1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2006 Intel Corporation. */ 3 4 #include "e1000.h" 5 #include <net/ip6_checksum.h> 6 #include <linux/io.h> 7 #include <linux/prefetch.h> 8 #include <linux/bitops.h> 9 #include <linux/if_vlan.h> 10 11 char e1000_driver_name[] = "e1000"; 12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 13 #define DRV_VERSION "7.3.21-k8-NAPI" 14 const char e1000_driver_version[] = DRV_VERSION; 15 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 16 17 /* e1000_pci_tbl - PCI Device ID Table 18 * 19 * Last entry must be all 0s 20 * 21 * Macro expands to... 22 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 23 */ 24 static const struct pci_device_id e1000_pci_tbl[] = { 25 INTEL_E1000_ETHERNET_DEVICE(0x1000), 26 INTEL_E1000_ETHERNET_DEVICE(0x1001), 27 INTEL_E1000_ETHERNET_DEVICE(0x1004), 28 INTEL_E1000_ETHERNET_DEVICE(0x1008), 29 INTEL_E1000_ETHERNET_DEVICE(0x1009), 30 INTEL_E1000_ETHERNET_DEVICE(0x100C), 31 INTEL_E1000_ETHERNET_DEVICE(0x100D), 32 INTEL_E1000_ETHERNET_DEVICE(0x100E), 33 INTEL_E1000_ETHERNET_DEVICE(0x100F), 34 INTEL_E1000_ETHERNET_DEVICE(0x1010), 35 INTEL_E1000_ETHERNET_DEVICE(0x1011), 36 INTEL_E1000_ETHERNET_DEVICE(0x1012), 37 INTEL_E1000_ETHERNET_DEVICE(0x1013), 38 INTEL_E1000_ETHERNET_DEVICE(0x1014), 39 INTEL_E1000_ETHERNET_DEVICE(0x1015), 40 INTEL_E1000_ETHERNET_DEVICE(0x1016), 41 INTEL_E1000_ETHERNET_DEVICE(0x1017), 42 INTEL_E1000_ETHERNET_DEVICE(0x1018), 43 INTEL_E1000_ETHERNET_DEVICE(0x1019), 44 INTEL_E1000_ETHERNET_DEVICE(0x101A), 45 INTEL_E1000_ETHERNET_DEVICE(0x101D), 46 INTEL_E1000_ETHERNET_DEVICE(0x101E), 47 INTEL_E1000_ETHERNET_DEVICE(0x1026), 48 INTEL_E1000_ETHERNET_DEVICE(0x1027), 49 INTEL_E1000_ETHERNET_DEVICE(0x1028), 50 INTEL_E1000_ETHERNET_DEVICE(0x1075), 51 INTEL_E1000_ETHERNET_DEVICE(0x1076), 52 INTEL_E1000_ETHERNET_DEVICE(0x1077), 53 INTEL_E1000_ETHERNET_DEVICE(0x1078), 54 INTEL_E1000_ETHERNET_DEVICE(0x1079), 55 INTEL_E1000_ETHERNET_DEVICE(0x107A), 56 INTEL_E1000_ETHERNET_DEVICE(0x107B), 57 INTEL_E1000_ETHERNET_DEVICE(0x107C), 58 INTEL_E1000_ETHERNET_DEVICE(0x108A), 59 INTEL_E1000_ETHERNET_DEVICE(0x1099), 60 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 61 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 62 /* required last entry */ 63 {0,} 64 }; 65 66 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 67 68 int e1000_up(struct e1000_adapter *adapter); 69 void e1000_down(struct e1000_adapter *adapter); 70 void e1000_reinit_locked(struct e1000_adapter *adapter); 71 void e1000_reset(struct e1000_adapter *adapter); 72 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 73 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 74 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 75 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 76 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 77 struct e1000_tx_ring *txdr); 78 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 79 struct e1000_rx_ring *rxdr); 80 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 81 struct e1000_tx_ring *tx_ring); 82 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 83 struct e1000_rx_ring *rx_ring); 84 void e1000_update_stats(struct e1000_adapter *adapter); 85 86 static int e1000_init_module(void); 87 static void e1000_exit_module(void); 88 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 89 static void e1000_remove(struct pci_dev *pdev); 90 static int e1000_alloc_queues(struct e1000_adapter *adapter); 91 static int e1000_sw_init(struct e1000_adapter *adapter); 92 int e1000_open(struct net_device *netdev); 93 int e1000_close(struct net_device *netdev); 94 static void e1000_configure_tx(struct e1000_adapter *adapter); 95 static void e1000_configure_rx(struct e1000_adapter *adapter); 96 static void e1000_setup_rctl(struct e1000_adapter *adapter); 97 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 98 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 99 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 100 struct e1000_tx_ring *tx_ring); 101 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 102 struct e1000_rx_ring *rx_ring); 103 static void e1000_set_rx_mode(struct net_device *netdev); 104 static void e1000_update_phy_info_task(struct work_struct *work); 105 static void e1000_watchdog(struct work_struct *work); 106 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 107 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 108 struct net_device *netdev); 109 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 110 static int e1000_set_mac(struct net_device *netdev, void *p); 111 static irqreturn_t e1000_intr(int irq, void *data); 112 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 113 struct e1000_tx_ring *tx_ring); 114 static int e1000_clean(struct napi_struct *napi, int budget); 115 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 116 struct e1000_rx_ring *rx_ring, 117 int *work_done, int work_to_do); 118 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 119 struct e1000_rx_ring *rx_ring, 120 int *work_done, int work_to_do); 121 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, 122 struct e1000_rx_ring *rx_ring, 123 int cleaned_count) 124 { 125 } 126 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 127 struct e1000_rx_ring *rx_ring, 128 int cleaned_count); 129 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 130 struct e1000_rx_ring *rx_ring, 131 int cleaned_count); 132 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 133 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 134 int cmd); 135 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 136 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 137 static void e1000_tx_timeout(struct net_device *dev); 138 static void e1000_reset_task(struct work_struct *work); 139 static void e1000_smartspeed(struct e1000_adapter *adapter); 140 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 141 struct sk_buff *skb); 142 143 static bool e1000_vlan_used(struct e1000_adapter *adapter); 144 static void e1000_vlan_mode(struct net_device *netdev, 145 netdev_features_t features); 146 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 147 bool filter_on); 148 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 149 __be16 proto, u16 vid); 150 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 151 __be16 proto, u16 vid); 152 static void e1000_restore_vlan(struct e1000_adapter *adapter); 153 154 #ifdef CONFIG_PM 155 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 156 static int e1000_resume(struct pci_dev *pdev); 157 #endif 158 static void e1000_shutdown(struct pci_dev *pdev); 159 160 #ifdef CONFIG_NET_POLL_CONTROLLER 161 /* for netdump / net console */ 162 static void e1000_netpoll (struct net_device *netdev); 163 #endif 164 165 #define COPYBREAK_DEFAULT 256 166 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 167 module_param(copybreak, uint, 0644); 168 MODULE_PARM_DESC(copybreak, 169 "Maximum size of packet that is copied to a new buffer on receive"); 170 171 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 172 pci_channel_state_t state); 173 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 174 static void e1000_io_resume(struct pci_dev *pdev); 175 176 static const struct pci_error_handlers e1000_err_handler = { 177 .error_detected = e1000_io_error_detected, 178 .slot_reset = e1000_io_slot_reset, 179 .resume = e1000_io_resume, 180 }; 181 182 static struct pci_driver e1000_driver = { 183 .name = e1000_driver_name, 184 .id_table = e1000_pci_tbl, 185 .probe = e1000_probe, 186 .remove = e1000_remove, 187 #ifdef CONFIG_PM 188 /* Power Management Hooks */ 189 .suspend = e1000_suspend, 190 .resume = e1000_resume, 191 #endif 192 .shutdown = e1000_shutdown, 193 .err_handler = &e1000_err_handler 194 }; 195 196 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 197 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 198 MODULE_LICENSE("GPL"); 199 MODULE_VERSION(DRV_VERSION); 200 201 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 202 static int debug = -1; 203 module_param(debug, int, 0); 204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 205 206 /** 207 * e1000_get_hw_dev - return device 208 * used by hardware layer to print debugging information 209 * 210 **/ 211 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 212 { 213 struct e1000_adapter *adapter = hw->back; 214 return adapter->netdev; 215 } 216 217 /** 218 * e1000_init_module - Driver Registration Routine 219 * 220 * e1000_init_module is the first routine called when the driver is 221 * loaded. All it does is register with the PCI subsystem. 222 **/ 223 static int __init e1000_init_module(void) 224 { 225 int ret; 226 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); 227 228 pr_info("%s\n", e1000_copyright); 229 230 ret = pci_register_driver(&e1000_driver); 231 if (copybreak != COPYBREAK_DEFAULT) { 232 if (copybreak == 0) 233 pr_info("copybreak disabled\n"); 234 else 235 pr_info("copybreak enabled for " 236 "packets <= %u bytes\n", copybreak); 237 } 238 return ret; 239 } 240 241 module_init(e1000_init_module); 242 243 /** 244 * e1000_exit_module - Driver Exit Cleanup Routine 245 * 246 * e1000_exit_module is called just before the driver is removed 247 * from memory. 248 **/ 249 static void __exit e1000_exit_module(void) 250 { 251 pci_unregister_driver(&e1000_driver); 252 } 253 254 module_exit(e1000_exit_module); 255 256 static int e1000_request_irq(struct e1000_adapter *adapter) 257 { 258 struct net_device *netdev = adapter->netdev; 259 irq_handler_t handler = e1000_intr; 260 int irq_flags = IRQF_SHARED; 261 int err; 262 263 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 264 netdev); 265 if (err) { 266 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 267 } 268 269 return err; 270 } 271 272 static void e1000_free_irq(struct e1000_adapter *adapter) 273 { 274 struct net_device *netdev = adapter->netdev; 275 276 free_irq(adapter->pdev->irq, netdev); 277 } 278 279 /** 280 * e1000_irq_disable - Mask off interrupt generation on the NIC 281 * @adapter: board private structure 282 **/ 283 static void e1000_irq_disable(struct e1000_adapter *adapter) 284 { 285 struct e1000_hw *hw = &adapter->hw; 286 287 ew32(IMC, ~0); 288 E1000_WRITE_FLUSH(); 289 synchronize_irq(adapter->pdev->irq); 290 } 291 292 /** 293 * e1000_irq_enable - Enable default interrupt generation settings 294 * @adapter: board private structure 295 **/ 296 static void e1000_irq_enable(struct e1000_adapter *adapter) 297 { 298 struct e1000_hw *hw = &adapter->hw; 299 300 ew32(IMS, IMS_ENABLE_MASK); 301 E1000_WRITE_FLUSH(); 302 } 303 304 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 305 { 306 struct e1000_hw *hw = &adapter->hw; 307 struct net_device *netdev = adapter->netdev; 308 u16 vid = hw->mng_cookie.vlan_id; 309 u16 old_vid = adapter->mng_vlan_id; 310 311 if (!e1000_vlan_used(adapter)) 312 return; 313 314 if (!test_bit(vid, adapter->active_vlans)) { 315 if (hw->mng_cookie.status & 316 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 317 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 318 adapter->mng_vlan_id = vid; 319 } else { 320 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 321 } 322 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 323 (vid != old_vid) && 324 !test_bit(old_vid, adapter->active_vlans)) 325 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 326 old_vid); 327 } else { 328 adapter->mng_vlan_id = vid; 329 } 330 } 331 332 static void e1000_init_manageability(struct e1000_adapter *adapter) 333 { 334 struct e1000_hw *hw = &adapter->hw; 335 336 if (adapter->en_mng_pt) { 337 u32 manc = er32(MANC); 338 339 /* disable hardware interception of ARP */ 340 manc &= ~(E1000_MANC_ARP_EN); 341 342 ew32(MANC, manc); 343 } 344 } 345 346 static void e1000_release_manageability(struct e1000_adapter *adapter) 347 { 348 struct e1000_hw *hw = &adapter->hw; 349 350 if (adapter->en_mng_pt) { 351 u32 manc = er32(MANC); 352 353 /* re-enable hardware interception of ARP */ 354 manc |= E1000_MANC_ARP_EN; 355 356 ew32(MANC, manc); 357 } 358 } 359 360 /** 361 * e1000_configure - configure the hardware for RX and TX 362 * @adapter = private board structure 363 **/ 364 static void e1000_configure(struct e1000_adapter *adapter) 365 { 366 struct net_device *netdev = adapter->netdev; 367 int i; 368 369 e1000_set_rx_mode(netdev); 370 371 e1000_restore_vlan(adapter); 372 e1000_init_manageability(adapter); 373 374 e1000_configure_tx(adapter); 375 e1000_setup_rctl(adapter); 376 e1000_configure_rx(adapter); 377 /* call E1000_DESC_UNUSED which always leaves 378 * at least 1 descriptor unused to make sure 379 * next_to_use != next_to_clean 380 */ 381 for (i = 0; i < adapter->num_rx_queues; i++) { 382 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 383 adapter->alloc_rx_buf(adapter, ring, 384 E1000_DESC_UNUSED(ring)); 385 } 386 } 387 388 int e1000_up(struct e1000_adapter *adapter) 389 { 390 struct e1000_hw *hw = &adapter->hw; 391 392 /* hardware has been reset, we need to reload some things */ 393 e1000_configure(adapter); 394 395 clear_bit(__E1000_DOWN, &adapter->flags); 396 397 napi_enable(&adapter->napi); 398 399 e1000_irq_enable(adapter); 400 401 netif_wake_queue(adapter->netdev); 402 403 /* fire a link change interrupt to start the watchdog */ 404 ew32(ICS, E1000_ICS_LSC); 405 return 0; 406 } 407 408 /** 409 * e1000_power_up_phy - restore link in case the phy was powered down 410 * @adapter: address of board private structure 411 * 412 * The phy may be powered down to save power and turn off link when the 413 * driver is unloaded and wake on lan is not enabled (among others) 414 * *** this routine MUST be followed by a call to e1000_reset *** 415 **/ 416 void e1000_power_up_phy(struct e1000_adapter *adapter) 417 { 418 struct e1000_hw *hw = &adapter->hw; 419 u16 mii_reg = 0; 420 421 /* Just clear the power down bit to wake the phy back up */ 422 if (hw->media_type == e1000_media_type_copper) { 423 /* according to the manual, the phy will retain its 424 * settings across a power-down/up cycle 425 */ 426 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 427 mii_reg &= ~MII_CR_POWER_DOWN; 428 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 429 } 430 } 431 432 static void e1000_power_down_phy(struct e1000_adapter *adapter) 433 { 434 struct e1000_hw *hw = &adapter->hw; 435 436 /* Power down the PHY so no link is implied when interface is down * 437 * The PHY cannot be powered down if any of the following is true * 438 * (a) WoL is enabled 439 * (b) AMT is active 440 * (c) SoL/IDER session is active 441 */ 442 if (!adapter->wol && hw->mac_type >= e1000_82540 && 443 hw->media_type == e1000_media_type_copper) { 444 u16 mii_reg = 0; 445 446 switch (hw->mac_type) { 447 case e1000_82540: 448 case e1000_82545: 449 case e1000_82545_rev_3: 450 case e1000_82546: 451 case e1000_ce4100: 452 case e1000_82546_rev_3: 453 case e1000_82541: 454 case e1000_82541_rev_2: 455 case e1000_82547: 456 case e1000_82547_rev_2: 457 if (er32(MANC) & E1000_MANC_SMBUS_EN) 458 goto out; 459 break; 460 default: 461 goto out; 462 } 463 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 464 mii_reg |= MII_CR_POWER_DOWN; 465 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 466 msleep(1); 467 } 468 out: 469 return; 470 } 471 472 static void e1000_down_and_stop(struct e1000_adapter *adapter) 473 { 474 set_bit(__E1000_DOWN, &adapter->flags); 475 476 cancel_delayed_work_sync(&adapter->watchdog_task); 477 478 /* 479 * Since the watchdog task can reschedule other tasks, we should cancel 480 * it first, otherwise we can run into the situation when a work is 481 * still running after the adapter has been turned down. 482 */ 483 484 cancel_delayed_work_sync(&adapter->phy_info_task); 485 cancel_delayed_work_sync(&adapter->fifo_stall_task); 486 487 /* Only kill reset task if adapter is not resetting */ 488 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 489 cancel_work_sync(&adapter->reset_task); 490 } 491 492 void e1000_down(struct e1000_adapter *adapter) 493 { 494 struct e1000_hw *hw = &adapter->hw; 495 struct net_device *netdev = adapter->netdev; 496 u32 rctl, tctl; 497 498 /* disable receives in the hardware */ 499 rctl = er32(RCTL); 500 ew32(RCTL, rctl & ~E1000_RCTL_EN); 501 /* flush and sleep below */ 502 503 netif_tx_disable(netdev); 504 505 /* disable transmits in the hardware */ 506 tctl = er32(TCTL); 507 tctl &= ~E1000_TCTL_EN; 508 ew32(TCTL, tctl); 509 /* flush both disables and wait for them to finish */ 510 E1000_WRITE_FLUSH(); 511 msleep(10); 512 513 /* Set the carrier off after transmits have been disabled in the 514 * hardware, to avoid race conditions with e1000_watchdog() (which 515 * may be running concurrently to us, checking for the carrier 516 * bit to decide whether it should enable transmits again). Such 517 * a race condition would result into transmission being disabled 518 * in the hardware until the next IFF_DOWN+IFF_UP cycle. 519 */ 520 netif_carrier_off(netdev); 521 522 napi_disable(&adapter->napi); 523 524 e1000_irq_disable(adapter); 525 526 /* Setting DOWN must be after irq_disable to prevent 527 * a screaming interrupt. Setting DOWN also prevents 528 * tasks from rescheduling. 529 */ 530 e1000_down_and_stop(adapter); 531 532 adapter->link_speed = 0; 533 adapter->link_duplex = 0; 534 535 e1000_reset(adapter); 536 e1000_clean_all_tx_rings(adapter); 537 e1000_clean_all_rx_rings(adapter); 538 } 539 540 void e1000_reinit_locked(struct e1000_adapter *adapter) 541 { 542 WARN_ON(in_interrupt()); 543 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 544 msleep(1); 545 e1000_down(adapter); 546 e1000_up(adapter); 547 clear_bit(__E1000_RESETTING, &adapter->flags); 548 } 549 550 void e1000_reset(struct e1000_adapter *adapter) 551 { 552 struct e1000_hw *hw = &adapter->hw; 553 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 554 bool legacy_pba_adjust = false; 555 u16 hwm; 556 557 /* Repartition Pba for greater than 9k mtu 558 * To take effect CTRL.RST is required. 