_timeout_factor = 16; 2470 break; 2471 case SPEED_100: 2472 txb2b = false; 2473 /* maybe add some timeout factor ? */ 2474 break; 2475 } 2476 2477 /* enable transmits in the hardware */ 2478 tctl = er32(TCTL); 2479 tctl |= E1000_TCTL_EN; 2480 ew32(TCTL, tctl); 2481 2482 netif_carrier_on(netdev); 2483 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2484 schedule_delayed_work(&adapter->phy_info_task, 2485 2 * HZ); 2486 adapter->smartspeed = 0; 2487 } 2488 } else { 2489 if (netif_carrier_ok(netdev)) { 2490 adapter->link_speed = 0; 2491 adapter->link_duplex = 0; 2492 pr_info("%s NIC Link is Down\n", 2493 netdev->name); 2494 netif_carrier_off(netdev); 2495 2496 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2497 schedule_delayed_work(&adapter->phy_info_task, 2498 2 * HZ); 2499 } 2500 2501 e1000_smartspeed(adapter); 2502 } 2503 2504 link_up: 2505 e1000_update_stats(adapter); 2506 2507 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2508 adapter->tpt_old = adapter->stats.tpt; 2509 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2510 adapter->colc_old = adapter->stats.colc; 2511 2512 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2513 adapter->gorcl_old = adapter->stats.gorcl; 2514 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2515 adapter->gotcl_old = adapter->stats.gotcl; 2516 2517 e1000_update_adaptive(hw); 2518 2519 if (!netif_carrier_ok(netdev)) { 2520 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2521 /* We've lost link, so the controller stops DMA, 2522 * but we've got queued Tx work that's never going 2523 * to get done, so reset controller to flush Tx. 2524 * (Do the reset outside of interrupt context). 2525 */ 2526 adapter->tx_timeout_count++; 2527 schedule_work(&adapter->reset_task); 2528 /* exit immediately since reset is imminent */ 2529 return; 2530 } 2531 } 2532 2533 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2534 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2535 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2536 * Total asymmetrical Tx or Rx gets ITR=8000; 2537 * everyone else is between 2000-8000. 2538 */ 2539 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2540 u32 dif = (adapter->gotcl > adapter->gorcl ? 2541 adapter->gotcl - adapter->gorcl : 2542 adapter->gorcl - adapter->gotcl) / 10000; 2543 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2544 2545 ew32(ITR, 1000000000 / (itr * 256)); 2546 } 2547 2548 /* Cause software interrupt to ensure rx ring is cleaned */ 2549 ew32(ICS, E1000_ICS_RXDMT0); 2550 2551 /* Force detection of hung controller every watchdog period */ 2552 adapter->detect_tx_hung = true; 2553 2554 /* Reschedule the task */ 2555 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2556 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2557 } 2558 2559 enum latency_range { 2560 lowest_latency = 0, 2561 low_latency = 1, 2562 bulk_latency = 2, 2563 latency_invalid = 255 2564 }; 2565 2566 /** 2567 * e1000_update_itr - update the dynamic ITR value based on statistics 2568 * @adapter: pointer to adapter 2569 * @itr_setting: current adapter->itr 2570 * @packets: the number of packets during this measurement interval 2571 * @bytes: the number of bytes during this measurement interval 2572 * 2573 * Stores a new ITR value based on packets and byte 2574 * counts during the last interrupt. The advantage of per interrupt 2575 * computation is faster updates and more accurate ITR for the current 2576 * traffic pattern. Constants in this function were computed 2577 * based on theoretical maximum wire speed and thresholds were set based 2578 * on testing data as well as attempting to minimize response time 2579 * while increasing bulk throughput. 2580 * this functionality is controlled by the InterruptThrottleRate module 2581 * parameter (see e1000_param.c) 2582 **/ 2583 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2584 u16 itr_setting, int packets, int bytes) 2585 { 2586 unsigned int retval = itr_setting; 2587 struct e1000_hw *hw = &adapter->hw; 2588 2589 if (unlikely(hw->mac_type < e1000_82540)) 2590 goto update_itr_done; 2591 2592 if (packets == 0) 2593 goto update_itr_done; 2594 2595 switch (itr_setting) { 2596 case lowest_latency: 2597 /* jumbo frames get bulk treatment*/ 2598 if (bytes/packets > 8000) 2599 retval = bulk_latency; 2600 else if ((packets < 5) && (bytes > 512)) 2601 retval = low_latency; 2602 break; 2603 case low_latency: /* 50 usec aka 20000 ints/s */ 2604 if (bytes > 10000) { 2605 /* jumbo frames need bulk latency setting */ 2606 if (bytes/packets > 8000) 2607 retval = bulk_latency; 2608 else if ((packets < 10) || ((bytes/packets) > 1200)) 2609 retval = bulk_latency; 2610 else if ((packets > 35)) 2611 retval = lowest_latency; 2612 } else if (bytes/packets > 2000) 2613 retval = bulk_latency; 2614 else if (packets <= 2 && bytes < 512) 2615 retval = lowest_latency; 2616 break; 2617 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2618 if (bytes > 25000) { 2619 if (packets > 35) 2620 retval = low_latency; 2621 } else if (bytes < 6000) { 2622 retval = low_latency; 2623 } 2624 break; 2625 } 2626 2627 update_itr_done: 2628 return retval; 2629 } 2630 2631 static void e1000_set_itr(struct e1000_adapter *adapter) 2632 { 2633 struct e1000_hw *hw = &adapter->hw; 2634 u16 current_itr; 2635 u32 new_itr = adapter->itr; 2636 2637 if (unlikely(hw->mac_type < e1000_82540)) 2638 return; 2639 2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2641 if (unlikely(adapter->link_speed != SPEED_1000)) { 2642 current_itr = 0; 2643 new_itr = 4000; 2644 goto set_itr_now; 2645 } 2646 2647 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2648 adapter->total_tx_packets, 2649 adapter->total_tx_bytes); 2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2651 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2652 adapter->tx_itr = low_latency; 2653 2654 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2655 adapter->total_rx_packets, 2656 adapter->total_rx_bytes); 2657 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2658 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2659 adapter->rx_itr = low_latency; 2660 2661 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2662 2663 switch (current_itr) { 2664 /* counts and packets in update_itr are dependent on these numbers */ 2665 case lowest_latency: 2666 new_itr = 70000; 2667 break; 2668 case low_latency: 2669 new_itr = 20000; /* aka hwitr = ~200 */ 2670 break; 2671 case bulk_latency: 2672 new_itr = 4000; 2673 break; 2674 default: 2675 break; 2676 } 2677 2678 set_itr_now: 2679 if (new_itr != adapter->itr) { 2680 /* this attempts to bias the interrupt rate towards Bulk 2681 * by adding intermediate steps when interrupt rate is 2682 * increasing 2683 */ 2684 new_itr = new_itr > adapter->itr ? 2685 min(adapter->itr + (new_itr >> 2), new_itr) : 2686 new_itr; 2687 adapter->itr = new_itr; 2688 ew32(ITR, 1000000000 / (new_itr * 256)); 2689 } 2690 } 2691 2692 #define E1000_TX_FLAGS_CSUM 0x00000001 2693 #define E1000_TX_FLAGS_VLAN 0x00000002 2694 #define E1000_TX_FLAGS_TSO 0x00000004 2695 #define E1000_TX_FLAGS_IPV4 0x00000008 2696 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2697 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2698 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2699 2700 static int e1000_tso(struct e1000_adapter *adapter, 2701 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2702 __be16 protocol) 2703 { 2704 struct e1000_context_desc *context_desc; 2705 struct e1000_tx_buffer *buffer_info; 2706 unsigned int i; 2707 u32 cmd_length = 0; 2708 u16 ipcse = 0, tucse, mss; 2709 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2710 2711 if (skb_is_gso(skb)) { 2712 int err; 2713 2714 err = skb_cow_head(skb, 0); 2715 if (err < 0) 2716 return err; 2717 2718 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2719 mss = skb_shinfo(skb)->gso_size; 2720 if (protocol == htons(ETH_P_IP)) { 2721 struct iphdr *iph = ip_hdr(skb); 2722 iph->tot_len = 0; 2723 iph->check = 0; 2724 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2725 iph->daddr, 0, 2726 IPPROTO_TCP, 2727 0); 2728 cmd_length = E1000_TXD_CMD_IP; 2729 ipcse = skb_transport_offset(skb) - 1; 2730 } else if (skb_is_gso_v6(skb)) { 2731 ipv6_hdr(skb)->payload_len = 0; 2732 tcp_hdr(skb)->check = 2733 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2734 &ipv6_hdr(skb)->daddr, 2735 0, IPPROTO_TCP, 0); 2736 ipcse = 0; 2737 } 2738 ipcss = skb_network_offset(skb); 2739 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2740 tucss = skb_transport_offset(skb); 2741 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2742 tucse = 0; 2743 2744 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2745 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2746 2747 i = tx_ring->next_to_use; 2748 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2749 buffer_info = &tx_ring->buffer_info[i]; 2750 2751 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2752 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2753 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2754 context_desc->upper_setup.tcp_fields.tucss = tucss; 2755 context_desc->upper_setup.tcp_fields.tucso = tucso; 2756 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2757 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2758 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2759 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2760 2761 buffer_info->time_stamp = jiffies; 2762 buffer_info->next_to_watch = i; 2763 2764 if (++i == tx_ring->count) i = 0; 2765 tx_ring->next_to_use = i; 2766 2767 return true; 2768 } 2769 return false; 2770 } 2771 2772 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2773 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2774 __be16 protocol) 2775 { 2776 struct e1000_context_desc *context_desc; 2777 struct e1000_tx_buffer *buffer_info; 2778 unsigned int i; 2779 u8 css; 2780 u32 cmd_len = E1000_TXD_CMD_DEXT; 2781 2782 if (skb->ip_summed != CHECKSUM_PARTIAL) 2783 return false; 2784 2785 switch (protocol) { 2786 case cpu_to_be16(ETH_P_IP): 2787 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2788 cmd_len |= E1000_TXD_CMD_TCP; 2789 break; 2790 case cpu_to_be16(ETH_P_IPV6): 2791 /* XXX not handling all IPV6 headers */ 2792 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2793 cmd_len |= E1000_TXD_CMD_TCP; 2794 break; 2795 default: 2796 if (unlikely(net_ratelimit())) 2797 e_warn(drv, "checksum_partial proto=%x!