1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 				    struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 				    struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 				    struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 				    struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 int e1000_open(struct net_device *netdev);
118 int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 				struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 				struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 			       struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 			       struct e1000_rx_ring *rx_ring,
143 			       int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 				     struct e1000_rx_ring *rx_ring,
146 				     int *work_done, int work_to_do);
147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 					 struct e1000_rx_ring *rx_ring,
149 					 int cleaned_count)
150 {
151 }
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 				   struct e1000_rx_ring *rx_ring,
154 				   int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 					 struct e1000_rx_ring *rx_ring,
157 					 int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 			   int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 				       struct sk_buff *skb);
168 
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev,
171 			    netdev_features_t features);
172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 				     bool filter_on);
174 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 				 __be16 proto, u16 vid);
176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 				  __be16 proto, u16 vid);
178 static void e1000_restore_vlan(struct e1000_adapter *adapter);
179 
180 #ifdef CONFIG_PM
181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184 static void e1000_shutdown(struct pci_dev *pdev);
185 
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void e1000_netpoll (struct net_device *netdev);
189 #endif
190 
191 #define COPYBREAK_DEFAULT 256
192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193 module_param(copybreak, uint, 0644);
194 MODULE_PARM_DESC(copybreak,
195 	"Maximum size of packet that is copied to a new buffer on receive");
196 
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 						pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201 
202 static const struct pci_error_handlers e1000_err_handler = {
203 	.error_detected = e1000_io_error_detected,
204 	.slot_reset = e1000_io_slot_reset,
205 	.resume = e1000_io_resume,
206 };
207 
208 static struct pci_driver e1000_driver = {
209 	.name     = e1000_driver_name,
210 	.id_table = e1000_pci_tbl,
211 	.probe    = e1000_probe,
212 	.remove   = e1000_remove,
213 #ifdef CONFIG_PM
214 	/* Power Management Hooks */
215 	.suspend  = e1000_suspend,
216 	.resume   = e1000_resume,
217 #endif
218 	.shutdown = e1000_shutdown,
219 	.err_handler = &e1000_err_handler
220 };
221 
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226 
227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228 static int debug = -1;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231 
232 /**
233  * e1000_get_hw_dev - return device
234  * used by hardware layer to print debugging information
235  *
236  **/
237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238 {
239 	struct e1000_adapter *adapter = hw->back;
240 	return adapter->netdev;
241 }
242 
243 /**
244  * e1000_init_module - Driver Registration Routine
245  *
246  * e1000_init_module is the first routine called when the driver is
247  * loaded. All it does is register with the PCI subsystem.
248  **/
249 static int __init e1000_init_module(void)
250 {
251 	int ret;
252 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253 
254 	pr_info("%s\n", e1000_copyright);
255 
256 	ret = pci_register_driver(&e1000_driver);
257 	if (copybreak != COPYBREAK_DEFAULT) {
258 		if (copybreak == 0)
259 			pr_info("copybreak disabled\n");
260 		else
261 			pr_info("copybreak enabled for "
262 				   "packets <= %u bytes\n", copybreak);
263 	}
264 	return ret;
265 }
266 
267 module_init(e1000_init_module);
268 
269 /**
270  * e1000_exit_module - Driver Exit Cleanup Routine
271  *
272  * e1000_exit_module is called just before the driver is removed
273  * from memory.
274  **/
275 static void __exit e1000_exit_module(void)
276 {
277 	pci_unregister_driver(&e1000_driver);
278 }
279 
280 module_exit(e1000_exit_module);
281 
282 static int e1000_request_irq(struct e1000_adapter *adapter)
283 {
284 	struct net_device *netdev = adapter->netdev;
285 	irq_handler_t handler = e1000_intr;
286 	int irq_flags = IRQF_SHARED;
287 	int err;
288 
289 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 			  netdev);
291 	if (err) {
292 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 	}
294 
295 	return err;
296 }
297 
298 static void e1000_free_irq(struct e1000_adapter *adapter)
299 {
300 	struct net_device *netdev = adapter->netdev;
301 
302 	free_irq(adapter->pdev->irq, netdev);
303 }
304 
305 /**
306  * e1000_irq_disable - Mask off interrupt generation on the NIC
307  * @adapter: board private structure
308  **/
309 static void e1000_irq_disable(struct e1000_adapter *adapter)
310 {
311 	struct e1000_hw *hw = &adapter->hw;
312 
313 	ew32(IMC, ~0);
314 	E1000_WRITE_FLUSH();
315 	synchronize_irq(adapter->pdev->irq);
316 }
317 
318 /**
319  * e1000_irq_enable - Enable default interrupt generation settings
320  * @adapter: board private structure
321  **/
322 static void e1000_irq_enable(struct e1000_adapter *adapter)
323 {
324 	struct e1000_hw *hw = &adapter->hw;
325 
326 	ew32(IMS, IMS_ENABLE_MASK);
327 	E1000_WRITE_FLUSH();
328 }
329 
330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331 {
332 	struct e1000_hw *hw = &adapter->hw;
333 	struct net_device *netdev = adapter->netdev;
334 	u16 vid = hw->mng_cookie.vlan_id;
335 	u16 old_vid = adapter->mng_vlan_id;
336 
337 	if (!e1000_vlan_used(adapter))
338 		return;
339 
340 	if (!test_bit(vid, adapter->active_vlans)) {
341 		if (hw->mng_cookie.status &
342 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 			adapter->mng_vlan_id = vid;
345 		} else {
346 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 		}
348 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 		    (vid != old_vid) &&
350 		    !test_bit(old_vid, adapter->active_vlans))
351 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 					       old_vid);
353 	} else {
354 		adapter->mng_vlan_id = vid;
355 	}
356 }
357 
358 static void e1000_init_manageability(struct e1000_adapter *adapter)
359 {
360 	struct e1000_hw *hw = &adapter->hw;
361 
362 	if (adapter->en_mng_pt) {
363 		u32 manc = er32(MANC);
364 
365 		/* disable hardware interception of ARP */
366 		manc &= ~(E1000_MANC_ARP_EN);
367 
368 		ew32(MANC, manc);
369 	}
370 }
371 
372 static void e1000_release_manageability(struct e1000_adapter *adapter)
373 {
374 	struct e1000_hw *hw = &adapter->hw;
375 
376 	if (adapter->en_mng_pt) {
377 		u32 manc = er32(MANC);
378 
379 		/* re-enable hardware interception of ARP */
380 		manc |= E1000_MANC_ARP_EN;
381 
382 		ew32(MANC, manc);
383 	}
384 }
385 
386 /**
387  * e1000_configure - configure the hardware for RX and TX
388  * @adapter = private board structure
389  **/
390 static void e1000_configure(struct e1000_adapter *adapter)
391 {
392 	struct net_device *netdev = adapter->netdev;
393 	int i;
394 
395 	e1000_set_rx_mode(netdev);
396 
397 	e1000_restore_vlan(adapter);
398 	e1000_init_manageability(adapter);
399 
400 	e1000_configure_tx(adapter);
401 	e1000_setup_rctl(adapter);
402 	e1000_configure_rx(adapter);
403 	/* call E1000_DESC_UNUSED which always leaves
404 	 * at least 1 descriptor unused to make sure
405 	 * next_to_use != next_to_clean
406 	 */
407 	for (i = 0; i < adapter->num_rx_queues; i++) {
408 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 		adapter->alloc_rx_buf(adapter, ring,
410 				      E1000_DESC_UNUSED(ring));
411 	}
412 }
413 
414 int e1000_up(struct e1000_adapter *adapter)
415 {
416 	struct e1000_hw *hw = &adapter->hw;
417 
418 	/* hardware has been reset, we need to reload some things */
419 	e1000_configure(adapter);
420 
421 	clear_bit(__E1000_DOWN, &adapter->flags);
422 
423 	napi_enable(&adapter->napi);
424 
425 	e1000_irq_enable(adapter);
426 
427 	netif_wake_queue(adapter->netdev);
428 
429 	/* fire a link change interrupt to start the watchdog */
430 	ew32(ICS, E1000_ICS_LSC);
431 	return 0;
432 }
433 
434 /**
435  * e1000_power_up_phy - restore link in case the phy was powered down
436  * @adapter: address of board private structure
437  *
438  * The phy may be powered down to save power and turn off link when the
439  * driver is unloaded and wake on lan is not enabled (among others)
440  * *** this routine MUST be followed by a call to e1000_reset ***
441  **/
442 void e1000_power_up_phy(struct e1000_adapter *adapter)
443 {
444 	struct e1000_hw *hw = &adapter->hw;
445 	u16 mii_reg = 0;
446 
447 	/* Just clear the power down bit to wake the phy back up */
448 	if (hw->media_type == e1000_media_type_copper) {
449 		/* according to the manual, the phy will retain its
450 		 * settings across a power-down/up cycle
451 		 */
452 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 		mii_reg &= ~MII_CR_POWER_DOWN;
454 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 	}
456 }
457 
458 static void e1000_power_down_phy(struct e1000_adapter *adapter)
459 {
460 	struct e1000_hw *hw = &adapter->hw;
461 
462 	/* Power down the PHY so no link is implied when interface is down *
463 	 * The PHY cannot be powered down if any of the following is true *
464 	 * (a) WoL is enabled
465 	 * (b) AMT is active
466 	 * (c) SoL/IDER session is active
467 	 */
468 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 	   hw->media_type == e1000_media_type_copper) {
470 		u16 mii_reg = 0;
471 
472 		switch (hw->mac_type) {
473 		case e1000_82540:
474 		case e1000_82545:
475 		case e1000_82545_rev_3:
476 		case e1000_82546:
477 		case e1000_ce4100:
478 		case e1000_82546_rev_3:
479 		case e1000_82541:
480 		case e1000_82541_rev_2:
481 		case e1000_82547:
482 		case e1000_82547_rev_2:
483 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 				goto out;
485 			break;
486 		default:
487 			goto out;
488 		}
489 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 		mii_reg |= MII_CR_POWER_DOWN;
491 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 		msleep(1);
493 	}
494 out:
495 	return;
496 }
497 
498 static void e1000_down_and_stop(struct e1000_adapter *adapter)
499 {
500 	set_bit(__E1000_DOWN, &adapter->flags);
501 
502 	cancel_delayed_work_sync(&adapter->watchdog_task);
503 
504 	/*
505 	 * Since the watchdog task can reschedule other tasks, we should cancel
506 	 * it first, otherwise we can run into the situation when a work is
507 	 * still running after the adapter has been turned down.
508 	 */
509 
510 	cancel_delayed_work_sync(&adapter->phy_info_task);
511 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
512 
513 	/* Only kill reset task if adapter is not resetting */
514 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 		cancel_work_sync(&adapter->reset_task);
516 }
517 
518 void e1000_down(struct e1000_adapter *adapter)
519 {
520 	struct e1000_hw *hw = &adapter->hw;
521 	struct net_device *netdev = adapter->netdev;
522 	u32 rctl, tctl;
523 
524 	netif_carrier_off(netdev);
525 
526 	/* disable receives in the hardware */
527 	rctl = er32(RCTL);
528 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 	/* flush and sleep below */
530 
531 	netif_tx_disable(netdev);
532 
533 	/* disable transmits in the hardware */
534 	tctl = er32(TCTL);
535 	tctl &= ~E1000_TCTL_EN;
536 	ew32(TCTL, tctl);
537 	/* flush both disables and wait for them to finish */
538 	E1000_WRITE_FLUSH();
539 	msleep(10);
540 
541 	napi_disable(&adapter->napi);
542 
543 	e1000_irq_disable(adapter);
544 
545 	/* Setting DOWN must be after irq_disable to prevent
546 	 * a screaming interrupt.  Setting DOWN also prevents
547 	 * tasks from rescheduling.
548 	 */
549 	e1000_down_and_stop(adapter);
550 
551 	adapter->link_speed = 0;
552 	adapter->link_duplex = 0;
553 
554 	e1000_reset(adapter);
555 	e1000_clean_all_tx_rings(adapter);
556 	e1000_clean_all_rx_rings(adapter);
557 }
558 
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561 	WARN_ON(in_interrupt());
562 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 		msleep(1);
564 	e1000_down(adapter);
565 	e1000_up(adapter);
566 	clear_bit(__E1000_RESETTING, &adapter->flags);
567 }
568 
569 void e1000_reset(struct e1000_adapter *adapter)
570 {
571 	struct e1000_hw *hw = &adapter->hw;
572 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 	bool legacy_pba_adjust = false;
574 	u16 hwm;
575 
576 	/* Repartition Pba for greater than 9k mtu
577 	 * To take effect CTRL.RST is required.
578 	 */
579 
580 	switch (hw->mac_type) {
581 	case e1000_82542_rev2_0:
582 	case e1000_82542_rev2_1:
583 	case e1000_82543:
584 	case e1000_82544:
585 	case e1000_82540:
586 	case e1000_82541:
587 	case e1000_82541_rev_2:
588 		legacy_pba_adjust = true;
589 		pba = E1000_PBA_48K;
590 		break;
591 	case e1000_82545:
592 	case e1000_82545_rev_3:
593 	case e1000_82546:
594 	case e1000_ce4100:
595 	case e1000_82546_rev_3:
596 		pba = E1000_PBA_48K;
597 		break;
598 	case e1000_82547:
599 	case e1000_82547_rev_2:
600 		legacy_pba_adjust = true;
601 		pba = E1000_PBA_30K;
602 		break;
603 	case e1000_undefined:
604 	case e1000_num_macs:
605 		break;
606 	}
607 
608 	if (legacy_pba_adjust) {
609 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 			pba -= 8; /* allocate more FIFO for Tx */
611 
612 		if (hw->mac_type == e1000_82547) {
613 			adapter->tx_fifo_head = 0;
614 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 			adapter->tx_fifo_size =
616 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 			atomic_set(&adapter->tx_fifo_stall, 0);
618 		}
619 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
620 		/* adjust PBA for jumbo frames */
621 		ew32(PBA, pba);
622 
623 		/* To maintain wire speed transmits, the Tx FIFO should be
624 		 * large enough to accommodate two full transmit packets,
625 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
626 		 * the Rx FIFO should be large enough to accommodate at least
627 		 * one full receive packet and is similarly rounded up and
628 		 * expressed in KB.