559 */ 560 561 switch (hw->mac_type) { 562 case e1000_82542_rev2_0: 563 case e1000_82542_rev2_1: 564 case e1000_82543: 565 case e1000_82544: 566 case e1000_82540: 567 case e1000_82541: 568 case e1000_82541_rev_2: 569 legacy_pba_adjust = true; 570 pba = E1000_PBA_48K; 571 break; 572 case e1000_82545: 573 case e1000_82545_rev_3: 574 case e1000_82546: 575 case e1000_ce4100: 576 case e1000_82546_rev_3: 577 pba = E1000_PBA_48K; 578 break; 579 case e1000_82547: 580 case e1000_82547_rev_2: 581 legacy_pba_adjust = true; 582 pba = E1000_PBA_30K; 583 break; 584 case e1000_undefined: 585 case e1000_num_macs: 586 break; 587 } 588 589 if (legacy_pba_adjust) { 590 if (hw->max_frame_size > E1000_RXBUFFER_8192) 591 pba -= 8; /* allocate more FIFO for Tx */ 592 593 if (hw->mac_type == e1000_82547) { 594 adapter->tx_fifo_head = 0; 595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 596 adapter->tx_fifo_size = 597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 598 atomic_set(&adapter->tx_fifo_stall, 0); 599 } 600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 601 /* adjust PBA for jumbo frames */ 602 ew32(PBA, pba); 603 604 /* To maintain wire speed transmits, the Tx FIFO should be 605 * large enough to accommodate two full transmit packets, 606 * rounded up to the next 1KB and expressed in KB. Likewise, 607 * the Rx FIFO should be large enough to accommodate at least 608 * one full receive packet and is similarly rounded up and 609 * expressed in KB. 610 */ 611 pba = er32(PBA); 612 /* upper 16 bits has Tx packet buffer allocation size in KB */ 613 tx_space = pba >> 16; 614 /* lower 16 bits has Rx packet buffer allocation size in KB */ 615 pba &= 0xffff; 616 /* the Tx fifo also stores 16 bytes of information about the Tx 617 * but don't include ethernet FCS because hardware appends it 618 */ 619 min_tx_space = (hw->max_frame_size + 620 sizeof(struct e1000_tx_desc) - 621 ETH_FCS_LEN) * 2; 622 min_tx_space = ALIGN(min_tx_space, 1024); 623 min_tx_space >>= 10; 624 /* software strips receive CRC, so leave room for it */ 625 min_rx_space = hw->max_frame_size; 626 min_rx_space = ALIGN(min_rx_space, 1024); 627 min_rx_space >>= 10; 628 629 /* If current Tx allocation is less than the min Tx FIFO size, 630 * and the min Tx FIFO size is less than the current Rx FIFO 631 * allocation, take space away from current Rx allocation 632 */ 633 if (tx_space < min_tx_space && 634 ((min_tx_space - tx_space) < pba)) { 635 pba = pba - (min_tx_space - tx_space); 636 637 /* PCI/PCIx hardware has PBA alignment constraints */ 638 switch (hw->mac_type) { 639 case e1000_82545 ... e1000_82546_rev_3: 640 pba &= ~(E1000_PBA_8K - 1); 641 break; 642 default: 643 break; 644 } 645 646 /* if short on Rx space, Rx wins and must trump Tx 647 * adjustment or use Early Receive if available 648 */ 649 if (pba < min_rx_space) 650 pba = min_rx_space; 651 } 652 } 653 654 ew32(PBA, pba); 655 656 /* flow control settings: 657 * The high water mark must be low enough to fit one full frame 658 * (or the size used for early receive) above it in the Rx FIFO. 659 * Set it to the lower of: 660 * - 90% of the Rx FIFO size, and 661 * - the full Rx FIFO size minus the early receive size (for parts 662 * with ERT support assuming ERT set to E1000_ERT_2048), or 663 * - the full Rx FIFO size minus one full frame 664 */ 665 hwm = min(((pba << 10) * 9 / 10), 666 ((pba << 10) - hw->max_frame_size)); 667 668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 669 hw->fc_low_water = hw->fc_high_water - 8; 670 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 671 hw->fc_send_xon = 1; 672 hw->fc = hw->original_fc; 673 674 /* Allow time for pending master requests to run */ 675 e1000_reset_hw(hw); 676 if (hw->mac_type >= e1000_82544) 677 ew32(WUC, 0); 678 679 if (e1000_init_hw(hw)) 680 e_dev_err("Hardware Error\n"); 681 e1000_update_mng_vlan(adapter); 682 683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 684 if (hw->mac_type >= e1000_82544 && 685 hw->autoneg == 1 && 686 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 687 u32 ctrl = er32(CTRL); 688 /* clear phy power management bit if we are in gig only mode, 689 * which if enabled will attempt negotiation to 100Mb, which 690 * can cause a loss of link at power off or driver unload 691 */ 692 ctrl &= ~E1000_CTRL_SWDPIN3; 693 ew32(CTRL, ctrl); 694 } 695 696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 698 699 e1000_reset_adaptive(hw); 700 e1000_phy_get_info(hw, &adapter->phy_info); 701 702 e1000_release_manageability(adapter); 703 } 704 705 /* Dump the eeprom for users having checksum issues */ 706 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 707 { 708 struct net_device *netdev = adapter->netdev; 709 struct ethtool_eeprom eeprom; 710 const struct ethtool_ops *ops = netdev->ethtool_ops; 711 u8 *data; 712 int i; 713 u16 csum_old, csum_new = 0; 714 715 eeprom.len = ops->get_eeprom_len(netdev); 716 eeprom.offset = 0; 717 718 data = kmalloc(eeprom.len, GFP_KERNEL); 719 if (!data) 720 return; 721 722 ops->get_eeprom(netdev, &eeprom, data); 723 724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 727 csum_new += data[i] + (data[i + 1] << 8); 728 csum_new = EEPROM_SUM - csum_new; 729 730 pr_err("/*********************/\n"); 731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 732 pr_err("Calculated : 0x%04x\n", csum_new); 733 734 pr_err("Offset Values\n"); 735 pr_err("======== ======\n"); 736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 737 738 pr_err("Include this output when contacting your support provider.\n"); 739 pr_err("This is not a software error! Something bad happened to\n"); 740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 741 pr_err("result in further problems, possibly loss of data,\n"); 742 pr_err("corruption or system hangs!\n"); 743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 744 pr_err("which is invalid and requires you to set the proper MAC\n"); 745 pr_err("address manually before continuing to enable this network\n"); 746 pr_err("device. Please inspect the EEPROM dump and report the\n"); 747 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 748 pr_err("/*********************/\n"); 749 750 kfree(data); 751 } 752 753 /** 754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 755 * @pdev: PCI device information struct 756 * 757 * Return true if an adapter needs ioport resources 758 **/ 759 static int e1000_is_need_ioport(struct pci_dev *pdev) 760 { 761 switch (pdev->device) { 762 case E1000_DEV_ID_82540EM: 763 case E1000_DEV_ID_82540EM_LOM: 764 case E1000_DEV_ID_82540EP: 765 case E1000_DEV_ID_82540EP_LOM: 766 case E1000_DEV_ID_82540EP_LP: 767 case E1000_DEV_ID_82541EI: 768 case E1000_DEV_ID_82541EI_MOBILE: 769 case E1000_DEV_ID_82541ER: 770 case E1000_DEV_ID_82541ER_LOM: 771 case E1000_DEV_ID_82541GI: 772 case E1000_DEV_ID_82541GI_LF: 773 case E1000_DEV_ID_82541GI_MOBILE: 774 case E1000_DEV_ID_82544EI_COPPER: 775 case E1000_DEV_ID_82544EI_FIBER: 776 case E1000_DEV_ID_82544GC_COPPER: 777 case E1000_DEV_ID_82544GC_LOM: 778 case E1000_DEV_ID_82545EM_COPPER: 779 case E1000_DEV_ID_82545EM_FIBER: 780 case E1000_DEV_ID_82546EB_COPPER: 781 case E1000_DEV_ID_82546EB_FIBER: 782 case E1000_DEV_ID_82546EB_QUAD_COPPER: 783 return true; 784 default: 785 return false; 786 } 787 } 788 789 static netdev_features_t e1000_fix_features(struct net_device *netdev, 790 netdev_features_t features) 791 { 792 /* Since there is no support for separate Rx/Tx vlan accel 793 * enable/disable make sure Tx flag is always in same state as Rx. 794 */ 795 if (features & NETIF_F_HW_VLAN_CTAG_RX) 796 features |= NETIF_F_HW_VLAN_CTAG_TX; 797 else 798 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 799 800 return features; 801 } 802 803 static int e1000_set_features(struct net_device *netdev, 804 netdev_features_t features) 805 { 806 struct e1000_adapter *adapter = netdev_priv(netdev); 807 netdev_features_t changed = features ^ netdev->features; 808 809 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 810 e1000_vlan_mode(netdev, features); 811 812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 813 return 0; 814 815 netdev->features = features; 816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 817 818 if (netif_running(netdev)) 819 e1000_reinit_locked(adapter); 820 else 821 e1000_reset(adapter); 822 823 return 0; 824 } 825 826 static const struct net_device_ops e1000_netdev_ops = { 827 .ndo_open = e1000_open, 828 .ndo_stop = e1000_close, 829 .ndo_start_xmit = e1000_xmit_frame, 830 .ndo_set_rx_mode = e1000_set_rx_mode, 831 .ndo_set_mac_address = e1000_set_mac, 832 .ndo_tx_timeout = e1000_tx_timeout, 833 .ndo_change_mtu = e1000_change_mtu, 834 .ndo_do_ioctl = e1000_ioctl, 835 .ndo_validate_addr = eth_validate_addr, 836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 838 #ifdef CONFIG_NET_POLL_CONTROLLER 839 .ndo_poll_controller = e1000_netpoll, 840 #endif 841 .ndo_fix_features = e1000_fix_features, 842 .ndo_set_features = e1000_set_features, 843 }; 844 845 /** 846 * e1000_init_hw_struct - initialize members of hw struct 847 * @adapter: board private struct 848 * @hw: structure used by e1000_hw.c 849 * 850 * Factors out initialization of the e1000_hw struct to its own function 851 * that can be called very early at init (just after struct allocation). 852 * Fields are initialized based on PCI device information and 853 * OS network device settings (MTU size). 854 * Returns negative error codes if MAC type setup fails. 855 */ 856 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 857 struct e1000_hw *hw) 858 { 859 struct pci_dev *pdev = adapter->pdev; 860 861 /* PCI config space info */ 862 hw->vendor_id = pdev->vendor; 863 hw->device_id = pdev->device; 864 hw->subsystem_vendor_id = pdev->subsystem_vendor; 865 hw->subsystem_id = pdev->subsystem_device; 866 hw->revision_id = pdev->revision; 867 868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 869 870 hw->max_frame_size = adapter->netdev->mtu + 871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 873 874 /* identify the MAC */ 875 if (e1000_set_mac_type(hw)) { 876 e_err(probe, "Unknown MAC Type\n"); 877 return -EIO; 878 } 879 880 switch (hw->mac_type) { 881 default: 882 break; 883 case e1000_82541: 884 case e1000_82547: 885 case e1000_82541_rev_2: 886 case e1000_82547_rev_2: 887 hw->phy_init_script = 1; 888 break; 889 } 890 891 e1000_set_media_type(hw); 892 e1000_get_bus_info(hw); 893 894 hw->wait_autoneg_complete = false; 895 hw->tbi_compatibility_en = true; 896 hw->adaptive_ifs = true; 897 898 /* Copper options */ 899 900 if (hw->media_type == e1000_media_type_copper) { 901 hw->mdix = AUTO_ALL_MODES; 902 hw->disable_polarity_correction = false; 903 hw->master_slave = E1000_MASTER_SLAVE; 904 } 905 906 return 0; 907 } 908 909 /** 910 * e1000_probe - Device Initialization Routine 911 * @pdev: PCI device information struct 912 * @ent: entry in e1000_pci_tbl 913 * 914 * Returns 0 on success, negative on failure 915 * 916 * e1000_probe initializes an adapter identified by a pci_dev structure. 917 * The OS initialization, configuring of the adapter private structure, 918 * and a hardware reset occur. 919 **/ 920 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 921 { 922 struct net_device *netdev; 923 struct e1000_adapter *adapter = NULL; 924 struct e1000_hw *hw; 925 926 static int cards_found; 927 static int global_quad_port_a; /* global ksp3 port a indication */ 928 int i, err, pci_using_dac; 929 u16 eeprom_data = 0; 930 u16 tmp = 0; 931 u16 eeprom_apme_mask = E1000_EEPROM_APME; 932 int bars, need_ioport; 933 bool disable_dev = false; 934 935 /* do not allocate ioport bars when not needed */ 936 need_ioport = e1000_is_need_ioport(pdev); 937 if (need_ioport) { 938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 939 err = pci_enable_device(pdev); 940 } else { 941 bars = pci_select_bars(pdev, IORESOURCE_MEM); 942 err = pci_enable_device_mem(pdev); 943 } 944 if (err) 945 return err; 946 947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 948 if (err) 949 goto err_pci_reg; 950 951 pci_set_master(pdev); 952 err = pci_save_state(pdev); 953 if (err) 954 goto err_alloc_etherdev; 955 956 err = -ENOMEM; 957 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 958 if (!netdev) 959 goto err_alloc_etherdev; 960 961 SET_NETDEV_DEV(netdev, &pdev->dev); 962 963 pci_set_drvdata(pdev, netdev); 964 adapter = netdev_priv(netdev); 965 adapter->netdev = netdev; 966 adapter->pdev = pdev; 967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 968 adapter->bars = bars; 969 adapter->need_ioport = need_ioport; 970 971 hw = &adapter->hw; 972 hw->back = adapter; 973 974 err = -EIO; 975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 976 if (!hw->hw_addr) 977 goto err_ioremap; 978 979 if (adapter->need_ioport) { 980 for (i = BAR_1; i <= BAR_5; i++) { 981 if (pci_resource_len(pdev, i) == 0) 982 continue; 983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 984 hw->io_base = pci_resource_start(pdev, i); 985 break; 986 } 987 } 988 } 989 990 /* make ready for any if (hw->...) below */ 991 err = e1000_init_hw_struct(adapter, hw); 992 if (err) 993 goto err_sw_init; 994 995 /* there is a workaround being applied below that limits 996 * 64-bit DMA addresses to 64-bit hardware. There are some 997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 998 */ 999 pci_using_dac = 0; 1000 if ((hw->bus_type == e1000_bus_type_pcix) && 1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1002 pci_using_dac = 1; 1003 } else { 1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1005 if (err) { 1006 pr_err("No usable DMA config, aborting\n"); 1007 goto err_dma; 1008 } 1009 } 1010 1011 netdev->netdev_ops = &e1000_netdev_ops; 1012 e1000_set_ethtool_ops(netdev); 1013 netdev->watchdog_timeo = 5 * HZ; 1014 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1015 1016 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1017 1018 adapter->bd_number = cards_found; 1019 1020 /* setup the private structure */ 1021 1022 err = e1000_sw_init(adapter); 1023 if (err) 1024 goto err_sw_init; 1025 1026 err = -EIO; 1027 if (hw->mac_type == e1000_ce4100) { 1028 hw->ce4100_gbe_mdio_base_virt = 1029 ioremap(pci_resource_start(pdev, BAR_1), 1030 pci_resource_len(pdev, BAR_1)); 1031 1032 if (!hw->ce4100_gbe_mdio_base_virt) 1033 goto err_mdio_ioremap; 1034 } 1035 1036 if (hw->mac_type >= e1000_82543) { 1037 netdev->hw_features = NETIF_F_SG | 1038 NETIF_F_HW_CSUM | 1039 NETIF_F_HW_VLAN_CTAG_RX; 1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1041 NETIF_F_HW_VLAN_CTAG_FILTER; 1042 } 1043 1044 if ((hw->mac_type >= e1000_82544) && 1045 (hw->mac_type != e1000_82547)) 1046 netdev->hw_features |= NETIF_F_TSO; 1047 1048 netdev->priv_flags |= IFF_SUPP_NOFCS; 1049 1050 netdev->features |= netdev->hw_features; 1051 netdev->hw_features |= (NETIF_F_RXCSUM | 1052 NETIF_F_RXALL | 1053 NETIF_F_RXFCS); 1054 1055 if (pci_using_dac) { 1056 netdev->features |= NETIF_F_HIGHDMA; 1057 netdev->vlan_features |= NETIF_F_HIGHDMA; 1058 } 1059 1060 netdev->vlan_features |= (NETIF_F_TSO | 1061 NETIF_F_HW_CSUM | 1062 NETIF_F_SG); 1063 1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1067 netdev->priv_flags |= IFF_UNICAST_FLT; 1068 1069 /* MTU range: 46 - 16110 */ 1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN; 1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1072 1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1074 1075 /* initialize eeprom parameters */ 1076 if (e1000_init_eeprom_params(hw)) { 1077 e_err(probe, "EEPROM initialization failed\n"); 1078 goto err_eeprom; 1079 } 1080 1081 /* before reading the EEPROM, reset the controller to 1082 * put the device in a known good starting state 1083 */ 1084 1085 e1000_reset_hw(hw); 1086 1087 /* make sure the EEPROM is good */ 1088 if (e1000_validate_eeprom_checksum(hw) < 0) { 1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1090 e1000_dump_eeprom(adapter); 1091 /* set MAC address to all zeroes to invalidate and temporary 1092 * disable this device for the user. This blocks regular 1093 * traffic while still permitting ethtool ioctls from reaching 1094 * the hardware as well as allowing the user to run the 1095 * interface after manually setting a hw addr using 1096 * `ip set address` 1097 */ 1098 memset(hw->mac_addr, 0, netdev->addr_len); 1099 } else { 1100 /* copy the MAC address out of the EEPROM */ 1101 if (e1000_read_mac_addr(hw)) 1102 e_err(probe, "EEPROM Read Error\n"); 1103 } 1104 /* don't block initialization here due to bad MAC address */ 1105 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1106 1107 if (!is_valid_ether_addr(netdev->dev_addr)) 1108 e_err(probe, "Invalid MAC Address\n"); 1109 1110 1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1113 e1000_82547_tx_fifo_stall_task); 1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1115 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1116 1117 e1000_check_options(adapter); 1118 1119 /* Initial Wake on LAN setting 1120 * If APM wake is enabled in the EEPROM, 1121 * enable the ACPI Magic Packet filter 1122 */ 1123 1124 switch (hw->mac_type) { 1125 case e1000_82542_rev2_0: 1126 case e1000_82542_rev2_1: 1127 case e1000_82543: 1128 break; 1129 case e1000_82544: 1130 e1000_read_eeprom(hw, 1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1132 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1133 break; 1134 case e1000_82546: 1135 case e1000_82546_rev_3: 1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1137 e1000_read_eeprom(hw, 1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1139 break; 1140 } 1141 /* Fall Through */ 1142 default: 1143 e1000_read_eeprom(hw, 1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1145 break; 1146 } 1147 if (eeprom_data & eeprom_apme_mask) 1148 adapter->eeprom_wol |= E1000_WUFC_MAG; 1149 1150 /* now that we have the eeprom settings, apply the special cases 1151 * where the eeprom may be wrong or the board simply won't support 1152 * wake on lan on a particular port 1153 */ 1154 switch (pdev->device) { 1155 case E1000_DEV_ID_82546GB_PCIE: 1156 adapter->eeprom_wol = 0; 1157 break; 1158 case E1000_DEV_ID_82546EB_FIBER: 1159 case E1000_DEV_ID_82546GB_FIBER: 1160 /* Wake events only supported on port A for dual fiber 1161 * regardless of eeprom setting 1162 */ 1163 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1164 adapter->eeprom_wol = 0; 1165 break; 1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1167 /* if quad port adapter, disable WoL on all but port A */ 1168 if (global_quad_port_a != 0) 1169 adapter->eeprom_wol = 0; 1170 else 1171 adapter->quad_port_a = true; 1172 /* Reset for multiple quad port adapters */ 1173 if (++global_quad_port_a == 4) 1174 global_quad_port_a = 0; 1175 break; 1176 } 1177 1178 /* initialize the wol settings based on the eeprom settings */ 1179 adapter->wol = adapter->eeprom_wol; 1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1181 1182 /* Auto detect PHY address */ 1183 if (hw->mac_type == e1000_ce4100) { 1184 for (i = 0; i < 32; i++) { 1185 hw->phy_addr = i; 1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1187 1188 if (tmp != 0 && tmp != 0xFF) 1189 break; 1190 } 1191 1192 if (i >= 32) 1193 goto err_eeprom; 1194 } 1195 1196 /* reset the hardware with the new settings */ 1197 e1000_reset(adapter); 1198 1199 strcpy(netdev->name, "eth%d"); 1200 err = register_netdev(netdev); 1201 if (err) 1202 goto err_register; 1203 1204 e1000_vlan_filter_on_off(adapter, false); 1205 1206 /* print bus type/speed/width info */ 1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1214 netdev->dev_addr); 1215 1216 /* carrier off reporting is important to ethtool even BEFORE open */ 1217 netif_carrier_off(netdev); 1218 1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1220 1221 cards_found++; 1222 return 0; 1223 1224 err_register: 1225 err_eeprom: 1226 e1000_phy_hw_reset(hw); 1227 1228 if (hw->flash_address) 1229 iounmap(hw->flash_address); 1230 kfree(adapter->tx_ring); 1231 kfree(adapter->rx_ring); 1232 err_dma: 1233 err_sw_init: 1234 err_mdio_ioremap: 1235 iounmap(hw->ce4100_gbe_mdio_base_virt); 1236 iounmap(hw->hw_addr); 1237 err_ioremap: 1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1239 free_netdev(netdev); 1240 err_alloc_etherdev: 1241 pci_release_selected_regions(pdev, bars); 1242 err_pci_reg: 1243 if (!adapter || disable_dev) 1244 pci_disable_device(pdev); 1245 return err; 1246 } 1247 1248 /** 1249 * e1000_remove - Device Removal Routine 1250 * @pdev: PCI device information struct 1251 * 1252 * e1000_remove is called by the PCI subsystem to alert the driver 1253 * that it should release a PCI device. That could be caused by a 1254 * Hot-Plug event, or because the driver is going to be removed from 1255 * memory. 1256 **/ 1257 static void e1000_remove(struct pci_dev *pdev) 1258 { 1259 struct net_device *netdev = pci_get_drvdata(pdev); 1260 struct e1000_adapter *adapter = netdev_priv(netdev); 1261 struct e1000_hw *hw = &adapter->hw; 1262 bool disable_dev; 1263 1264 e1000_down_and_stop(adapter); 1265 e1000_release_manageability(adapter); 1266 1267 unregister_netdev(netdev); 1268 1269 e1000_phy_hw_reset(hw); 1270 1271 kfree(adapter->tx_ring); 1272 kfree(adapter->rx_ring); 1273 1274 if (hw->mac_type == e1000_ce4100) 1275 iounmap(hw->ce4100_gbe_mdio_base_virt); 1276 iounmap(hw->hw_addr); 1277 if (hw->flash_address) 1278 iounmap(hw->flash_address); 1279 pci_release_selected_regions(pdev, adapter->bars); 1280 1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1282 free_netdev(netdev); 1283 1284 if (disable_dev) 1285 pci_disable_device(pdev); 1286 } 1287 1288 /** 1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1290 * @adapter: board private structure to initialize 1291 * 1292 * e1000_sw_init initializes the Adapter private data structure. 