\n", 2798 skb->protocol); 2799 break; 2800 } 2801 2802 css = skb_checksum_start_offset(skb); 2803 2804 i = tx_ring->next_to_use; 2805 buffer_info = &tx_ring->buffer_info[i]; 2806 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2807 2808 context_desc->lower_setup.ip_config = 0; 2809 context_desc->upper_setup.tcp_fields.tucss = css; 2810 context_desc->upper_setup.tcp_fields.tucso = 2811 css + skb->csum_offset; 2812 context_desc->upper_setup.tcp_fields.tucse = 0; 2813 context_desc->tcp_seg_setup.data = 0; 2814 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2815 2816 buffer_info->time_stamp = jiffies; 2817 buffer_info->next_to_watch = i; 2818 2819 if (unlikely(++i == tx_ring->count)) i = 0; 2820 tx_ring->next_to_use = i; 2821 2822 return true; 2823 } 2824 2825 #define E1000_MAX_TXD_PWR 12 2826 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2827 2828 static int e1000_tx_map(struct e1000_adapter *adapter, 2829 struct e1000_tx_ring *tx_ring, 2830 struct sk_buff *skb, unsigned int first, 2831 unsigned int max_per_txd, unsigned int nr_frags, 2832 unsigned int mss) 2833 { 2834 struct e1000_hw *hw = &adapter->hw; 2835 struct pci_dev *pdev = adapter->pdev; 2836 struct e1000_tx_buffer *buffer_info; 2837 unsigned int len = skb_headlen(skb); 2838 unsigned int offset = 0, size, count = 0, i; 2839 unsigned int f, bytecount, segs; 2840 2841 i = tx_ring->next_to_use; 2842 2843 while (len) { 2844 buffer_info = &tx_ring->buffer_info[i]; 2845 size = min(len, max_per_txd); 2846 /* Workaround for Controller erratum -- 2847 * descriptor for non-tso packet in a linear SKB that follows a 2848 * tso gets written back prematurely before the data is fully 2849 * DMA'd to the controller 2850 */ 2851 if (!skb->data_len && tx_ring->last_tx_tso && 2852 !skb_is_gso(skb)) { 2853 tx_ring->last_tx_tso = false; 2854 size -= 4; 2855 } 2856 2857 /* Workaround for premature desc write-backs 2858 * in TSO mode. Append 4-byte sentinel desc 2859 */ 2860 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2861 size -= 4; 2862 /* work-around for errata 10 and it applies 2863 * to all controllers in PCI-X mode 2864 * The fix is to make sure that the first descriptor of a 2865 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2866 */ 2867 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2868 (size > 2015) && count == 0)) 2869 size = 2015; 2870 2871 /* Workaround for potential 82544 hang in PCI-X. Avoid 2872 * terminating buffers within evenly-aligned dwords. 2873 */ 2874 if (unlikely(adapter->pcix_82544 && 2875 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2876 size > 4)) 2877 size -= 4; 2878 2879 buffer_info->length = size; 2880 /* set time_stamp *before* dma to help avoid a possible race */ 2881 buffer_info->time_stamp = jiffies; 2882 buffer_info->mapped_as_page = false; 2883 buffer_info->dma = dma_map_single(&pdev->dev, 2884 skb->data + offset, 2885 size, DMA_TO_DEVICE); 2886 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2887 goto dma_error; 2888 buffer_info->next_to_watch = i; 2889 2890 len -= size; 2891 offset += size; 2892 count++; 2893 if (len) { 2894 i++; 2895 if (unlikely(i == tx_ring->count)) 2896 i = 0; 2897 } 2898 } 2899 2900 for (f = 0; f < nr_frags; f++) { 2901 const struct skb_frag_struct *frag; 2902 2903 frag = &skb_shinfo(skb)->frags[f]; 2904 len = skb_frag_size(frag); 2905 offset = 0; 2906 2907 while (len) { 2908 unsigned long bufend; 2909 i++; 2910 if (unlikely(i == tx_ring->count)) 2911 i = 0; 2912 2913 buffer_info = &tx_ring->buffer_info[i]; 2914 size = min(len, max_per_txd); 2915 /* Workaround for premature desc write-backs 2916 * in TSO mode. Append 4-byte sentinel desc 2917 */ 2918 if (unlikely(mss && f == (nr_frags-1) && 2919 size == len && size > 8)) 2920 size -= 4; 2921 /* Workaround for potential 82544 hang in PCI-X. 2922 * Avoid terminating buffers within evenly-aligned 2923 * dwords. 2924 */ 2925 bufend = (unsigned long) 2926 page_to_phys(skb_frag_page(frag)); 2927 bufend += offset + size - 1; 2928 if (unlikely(adapter->pcix_82544 && 2929 !(bufend & 4) && 2930 size > 4)) 2931 size -= 4; 2932 2933 buffer_info->length = size; 2934 buffer_info->time_stamp = jiffies; 2935 buffer_info->mapped_as_page = true; 2936 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2937 offset, size, DMA_TO_DEVICE); 2938 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2939 goto dma_error; 2940 buffer_info->next_to_watch = i; 2941 2942 len -= size; 2943 offset += size; 2944 count++; 2945 } 2946 } 2947 2948 segs = skb_shinfo(skb)->gso_segs ?: 1; 2949 /* multiply data chunks by size of headers */ 2950 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2951 2952 tx_ring->buffer_info[i].skb = skb; 2953 tx_ring->buffer_info[i].segs = segs; 2954 tx_ring->buffer_info[i].bytecount = bytecount; 2955 tx_ring->buffer_info[first].next_to_watch = i; 2956 2957 return count; 2958 2959 dma_error: 2960 dev_err(&pdev->dev, "TX DMA map failed\n"); 2961 buffer_info->dma = 0; 2962 if (count) 2963 count--; 2964 2965 while (count--) { 2966 if (i==0) 2967 i += tx_ring->count; 2968 i--; 2969 buffer_info = &tx_ring->buffer_info[i]; 2970 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2971 } 2972 2973 return 0; 2974 } 2975 2976 static void e1000_tx_queue(struct e1000_adapter *adapter, 2977 struct e1000_tx_ring *tx_ring, int tx_flags, 2978 int count) 2979 { 2980 struct e1000_hw *hw = &adapter->hw; 2981 struct e1000_tx_desc *tx_desc = NULL; 2982 struct e1000_tx_buffer *buffer_info; 2983 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2984 unsigned int i; 2985 2986 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2987 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2988 E1000_TXD_CMD_TSE; 2989 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2990 2991 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2992 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2993 } 2994 2995 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2996 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 2997 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2998 } 2999 3000 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 3001 txd_lower |= E1000_TXD_CMD_VLE; 3002 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 3003 } 3004 3005 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3006 txd_lower &= ~(E1000_TXD_CMD_IFCS); 3007 3008 i = tx_ring->next_to_use; 3009 3010 while (count--) { 3011 buffer_info = &tx_ring->buffer_info[i]; 3012 tx_desc = E1000_TX_DESC(*tx_ring, i); 3013 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3014 tx_desc->lower.data = 3015 cpu_to_le32(txd_lower | buffer_info->length); 3016 tx_desc->upper.data = cpu_to_le32(txd_upper); 3017 if (unlikely(++i == tx_ring->count)) i = 0; 3018 } 3019 3020 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3021 3022 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3023 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3024 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3025 3026 /* Force memory writes to complete before letting h/w 3027 * know there are new descriptors to fetch. (Only 3028 * applicable for weak-ordered memory model archs, 3029 * such as IA-64). 3030 */ 3031 wmb(); 3032 3033 tx_ring->next_to_use = i; 3034 writel(i, hw->hw_addr + tx_ring->tdt); 3035 /* we need this if more than one processor can write to our tail 3036 * at a time, it synchronizes IO on IA64/Altix systems 3037 */ 3038 mmiowb(); 3039 } 3040 3041 /* 82547 workaround to avoid controller hang in half-duplex environment. 3042 * The workaround is to avoid queuing a large packet that would span 3043 * the internal Tx FIFO ring boundary by notifying the stack to resend 3044 * the packet at a later time. This gives the Tx FIFO an opportunity to 3045 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3046 * to the beginning of the Tx FIFO. 3047 */ 3048 3049 #define E1000_FIFO_HDR 0x10 3050 #define E1000_82547_PAD_LEN 0x3E0 3051 3052 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3053 struct sk_buff *skb) 3054 { 3055 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3056 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3057 3058 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3059 3060 if (adapter->link_duplex != HALF_DUPLEX) 3061 goto no_fifo_stall_required; 3062 3063 if (atomic_read(&adapter->tx_fifo_stall)) 3064 return 1; 3065 3066 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3067 atomic_set(&adapter->tx_fifo_stall, 1); 3068 return 1; 3069 } 3070 3071 no_fifo_stall_required: 3072 adapter->tx_fifo_head += skb_fifo_len; 3073 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3074 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3075 return 0; 3076 } 3077 3078 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3079 { 3080 struct e1000_adapter *adapter = netdev_priv(netdev); 3081 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3082 3083 netif_stop_queue(netdev); 3084 /* Herbert's original patch had: 3085 * smp_mb__after_netif_stop_queue(); 3086 * but since that doesn't exist yet, just open code it. 3087 */ 3088 smp_mb(); 3089 3090 /* We need to check again in a case another CPU has just 3091 * made room available. 3092 */ 3093 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3094 return -EBUSY; 3095 3096 /* A reprieve! */ 3097 netif_start_queue(netdev); 3098 ++adapter->restart_queue; 3099 return 0; 3100 } 3101 3102 static int e1000_maybe_stop_tx(struct net_device *netdev, 3103 struct e1000_tx_ring *tx_ring, int size) 3104 { 3105 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3106 return 0; 3107 return __e1000_maybe_stop_tx(netdev, size); 3108 } 3109 3110 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) 3111 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3112 struct net_device *netdev) 3113 { 3114 struct e1000_adapter *adapter = netdev_priv(netdev); 3115 struct e1000_hw *hw = &adapter->hw; 3116 struct e1000_tx_ring *tx_ring; 3117 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3118 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3119 unsigned int tx_flags = 0; 3120 unsigned int len = skb_headlen(skb); 3121 unsigned int nr_frags; 3122 unsigned int mss; 3123 int count = 0; 3124 int tso; 3125 unsigned int f; 3126 __be16 protocol = vlan_get_protocol(skb); 3127 3128 /* This goes back to the question of how to logically map a Tx queue 3129 * to a flow. Right now, performance is impacted slightly negatively 3130 * if using multiple Tx queues. If the stack breaks away from a 3131 * single qdisc implementation, we can look at this again. 3132 */ 3133 tx_ring = adapter->tx_ring; 3134 3135 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3136 * packets may get corrupted during padding by HW. 3137 * To WA this issue, pad all small packets manually. 3138 */ 3139 if (eth_skb_pad(skb)) 3140 return NETDEV_TX_OK; 3141 3142 mss = skb_shinfo(skb)->gso_size; 3143 /* The controller does a simple calculation to 3144 * make sure there is enough room in the FIFO before 3145 * initiating the DMA for each buffer. The calc is: 3146 * 4 = ceil(buffer len/mss). To make sure we don't 3147 * overrun the FIFO, adjust the max buffer len if mss 3148 * drops. 