629 		 */
630 		pba = er32(PBA);
631 		/* upper 16 bits has Tx packet buffer allocation size in KB */
632 		tx_space = pba >> 16;
633 		/* lower 16 bits has Rx packet buffer allocation size in KB */
634 		pba &= 0xffff;
635 		/* the Tx fifo also stores 16 bytes of information about the Tx
636 		 * but don't include ethernet FCS because hardware appends it
637 		 */
638 		min_tx_space = (hw->max_frame_size +
639 				sizeof(struct e1000_tx_desc) -
640 				ETH_FCS_LEN) * 2;
641 		min_tx_space = ALIGN(min_tx_space, 1024);
642 		min_tx_space >>= 10;
643 		/* software strips receive CRC, so leave room for it */
644 		min_rx_space = hw->max_frame_size;
645 		min_rx_space = ALIGN(min_rx_space, 1024);
646 		min_rx_space >>= 10;
647 
648 		/* If current Tx allocation is less than the min Tx FIFO size,
649 		 * and the min Tx FIFO size is less than the current Rx FIFO
650 		 * allocation, take space away from current Rx allocation
651 		 */
652 		if (tx_space < min_tx_space &&
653 		    ((min_tx_space - tx_space) < pba)) {
654 			pba = pba - (min_tx_space - tx_space);
655 
656 			/* PCI/PCIx hardware has PBA alignment constraints */
657 			switch (hw->mac_type) {
658 			case e1000_82545 ... e1000_82546_rev_3:
659 				pba &= ~(E1000_PBA_8K - 1);
660 				break;
661 			default:
662 				break;
663 			}
664 
665 			/* if short on Rx space, Rx wins and must trump Tx
666 			 * adjustment or use Early Receive if available
667 			 */
668 			if (pba < min_rx_space)
669 				pba = min_rx_space;
670 		}
671 	}
672 
673 	ew32(PBA, pba);
674 
675 	/* flow control settings:
676 	 * The high water mark must be low enough to fit one full frame
677 	 * (or the size used for early receive) above it in the Rx FIFO.
678 	 * Set it to the lower of:
679 	 * - 90% of the Rx FIFO size, and
680 	 * - the full Rx FIFO size minus the early receive size (for parts
681 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
682 	 * - the full Rx FIFO size minus one full frame
683 	 */
684 	hwm = min(((pba << 10) * 9 / 10),
685 		  ((pba << 10) - hw->max_frame_size));
686 
687 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
688 	hw->fc_low_water = hw->fc_high_water - 8;
689 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 	hw->fc_send_xon = 1;
691 	hw->fc = hw->original_fc;
692 
693 	/* Allow time for pending master requests to run */
694 	e1000_reset_hw(hw);
695 	if (hw->mac_type >= e1000_82544)
696 		ew32(WUC, 0);
697 
698 	if (e1000_init_hw(hw))
699 		e_dev_err("Hardware Error\n");
700 	e1000_update_mng_vlan(adapter);
701 
702 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 	if (hw->mac_type >= e1000_82544 &&
704 	    hw->autoneg == 1 &&
705 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 		u32 ctrl = er32(CTRL);
707 		/* clear phy power management bit if we are in gig only mode,
708 		 * which if enabled will attempt negotiation to 100Mb, which
709 		 * can cause a loss of link at power off or driver unload
710 		 */
711 		ctrl &= ~E1000_CTRL_SWDPIN3;
712 		ew32(CTRL, ctrl);
713 	}
714 
715 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717 
718 	e1000_reset_adaptive(hw);
719 	e1000_phy_get_info(hw, &adapter->phy_info);
720 
721 	e1000_release_manageability(adapter);
722 }
723 
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726 {
727 	struct net_device *netdev = adapter->netdev;
728 	struct ethtool_eeprom eeprom;
729 	const struct ethtool_ops *ops = netdev->ethtool_ops;
730 	u8 *data;
731 	int i;
732 	u16 csum_old, csum_new = 0;
733 
734 	eeprom.len = ops->get_eeprom_len(netdev);
735 	eeprom.offset = 0;
736 
737 	data = kmalloc(eeprom.len, GFP_KERNEL);
738 	if (!data)
739 		return;
740 
741 	ops->get_eeprom(netdev, &eeprom, data);
742 
743 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 		csum_new += data[i] + (data[i + 1] << 8);
747 	csum_new = EEPROM_SUM - csum_new;
748 
749 	pr_err("/*********************/\n");
750 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 	pr_err("Calculated              : 0x%04x\n", csum_new);
752 
753 	pr_err("Offset    Values\n");
754 	pr_err("========  ======\n");
755 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756 
757 	pr_err("Include this output when contacting your support provider.\n");
758 	pr_err("This is not a software error! Something bad happened to\n");
759 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 	pr_err("result in further problems, possibly loss of data,\n");
761 	pr_err("corruption or system hangs!\n");
762 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 	pr_err("which is invalid and requires you to set the proper MAC\n");
764 	pr_err("address manually before continuing to enable this network\n");
765 	pr_err("device. Please inspect the EEPROM dump and report the\n");
766 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 	pr_err("/*********************/\n");
768 
769 	kfree(data);
770 }
771 
772 /**
773  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774  * @pdev: PCI device information struct
775  *
776  * Return true if an adapter needs ioport resources
777  **/
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
779 {
780 	switch (pdev->device) {
781 	case E1000_DEV_ID_82540EM:
782 	case E1000_DEV_ID_82540EM_LOM:
783 	case E1000_DEV_ID_82540EP:
784 	case E1000_DEV_ID_82540EP_LOM:
785 	case E1000_DEV_ID_82540EP_LP:
786 	case E1000_DEV_ID_82541EI:
787 	case E1000_DEV_ID_82541EI_MOBILE:
788 	case E1000_DEV_ID_82541ER:
789 	case E1000_DEV_ID_82541ER_LOM:
790 	case E1000_DEV_ID_82541GI:
791 	case E1000_DEV_ID_82541GI_LF:
792 	case E1000_DEV_ID_82541GI_MOBILE:
793 	case E1000_DEV_ID_82544EI_COPPER:
794 	case E1000_DEV_ID_82544EI_FIBER:
795 	case E1000_DEV_ID_82544GC_COPPER:
796 	case E1000_DEV_ID_82544GC_LOM:
797 	case E1000_DEV_ID_82545EM_COPPER:
798 	case E1000_DEV_ID_82545EM_FIBER:
799 	case E1000_DEV_ID_82546EB_COPPER:
800 	case E1000_DEV_ID_82546EB_FIBER:
801 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 		return true;
803 	default:
804 		return false;
805 	}
806 }
807 
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 	netdev_features_t features)
810 {
811 	/* Since there is no support for separate Rx/Tx vlan accel
812 	 * enable/disable make sure Tx flag is always in same state as Rx.
813 	 */
814 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 		features |= NETIF_F_HW_VLAN_CTAG_TX;
816 	else
817 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818 
819 	return features;
820 }
821 
822 static int e1000_set_features(struct net_device *netdev,
823 	netdev_features_t features)
824 {
825 	struct e1000_adapter *adapter = netdev_priv(netdev);
826 	netdev_features_t changed = features ^ netdev->features;
827 
828 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 		e1000_vlan_mode(netdev, features);
830 
831 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 		return 0;
833 
834 	netdev->features = features;
835 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836 
837 	if (netif_running(netdev))
838 		e1000_reinit_locked(adapter);
839 	else
840 		e1000_reset(adapter);
841 
842 	return 0;
843 }
844 
845 static const struct net_device_ops e1000_netdev_ops = {
846 	.ndo_open		= e1000_open,
847 	.ndo_stop		= e1000_close,
848 	.ndo_start_xmit		= e1000_xmit_frame,
849 	.ndo_get_stats		= e1000_get_stats,
850 	.ndo_set_rx_mode	= e1000_set_rx_mode,
851 	.ndo_set_mac_address	= e1000_set_mac,
852 	.ndo_tx_timeout		= e1000_tx_timeout,
853 	.ndo_change_mtu		= e1000_change_mtu,
854 	.ndo_do_ioctl		= e1000_ioctl,
855 	.ndo_validate_addr	= eth_validate_addr,
856 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
857 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
858 #ifdef CONFIG_NET_POLL_CONTROLLER
859 	.ndo_poll_controller	= e1000_netpoll,
860 #endif
861 	.ndo_fix_features	= e1000_fix_features,
862 	.ndo_set_features	= e1000_set_features,
863 };
864 
865 /**
866  * e1000_init_hw_struct - initialize members of hw struct
867  * @adapter: board private struct
868  * @hw: structure used by e1000_hw.c
869  *
870  * Factors out initialization of the e1000_hw struct to its own function
871  * that can be called very early at init (just after struct allocation).
872  * Fields are initialized based on PCI device information and
873  * OS network device settings (MTU size).
874  * Returns negative error codes if MAC type setup fails.
875  */
876 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 				struct e1000_hw *hw)
878 {
879 	struct pci_dev *pdev = adapter->pdev;
880 
881 	/* PCI config space info */
882 	hw->vendor_id = pdev->vendor;
883 	hw->device_id = pdev->device;
884 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 	hw->subsystem_id = pdev->subsystem_device;
886 	hw->revision_id = pdev->revision;
887 
888 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889 
890 	hw->max_frame_size = adapter->netdev->mtu +
891 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893 
894 	/* identify the MAC */
895 	if (e1000_set_mac_type(hw)) {
896 		e_err(probe, "Unknown MAC Type\n");
897 		return -EIO;
898 	}
899 
900 	switch (hw->mac_type) {
901 	default:
902 		break;
903 	case e1000_82541:
904 	case e1000_82547:
905 	case e1000_82541_rev_2:
906 	case e1000_82547_rev_2:
907 		hw->phy_init_script = 1;
908 		break;
909 	}
910 
911 	e1000_set_media_type(hw);
912 	e1000_get_bus_info(hw);
913 
914 	hw->wait_autoneg_complete = false;
915 	hw->tbi_compatibility_en = true;
916 	hw->adaptive_ifs = true;
917 
918 	/* Copper options */
919 
920 	if (hw->media_type == e1000_media_type_copper) {
921 		hw->mdix = AUTO_ALL_MODES;
922 		hw->disable_polarity_correction = false;
923 		hw->master_slave = E1000_MASTER_SLAVE;
924 	}
925 
926 	return 0;
927 }
928 
929 /**
930  * e1000_probe - Device Initialization Routine
931  * @pdev: PCI device information struct
932  * @ent: entry in e1000_pci_tbl
933  *
934  * Returns 0 on success, negative on failure
935  *
936  * e1000_probe initializes an adapter identified by a pci_dev structure.
937  * The OS initialization, configuring of the adapter private structure,
938  * and a hardware reset occur.