1293 * e1000_init_hw_struct MUST be called before this function 1294 **/ 1295 static int e1000_sw_init(struct e1000_adapter *adapter) 1296 { 1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1298 1299 adapter->num_tx_queues = 1; 1300 adapter->num_rx_queues = 1; 1301 1302 if (e1000_alloc_queues(adapter)) { 1303 e_err(probe, "Unable to allocate memory for queues\n"); 1304 return -ENOMEM; 1305 } 1306 1307 /* Explicitly disable IRQ since the NIC can be in any state. */ 1308 e1000_irq_disable(adapter); 1309 1310 spin_lock_init(&adapter->stats_lock); 1311 1312 set_bit(__E1000_DOWN, &adapter->flags); 1313 1314 return 0; 1315 } 1316 1317 /** 1318 * e1000_alloc_queues - Allocate memory for all rings 1319 * @adapter: board private structure to initialize 1320 * 1321 * We allocate one ring per queue at run-time since we don't know the 1322 * number of queues at compile-time. 1323 **/ 1324 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1325 { 1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1327 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1328 if (!adapter->tx_ring) 1329 return -ENOMEM; 1330 1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1332 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1333 if (!adapter->rx_ring) { 1334 kfree(adapter->tx_ring); 1335 return -ENOMEM; 1336 } 1337 1338 return E1000_SUCCESS; 1339 } 1340 1341 /** 1342 * e1000_open - Called when a network interface is made active 1343 * @netdev: network interface device structure 1344 * 1345 * Returns 0 on success, negative value on failure 1346 * 1347 * The open entry point is called when a network interface is made 1348 * active by the system (IFF_UP). At this point all resources needed 1349 * for transmit and receive operations are allocated, the interrupt 1350 * handler is registered with the OS, the watchdog task is started, 1351 * and the stack is notified that the interface is ready. 1352 **/ 1353 int e1000_open(struct net_device *netdev) 1354 { 1355 struct e1000_adapter *adapter = netdev_priv(netdev); 1356 struct e1000_hw *hw = &adapter->hw; 1357 int err; 1358 1359 /* disallow open during test */ 1360 if (test_bit(__E1000_TESTING, &adapter->flags)) 1361 return -EBUSY; 1362 1363 netif_carrier_off(netdev); 1364 1365 /* allocate transmit descriptors */ 1366 err = e1000_setup_all_tx_resources(adapter); 1367 if (err) 1368 goto err_setup_tx; 1369 1370 /* allocate receive descriptors */ 1371 err = e1000_setup_all_rx_resources(adapter); 1372 if (err) 1373 goto err_setup_rx; 1374 1375 e1000_power_up_phy(adapter); 1376 1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1378 if ((hw->mng_cookie.status & 1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1380 e1000_update_mng_vlan(adapter); 1381 } 1382 1383 /* before we allocate an interrupt, we must be ready to handle it. 1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1385 * as soon as we call pci_request_irq, so we have to setup our 1386 * clean_rx handler before we do so. 1387 */ 1388 e1000_configure(adapter); 1389 1390 err = e1000_request_irq(adapter); 1391 if (err) 1392 goto err_req_irq; 1393 1394 /* From here on the code is the same as e1000_up() */ 1395 clear_bit(__E1000_DOWN, &adapter->flags); 1396 1397 napi_enable(&adapter->napi); 1398 1399 e1000_irq_enable(adapter); 1400 1401 netif_start_queue(netdev); 1402 1403 /* fire a link status change interrupt to start the watchdog */ 1404 ew32(ICS, E1000_ICS_LSC); 1405 1406 return E1000_SUCCESS; 1407 1408 err_req_irq: 1409 e1000_power_down_phy(adapter); 1410 e1000_free_all_rx_resources(adapter); 1411 err_setup_rx: 1412 e1000_free_all_tx_resources(adapter); 1413 err_setup_tx: 1414 e1000_reset(adapter); 1415 1416 return err; 1417 } 1418 1419 /** 1420 * e1000_close - Disables a network interface 1421 * @netdev: network interface device structure 1422 * 1423 * Returns 0, this is not allowed to fail 1424 * 1425 * The close entry point is called when an interface is de-activated 1426 * by the OS. The hardware is still under the drivers control, but 1427 * needs to be disabled. A global MAC reset is issued to stop the 1428 * hardware, and all transmit and receive resources are freed. 1429 **/ 1430 int e1000_close(struct net_device *netdev) 1431 { 1432 struct e1000_adapter *adapter = netdev_priv(netdev); 1433 struct e1000_hw *hw = &adapter->hw; 1434 int count = E1000_CHECK_RESET_COUNT; 1435 1436 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 1437 usleep_range(10000, 20000); 1438 1439 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 1440 e1000_down(adapter); 1441 e1000_power_down_phy(adapter); 1442 e1000_free_irq(adapter); 1443 1444 e1000_free_all_tx_resources(adapter); 1445 e1000_free_all_rx_resources(adapter); 1446 1447 /* kill manageability vlan ID if supported, but not if a vlan with 1448 * the same ID is registered on the host OS (let 8021q kill it) 1449 */ 1450 if ((hw->mng_cookie.status & 1451 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1452 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1453 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1454 adapter->mng_vlan_id); 1455 } 1456 1457 return 0; 1458 } 1459 1460 /** 1461 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1462 * @adapter: address of board private structure 1463 * @start: address of beginning of memory 1464 * @len: length of memory 1465 **/ 1466 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1467 unsigned long len) 1468 { 1469 struct e1000_hw *hw = &adapter->hw; 1470 unsigned long begin = (unsigned long)start; 1471 unsigned long end = begin + len; 1472 1473 /* First rev 82545 and 82546 need to not allow any memory 1474 * write location to cross 64k boundary due to errata 23 1475 */ 1476 if (hw->mac_type == e1000_82545 || 1477 hw->mac_type == e1000_ce4100 || 1478 hw->mac_type == e1000_82546) { 1479 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; 1480 } 1481 1482 return true; 1483 } 1484 1485 /** 1486 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1487 * @adapter: board private structure 1488 * @txdr: tx descriptor ring (for a specific queue) to setup 1489 * 1490 * Return 0 on success, negative on failure 1491 **/ 1492 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1493 struct e1000_tx_ring *txdr) 1494 { 1495 struct pci_dev *pdev = adapter->pdev; 1496 int size; 1497 1498 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1499 txdr->buffer_info = vzalloc(size); 1500 if (!txdr->buffer_info) 1501 return -ENOMEM; 1502 1503 /* round up to nearest 4K */ 1504 1505 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1506 txdr->size = ALIGN(txdr->size, 4096); 1507 1508 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1509 GFP_KERNEL); 1510 if (!txdr->desc) { 1511 setup_tx_desc_die: 1512 vfree(txdr->buffer_info); 1513 return -ENOMEM; 1514 } 1515 1516 /* Fix for errata 23, can't cross 64kB boundary */ 1517 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1518 void *olddesc = txdr->desc; 1519 dma_addr_t olddma = txdr->dma; 1520 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1521 txdr->size, txdr->desc); 1522 /* Try again, without freeing the previous */ 1523 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1524 &txdr->dma, GFP_KERNEL); 1525 /* Failed allocation, critical failure */ 1526 if (!txdr->desc) { 1527 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1528 olddma); 1529 goto setup_tx_desc_die; 1530 } 1531 1532 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1533 /* give up */ 1534 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1535 txdr->dma); 1536 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1537 olddma); 1538 e_err(probe, "Unable to allocate aligned memory " 1539 "for the transmit descriptor ring\n"); 1540 vfree(txdr->buffer_info); 1541 return -ENOMEM; 1542 } else { 1543 /* Free old allocation, new allocation was successful */ 1544 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1545 olddma); 1546 } 1547 } 1548 memset(txdr->desc, 0, txdr->size); 1549 1550 txdr->next_to_use = 0; 1551 txdr->next_to_clean = 0; 1552 1553 return 0; 1554 } 1555 1556 /** 1557 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1558 * (Descriptors) for all queues 1559 * @adapter: board private structure 1560 * 1561 * Return 0 on success, negative on failure 1562 **/ 1563 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1564 { 1565 int i, err = 0; 1566 1567 for (i = 0; i < adapter->num_tx_queues; i++) { 1568 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1569 if (err) { 1570 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1571 for (i-- ; i >= 0; i--) 1572 e1000_free_tx_resources(adapter, 1573 &adapter->tx_ring[i]); 1574 break; 1575 } 1576 } 1577 1578 return err; 1579 } 1580 1581 /** 1582 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1583 * @adapter: board private structure 1584 * 1585 * Configure the Tx unit of the MAC after a reset. 1586 **/ 1587 static void e1000_configure_tx(struct e1000_adapter *adapter) 1588 { 1589 u64 tdba; 1590 struct e1000_hw *hw = &adapter->hw; 1591 u32 tdlen, tctl, tipg; 1592 u32 ipgr1, ipgr2; 1593 1594 /* Setup the HW Tx Head and Tail descriptor pointers */ 1595 1596 switch (adapter->num_tx_queues) { 1597 case 1: 1598 default: 1599 tdba = adapter->tx_ring[0].dma; 1600 tdlen = adapter->tx_ring[0].count * 1601 sizeof(struct e1000_tx_desc); 1602 ew32(TDLEN, tdlen); 1603 ew32(TDBAH, (tdba >> 32)); 1604 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1605 ew32(TDT, 0); 1606 ew32(TDH, 0); 1607 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1608 E1000_TDH : E1000_82542_TDH); 1609 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1610 E1000_TDT : E1000_82542_TDT); 1611 break; 1612 } 1613 1614 /* Set the default values for the Tx Inter Packet Gap timer */ 1615 if ((hw->media_type == e1000_media_type_fiber || 1616 hw->media_type == e1000_media_type_internal_serdes)) 1617 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1618 else 1619 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1620 1621 switch (hw->mac_type) { 1622 case e1000_82542_rev2_0: 1623 case e1000_82542_rev2_1: 1624 tipg = DEFAULT_82542_TIPG_IPGT; 1625 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1626 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1627 break; 1628 default: 1629 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1630 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1631 break; 1632 } 1633 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1634 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1635 ew32(TIPG, tipg); 1636 1637 /* Set the Tx Interrupt Delay register */ 1638 1639 ew32(TIDV, adapter->tx_int_delay); 1640 if (hw->mac_type >= e1000_82540) 1641 ew32(TADV, adapter->tx_abs_int_delay); 1642 1643 /* Program the Transmit Control Register */ 1644 1645 tctl = er32(TCTL); 1646 tctl &= ~E1000_TCTL_CT; 1647 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1648 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1649 1650 e1000_config_collision_dist(hw); 1651 1652 /* Setup Transmit Descriptor Settings for eop descriptor */ 1653 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1654 1655 /* only set IDE if we are delaying interrupts using the timers */ 1656 if (adapter->tx_int_delay) 1657 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1658 1659 if (hw->mac_type < e1000_82543) 1660 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1661 else 1662 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1663 1664 /* Cache if we're 82544 running in PCI-X because we'll 1665 * need this to apply a workaround later in the send path. 1666 */ 1667 if (hw->mac_type == e1000_82544 && 1668 hw->bus_type == e1000_bus_type_pcix) 1669 adapter->pcix_82544 = true; 1670 1671 ew32(TCTL, tctl); 1672 1673 } 1674 1675 /** 1676 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1677 * @adapter: board private structure 1678 * @rxdr: rx descriptor ring (for a specific queue) to setup 1679 * 1680 * Returns 0 on success, negative on failure 1681 **/ 1682 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1683 struct e1000_rx_ring *rxdr) 1684 { 1685 struct pci_dev *pdev = adapter->pdev; 1686 int size, desc_len; 1687 1688 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1689 rxdr->buffer_info = vzalloc(size); 1690 if (!rxdr->buffer_info) 1691 return -ENOMEM; 1692 1693 desc_len = sizeof(struct e1000_rx_desc); 1694 1695 /* Round up to nearest 4K */ 1696 1697 rxdr->size = rxdr->count * desc_len; 1698 rxdr->size = ALIGN(rxdr->size, 4096); 1699 1700 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1701 GFP_KERNEL); 1702 if (!rxdr->desc) { 1703 setup_rx_desc_die: 1704 vfree(rxdr->buffer_info); 1705 return -ENOMEM; 1706 } 1707 1708 /* Fix for errata 23, can't cross 64kB boundary */ 1709 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1710 void *olddesc = rxdr->desc; 1711 dma_addr_t olddma = rxdr->dma; 1712 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1713 rxdr->size, rxdr->desc); 1714 /* Try again, without freeing the previous */ 1715 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1716 &rxdr->dma, GFP_KERNEL); 1717 /* Failed allocation, critical failure */ 1718 if (!rxdr->desc) { 1719 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1720 olddma); 1721 goto setup_rx_desc_die; 1722 } 1723 1724 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1725 /* give up */ 1726 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1727 rxdr->dma); 1728 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1729 olddma); 1730 e_err(probe, "Unable to allocate aligned memory for " 1731 "the Rx descriptor ring\n"); 1732 goto setup_rx_desc_die; 1733 } else { 1734 /* Free old allocation, new allocation was successful */ 1735 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1736 olddma); 1737 } 1738 } 1739 memset(rxdr->desc, 0, rxdr->size); 1740 1741 rxdr->next_to_clean = 0; 1742 rxdr->next_to_use = 0; 1743 rxdr->rx_skb_top = NULL; 1744 1745 return 0; 1746 } 1747 1748 /** 1749 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1750 * (Descriptors) for all queues 1751 * @adapter: board private structure 1752 * 1753 * Return 0 on success, negative on failure 1754 **/ 1755 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1756 { 1757 int i, err = 0; 1758 1759 for (i = 0; i < adapter->num_rx_queues; i++) { 1760 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1761 if (err) { 1762 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1763 for (i-- ; i >= 0; i--) 1764 e1000_free_rx_resources(adapter, 1765 &adapter->rx_ring[i]); 1766 break; 1767 } 1768 } 1769 1770 return err; 1771 } 1772 1773 /** 1774 * e1000_setup_rctl - configure the receive control registers 1775 * @adapter: Board private structure 1776 **/ 1777 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1778 { 1779 struct e1000_hw *hw = &adapter->hw; 1780 u32 rctl; 1781 1782 rctl = er32(RCTL); 1783 1784 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1785 1786 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1787 E1000_RCTL_RDMTS_HALF | 1788 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1789 1790 if (hw->tbi_compatibility_on == 1) 1791 rctl |= E1000_RCTL_SBP; 1792 else 1793 rctl &= ~E1000_RCTL_SBP; 1794 1795 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1796 rctl &= ~E1000_RCTL_LPE; 1797 else 1798 rctl |= E1000_RCTL_LPE; 1799 1800 /* Setup buffer sizes */ 1801 rctl &= ~E1000_RCTL_SZ_4096; 1802 rctl |= E1000_RCTL_BSEX; 1803 switch (adapter->rx_buffer_len) { 1804 case E1000_RXBUFFER_2048: 1805 default: 1806 rctl |= E1000_RCTL_SZ_2048; 1807 rctl &= ~E1000_RCTL_BSEX; 1808 break; 1809 case E1000_RXBUFFER_4096: 1810 rctl |= E1000_RCTL_SZ_4096; 1811 break; 1812 case E1000_RXBUFFER_8192: 1813 rctl |= E1000_RCTL_SZ_8192; 1814 break; 1815 case E1000_RXBUFFER_16384: 1816 rctl |= E1000_RCTL_SZ_16384; 1817 break; 1818 } 1819 1820 /* This is useful for sniffing bad packets. */ 1821 if (adapter->netdev->features & NETIF_F_RXALL) { 1822 /* UPE and MPE will be handled by normal PROMISC logic 1823 * in e1000e_set_rx_mode 1824 */ 1825 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1826 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1827 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1828 1829 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1830 E1000_RCTL_DPF | /* Allow filtered pause */ 1831 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1832 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1833 * and that breaks VLANs. 1834 */ 1835 } 1836 1837 ew32(RCTL, rctl); 1838 } 1839 1840 /** 1841 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1842 * @adapter: board private structure 1843 * 1844 * Configure the Rx unit of the MAC after a reset. 1845 **/ 1846 static void e1000_configure_rx(struct e1000_adapter *adapter) 1847 { 1848 u64 rdba; 1849 struct e1000_hw *hw = &adapter->hw; 1850 u32 rdlen, rctl, rxcsum; 1851 1852 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1853 rdlen = adapter->rx_ring[0].count * 1854 sizeof(struct e1000_rx_desc); 1855 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1856 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1857 } else { 1858 rdlen = adapter->rx_ring[0].count * 1859 sizeof(struct e1000_rx_desc); 1860 adapter->clean_rx = e1000_clean_rx_irq; 1861 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1862 } 1863 1864 /* disable receives while setting up the descriptors */ 1865 rctl = er32(RCTL); 1866 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1867 1868 /* set the Receive Delay Timer Register */ 1869 ew32(RDTR, adapter->rx_int_delay); 1870 1871 if (hw->mac_type >= e1000_82540) { 1872 ew32(RADV, adapter->rx_abs_int_delay); 1873 if (adapter->itr_setting != 0) 1874 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1875 } 1876 1877 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1878 * the Base and Length of the Rx Descriptor Ring 1879 */ 1880 switch (adapter->num_rx_queues) { 1881 case 1: 1882 default: 1883 rdba = adapter->rx_ring[0].dma; 1884 ew32(RDLEN, rdlen); 1885 ew32(RDBAH, (rdba >> 32)); 1886 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1887 ew32(RDT, 0); 1888 ew32(RDH, 0); 1889 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1890 E1000_RDH : E1000_82542_RDH); 1891 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1892 E1000_RDT : E1000_82542_RDT); 1893 break; 1894 } 1895 1896 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1897 if (hw->mac_type >= e1000_82543) { 1898 rxcsum = er32(RXCSUM); 1899 if (adapter->rx_csum) 1900 rxcsum |= E1000_RXCSUM_TUOFL; 1901 else 1902 /* don't need to clear IPPCSE as it defaults to 0 */ 1903 rxcsum &= ~E1000_RXCSUM_TUOFL; 1904 ew32(RXCSUM, rxcsum); 1905 } 1906 1907 /* Enable Receives */ 1908 ew32(RCTL, rctl | E1000_RCTL_EN); 1909 } 1910 1911 /** 1912 * e1000_free_tx_resources - Free Tx Resources per Queue 1913 * @adapter: board private structure 1914 * @tx_ring: Tx descriptor ring for a specific queue 1915 * 1916 * Free all transmit software resources 1917 **/ 1918 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1919 struct e1000_tx_ring *tx_ring) 1920 { 1921 struct pci_dev *pdev = adapter->pdev; 1922 1923 e1000_clean_tx_ring(adapter, tx_ring); 1924 1925 vfree(tx_ring->buffer_info); 1926 tx_ring->buffer_info = NULL; 1927 1928 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1929 tx_ring->dma); 1930 1931 tx_ring->desc = NULL; 1932 } 1933 1934 /** 1935 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1936 * @adapter: board private structure 1937 * 1938 * Free all transmit software resources 1939 **/ 1940 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1941 { 1942 int i; 1943 1944 for (i = 0; i < adapter->num_tx_queues; i++) 1945 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1946 } 1947 1948 static void 1949 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1950 struct e1000_tx_buffer *buffer_info) 1951 { 1952 if (buffer_info->dma) { 1953 if (buffer_info->mapped_as_page) 1954 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1955 buffer_info->length, DMA_TO_DEVICE); 1956 else 1957 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1958 buffer_info->length, 1959 DMA_TO_DEVICE); 1960 buffer_info->dma = 0; 1961 } 1962 if (buffer_info->skb) { 1963 dev_kfree_skb_any(buffer_info->skb); 1964 buffer_info->skb = NULL; 1965 } 1966 buffer_info->time_stamp = 0; 1967 /* buffer_info must be completely set up in the transmit path */ 1968 } 1969 1970 /** 1971 * e1000_clean_tx_ring - Free Tx Buffers 1972 * @adapter: board private structure 1973 * @tx_ring: ring to be cleaned 1974 **/ 1975 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1976 struct e1000_tx_ring *tx_ring) 1977 { 1978 struct e1000_hw *hw = &adapter->hw; 1979 struct e1000_tx_buffer *buffer_info; 1980 unsigned long size; 1981 unsigned int i; 1982 1983 /* Free all the Tx ring sk_buffs */ 1984 1985 for (i = 0; i < tx_ring->count; i++) { 1986 buffer_info = &tx_ring->buffer_info[i]; 1987 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 1988 } 1989 1990 netdev_reset_queue(adapter->netdev); 1991 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 