3149 */ 3150 if (mss) { 3151 u8 hdr_len; 3152 max_per_txd = min(mss << 2, max_per_txd); 3153 max_txd_pwr = fls(max_per_txd) - 1; 3154 3155 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3156 if (skb->data_len && hdr_len == len) { 3157 switch (hw->mac_type) { 3158 unsigned int pull_size; 3159 case e1000_82544: 3160 /* Make sure we have room to chop off 4 bytes, 3161 * and that the end alignment will work out to 3162 * this hardware's requirements 3163 * NOTE: this is a TSO only workaround 3164 * if end byte alignment not correct move us 3165 * into the next dword 3166 */ 3167 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3168 & 4) 3169 break; 3170 /* fall through */ 3171 pull_size = min((unsigned int)4, skb->data_len); 3172 if (!__pskb_pull_tail(skb, pull_size)) { 3173 e_err(drv, "__pskb_pull_tail " 3174 "failed.\n"); 3175 dev_kfree_skb_any(skb); 3176 return NETDEV_TX_OK; 3177 } 3178 len = skb_headlen(skb); 3179 break; 3180 default: 3181 /* do nothing */ 3182 break; 3183 } 3184 } 3185 } 3186 3187 /* reserve a descriptor for the offload context */ 3188 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3189 count++; 3190 count++; 3191 3192 /* Controller Erratum workaround */ 3193 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3194 count++; 3195 3196 count += TXD_USE_COUNT(len, max_txd_pwr); 3197 3198 if (adapter->pcix_82544) 3199 count++; 3200 3201 /* work-around for errata 10 and it applies to all controllers 3202 * in PCI-X mode, so add one more descriptor to the count 3203 */ 3204 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3205 (len > 2015))) 3206 count++; 3207 3208 nr_frags = skb_shinfo(skb)->nr_frags; 3209 for (f = 0; f < nr_frags; f++) 3210 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3211 max_txd_pwr); 3212 if (adapter->pcix_82544) 3213 count += nr_frags; 3214 3215 /* need: count + 2 desc gap to keep tail from touching 3216 * head, otherwise try next time 3217 */ 3218 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3219 return NETDEV_TX_BUSY; 3220 3221 if (unlikely((hw->mac_type == e1000_82547) && 3222 (e1000_82547_fifo_workaround(adapter, skb)))) { 3223 netif_stop_queue(netdev); 3224 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3225 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3226 return NETDEV_TX_BUSY; 3227 } 3228 3229 if (vlan_tx_tag_present(skb)) { 3230 tx_flags |= E1000_TX_FLAGS_VLAN; 3231 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 3232 } 3233 3234 first = tx_ring->next_to_use; 3235 3236 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3237 if (tso < 0) { 3238 dev_kfree_skb_any(skb); 3239 return NETDEV_TX_OK; 3240 } 3241 3242 if (likely(tso)) { 3243 if (likely(hw->mac_type != e1000_82544)) 3244 tx_ring->last_tx_tso = true; 3245 tx_flags |= E1000_TX_FLAGS_TSO; 3246 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3247 tx_flags |= E1000_TX_FLAGS_CSUM; 3248 3249 if (protocol == htons(ETH_P_IP)) 3250 tx_flags |= E1000_TX_FLAGS_IPV4; 3251 3252 if (unlikely(skb->no_fcs)) 3253 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3254 3255 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3256 nr_frags, mss); 3257 3258 if (count) { 3259 netdev_sent_queue(netdev, skb->len); 3260 skb_tx_timestamp(skb); 3261 3262 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3263 /* Make sure there is space in the ring for the next send. */ 3264 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); 3265 3266 } else { 3267 dev_kfree_skb_any(skb); 3268 tx_ring->buffer_info[first].time_stamp = 0; 3269 tx_ring->next_to_use = first; 3270 } 3271 3272 return NETDEV_TX_OK; 3273 } 3274 3275 #define NUM_REGS 38 /* 1 based count */ 3276 static void e1000_regdump(struct e1000_adapter *adapter) 3277 { 3278 struct e1000_hw *hw = &adapter->hw; 3279 u32 regs[NUM_REGS]; 3280 u32 *regs_buff = regs; 3281 int i = 0; 3282 3283 static const char * const reg_name[] = { 3284 "CTRL", "STATUS", 3285 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3286 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3287 "TIDV", "TXDCTL", "TADV", "TARC0", 3288 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3289 "TXDCTL1", "TARC1", 3290 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3291 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3292 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3293 }; 3294 3295 regs_buff[0] = er32(CTRL); 3296 regs_buff[1] = er32(STATUS); 3297 3298 regs_buff[2] = er32(RCTL); 3299 regs_buff[3] = er32(RDLEN); 3300 regs_buff[4] = er32(RDH); 3301 regs_buff[5] = er32(RDT); 3302 regs_buff[6] = er32(RDTR); 3303 3304 regs_buff[7] = er32(TCTL); 3305 regs_buff[8] = er32(TDBAL); 3306 regs_buff[9] = er32(TDBAH); 3307 regs_buff[10] = er32(TDLEN); 3308 regs_buff[11] = er32(TDH); 3309 regs_buff[12] = er32(TDT); 3310 regs_buff[13] = er32(TIDV); 3311 regs_buff[14] = er32(TXDCTL); 3312 regs_buff[15] = er32(TADV); 3313 regs_buff[16] = er32(TARC0); 3314 3315 regs_buff[17] = er32(TDBAL1); 3316 regs_buff[18] = er32(TDBAH1); 3317 regs_buff[19] = er32(TDLEN1); 3318 regs_buff[20] = er32(TDH1); 3319 regs_buff[21] = er32(TDT1); 3320 regs_buff[22] = er32(TXDCTL1); 3321 regs_buff[23] = er32(TARC1); 3322 regs_buff[24] = er32(CTRL_EXT); 3323 regs_buff[25] = er32(ERT); 3324 regs_buff[26] = er32(RDBAL0); 3325 regs_buff[27] = er32(RDBAH0); 3326 regs_buff[28] = er32(TDFH); 3327 regs_buff[29] = er32(TDFT); 3328 regs_buff[30] = er32(TDFHS); 3329 regs_buff[31] = er32(TDFTS); 3330 regs_buff[32] = er32(TDFPC); 3331 regs_buff[33] = er32(RDFH); 3332 regs_buff[34] = er32(RDFT); 3333 regs_buff[35] = er32(RDFHS); 3334 regs_buff[36] = er32(RDFTS); 3335 regs_buff[37] = er32(RDFPC); 3336 3337 pr_info("Register dump\n"); 3338 for (i = 0; i < NUM_REGS; i++) 3339 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3340 } 3341 3342 /* 3343 * e1000_dump: Print registers, tx ring and rx ring 3344 */ 3345 static void e1000_dump(struct e1000_adapter *adapter) 3346 { 3347 /* this code doesn't handle multiple rings */ 3348 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3349 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3350 int i; 3351 3352 if (!netif_msg_hw(adapter)) 3353 return; 3354 3355 /* Print Registers */ 3356 e1000_regdump(adapter); 3357 3358 /* transmit dump */ 3359 pr_info("TX Desc ring0 dump\n"); 3360 3361 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3362 * 3363 * Legacy Transmit Descriptor 3364 * +--------------------------------------------------------------+ 3365 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3366 * +--------------------------------------------------------------+ 3367 * 8 | Special | CSS | Status | CMD | CSO | Length | 3368 * +--------------------------------------------------------------+ 3369 * 63 48 47 36 35 32 31 24 23 16 15 0 3370 * 3371 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3372 * 63 48 47 40 39 32 31 16 15 8 7 0 3373 * +----------------------------------------------------------------+ 3374 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3375 * +----------------------------------------------------------------+ 3376 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3377 * +----------------------------------------------------------------+ 3378 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3379 * 3380 * Extended Data Descriptor (DTYP=0x1) 3381 * +----------------------------------------------------------------+ 3382 * 0 | Buffer Address [63:0] | 3383 * +----------------------------------------------------------------+ 3384 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3385 * +----------------------------------------------------------------+ 3386 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3387 */ 3388 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3389 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3390 3391 if (!netif_msg_tx_done(adapter)) 3392 goto rx_ring_summary; 3393 3394 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3395 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3396 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3397 struct my_u { __le64 a; __le64 b; }; 3398 struct my_u *u = (struct my_u *)tx_desc; 3399 const char *type; 3400 3401 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3402 type = "NTC/U"; 3403 else if (i == tx_ring->next_to_use) 3404 type = "NTU"; 3405 else if (i == tx_ring->next_to_clean) 3406 type = "NTC"; 3407 else 3408 type = ""; 3409 3410 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3411 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3412 le64_to_cpu(u->a), le64_to_cpu(u->b), 3413 (u64)buffer_info->dma, buffer_info->length, 3414 buffer_info->next_to_watch, 3415 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3416 } 3417 3418 rx_ring_summary: 3419 /* receive dump */ 3420 pr_info("\nRX Desc ring dump\n"); 3421 3422 /* Legacy Receive Descriptor Format 3423 * 3424 * +-----------------------------------------------------+ 3425 * | Buffer Address [63:0] | 3426 * +-----------------------------------------------------+ 3427 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3428 * +-----------------------------------------------------+ 3429 * 63 48 47 40 39 32 31 16 15 0 3430 */ 3431 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3432 3433 if (!netif_msg_rx_status(adapter)) 3434 goto exit; 3435 3436 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3437 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3438 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3439 struct my_u { __le64 a; __le64 b; }; 3440 struct my_u *u = (struct my_u *)rx_desc; 3441 const char *type; 3442 3443 if (i == rx_ring->next_to_use) 3444 type = "NTU"; 3445 else if (i == rx_ring->next_to_clean) 3446 type = "NTC"; 3447 else 3448 type = ""; 3449 3450 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3451 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3452 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3453 } /* for */ 3454 3455 /* dump the descriptor caches */ 3456 /* rx */ 3457 pr_info("Rx descriptor cache in 64bit format\n"); 3458 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3459 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3460 i, 3461 readl(adapter->hw.hw_addr + i+4), 3462 readl(adapter->hw.hw_addr + i), 3463 readl(adapter->hw.hw_addr + i+12), 3464 readl(adapter->hw.hw_addr + i+8)); 3465 } 3466 /* tx */ 3467 pr_info("Tx descriptor cache in 64bit format\n"); 3468 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3469 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3470 i, 3471 readl(adapter->hw.hw_addr + i+4), 3472 readl(adapter->hw.hw_addr + i), 3473 readl(adapter->hw.hw_addr + i+12), 3474 readl(adapter->hw.hw_addr + i+8)); 3475 } 3476 exit: 3477 return; 3478 } 3479 3480 /** 3481 * e1000_tx_timeout - Respond to a Tx Hang 3482 * @netdev: network interface device structure 3483 **/ 3484 static void e1000_tx_timeout(struct net_device *netdev) 3485 { 3486 struct e1000_adapter *adapter = netdev_priv(netdev); 3487 3488 /* Do the reset outside of interrupt context */ 3489 adapter->tx_timeout_count++; 3490 schedule_work(&adapter->reset_task); 3491 } 3492 3493 static void e1000_reset_task(struct work_struct *work) 3494 { 3495 struct e1000_adapter *adapter = 3496 container_of(work, struct e1000_adapter, reset_task); 3497 3498 e_err(drv, "Reset adapter\n"); 3499 e1000_reinit_locked(adapter); 3500 } 3501 3502 /** 3503 * e1000_get_stats - Get System Network Statistics 3504 * @netdev: network interface device structure 3505 * 3506 * Returns the address of the device statistics structure. 