939  **/
940 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941 {
942 	struct net_device *netdev;
943 	struct e1000_adapter *adapter;
944 	struct e1000_hw *hw;
945 
946 	static int cards_found;
947 	static int global_quad_port_a; /* global ksp3 port a indication */
948 	int i, err, pci_using_dac;
949 	u16 eeprom_data = 0;
950 	u16 tmp = 0;
951 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 	int bars, need_ioport;
953 
954 	/* do not allocate ioport bars when not needed */
955 	need_ioport = e1000_is_need_ioport(pdev);
956 	if (need_ioport) {
957 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 		err = pci_enable_device(pdev);
959 	} else {
960 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 		err = pci_enable_device_mem(pdev);
962 	}
963 	if (err)
964 		return err;
965 
966 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 	if (err)
968 		goto err_pci_reg;
969 
970 	pci_set_master(pdev);
971 	err = pci_save_state(pdev);
972 	if (err)
973 		goto err_alloc_etherdev;
974 
975 	err = -ENOMEM;
976 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 	if (!netdev)
978 		goto err_alloc_etherdev;
979 
980 	SET_NETDEV_DEV(netdev, &pdev->dev);
981 
982 	pci_set_drvdata(pdev, netdev);
983 	adapter = netdev_priv(netdev);
984 	adapter->netdev = netdev;
985 	adapter->pdev = pdev;
986 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 	adapter->bars = bars;
988 	adapter->need_ioport = need_ioport;
989 
990 	hw = &adapter->hw;
991 	hw->back = adapter;
992 
993 	err = -EIO;
994 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 	if (!hw->hw_addr)
996 		goto err_ioremap;
997 
998 	if (adapter->need_ioport) {
999 		for (i = BAR_1; i <= BAR_5; i++) {
1000 			if (pci_resource_len(pdev, i) == 0)
1001 				continue;
1002 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 				hw->io_base = pci_resource_start(pdev, i);
1004 				break;
1005 			}
1006 		}
1007 	}
1008 
1009 	/* make ready for any if (hw->...) below */
1010 	err = e1000_init_hw_struct(adapter, hw);
1011 	if (err)
1012 		goto err_sw_init;
1013 
1014 	/* there is a workaround being applied below that limits
1015 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1016 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 	 */
1018 	pci_using_dac = 0;
1019 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 		pci_using_dac = 1;
1022 	} else {
1023 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 		if (err) {
1025 			pr_err("No usable DMA config, aborting\n");
1026 			goto err_dma;
1027 		}
1028 	}
1029 
1030 	netdev->netdev_ops = &e1000_netdev_ops;
1031 	e1000_set_ethtool_ops(netdev);
1032 	netdev->watchdog_timeo = 5 * HZ;
1033 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034 
1035 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036 
1037 	adapter->bd_number = cards_found;
1038 
1039 	/* setup the private structure */
1040 
1041 	err = e1000_sw_init(adapter);
1042 	if (err)
1043 		goto err_sw_init;
1044 
1045 	err = -EIO;
1046 	if (hw->mac_type == e1000_ce4100) {
1047 		hw->ce4100_gbe_mdio_base_virt =
1048 					ioremap(pci_resource_start(pdev, BAR_1),
1049 						pci_resource_len(pdev, BAR_1));
1050 
1051 		if (!hw->ce4100_gbe_mdio_base_virt)
1052 			goto err_mdio_ioremap;
1053 	}
1054 
1055 	if (hw->mac_type >= e1000_82543) {
1056 		netdev->hw_features = NETIF_F_SG |
1057 				   NETIF_F_HW_CSUM |
1058 				   NETIF_F_HW_VLAN_CTAG_RX;
1059 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1061 	}
1062 
1063 	if ((hw->mac_type >= e1000_82544) &&
1064 	   (hw->mac_type != e1000_82547))
1065 		netdev->hw_features |= NETIF_F_TSO;
1066 
1067 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1068 
1069 	netdev->features |= netdev->hw_features;
1070 	netdev->hw_features |= (NETIF_F_RXCSUM |
1071 				NETIF_F_RXALL |
1072 				NETIF_F_RXFCS);
1073 
1074 	if (pci_using_dac) {
1075 		netdev->features |= NETIF_F_HIGHDMA;
1076 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 	}
1078 
1079 	netdev->vlan_features |= (NETIF_F_TSO |
1080 				  NETIF_F_HW_CSUM |
1081 				  NETIF_F_SG);
1082 
1083 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 		netdev->priv_flags |= IFF_UNICAST_FLT;
1087 
1088 	/* MTU range: 46 - 16110 */
1089 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1090 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1091 
1092 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1093 
1094 	/* initialize eeprom parameters */
1095 	if (e1000_init_eeprom_params(hw)) {
1096 		e_err(probe, "EEPROM initialization failed\n");
1097 		goto err_eeprom;
1098 	}
1099 
1100 	/* before reading the EEPROM, reset the controller to
1101 	 * put the device in a known good starting state
1102 	 */
1103 
1104 	e1000_reset_hw(hw);
1105 
1106 	/* make sure the EEPROM is good */
1107 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1108 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1109 		e1000_dump_eeprom(adapter);
1110 		/* set MAC address to all zeroes to invalidate and temporary
1111 		 * disable this device for the user. This blocks regular
1112 		 * traffic while still permitting ethtool ioctls from reaching
1113 		 * the hardware as well as allowing the user to run the
1114 		 * interface after manually setting a hw addr using
1115 		 * `ip set address`
1116 		 */
1117 		memset(hw->mac_addr, 0, netdev->addr_len);
1118 	} else {
1119 		/* copy the MAC address out of the EEPROM */
1120 		if (e1000_read_mac_addr(hw))
1121 			e_err(probe, "EEPROM Read Error\n");
1122 	}
1123 	/* don't block initialization here due to bad MAC address */
1124 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1125 
1126 	if (!is_valid_ether_addr(netdev->dev_addr))
1127 		e_err(probe, "Invalid MAC Address\n");
1128 
1129 
1130 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1131 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1132 			  e1000_82547_tx_fifo_stall_task);
1133 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1134 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1135 
1136 	e1000_check_options(adapter);
1137 
1138 	/* Initial Wake on LAN setting
1139 	 * If APM wake is enabled in the EEPROM,
1140 	 * enable the ACPI Magic Packet filter
1141 	 */
1142 
1143 	switch (hw->mac_type) {
1144 	case e1000_82542_rev2_0:
1145 	case e1000_82542_rev2_1:
1146 	case e1000_82543:
1147 		break;
1148 	case e1000_82544:
1149 		e1000_read_eeprom(hw,
1150 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1151 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1152 		break;
1153 	case e1000_82546:
1154 	case e1000_82546_rev_3:
1155 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1156 			e1000_read_eeprom(hw,
1157 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1158 			break;
1159 		}
1160 		/* Fall Through */
1161 	default:
1162 		e1000_read_eeprom(hw,
1163 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1164 		break;
1165 	}
1166 	if (eeprom_data & eeprom_apme_mask)
1167 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1168 
1169 	/* now that we have the eeprom settings, apply the special cases
1170 	 * where the eeprom may be wrong or the board simply won't support
1171 	 * wake on lan on a particular port
1172 	 */
1173 	switch (pdev->device) {
1174 	case E1000_DEV_ID_82546GB_PCIE:
1175 		adapter->eeprom_wol = 0;
1176 		break;
1177 	case E1000_DEV_ID_82546EB_FIBER:
1178 	case E1000_DEV_ID_82546GB_FIBER:
1179 		/* Wake events only supported on port A for dual fiber
1180 		 * regardless of eeprom setting
1181 		 */
1182 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1183 			adapter->eeprom_wol = 0;
1184 		break;
1185 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1186 		/* if quad port adapter, disable WoL on all but port A */
1187 		if (global_quad_port_a != 0)
1188 			adapter->eeprom_wol = 0;
1189 		else
1190 			adapter->quad_port_a = true;
1191 		/* Reset for multiple quad port adapters */
1192 		if (++global_quad_port_a == 4)
1193 			global_quad_port_a = 0;
1194 		break;
1195 	}
1196 
1197 	/* initialize the wol settings based on the eeprom settings */
1198 	adapter->wol = adapter->eeprom_wol;
1199 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1200 
1201 	/* Auto detect PHY address */
1202 	if (hw->mac_type == e1000_ce4100) {
1203 		for (i = 0; i < 32; i++) {
1204 			hw->phy_addr = i;
1205 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1206 
1207 			if (tmp != 0 && tmp != 0xFF)
1208 				break;
1209 		}
1210 
1211 		if (i >= 32)
1212 			goto err_eeprom;
1213 	}
1214 
1215 	/* reset the hardware with the new settings */
1216 	e1000_reset(adapter);
1217 
1218 	strcpy(netdev->name, "eth%d");
1219 	err = register_netdev(netdev);
1220 	if (err)
1221 		goto err_register;
1222 
1223 	e1000_vlan_filter_on_off(adapter, false);
1224 
1225 	/* print bus type/speed/width info */
1226 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1227 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1228 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1229 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1230 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1231 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1232 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1233 	       netdev->dev_addr);
1234 
1235 	/* carrier off reporting is important to ethtool even BEFORE open */
1236 	netif_carrier_off(netdev);
1237 
1238 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1239 
1240 	cards_found++;
1241 	return 0;
1242 
1243 err_register:
1244 err_eeprom:
1245 	e1000_phy_hw_reset(hw);
1246 
1247 	if (hw->flash_address)
1248 		iounmap(hw->flash_address);
1249 	kfree(adapter->tx_ring);
1250 	kfree(adapter->rx_ring);
1251 err_dma:
1252 err_sw_init:
1253 err_mdio_ioremap:
1254 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1255 	iounmap(hw->hw_addr);
1256 err_ioremap:
1257 	free_netdev(netdev);
1258 err_alloc_etherdev:
1259 	pci_release_selected_regions(pdev, bars);
1260 err_pci_reg:
1261 	pci_disable_device(pdev);
1262 	return err;
1263 }
1264 
1265 /**
1266  * e1000_remove - Device Removal Routine
1267  * @pdev: PCI device information struct
1268  *
1269  * e1000_remove is called by the PCI subsystem to alert the driver
1270  * that it should release a PCI device. That could be caused by a
1271  * Hot-Plug event, or because the driver is going to be removed from
1272  * memory.
1273  **/
1274 static void e1000_remove(struct pci_dev *pdev)
1275 {
1276 	struct net_device *netdev = pci_get_drvdata(pdev);
1277 	struct e1000_adapter *adapter = netdev_priv(netdev);
1278 	struct e1000_hw *hw = &adapter->hw;
1279 
1280 	e1000_down_and_stop(adapter);
1281 	e1000_release_manageability(adapter);
1282 
1283 	unregister_netdev(netdev);
1284 
1285 	e1000_phy_hw_reset(hw);
1286 
1287 	kfree(adapter->tx_ring);
1288 	kfree(adapter->rx_ring);
1289 
1290 	if (hw->mac_type == e1000_ce4100)
1291 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1292 	iounmap(hw->hw_addr);
1293 	if (hw->flash_address)
1294 		iounmap(hw->flash_address);
1295 	pci_release_selected_regions(pdev, adapter->bars);
1296 
1297 	free_netdev(netdev);
1298 
1299 	pci_disable_device(pdev);
1300 }
1301 
1302 /**
1303  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1304  * @adapter: board private structure to initialize
1305  *
1306  * e1000_sw_init initializes the Adapter private data structure.
1307  * e1000_init_hw_struct MUST be called before this function
1308  **/
1309 static int e1000_sw_init(struct e1000_adapter *adapter)
1310 {
1311 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1312 
1313 	adapter->num_tx_queues = 1;
1314 	adapter->num_rx_queues = 1;
1315 
1316 	if (e1000_alloc_queues(adapter)) {
1317 		e_err(probe, "Unable to allocate memory for queues\n");
1318 		return -ENOMEM;
1319 	}
1320 
1321 	/* Explicitly disable IRQ since the NIC can be in any state. */
1322 	e1000_irq_disable(adapter);
1323 
1324 	spin_lock_init(&adapter->stats_lock);
1325 
1326 	set_bit(__E1000_DOWN, &adapter->flags);
1327 
1328 	return 0;
1329 }
1330 
1331 /**
1332  * e1000_alloc_queues - Allocate memory for all rings
1333  * @adapter: board private structure to initialize
1334  *
1335  * We allocate one ring per queue at run-time since we don't know the
1336  * number of queues at compile-time.
1337  **/
1338 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1339 {
1340 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1341 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1342 	if (!adapter->tx_ring)
1343 		return -ENOMEM;
1344 
1345 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1346 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1347 	if (!adapter->rx_ring) {
1348 		kfree(adapter->tx_ring);
1349 		return -ENOMEM;
1350 	}
1351 
1352 	return E1000_SUCCESS;
1353 }
1354 
1355 /**
1356  * e1000_open - Called when a network interface is made active
1357  * @netdev: network interface device structure
1358  *
1359  * Returns 0 on success, negative value on failure
1360  *
1361  * The open entry point is called when a network interface is made
1362  * active by the system (IFF_UP).  At this point all resources needed
1363  * for transmit and receive operations are allocated, the interrupt
1364  * handler is registered with the OS, the watchdog task is started,
1365  * and the stack is notified that the interface is ready.
1366  **/
1367 int e1000_open(struct net_device *netdev)
1368 {
1369 	struct e1000_adapter *adapter = netdev_priv(netdev);
1370 	struct e1000_hw *hw = &adapter->hw;
1371 	int err;
1372 
1373 	/* disallow open during test */
1374 	if (test_bit(__E1000_TESTING, &adapter->flags))
1375 		return -EBUSY;
1376 
1377 	netif_carrier_off(netdev);
1378 
1379 	/* allocate transmit descriptors */
1380 	err = e1000_setup_all_tx_resources(adapter);
1381 	if (err)
1382 		goto err_setup_tx;
1383 
1384 	/* allocate receive descriptors */
1385 	err = e1000_setup_all_rx_resources(adapter);
1386 	if (err)
1387 		goto err_setup_rx;
1388 
1389 	e1000_power_up_phy(adapter);
1390 
1391 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1392 	if ((hw->mng_cookie.status &
1393 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1394 		e1000_update_mng_vlan(adapter);
1395 	}
1396 
1397 	/* before we allocate an interrupt, we must be ready to handle it.
1398 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1399 	 * as soon as we call pci_request_irq, so we have to setup our
1400 	 * clean_rx handler before we do so.
1401 	 */
1402 	e1000_configure(adapter);
1403 
1404 	err = e1000_request_irq(adapter);
1405 	if (err)
1406 		goto err_req_irq;
1407 
1408 	/* From here on the code is the same as e1000_up() */
1409 	clear_bit(__E1000_DOWN, &adapter->flags);
1410 
1411 	napi_enable(&adapter->napi);
1412 
1413 	e1000_irq_enable(adapter);
1414 
1415 	netif_start_queue(netdev);
1416 
1417 	/* fire a link status change interrupt to start the watchdog */
1418 	ew32(ICS, E1000_ICS_LSC);
1419 
1420 	return E1000_SUCCESS;
1421 
1422 err_req_irq:
1423 	e1000_power_down_phy(adapter);
1424 	e1000_free_all_rx_resources(adapter);
1425 err_setup_rx:
1426 	e1000_free_all_tx_resources(adapter);
1427 err_setup_tx:
1428 	e1000_reset(adapter);
1429 
1430 	return err;
1431 }
1432 
1433 /**
1434  * e1000_close - Disables a network interface
1435  * @netdev: network interface device structure
1436  *
1437  * Returns 0, this is not allowed to fail
1438  *
1439  * The close entry point is called when an interface is de-activated
1440  * by the OS.  The hardware is still under the drivers control, but
1441  * needs to be disabled.  A global MAC reset is issued to stop the
1442  * hardware, and all transmit and receive resources are freed.