1992 memset(tx_ring->buffer_info, 0, size); 1993 1994 /* Zero out the descriptor ring */ 1995 1996 memset(tx_ring->desc, 0, tx_ring->size); 1997 1998 tx_ring->next_to_use = 0; 1999 tx_ring->next_to_clean = 0; 2000 tx_ring->last_tx_tso = false; 2001 2002 writel(0, hw->hw_addr + tx_ring->tdh); 2003 writel(0, hw->hw_addr + tx_ring->tdt); 2004 } 2005 2006 /** 2007 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2008 * @adapter: board private structure 2009 **/ 2010 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2011 { 2012 int i; 2013 2014 for (i = 0; i < adapter->num_tx_queues; i++) 2015 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2016 } 2017 2018 /** 2019 * e1000_free_rx_resources - Free Rx Resources 2020 * @adapter: board private structure 2021 * @rx_ring: ring to clean the resources from 2022 * 2023 * Free all receive software resources 2024 **/ 2025 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2026 struct e1000_rx_ring *rx_ring) 2027 { 2028 struct pci_dev *pdev = adapter->pdev; 2029 2030 e1000_clean_rx_ring(adapter, rx_ring); 2031 2032 vfree(rx_ring->buffer_info); 2033 rx_ring->buffer_info = NULL; 2034 2035 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2036 rx_ring->dma); 2037 2038 rx_ring->desc = NULL; 2039 } 2040 2041 /** 2042 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2043 * @adapter: board private structure 2044 * 2045 * Free all receive software resources 2046 **/ 2047 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2048 { 2049 int i; 2050 2051 for (i = 0; i < adapter->num_rx_queues; i++) 2052 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2053 } 2054 2055 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2056 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2057 { 2058 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2059 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2060 } 2061 2062 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2063 { 2064 unsigned int len = e1000_frag_len(a); 2065 u8 *data = netdev_alloc_frag(len); 2066 2067 if (likely(data)) 2068 data += E1000_HEADROOM; 2069 return data; 2070 } 2071 2072 /** 2073 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2074 * @adapter: board private structure 2075 * @rx_ring: ring to free buffers from 2076 **/ 2077 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2078 struct e1000_rx_ring *rx_ring) 2079 { 2080 struct e1000_hw *hw = &adapter->hw; 2081 struct e1000_rx_buffer *buffer_info; 2082 struct pci_dev *pdev = adapter->pdev; 2083 unsigned long size; 2084 unsigned int i; 2085 2086 /* Free all the Rx netfrags */ 2087 for (i = 0; i < rx_ring->count; i++) { 2088 buffer_info = &rx_ring->buffer_info[i]; 2089 if (adapter->clean_rx == e1000_clean_rx_irq) { 2090 if (buffer_info->dma) 2091 dma_unmap_single(&pdev->dev, buffer_info->dma, 2092 adapter->rx_buffer_len, 2093 DMA_FROM_DEVICE); 2094 if (buffer_info->rxbuf.data) { 2095 skb_free_frag(buffer_info->rxbuf.data); 2096 buffer_info->rxbuf.data = NULL; 2097 } 2098 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2099 if (buffer_info->dma) 2100 dma_unmap_page(&pdev->dev, buffer_info->dma, 2101 adapter->rx_buffer_len, 2102 DMA_FROM_DEVICE); 2103 if (buffer_info->rxbuf.page) { 2104 put_page(buffer_info->rxbuf.page); 2105 buffer_info->rxbuf.page = NULL; 2106 } 2107 } 2108 2109 buffer_info->dma = 0; 2110 } 2111 2112 /* there also may be some cached data from a chained receive */ 2113 napi_free_frags(&adapter->napi); 2114 rx_ring->rx_skb_top = NULL; 2115 2116 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2117 memset(rx_ring->buffer_info, 0, size); 2118 2119 /* Zero out the descriptor ring */ 2120 memset(rx_ring->desc, 0, rx_ring->size); 2121 2122 rx_ring->next_to_clean = 0; 2123 rx_ring->next_to_use = 0; 2124 2125 writel(0, hw->hw_addr + rx_ring->rdh); 2126 writel(0, hw->hw_addr + rx_ring->rdt); 2127 } 2128 2129 /** 2130 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2131 * @adapter: board private structure 2132 **/ 2133 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2134 { 2135 int i; 2136 2137 for (i = 0; i < adapter->num_rx_queues; i++) 2138 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2139 } 2140 2141 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2142 * and memory write and invalidate disabled for certain operations 2143 */ 2144 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2145 { 2146 struct e1000_hw *hw = &adapter->hw; 2147 struct net_device *netdev = adapter->netdev; 2148 u32 rctl; 2149 2150 e1000_pci_clear_mwi(hw); 2151 2152 rctl = er32(RCTL); 2153 rctl |= E1000_RCTL_RST; 2154 ew32(RCTL, rctl); 2155 E1000_WRITE_FLUSH(); 2156 mdelay(5); 2157 2158 if (netif_running(netdev)) 2159 e1000_clean_all_rx_rings(adapter); 2160 } 2161 2162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2163 { 2164 struct e1000_hw *hw = &adapter->hw; 2165 struct net_device *netdev = adapter->netdev; 2166 u32 rctl; 2167 2168 rctl = er32(RCTL); 2169 rctl &= ~E1000_RCTL_RST; 2170 ew32(RCTL, rctl); 2171 E1000_WRITE_FLUSH(); 2172 mdelay(5); 2173 2174 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2175 e1000_pci_set_mwi(hw); 2176 2177 if (netif_running(netdev)) { 2178 /* No need to loop, because 82542 supports only 1 queue */ 2179 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2180 e1000_configure_rx(adapter); 2181 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2182 } 2183 } 2184 2185 /** 2186 * e1000_set_mac - Change the Ethernet Address of the NIC 2187 * @netdev: network interface device structure 2188 * @p: pointer to an address structure 2189 * 2190 * Returns 0 on success, negative on failure 2191 **/ 2192 static int e1000_set_mac(struct net_device *netdev, void *p) 2193 { 2194 struct e1000_adapter *adapter = netdev_priv(netdev); 2195 struct e1000_hw *hw = &adapter->hw; 2196 struct sockaddr *addr = p; 2197 2198 if (!is_valid_ether_addr(addr->sa_data)) 2199 return -EADDRNOTAVAIL; 2200 2201 /* 82542 2.0 needs to be in reset to write receive address registers */ 2202 2203 if (hw->mac_type == e1000_82542_rev2_0) 2204 e1000_enter_82542_rst(adapter); 2205 2206 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2207 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2208 2209 e1000_rar_set(hw, hw->mac_addr, 0); 2210 2211 if (hw->mac_type == e1000_82542_rev2_0) 2212 e1000_leave_82542_rst(adapter); 2213 2214 return 0; 2215 } 2216 2217 /** 2218 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2219 * @netdev: network interface device structure 2220 * 2221 * The set_rx_mode entry point is called whenever the unicast or multicast 2222 * address lists or the network interface flags are updated. This routine is 2223 * responsible for configuring the hardware for proper unicast, multicast, 2224 * promiscuous mode, and all-multi behavior. 2225 **/ 2226 static void e1000_set_rx_mode(struct net_device *netdev) 2227 { 2228 struct e1000_adapter *adapter = netdev_priv(netdev); 2229 struct e1000_hw *hw = &adapter->hw; 2230 struct netdev_hw_addr *ha; 2231 bool use_uc = false; 2232 u32 rctl; 2233 u32 hash_value; 2234 int i, rar_entries = E1000_RAR_ENTRIES; 2235 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2236 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2237 2238 if (!mcarray) 2239 return; 2240 2241 /* Check for Promiscuous and All Multicast modes */ 2242 2243 rctl = er32(RCTL); 2244 2245 if (netdev->flags & IFF_PROMISC) { 2246 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2247 rctl &= ~E1000_RCTL_VFE; 2248 } else { 2249 if (netdev->flags & IFF_ALLMULTI) 2250 rctl |= E1000_RCTL_MPE; 2251 else 2252 rctl &= ~E1000_RCTL_MPE; 2253 /* Enable VLAN filter if there is a VLAN */ 2254 if (e1000_vlan_used(adapter)) 2255 rctl |= E1000_RCTL_VFE; 2256 } 2257 2258 if (netdev_uc_count(netdev) > rar_entries - 1) { 2259 rctl |= E1000_RCTL_UPE; 2260 } else if (!(netdev->flags & IFF_PROMISC)) { 2261 rctl &= ~E1000_RCTL_UPE; 2262 use_uc = true; 2263 } 2264 2265 ew32(RCTL, rctl); 2266 2267 /* 82542 2.0 needs to be in reset to write receive address registers */ 2268 2269 if (hw->mac_type == e1000_82542_rev2_0) 2270 e1000_enter_82542_rst(adapter); 2271 2272 /* load the first 14 addresses into the exact filters 1-14. Unicast 2273 * addresses take precedence to avoid disabling unicast filtering 2274 * when possible. 2275 * 2276 * RAR 0 is used for the station MAC address 2277 * if there are not 14 addresses, go ahead and clear the filters 2278 */ 2279 i = 1; 2280 if (use_uc) 2281 netdev_for_each_uc_addr(ha, netdev) { 2282 if (i == rar_entries) 2283 break; 2284 e1000_rar_set(hw, ha->addr, i++); 2285 } 2286 2287 netdev_for_each_mc_addr(ha, netdev) { 2288 if (i == rar_entries) { 2289 /* load any remaining addresses into the hash table */ 2290 u32 hash_reg, hash_bit, mta; 2291 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2292 hash_reg = (hash_value >> 5) & 0x7F; 2293 hash_bit = hash_value & 0x1F; 2294 mta = (1 << hash_bit); 2295 mcarray[hash_reg] |= mta; 2296 } else { 2297 e1000_rar_set(hw, ha->addr, i++); 2298 } 2299 } 2300 2301 for (; i < rar_entries; i++) { 2302 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2303 E1000_WRITE_FLUSH(); 2304 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2305 E1000_WRITE_FLUSH(); 2306 } 2307 2308 /* write the hash table completely, write from bottom to avoid 2309 * both stupid write combining chipsets, and flushing each write 2310 */ 2311 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2312 /* If we are on an 82544 has an errata where writing odd 2313 * offsets overwrites the previous even offset, but writing 2314 * backwards over the range solves the issue by always 2315 * writing the odd offset first 2316 */ 2317 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2318 } 2319 E1000_WRITE_FLUSH(); 2320 2321 if (hw->mac_type == e1000_82542_rev2_0) 2322 e1000_leave_82542_rst(adapter); 2323 2324 kfree(mcarray); 2325 } 2326 2327 /** 2328 * e1000_update_phy_info_task - get phy info 2329 * @work: work struct contained inside adapter struct 2330 * 2331 * Need to wait a few seconds after link up to get diagnostic information from 2332 * the phy 2333 */ 2334 static void e1000_update_phy_info_task(struct work_struct *work) 2335 { 2336 struct e1000_adapter *adapter = container_of(work, 2337 struct e1000_adapter, 2338 phy_info_task.work); 2339 2340 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2341 } 2342 2343 /** 2344 * e1000_82547_tx_fifo_stall_task - task to complete work 2345 * @work: work struct contained inside adapter struct 2346 **/ 2347 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2348 { 2349 struct e1000_adapter *adapter = container_of(work, 2350 struct e1000_adapter, 2351 fifo_stall_task.work); 2352 struct e1000_hw *hw = &adapter->hw; 2353 struct net_device *netdev = adapter->netdev; 2354 u32 tctl; 2355 2356 if (atomic_read(&adapter->tx_fifo_stall)) { 2357 if ((er32(TDT) == er32(TDH)) && 2358 (er32(TDFT) == er32(TDFH)) && 2359 (er32(TDFTS) == er32(TDFHS))) { 2360 tctl = er32(TCTL); 2361 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2362 ew32(TDFT, adapter->tx_head_addr); 2363 ew32(TDFH, adapter->tx_head_addr); 2364 ew32(TDFTS, adapter->tx_head_addr); 2365 ew32(TDFHS, adapter->tx_head_addr); 2366 ew32(TCTL, tctl); 2367 E1000_WRITE_FLUSH(); 2368 2369 adapter->tx_fifo_head = 0; 2370 atomic_set(&adapter->tx_fifo_stall, 0); 2371 netif_wake_queue(netdev); 2372 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2373 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2374 } 2375 } 2376 } 2377 2378 bool e1000_has_link(struct e1000_adapter *adapter) 2379 { 2380 struct e1000_hw *hw = &adapter->hw; 2381 bool link_active = false; 2382 2383 /* get_link_status is set on LSC (link status) interrupt or rx 2384 * sequence error interrupt (except on intel ce4100). 2385 * get_link_status will stay false until the 2386 * e1000_check_for_link establishes link for copper adapters 2387 * ONLY 2388 */ 2389 switch (hw->media_type) { 2390 case e1000_media_type_copper: 2391 if (hw->mac_type == e1000_ce4100) 2392 hw->get_link_status = 1; 2393 if (hw->get_link_status) { 2394 e1000_check_for_link(hw); 2395 link_active = !hw->get_link_status; 2396 } else { 2397 link_active = true; 2398 } 2399 break; 2400 case e1000_media_type_fiber: 2401 e1000_check_for_link(hw); 2402 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2403 break; 2404 case e1000_media_type_internal_serdes: 2405 e1000_check_for_link(hw); 2406 link_active = hw->serdes_has_link; 2407 break; 2408 default: 2409 break; 2410 } 2411 2412 return link_active; 2413 } 2414 2415 /** 2416 * e1000_watchdog - work function 2417 * @work: work struct contained inside adapter struct 2418 **/ 2419 static void e1000_watchdog(struct work_struct *work) 2420 { 2421 struct e1000_adapter *adapter = container_of(work, 2422 struct e1000_adapter, 2423 watchdog_task.work); 2424 struct e1000_hw *hw = &adapter->hw; 2425 struct net_device *netdev = adapter->netdev; 2426 struct e1000_tx_ring *txdr = adapter->tx_ring; 2427 u32 link, tctl; 2428 2429 link = e1000_has_link(adapter); 2430 if ((netif_carrier_ok(netdev)) && link) 2431 goto link_up; 2432 2433 if (link) { 2434 if (!netif_carrier_ok(netdev)) { 2435 u32 ctrl; 2436 bool txb2b = true; 2437 /* update snapshot of PHY registers on LSC */ 2438 e1000_get_speed_and_duplex(hw, 2439 &adapter->link_speed, 2440 &adapter->link_duplex); 2441 2442 ctrl = er32(CTRL); 2443 pr_info("%s NIC Link is Up %d Mbps %s, " 2444 "Flow Control: %s\n", 2445 netdev->name, 2446 adapter->link_speed, 2447 adapter->link_duplex == FULL_DUPLEX ? 2448 "Full Duplex" : "Half Duplex", 2449 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2450 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2451 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2452 E1000_CTRL_TFCE) ? "TX" : "None"))); 2453 2454 /* adjust timeout factor according to speed/duplex */ 2455 adapter->tx_timeout_factor = 1; 2456 switch (adapter->link_speed) { 2457 case SPEED_10: 2458 txb2b = false; 2459 adapter->tx_timeout_factor = 16; 2460 break; 2461 case SPEED_100: 2462 txb2b = false; 2463 /* maybe add some timeout factor ? */ 2464 break; 2465 } 2466 2467 /* enable transmits in the hardware */ 2468 tctl = er32(TCTL); 2469 tctl |= E1000_TCTL_EN; 2470 ew32(TCTL, tctl); 2471 2472 netif_carrier_on(netdev); 2473 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2474 schedule_delayed_work(&adapter->phy_info_task, 2475 2 * HZ); 2476 adapter->smartspeed = 0; 2477 } 2478 } else { 2479 if (netif_carrier_ok(netdev)) { 2480 adapter->link_speed = 0; 2481 adapter->link_duplex = 0; 2482 pr_info("%s NIC Link is Down\n", 2483 netdev->name); 2484 netif_carrier_off(netdev); 2485 2486 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2487 schedule_delayed_work(&adapter->phy_info_task, 2488 2 * HZ); 2489 } 2490 2491 e1000_smartspeed(adapter); 2492 } 2493 2494 link_up: 2495 e1000_update_stats(adapter); 2496 2497 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2498 adapter->tpt_old = adapter->stats.tpt; 2499 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2500 adapter->colc_old = adapter->stats.colc; 2501 2502 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2503 adapter->gorcl_old = adapter->stats.gorcl; 2504 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2505 adapter->gotcl_old = adapter->stats.gotcl; 2506 2507 e1000_update_adaptive(hw); 2508 2509 if (!netif_carrier_ok(netdev)) { 2510 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2511 /* We've lost link, so the controller stops DMA, 2512 * but we've got queued Tx work that's never going 2513 * to get done, so reset controller to flush Tx. 2514 * (Do the reset outside of interrupt context). 2515 */ 2516 adapter->tx_timeout_count++; 2517 schedule_work(&adapter->reset_task); 2518 /* exit immediately since reset is imminent */ 2519 return; 2520 } 2521 } 2522 2523 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2524 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2525 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2526 * Total asymmetrical Tx or Rx gets ITR=8000; 2527 * everyone else is between 2000-8000. 2528 */ 2529 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2530 u32 dif = (adapter->gotcl > adapter->gorcl ? 2531 adapter->gotcl - adapter->gorcl : 2532 adapter->gorcl - adapter->gotcl) / 10000; 2533 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2534 2535 ew32(ITR, 1000000000 / (itr * 256)); 2536 } 2537 2538 /* Cause software interrupt to ensure rx ring is cleaned */ 2539 ew32(ICS, E1000_ICS_RXDMT0); 2540 2541 /* Force detection of hung controller every watchdog period */ 2542 adapter->detect_tx_hung = true; 2543 2544 /* Reschedule the task */ 2545 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2546 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2547 } 2548 2549 enum latency_range { 2550 lowest_latency = 0, 2551 low_latency = 1, 2552 bulk_latency = 2, 2553 latency_invalid = 255 2554 }; 2555 2556 /** 2557 * e1000_update_itr - update the dynamic ITR value based on statistics 2558 * @adapter: pointer to adapter 2559 * @itr_setting: current adapter->itr 2560 * @packets: the number of packets during this measurement interval 2561 * @bytes: the number of bytes during this measurement interval 2562 * 2563 * Stores a new ITR value based on packets and byte 2564 * counts during the last interrupt. The advantage of per interrupt 2565 * computation is faster updates and more accurate ITR for the current 2566 * traffic pattern. Constants in this function were computed 2567 * based on theoretical maximum wire speed and thresholds were set based 2568 * on testing data as well as attempting to minimize response time 2569 * while increasing bulk throughput. 2570 * this functionality is controlled by the InterruptThrottleRate module 2571 * parameter (see e1000_param.c) 2572 **/ 2573 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2574 u16 itr_setting, int packets, int bytes) 2575 { 2576 unsigned int retval = itr_setting; 2577 struct e1000_hw *hw = &adapter->hw; 2578 2579 if (unlikely(hw->mac_type < e1000_82540)) 2580 goto update_itr_done; 2581 2582 if (packets == 0) 2583 goto update_itr_done; 2584 2585 switch (itr_setting) { 2586 case lowest_latency: 2587 /* jumbo frames get bulk treatment*/ 2588 if (bytes/packets > 8000) 2589 retval = bulk_latency; 2590 else if ((packets < 5) && (bytes > 512)) 2591 retval = low_latency; 2592 break; 2593 case low_latency: /* 50 usec aka 20000 ints/s */ 2594 if (bytes > 10000) { 2595 /* jumbo frames need bulk latency setting */ 2596 if (bytes/packets > 8000) 2597 retval = bulk_latency; 2598 else if ((packets < 10) || ((bytes/packets) > 1200)) 2599 retval = bulk_latency; 2600 else if ((packets > 35)) 2601 retval = lowest_latency; 2602 } else if (bytes/packets > 2000) 2603 retval = bulk_latency; 2604 else if (packets <= 2 && bytes < 512) 2605 retval = lowest_latency; 2606 break; 2607 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2608 if (bytes > 25000) { 2609 if (packets > 35) 2610 retval = low_latency; 2611 } else if (bytes < 6000) { 2612 retval = low_latency; 2613 } 2614 break; 2615 } 2616 2617 update_itr_done: 2618 return retval; 2619 } 2620 2621 static void e1000_set_itr(struct e1000_adapter *adapter) 2622 { 2623 struct e1000_hw *hw = &adapter->hw; 2624 u16 current_itr; 2625 u32 new_itr = adapter->itr; 2626 2627 if (unlikely(hw->mac_type < e1000_82540)) 2628 return; 2629 2630 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2631 if (unlikely(adapter->link_speed != SPEED_1000)) { 2632 current_itr = 0; 2633 new_itr = 4000; 2634 goto set_itr_now; 2635 } 2636 2637 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2638 adapter->total_tx_packets, 2639 adapter->total_tx_bytes); 2640 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2641 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2642 adapter->tx_itr = low_latency; 2643 2644 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2645 adapter->total_rx_packets, 2646 adapter->total_rx_bytes); 2647 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2648 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2649 adapter->rx_itr = low_latency; 2650 2651 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2652 2653 switch (current_itr) { 2654 /* counts and packets in update_itr are dependent on these numbers */ 2655 case lowest_latency: 2656 new_itr = 70000; 2657 break; 2658 case low_latency: 2659 new_itr = 20000; /* aka hwitr = ~200 */ 2660 break; 2661 case bulk_latency: 2662 new_itr = 4000; 2663 break; 2664 default: 2665 break; 2666 } 2667 2668 set_itr_now: 2669 if (new_itr != adapter->itr) { 2670 /* this attempts to bias the interrupt rate towards Bulk 2671 * by adding intermediate steps when interrupt rate is 2672 * increasing 2673 */ 2674 new_itr = new_itr > adapter->itr ? 