3507 * The statistics are actually updated from the watchdog. 3508 **/ 3509 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 3510 { 3511 /* only return the current stats */ 3512 return &netdev->stats; 3513 } 3514 3515 /** 3516 * e1000_change_mtu - Change the Maximum Transfer Unit 3517 * @netdev: network interface device structure 3518 * @new_mtu: new value for maximum frame size 3519 * 3520 * Returns 0 on success, negative on failure 3521 **/ 3522 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3523 { 3524 struct e1000_adapter *adapter = netdev_priv(netdev); 3525 struct e1000_hw *hw = &adapter->hw; 3526 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 3527 3528 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || 3529 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 3530 e_err(probe, "Invalid MTU setting\n"); 3531 return -EINVAL; 3532 } 3533 3534 /* Adapter-specific max frame size limits. */ 3535 switch (hw->mac_type) { 3536 case e1000_undefined ... e1000_82542_rev2_1: 3537 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3538 e_err(probe, "Jumbo Frames not supported.\n"); 3539 return -EINVAL; 3540 } 3541 break; 3542 default: 3543 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3544 break; 3545 } 3546 3547 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3548 msleep(1); 3549 /* e1000_down has a dependency on max_frame_size */ 3550 hw->max_frame_size = max_frame; 3551 if (netif_running(netdev)) 3552 e1000_down(adapter); 3553 3554 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3555 * means we reserve 2 more, this pushes us to allocate from the next 3556 * larger slab size. 3557 * i.e. RXBUFFER_2048 --> size-4096 slab 3558 * however with the new *_jumbo_rx* routines, jumbo receives will use 3559 * fragmented skbs 3560 */ 3561 3562 if (max_frame <= E1000_RXBUFFER_2048) 3563 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3564 else 3565 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3566 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3567 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3568 adapter->rx_buffer_len = PAGE_SIZE; 3569 #endif 3570 3571 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3572 if (!hw->tbi_compatibility_on && 3573 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3574 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3575 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3576 3577 pr_info("%s changing MTU from %d to %d\n", 3578 netdev->name, netdev->mtu, new_mtu); 3579 netdev->mtu = new_mtu; 3580 3581 if (netif_running(netdev)) 3582 e1000_up(adapter); 3583 else 3584 e1000_reset(adapter); 3585 3586 clear_bit(__E1000_RESETTING, &adapter->flags); 3587 3588 return 0; 3589 } 3590 3591 /** 3592 * e1000_update_stats - Update the board statistics counters 3593 * @adapter: board private structure 3594 **/ 3595 void e1000_update_stats(struct e1000_adapter *adapter) 3596 { 3597 struct net_device *netdev = adapter->netdev; 3598 struct e1000_hw *hw = &adapter->hw; 3599 struct pci_dev *pdev = adapter->pdev; 3600 unsigned long flags; 3601 u16 phy_tmp; 3602 3603 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3604 3605 /* Prevent stats update while adapter is being reset, or if the pci 3606 * connection is down. 3607 */ 3608 if (adapter->link_speed == 0) 3609 return; 3610 if (pci_channel_offline(pdev)) 3611 return; 3612 3613 spin_lock_irqsave(&adapter->stats_lock, flags); 3614 3615 /* these counters are modified from e1000_tbi_adjust_stats, 3616 * called from the interrupt context, so they must only 3617 * be written while holding adapter->stats_lock 3618 */ 3619 3620 adapter->stats.crcerrs += er32(CRCERRS); 3621 adapter->stats.gprc += er32(GPRC); 3622 adapter->stats.gorcl += er32(GORCL); 3623 adapter->stats.gorch += er32(GORCH); 3624 adapter->stats.bprc += er32(BPRC); 3625 adapter->stats.mprc += er32(MPRC); 3626 adapter->stats.roc += er32(ROC); 3627 3628 adapter->stats.prc64 += er32(PRC64); 3629 adapter->stats.prc127 += er32(PRC127); 3630 adapter->stats.prc255 += er32(PRC255); 3631 adapter->stats.prc511 += er32(PRC511); 3632 adapter->stats.prc1023 += er32(PRC1023); 3633 adapter->stats.prc1522 += er32(PRC1522); 3634 3635 adapter->stats.symerrs += er32(SYMERRS); 3636 adapter->stats.mpc += er32(MPC); 3637 adapter->stats.scc += er32(SCC); 3638 adapter->stats.ecol += er32(ECOL); 3639 adapter->stats.mcc += er32(MCC); 3640 adapter->stats.latecol += er32(LATECOL); 3641 adapter->stats.dc += er32(DC); 3642 adapter->stats.sec += er32(SEC); 3643 adapter->stats.rlec += er32(RLEC); 3644 adapter->stats.xonrxc += er32(XONRXC); 3645 adapter->stats.xontxc += er32(XONTXC); 3646 adapter->stats.xoffrxc += er32(XOFFRXC); 3647 adapter->stats.xofftxc += er32(XOFFTXC); 3648 adapter->stats.fcruc += er32(FCRUC); 3649 adapter->stats.gptc += er32(GPTC); 3650 adapter->stats.gotcl += er32(GOTCL); 3651 adapter->stats.gotch += er32(GOTCH); 3652 adapter->stats.rnbc += er32(RNBC); 3653 adapter->stats.ruc += er32(RUC); 3654 adapter->stats.rfc += er32(RFC); 3655 adapter->stats.rjc += er32(RJC); 3656 adapter->stats.torl += er32(TORL); 3657 adapter->stats.torh += er32(TORH); 3658 adapter->stats.totl += er32(TOTL); 3659 adapter->stats.toth += er32(TOTH); 3660 adapter->stats.tpr += er32(TPR); 3661 3662 adapter->stats.ptc64 += er32(PTC64); 3663 adapter->stats.ptc127 += er32(PTC127); 3664 adapter->stats.ptc255 += er32(PTC255); 3665 adapter->stats.ptc511 += er32(PTC511); 3666 adapter->stats.ptc1023 += er32(PTC1023); 3667 adapter->stats.ptc1522 += er32(PTC1522); 3668 3669 adapter->stats.mptc += er32(MPTC); 3670 adapter->stats.bptc += er32(BPTC); 3671 3672 /* used for adaptive IFS */ 3673 3674 hw->tx_packet_delta = er32(TPT); 3675 adapter->stats.tpt += hw->tx_packet_delta; 3676 hw->collision_delta = er32(COLC); 3677 adapter->stats.colc += hw->collision_delta; 3678 3679 if (hw->mac_type >= e1000_82543) { 3680 adapter->stats.algnerrc += er32(ALGNERRC); 3681 adapter->stats.rxerrc += er32(RXERRC); 3682 adapter->stats.tncrs += er32(TNCRS); 3683 adapter->stats.cexterr += er32(CEXTERR); 3684 adapter->stats.tsctc += er32(TSCTC); 3685 adapter->stats.tsctfc += er32(TSCTFC); 3686 } 3687 3688 /* Fill out the OS statistics structure */ 3689 netdev->stats.multicast = adapter->stats.mprc; 3690 netdev->stats.collisions = adapter->stats.colc; 3691 3692 /* Rx Errors */ 3693 3694 /* RLEC on some newer hardware can be incorrect so build 3695 * our own version based on RUC and ROC 3696 */ 3697 netdev->stats.rx_errors = adapter->stats.rxerrc + 3698 adapter->stats.crcerrs + adapter->stats.algnerrc + 3699 adapter->stats.ruc + adapter->stats.roc + 3700 adapter->stats.cexterr; 3701 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3702 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3703 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3704 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3705 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3706 3707 /* Tx Errors */ 3708 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3709 netdev->stats.tx_errors = adapter->stats.txerrc; 3710 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3711 netdev->stats.tx_window_errors = adapter->stats.latecol; 3712 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3713 if (hw->bad_tx_carr_stats_fd && 3714 adapter->link_duplex == FULL_DUPLEX) { 3715 netdev->stats.tx_carrier_errors = 0; 3716 adapter->stats.tncrs = 0; 3717 } 3718 3719 /* Tx Dropped needs to be maintained elsewhere */ 3720 3721 /* Phy Stats */ 3722 if (hw->media_type == e1000_media_type_copper) { 3723 if ((adapter->link_speed == SPEED_1000) && 3724 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3725 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3726 adapter->phy_stats.idle_errors += phy_tmp; 3727 } 3728 3729 if ((hw->mac_type <= e1000_82546) && 3730 (hw->phy_type == e1000_phy_m88) && 3731 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3732 adapter->phy_stats.receive_errors += phy_tmp; 3733 } 3734 3735 /* Management Stats */ 3736 if (hw->has_smbus) { 3737 adapter->stats.mgptc += er32(MGTPTC); 3738 adapter->stats.mgprc += er32(MGTPRC); 3739 adapter->stats.mgpdc += er32(MGTPDC); 3740 } 3741 3742 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3743 } 3744 3745 /** 3746 * e1000_intr - Interrupt Handler 3747 * @irq: interrupt number 3748 * @data: pointer to a network interface device structure 3749 **/ 3750 static irqreturn_t e1000_intr(int irq, void *data) 3751 { 3752 struct net_device *netdev = data; 3753 struct e1000_adapter *adapter = netdev_priv(netdev); 3754 struct e1000_hw *hw = &adapter->hw; 3755 u32 icr = er32(ICR); 3756 3757 if (unlikely((!icr))) 3758 return IRQ_NONE; /* Not our interrupt */ 3759 3760 /* we might have caused the interrupt, but the above 3761 * read cleared it, and just in case the driver is 3762 * down there is nothing to do so return handled 3763 */ 3764 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3765 return IRQ_HANDLED; 3766 3767 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3768 hw->get_link_status = 1; 3769 /* guard against interrupt when we're going down */ 3770 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3771 schedule_delayed_work(&adapter->watchdog_task, 1); 3772 } 3773 3774 /* disable interrupts, without the synchronize_irq bit */ 3775 ew32(IMC, ~0); 3776 E1000_WRITE_FLUSH(); 3777 3778 if (likely(napi_schedule_prep(&adapter->napi))) { 3779 adapter->total_tx_bytes = 0; 3780 adapter->total_tx_packets = 0; 3781 adapter->total_rx_bytes = 0; 3782 adapter->total_rx_packets = 0; 3783 __napi_schedule(&adapter->napi); 3784 } else { 3785 /* this really should not happen! if it does it is basically a 3786 * bug, but not a hard error, so enable ints and continue 3787 */ 3788 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3789 e1000_irq_enable(adapter); 3790 } 3791 3792 return IRQ_HANDLED; 3793 } 3794 3795 /** 3796 * e1000_clean - NAPI Rx polling callback 3797 * @adapter: board private structure 3798 **/ 3799 static int e1000_clean(struct napi_struct *napi, int budget) 3800 { 3801 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3802 napi); 3803 int tx_clean_complete = 0, work_done = 0; 3804 3805 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3806 3807 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3808 3809 if (!tx_clean_complete) 3810 work_done = budget; 3811 3812 /* If budget not fully consumed, exit the polling mode */ 3813 if (work_done < budget) { 3814 if (likely(adapter->itr_setting & 3)) 3815 e1000_set_itr(adapter); 3816 napi_complete(napi); 3817 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3818 e1000_irq_enable(adapter); 3819 } 3820 3821 return work_done; 3822 } 3823 3824 /** 3825 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3826 * @adapter: board private structure 3827 **/ 3828 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3829 struct e1000_tx_ring *tx_ring) 3830 { 3831 struct e1000_hw *hw = &adapter->hw; 3832 struct net_device *netdev = adapter->netdev; 3833 struct e1000_tx_desc *tx_desc, *eop_desc; 3834 struct e1000_tx_buffer *buffer_info; 3835 unsigned int i, eop; 3836 unsigned int count = 0; 3837 unsigned int total_tx_bytes=0, total_tx_packets=0; 3838 unsigned int bytes_compl = 0, pkts_compl = 0; 3839 3840 i = tx_ring->next_to_clean; 3841 eop = tx_ring->buffer_info[i].next_to_watch; 3842 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3843 3844 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3845 (count < tx_ring->count)) { 3846 bool cleaned = false; 3847 rmb(); /* read buffer_info after eop_desc */ 3848 for ( ; !cleaned; count++) { 3849 tx_desc = E1000_TX_DESC(*tx_ring, i); 3850 buffer_info = &tx_ring->buffer_info[i]; 3851 cleaned = (i == eop); 3852 3853 if (cleaned) { 3854 total_tx_packets += buffer_info->segs; 3855 total_tx_bytes += buffer_info->bytecount; 3856 if (buffer_info->skb) { 3857 bytes_compl += buffer_info->skb->len; 3858 pkts_compl++; 3859 } 3860 3861 } 3862 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3863 tx_desc->upper.data = 0; 3864 3865 if (unlikely(++i == tx_ring->count)) i = 0; 3866 } 3867 3868 eop = tx_ring->buffer_info[i].next_to_watch; 3869 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3870 } 3871 3872 tx_ring->next_to_clean = i; 3873 3874 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3875 3876 #define TX_WAKE_THRESHOLD 32 3877 if (unlikely(count && netif_carrier_ok(netdev) && 3878 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3879 /* Make sure that anybody stopping the queue after this 3880 * sees the new next_to_clean. 3881 */ 3882 smp_mb(); 3883 3884 if (netif_queue_stopped(netdev) && 3885 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3886 netif_wake_queue(netdev); 3887 ++adapter->restart_queue; 3888 } 3889 } 3890 3891 if (adapter->detect_tx_hung) { 3892 /* Detect a transmit hang in hardware, this serializes the 3893 * check with the clearing of time_stamp and movement of i 3894 */ 3895 adapter->detect_tx_hung = false; 3896 if (tx_ring->buffer_info[eop].time_stamp && 3897 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3898 (adapter->tx_timeout_factor * HZ)) && 3899 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3900 3901 /* detected Tx unit hang */ 3902 e_err(drv, "Detected Tx Unit Hang\n" 3903 " Tx Queue <%lu>\n" 3904 " TDH <%x>\n" 3905 " TDT <%x>\n" 3906 " next_to_use <%x>\n" 3907 " next_to_clean <%x>\n" 3908 "buffer_info[next_to_clean]\n" 3909 " time_stamp <%lx>\n" 3910 " next_to_watch <%x>\n" 3911 " jiffies <%lx>\n" 3912 " next_to_watch.status <%x>\n", 3913 (unsigned long)(tx_ring - adapter->tx_ring), 3914 readl(hw->hw_addr + tx_ring->tdh), 3915 readl(hw->hw_addr + tx_ring->tdt), 3916 tx_ring->next_to_use, 3917 tx_ring->next_to_clean, 3918 tx_ring->buffer_info[eop].time_stamp, 3919 eop, 3920 jiffies, 3921 eop_desc->upper.fields.status); 3922 e1000_dump(adapter); 3923 netif_stop_queue(netdev); 3924 } 3925 } 3926 adapter->total_tx_bytes += total_tx_bytes; 3927 adapter->total_tx_packets += total_tx_packets; 3928 netdev->stats.tx_bytes += total_tx_bytes; 3929 netdev->stats.tx_packets += total_tx_packets; 3930 return count < tx_ring->count; 3931 } 3932 3933 /** 3934 * e1000_rx_checksum - Receive Checksum Offload for 82543 3935 * @adapter: board private structure 3936 * @status_err: receive descriptor status and error fields 3937 * @csum: receive descriptor csum field 3938 * @sk_buff: socket buffer with received data 3939 **/ 3940 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3941 u32 csum, struct sk_buff *skb) 3942 { 3943 struct e1000_hw *hw = &adapter->hw; 3944 u16 status = (u16)status_err; 3945 u8 errors = (u8)(status_err >> 24); 3946 3947 skb_checksum_none_assert(skb); 3948 3949 /* 82543 or newer only */ 3950 if (unlikely(hw->mac_type < e1000_82543)) return; 3951 /* Ignore Checksum bit is set */ 3952 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; 3953 /* TCP/UDP checksum error bit is set */ 3954 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3955 /* let the stack verify checksum errors */ 3956 adapter->hw_csum_err++; 3957 return; 3958 } 3959 /* TCP/UDP Checksum has not been calculated */ 3960 if (!(status & E1000_RXD_STAT_TCPCS)) 3961 return; 3962 3963 /* It must be a TCP or UDP packet with a valid checksum */ 3964 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3965 /* TCP checksum is good */ 3966 skb->ip_summed = CHECKSUM_UNNECESSARY; 3967 } 3968 adapter->hw_csum_good++; 3969 } 3970 3971 /** 3972 * e1000_consume_page - helper function for jumbo Rx path 3973 **/ 3974 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 3975 u16 length) 3976 { 3977 bi->rxbuf.page = NULL; 3978 skb->len += length; 3979 skb->data_len += length; 3980 skb->truesize += PAGE_SIZE; 3981 } 3982 3983 /** 3984 * e1000_receive_skb - helper function to handle rx indications 3985 * @adapter: board private structure 3986 * @status: descriptor status field as written by hardware 3987 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3988 * @skb: pointer to sk_buff to be indicated to stack 3989 */ 3990 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3991 __le16 vlan, struct sk_buff *skb) 3992 { 3993 skb->protocol = eth_type_trans(skb, adapter->netdev); 3994 3995 if (status & E1000_RXD_STAT_VP) { 3996 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 3997 3998 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 3999 } 4000 napi_gro_receive(&adapter->napi, skb); 4001 } 4002 4003 /** 4004 * e1000_tbi_adjust_stats 4005 * @hw: Struct containing variables accessed by shared code 4006 * @frame_len: The length of the frame in question 4007 * @mac_addr: The Ethernet destination address of the frame in question 4008 * 4009 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4010 */ 4011 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4012 struct e1000_hw_stats *stats, 4013 u32 frame_len, const u8 *mac_addr) 4014 { 4015 u64 carry_bit; 4016 4017 /* First adjust the frame length. */ 4018 frame_len--; 4019 /* We need to adjust the statistics counters, since the hardware 4020 * counters overcount this packet as a CRC error and undercount 4021 * the packet as a good packet 4022 */ 4023 /* This packet should not be counted as a CRC error. */ 4024 stats->crcerrs--; 4025 /* This packet does count as a Good Packet Received. */ 4026 stats->gprc++; 4027 4028 /* Adjust the Good Octets received counters */ 4029 carry_bit = 0x80000000 & stats->gorcl; 4030 stats->gorcl += frame_len; 4031 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4032 * Received Count) was one before the addition, 4033 * AND it is zero after, then we lost the carry out, 4034 * need to add one to Gorch (Good Octets Received Count High). 4035 * This could be simplified if all environments supported 4036 * 64-bit integers. 4037 */ 4038 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4039 stats->gorch++; 4040 /* Is this a broadcast or multicast? Check broadcast first, 4041 * since the test for a multicast frame will test positive on 4042 * a broadcast frame. 4043 */ 4044 if (is_broadcast_ether_addr(mac_addr)) 4045 stats->bprc++; 4046 else if (is_multicast_ether_addr(mac_addr)) 4047 stats->mprc++; 4048 4049 if (frame_len == hw->max_frame_size) { 4050 /* In this case, the hardware has overcounted the number of 4051 * oversize frames. 4052 */ 4053 if (stats->roc > 0) 4054 stats->roc--; 4055 } 4056 4057 /* Adjust the bin counters when the extra byte put the frame in the 4058 * wrong bin. Remember that the frame_len was adjusted above. 4059 */ 4060 if (frame_len == 64) { 4061 stats->prc64++; 4062 stats->prc127--; 4063 } else if (frame_len == 127) { 4064 stats->prc127++; 4065 stats->prc255--; 4066 } else if (frame_len == 255) { 4067 stats->prc255++; 4068 stats->prc511--; 4069 } else if (frame_len == 511) { 4070 stats->prc511++; 4071 stats->prc1023--; 4072 } else if (frame_len == 1023) { 4073 stats->prc1023++; 4074 stats->prc1522--; 4075 } else if (frame_len == 1522) { 4076 stats->prc1522++; 4077 } 4078 } 4079 4080 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4081 u8 status, u8 errors, 4082 u32 length, const u8 *data) 4083 { 4084 struct e1000_hw *hw = &adapter->hw; 4085 u8 last_byte = *(data + length - 1); 4086 4087 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4088 unsigned long irq_flags; 4089 4090 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4091 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4092 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4093 4094 return true; 4095 } 4096 4097 return false; 4098 } 4099 4100 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4101 unsigned int bufsz) 4102 { 4103 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4104 4105 if (unlikely(!skb)) 4106 adapter->alloc_rx_buff_failed++; 4107 return skb; 4108 } 4109 4110 /** 4111 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4112 * @adapter: board private structure 4113 * @rx_ring: ring to clean 4114 * @work_done: amount of napi work completed this call 4115 * @work_to_do: max amount of work allowed for this call to do 4116 * 4117 * the return value indicates whether actual cleaning was done, there 4118 * is no guarantee that everything was cleaned 4119 */ 4120 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4121 struct e1000_rx_ring *rx_ring, 4122 int *work_done, int work_to_do) 4123 { 4124 struct net_device *netdev = adapter->netdev; 4125 struct pci_dev *pdev = adapter->pdev; 4126 struct e1000_rx_desc *rx_desc, *next_rxd; 4127 struct e1000_rx_buffer *buffer_info, *next_buffer; 4128 u32 length; 4129 unsigned int i; 4130 int cleaned_count = 0; 4131 bool cleaned = false; 4132 unsigned int total_rx_bytes=0, total_rx_packets=0; 4133 4134 i = rx_ring->next_to_clean; 4135 rx_desc = E1000_RX_DESC(*rx_ring, i); 4136 buffer_info = &rx_ring->buffer_info[i]; 4137 4138 while (rx_desc->status & E1000_RXD_STAT_DD) { 4139 struct sk_buff *skb; 4140 u8 status; 4141 4142 if (*work_done >= work_to_do) 4143 break; 4144 (*work_done)++; 4145 rmb(); /* read descriptor and rx_buffer_info after status DD */ 4146 4147 status = rx_desc->status; 4148 4149 if (++i == rx_ring->count) i = 0; 4150 next_rxd = E1000_RX_DESC(*rx_ring, i); 4151 prefetch(next_rxd); 4152 4153 next_buffer = &rx_ring->buffer_info[i]; 4154 4155 cleaned = true; 4156 cleaned_count++; 4157 dma_unmap_page(&pdev->dev, buffer_info->dma, 4158 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4159 buffer_info->dma = 0; 4160 4161 length = le16_to_cpu(rx_desc->length); 4162 4163 /* errors is only valid for DD + EOP descriptors */ 4164 if (unlikely((status & E1000_RXD_STAT_EOP) && 4165 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4166 u8 *mapped = page_address(buffer_info->rxbuf.page); 4167 4168 if (e1000_tbi_should_accept(adapter, status, 4169 rx_desc->errors, 4170 length, mapped)) { 4171 length--; 4172 } else if (netdev->features & NETIF_F_RXALL) { 4173 goto process_skb; 4174 } else { 4175 /* an error means any chain goes out the window 4176 * too 4177 */ 4178 if (rx_ring->rx_skb_top) 4179 dev_kfree_skb(rx_ring->rx_skb_top); 4180 rx_ring->rx_skb_top = NULL; 4181 goto next_desc; 4182 } 4183 } 4184 4185 #define rxtop rx_ring->rx_skb_top 4186 process_skb: 4187 if (!