1443  **/
1444 int e1000_close(struct net_device *netdev)
1445 {
1446 	struct e1000_adapter *adapter = netdev_priv(netdev);
1447 	struct e1000_hw *hw = &adapter->hw;
1448 	int count = E1000_CHECK_RESET_COUNT;
1449 
1450 	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1451 		usleep_range(10000, 20000);
1452 
1453 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1454 	e1000_down(adapter);
1455 	e1000_power_down_phy(adapter);
1456 	e1000_free_irq(adapter);
1457 
1458 	e1000_free_all_tx_resources(adapter);
1459 	e1000_free_all_rx_resources(adapter);
1460 
1461 	/* kill manageability vlan ID if supported, but not if a vlan with
1462 	 * the same ID is registered on the host OS (let 8021q kill it)
1463 	 */
1464 	if ((hw->mng_cookie.status &
1465 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1466 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1467 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1468 				       adapter->mng_vlan_id);
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 /**
1475  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1476  * @adapter: address of board private structure
1477  * @start: address of beginning of memory
1478  * @len: length of memory
1479  **/
1480 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1481 				  unsigned long len)
1482 {
1483 	struct e1000_hw *hw = &adapter->hw;
1484 	unsigned long begin = (unsigned long)start;
1485 	unsigned long end = begin + len;
1486 
1487 	/* First rev 82545 and 82546 need to not allow any memory
1488 	 * write location to cross 64k boundary due to errata 23
1489 	 */
1490 	if (hw->mac_type == e1000_82545 ||
1491 	    hw->mac_type == e1000_ce4100 ||
1492 	    hw->mac_type == e1000_82546) {
1493 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1494 	}
1495 
1496 	return true;
1497 }
1498 
1499 /**
1500  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1501  * @adapter: board private structure
1502  * @txdr:    tx descriptor ring (for a specific queue) to setup
1503  *
1504  * Return 0 on success, negative on failure
1505  **/
1506 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1507 				    struct e1000_tx_ring *txdr)
1508 {
1509 	struct pci_dev *pdev = adapter->pdev;
1510 	int size;
1511 
1512 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1513 	txdr->buffer_info = vzalloc(size);
1514 	if (!txdr->buffer_info)
1515 		return -ENOMEM;
1516 
1517 	/* round up to nearest 4K */
1518 
1519 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1520 	txdr->size = ALIGN(txdr->size, 4096);
1521 
1522 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1523 					GFP_KERNEL);
1524 	if (!txdr->desc) {
1525 setup_tx_desc_die:
1526 		vfree(txdr->buffer_info);
1527 		return -ENOMEM;
1528 	}
1529 
1530 	/* Fix for errata 23, can't cross 64kB boundary */
1531 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1532 		void *olddesc = txdr->desc;
1533 		dma_addr_t olddma = txdr->dma;
1534 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1535 		      txdr->size, txdr->desc);
1536 		/* Try again, without freeing the previous */
1537 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1538 						&txdr->dma, GFP_KERNEL);
1539 		/* Failed allocation, critical failure */
1540 		if (!txdr->desc) {
1541 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542 					  olddma);
1543 			goto setup_tx_desc_die;
1544 		}
1545 
1546 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1547 			/* give up */
1548 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1549 					  txdr->dma);
1550 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 					  olddma);
1552 			e_err(probe, "Unable to allocate aligned memory "
1553 			      "for the transmit descriptor ring\n");
1554 			vfree(txdr->buffer_info);
1555 			return -ENOMEM;
1556 		} else {
1557 			/* Free old allocation, new allocation was successful */
1558 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1559 					  olddma);
1560 		}
1561 	}
1562 	memset(txdr->desc, 0, txdr->size);
1563 
1564 	txdr->next_to_use = 0;
1565 	txdr->next_to_clean = 0;
1566 
1567 	return 0;
1568 }
1569 
1570 /**
1571  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1572  * 				  (Descriptors) for all queues
1573  * @adapter: board private structure
1574  *
1575  * Return 0 on success, negative on failure
1576  **/
1577 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1578 {
1579 	int i, err = 0;
1580 
1581 	for (i = 0; i < adapter->num_tx_queues; i++) {
1582 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1583 		if (err) {
1584 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1585 			for (i-- ; i >= 0; i--)
1586 				e1000_free_tx_resources(adapter,
1587 							&adapter->tx_ring[i]);
1588 			break;
1589 		}
1590 	}
1591 
1592 	return err;
1593 }
1594 
1595 /**
1596  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1597  * @adapter: board private structure
1598  *
1599  * Configure the Tx unit of the MAC after a reset.
1600  **/
1601 static void e1000_configure_tx(struct e1000_adapter *adapter)
1602 {
1603 	u64 tdba;
1604 	struct e1000_hw *hw = &adapter->hw;
1605 	u32 tdlen, tctl, tipg;
1606 	u32 ipgr1, ipgr2;
1607 
1608 	/* Setup the HW Tx Head and Tail descriptor pointers */
1609 
1610 	switch (adapter->num_tx_queues) {
1611 	case 1:
1612 	default:
1613 		tdba = adapter->tx_ring[0].dma;
1614 		tdlen = adapter->tx_ring[0].count *
1615 			sizeof(struct e1000_tx_desc);
1616 		ew32(TDLEN, tdlen);
1617 		ew32(TDBAH, (tdba >> 32));
1618 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1619 		ew32(TDT, 0);
1620 		ew32(TDH, 0);
1621 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1622 					   E1000_TDH : E1000_82542_TDH);
1623 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1624 					   E1000_TDT : E1000_82542_TDT);
1625 		break;
1626 	}
1627 
1628 	/* Set the default values for the Tx Inter Packet Gap timer */
1629 	if ((hw->media_type == e1000_media_type_fiber ||
1630 	     hw->media_type == e1000_media_type_internal_serdes))
1631 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1632 	else
1633 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1634 
1635 	switch (hw->mac_type) {
1636 	case e1000_82542_rev2_0:
1637 	case e1000_82542_rev2_1:
1638 		tipg = DEFAULT_82542_TIPG_IPGT;
1639 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1640 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1641 		break;
1642 	default:
1643 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1644 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1645 		break;
1646 	}
1647 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1648 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1649 	ew32(TIPG, tipg);
1650 
1651 	/* Set the Tx Interrupt Delay register */
1652 
1653 	ew32(TIDV, adapter->tx_int_delay);
1654 	if (hw->mac_type >= e1000_82540)
1655 		ew32(TADV, adapter->tx_abs_int_delay);
1656 
1657 	/* Program the Transmit Control Register */
1658 
1659 	tctl = er32(TCTL);
1660 	tctl &= ~E1000_TCTL_CT;
1661 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1662 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1663 
1664 	e1000_config_collision_dist(hw);
1665 
1666 	/* Setup Transmit Descriptor Settings for eop descriptor */
1667 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1668 
1669 	/* only set IDE if we are delaying interrupts using the timers */
1670 	if (adapter->tx_int_delay)
1671 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1672 
1673 	if (hw->mac_type < e1000_82543)
1674 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1675 	else
1676 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1677 
1678 	/* Cache if we're 82544 running in PCI-X because we'll
1679 	 * need this to apply a workaround later in the send path.
1680 	 */
1681 	if (hw->mac_type == e1000_82544 &&
1682 	    hw->bus_type == e1000_bus_type_pcix)
1683 		adapter->pcix_82544 = true;
1684 
1685 	ew32(TCTL, tctl);
1686 
1687 }
1688 
1689 /**
1690  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1691  * @adapter: board private structure
1692  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1693  *
1694  * Returns 0 on success, negative on failure
1695  **/
1696 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1697 				    struct e1000_rx_ring *rxdr)
1698 {
1699 	struct pci_dev *pdev = adapter->pdev;
1700 	int size, desc_len;
1701 
1702 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1703 	rxdr->buffer_info = vzalloc(size);
1704 	if (!rxdr->buffer_info)
1705 		return -ENOMEM;
1706 
1707 	desc_len = sizeof(struct e1000_rx_desc);
1708 
1709 	/* Round up to nearest 4K */
1710 
1711 	rxdr->size = rxdr->count * desc_len;
1712 	rxdr->size = ALIGN(rxdr->size, 4096);
1713 
1714 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1715 					GFP_KERNEL);
1716 	if (!rxdr->desc) {
1717 setup_rx_desc_die:
1718 		vfree(rxdr->buffer_info);
1719 		return -ENOMEM;
1720 	}
1721 
1722 	/* Fix for errata 23, can't cross 64kB boundary */
1723 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1724 		void *olddesc = rxdr->desc;
1725 		dma_addr_t olddma = rxdr->dma;
1726 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1727 		      rxdr->size, rxdr->desc);
1728 		/* Try again, without freeing the previous */
1729 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1730 						&rxdr->dma, GFP_KERNEL);
1731 		/* Failed allocation, critical failure */
1732 		if (!rxdr->desc) {
1733 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734 					  olddma);
1735 			goto setup_rx_desc_die;
1736 		}
1737 
1738 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1739 			/* give up */
1740 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1741 					  rxdr->dma);
1742 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1743 					  olddma);
1744 			e_err(probe, "Unable to allocate aligned memory for "
1745 			      "the Rx descriptor ring\n");
1746 			goto setup_rx_desc_die;
1747 		} else {
1748 			/* Free old allocation, new allocation was successful */
1749 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1750 					  olddma);
1751 		}
1752 	}
1753 	memset(rxdr->desc, 0, rxdr->size);
1754 
1755 	rxdr->next_to_clean = 0;
1756 	rxdr->next_to_use = 0;
1757 	rxdr->rx_skb_top = NULL;
1758 
1759 	return 0;
1760 }
1761 
1762 /**
1763  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1764  * 				  (Descriptors) for all queues
1765  * @adapter: board private structure
1766  *
1767  * Return 0 on success, negative on failure
1768  **/
1769 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1770 {
1771 	int i, err = 0;
1772 
1773 	for (i = 0; i < adapter->num_rx_queues; i++) {
1774 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1775 		if (err) {
1776 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1777 			for (i-- ; i >= 0; i--)
1778 				e1000_free_rx_resources(adapter,
1779 							&adapter->rx_ring[i]);
1780 			break;
1781 		}
1782 	}
1783 
1784 	return err;
1785 }
1786 
1787 /**
1788  * e1000_setup_rctl - configure the receive control registers
1789  * @adapter: Board private structure
1790  **/
1791 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1792 {
1793 	struct e1000_hw *hw = &adapter->hw;
1794 	u32 rctl;
1795 
1796 	rctl = er32(RCTL);
1797 
1798 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1799 
1800 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1801 		E1000_RCTL_RDMTS_HALF |
1802 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1803 
1804 	if (hw->tbi_compatibility_on == 1)
1805 		rctl |= E1000_RCTL_SBP;
1806 	else
1807 		rctl &= ~E1000_RCTL_SBP;
1808 
1809 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1810 		rctl &= ~E1000_RCTL_LPE;
1811 	else
1812 		rctl |= E1000_RCTL_LPE;
1813 
1814 	/* Setup buffer sizes */
1815 	rctl &= ~E1000_RCTL_SZ_4096;
1816 	rctl |= E1000_RCTL_BSEX;
1817 	switch (adapter->rx_buffer_len) {
1818 	case E1000_RXBUFFER_2048:
1819 	default:
1820 		rctl |= E1000_RCTL_SZ_2048;
1821 		rctl &= ~E1000_RCTL_BSEX;
1822 		break;
1823 	case E1000_RXBUFFER_4096:
1824 		rctl |= E1000_RCTL_SZ_4096;
1825 		break;
1826 	case E1000_RXBUFFER_8192:
1827 		rctl |= E1000_RCTL_SZ_8192;
1828 		break;
1829 	case E1000_RXBUFFER_16384:
1830 		rctl |= E1000_RCTL_SZ_16384;
1831 		break;
1832 	}
1833 
1834 	/* This is useful for sniffing bad packets. */
1835 	if (adapter->netdev->features & NETIF_F_RXALL) {
1836 		/* UPE and MPE will be handled by normal PROMISC logic
1837 		 * in e1000e_set_rx_mode
1838 		 */
1839 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1840 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1841 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1842 
1843 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1844 			  E1000_RCTL_DPF | /* Allow filtered pause */
1845 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1846 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1847 		 * and that breaks VLANs.
1848 		 */
1849 	}
1850 
1851 	ew32(RCTL, rctl);
1852 }
1853 
1854 /**
1855  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1856  * @adapter: board private structure
1857  *
1858  * Configure the Rx unit of the MAC after a reset.