2675 min(adapter->itr + (new_itr >> 2), new_itr) : 2676 new_itr; 2677 adapter->itr = new_itr; 2678 ew32(ITR, 1000000000 / (new_itr * 256)); 2679 } 2680 } 2681 2682 #define E1000_TX_FLAGS_CSUM 0x00000001 2683 #define E1000_TX_FLAGS_VLAN 0x00000002 2684 #define E1000_TX_FLAGS_TSO 0x00000004 2685 #define E1000_TX_FLAGS_IPV4 0x00000008 2686 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2687 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2688 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2689 2690 static int e1000_tso(struct e1000_adapter *adapter, 2691 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2692 __be16 protocol) 2693 { 2694 struct e1000_context_desc *context_desc; 2695 struct e1000_tx_buffer *buffer_info; 2696 unsigned int i; 2697 u32 cmd_length = 0; 2698 u16 ipcse = 0, tucse, mss; 2699 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2700 2701 if (skb_is_gso(skb)) { 2702 int err; 2703 2704 err = skb_cow_head(skb, 0); 2705 if (err < 0) 2706 return err; 2707 2708 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2709 mss = skb_shinfo(skb)->gso_size; 2710 if (protocol == htons(ETH_P_IP)) { 2711 struct iphdr *iph = ip_hdr(skb); 2712 iph->tot_len = 0; 2713 iph->check = 0; 2714 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2715 iph->daddr, 0, 2716 IPPROTO_TCP, 2717 0); 2718 cmd_length = E1000_TXD_CMD_IP; 2719 ipcse = skb_transport_offset(skb) - 1; 2720 } else if (skb_is_gso_v6(skb)) { 2721 ipv6_hdr(skb)->payload_len = 0; 2722 tcp_hdr(skb)->check = 2723 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2724 &ipv6_hdr(skb)->daddr, 2725 0, IPPROTO_TCP, 0); 2726 ipcse = 0; 2727 } 2728 ipcss = skb_network_offset(skb); 2729 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2730 tucss = skb_transport_offset(skb); 2731 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2732 tucse = 0; 2733 2734 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2735 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2736 2737 i = tx_ring->next_to_use; 2738 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2739 buffer_info = &tx_ring->buffer_info[i]; 2740 2741 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2742 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2743 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2744 context_desc->upper_setup.tcp_fields.tucss = tucss; 2745 context_desc->upper_setup.tcp_fields.tucso = tucso; 2746 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2747 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2748 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2749 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2750 2751 buffer_info->time_stamp = jiffies; 2752 buffer_info->next_to_watch = i; 2753 2754 if (++i == tx_ring->count) 2755 i = 0; 2756 2757 tx_ring->next_to_use = i; 2758 2759 return true; 2760 } 2761 return false; 2762 } 2763 2764 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2765 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2766 __be16 protocol) 2767 { 2768 struct e1000_context_desc *context_desc; 2769 struct e1000_tx_buffer *buffer_info; 2770 unsigned int i; 2771 u8 css; 2772 u32 cmd_len = E1000_TXD_CMD_DEXT; 2773 2774 if (skb->ip_summed != CHECKSUM_PARTIAL) 2775 return false; 2776 2777 switch (protocol) { 2778 case cpu_to_be16(ETH_P_IP): 2779 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2780 cmd_len |= E1000_TXD_CMD_TCP; 2781 break; 2782 case cpu_to_be16(ETH_P_IPV6): 2783 /* XXX not handling all IPV6 headers */ 2784 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2785 cmd_len |= E1000_TXD_CMD_TCP; 2786 break; 2787 default: 2788 if (unlikely(net_ratelimit())) 2789 e_warn(drv, "checksum_partial proto=%x!\n", 2790 skb->protocol); 2791 break; 2792 } 2793 2794 css = skb_checksum_start_offset(skb); 2795 2796 i = tx_ring->next_to_use; 2797 buffer_info = &tx_ring->buffer_info[i]; 2798 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2799 2800 context_desc->lower_setup.ip_config = 0; 2801 context_desc->upper_setup.tcp_fields.tucss = css; 2802 context_desc->upper_setup.tcp_fields.tucso = 2803 css + skb->csum_offset; 2804 context_desc->upper_setup.tcp_fields.tucse = 0; 2805 context_desc->tcp_seg_setup.data = 0; 2806 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2807 2808 buffer_info->time_stamp = jiffies; 2809 buffer_info->next_to_watch = i; 2810 2811 if (unlikely(++i == tx_ring->count)) 2812 i = 0; 2813 2814 tx_ring->next_to_use = i; 2815 2816 return true; 2817 } 2818 2819 #define E1000_MAX_TXD_PWR 12 2820 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2821 2822 static int e1000_tx_map(struct e1000_adapter *adapter, 2823 struct e1000_tx_ring *tx_ring, 2824 struct sk_buff *skb, unsigned int first, 2825 unsigned int max_per_txd, unsigned int nr_frags, 2826 unsigned int mss) 2827 { 2828 struct e1000_hw *hw = &adapter->hw; 2829 struct pci_dev *pdev = adapter->pdev; 2830 struct e1000_tx_buffer *buffer_info; 2831 unsigned int len = skb_headlen(skb); 2832 unsigned int offset = 0, size, count = 0, i; 2833 unsigned int f, bytecount, segs; 2834 2835 i = tx_ring->next_to_use; 2836 2837 while (len) { 2838 buffer_info = &tx_ring->buffer_info[i]; 2839 size = min(len, max_per_txd); 2840 /* Workaround for Controller erratum -- 2841 * descriptor for non-tso packet in a linear SKB that follows a 2842 * tso gets written back prematurely before the data is fully 2843 * DMA'd to the controller 2844 */ 2845 if (!skb->data_len && tx_ring->last_tx_tso && 2846 !skb_is_gso(skb)) { 2847 tx_ring->last_tx_tso = false; 2848 size -= 4; 2849 } 2850 2851 /* Workaround for premature desc write-backs 2852 * in TSO mode. Append 4-byte sentinel desc 2853 */ 2854 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2855 size -= 4; 2856 /* work-around for errata 10 and it applies 2857 * to all controllers in PCI-X mode 2858 * The fix is to make sure that the first descriptor of a 2859 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2860 */ 2861 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2862 (size > 2015) && count == 0)) 2863 size = 2015; 2864 2865 /* Workaround for potential 82544 hang in PCI-X. Avoid 2866 * terminating buffers within evenly-aligned dwords. 2867 */ 2868 if (unlikely(adapter->pcix_82544 && 2869 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2870 size > 4)) 2871 size -= 4; 2872 2873 buffer_info->length = size; 2874 /* set time_stamp *before* dma to help avoid a possible race */ 2875 buffer_info->time_stamp = jiffies; 2876 buffer_info->mapped_as_page = false; 2877 buffer_info->dma = dma_map_single(&pdev->dev, 2878 skb->data + offset, 2879 size, DMA_TO_DEVICE); 2880 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2881 goto dma_error; 2882 buffer_info->next_to_watch = i; 2883 2884 len -= size; 2885 offset += size; 2886 count++; 2887 if (len) { 2888 i++; 2889 if (unlikely(i == tx_ring->count)) 2890 i = 0; 2891 } 2892 } 2893 2894 for (f = 0; f < nr_frags; f++) { 2895 const struct skb_frag_struct *frag; 2896 2897 frag = &skb_shinfo(skb)->frags[f]; 2898 len = skb_frag_size(frag); 2899 offset = 0; 2900 2901 while (len) { 2902 unsigned long bufend; 2903 i++; 2904 if (unlikely(i == tx_ring->count)) 2905 i = 0; 2906 2907 buffer_info = &tx_ring->buffer_info[i]; 2908 size = min(len, max_per_txd); 2909 /* Workaround for premature desc write-backs 2910 * in TSO mode. Append 4-byte sentinel desc 2911 */ 2912 if (unlikely(mss && f == (nr_frags-1) && 2913 size == len && size > 8)) 2914 size -= 4; 2915 /* Workaround for potential 82544 hang in PCI-X. 2916 * Avoid terminating buffers within evenly-aligned 2917 * dwords. 2918 */ 2919 bufend = (unsigned long) 2920 page_to_phys(skb_frag_page(frag)); 2921 bufend += offset + size - 1; 2922 if (unlikely(adapter->pcix_82544 && 2923 !(bufend & 4) && 2924 size > 4)) 2925 size -= 4; 2926 2927 buffer_info->length = size; 2928 buffer_info->time_stamp = jiffies; 2929 buffer_info->mapped_as_page = true; 2930 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2931 offset, size, DMA_TO_DEVICE); 2932 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2933 goto dma_error; 2934 buffer_info->next_to_watch = i; 2935 2936 len -= size; 2937 offset += size; 2938 count++; 2939 } 2940 } 2941 2942 segs = skb_shinfo(skb)->gso_segs ?: 1; 2943 /* multiply data chunks by size of headers */ 2944 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2945 2946 tx_ring->buffer_info[i].skb = skb; 2947 tx_ring->buffer_info[i].segs = segs; 2948 tx_ring->buffer_info[i].bytecount = bytecount; 2949 tx_ring->buffer_info[first].next_to_watch = i; 2950 2951 return count; 2952 2953 dma_error: 2954 dev_err(&pdev->dev, "TX DMA map failed\n"); 2955 buffer_info->dma = 0; 2956 if (count) 2957 count--; 2958 2959 while (count--) { 2960 if (i == 0) 2961 i += tx_ring->count; 2962 i--; 2963 buffer_info = &tx_ring->buffer_info[i]; 2964 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2965 } 2966 2967 return 0; 2968 } 2969 2970 static void e1000_tx_queue(struct e1000_adapter *adapter, 2971 struct e1000_tx_ring *tx_ring, int tx_flags, 2972 int count) 2973 { 2974 struct e1000_tx_desc *tx_desc = NULL; 2975 struct e1000_tx_buffer *buffer_info; 2976 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2977 unsigned int i; 2978 2979 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2980 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2981 E1000_TXD_CMD_TSE; 2982 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2983 2984 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2985 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2986 } 2987 2988 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2989 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 2990 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2991 } 2992 2993 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 2994 txd_lower |= E1000_TXD_CMD_VLE; 2995 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 2996 } 2997 2998 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 2999 txd_lower &= ~(E1000_TXD_CMD_IFCS); 3000 3001 i = tx_ring->next_to_use; 3002 3003 while (count--) { 3004 buffer_info = &tx_ring->buffer_info[i]; 3005 tx_desc = E1000_TX_DESC(*tx_ring, i); 3006 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3007 tx_desc->lower.data = 3008 cpu_to_le32(txd_lower | buffer_info->length); 3009 tx_desc->upper.data = cpu_to_le32(txd_upper); 3010 if (unlikely(++i == tx_ring->count)) 3011 i = 0; 3012 } 3013 3014 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3015 3016 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3017 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3018 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3019 3020 /* Force memory writes to complete before letting h/w 3021 * know there are new descriptors to fetch. (Only 3022 * applicable for weak-ordered memory model archs, 3023 * such as IA-64). 3024 */ 3025 wmb(); 3026 3027 tx_ring->next_to_use = i; 3028 } 3029 3030 /* 82547 workaround to avoid controller hang in half-duplex environment. 3031 * The workaround is to avoid queuing a large packet that would span 3032 * the internal Tx FIFO ring boundary by notifying the stack to resend 3033 * the packet at a later time. This gives the Tx FIFO an opportunity to 3034 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3035 * to the beginning of the Tx FIFO. 3036 */ 3037 3038 #define E1000_FIFO_HDR 0x10 3039 #define E1000_82547_PAD_LEN 0x3E0 3040 3041 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3042 struct sk_buff *skb) 3043 { 3044 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3045 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3046 3047 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3048 3049 if (adapter->link_duplex != HALF_DUPLEX) 3050 goto no_fifo_stall_required; 3051 3052 if (atomic_read(&adapter->tx_fifo_stall)) 3053 return 1; 3054 3055 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3056 atomic_set(&adapter->tx_fifo_stall, 1); 3057 return 1; 3058 } 3059 3060 no_fifo_stall_required: 3061 adapter->tx_fifo_head += skb_fifo_len; 3062 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3063 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3064 return 0; 3065 } 3066 3067 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3068 { 3069 struct e1000_adapter *adapter = netdev_priv(netdev); 3070 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3071 3072 netif_stop_queue(netdev); 3073 /* Herbert's original patch had: 3074 * smp_mb__after_netif_stop_queue(); 3075 * but since that doesn't exist yet, just open code it. 3076 */ 3077 smp_mb(); 3078 3079 /* We need to check again in a case another CPU has just 3080 * made room available. 3081 */ 3082 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3083 return -EBUSY; 3084 3085 /* A reprieve! */ 3086 netif_start_queue(netdev); 3087 ++adapter->restart_queue; 3088 return 0; 3089 } 3090 3091 static int e1000_maybe_stop_tx(struct net_device *netdev, 3092 struct e1000_tx_ring *tx_ring, int size) 3093 { 3094 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3095 return 0; 3096 return __e1000_maybe_stop_tx(netdev, size); 3097 } 3098 3099 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) 3100 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3101 struct net_device *netdev) 3102 { 3103 struct e1000_adapter *adapter = netdev_priv(netdev); 3104 struct e1000_hw *hw = &adapter->hw; 3105 struct e1000_tx_ring *tx_ring; 3106 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3107 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3108 unsigned int tx_flags = 0; 3109 unsigned int len = skb_headlen(skb); 3110 unsigned int nr_frags; 3111 unsigned int mss; 3112 int count = 0; 3113 int tso; 3114 unsigned int f; 3115 __be16 protocol = vlan_get_protocol(skb); 3116 3117 /* This goes back to the question of how to logically map a Tx queue 3118 * to a flow. Right now, performance is impacted slightly negatively 3119 * if using multiple Tx queues. If the stack breaks away from a 3120 * single qdisc implementation, we can look at this again. 3121 */ 3122 tx_ring = adapter->tx_ring; 3123 3124 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3125 * packets may get corrupted during padding by HW. 3126 * To WA this issue, pad all small packets manually. 3127 */ 3128 if (eth_skb_pad(skb)) 3129 return NETDEV_TX_OK; 3130 3131 mss = skb_shinfo(skb)->gso_size; 3132 /* The controller does a simple calculation to 3133 * make sure there is enough room in the FIFO before 3134 * initiating the DMA for each buffer. The calc is: 3135 * 4 = ceil(buffer len/mss). To make sure we don't 3136 * overrun the FIFO, adjust the max buffer len if mss 3137 * drops. 3138 */ 3139 if (mss) { 3140 u8 hdr_len; 3141 max_per_txd = min(mss << 2, max_per_txd); 3142 max_txd_pwr = fls(max_per_txd) - 1; 3143 3144 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3145 if (skb->data_len && hdr_len == len) { 3146 switch (hw->mac_type) { 3147 unsigned int pull_size; 3148 case e1000_82544: 3149 /* Make sure we have room to chop off 4 bytes, 3150 * and that the end alignment will work out to 3151 * this hardware's requirements 3152 * NOTE: this is a TSO only workaround 3153 * if end byte alignment not correct move us 3154 * into the next dword 3155 */ 3156 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3157 & 4) 3158 break; 3159 /* fall through */ 3160 pull_size = min((unsigned int)4, skb->data_len); 3161 if (!__pskb_pull_tail(skb, pull_size)) { 3162 e_err(drv, "__pskb_pull_tail " 3163 "failed.\n"); 3164 dev_kfree_skb_any(skb); 3165 return NETDEV_TX_OK; 3166 } 3167 len = skb_headlen(skb); 3168 break; 3169 default: 3170 /* do nothing */ 3171 break; 3172 } 3173 } 3174 } 3175 3176 /* reserve a descriptor for the offload context */ 3177 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3178 count++; 3179 count++; 3180 3181 /* Controller Erratum workaround */ 3182 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3183 count++; 3184 3185 count += TXD_USE_COUNT(len, max_txd_pwr); 3186 3187 if (adapter->pcix_82544) 3188 count++; 3189 3190 /* work-around for errata 10 and it applies to all controllers 3191 * in PCI-X mode, so add one more descriptor to the count 3192 */ 3193 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3194 (len > 2015))) 3195 count++; 3196 3197 nr_frags = skb_shinfo(skb)->nr_frags; 3198 for (f = 0; f < nr_frags; f++) 3199 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3200 max_txd_pwr); 3201 if (adapter->pcix_82544) 3202 count += nr_frags; 3203 3204 /* need: count + 2 desc gap to keep tail from touching 3205 * head, otherwise try next time 3206 */ 3207 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3208 return NETDEV_TX_BUSY; 3209 3210 if (unlikely((hw->mac_type == e1000_82547) && 3211 (e1000_82547_fifo_workaround(adapter, skb)))) { 3212 netif_stop_queue(netdev); 3213 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3214 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3215 return NETDEV_TX_BUSY; 3216 } 3217 3218 if (skb_vlan_tag_present(skb)) { 3219 tx_flags |= E1000_TX_FLAGS_VLAN; 3220 tx_flags |= (skb_vlan_tag_get(skb) << 3221 E1000_TX_FLAGS_VLAN_SHIFT); 3222 } 3223 3224 first = tx_ring->next_to_use; 3225 3226 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3227 if (tso < 0) { 3228 dev_kfree_skb_any(skb); 3229 return NETDEV_TX_OK; 3230 } 3231 3232 if (likely(tso)) { 3233 if (likely(hw->mac_type != e1000_82544)) 3234 tx_ring->last_tx_tso = true; 3235 tx_flags |= E1000_TX_FLAGS_TSO; 3236 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3237 tx_flags |= E1000_TX_FLAGS_CSUM; 3238 3239 if (protocol == htons(ETH_P_IP)) 3240 tx_flags |= E1000_TX_FLAGS_IPV4; 3241 3242 if (unlikely(skb->no_fcs)) 3243 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3244 3245 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3246 nr_frags, mss); 3247 3248 if (count) { 3249 /* The descriptors needed is higher than other Intel drivers 3250 * due to a number of workarounds. The breakdown is below: 3251 * Data descriptors: MAX_SKB_FRAGS + 1 3252 * Context Descriptor: 1 3253 * Keep head from touching tail: 2 3254 * Workarounds: 3 3255 */ 3256 int desc_needed = MAX_SKB_FRAGS + 7; 3257 3258 netdev_sent_queue(netdev, skb->len); 3259 skb_tx_timestamp(skb); 3260 3261 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3262 3263 /* 82544 potentially requires twice as many data descriptors 3264 * in order to guarantee buffers don't end on evenly-aligned 3265 * dwords 3266 */ 3267 if (adapter->pcix_82544) 3268 desc_needed += MAX_SKB_FRAGS + 1; 3269 3270 /* Make sure there is space in the ring for the next send. */ 3271 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); 3272 3273 if (!skb->xmit_more || 3274 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 3275 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); 3276 /* we need this if more than one processor can write to 3277 * our tail at a time, it synchronizes IO on IA64/Altix 3278 * systems 3279 */ 3280 mmiowb(); 3281 } 3282 } else { 3283 dev_kfree_skb_any(skb); 3284 tx_ring->buffer_info[first].time_stamp = 0; 3285 tx_ring->next_to_use = first; 3286 } 3287 3288 return NETDEV_TX_OK; 3289 } 3290 3291 #define NUM_REGS 38 /* 1 based count */ 3292 static void e1000_regdump(struct e1000_adapter *adapter) 3293 { 3294 struct e1000_hw *hw = &adapter->hw; 3295 u32 regs[NUM_REGS]; 3296 u32 *regs_buff = regs; 3297 int i = 0; 3298 3299 static const char * const reg_name[] = { 3300 "CTRL", "STATUS", 3301 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3302 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3303 "TIDV", "TXDCTL", "TADV", "TARC0", 3304 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3305 "TXDCTL1", "TARC1", 3306 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3307 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3308 