(status & E1000_RXD_STAT_EOP)) { 4188 /* this descriptor is only the beginning (or middle) */ 4189 if (!rxtop) { 4190 /* this is the beginning of a chain */ 4191 rxtop = napi_get_frags(&adapter->napi); 4192 if (!rxtop) 4193 break; 4194 4195 skb_fill_page_desc(rxtop, 0, 4196 buffer_info->rxbuf.page, 4197 0, length); 4198 } else { 4199 /* this is the middle of a chain */ 4200 skb_fill_page_desc(rxtop, 4201 skb_shinfo(rxtop)->nr_frags, 4202 buffer_info->rxbuf.page, 0, length); 4203 } 4204 e1000_consume_page(buffer_info, rxtop, length); 4205 goto next_desc; 4206 } else { 4207 if (rxtop) { 4208 /* end of the chain */ 4209 skb_fill_page_desc(rxtop, 4210 skb_shinfo(rxtop)->nr_frags, 4211 buffer_info->rxbuf.page, 0, length); 4212 skb = rxtop; 4213 rxtop = NULL; 4214 e1000_consume_page(buffer_info, skb, length); 4215 } else { 4216 struct page *p; 4217 /* no chain, got EOP, this buf is the packet 4218 * copybreak to save the put_page/alloc_page 4219 */ 4220 p = buffer_info->rxbuf.page; 4221 if (length <= copybreak) { 4222 u8 *vaddr; 4223 4224 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4225 length -= 4; 4226 skb = e1000_alloc_rx_skb(adapter, 4227 length); 4228 if (!skb) 4229 break; 4230 4231 vaddr = kmap_atomic(p); 4232 memcpy(skb_tail_pointer(skb), vaddr, 4233 length); 4234 kunmap_atomic(vaddr); 4235 /* re-use the page, so don't erase 4236 * buffer_info->rxbuf.page 4237 */ 4238 skb_put(skb, length); 4239 e1000_rx_checksum(adapter, 4240 status | rx_desc->errors << 24, 4241 le16_to_cpu(rx_desc->csum), skb); 4242 4243 total_rx_bytes += skb->len; 4244 total_rx_packets++; 4245 4246 e1000_receive_skb(adapter, status, 4247 rx_desc->special, skb); 4248 goto next_desc; 4249 } else { 4250 skb = napi_get_frags(&adapter->napi); 4251 if (!skb) { 4252 adapter->alloc_rx_buff_failed++; 4253 break; 4254 } 4255 skb_fill_page_desc(skb, 0, p, 0, 4256 length); 4257 e1000_consume_page(buffer_info, skb, 4258 length); 4259 } 4260 } 4261 } 4262 4263 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4264 e1000_rx_checksum(adapter, 4265 (u32)(status) | 4266 ((u32)(rx_desc->errors) << 24), 4267 le16_to_cpu(rx_desc->csum), skb); 4268 4269 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4270 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4271 pskb_trim(skb, skb->len - 4); 4272 total_rx_packets++; 4273 4274 if (status & E1000_RXD_STAT_VP) { 4275 __le16 vlan = rx_desc->special; 4276 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4277 4278 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4279 } 4280 4281 napi_gro_frags(&adapter->napi); 4282 4283 next_desc: 4284 rx_desc->status = 0; 4285 4286 /* return some buffers to hardware, one at a time is too slow */ 4287 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4288 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4289 cleaned_count = 0; 4290 } 4291 4292 /* use prefetched values */ 4293 rx_desc = next_rxd; 4294 buffer_info = next_buffer; 4295 } 4296 rx_ring->next_to_clean = i; 4297 4298 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4299 if (cleaned_count) 4300 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4301 4302 adapter->total_rx_packets += total_rx_packets; 4303 adapter->total_rx_bytes += total_rx_bytes; 4304 netdev->stats.rx_bytes += total_rx_bytes; 4305 netdev->stats.rx_packets += total_rx_packets; 4306 return cleaned; 4307 } 4308 4309 /* this should improve performance for small packets with large amounts 4310 * of reassembly being done in the stack 4311 */ 4312 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4313 struct e1000_rx_buffer *buffer_info, 4314 u32 length, const void *data) 4315 { 4316 struct sk_buff *skb; 4317 4318 if (length > copybreak) 4319 return NULL; 4320 4321 skb = e1000_alloc_rx_skb(adapter, length); 4322 if (!skb) 4323 return NULL; 4324 4325 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4326 length, DMA_FROM_DEVICE); 4327 4328 memcpy(skb_put(skb, length), data, length); 4329 4330 return skb; 4331 } 4332 4333 /** 4334 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4335 * @adapter: board private structure 4336 * @rx_ring: ring to clean 4337 * @work_done: amount of napi work completed this call 4338 * @work_to_do: max amount of work allowed for this call to do 4339 */ 4340 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4341 struct e1000_rx_ring *rx_ring, 4342 int *work_done, int work_to_do) 4343 { 4344 struct net_device *netdev = adapter->netdev; 4345 struct pci_dev *pdev = adapter->pdev; 4346 struct e1000_rx_desc *rx_desc, *next_rxd; 4347 struct e1000_rx_buffer *buffer_info, *next_buffer; 4348 u32 length; 4349 unsigned int i; 4350 int cleaned_count = 0; 4351 bool cleaned = false; 4352 unsigned int total_rx_bytes=0, total_rx_packets=0; 4353 4354 i = rx_ring->next_to_clean; 4355 rx_desc = E1000_RX_DESC(*rx_ring, i); 4356 buffer_info = &rx_ring->buffer_info[i]; 4357 4358 while (rx_desc->status & E1000_RXD_STAT_DD) { 4359 struct sk_buff *skb; 4360 u8 *data; 4361 u8 status; 4362 4363 if (*work_done >= work_to_do) 4364 break; 4365 (*work_done)++; 4366 rmb(); /* read descriptor and rx_buffer_info after status DD */ 4367 4368 status = rx_desc->status; 4369 length = le16_to_cpu(rx_desc->length); 4370 4371 data = buffer_info->rxbuf.data; 4372 prefetch(data); 4373 skb = e1000_copybreak(adapter, buffer_info, length, data); 4374 if (!skb) { 4375 unsigned int frag_len = e1000_frag_len(adapter); 4376 4377 skb = build_skb(data - E1000_HEADROOM, frag_len); 4378 if (!skb) { 4379 adapter->alloc_rx_buff_failed++; 4380 break; 4381 } 4382 4383 skb_reserve(skb, E1000_HEADROOM); 4384 dma_unmap_single(&pdev->dev, buffer_info->dma, 4385 adapter->rx_buffer_len, 4386 DMA_FROM_DEVICE); 4387 buffer_info->dma = 0; 4388 buffer_info->rxbuf.data = NULL; 4389 } 4390 4391 if (++i == rx_ring->count) i = 0; 4392 next_rxd = E1000_RX_DESC(*rx_ring, i); 4393 prefetch(next_rxd); 4394 4395 next_buffer = &rx_ring->buffer_info[i]; 4396 4397 cleaned = true; 4398 cleaned_count++; 4399 4400 /* !EOP means multiple descriptors were used to store a single 4401 * packet, if thats the case we need to toss it. In fact, we 4402 * to toss every packet with the EOP bit clear and the next 4403 * frame that _does_ have the EOP bit set, as it is by 4404 * definition only a frame fragment 4405 */ 4406 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4407 adapter->discarding = true; 4408 4409 if (adapter->discarding) { 4410 /* All receives must fit into a single buffer */ 4411 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4412 dev_kfree_skb(skb); 4413 if (status & E1000_RXD_STAT_EOP) 4414 adapter->discarding = false; 4415 goto next_desc; 4416 } 4417 4418 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4419 if (e1000_tbi_should_accept(adapter, status, 4420 rx_desc->errors, 4421 length, data)) { 4422 length--; 4423 } else if (netdev->features & NETIF_F_RXALL) { 4424 goto process_skb; 4425 } else { 4426 dev_kfree_skb(skb); 4427 goto next_desc; 4428 } 4429 } 4430 4431 process_skb: 4432 total_rx_bytes += (length - 4); /* don't count FCS */ 4433 total_rx_packets++; 4434 4435 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4436 /* adjust length to remove Ethernet CRC, this must be 4437 * done after the TBI_ACCEPT workaround above 4438 */ 4439 length -= 4; 4440 4441 if (buffer_info->rxbuf.data == NULL) 4442 skb_put(skb, length); 4443 else /* copybreak skb */ 4444 skb_trim(skb, length); 4445 4446 /* Receive Checksum Offload */ 4447 e1000_rx_checksum(adapter, 4448 (u32)(status) | 4449 ((u32)(rx_desc->errors) << 24), 4450 le16_to_cpu(rx_desc->csum), skb); 4451 4452 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4453 4454 next_desc: 4455 rx_desc->status = 0; 4456 4457 /* return some buffers to hardware, one at a time is too slow */ 4458 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4459 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4460 cleaned_count = 0; 4461 } 4462 4463 /* use prefetched values */ 4464 rx_desc = next_rxd; 4465 buffer_info = next_buffer; 4466 } 4467 rx_ring->next_to_clean = i; 4468 4469 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4470 if (cleaned_count) 4471 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4472 4473 adapter->total_rx_packets += total_rx_packets; 4474 adapter->total_rx_bytes += total_rx_bytes; 4475 netdev->stats.rx_bytes += total_rx_bytes; 4476 netdev->stats.rx_packets += total_rx_packets; 4477 return cleaned; 4478 } 4479 4480 /** 4481 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4482 * @adapter: address of board private structure 4483 * @rx_ring: pointer to receive ring structure 4484 * @cleaned_count: number of buffers to allocate this pass 4485 **/ 4486 static void 4487 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4488 struct e1000_rx_ring *rx_ring, int cleaned_count) 4489 { 4490 struct pci_dev *pdev = adapter->pdev; 4491 struct e1000_rx_desc *rx_desc; 4492 struct e1000_rx_buffer *buffer_info; 4493 unsigned int i; 4494 4495 i = rx_ring->next_to_use; 4496 buffer_info = &rx_ring->buffer_info[i]; 4497 4498 while (cleaned_count--) { 4499 /* allocate a new page if necessary */ 4500 if (!buffer_info->rxbuf.page) { 4501 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4502 if (unlikely(!buffer_info->rxbuf.page)) { 4503 adapter->alloc_rx_buff_failed++; 4504 break; 4505 } 4506 } 4507 4508 if (!buffer_info->dma) { 4509 buffer_info->dma = dma_map_page(&pdev->dev, 4510 buffer_info->rxbuf.page, 0, 4511 adapter->rx_buffer_len, 4512 DMA_FROM_DEVICE); 4513 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4514 put_page(buffer_info->rxbuf.page); 4515 buffer_info->rxbuf.page = NULL; 4516 buffer_info->dma = 0; 4517 adapter->alloc_rx_buff_failed++; 4518 break; 4519 } 4520 } 4521 4522 rx_desc = E1000_RX_DESC(*rx_ring, i); 4523 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4524 4525 if (unlikely(++i == rx_ring->count)) 4526 i = 0; 4527 buffer_info = &rx_ring->buffer_info[i]; 4528 } 4529 4530 if (likely(rx_ring->next_to_use != i)) { 4531 rx_ring->next_to_use = i; 4532 if (unlikely(i-- == 0)) 4533 i = (rx_ring->count - 1); 4534 4535 /* Force memory writes to complete before letting h/w 4536 * know there are new descriptors to fetch. (Only 4537 * applicable for weak-ordered memory model archs, 4538 * such as IA-64). 