1859  **/
1860 static void e1000_configure_rx(struct e1000_adapter *adapter)
1861 {
1862 	u64 rdba;
1863 	struct e1000_hw *hw = &adapter->hw;
1864 	u32 rdlen, rctl, rxcsum;
1865 
1866 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1867 		rdlen = adapter->rx_ring[0].count *
1868 			sizeof(struct e1000_rx_desc);
1869 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1870 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1871 	} else {
1872 		rdlen = adapter->rx_ring[0].count *
1873 			sizeof(struct e1000_rx_desc);
1874 		adapter->clean_rx = e1000_clean_rx_irq;
1875 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1876 	}
1877 
1878 	/* disable receives while setting up the descriptors */
1879 	rctl = er32(RCTL);
1880 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1881 
1882 	/* set the Receive Delay Timer Register */
1883 	ew32(RDTR, adapter->rx_int_delay);
1884 
1885 	if (hw->mac_type >= e1000_82540) {
1886 		ew32(RADV, adapter->rx_abs_int_delay);
1887 		if (adapter->itr_setting != 0)
1888 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1889 	}
1890 
1891 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1892 	 * the Base and Length of the Rx Descriptor Ring
1893 	 */
1894 	switch (adapter->num_rx_queues) {
1895 	case 1:
1896 	default:
1897 		rdba = adapter->rx_ring[0].dma;
1898 		ew32(RDLEN, rdlen);
1899 		ew32(RDBAH, (rdba >> 32));
1900 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1901 		ew32(RDT, 0);
1902 		ew32(RDH, 0);
1903 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1904 					   E1000_RDH : E1000_82542_RDH);
1905 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1906 					   E1000_RDT : E1000_82542_RDT);
1907 		break;
1908 	}
1909 
1910 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1911 	if (hw->mac_type >= e1000_82543) {
1912 		rxcsum = er32(RXCSUM);
1913 		if (adapter->rx_csum)
1914 			rxcsum |= E1000_RXCSUM_TUOFL;
1915 		else
1916 			/* don't need to clear IPPCSE as it defaults to 0 */
1917 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1918 		ew32(RXCSUM, rxcsum);
1919 	}
1920 
1921 	/* Enable Receives */
1922 	ew32(RCTL, rctl | E1000_RCTL_EN);
1923 }
1924 
1925 /**
1926  * e1000_free_tx_resources - Free Tx Resources per Queue
1927  * @adapter: board private structure
1928  * @tx_ring: Tx descriptor ring for a specific queue
1929  *
1930  * Free all transmit software resources
1931  **/
1932 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1933 				    struct e1000_tx_ring *tx_ring)
1934 {
1935 	struct pci_dev *pdev = adapter->pdev;
1936 
1937 	e1000_clean_tx_ring(adapter, tx_ring);
1938 
1939 	vfree(tx_ring->buffer_info);
1940 	tx_ring->buffer_info = NULL;
1941 
1942 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1943 			  tx_ring->dma);
1944 
1945 	tx_ring->desc = NULL;
1946 }
1947 
1948 /**
1949  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1950  * @adapter: board private structure
1951  *
1952  * Free all transmit software resources
1953  **/
1954 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1955 {
1956 	int i;
1957 
1958 	for (i = 0; i < adapter->num_tx_queues; i++)
1959 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1960 }
1961 
1962 static void
1963 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1964 				 struct e1000_tx_buffer *buffer_info)
1965 {
1966 	if (buffer_info->dma) {
1967 		if (buffer_info->mapped_as_page)
1968 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1969 				       buffer_info->length, DMA_TO_DEVICE);
1970 		else
1971 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1972 					 buffer_info->length,
1973 					 DMA_TO_DEVICE);
1974 		buffer_info->dma = 0;
1975 	}
1976 	if (buffer_info->skb) {
1977 		dev_kfree_skb_any(buffer_info->skb);
1978 		buffer_info->skb = NULL;
1979 	}
1980 	buffer_info->time_stamp = 0;
1981 	/* buffer_info must be completely set up in the transmit path */
1982 }
1983 
1984 /**
1985  * e1000_clean_tx_ring - Free Tx Buffers
1986  * @adapter: board private structure
1987  * @tx_ring: ring to be cleaned
1988  **/
1989 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1990 				struct e1000_tx_ring *tx_ring)
1991 {
1992 	struct e1000_hw *hw = &adapter->hw;
1993 	struct e1000_tx_buffer *buffer_info;
1994 	unsigned long size;
1995 	unsigned int i;
1996 
1997 	/* Free all the Tx ring sk_buffs */
1998 
1999 	for (i = 0; i < tx_ring->count; i++) {
2000 		buffer_info = &tx_ring->buffer_info[i];
2001 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2002 	}
2003 
2004 	netdev_reset_queue(adapter->netdev);
2005 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2006 	memset(tx_ring->buffer_info, 0, size);
2007 
2008 	/* Zero out the descriptor ring */
2009 
2010 	memset(tx_ring->desc, 0, tx_ring->size);
2011 
2012 	tx_ring->next_to_use = 0;
2013 	tx_ring->next_to_clean = 0;
2014 	tx_ring->last_tx_tso = false;
2015 
2016 	writel(0, hw->hw_addr + tx_ring->tdh);
2017 	writel(0, hw->hw_addr + tx_ring->tdt);
2018 }
2019 
2020 /**
2021  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2022  * @adapter: board private structure
2023  **/
2024 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2025 {
2026 	int i;
2027 
2028 	for (i = 0; i < adapter->num_tx_queues; i++)
2029 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2030 }
2031 
2032 /**
2033  * e1000_free_rx_resources - Free Rx Resources
2034  * @adapter: board private structure
2035  * @rx_ring: ring to clean the resources from
2036  *
2037  * Free all receive software resources
2038  **/
2039 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2040 				    struct e1000_rx_ring *rx_ring)
2041 {
2042 	struct pci_dev *pdev = adapter->pdev;
2043 
2044 	e1000_clean_rx_ring(adapter, rx_ring);
2045 
2046 	vfree(rx_ring->buffer_info);
2047 	rx_ring->buffer_info = NULL;
2048 
2049 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2050 			  rx_ring->dma);
2051 
2052 	rx_ring->desc = NULL;
2053 }
2054 
2055 /**
2056  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2057  * @adapter: board private structure
2058  *
2059  * Free all receive software resources
2060  **/
2061 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2062 {
2063 	int i;
2064 
2065 	for (i = 0; i < adapter->num_rx_queues; i++)
2066 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2067 }
2068 
2069 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2070 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2071 {
2072 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2073 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2074 }
2075 
2076 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2077 {
2078 	unsigned int len = e1000_frag_len(a);
2079 	u8 *data = netdev_alloc_frag(len);
2080 
2081 	if (likely(data))
2082 		data += E1000_HEADROOM;
2083 	return data;
2084 }
2085 
2086 /**
2087  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088  * @adapter: board private structure
2089  * @rx_ring: ring to free buffers from
2090  **/
2091 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2092 				struct e1000_rx_ring *rx_ring)
2093 {
2094 	struct e1000_hw *hw = &adapter->hw;
2095 	struct e1000_rx_buffer *buffer_info;
2096 	struct pci_dev *pdev = adapter->pdev;
2097 	unsigned long size;
2098 	unsigned int i;
2099 
2100 	/* Free all the Rx netfrags */
2101 	for (i = 0; i < rx_ring->count; i++) {
2102 		buffer_info = &rx_ring->buffer_info[i];
2103 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2104 			if (buffer_info->dma)
2105 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2106 						 adapter->rx_buffer_len,
2107 						 DMA_FROM_DEVICE);
2108 			if (buffer_info->rxbuf.data) {
2109 				skb_free_frag(buffer_info->rxbuf.data);
2110 				buffer_info->rxbuf.data = NULL;
2111 			}
2112 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2113 			if (buffer_info->dma)
2114 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2115 					       adapter->rx_buffer_len,
2116 					       DMA_FROM_DEVICE);
2117 			if (buffer_info->rxbuf.page) {
2118 				put_page(buffer_info->rxbuf.page);
2119 				buffer_info->rxbuf.page = NULL;
2120 			}
2121 		}
2122 
2123 		buffer_info->dma = 0;
2124 	}
2125 
2126 	/* there also may be some cached data from a chained receive */
2127 	napi_free_frags(&adapter->napi);
2128 	rx_ring->rx_skb_top = NULL;
2129 
2130 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2131 	memset(rx_ring->buffer_info, 0, size);
2132 
2133 	/* Zero out the descriptor ring */
2134 	memset(rx_ring->desc, 0, rx_ring->size);
2135 
2136 	rx_ring->next_to_clean = 0;
2137 	rx_ring->next_to_use = 0;
2138 
2139 	writel(0, hw->hw_addr + rx_ring->rdh);
2140 	writel(0, hw->hw_addr + rx_ring->rdt);
2141 }
2142 
2143 /**
2144  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2145  * @adapter: board private structure
2146  **/
2147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2148 {
2149 	int i;
2150 
2151 	for (i = 0; i < adapter->num_rx_queues; i++)
2152 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2153 }
2154 
2155 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2156  * and memory write and invalidate disabled for certain operations
2157  */
2158 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2159 {
2160 	struct e1000_hw *hw = &adapter->hw;
2161 	struct net_device *netdev = adapter->netdev;
2162 	u32 rctl;
2163 
2164 	e1000_pci_clear_mwi(hw);
2165 
2166 	rctl = er32(RCTL);
2167 	rctl |= E1000_RCTL_RST;
2168 	ew32(RCTL, rctl);
2169 	E1000_WRITE_FLUSH();
2170 	mdelay(5);
2171 
2172 	if (netif_running(netdev))
2173 		e1000_clean_all_rx_rings(adapter);
2174 }
2175 
2176 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2177 {
2178 	struct e1000_hw *hw = &adapter->hw;
2179 	struct net_device *netdev = adapter->netdev;
2180 	u32 rctl;
2181 
2182 	rctl = er32(RCTL);
2183 	rctl &= ~E1000_RCTL_RST;
2184 	ew32(RCTL, rctl);
2185 	E1000_WRITE_FLUSH();
2186 	mdelay(5);
2187 
2188 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2189 		e1000_pci_set_mwi(hw);
2190 
2191 	if (netif_running(netdev)) {
2192 		/* No need to loop, because 82542 supports only 1 queue */
2193 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2194 		e1000_configure_rx(adapter);
2195 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2196 	}
2197 }
2198 
2199 /**
2200  * e1000_set_mac - Change the Ethernet Address of the NIC
2201  * @netdev: network interface device structure
2202  * @p: pointer to an address structure
2203  *
2204  * Returns 0 on success, negative on failure
2205  **/
2206 static int e1000_set_mac(struct net_device *netdev, void *p)
2207 {
2208 	struct e1000_adapter *adapter = netdev_priv(netdev);
2209 	struct e1000_hw *hw = &adapter->hw;
2210 	struct sockaddr *addr = p;
2211 
2212 	if (!is_valid_ether_addr(addr->sa_data))
2213 		return -EADDRNOTAVAIL;
2214 
2215 	/* 82542 2.0 needs to be in reset to write receive address registers */
2216 
2217 	if (hw->mac_type == e1000_82542_rev2_0)
2218 		e1000_enter_82542_rst(adapter);
2219 
2220 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2221 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2222 
2223 	e1000_rar_set(hw, hw->mac_addr, 0);
2224 
2225 	if (hw->mac_type == e1000_82542_rev2_0)
2226 		e1000_leave_82542_rst(adapter);
2227 
2228 	return 0;
2229 }
2230 
2231 /**
2232  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2233  * @netdev: network interface device structure
2234  *
2235  * The set_rx_mode entry point is called whenever the unicast or multicast
2236  * address lists or the network interface flags are updated. This routine is
2237  * responsible for configuring the hardware for proper unicast, multicast,
2238  * promiscuous mode, and all-multi behavior.
2239  **/
2240 static void e1000_set_rx_mode(struct net_device *netdev)
2241 {
2242 	struct e1000_adapter *adapter = netdev_priv(netdev);
2243 	struct e1000_hw *hw = &adapter->hw;
2244 	struct netdev_hw_addr *ha;
2245 	bool use_uc = false;
2246 	u32 rctl;
2247 	u32 hash_value;
2248 	int i, rar_entries = E1000_RAR_ENTRIES;
2249 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2250 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2251 
2252 	if (!mcarray)
2253 		return;
2254 
2255 	/* Check for Promiscuous and All Multicast modes */
2256 
2257 	rctl = er32(RCTL);
2258 
2259 	if (netdev->flags & IFF_PROMISC) {
2260 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2261 		rctl &= ~E1000_RCTL_VFE;
2262 	} else {
2263 		if (netdev->flags & IFF_ALLMULTI)
2264 			rctl |= E1000_RCTL_MPE;
2265 		else
2266 			rctl &= ~E1000_RCTL_MPE;
2267 		/* Enable VLAN filter if there is a VLAN */
2268 		if (e1000_vlan_used(adapter))
2269 			rctl |= E1000_RCTL_VFE;
2270 	}
2271 
2272 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2273 		rctl |= E1000_RCTL_UPE;
2274 	} else if (!(netdev->flags & IFF_PROMISC)) {
2275 		rctl &= ~E1000_RCTL_UPE;
2276 		use_uc = true;
2277 	}
2278 
2279 	ew32(RCTL, rctl);
2280 
2281 	/* 82542 2.0 needs to be in reset to write receive address registers */
2282 
2283 	if (hw->mac_type == e1000_82542_rev2_0)
2284 		e1000_enter_82542_rst(adapter);
2285 
2286 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2287 	 * addresses take precedence to avoid disabling unicast filtering
2288 	 * when possible.