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3309 }; 3310 3311 regs_buff[0] = er32(CTRL); 3312 regs_buff[1] = er32(STATUS); 3313 3314 regs_buff[2] = er32(RCTL); 3315 regs_buff[3] = er32(RDLEN); 3316 regs_buff[4] = er32(RDH); 3317 regs_buff[5] = er32(RDT); 3318 regs_buff[6] = er32(RDTR); 3319 3320 regs_buff[7] = er32(TCTL); 3321 regs_buff[8] = er32(TDBAL); 3322 regs_buff[9] = er32(TDBAH); 3323 regs_buff[10] = er32(TDLEN); 3324 regs_buff[11] = er32(TDH); 3325 regs_buff[12] = er32(TDT); 3326 regs_buff[13] = er32(TIDV); 3327 regs_buff[14] = er32(TXDCTL); 3328 regs_buff[15] = er32(TADV); 3329 regs_buff[16] = er32(TARC0); 3330 3331 regs_buff[17] = er32(TDBAL1); 3332 regs_buff[18] = er32(TDBAH1); 3333 regs_buff[19] = er32(TDLEN1); 3334 regs_buff[20] = er32(TDH1); 3335 regs_buff[21] = er32(TDT1); 3336 regs_buff[22] = er32(TXDCTL1); 3337 regs_buff[23] = er32(TARC1); 3338 regs_buff[24] = er32(CTRL_EXT); 3339 regs_buff[25] = er32(ERT); 3340 regs_buff[26] = er32(RDBAL0); 3341 regs_buff[27] = er32(RDBAH0); 3342 regs_buff[28] = er32(TDFH); 3343 regs_buff[29] = er32(TDFT); 3344 regs_buff[30] = er32(TDFHS); 3345 regs_buff[31] = er32(TDFTS); 3346 regs_buff[32] = er32(TDFPC); 3347 regs_buff[33] = er32(RDFH); 3348 regs_buff[34] = er32(RDFT); 3349 regs_buff[35] = er32(RDFHS); 3350 regs_buff[36] = er32(RDFTS); 3351 regs_buff[37] = er32(RDFPC); 3352 3353 pr_info("Register dump\n"); 3354 for (i = 0; i < NUM_REGS; i++) 3355 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3356 } 3357 3358 /* 3359 * e1000_dump: Print registers, tx ring and rx ring 3360 */ 3361 static void e1000_dump(struct e1000_adapter *adapter) 3362 { 3363 /* this code doesn't handle multiple rings */ 3364 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3365 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3366 int i; 3367 3368 if (!netif_msg_hw(adapter)) 3369 return; 3370 3371 /* Print Registers */ 3372 e1000_regdump(adapter); 3373 3374 /* transmit dump */ 3375 pr_info("TX Desc ring0 dump\n"); 3376 3377 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3378 * 3379 * Legacy Transmit Descriptor 3380 * +--------------------------------------------------------------+ 3381 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3382 * +--------------------------------------------------------------+ 3383 * 8 | Special | CSS | Status | CMD | CSO | Length | 3384 * +--------------------------------------------------------------+ 3385 * 63 48 47 36 35 32 31 24 23 16 15 0 3386 * 3387 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3388 * 63 48 47 40 39 32 31 16 15 8 7 0 3389 * +----------------------------------------------------------------+ 3390 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3391 * +----------------------------------------------------------------+ 3392 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3393 * +----------------------------------------------------------------+ 3394 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3395 * 3396 * Extended Data Descriptor (DTYP=0x1) 3397 * +----------------------------------------------------------------+ 3398 * 0 | Buffer Address [63:0] | 3399 * +----------------------------------------------------------------+ 3400 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3401 * +----------------------------------------------------------------+ 3402 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3403 */ 3404 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3405 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3406 3407 if (!netif_msg_tx_done(adapter)) 3408 goto rx_ring_summary; 3409 3410 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3411 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3412 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3413 struct my_u { __le64 a; __le64 b; }; 3414 struct my_u *u = (struct my_u *)tx_desc; 3415 const char *type; 3416 3417 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3418 type = "NTC/U"; 3419 else if (i == tx_ring->next_to_use) 3420 type = "NTU"; 3421 else if (i == tx_ring->next_to_clean) 3422 type = "NTC"; 3423 else 3424 type = ""; 3425 3426 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3427 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3428 le64_to_cpu(u->a), le64_to_cpu(u->b), 3429 (u64)buffer_info->dma, buffer_info->length, 3430 buffer_info->next_to_watch, 3431 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3432 } 3433 3434 rx_ring_summary: 3435 /* receive dump */ 3436 pr_info("\nRX Desc ring dump\n"); 3437 3438 /* Legacy Receive Descriptor Format 3439 * 3440 * +-----------------------------------------------------+ 3441 * | Buffer Address [63:0] | 3442 * +-----------------------------------------------------+ 3443 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3444 * +-----------------------------------------------------+ 3445 * 63 48 47 40 39 32 31 16 15 0 3446 */ 3447 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3448 3449 if (!netif_msg_rx_status(adapter)) 3450 goto exit; 3451 3452 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3453 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3454 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3455 struct my_u { __le64 a; __le64 b; }; 3456 struct my_u *u = (struct my_u *)rx_desc; 3457 const char *type; 3458 3459 if (i == rx_ring->next_to_use) 3460 type = "NTU"; 3461 else if (i == rx_ring->next_to_clean) 3462 type = "NTC"; 3463 else 3464 type = ""; 3465 3466 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3467 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3468 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3469 } /* for */ 3470 3471 /* dump the descriptor caches */ 3472 /* rx */ 3473 pr_info("Rx descriptor cache in 64bit format\n"); 3474 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3475 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3476 i, 3477 readl(adapter->hw.hw_addr + i+4), 3478 readl(adapter->hw.hw_addr + i), 3479 readl(adapter->hw.hw_addr + i+12), 3480 readl(adapter->hw.hw_addr + i+8)); 3481 } 3482 /* tx */ 3483 pr_info("Tx descriptor cache in 64bit format\n"); 3484 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3485 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3486 i, 3487 readl(adapter->hw.hw_addr + i+4), 3488 readl(adapter->hw.hw_addr + i), 3489 readl(adapter->hw.hw_addr + i+12), 3490 readl(adapter->hw.hw_addr + i+8)); 3491 } 3492 exit: 3493 return; 3494 } 3495 3496 /** 3497 * e1000_tx_timeout - Respond to a Tx Hang 3498 * @netdev: network interface device structure 3499 **/ 3500 static void e1000_tx_timeout(struct net_device *netdev) 3501 { 3502 struct e1000_adapter *adapter = netdev_priv(netdev); 3503 3504 /* Do the reset outside of interrupt context */ 3505 adapter->tx_timeout_count++; 3506 schedule_work(&adapter->reset_task); 3507 } 3508 3509 static void e1000_reset_task(struct work_struct *work) 3510 { 3511 struct e1000_adapter *adapter = 3512 container_of(work, struct e1000_adapter, reset_task); 3513 3514 e_err(drv, "Reset adapter\n"); 3515 e1000_reinit_locked(adapter); 3516 } 3517 3518 /** 3519 * e1000_change_mtu - Change the Maximum Transfer Unit 3520 * @netdev: network interface device structure 3521 * @new_mtu: new value for maximum frame size 3522 * 3523 * Returns 0 on success, negative on failure 3524 **/ 3525 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3526 { 3527 struct e1000_adapter *adapter = netdev_priv(netdev); 3528 struct e1000_hw *hw = &adapter->hw; 3529 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3530 3531 /* Adapter-specific max frame size limits. */ 3532 switch (hw->mac_type) { 3533 case e1000_undefined ... e1000_82542_rev2_1: 3534 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3535 e_err(probe, "Jumbo Frames not supported.\n"); 3536 return -EINVAL; 3537 } 3538 break; 3539 default: 3540 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3541 break; 3542 } 3543 3544 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3545 msleep(1); 3546 /* e1000_down has a dependency on max_frame_size */ 3547 hw->max_frame_size = max_frame; 3548 if (netif_running(netdev)) { 3549 /* prevent buffers from being reallocated */ 3550 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; 3551 e1000_down(adapter); 3552 } 3553 3554 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3555 * means we reserve 2 more, this pushes us to allocate from the next 3556 * larger slab size. 3557 * i.e. RXBUFFER_2048 --> size-4096 slab 3558 * however with the new *_jumbo_rx* routines, jumbo receives will use 3559 * fragmented skbs 3560 */ 3561 3562 if (max_frame <= E1000_RXBUFFER_2048) 3563 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3564 else 3565 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3566 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3567 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3568 adapter->rx_buffer_len = PAGE_SIZE; 3569 #endif 3570 3571 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3572 if (!hw->tbi_compatibility_on && 3573 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3574 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3575 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3576 3577 pr_info("%s changing MTU from %d to %d\n", 3578 netdev->name, netdev->mtu, new_mtu); 3579 netdev->mtu = new_mtu; 3580 3581 if (netif_running(netdev)) 3582 e1000_up(adapter); 3583 else 3584 e1000_reset(adapter); 3585 3586 clear_bit(__E1000_RESETTING, &adapter->flags); 3587 3588 return 0; 3589 } 3590 3591 /** 3592 * e1000_update_stats - Update the board statistics counters 3593 * @adapter: board private structure 3594 **/ 3595 void e1000_update_stats(struct e1000_adapter *adapter) 3596 { 3597 struct net_device *netdev = adapter->netdev; 3598 struct e1000_hw *hw = &adapter->hw; 3599 struct pci_dev *pdev = adapter->pdev; 3600 unsigned long flags; 3601 u16 phy_tmp; 3602 3603 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3604 3605 /* Prevent stats update while adapter is being reset, or if the pci 3606 * connection is down. 3607 */ 3608 if (adapter->link_speed == 0) 3609 return; 3610 if (pci_channel_offline(pdev)) 3611 return; 3612 3613 spin_lock_irqsave(&adapter->stats_lock, flags); 3614 3615 /* these counters are modified from e1000_tbi_adjust_stats, 3616 * called from the interrupt context, so they must only 3617 * be written while holding adapter->stats_lock 3618 */ 3619 3620 adapter->stats.crcerrs += er32(CRCERRS); 3621 adapter->stats.gprc += er32(GPRC); 3622 adapter->stats.gorcl += er32(GORCL); 3623 adapter->stats.gorch += er32(GORCH); 3624 adapter->stats.bprc += er32(BPRC); 3625 adapter->stats.mprc += er32(MPRC); 3626 adapter->stats.roc += er32(ROC); 3627 3628 adapter->stats.prc64 += er32(PRC64); 3629 adapter->stats.prc127 += er32(PRC127); 3630 adapter->stats.prc255 += er32(PRC255); 3631 adapter->stats.prc511 += er32(PRC511); 3632 adapter->stats.prc1023 += er32(PRC1023); 3633 adapter->stats.prc1522 += er32(PRC1522); 3634 3635 adapter->stats.symerrs += er32(SYMERRS); 3636 adapter->stats.mpc += er32(MPC); 3637 adapter->stats.scc += er32(SCC); 3638 adapter->stats.ecol += er32(ECOL); 3639 adapter->stats.mcc += er32(MCC); 3640 adapter->stats.latecol += er32(LATECOL); 3641 adapter->stats.dc += er32(DC); 3642 adapter->stats.sec += er32(SEC); 3643 adapter->stats.rlec += er32(RLEC); 3644 adapter->stats.xonrxc += er32(XONRXC); 3645 adapter->stats.xontxc += er32(XONTXC); 3646 adapter->stats.xoffrxc += er32(XOFFRXC); 3647 adapter->stats.xofftxc += er32(XOFFTXC); 3648 adapter->stats.fcruc += er32(FCRUC); 3649 adapter->stats.gptc += er32(GPTC); 3650 adapter->stats.gotcl += er32(GOTCL); 3651 adapter->stats.gotch += er32(GOTCH); 3652 adapter->stats.rnbc += er32(RNBC); 3653 adapter->stats.ruc += er32(RUC); 3654 adapter->stats.rfc += er32(RFC); 3655 adapter->stats.rjc += er32(RJC); 3656 adapter->stats.torl += er32(TORL); 3657 adapter->stats.torh += er32(TORH); 3658 adapter->stats.totl += er32(TOTL); 3659 adapter->stats.toth += er32(TOTH); 3660 adapter->stats.tpr += er32(TPR); 3661 3662 adapter->stats.ptc64 += er32(PTC64); 3663 adapter->stats.ptc127 += er32(PTC127); 3664 adapter->stats.ptc255 += er32(PTC255); 3665 adapter->stats.ptc511 += er32(PTC511); 3666 adapter->stats.ptc1023 += er32(PTC1023); 3667 adapter->stats.ptc1522 += er32(PTC1522); 3668 3669 adapter->stats.mptc += er32(MPTC); 3670 adapter->stats.bptc += er32(BPTC); 3671 3672 /* used for adaptive IFS */ 3673 3674 hw->tx_packet_delta = er32(TPT); 3675 adapter->stats.tpt += hw->tx_packet_delta; 3676 hw->collision_delta = er32(COLC); 3677 adapter->stats.colc += hw->collision_delta; 3678 3679 if (hw->mac_type >= e1000_82543) { 3680 adapter->stats.algnerrc += er32(ALGNERRC); 3681 adapter->stats.rxerrc += er32(RXERRC); 3682 adapter->stats.tncrs += er32(TNCRS); 3683 adapter->stats.cexterr += er32(CEXTERR); 3684 adapter->stats.tsctc += er32(TSCTC); 3685 adapter->stats.tsctfc += er32(TSCTFC); 3686 } 3687 3688 /* Fill out the OS statistics structure */ 3689 netdev->stats.multicast = adapter->stats.mprc; 3690 netdev->stats.collisions = adapter->stats.colc; 3691 3692 /* Rx Errors */ 3693 3694 /* RLEC on some newer hardware can be incorrect so build 3695 * our own version based on RUC and ROC 3696 */ 3697 netdev->stats.rx_errors = adapter->stats.rxerrc + 3698 adapter->stats.crcerrs + adapter->stats.algnerrc + 3699 adapter->stats.ruc + adapter->stats.roc + 3700 adapter->stats.cexterr; 3701 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3702 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3703 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3704 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3705 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3706 3707 /* Tx Errors */ 3708 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3709 netdev->stats.tx_errors = adapter->stats.txerrc; 3710 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3711 netdev->stats.tx_window_errors = adapter->stats.latecol; 3712 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3713 if (hw->bad_tx_carr_stats_fd && 3714 adapter->link_duplex == FULL_DUPLEX) { 3715 netdev->stats.tx_carrier_errors = 0; 3716 adapter->stats.tncrs = 0; 3717 } 3718 3719 /* Tx Dropped needs to be maintained elsewhere */ 3720 3721 /* Phy Stats */ 3722 if (hw->media_type == e1000_media_type_copper) { 3723 if ((adapter->link_speed == SPEED_1000) && 3724 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3725 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3726 adapter->phy_stats.idle_errors += phy_tmp; 3727 } 3728 3729 if ((hw->mac_type <= e1000_82546) && 3730 (hw->phy_type == e1000_phy_m88) && 3731 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3732 adapter->phy_stats.receive_errors += phy_tmp; 3733 } 3734 3735 /* Management Stats */ 3736 if (hw->has_smbus) { 3737 adapter->stats.mgptc += er32(MGTPTC); 3738 adapter->stats.mgprc += er32(MGTPRC); 3739 adapter->stats.mgpdc += er32(MGTPDC); 3740 } 3741 3742 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3743 } 3744 3745 /** 3746 * e1000_intr - Interrupt Handler 3747 * @irq: interrupt number 3748 * @data: pointer to a network interface device structure 3749 **/ 3750 static irqreturn_t e1000_intr(int irq, void *data) 3751 { 3752 struct net_device *netdev = data; 3753 struct e1000_adapter *adapter = netdev_priv(netdev); 3754 struct e1000_hw *hw = &adapter->hw; 3755 u32 icr = er32(ICR); 3756 3757 if (unlikely((!icr))) 3758 return IRQ_NONE; /* Not our interrupt */ 3759 3760 /* we might have caused the interrupt, but the above 3761 * read cleared it, and just in case the driver is 3762 * down there is nothing to do so return handled 3763 */ 3764 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3765 return IRQ_HANDLED; 3766 3767 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3768 hw->get_link_status = 1; 3769 /* guard against interrupt when we're going down */ 3770 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3771 schedule_delayed_work(&adapter->watchdog_task, 1); 3772 } 3773 3774 /* disable interrupts, without the synchronize_irq bit */ 3775 ew32(IMC, ~0); 3776 E1000_WRITE_FLUSH(); 3777 3778 if (likely(napi_schedule_prep(&adapter->napi))) { 3779 adapter->total_tx_bytes = 0; 3780 adapter->total_tx_packets = 0; 3781 adapter->total_rx_bytes = 0; 3782 adapter->total_rx_packets = 0; 3783 __napi_schedule(&adapter->napi); 3784 } else { 3785 /* this really should not happen! if it does it is basically a 3786 * bug, but not a hard error, so enable ints and continue 3787 */ 3788 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3789 e1000_irq_enable(adapter); 3790 } 3791 3792 return IRQ_HANDLED; 3793 } 3794 3795 /** 3796 * e1000_clean - NAPI Rx polling callback 3797 * @adapter: board private structure 3798 **/ 3799 static int e1000_clean(struct napi_struct *napi, int budget) 3800 { 3801 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3802 napi); 3803 int tx_clean_complete = 0, work_done = 0; 3804 3805 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3806 3807 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3808 3809 if (!tx_clean_complete) 3810 work_done = budget; 3811 3812 /* If budget not fully consumed, exit the polling mode */ 3813 if (work_done < budget) { 3814 if (likely(adapter->itr_setting & 3)) 3815 e1000_set_itr(adapter); 3816 napi_complete_done(napi, work_done); 3817 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3818 e1000_irq_enable(adapter); 3819 } 3820 3821 return work_done; 3822 } 3823 3824 /** 3825 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3826 * @adapter: board private structure 3827 **/ 3828 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3829 struct e1000_tx_ring *tx_ring) 3830 { 3831 struct e1000_hw *hw = &adapter->hw; 3832 struct net_device *netdev = adapter->netdev; 3833 struct e1000_tx_desc *tx_desc, *eop_desc; 3834 struct e1000_tx_buffer *buffer_info; 3835 unsigned int i, eop; 3836 unsigned int count = 0; 3837 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 3838 unsigned int bytes_compl = 0, pkts_compl = 0; 3839 3840 i = tx_ring->next_to_clean; 3841 eop = tx_ring->buffer_info[i].next_to_watch; 3842 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3843 3844 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3845 (count < tx_ring->count)) { 3846 bool cleaned = false; 3847 dma_rmb(); /* read buffer_info after eop_desc */ 3848 for ( ; !cleaned; count++) { 3849 tx_desc = E1000_TX_DESC(*tx_ring, i); 3850 buffer_info = &tx_ring->buffer_info[i]; 3851 cleaned = (i == eop); 3852 3853 if (cleaned) { 3854 total_tx_packets += buffer_info->segs; 3855 total_tx_bytes += buffer_info->bytecount; 3856 if (buffer_info->skb) { 3857 bytes_compl += buffer_info->skb->len; 3858 pkts_compl++; 3859 } 3860 3861 } 3862 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3863 tx_desc->upper.data = 0; 3864 3865 if (unlikely(++i == tx_ring->count)) 3866 i = 0; 3867 } 3868 3869 eop = tx_ring->buffer_info[i].next_to_watch; 3870 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3871 } 3872 3873 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, 3874 * which will reuse the cleaned buffers. 3875 */ 3876 smp_store_release(&tx_ring->next_to_clean, i); 3877 3878 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3879 3880 #define TX_WAKE_THRESHOLD 32 3881 if (unlikely(count && netif_carrier_ok(netdev) && 3882 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3883 /* Make sure that anybody stopping the queue after this 3884 * sees the new next_to_clean. 