4539 */ 4540 wmb(); 4541 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4542 } 4543 } 4544 4545 /** 4546 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4547 * @adapter: address of board private structure 4548 **/ 4549 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4550 struct e1000_rx_ring *rx_ring, 4551 int cleaned_count) 4552 { 4553 struct e1000_hw *hw = &adapter->hw; 4554 struct pci_dev *pdev = adapter->pdev; 4555 struct e1000_rx_desc *rx_desc; 4556 struct e1000_rx_buffer *buffer_info; 4557 unsigned int i; 4558 unsigned int bufsz = adapter->rx_buffer_len; 4559 4560 i = rx_ring->next_to_use; 4561 buffer_info = &rx_ring->buffer_info[i]; 4562 4563 while (cleaned_count--) { 4564 void *data; 4565 4566 if (buffer_info->rxbuf.data) 4567 goto skip; 4568 4569 data = e1000_alloc_frag(adapter); 4570 if (!data) { 4571 /* Better luck next round */ 4572 adapter->alloc_rx_buff_failed++; 4573 break; 4574 } 4575 4576 /* Fix for errata 23, can't cross 64kB boundary */ 4577 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4578 void *olddata = data; 4579 e_err(rx_err, "skb align check failed: %u bytes at " 4580 "%p\n", bufsz, data); 4581 /* Try again, without freeing the previous */ 4582 data = e1000_alloc_frag(adapter); 4583 /* Failed allocation, critical failure */ 4584 if (!data) { 4585 e1000_free_frag(olddata); 4586 adapter->alloc_rx_buff_failed++; 4587 break; 4588 } 4589 4590 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4591 /* give up */ 4592 e1000_free_frag(data); 4593 e1000_free_frag(olddata); 4594 adapter->alloc_rx_buff_failed++; 4595 break; 4596 } 4597 4598 /* Use new allocation */ 4599 e1000_free_frag(olddata); 4600 } 4601 buffer_info->dma = dma_map_single(&pdev->dev, 4602 data, 4603 adapter->rx_buffer_len, 4604 DMA_FROM_DEVICE); 4605 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4606 e1000_free_frag(data); 4607 buffer_info->dma = 0; 4608 adapter->alloc_rx_buff_failed++; 4609 break; 4610 } 4611 4612 /* XXX if it was allocated cleanly it will never map to a 4613 * boundary crossing 4614 */ 4615 4616 /* Fix for errata 23, can't cross 64kB boundary */ 4617 if (!e1000_check_64k_bound(adapter, 4618 (void *)(unsigned long)buffer_info->dma, 4619 adapter->rx_buffer_len)) { 4620 e_err(rx_err, "dma align check failed: %u bytes at " 4621 "%p\n", adapter->rx_buffer_len, 4622 (void *)(unsigned long)buffer_info->dma); 4623 4624 dma_unmap_single(&pdev->dev, buffer_info->dma, 4625 adapter->rx_buffer_len, 4626 DMA_FROM_DEVICE); 4627 4628 e1000_free_frag(data); 4629 buffer_info->rxbuf.data = NULL; 4630 buffer_info->dma = 0; 4631 4632 adapter->alloc_rx_buff_failed++; 4633 break; 4634 } 4635 buffer_info->rxbuf.data = data; 4636 skip: 4637 rx_desc = E1000_RX_DESC(*rx_ring, i); 4638 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4639 4640 if (unlikely(++i == rx_ring->count)) 4641 i = 0; 4642 buffer_info = &rx_ring->buffer_info[i]; 4643 } 4644 4645 if (likely(rx_ring->next_to_use != i)) { 4646 rx_ring->next_to_use = i; 4647 if (unlikely(i-- == 0)) 4648 i = (rx_ring->count - 1); 4649 4650 /* Force memory writes to complete before letting h/w 4651 * know there are new descriptors to fetch. (Only 4652 * applicable for weak-ordered memory model archs, 4653 * such as IA-64). 4654 */ 4655 wmb(); 4656 writel(i, hw->hw_addr + rx_ring->rdt); 4657 } 4658 } 4659 4660 /** 4661 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4662 * @adapter: 4663 **/ 4664 static void e1000_smartspeed(struct e1000_adapter *adapter) 4665 { 4666 struct e1000_hw *hw = &adapter->hw; 4667 u16 phy_status; 4668 u16 phy_ctrl; 4669 4670 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4671 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4672 return; 4673 4674 if (adapter->smartspeed == 0) { 4675 /* If Master/Slave config fault is asserted twice, 4676 * we assume back-to-back 4677 */ 4678 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4679 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; 4680 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4681 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; 4682 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4683 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4684 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4685 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4686 phy_ctrl); 4687 adapter->smartspeed++; 4688 if (!e1000_phy_setup_autoneg(hw) && 4689 !e1000_read_phy_reg(hw, PHY_CTRL, 4690 &phy_ctrl)) { 4691 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4692 MII_CR_RESTART_AUTO_NEG); 4693 e1000_write_phy_reg(hw, PHY_CTRL, 4694 phy_ctrl); 4695 } 4696 } 4697 return; 4698 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4699 /* If still no link, perhaps using 2/3 pair cable */ 4700 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4701 phy_ctrl |= CR_1000T_MS_ENABLE; 4702 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4703 if (!e1000_phy_setup_autoneg(hw) && 4704 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4705 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4706 MII_CR_RESTART_AUTO_NEG); 4707 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4708 } 4709 } 4710 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4711 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4712 adapter->smartspeed = 0; 4713 } 4714 4715 /** 4716 * e1000_ioctl - 4717 * @netdev: 4718 * @ifreq: 4719 * @cmd: 4720 **/ 4721 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4722 { 4723 switch (cmd) { 4724 case SIOCGMIIPHY: 4725 case SIOCGMIIREG: 4726 case SIOCSMIIREG: 4727 return e1000_mii_ioctl(netdev, ifr, cmd); 4728 default: 4729 return -EOPNOTSUPP; 4730 } 4731 } 4732 4733 /** 4734 * e1000_mii_ioctl - 4735 * @netdev: 4736 * @ifreq: 4737 * @cmd: 4738 **/ 4739 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4740 int cmd) 4741 { 4742 struct e1000_adapter *adapter = netdev_priv(netdev); 4743 struct e1000_hw *hw = &adapter->hw; 4744 struct mii_ioctl_data *data = if_mii(ifr); 4745 int retval; 4746 u16 mii_reg; 4747 unsigned long flags; 4748 4749 if (hw->media_type != e1000_media_type_copper) 4750 return -EOPNOTSUPP; 4751 4752 switch (cmd) { 4753 case SIOCGMIIPHY: 4754 data->phy_id = hw->phy_addr; 4755 break; 4756 case SIOCGMIIREG: 4757 spin_lock_irqsave(&adapter->stats_lock, flags); 4758 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4759 &data->val_out)) { 4760 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4761 return -EIO; 4762 } 4763 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4764 break; 4765 case SIOCSMIIREG: 4766 if (data->reg_num & ~(0x1F)) 4767 return -EFAULT; 4768 mii_reg = data->val_in; 4769 spin_lock_irqsave(&adapter->stats_lock, flags); 4770 if (e1000_write_phy_reg(hw, data->reg_num, 4771 mii_reg)) { 4772 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4773 return -EIO; 4774 } 4775 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4776 if (hw->media_type == e1000_media_type_copper) { 4777 switch (data->reg_num) { 4778 case PHY_CTRL: 4779 if (mii_reg & MII_CR_POWER_DOWN) 4780 break; 4781 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4782 hw->autoneg = 1; 4783 hw->autoneg_advertised = 0x2F; 4784 } else { 4785 u32 speed; 4786 if (mii_reg & 0x40) 4787 speed = SPEED_1000; 4788 else if (mii_reg & 0x2000) 4789 speed = SPEED_100; 4790 else 4791 speed = SPEED_10; 4792 retval = e1000_set_spd_dplx( 4793 adapter, speed, 4794 ((mii_reg & 0x100) 4795 ? DUPLEX_FULL : 4796 DUPLEX_HALF)); 4797 if (retval) 4798 return retval; 4799 } 4800 if (netif_running(adapter->netdev)) 4801 e1000_reinit_locked(adapter); 4802 else 4803 e1000_reset(adapter); 4804 break; 4805 case M88E1000_PHY_SPEC_CTRL: 4806 case M88E1000_EXT_PHY_SPEC_CTRL: 4807 if (e1000_phy_reset(hw)) 4808 return -EIO; 4809 break; 4810 } 4811 } else { 4812 switch (data->reg_num) { 4813 case PHY_CTRL: 4814 if (mii_reg & MII_CR_POWER_DOWN) 4815 break; 4816 if (netif_running(adapter->netdev)) 4817 e1000_reinit_locked(adapter); 4818 else 4819 e1000_reset(adapter); 4820 break; 4821 } 4822 } 4823 break; 4824 default: 4825 return -EOPNOTSUPP; 4826 } 4827 return E1000_SUCCESS; 4828 } 4829 4830 void e1000_pci_set_mwi(struct e1000_hw *hw) 4831 { 4832 struct e1000_adapter *adapter = hw->back; 4833 int ret_val = pci_set_mwi(adapter->pdev); 4834 4835 if (ret_val) 4836 e_err(probe, "Error in setting MWI\n"); 4837 } 4838 4839 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4840 { 4841 struct e1000_adapter *adapter = hw->back; 4842 4843 pci_clear_mwi(adapter->pdev); 4844 } 4845 4846 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4847 { 4848 struct e1000_adapter *adapter = hw->back; 4849 return pcix_get_mmrbc(adapter->pdev); 4850 } 4851 4852 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4853 { 4854 struct e1000_adapter *adapter = hw->back; 4855 pcix_set_mmrbc(adapter->pdev, mmrbc); 4856 } 4857 4858 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4859 { 4860 outl(value, port); 4861 } 4862 4863 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4864 { 4865 u16 vid; 4866 4867 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4868 return true; 4869 return false; 4870 } 4871 4872 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4873 netdev_features_t features) 4874 { 4875 struct e1000_hw *hw = &adapter->hw; 4876 u32 ctrl; 4877 4878 ctrl = er32(CTRL); 4879 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4880 /* enable VLAN tag insert/strip */ 4881 ctrl |= E1000_CTRL_VME; 4882 } else { 4883 /* disable VLAN tag insert/strip */ 4884 ctrl &= ~E1000_CTRL_VME; 4885 } 4886 ew32(CTRL, ctrl); 4887 } 4888 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4889 bool filter_on) 4890 { 4891 struct e1000_hw *hw = &adapter->hw; 4892 u32 rctl; 4893 4894 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4895 e1000_irq_disable(adapter); 4896 4897 __e1000_vlan_mode(adapter, adapter->netdev->features); 4898 if (filter_on) { 4899 /* enable VLAN receive filtering */ 4900 rctl = er32(RCTL); 4901 rctl &= ~E1000_RCTL_CFIEN; 4902 if (!