2289 	 *
2290 	 * RAR 0 is used for the station MAC address
2291 	 * if there are not 14 addresses, go ahead and clear the filters
2292 	 */
2293 	i = 1;
2294 	if (use_uc)
2295 		netdev_for_each_uc_addr(ha, netdev) {
2296 			if (i == rar_entries)
2297 				break;
2298 			e1000_rar_set(hw, ha->addr, i++);
2299 		}
2300 
2301 	netdev_for_each_mc_addr(ha, netdev) {
2302 		if (i == rar_entries) {
2303 			/* load any remaining addresses into the hash table */
2304 			u32 hash_reg, hash_bit, mta;
2305 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2306 			hash_reg = (hash_value >> 5) & 0x7F;
2307 			hash_bit = hash_value & 0x1F;
2308 			mta = (1 << hash_bit);
2309 			mcarray[hash_reg] |= mta;
2310 		} else {
2311 			e1000_rar_set(hw, ha->addr, i++);
2312 		}
2313 	}
2314 
2315 	for (; i < rar_entries; i++) {
2316 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2317 		E1000_WRITE_FLUSH();
2318 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2319 		E1000_WRITE_FLUSH();
2320 	}
2321 
2322 	/* write the hash table completely, write from bottom to avoid
2323 	 * both stupid write combining chipsets, and flushing each write
2324 	 */
2325 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2326 		/* If we are on an 82544 has an errata where writing odd
2327 		 * offsets overwrites the previous even offset, but writing
2328 		 * backwards over the range solves the issue by always
2329 		 * writing the odd offset first
2330 		 */
2331 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2332 	}
2333 	E1000_WRITE_FLUSH();
2334 
2335 	if (hw->mac_type == e1000_82542_rev2_0)
2336 		e1000_leave_82542_rst(adapter);
2337 
2338 	kfree(mcarray);
2339 }
2340 
2341 /**
2342  * e1000_update_phy_info_task - get phy info
2343  * @work: work struct contained inside adapter struct
2344  *
2345  * Need to wait a few seconds after link up to get diagnostic information from
2346  * the phy
2347  */
2348 static void e1000_update_phy_info_task(struct work_struct *work)
2349 {
2350 	struct e1000_adapter *adapter = container_of(work,
2351 						     struct e1000_adapter,
2352 						     phy_info_task.work);
2353 
2354 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2355 }
2356 
2357 /**
2358  * e1000_82547_tx_fifo_stall_task - task to complete work
2359  * @work: work struct contained inside adapter struct
2360  **/
2361 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2362 {
2363 	struct e1000_adapter *adapter = container_of(work,
2364 						     struct e1000_adapter,
2365 						     fifo_stall_task.work);
2366 	struct e1000_hw *hw = &adapter->hw;
2367 	struct net_device *netdev = adapter->netdev;
2368 	u32 tctl;
2369 
2370 	if (atomic_read(&adapter->tx_fifo_stall)) {
2371 		if ((er32(TDT) == er32(TDH)) &&
2372 		   (er32(TDFT) == er32(TDFH)) &&
2373 		   (er32(TDFTS) == er32(TDFHS))) {
2374 			tctl = er32(TCTL);
2375 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2376 			ew32(TDFT, adapter->tx_head_addr);
2377 			ew32(TDFH, adapter->tx_head_addr);
2378 			ew32(TDFTS, adapter->tx_head_addr);
2379 			ew32(TDFHS, adapter->tx_head_addr);
2380 			ew32(TCTL, tctl);
2381 			E1000_WRITE_FLUSH();
2382 
2383 			adapter->tx_fifo_head = 0;
2384 			atomic_set(&adapter->tx_fifo_stall, 0);
2385 			netif_wake_queue(netdev);
2386 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2387 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2388 		}
2389 	}
2390 }
2391 
2392 bool e1000_has_link(struct e1000_adapter *adapter)
2393 {
2394 	struct e1000_hw *hw = &adapter->hw;
2395 	bool link_active = false;
2396 
2397 	/* get_link_status is set on LSC (link status) interrupt or rx
2398 	 * sequence error interrupt (except on intel ce4100).
2399 	 * get_link_status will stay false until the
2400 	 * e1000_check_for_link establishes link for copper adapters
2401 	 * ONLY
2402 	 */
2403 	switch (hw->media_type) {
2404 	case e1000_media_type_copper:
2405 		if (hw->mac_type == e1000_ce4100)
2406 			hw->get_link_status = 1;
2407 		if (hw->get_link_status) {
2408 			e1000_check_for_link(hw);
2409 			link_active = !hw->get_link_status;
2410 		} else {
2411 			link_active = true;
2412 		}
2413 		break;
2414 	case e1000_media_type_fiber:
2415 		e1000_check_for_link(hw);
2416 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2417 		break;
2418 	case e1000_media_type_internal_serdes:
2419 		e1000_check_for_link(hw);
2420 		link_active = hw->serdes_has_link;
2421 		break;
2422 	default:
2423 		break;
2424 	}
2425 
2426 	return link_active;
2427 }
2428 
2429 /**
2430  * e1000_watchdog - work function
2431  * @work: work struct contained inside adapter struct
2432  **/
2433 static void e1000_watchdog(struct work_struct *work)
2434 {
2435 	struct e1000_adapter *adapter = container_of(work,
2436 						     struct e1000_adapter,
2437 						     watchdog_task.work);
2438 	struct e1000_hw *hw = &adapter->hw;
2439 	struct net_device *netdev = adapter->netdev;
2440 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2441 	u32 link, tctl;
2442 
2443 	link = e1000_has_link(adapter);
2444 	if ((netif_carrier_ok(netdev)) && link)
2445 		goto link_up;
2446 
2447 	if (link) {
2448 		if (!netif_carrier_ok(netdev)) {
2449 			u32 ctrl;
2450 			bool txb2b = true;
2451 			/* update snapshot of PHY registers on LSC */
2452 			e1000_get_speed_and_duplex(hw,
2453 						   &adapter->link_speed,
2454 						   &adapter->link_duplex);
2455 
2456 			ctrl = er32(CTRL);
2457 			pr_info("%s NIC Link is Up %d Mbps %s, "
2458 				"Flow Control: %s\n",
2459 				netdev->name,
2460 				adapter->link_speed,
2461 				adapter->link_duplex == FULL_DUPLEX ?
2462 				"Full Duplex" : "Half Duplex",
2463 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2464 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2465 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2466 				E1000_CTRL_TFCE) ? "TX" : "None")));
2467 
2468 			/* adjust timeout factor according to speed/duplex */
2469 			adapter->tx_timeout_factor = 1;
2470 			switch (adapter->link_speed) {
2471 			case SPEED_10:
2472 				txb2b = false;
2473 				adapter->tx_timeout_factor = 16;
2474 				break;
2475 			case SPEED_100:
2476 				txb2b = false;
2477 				/* maybe add some timeout factor ? */
2478 				break;
2479 			}
2480 
2481 			/* enable transmits in the hardware */
2482 			tctl = er32(TCTL);
2483 			tctl |= E1000_TCTL_EN;
2484 			ew32(TCTL, tctl);
2485 
2486 			netif_carrier_on(netdev);
2487 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2488 				schedule_delayed_work(&adapter->phy_info_task,
2489 						      2 * HZ);
2490 			adapter->smartspeed = 0;
2491 		}
2492 	} else {
2493 		if (netif_carrier_ok(netdev)) {
2494 			adapter->link_speed = 0;
2495 			adapter->link_duplex = 0;
2496 			pr_info("%s NIC Link is Down\n",
2497 				netdev->name);
2498 			netif_carrier_off(netdev);
2499 
2500 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2501 				schedule_delayed_work(&adapter->phy_info_task,
2502 						      2 * HZ);
2503 		}
2504 
2505 		e1000_smartspeed(adapter);
2506 	}
2507 
2508 link_up:
2509 	e1000_update_stats(adapter);
2510 
2511 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2512 	adapter->tpt_old = adapter->stats.tpt;
2513 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2514 	adapter->colc_old = adapter->stats.colc;
2515 
2516 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2517 	adapter->gorcl_old = adapter->stats.gorcl;
2518 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2519 	adapter->gotcl_old = adapter->stats.gotcl;
2520 
2521 	e1000_update_adaptive(hw);
2522 
2523 	if (!netif_carrier_ok(netdev)) {
2524 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2525 			/* We've lost link, so the controller stops DMA,
2526 			 * but we've got queued Tx work that's never going
2527 			 * to get done, so reset controller to flush Tx.
2528 			 * (Do the reset outside of interrupt context).
2529 			 */
2530 			adapter->tx_timeout_count++;
2531 			schedule_work(&adapter->reset_task);
2532 			/* exit immediately since reset is imminent */
2533 			return;
2534 		}
2535 	}
2536 
2537 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2538 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2539 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2540 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2541 		 * everyone else is between 2000-8000.
2542 		 */
2543 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2544 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2545 			    adapter->gotcl - adapter->gorcl :
2546 			    adapter->gorcl - adapter->gotcl) / 10000;
2547 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2548 
2549 		ew32(ITR, 1000000000 / (itr * 256));
2550 	}
2551 
2552 	/* Cause software interrupt to ensure rx ring is cleaned */
2553 	ew32(ICS, E1000_ICS_RXDMT0);
2554 
2555 	/* Force detection of hung controller every watchdog period */
2556 	adapter->detect_tx_hung = true;
2557 
2558 	/* Reschedule the task */
2559 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2560 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2561 }
2562 
2563 enum latency_range {
2564 	lowest_latency = 0,
2565 	low_latency = 1,
2566 	bulk_latency = 2,
2567 	latency_invalid = 255
2568 };
2569 
2570 /**
2571  * e1000_update_itr - update the dynamic ITR value based on statistics
2572  * @adapter: pointer to adapter
2573  * @itr_setting: current adapter->itr
2574  * @packets: the number of packets during this measurement interval
2575  * @bytes: the number of bytes during this measurement interval
2576  *
2577  *      Stores a new ITR value based on packets and byte
2578  *      counts during the last interrupt.  The advantage of per interrupt
2579  *      computation is faster updates and more accurate ITR for the current
2580  *      traffic pattern.  Constants in this function were computed
2581  *      based on theoretical maximum wire speed and thresholds were set based
2582  *      on testing data as well as attempting to minimize response time
2583  *      while increasing bulk throughput.
2584  *      this functionality is controlled by the InterruptThrottleRate module
2585  *      parameter (see e1000_param.c)
2586  **/
2587 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2588 				     u16 itr_setting, int packets, int bytes)
2589 {
2590 	unsigned int retval = itr_setting;
2591 	struct e1000_hw *hw = &adapter->hw;
2592 
2593 	if (unlikely(hw->mac_type < e1000_82540))
2594 		goto update_itr_done;
2595 
2596 	if (packets == 0)
2597 		goto update_itr_done;
2598 
2599 	switch (itr_setting) {
2600 	case lowest_latency:
2601 		/* jumbo frames get bulk treatment*/
2602 		if (bytes/packets > 8000)
2603 			retval = bulk_latency;
2604 		else if ((packets < 5) && (bytes > 512))
2605 			retval = low_latency;
2606 		break;
2607 	case low_latency:  /* 50 usec aka 20000 ints/s */
2608 		if (bytes > 10000) {
2609 			/* jumbo frames need bulk latency setting */
2610 			if (bytes/packets > 8000)
2611 				retval = bulk_latency;
2612 			else if ((packets < 10) || ((bytes/packets) > 1200))
2613 				retval = bulk_latency;
2614 			else if ((packets > 35))
2615 				retval = lowest_latency;
2616 		} else if (bytes/packets > 2000)
2617 			retval = bulk_latency;
2618 		else if (packets <= 2 && bytes < 512)
2619 			retval = lowest_latency;
2620 		break;
2621 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2622 		if (bytes > 25000) {
2623 			if (packets > 35)
2624 				retval = low_latency;
2625 		} else if (bytes < 6000) {
2626 			retval = low_latency;
2627 		}
2628 		break;
2629 	}
2630 
2631 update_itr_done:
2632 	return retval;
2633 }
2634 
2635 static void e1000_set_itr(struct e1000_adapter *adapter)
2636 {
2637 	struct e1000_hw *hw = &adapter->hw;
2638 	u16 current_itr;
2639 	u32 new_itr = adapter->itr;
2640 
2641 	if (unlikely(hw->mac_type < e1000_82540))
2642 		return;
2643 
2644 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2645 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2646 		current_itr = 0;
2647 		new_itr = 4000;
2648 		goto set_itr_now;
2649 	}
2650 
2651 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2652 					   adapter->total_tx_packets,
2653 					   adapter->total_tx_bytes);
2654 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2655 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2656 		adapter->tx_itr = low_latency;
2657 
2658 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2659 					   adapter->total_rx_packets,
2660 					   adapter->total_rx_bytes);
2661 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2662 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2663 		adapter->rx_itr = low_latency;
2664 
2665 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2666 
2667 	switch (current_itr) {
2668 	/* counts and packets in update_itr are dependent on these numbers */
2669 	case lowest_latency:
2670 		new_itr = 70000;
2671 		break;
2672 	case low_latency:
2673 		new_itr = 20000; /* aka hwitr = ~200 */
2674 		break;
2675 	case bulk_latency:
2676 		new_itr = 4000;
2677 		break;
2678 	default:
2679 		break;
2680 	}
2681 
2682 set_itr_now:
2683 	if (new_itr != adapter->itr) {
2684 		/* this attempts to bias the interrupt rate towards Bulk
2685 		 * by adding intermediate steps when interrupt rate is
2686 		 * increasing
2687 		 */
2688 		new_itr = new_itr > adapter->itr ?