3885 */ 3886 smp_mb(); 3887 3888 if (netif_queue_stopped(netdev) && 3889 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3890 netif_wake_queue(netdev); 3891 ++adapter->restart_queue; 3892 } 3893 } 3894 3895 if (adapter->detect_tx_hung) { 3896 /* Detect a transmit hang in hardware, this serializes the 3897 * check with the clearing of time_stamp and movement of i 3898 */ 3899 adapter->detect_tx_hung = false; 3900 if (tx_ring->buffer_info[eop].time_stamp && 3901 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3902 (adapter->tx_timeout_factor * HZ)) && 3903 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3904 3905 /* detected Tx unit hang */ 3906 e_err(drv, "Detected Tx Unit Hang\n" 3907 " Tx Queue <%lu>\n" 3908 " TDH <%x>\n" 3909 " TDT <%x>\n" 3910 " next_to_use <%x>\n" 3911 " next_to_clean <%x>\n" 3912 "buffer_info[next_to_clean]\n" 3913 " time_stamp <%lx>\n" 3914 " next_to_watch <%x>\n" 3915 " jiffies <%lx>\n" 3916 " next_to_watch.status <%x>\n", 3917 (unsigned long)(tx_ring - adapter->tx_ring), 3918 readl(hw->hw_addr + tx_ring->tdh), 3919 readl(hw->hw_addr + tx_ring->tdt), 3920 tx_ring->next_to_use, 3921 tx_ring->next_to_clean, 3922 tx_ring->buffer_info[eop].time_stamp, 3923 eop, 3924 jiffies, 3925 eop_desc->upper.fields.status); 3926 e1000_dump(adapter); 3927 netif_stop_queue(netdev); 3928 } 3929 } 3930 adapter->total_tx_bytes += total_tx_bytes; 3931 adapter->total_tx_packets += total_tx_packets; 3932 netdev->stats.tx_bytes += total_tx_bytes; 3933 netdev->stats.tx_packets += total_tx_packets; 3934 return count < tx_ring->count; 3935 } 3936 3937 /** 3938 * e1000_rx_checksum - Receive Checksum Offload for 82543 3939 * @adapter: board private structure 3940 * @status_err: receive descriptor status and error fields 3941 * @csum: receive descriptor csum field 3942 * @sk_buff: socket buffer with received data 3943 **/ 3944 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3945 u32 csum, struct sk_buff *skb) 3946 { 3947 struct e1000_hw *hw = &adapter->hw; 3948 u16 status = (u16)status_err; 3949 u8 errors = (u8)(status_err >> 24); 3950 3951 skb_checksum_none_assert(skb); 3952 3953 /* 82543 or newer only */ 3954 if (unlikely(hw->mac_type < e1000_82543)) 3955 return; 3956 /* Ignore Checksum bit is set */ 3957 if (unlikely(status & E1000_RXD_STAT_IXSM)) 3958 return; 3959 /* TCP/UDP checksum error bit is set */ 3960 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3961 /* let the stack verify checksum errors */ 3962 adapter->hw_csum_err++; 3963 return; 3964 } 3965 /* TCP/UDP Checksum has not been calculated */ 3966 if (!(status & E1000_RXD_STAT_TCPCS)) 3967 return; 3968 3969 /* It must be a TCP or UDP packet with a valid checksum */ 3970 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3971 /* TCP checksum is good */ 3972 skb->ip_summed = CHECKSUM_UNNECESSARY; 3973 } 3974 adapter->hw_csum_good++; 3975 } 3976 3977 /** 3978 * e1000_consume_page - helper function for jumbo Rx path 3979 **/ 3980 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 3981 u16 length) 3982 { 3983 bi->rxbuf.page = NULL; 3984 skb->len += length; 3985 skb->data_len += length; 3986 skb->truesize += PAGE_SIZE; 3987 } 3988 3989 /** 3990 * e1000_receive_skb - helper function to handle rx indications 3991 * @adapter: board private structure 3992 * @status: descriptor status field as written by hardware 3993 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3994 * @skb: pointer to sk_buff to be indicated to stack 3995 */ 3996 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3997 __le16 vlan, struct sk_buff *skb) 3998 { 3999 skb->protocol = eth_type_trans(skb, adapter->netdev); 4000 4001 if (status & E1000_RXD_STAT_VP) { 4002 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4003 4004 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4005 } 4006 napi_gro_receive(&adapter->napi, skb); 4007 } 4008 4009 /** 4010 * e1000_tbi_adjust_stats 4011 * @hw: Struct containing variables accessed by shared code 4012 * @frame_len: The length of the frame in question 4013 * @mac_addr: The Ethernet destination address of the frame in question 4014 * 4015 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4016 */ 4017 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4018 struct e1000_hw_stats *stats, 4019 u32 frame_len, const u8 *mac_addr) 4020 { 4021 u64 carry_bit; 4022 4023 /* First adjust the frame length. */ 4024 frame_len--; 4025 /* We need to adjust the statistics counters, since the hardware 4026 * counters overcount this packet as a CRC error and undercount 4027 * the packet as a good packet 4028 */ 4029 /* This packet should not be counted as a CRC error. */ 4030 stats->crcerrs--; 4031 /* This packet does count as a Good Packet Received. */ 4032 stats->gprc++; 4033 4034 /* Adjust the Good Octets received counters */ 4035 carry_bit = 0x80000000 & stats->gorcl; 4036 stats->gorcl += frame_len; 4037 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4038 * Received Count) was one before the addition, 4039 * AND it is zero after, then we lost the carry out, 4040 * need to add one to Gorch (Good Octets Received Count High). 4041 * This could be simplified if all environments supported 4042 * 64-bit integers. 4043 */ 4044 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4045 stats->gorch++; 4046 /* Is this a broadcast or multicast? Check broadcast first, 4047 * since the test for a multicast frame will test positive on 4048 * a broadcast frame. 4049 */ 4050 if (is_broadcast_ether_addr(mac_addr)) 4051 stats->bprc++; 4052 else if (is_multicast_ether_addr(mac_addr)) 4053 stats->mprc++; 4054 4055 if (frame_len == hw->max_frame_size) { 4056 /* In this case, the hardware has overcounted the number of 4057 * oversize frames. 4058 */ 4059 if (stats->roc > 0) 4060 stats->roc--; 4061 } 4062 4063 /* Adjust the bin counters when the extra byte put the frame in the 4064 * wrong bin. Remember that the frame_len was adjusted above. 4065 */ 4066 if (frame_len == 64) { 4067 stats->prc64++; 4068 stats->prc127--; 4069 } else if (frame_len == 127) { 4070 stats->prc127++; 4071 stats->prc255--; 4072 } else if (frame_len == 255) { 4073 stats->prc255++; 4074 stats->prc511--; 4075 } else if (frame_len == 511) { 4076 stats->prc511++; 4077 stats->prc1023--; 4078 } else if (frame_len == 1023) { 4079 stats->prc1023++; 4080 stats->prc1522--; 4081 } else if (frame_len == 1522) { 4082 stats->prc1522++; 4083 } 4084 } 4085 4086 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4087 u8 status, u8 errors, 4088 u32 length, const u8 *data) 4089 { 4090 struct e1000_hw *hw = &adapter->hw; 4091 u8 last_byte = *(data + length - 1); 4092 4093 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4094 unsigned long irq_flags; 4095 4096 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4097 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4098 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4099 4100 return true; 4101 } 4102 4103 return false; 4104 } 4105 4106 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4107 unsigned int bufsz) 4108 { 4109 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4110 4111 if (unlikely(!skb)) 4112 adapter->alloc_rx_buff_failed++; 4113 return skb; 4114 } 4115 4116 /** 4117 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4118 * @adapter: board private structure 4119 * @rx_ring: ring to clean 4120 * @work_done: amount of napi work completed this call 4121 * @work_to_do: max amount of work allowed for this call to do 4122 * 4123 * the return value indicates whether actual cleaning was done, there 4124 * is no guarantee that everything was cleaned 4125 */ 4126 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4127 struct e1000_rx_ring *rx_ring, 4128 int *work_done, int work_to_do) 4129 { 4130 struct net_device *netdev = adapter->netdev; 4131 struct pci_dev *pdev = adapter->pdev; 4132 struct e1000_rx_desc *rx_desc, *next_rxd; 4133 struct e1000_rx_buffer *buffer_info, *next_buffer; 4134 u32 length; 4135 unsigned int i; 4136 int cleaned_count = 0; 4137 bool cleaned = false; 4138 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4139 4140 i = rx_ring->next_to_clean; 4141 rx_desc = E1000_RX_DESC(*rx_ring, i); 4142 buffer_info = &rx_ring->buffer_info[i]; 4143 4144 while (rx_desc->status & E1000_RXD_STAT_DD) { 4145 struct sk_buff *skb; 4146 u8 status; 4147 4148 if (*work_done >= work_to_do) 4149 break; 4150 (*work_done)++; 4151 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4152 4153 status = rx_desc->status; 4154 4155 if (++i == rx_ring->count) 4156 i = 0; 4157 4158 next_rxd = E1000_RX_DESC(*rx_ring, i); 4159 prefetch(next_rxd); 4160 4161 next_buffer = &rx_ring->buffer_info[i]; 4162 4163 cleaned = true; 4164 cleaned_count++; 4165 dma_unmap_page(&pdev->dev, buffer_info->dma, 4166 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4167 buffer_info->dma = 0; 4168 4169 length = le16_to_cpu(rx_desc->length); 4170 4171 /* errors is only valid for DD + EOP descriptors */ 4172 if (unlikely((status & E1000_RXD_STAT_EOP) && 4173 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4174 u8 *mapped = page_address(buffer_info->rxbuf.page); 4175 4176 if (e1000_tbi_should_accept(adapter, status, 4177 rx_desc->errors, 4178 length, mapped)) { 4179 length--; 4180 } else if (netdev->features & NETIF_F_RXALL) { 4181 goto process_skb; 4182 } else { 4183 /* an error means any chain goes out the window 4184 * too 4185 */ 4186 if (rx_ring->rx_skb_top) 4187 dev_kfree_skb(rx_ring->rx_skb_top); 4188 rx_ring->rx_skb_top = NULL; 4189 goto next_desc; 4190 } 4191 } 4192 4193 #define rxtop rx_ring->rx_skb_top 4194 process_skb: 4195 if (!(status & E1000_RXD_STAT_EOP)) { 4196 /* this descriptor is only the beginning (or middle) */ 4197 if (!rxtop) { 4198 /* this is the beginning of a chain */ 4199 rxtop = napi_get_frags(&adapter->napi); 4200 if (!rxtop) 4201 break; 4202 4203 skb_fill_page_desc(rxtop, 0, 4204 buffer_info->rxbuf.page, 4205 0, length); 4206 } else { 4207 /* this is the middle of a chain */ 4208 skb_fill_page_desc(rxtop, 4209 skb_shinfo(rxtop)->nr_frags, 4210 buffer_info->rxbuf.page, 0, length); 4211 } 4212 e1000_consume_page(buffer_info, rxtop, length); 4213 goto next_desc; 4214 } else { 4215 if (rxtop) { 4216 /* end of the chain */ 4217 skb_fill_page_desc(rxtop, 4218 skb_shinfo(rxtop)->nr_frags, 4219 buffer_info->rxbuf.page, 0, length); 4220 skb = rxtop; 4221 rxtop = NULL; 4222 e1000_consume_page(buffer_info, skb, length); 4223 } else { 4224 struct page *p; 4225 /* no chain, got EOP, this buf is the packet 4226 * copybreak to save the put_page/alloc_page 4227 */ 4228 p = buffer_info->rxbuf.page; 4229 if (length <= copybreak) { 4230 u8 *vaddr; 4231 4232 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4233 length -= 4; 4234 skb = e1000_alloc_rx_skb(adapter, 4235 length); 4236 if (!skb) 4237 break; 4238 4239 vaddr = kmap_atomic(p); 4240 memcpy(skb_tail_pointer(skb), vaddr, 4241 length); 4242 kunmap_atomic(vaddr); 4243 /* re-use the page, so don't erase 4244 * buffer_info->rxbuf.page 4245 */ 4246 skb_put(skb, length); 4247 e1000_rx_checksum(adapter, 4248 status | rx_desc->errors << 24, 4249 le16_to_cpu(rx_desc->csum), skb); 4250 4251 total_rx_bytes += skb->len; 4252 total_rx_packets++; 4253 4254 e1000_receive_skb(adapter, status, 4255 rx_desc->special, skb); 4256 goto next_desc; 4257 } else { 4258 skb = napi_get_frags(&adapter->napi); 4259 if (!skb) { 4260 adapter->alloc_rx_buff_failed++; 4261 break; 4262 } 4263 skb_fill_page_desc(skb, 0, p, 0, 4264 length); 4265 e1000_consume_page(buffer_info, skb, 4266 length); 4267 } 4268 } 4269 } 4270 4271 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4272 e1000_rx_checksum(adapter, 4273 (u32)(status) | 4274 ((u32)(rx_desc->errors) << 24), 4275 le16_to_cpu(rx_desc->csum), skb); 4276 4277 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4278 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4279 pskb_trim(skb, skb->len - 4); 4280 total_rx_packets++; 4281 4282 if (status & E1000_RXD_STAT_VP) { 4283 __le16 vlan = rx_desc->special; 4284 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4285 4286 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4287 } 4288 4289 napi_gro_frags(&adapter->napi); 4290 4291 next_desc: 4292 rx_desc->status = 0; 4293 4294 /* return some buffers to hardware, one at a time is too slow */ 4295 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4296 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4297 cleaned_count = 0; 4298 } 4299 4300 /* use prefetched values */ 4301 rx_desc = next_rxd; 4302 buffer_info = next_buffer; 4303 } 4304 rx_ring->next_to_clean = i; 4305 4306 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4307 if (cleaned_count) 4308 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4309 4310 adapter->total_rx_packets += total_rx_packets; 4311 adapter->total_rx_bytes += total_rx_bytes; 4312 netdev->stats.rx_bytes += total_rx_bytes; 4313 netdev->stats.rx_packets += total_rx_packets; 4314 return cleaned; 4315 } 4316 4317 /* this should improve performance for small packets with large amounts 4318 * of reassembly being done in the stack 4319 */ 4320 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4321 struct e1000_rx_buffer *buffer_info, 4322 u32 length, const void *data) 4323 { 4324 struct sk_buff *skb; 4325 4326 if (length > copybreak) 4327 return NULL; 4328 4329 skb = e1000_alloc_rx_skb(adapter, length); 4330 if (!skb) 4331 return NULL; 4332 4333 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4334 length, DMA_FROM_DEVICE); 4335 4336 skb_put_data(skb, data, length); 4337 4338 return skb; 4339 } 4340 4341 /** 4342 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4343 * @adapter: board private structure 4344 * @rx_ring: ring to clean 4345 * @work_done: amount of napi work completed this call 4346 * @work_to_do: max amount of work allowed for this call to do 4347 */ 4348 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4349 struct e1000_rx_ring *rx_ring, 4350 int *work_done, int work_to_do) 4351 { 4352 struct net_device *netdev = adapter->netdev; 4353 struct pci_dev *pdev = adapter->pdev; 4354 struct e1000_rx_desc *rx_desc, *next_rxd; 4355 struct e1000_rx_buffer *buffer_info, *next_buffer; 4356 u32 length; 4357 unsigned int i; 4358 int cleaned_count = 0; 4359 bool cleaned = false; 4360 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4361 4362 i = rx_ring->next_to_clean; 4363 rx_desc = E1000_RX_DESC(*rx_ring, i); 4364 buffer_info = &rx_ring->buffer_info[i]; 4365 4366 while (rx_desc->status & E1000_RXD_STAT_DD) { 4367 struct sk_buff *skb; 4368 u8 *data; 4369 u8 status; 4370 4371 if (*work_done >= work_to_do) 4372 break; 4373 (*work_done)++; 4374 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4375 4376 status = rx_desc->status; 4377 length = le16_to_cpu(rx_desc->length); 4378 4379 data = buffer_info->rxbuf.data; 4380 prefetch(data); 4381 skb = e1000_copybreak(adapter, buffer_info, length, data); 4382 if (!skb) { 4383 unsigned int frag_len = e1000_frag_len(adapter); 4384 4385 skb = build_skb(data - E1000_HEADROOM, frag_len); 4386 if (!skb) { 4387 adapter->alloc_rx_buff_failed++; 4388 break; 4389 } 4390 4391 skb_reserve(skb, E1000_HEADROOM); 4392 dma_unmap_single(&pdev->dev, buffer_info->dma, 4393 adapter->rx_buffer_len, 4394 DMA_FROM_DEVICE); 4395 buffer_info->dma = 0; 4396 buffer_info->rxbuf.data = NULL; 4397 } 4398 4399 if (++i == rx_ring->count) 4400 i = 0; 4401 4402 next_rxd = E1000_RX_DESC(*rx_ring, i); 4403 prefetch(next_rxd); 4404 4405 next_buffer = &rx_ring->buffer_info[i]; 4406 4407 cleaned = true; 4408 cleaned_count++; 4409 4410 /* !EOP means multiple descriptors were used to store a single 4411 * packet, if thats the case we need to toss it. In fact, we 4412 * to toss every packet with the EOP bit clear and the next 4413 * frame that _does_ have the EOP bit set, as it is by 4414 * definition only a frame fragment 4415 */ 4416 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4417 adapter->discarding = true; 4418 4419 if (adapter->discarding) { 4420 /* All receives must fit into a single buffer */ 4421 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4422 dev_kfree_skb(skb); 4423 if (status & E1000_RXD_STAT_EOP) 4424 adapter->discarding = false; 4425 goto next_desc; 4426 } 4427 4428 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4429 if (e1000_tbi_should_accept(adapter, status, 4430 rx_desc->errors, 4431 length, data)) { 4432 length--; 4433 } else if (netdev->features & NETIF_F_RXALL) { 4434 goto process_skb; 4435 } else { 4436 dev_kfree_skb(skb); 4437 goto next_desc; 4438 } 4439 } 4440 4441 process_skb: 4442 total_rx_bytes += (length - 4); /* don't count FCS */ 4443 total_rx_packets++; 4444 4445 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4446 /* adjust length to remove Ethernet CRC, this must be 4447 * done after the TBI_ACCEPT workaround above 4448 */ 4449 length -= 4; 4450 4451 if (buffer_info->rxbuf.data == NULL) 4452 skb_put(skb, length); 4453 else /* copybreak skb */ 4454 skb_trim(skb, length); 4455 4456 /* Receive Checksum Offload */ 4457 e1000_rx_checksum(adapter, 4458 (u32)(status) | 4459 ((u32)(rx_desc->errors) << 24), 4460 le16_to_cpu(rx_desc->csum), skb); 4461 4462 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4463 4464 next_desc: 4465 rx_desc->status = 0; 4466 4467 /* return some buffers to hardware, one at a time is too slow */ 4468 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4469 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4470 cleaned_count = 0; 4471 } 4472 4473 /* use prefetched values */ 4474 rx_desc = next_rxd; 4475 buffer_info = next_buffer; 4476 } 4477 rx_ring->next_to_clean = i; 4478 4479 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4480 if (cleaned_count) 4481 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4482 4483 adapter->total_rx_packets += total_rx_packets; 4484 adapter->total_rx_bytes += total_rx_bytes; 4485 netdev->stats.rx_bytes += total_rx_bytes; 4486 netdev->stats.rx_packets += total_rx_packets; 4487 return cleaned; 4488 } 4489 4490 /** 4491 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4492 * @adapter: address of board private structure 4493 * @rx_ring: pointer to receive ring structure 4494 * @cleaned_count: number of buffers to allocate this pass 4495 **/ 4496 static void 4497 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4498 struct e1000_rx_ring *rx_ring, int cleaned_count) 4499 { 4500 struct pci_dev *pdev = adapter->pdev; 4501 struct e1000_rx_desc *rx_desc; 4502 struct e1000_rx_buffer *buffer_info; 4503 unsigned int i; 4504 4505 i = rx_ring->next_to_use; 4506 buffer_info = &rx_ring->buffer_info[i]; 4507 4508 while (cleaned_count--) { 4509 /* allocate a new page if necessary */ 4510 if (!buffer_info->rxbuf.page) { 4511 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4512 if (unlikely(!buffer_info->rxbuf.page)) { 4513 adapter->alloc_rx_buff_failed++; 4514 break; 4515 } 4516 } 4517 4518 if (!buffer_info->dma) { 4519 buffer_info->dma = dma_map_page(&pdev->dev, 4520 buffer_info->rxbuf.page, 0, 4521 adapter->rx_buffer_len, 4522 DMA_FROM_DEVICE); 4523 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4524 put_page(buffer_info->rxbuf.page); 4525 buffer_info->rxbuf.page = NULL; 4526 buffer_info->dma = 0; 4527 adapter->alloc_rx_buff_failed++; 4528 break; 4529 } 4530 } 4531 4532 rx_desc = E1000_RX_DESC(*rx_ring, i); 4533 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4534 4535 if (unlikely(++i == rx_ring->count)) 4536 i = 0; 4537 buffer_info = &rx_ring->buffer_info[i]; 4538 } 4539 4540 if (likely(rx_ring->next_to_use != i)) { 4541 rx_ring->next_to_use = i; 4542 if (unlikely(i-- == 0)) 4543 i = (rx_ring->count - 1); 4544 4545 /* Force memory writes to complete before letting h/w 4546 * know there are new descriptors to fetch. (Only 4547 * applicable for weak-ordered memory model archs, 4548 * such as IA-64). 