(adapter->netdev->flags & IFF_PROMISC)) 4903 rctl |= E1000_RCTL_VFE; 4904 ew32(RCTL, rctl); 4905 e1000_update_mng_vlan(adapter); 4906 } else { 4907 /* disable VLAN receive filtering */ 4908 rctl = er32(RCTL); 4909 rctl &= ~E1000_RCTL_VFE; 4910 ew32(RCTL, rctl); 4911 } 4912 4913 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4914 e1000_irq_enable(adapter); 4915 } 4916 4917 static void e1000_vlan_mode(struct net_device *netdev, 4918 netdev_features_t features) 4919 { 4920 struct e1000_adapter *adapter = netdev_priv(netdev); 4921 4922 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4923 e1000_irq_disable(adapter); 4924 4925 __e1000_vlan_mode(adapter, features); 4926 4927 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4928 e1000_irq_enable(adapter); 4929 } 4930 4931 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4932 __be16 proto, u16 vid) 4933 { 4934 struct e1000_adapter *adapter = netdev_priv(netdev); 4935 struct e1000_hw *hw = &adapter->hw; 4936 u32 vfta, index; 4937 4938 if ((hw->mng_cookie.status & 4939 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4940 (vid == adapter->mng_vlan_id)) 4941 return 0; 4942 4943 if (!e1000_vlan_used(adapter)) 4944 e1000_vlan_filter_on_off(adapter, true); 4945 4946 /* add VID to filter table */ 4947 index = (vid >> 5) & 0x7F; 4948 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4949 vfta |= (1 << (vid & 0x1F)); 4950 e1000_write_vfta(hw, index, vfta); 4951 4952 set_bit(vid, adapter->active_vlans); 4953 4954 return 0; 4955 } 4956 4957 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4958 __be16 proto, u16 vid) 4959 { 4960 struct e1000_adapter *adapter = netdev_priv(netdev); 4961 struct e1000_hw *hw = &adapter->hw; 4962 u32 vfta, index; 4963 4964 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4965 e1000_irq_disable(adapter); 4966 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4967 e1000_irq_enable(adapter); 4968 4969 /* remove VID from filter table */ 4970 index = (vid >> 5) & 0x7F; 4971 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4972 vfta &= ~(1 << (vid & 0x1F)); 4973 e1000_write_vfta(hw, index, vfta); 4974 4975 clear_bit(vid, adapter->active_vlans); 4976 4977 if (!e1000_vlan_used(adapter)) 4978 e1000_vlan_filter_on_off(adapter, false); 4979 4980 return 0; 4981 } 4982 4983 static void e1000_restore_vlan(struct e1000_adapter *adapter) 4984 { 4985 u16 vid; 4986 4987 if (!e1000_vlan_used(adapter)) 4988 return; 4989 4990 e1000_vlan_filter_on_off(adapter, true); 4991 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4992 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 4993 } 4994 4995 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 4996 { 4997 struct e1000_hw *hw = &adapter->hw; 4998 4999 hw->autoneg = 0; 5000 5001 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5002 * for the switch() below to work 5003 */ 5004 if ((spd & 1) || (dplx & ~1)) 5005 goto err_inval; 5006 5007 /* Fiber NICs only allow 1000 gbps Full duplex */ 5008 if ((hw->media_type == e1000_media_type_fiber) && 5009 spd != SPEED_1000 && 5010 dplx != DUPLEX_FULL) 5011 goto err_inval; 5012 5013 switch (spd + dplx) { 5014 case SPEED_10 + DUPLEX_HALF: 5015 hw->forced_speed_duplex = e1000_10_half; 5016 break; 5017 case SPEED_10 + DUPLEX_FULL: 5018 hw->forced_speed_duplex = e1000_10_full; 5019 break; 5020 case SPEED_100 + DUPLEX_HALF: 5021 hw->forced_speed_duplex = e1000_100_half; 5022 break; 5023 case SPEED_100 + DUPLEX_FULL: 5024 hw->forced_speed_duplex = e1000_100_full; 5025 break; 5026 case SPEED_1000 + DUPLEX_FULL: 5027 hw->autoneg = 1; 5028 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5029 break; 5030 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5031 default: 5032 goto err_inval; 5033 } 5034 5035 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5036 hw->mdix = AUTO_ALL_MODES; 5037 5038 return 0; 5039 5040 err_inval: 5041 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5042 return -EINVAL; 5043 } 5044 5045 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5046 { 5047 struct net_device *netdev = pci_get_drvdata(pdev); 5048 struct e1000_adapter *adapter = netdev_priv(netdev); 5049 struct e1000_hw *hw = &adapter->hw; 5050 u32 ctrl, ctrl_ext, rctl, status; 5051 u32 wufc = adapter->wol; 5052 #ifdef CONFIG_PM 5053 int retval = 0; 5054 #endif 5055 5056 netif_device_detach(netdev); 5057 5058 if (netif_running(netdev)) { 5059 int count = E1000_CHECK_RESET_COUNT; 5060 5061 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5062 usleep_range(10000, 20000); 5063 5064 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5065 e1000_down(adapter); 5066 } 5067 5068 #ifdef CONFIG_PM 5069 retval = pci_save_state(pdev); 5070 if (retval) 5071 return retval; 5072 #endif 5073 5074 status = er32(STATUS); 5075 if (status & E1000_STATUS_LU) 5076 wufc &= ~E1000_WUFC_LNKC; 5077 5078 if (wufc) { 5079 e1000_setup_rctl(adapter); 5080 e1000_set_rx_mode(netdev); 5081 5082 rctl = er32(RCTL); 5083 5084 /* turn on all-multi mode if wake on multicast is enabled */ 5085 if (wufc & E1000_WUFC_MC) 5086 rctl |= E1000_RCTL_MPE; 5087 5088 /* enable receives in the hardware */ 5089 ew32(RCTL, rctl | E1000_RCTL_EN); 5090 5091 if (hw->mac_type >= e1000_82540) { 5092 ctrl = er32(CTRL); 5093 /* advertise wake from D3Cold */ 5094 #define E1000_CTRL_ADVD3WUC 0x00100000 5095 /* phy power management enable */ 5096 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5097 ctrl |= E1000_CTRL_ADVD3WUC | 5098 E1000_CTRL_EN_PHY_PWR_MGMT; 5099 ew32(CTRL, ctrl); 5100 } 5101 5102 if (hw->media_type == e1000_media_type_fiber || 5103 hw->media_type == e1000_media_type_internal_serdes) { 5104 /* keep the laser running in D3 */ 5105 ctrl_ext = er32(CTRL_EXT); 5106 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5107 ew32(CTRL_EXT, ctrl_ext); 5108 } 5109 5110 ew32(WUC, E1000_WUC_PME_EN); 5111 ew32(WUFC, wufc); 5112 } else { 5113 ew32(WUC, 0); 5114 ew32(WUFC, 0); 5115 } 5116 5117 e1000_release_manageability(adapter); 5118 5119 *enable_wake = !!wufc; 5120 5121 /* make sure adapter isn't asleep if manageability is enabled */ 5122 if (adapter->en_mng_pt) 5123 *enable_wake = true; 5124 5125 if (netif_running(netdev)) 5126 e1000_free_irq(adapter); 5127 5128 pci_disable_device(pdev); 5129 5130 return 0; 5131 } 5132 5133 #ifdef CONFIG_PM 5134 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 5135 { 5136 int retval; 5137 bool wake; 5138 5139 retval = __e1000_shutdown(pdev, &wake); 5140 if (retval) 5141 return retval; 5142 5143 if (wake) { 5144 pci_prepare_to_sleep(pdev); 5145 } else { 5146 pci_wake_from_d3(pdev, false); 5147 pci_set_power_state(pdev, PCI_D3hot); 5148 } 5149 5150 return 0; 5151 } 5152 5153 static int e1000_resume(struct pci_dev *pdev) 5154 { 5155 struct net_device *netdev = pci_get_drvdata(pdev); 5156 struct e1000_adapter *adapter = netdev_priv(netdev); 5157 struct e1000_hw *hw = &adapter->hw; 5158 u32 err; 5159 5160 pci_set_power_state(pdev, PCI_D0); 5161 pci_restore_state(pdev); 5162 pci_save_state(pdev); 5163 5164 if (adapter->need_ioport) 5165 err = pci_enable_device(pdev); 5166 else 5167 err = pci_enable_device_mem(pdev); 5168 if (err) { 5169 pr_err("Cannot enable PCI device from suspend\n"); 5170 return err; 5171 } 5172 pci_set_master(pdev); 5173 5174 pci_enable_wake(pdev, PCI_D3hot, 0); 5175 pci_enable_wake(pdev, PCI_D3cold, 0); 5176 5177 if (netif_running(netdev)) { 5178 err = e1000_request_irq(adapter); 5179 if (err) 5180 return err; 5181 } 5182 5183 e1000_power_up_phy(adapter); 5184 e1000_reset(adapter); 5185 ew32(WUS, ~0); 5186 5187 e1000_init_manageability(adapter); 5188 5189 if (netif_running(netdev)) 5190 e1000_up(adapter); 5191 5192 netif_device_attach(netdev); 5193 5194 return 0; 5195 } 5196 #endif 5197 5198 static void e1000_shutdown(struct pci_dev *pdev) 5199 { 5200 bool wake; 5201 5202 __e1000_shutdown(pdev, &wake); 5203 5204 if (system_state == SYSTEM_POWER_OFF) { 5205 pci_wake_from_d3(pdev, wake); 5206 pci_set_power_state(pdev, PCI_D3hot); 5207 } 5208 } 5209 5210 #ifdef CONFIG_NET_POLL_CONTROLLER 5211 /* Polling 'interrupt' - used by things like netconsole to send skbs 5212 * without having to re-enable interrupts. It's not called while 5213 * the interrupt routine is executing. 5214 */ 5215 static void e1000_netpoll(struct net_device *netdev) 5216 { 5217 struct e1000_adapter *adapter = netdev_priv(netdev); 5218 5219 disable_irq(adapter->pdev->irq); 5220 e1000_intr(adapter->pdev->irq, netdev); 5221 enable_irq(adapter->pdev->irq); 5222 } 5223 #endif 5224 5225 /** 5226 * e1000_io_error_detected - called when PCI error is detected 5227 * @pdev: Pointer to PCI device 5228 * @state: The current pci connection state 5229 * 5230 * This function is called after a PCI bus error affecting 5231 * this device has been detected. 5232 */ 5233 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5234 pci_channel_state_t state) 5235 { 5236 struct net_device *netdev = pci_get_drvdata(pdev); 5237 struct e1000_adapter *adapter = netdev_priv(netdev); 5238 5239 netif_device_detach(netdev); 5240 5241 if (state == pci_channel_io_perm_failure) 5242 return PCI_ERS_RESULT_DISCONNECT; 5243 5244 if (netif_running(netdev)) 5245 e1000_down(adapter); 5246 pci_disable_device(pdev); 5247 5248 /* Request a slot slot reset. */ 5249 return PCI_ERS_RESULT_NEED_RESET; 5250 } 5251 5252 /** 5253 * e1000_io_slot_reset - called after the pci bus has been reset. 5254 * @pdev: Pointer to PCI device 5255 * 5256 * Restart the card from scratch, as if from a cold-boot. Implementation 5257 * resembles the first-half of the e1000_resume routine. 5258 */ 5259 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5260 { 5261 struct net_device *netdev = pci_get_drvdata(pdev); 5262 struct e1000_adapter *adapter = netdev_priv(netdev); 5263 struct e1000_hw *hw = &adapter->hw; 5264 int err; 5265 5266 if (adapter->need_ioport) 5267 err = pci_enable_device(pdev); 5268 else 5269 err = pci_enable_device_mem(pdev); 5270 if (err) { 5271 pr_err("Cannot re-enable PCI device after reset.\n"); 5272 return PCI_ERS_RESULT_DISCONNECT; 5273 } 5274 pci_set_master(pdev); 5275 5276 pci_enable_wake(pdev, PCI_D3hot, 0); 5277 pci_enable_wake(pdev, PCI_D3cold, 0); 5278 5279 e1000_reset(adapter); 5280 ew32(WUS, ~0); 5281 5282 return PCI_ERS_RESULT_RECOVERED; 5283 } 5284 5285 /** 5286 * e1000_io_resume - called when traffic can start flowing again. 5287 * @pdev: Pointer to PCI device 5288 * 5289 * This callback is called when the error recovery driver tells us that 5290 * its OK to resume normal operation. Implementation resembles the 5291 * second-half of the e1000_resume routine. 5292 */ 5293 static void e1000_io_resume(struct pci_dev *pdev) 5294 { 5295 struct net_device *netdev = pci_get_drvdata(pdev); 5296 struct e1000_adapter *adapter = netdev_priv(netdev); 5297 5298 e1000_init_manageability(adapter); 5299 5300 if (netif_running(netdev)) { 5301 if (e1000_up(adapter)) { 5302 pr_info("can't bring device back up after reset\n"); 5303 return; 5304 } 5305 } 5306 5307 netif_device_attach(netdev); 5308 } 5309 5310 /* e1000_main.c */ 5311