2689 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2690 			  new_itr;
2691 		adapter->itr = new_itr;
2692 		ew32(ITR, 1000000000 / (new_itr * 256));
2693 	}
2694 }
2695 
2696 #define E1000_TX_FLAGS_CSUM		0x00000001
2697 #define E1000_TX_FLAGS_VLAN		0x00000002
2698 #define E1000_TX_FLAGS_TSO		0x00000004
2699 #define E1000_TX_FLAGS_IPV4		0x00000008
2700 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2701 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2702 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2703 
2704 static int e1000_tso(struct e1000_adapter *adapter,
2705 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2706 		     __be16 protocol)
2707 {
2708 	struct e1000_context_desc *context_desc;
2709 	struct e1000_tx_buffer *buffer_info;
2710 	unsigned int i;
2711 	u32 cmd_length = 0;
2712 	u16 ipcse = 0, tucse, mss;
2713 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2714 
2715 	if (skb_is_gso(skb)) {
2716 		int err;
2717 
2718 		err = skb_cow_head(skb, 0);
2719 		if (err < 0)
2720 			return err;
2721 
2722 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2723 		mss = skb_shinfo(skb)->gso_size;
2724 		if (protocol == htons(ETH_P_IP)) {
2725 			struct iphdr *iph = ip_hdr(skb);
2726 			iph->tot_len = 0;
2727 			iph->check = 0;
2728 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2729 								 iph->daddr, 0,
2730 								 IPPROTO_TCP,
2731 								 0);
2732 			cmd_length = E1000_TXD_CMD_IP;
2733 			ipcse = skb_transport_offset(skb) - 1;
2734 		} else if (skb_is_gso_v6(skb)) {
2735 			ipv6_hdr(skb)->payload_len = 0;
2736 			tcp_hdr(skb)->check =
2737 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2738 						 &ipv6_hdr(skb)->daddr,
2739 						 0, IPPROTO_TCP, 0);
2740 			ipcse = 0;
2741 		}
2742 		ipcss = skb_network_offset(skb);
2743 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2744 		tucss = skb_transport_offset(skb);
2745 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2746 		tucse = 0;
2747 
2748 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2749 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2750 
2751 		i = tx_ring->next_to_use;
2752 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2753 		buffer_info = &tx_ring->buffer_info[i];
2754 
2755 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2756 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2757 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2758 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2759 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2760 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2761 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2762 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2763 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2764 
2765 		buffer_info->time_stamp = jiffies;
2766 		buffer_info->next_to_watch = i;
2767 
2768 		if (++i == tx_ring->count)
2769 			i = 0;
2770 
2771 		tx_ring->next_to_use = i;
2772 
2773 		return true;
2774 	}
2775 	return false;
2776 }
2777 
2778 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2779 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2780 			  __be16 protocol)
2781 {
2782 	struct e1000_context_desc *context_desc;
2783 	struct e1000_tx_buffer *buffer_info;
2784 	unsigned int i;
2785 	u8 css;
2786 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2787 
2788 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2789 		return false;
2790 
2791 	switch (protocol) {
2792 	case cpu_to_be16(ETH_P_IP):
2793 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2794 			cmd_len |= E1000_TXD_CMD_TCP;
2795 		break;
2796 	case cpu_to_be16(ETH_P_IPV6):
2797 		/* XXX not handling all IPV6 headers */
2798 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2799 			cmd_len |= E1000_TXD_CMD_TCP;
2800 		break;
2801 	default:
2802 		if (unlikely(net_ratelimit()))
2803 			e_warn(drv, "checksum_partial proto=%x!\n",
2804 			       skb->protocol);
2805 		break;
2806 	}
2807 
2808 	css = skb_checksum_start_offset(skb);
2809 
2810 	i = tx_ring->next_to_use;
2811 	buffer_info = &tx_ring->buffer_info[i];
2812 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2813 
2814 	context_desc->lower_setup.ip_config = 0;
2815 	context_desc->upper_setup.tcp_fields.tucss = css;
2816 	context_desc->upper_setup.tcp_fields.tucso =
2817 		css + skb->csum_offset;
2818 	context_desc->upper_setup.tcp_fields.tucse = 0;
2819 	context_desc->tcp_seg_setup.data = 0;
2820 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2821 
2822 	buffer_info->time_stamp = jiffies;
2823 	buffer_info->next_to_watch = i;
2824 
2825 	if (unlikely(++i == tx_ring->count))
2826 		i = 0;
2827 
2828 	tx_ring->next_to_use = i;
2829 
2830 	return true;
2831 }
2832 
2833 #define E1000_MAX_TXD_PWR	12
2834 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2835 
2836 static int e1000_tx_map(struct e1000_adapter *adapter,
2837 			struct e1000_tx_ring *tx_ring,
2838 			struct sk_buff *skb, unsigned int first,
2839 			unsigned int max_per_txd, unsigned int nr_frags,
2840 			unsigned int mss)
2841 {
2842 	struct e1000_hw *hw = &adapter->hw;
2843 	struct pci_dev *pdev = adapter->pdev;
2844 	struct e1000_tx_buffer *buffer_info;
2845 	unsigned int len = skb_headlen(skb);
2846 	unsigned int offset = 0, size, count = 0, i;
2847 	unsigned int f, bytecount, segs;
2848 
2849 	i = tx_ring->next_to_use;
2850 
2851 	while (len) {
2852 		buffer_info = &tx_ring->buffer_info[i];
2853 		size = min(len, max_per_txd);
2854 		/* Workaround for Controller erratum --
2855 		 * descriptor for non-tso packet in a linear SKB that follows a
2856 		 * tso gets written back prematurely before the data is fully
2857 		 * DMA'd to the controller
2858 		 */
2859 		if (!skb->data_len && tx_ring->last_tx_tso &&
2860 		    !skb_is_gso(skb)) {
2861 			tx_ring->last_tx_tso = false;
2862 			size -= 4;
2863 		}
2864 
2865 		/* Workaround for premature desc write-backs
2866 		 * in TSO mode.  Append 4-byte sentinel desc
2867 		 */
2868 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2869 			size -= 4;
2870 		/* work-around for errata 10 and it applies
2871 		 * to all controllers in PCI-X mode
2872 		 * The fix is to make sure that the first descriptor of a
2873 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2874 		 */
2875 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2876 			     (size > 2015) && count == 0))
2877 			size = 2015;
2878 
2879 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2880 		 * terminating buffers within evenly-aligned dwords.
2881 		 */
2882 		if (unlikely(adapter->pcix_82544 &&
2883 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2884 		   size > 4))
2885 			size -= 4;
2886 
2887 		buffer_info->length = size;
2888 		/* set time_stamp *before* dma to help avoid a possible race */
2889 		buffer_info->time_stamp = jiffies;
2890 		buffer_info->mapped_as_page = false;
2891 		buffer_info->dma = dma_map_single(&pdev->dev,
2892 						  skb->data + offset,
2893 						  size, DMA_TO_DEVICE);
2894 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2895 			goto dma_error;
2896 		buffer_info->next_to_watch = i;
2897 
2898 		len -= size;
2899 		offset += size;
2900 		count++;
2901 		if (len) {
2902 			i++;
2903 			if (unlikely(i == tx_ring->count))
2904 				i = 0;
2905 		}
2906 	}
2907 
2908 	for (f = 0; f < nr_frags; f++) {
2909 		const struct skb_frag_struct *frag;
2910 
2911 		frag = &skb_shinfo(skb)->frags[f];
2912 		len = skb_frag_size(frag);
2913 		offset = 0;
2914 
2915 		while (len) {
2916 			unsigned long bufend;
2917 			i++;
2918 			if (unlikely(i == tx_ring->count))
2919 				i = 0;
2920 
2921 			buffer_info = &tx_ring->buffer_info[i];
2922 			size = min(len, max_per_txd);
2923 			/* Workaround for premature desc write-backs
2924 			 * in TSO mode.  Append 4-byte sentinel desc
2925 			 */
2926 			if (unlikely(mss && f == (nr_frags-1) &&
2927 			    size == len && size > 8))
2928 				size -= 4;
2929 			/* Workaround for potential 82544 hang in PCI-X.
2930 			 * Avoid terminating buffers within evenly-aligned
2931 			 * dwords.
2932 			 */
2933 			bufend = (unsigned long)
2934 				page_to_phys(skb_frag_page(frag));
2935 			bufend += offset + size - 1;
2936 			if (unlikely(adapter->pcix_82544 &&
2937 				     !(bufend & 4) &&
2938 				     size > 4))
2939 				size -= 4;
2940 
2941 			buffer_info->length = size;
2942 			buffer_info->time_stamp = jiffies;
2943 			buffer_info->mapped_as_page = true;
2944 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2945 						offset, size, DMA_TO_DEVICE);
2946 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2947 				goto dma_error;
2948 			buffer_info->next_to_watch = i;
2949 
2950 			len -= size;
2951 			offset += size;
2952 			count++;
2953 		}
2954 	}
2955 
2956 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2957 	/* multiply data chunks by size of headers */
2958 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2959 
2960 	tx_ring->buffer_info[i].skb = skb;
2961 	tx_ring->buffer_info[i].segs = segs;
2962 	tx_ring->buffer_info[i].bytecount = bytecount;
2963 	tx_ring->buffer_info[first].next_to_watch = i;
2964 
2965 	return count;
2966 
2967 dma_error:
2968 	dev_err(&pdev->dev, "TX DMA map failed\n");
2969 	buffer_info->dma = 0;
2970 	if (count)
2971 		count--;
2972 
2973 	while (count--) {
2974 		if (i == 0)
2975 			i += tx_ring->count;
2976 		i--;
2977 		buffer_info = &tx_ring->buffer_info[i];
2978 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2979 	}
2980 
2981 	return 0;
2982 }
2983 
2984 static void e1000_tx_queue(struct e1000_adapter *adapter,
2985 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2986 			   int count)
2987 {
2988 	struct e1000_tx_desc *tx_desc = NULL;
2989 	struct e1000_tx_buffer *buffer_info;
2990 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2991 	unsigned int i;
2992 
2993 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2994 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2995 			     E1000_TXD_CMD_TSE;
2996 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2997 
2998 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2999 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3000 	}
3001 
3002 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3003 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3004 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3005 	}
3006 
3007 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3008 		txd_lower |= E1000_TXD_CMD_VLE;
3009 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3010 	}
3011 
3012 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3013 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3014 
3015 	i = tx_ring->next_to_use;
3016 
3017 	while (count--) {
3018 		buffer_info = &tx_ring->buffer_info[i];
3019 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3020 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3021 		tx_desc->lower.data =
3022 			cpu_to_le32(txd_lower | buffer_info->length);
3023 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3024 		if (unlikely(++i == tx_ring->count))
3025 			i = 0;
3026 	}
3027 
3028 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3029 
3030 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3031 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3032 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3033 
3034 	/* Force memory writes to complete before letting h/w
3035 	 * know there are new descriptors to fetch.  (Only
3036 	 * applicable for weak-ordered memory model archs,
3037 	 * such as IA-64).
3038 	 */
3039 	wmb();
3040 
3041 	tx_ring->next_to_use = i;
3042 }
3043 
3044 /* 82547 workaround to avoid controller hang in half-duplex environment.
3045  * The workaround is to avoid queuing a large packet that would span
3046  * the internal Tx FIFO ring boundary by notifying the stack to resend
3047  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3048  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3049  * to the beginning of the Tx FIFO.
3050  */
3051 
3052 #define E1000_FIFO_HDR			0x10
3053 #define E1000_82547_PAD_LEN		0x3E0
3054 
3055 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3056 				       struct sk_buff *skb)
3057 {
3058 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3059 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3060 
3061 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3062 
3063 	if (adapter->link_duplex != HALF_DUPLEX)
3064 		goto no_fifo_stall_required;
3065 
3066 	if (atomic_read(&adapter->tx_fifo_stall))
3067 		return 1;
3068 
3069 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3070 		atomic_set(&adapter->tx_fifo_stall, 1);
3071 		return 1;
3072 	}
3073 
3074 no_fifo_stall_required:
3075 	adapter->tx_fifo_head += skb_fifo_len;
3076 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3077 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3078 	return 0;
3079 }
3080 
3081 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3082 {
3083 	struct e1000_adapter *adapter = netdev_priv(netdev);
3084 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3085 
3086 	netif_stop_queue(netdev);
3087 	/* Herbert's original patch had:
3088 	 *  smp_mb__after_netif_stop_queue();
3089 	 * but since that doesn't exist yet, just open code it.
3090 	 */
3091 	smp_mb();
3092 
3093 	/* We need to check again in a case another CPU has just
3094 	 * made room available.
3095 	 */
3096 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3097 		return -EBUSY;
3098 
3099 	/* A reprieve! */
3100 	netif_start_queue(netdev);
3101 	++adapter->restart_queue;
3102 	return 0;
3103 }
3104 
3105 static int e1000_maybe_stop_tx(struct net_device *netdev,
3106 			       struct e1000_tx_ring *tx_ring, int size)
3107 {
3108 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3109 		return 0;
3110 	return __e1000_maybe_stop_tx(netdev, size);
3111 }
3112 
3113 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3114 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3115 				    struct net_device *netdev)
3116 {
3117 	struct e1000_adapter *adapter = netdev_priv(netdev);
3118 	struct e1000_hw *hw = &adapter->hw;
3119 	struct e1000_tx_ring *tx_ring;
3120 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3121 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3122 	unsigned int tx_flags = 0;
3123 	unsigned int len = skb_headlen(skb);
3124 	unsigned int nr_frags;
3125 	unsigned int mss;
3126 	int count = 0;
3127 	int tso;
3128 	unsigned int f;
3129 	__be16 protocol = vlan_get_protocol(skb);
3130 
3131 	/* This goes back to the question of how to logically map a Tx queue
3132 	 * to a flow.  Right now, performance is impacted slightly negatively
3133 	 * if using multiple Tx queues.  If the stack breaks away from a
3134 	 * single qdisc implementation, we can look at this again.