4549 */ 4550 wmb(); 4551 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4552 } 4553 } 4554 4555 /** 4556 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4557 * @adapter: address of board private structure 4558 **/ 4559 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4560 struct e1000_rx_ring *rx_ring, 4561 int cleaned_count) 4562 { 4563 struct e1000_hw *hw = &adapter->hw; 4564 struct pci_dev *pdev = adapter->pdev; 4565 struct e1000_rx_desc *rx_desc; 4566 struct e1000_rx_buffer *buffer_info; 4567 unsigned int i; 4568 unsigned int bufsz = adapter->rx_buffer_len; 4569 4570 i = rx_ring->next_to_use; 4571 buffer_info = &rx_ring->buffer_info[i]; 4572 4573 while (cleaned_count--) { 4574 void *data; 4575 4576 if (buffer_info->rxbuf.data) 4577 goto skip; 4578 4579 data = e1000_alloc_frag(adapter); 4580 if (!data) { 4581 /* Better luck next round */ 4582 adapter->alloc_rx_buff_failed++; 4583 break; 4584 } 4585 4586 /* Fix for errata 23, can't cross 64kB boundary */ 4587 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4588 void *olddata = data; 4589 e_err(rx_err, "skb align check failed: %u bytes at " 4590 "%p\n", bufsz, data); 4591 /* Try again, without freeing the previous */ 4592 data = e1000_alloc_frag(adapter); 4593 /* Failed allocation, critical failure */ 4594 if (!data) { 4595 skb_free_frag(olddata); 4596 adapter->alloc_rx_buff_failed++; 4597 break; 4598 } 4599 4600 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4601 /* give up */ 4602 skb_free_frag(data); 4603 skb_free_frag(olddata); 4604 adapter->alloc_rx_buff_failed++; 4605 break; 4606 } 4607 4608 /* Use new allocation */ 4609 skb_free_frag(olddata); 4610 } 4611 buffer_info->dma = dma_map_single(&pdev->dev, 4612 data, 4613 adapter->rx_buffer_len, 4614 DMA_FROM_DEVICE); 4615 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4616 skb_free_frag(data); 4617 buffer_info->dma = 0; 4618 adapter->alloc_rx_buff_failed++; 4619 break; 4620 } 4621 4622 /* XXX if it was allocated cleanly it will never map to a 4623 * boundary crossing 4624 */ 4625 4626 /* Fix for errata 23, can't cross 64kB boundary */ 4627 if (!e1000_check_64k_bound(adapter, 4628 (void *)(unsigned long)buffer_info->dma, 4629 adapter->rx_buffer_len)) { 4630 e_err(rx_err, "dma align check failed: %u bytes at " 4631 "%p\n", adapter->rx_buffer_len, 4632 (void *)(unsigned long)buffer_info->dma); 4633 4634 dma_unmap_single(&pdev->dev, buffer_info->dma, 4635 adapter->rx_buffer_len, 4636 DMA_FROM_DEVICE); 4637 4638 skb_free_frag(data); 4639 buffer_info->rxbuf.data = NULL; 4640 buffer_info->dma = 0; 4641 4642 adapter->alloc_rx_buff_failed++; 4643 break; 4644 } 4645 buffer_info->rxbuf.data = data; 4646 skip: 4647 rx_desc = E1000_RX_DESC(*rx_ring, i); 4648 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4649 4650 if (unlikely(++i == rx_ring->count)) 4651 i = 0; 4652 buffer_info = &rx_ring->buffer_info[i]; 4653 } 4654 4655 if (likely(rx_ring->next_to_use != i)) { 4656 rx_ring->next_to_use = i; 4657 if (unlikely(i-- == 0)) 4658 i = (rx_ring->count - 1); 4659 4660 /* Force memory writes to complete before letting h/w 4661 * know there are new descriptors to fetch. (Only 4662 * applicable for weak-ordered memory model archs, 4663 * such as IA-64). 4664 */ 4665 wmb(); 4666 writel(i, hw->hw_addr + rx_ring->rdt); 4667 } 4668 } 4669 4670 /** 4671 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4672 * @adapter: 4673 **/ 4674 static void e1000_smartspeed(struct e1000_adapter *adapter) 4675 { 4676 struct e1000_hw *hw = &adapter->hw; 4677 u16 phy_status; 4678 u16 phy_ctrl; 4679 4680 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4681 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4682 return; 4683 4684 if (adapter->smartspeed == 0) { 4685 /* If Master/Slave config fault is asserted twice, 4686 * we assume back-to-back 4687 */ 4688 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4689 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4690 return; 4691 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4692 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4693 return; 4694 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4695 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4696 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4697 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4698 phy_ctrl); 4699 adapter->smartspeed++; 4700 if (!e1000_phy_setup_autoneg(hw) && 4701 !e1000_read_phy_reg(hw, PHY_CTRL, 4702 &phy_ctrl)) { 4703 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4704 MII_CR_RESTART_AUTO_NEG); 4705 e1000_write_phy_reg(hw, PHY_CTRL, 4706 phy_ctrl); 4707 } 4708 } 4709 return; 4710 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4711 /* If still no link, perhaps using 2/3 pair cable */ 4712 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4713 phy_ctrl |= CR_1000T_MS_ENABLE; 4714 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4715 if (!e1000_phy_setup_autoneg(hw) && 4716 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4717 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4718 MII_CR_RESTART_AUTO_NEG); 4719 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4720 } 4721 } 4722 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4723 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4724 adapter->smartspeed = 0; 4725 } 4726 4727 /** 4728 * e1000_ioctl - 4729 * @netdev: 4730 * @ifreq: 4731 * @cmd: 4732 **/ 4733 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4734 { 4735 switch (cmd) { 4736 case SIOCGMIIPHY: 4737 case SIOCGMIIREG: 4738 case SIOCSMIIREG: 4739 return e1000_mii_ioctl(netdev, ifr, cmd); 4740 default: 4741 return -EOPNOTSUPP; 4742 } 4743 } 4744 4745 /** 4746 * e1000_mii_ioctl - 4747 * @netdev: 4748 * @ifreq: 4749 * @cmd: 4750 **/ 4751 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4752 int cmd) 4753 { 4754 struct e1000_adapter *adapter = netdev_priv(netdev); 4755 struct e1000_hw *hw = &adapter->hw; 4756 struct mii_ioctl_data *data = if_mii(ifr); 4757 int retval; 4758 u16 mii_reg; 4759 unsigned long flags; 4760 4761 if (hw->media_type != e1000_media_type_copper) 4762 return -EOPNOTSUPP; 4763 4764 switch (cmd) { 4765 case SIOCGMIIPHY: 4766 data->phy_id = hw->phy_addr; 4767 break; 4768 case SIOCGMIIREG: 4769 spin_lock_irqsave(&adapter->stats_lock, flags); 4770 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4771 &data->val_out)) { 4772 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4773 return -EIO; 4774 } 4775 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4776 break; 4777 case SIOCSMIIREG: 4778 if (data->reg_num & ~(0x1F)) 4779 return -EFAULT; 4780 mii_reg = data->val_in; 4781 spin_lock_irqsave(&adapter->stats_lock, flags); 4782 if (e1000_write_phy_reg(hw, data->reg_num, 4783 mii_reg)) { 4784 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4785 return -EIO; 4786 } 4787 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4788 if (hw->media_type == e1000_media_type_copper) { 4789 switch (data->reg_num) { 4790 case PHY_CTRL: 4791 if (mii_reg & MII_CR_POWER_DOWN) 4792 break; 4793 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4794 hw->autoneg = 1; 4795 hw->autoneg_advertised = 0x2F; 4796 } else { 4797 u32 speed; 4798 if (mii_reg & 0x40) 4799 speed = SPEED_1000; 4800 else if (mii_reg & 0x2000) 4801 speed = SPEED_100; 4802 else 4803 speed = SPEED_10; 4804 retval = e1000_set_spd_dplx( 4805 adapter, speed, 4806 ((mii_reg & 0x100) 4807 ? DUPLEX_FULL : 4808 DUPLEX_HALF)); 4809 if (retval) 4810 return retval; 4811 } 4812 if (netif_running(adapter->netdev)) 4813 e1000_reinit_locked(adapter); 4814 else 4815 e1000_reset(adapter); 4816 break; 4817 case M88E1000_PHY_SPEC_CTRL: 4818 case M88E1000_EXT_PHY_SPEC_CTRL: 4819 if (e1000_phy_reset(hw)) 4820 return -EIO; 4821 break; 4822 } 4823 } else { 4824 switch (data->reg_num) { 4825 case PHY_CTRL: 4826 if (mii_reg & MII_CR_POWER_DOWN) 4827 break; 4828 if (netif_running(adapter->netdev)) 4829 e1000_reinit_locked(adapter); 4830 else 4831 e1000_reset(adapter); 4832 break; 4833 } 4834 } 4835 break; 4836 default: 4837 return -EOPNOTSUPP; 4838 } 4839 return E1000_SUCCESS; 4840 } 4841 4842 void e1000_pci_set_mwi(struct e1000_hw *hw) 4843 { 4844 struct e1000_adapter *adapter = hw->back; 4845 int ret_val = pci_set_mwi(adapter->pdev); 4846 4847 if (ret_val) 4848 e_err(probe, "Error in setting MWI\n"); 4849 } 4850 4851 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4852 { 4853 struct e1000_adapter *adapter = hw->back; 4854 4855 pci_clear_mwi(adapter->pdev); 4856 } 4857 4858 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4859 { 4860 struct e1000_adapter *adapter = hw->back; 4861 return pcix_get_mmrbc(adapter->pdev); 4862 } 4863 4864 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4865 { 4866 struct e1000_adapter *adapter = hw->back; 4867 pcix_set_mmrbc(adapter->pdev, mmrbc); 4868 } 4869 4870 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4871 { 4872 outl(value, port); 4873 } 4874 4875 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4876 { 4877 u16 vid; 4878 4879 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4880 return true; 4881 return false; 4882 } 4883 4884 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4885 netdev_features_t features) 4886 { 4887 struct e1000_hw *hw = &adapter->hw; 4888 u32 ctrl; 4889 4890 ctrl = er32(CTRL); 4891 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4892 /* enable VLAN tag insert/strip */ 4893 ctrl |= E1000_CTRL_VME; 4894 } else { 4895 /* disable VLAN tag insert/strip */ 4896 ctrl &= ~E1000_CTRL_VME; 4897 } 4898 ew32(CTRL, ctrl); 4899 } 4900 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4901 bool filter_on) 4902 { 4903 struct e1000_hw *hw = &adapter->hw; 4904 u32 rctl; 4905 4906 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4907 e1000_irq_disable(adapter); 4908 4909 __e1000_vlan_mode(adapter, adapter->netdev->features); 4910 if (filter_on) { 4911 /* enable VLAN receive filtering */ 4912 rctl = er32(RCTL); 4913 rctl &= ~E1000_RCTL_CFIEN; 4914 if (!(adapter->netdev->flags & IFF_PROMISC)) 4915 rctl |= E1000_RCTL_VFE; 4916 ew32(RCTL, rctl); 4917 e1000_update_mng_vlan(adapter); 4918 } else { 4919 /* disable VLAN receive filtering */ 4920 rctl = er32(RCTL); 4921 rctl &= ~E1000_RCTL_VFE; 4922 ew32(RCTL, rctl); 4923 } 4924 4925 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4926 e1000_irq_enable(adapter); 4927 } 4928 4929 static void e1000_vlan_mode(struct net_device *netdev, 4930 netdev_features_t features) 4931 { 4932 struct e1000_adapter *adapter = netdev_priv(netdev); 4933 4934 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4935 e1000_irq_disable(adapter); 4936 4937 __e1000_vlan_mode(adapter, features); 4938 4939 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4940 e1000_irq_enable(adapter); 4941 } 4942 4943 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4944 __be16 proto, u16 vid) 4945 { 4946 struct e1000_adapter *adapter = netdev_priv(netdev); 4947 struct e1000_hw *hw = &adapter->hw; 4948 u32 vfta, index; 4949 4950 if ((hw->mng_cookie.status & 4951 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4952 (vid == adapter->mng_vlan_id)) 4953 return 0; 4954 4955 if (!e1000_vlan_used(adapter)) 4956 e1000_vlan_filter_on_off(adapter, true); 4957 4958 /* add VID to filter table */ 4959 index = (vid >> 5) & 0x7F; 4960 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4961 vfta |= (1 << (vid & 0x1F)); 4962 e1000_write_vfta(hw, index, vfta); 4963 4964 set_bit(vid, adapter->active_vlans); 4965 4966 return 0; 4967 } 4968 4969 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4970 __be16 proto, u16 vid) 4971 { 4972 struct e1000_adapter *adapter = netdev_priv(netdev); 4973 struct e1000_hw *hw = &adapter->hw; 4974 u32 vfta, index; 4975 4976 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4977 e1000_irq_disable(adapter); 4978 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4979 e1000_irq_enable(adapter); 4980 4981 /* remove VID from filter table */ 4982 index = (vid >> 5) & 0x7F; 4983 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4984 vfta &= ~(1 << (vid & 0x1F)); 4985 e1000_write_vfta(hw, index, vfta); 4986 4987 clear_bit(vid, adapter->active_vlans); 4988 4989 if (!e1000_vlan_used(adapter)) 4990 e1000_vlan_filter_on_off(adapter, false); 4991 4992 return 0; 4993 } 4994 4995 static void e1000_restore_vlan(struct e1000_adapter *adapter) 4996 { 4997 u16 vid; 4998 4999 if (!e1000_vlan_used(adapter)) 5000 return; 5001 5002 e1000_vlan_filter_on_off(adapter, true); 5003 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 5004 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 5005 } 5006 5007 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 5008 { 5009 struct e1000_hw *hw = &adapter->hw; 5010 5011 hw->autoneg = 0; 5012 5013 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5014 * for the switch() below to work 5015 */ 5016 if ((spd & 1) || (dplx & ~1)) 5017 goto err_inval; 5018 5019 /* Fiber NICs only allow 1000 gbps Full duplex */ 5020 if ((hw->media_type == e1000_media_type_fiber) && 5021 spd != SPEED_1000 && 5022 dplx != DUPLEX_FULL) 5023 goto err_inval; 5024 5025 switch (spd + dplx) { 5026 case SPEED_10 + DUPLEX_HALF: 5027 hw->forced_speed_duplex = e1000_10_half; 5028 break; 5029 case SPEED_10 + DUPLEX_FULL: 5030 hw->forced_speed_duplex = e1000_10_full; 5031 break; 5032 case SPEED_100 + DUPLEX_HALF: 5033 hw->forced_speed_duplex = e1000_100_half; 5034 break; 5035 case SPEED_100 + DUPLEX_FULL: 5036 hw->forced_speed_duplex = e1000_100_full; 5037 break; 5038 case SPEED_1000 + DUPLEX_FULL: 5039 hw->autoneg = 1; 5040 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5041 break; 5042 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5043 default: 5044 goto err_inval; 5045 } 5046 5047 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5048 hw->mdix = AUTO_ALL_MODES; 5049 5050 return 0; 5051 5052 err_inval: 5053 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5054 return -EINVAL; 5055 } 5056 5057 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5058 { 5059 struct net_device *netdev = pci_get_drvdata(pdev); 5060 struct e1000_adapter *adapter = netdev_priv(netdev); 5061 struct e1000_hw *hw = &adapter->hw; 5062 u32 ctrl, ctrl_ext, rctl, status; 5063 u32 wufc = adapter->wol; 5064 #ifdef CONFIG_PM 5065 int retval = 0; 5066 #endif 5067 5068 netif_device_detach(netdev); 5069 5070 if (netif_running(netdev)) { 5071 int count = E1000_CHECK_RESET_COUNT; 5072 5073 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5074 usleep_range(10000, 20000); 5075 5076 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5077 e1000_down(adapter); 5078 } 5079 5080 #ifdef CONFIG_PM 5081 retval = pci_save_state(pdev); 5082 if (retval) 5083 return retval; 5084 #endif 5085 5086 status = er32(STATUS); 5087 if (status & E1000_STATUS_LU) 5088 wufc &= ~E1000_WUFC_LNKC; 5089 5090 if (wufc) { 5091 e1000_setup_rctl(adapter); 5092 e1000_set_rx_mode(netdev); 5093 5094 rctl = er32(RCTL); 5095 5096 /* turn on all-multi mode if wake on multicast is enabled */ 5097 if (wufc & E1000_WUFC_MC) 5098 rctl |= E1000_RCTL_MPE; 5099 5100 /* enable receives in the hardware */ 5101 ew32(RCTL, rctl | E1000_RCTL_EN); 5102 5103 if (hw->mac_type >= e1000_82540) { 5104 ctrl = er32(CTRL); 5105 /* advertise wake from D3Cold */ 5106 #define E1000_CTRL_ADVD3WUC 0x00100000 5107 /* phy power management enable */ 5108 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5109 ctrl |= E1000_CTRL_ADVD3WUC | 5110 E1000_CTRL_EN_PHY_PWR_MGMT; 5111 ew32(CTRL, ctrl); 5112 } 5113 5114 if (hw->media_type == e1000_media_type_fiber || 5115 hw->media_type == e1000_media_type_internal_serdes) { 5116 /* keep the laser running in D3 */ 5117 ctrl_ext = er32(CTRL_EXT); 5118 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5119 ew32(CTRL_EXT, ctrl_ext); 5120 } 5121 5122 ew32(WUC, E1000_WUC_PME_EN); 5123 ew32(WUFC, wufc); 5124 } else { 5125 ew32(WUC, 0); 5126 ew32(WUFC, 0); 5127 } 5128 5129 e1000_release_manageability(adapter); 5130 5131 *enable_wake = !!wufc; 5132 5133 /* make sure adapter isn't asleep if manageability is enabled */ 5134 if (adapter->en_mng_pt) 5135 *enable_wake = true; 5136 5137 if (netif_running(netdev)) 5138 e1000_free_irq(adapter); 5139 5140 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5141 pci_disable_device(pdev); 5142 5143 return 0; 5144 } 5145 5146 #ifdef CONFIG_PM 5147 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 5148 { 5149 int retval; 5150 bool wake; 5151 5152 retval = __e1000_shutdown(pdev, &wake); 5153 if (retval) 5154 return retval; 5155 5156 if (wake) { 5157 pci_prepare_to_sleep(pdev); 5158 } else { 5159 pci_wake_from_d3(pdev, false); 5160 pci_set_power_state(pdev, PCI_D3hot); 5161 } 5162 5163 return 0; 5164 } 5165 5166 static int e1000_resume(struct pci_dev *pdev) 5167 { 5168 struct net_device *netdev = pci_get_drvdata(pdev); 5169 struct e1000_adapter *adapter = netdev_priv(netdev); 5170 struct e1000_hw *hw = &adapter->hw; 5171 u32 err; 5172 5173 pci_set_power_state(pdev, PCI_D0); 5174 pci_restore_state(pdev); 5175 pci_save_state(pdev); 5176 5177 if (adapter->need_ioport) 5178 err = pci_enable_device(pdev); 5179 else 5180 err = pci_enable_device_mem(pdev); 5181 if (err) { 5182 pr_err("Cannot enable PCI device from suspend\n"); 5183 return err; 5184 } 5185 5186 /* flush memory to make sure state is correct */ 5187 smp_mb__before_atomic(); 5188 clear_bit(__E1000_DISABLED, &adapter->flags); 5189 pci_set_master(pdev); 5190 5191 pci_enable_wake(pdev, PCI_D3hot, 0); 5192 pci_enable_wake(pdev, PCI_D3cold, 0); 5193 5194 if (netif_running(netdev)) { 5195 err = e1000_request_irq(adapter); 5196 if (err) 5197 return err; 5198 } 5199 5200 e1000_power_up_phy(adapter); 5201 e1000_reset(adapter); 5202 ew32(WUS, ~0); 5203 5204 e1000_init_manageability(adapter); 5205 5206 if (netif_running(netdev)) 5207 e1000_up(adapter); 5208 5209 netif_device_attach(netdev); 5210 5211 return 0; 5212 } 5213 #endif 5214 5215 static void e1000_shutdown(struct pci_dev *pdev) 5216 { 5217 bool wake; 5218 5219 __e1000_shutdown(pdev, &wake); 5220 5221 if (system_state == SYSTEM_POWER_OFF) { 5222 pci_wake_from_d3(pdev, wake); 5223 pci_set_power_state(pdev, PCI_D3hot); 5224 } 5225 } 5226 5227 #ifdef CONFIG_NET_POLL_CONTROLLER 5228 /* Polling 'interrupt' - used by things like netconsole to send skbs 5229 * without having to re-enable interrupts. It's not called while 5230 * the interrupt routine is executing. 5231 */ 5232 static void e1000_netpoll(struct net_device *netdev) 5233 { 5234 struct e1000_adapter *adapter = netdev_priv(netdev); 5235 5236 if (disable_hardirq(adapter->pdev->irq)) 5237 e1000_intr(adapter->pdev->irq, netdev); 5238 enable_irq(adapter->pdev->irq); 5239 } 5240 #endif 5241 5242 /** 5243 * e1000_io_error_detected - called when PCI error is detected 5244 * @pdev: Pointer to PCI device 5245 * @state: The current pci connection state 5246 * 5247 * This function is called after a PCI bus error affecting 5248 * this device has been detected. 5249 */ 5250 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5251 pci_channel_state_t state) 5252 { 5253 struct net_device *netdev = pci_get_drvdata(pdev); 5254 struct e1000_adapter *adapter = netdev_priv(netdev); 5255 5256 netif_device_detach(netdev); 5257 5258 if (state == pci_channel_io_perm_failure) 5259 return PCI_ERS_RESULT_DISCONNECT; 5260 5261 if (netif_running(netdev)) 5262 e1000_down(adapter); 5263 5264 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5265 pci_disable_device(pdev); 5266 5267 /* Request a slot slot reset. */ 5268 return PCI_ERS_RESULT_NEED_RESET; 5269 } 5270 5271 /** 5272 * e1000_io_slot_reset - called after the pci bus has been reset. 5273 * @pdev: Pointer to PCI device 5274 * 5275 * Restart the card from scratch, as if from a cold-boot. Implementation 5276 * resembles the first-half of the e1000_resume routine. 5277 */ 5278 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5279 { 5280 struct net_device *netdev = pci_get_drvdata(pdev); 5281 struct e1000_adapter *adapter = netdev_priv(netdev); 5282 struct e1000_hw *hw = &adapter->hw; 5283 int err; 5284 5285 if (adapter->need_ioport) 5286 err = pci_enable_device(pdev); 5287 else 5288 err = pci_enable_device_mem(pdev); 5289 if (err) { 5290 pr_err("Cannot re-enable PCI device after reset.\n"); 5291 return PCI_ERS_RESULT_DISCONNECT; 5292 } 5293 5294 /* flush memory to make sure state is correct */ 5295 smp_mb__before_atomic(); 5296 clear_bit(__E1000_DISABLED, &adapter->flags); 5297 pci_set_master(pdev); 5298 5299 pci_enable_wake(pdev, PCI_D3hot, 0); 5300 pci_enable_wake(pdev, PCI_D3cold, 0); 5301 5302 e1000_reset(adapter); 5303 ew32(WUS, ~0); 5304 5305 return PCI_ERS_RESULT_RECOVERED; 5306 } 5307 5308 /** 5309 * e1000_io_resume - called when traffic can start flowing again. 5310 * @pdev: Pointer to PCI device 5311 * 5312 * This callback is called when the error recovery driver tells us that 5313 * its OK to resume normal operation. Implementation resembles the 5314 * second-half of the e1000_resume routine. 5315 */ 5316 static void e1000_io_resume(struct pci_dev *pdev) 5317 { 5318 struct net_device *netdev = pci_get_drvdata(pdev); 5319 struct e1000_adapter *adapter = netdev_priv(netdev); 5320 5321 e1000_init_manageability(adapter); 5322 5323 if (netif_running(netdev)) { 5324 if (e1000_up(adapter)) { 5325 pr_info("can't bring device back up after reset\n"); 5326 return; 5327 } 5328 } 5329 5330 netif_device_attach(netdev); 5331 } 5332 5333 /* e1000_main.c */ 5334