3135 	 */
3136 	tx_ring = adapter->tx_ring;
3137 
3138 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3139 	 * packets may get corrupted during padding by HW.
3140 	 * To WA this issue, pad all small packets manually.
3141 	 */
3142 	if (eth_skb_pad(skb))
3143 		return NETDEV_TX_OK;
3144 
3145 	mss = skb_shinfo(skb)->gso_size;
3146 	/* The controller does a simple calculation to
3147 	 * make sure there is enough room in the FIFO before
3148 	 * initiating the DMA for each buffer.  The calc is:
3149 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3150 	 * overrun the FIFO, adjust the max buffer len if mss
3151 	 * drops.
3152 	 */
3153 	if (mss) {
3154 		u8 hdr_len;
3155 		max_per_txd = min(mss << 2, max_per_txd);
3156 		max_txd_pwr = fls(max_per_txd) - 1;
3157 
3158 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3159 		if (skb->data_len && hdr_len == len) {
3160 			switch (hw->mac_type) {
3161 				unsigned int pull_size;
3162 			case e1000_82544:
3163 				/* Make sure we have room to chop off 4 bytes,
3164 				 * and that the end alignment will work out to
3165 				 * this hardware's requirements
3166 				 * NOTE: this is a TSO only workaround
3167 				 * if end byte alignment not correct move us
3168 				 * into the next dword
3169 				 */
3170 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3171 				    & 4)
3172 					break;
3173 				/* fall through */
3174 				pull_size = min((unsigned int)4, skb->data_len);
3175 				if (!__pskb_pull_tail(skb, pull_size)) {
3176 					e_err(drv, "__pskb_pull_tail "
3177 					      "failed.\n");
3178 					dev_kfree_skb_any(skb);
3179 					return NETDEV_TX_OK;
3180 				}
3181 				len = skb_headlen(skb);
3182 				break;
3183 			default:
3184 				/* do nothing */
3185 				break;
3186 			}
3187 		}
3188 	}
3189 
3190 	/* reserve a descriptor for the offload context */
3191 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3192 		count++;
3193 	count++;
3194 
3195 	/* Controller Erratum workaround */
3196 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3197 		count++;
3198 
3199 	count += TXD_USE_COUNT(len, max_txd_pwr);
3200 
3201 	if (adapter->pcix_82544)
3202 		count++;
3203 
3204 	/* work-around for errata 10 and it applies to all controllers
3205 	 * in PCI-X mode, so add one more descriptor to the count
3206 	 */
3207 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3208 			(len > 2015)))
3209 		count++;
3210 
3211 	nr_frags = skb_shinfo(skb)->nr_frags;
3212 	for (f = 0; f < nr_frags; f++)
3213 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3214 				       max_txd_pwr);
3215 	if (adapter->pcix_82544)
3216 		count += nr_frags;
3217 
3218 	/* need: count + 2 desc gap to keep tail from touching
3219 	 * head, otherwise try next time
3220 	 */
3221 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3222 		return NETDEV_TX_BUSY;
3223 
3224 	if (unlikely((hw->mac_type == e1000_82547) &&
3225 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3226 		netif_stop_queue(netdev);
3227 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3228 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3229 		return NETDEV_TX_BUSY;
3230 	}
3231 
3232 	if (skb_vlan_tag_present(skb)) {
3233 		tx_flags |= E1000_TX_FLAGS_VLAN;
3234 		tx_flags |= (skb_vlan_tag_get(skb) <<
3235 			     E1000_TX_FLAGS_VLAN_SHIFT);
3236 	}
3237 
3238 	first = tx_ring->next_to_use;
3239 
3240 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3241 	if (tso < 0) {
3242 		dev_kfree_skb_any(skb);
3243 		return NETDEV_TX_OK;
3244 	}
3245 
3246 	if (likely(tso)) {
3247 		if (likely(hw->mac_type != e1000_82544))
3248 			tx_ring->last_tx_tso = true;
3249 		tx_flags |= E1000_TX_FLAGS_TSO;
3250 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3251 		tx_flags |= E1000_TX_FLAGS_CSUM;
3252 
3253 	if (protocol == htons(ETH_P_IP))
3254 		tx_flags |= E1000_TX_FLAGS_IPV4;
3255 
3256 	if (unlikely(skb->no_fcs))
3257 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3258 
3259 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3260 			     nr_frags, mss);
3261 
3262 	if (count) {
3263 		/* The descriptors needed is higher than other Intel drivers
3264 		 * due to a number of workarounds.  The breakdown is below:
3265 		 * Data descriptors: MAX_SKB_FRAGS + 1
3266 		 * Context Descriptor: 1
3267 		 * Keep head from touching tail: 2
3268 		 * Workarounds: 3
3269 		 */
3270 		int desc_needed = MAX_SKB_FRAGS + 7;
3271 
3272 		netdev_sent_queue(netdev, skb->len);
3273 		skb_tx_timestamp(skb);
3274 
3275 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3276 
3277 		/* 82544 potentially requires twice as many data descriptors
3278 		 * in order to guarantee buffers don't end on evenly-aligned
3279 		 * dwords
3280 		 */
3281 		if (adapter->pcix_82544)
3282 			desc_needed += MAX_SKB_FRAGS + 1;
3283 
3284 		/* Make sure there is space in the ring for the next send. */
3285 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3286 
3287 		if (!skb->xmit_more ||
3288 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3289 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3290 			/* we need this if more than one processor can write to
3291 			 * our tail at a time, it synchronizes IO on IA64/Altix
3292 			 * systems
3293 			 */
3294 			mmiowb();
3295 		}
3296 	} else {
3297 		dev_kfree_skb_any(skb);
3298 		tx_ring->buffer_info[first].time_stamp = 0;
3299 		tx_ring->next_to_use = first;
3300 	}
3301 
3302 	return NETDEV_TX_OK;
3303 }
3304 
3305 #define NUM_REGS 38 /* 1 based count */
3306 static void e1000_regdump(struct e1000_adapter *adapter)
3307 {
3308 	struct e1000_hw *hw = &adapter->hw;
3309 	u32 regs[NUM_REGS];
3310 	u32 *regs_buff = regs;
3311 	int i = 0;
3312 
3313 	static const char * const reg_name[] = {
3314 		"CTRL",  "STATUS",
3315 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3316 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3317 		"TIDV", "TXDCTL", "TADV", "TARC0",
3318 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3319 		"TXDCTL1", "TARC1",
3320 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3321 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3322 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3323 	};
3324 
3325 	regs_buff[0]  = er32(CTRL);
3326 	regs_buff[1]  = er32(STATUS);
3327 
3328 	regs_buff[2]  = er32(RCTL);
3329 	regs_buff[3]  = er32(RDLEN);
3330 	regs_buff[4]  = er32(RDH);
3331 	regs_buff[5]  = er32(RDT);
3332 	regs_buff[6]  = er32(RDTR);
3333 
3334 	regs_buff[7]  = er32(TCTL);
3335 	regs_buff[8]  = er32(TDBAL);
3336 	regs_buff[9]  = er32(TDBAH);
3337 	regs_buff[10] = er32(TDLEN);
3338 	regs_buff[11] = er32(TDH);
3339 	regs_buff[12] = er32(TDT);
3340 	regs_buff[13] = er32(TIDV);
3341 	regs_buff[14] = er32(TXDCTL);
3342 	regs_buff[15] = er32(TADV);
3343 	regs_buff[16] = er32(TARC0);
3344 
3345 	regs_buff[17] = er32(TDBAL1);
3346 	regs_buff[18] = er32(TDBAH1);
3347 	regs_buff[19] = er32(TDLEN1);
3348 	regs_buff[20] = er32(TDH1);
3349 	regs_buff[21] = er32(TDT1);
3350 	regs_buff[22] = er32(TXDCTL1);
3351 	regs_buff[23] = er32(TARC1);
3352 	regs_buff[24] = er32(CTRL_EXT);
3353 	regs_buff[25] = er32(ERT);
3354 	regs_buff[26] = er32(RDBAL0);
3355 	regs_buff[27] = er32(RDBAH0);
3356 	regs_buff[28] = er32(TDFH);
3357 	regs_buff[29] = er32(TDFT);
3358 	regs_buff[30] = er32(TDFHS);
3359 	regs_buff[31] = er32(TDFTS);
3360 	regs_buff[32] = er32(TDFPC);
3361 	regs_buff[33] = er32(RDFH);
3362 	regs_buff[34] = er32(RDFT);
3363 	regs_buff[35] = er32(RDFHS);
3364 	regs_buff[36] = er32(RDFTS);
3365 	regs_buff[37] = er32(RDFPC);
3366 
3367 	pr_info("Register dump\n");
3368 	for (i = 0; i < NUM_REGS; i++)
3369 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3370 }
3371 
3372 /*
3373  * e1000_dump: Print registers, tx ring and rx ring
3374  */
3375 static void e1000_dump(struct e1000_adapter *adapter)
3376 {
3377 	/* this code doesn't handle multiple rings */
3378 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3379 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3380 	int i;
3381 
3382 	if (!netif_msg_hw(adapter))
3383 		return;
3384 
3385 	/* Print Registers */
3386 	e1000_regdump(adapter);
3387 
3388 	/* transmit dump */
3389 	pr_info("TX Desc ring0 dump\n");
3390 
3391 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3392 	 *
3393 	 * Legacy Transmit Descriptor
3394 	 *   +--------------------------------------------------------------+
3395 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3396 	 *   +--------------------------------------------------------------+
3397 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3398 	 *   +--------------------------------------------------------------+
3399 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3400 	 *
3401 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3402 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3403 	 *   +----------------------------------------------------------------+
3404 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3405 	 *   +----------------------------------------------------------------+
3406 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3407 	 *   +----------------------------------------------------------------+
3408 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3409 	 *
3410 	 * Extended Data Descriptor (DTYP=0x1)
3411 	 *   +----------------------------------------------------------------+
3412 	 * 0 |                     Buffer Address [63:0]                      |
3413 	 *   +----------------------------------------------------------------+
3414 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3415 	 *   +----------------------------------------------------------------+
3416 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3417 	 */
3418 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3419 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3420 
3421 	if (!netif_msg_tx_done(adapter))
3422 		goto rx_ring_summary;
3423 
3424 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3425 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3426 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3427 		struct my_u { __le64 a; __le64 b; };
3428 		struct my_u *u = (struct my_u *)tx_desc;
3429 		const char *type;
3430 
3431 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3432 			type = "NTC/U";
3433 		else if (i == tx_ring->next_to_use)
3434 			type = "NTU";
3435 		else if (i == tx_ring->next_to_clean)
3436 			type = "NTC";
3437 		else
3438 			type = "";
3439 
3440 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3441 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3442 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3443 			(u64)buffer_info->dma, buffer_info->length,
3444 			buffer_info->next_to_watch,
3445 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3446 	}
3447 
3448 rx_ring_summary:
3449 	/* receive dump */
3450 	pr_info("\nRX Desc ring dump\n");
3451 
3452 	/* Legacy Receive Descriptor Format
3453 	 *
3454 	 * +-----------------------------------------------------+
3455 	 * |                Buffer Address [63:0]                |
3456 	 * +-----------------------------------------------------+
3457 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3458 	 * +-----------------------------------------------------+
3459 	 * 63       48 47    40 39      32 31         16 15      0
3460 	 */
3461 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3462 
3463 	if (!netif_msg_rx_status(adapter))
3464 		goto exit;
3465 
3466 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3467 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3468 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3469 		struct my_u { __le64 a; __le64 b; };
3470 		struct my_u *u = (struct my_u *)rx_desc;
3471 		const char *type;
3472 
3473 		if (i == rx_ring->next_to_use)
3474 			type = "NTU";
3475 		else if (i == rx_ring->next_to_clean)
3476 			type = "NTC";
3477 		else
3478 			type = "";
3479 
3480 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3481 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3482 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3483 	} /* for */
3484 
3485 	/* dump the descriptor caches */
3486 	/* rx */
3487 	pr_info("Rx descriptor cache in 64bit format\n");
3488 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3489 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3490 			i,
3491 			readl(adapter->hw.hw_addr + i+4),
3492 			readl(adapter->hw.hw_addr + i),
3493 			readl(adapter->hw.hw_addr + i+12),
3494 			readl(adapter->hw.hw_addr + i+8));
3495 	}
3496 	/* tx */
3497 	pr_info("Tx descriptor cache in 64bit format\n");
3498 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3499 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3500 			i,
3501 			readl(adapter->hw.hw_addr + i+4),
3502 			readl(adapter->hw.hw_addr + i),
3503 			readl(adapter->hw.hw_addr + i+12),
3504 			readl(adapter->hw.hw_addr + i+8));
3505 	}
3506 exit:
3507 	return;
3508 }
3509 
3510 /**
3511  * e1000_tx_timeout - Respond to a Tx Hang
3512  * @netdev: network interface device structure
3513  **/
3514 static void e1000_tx_timeout(struct net_device *netdev)
3515 {
3516 	struct e1000_adapter *adapter = netdev_priv(netdev);
3517 
3518 	/* Do the reset outside of interrupt context */
3519 	adapter->tx_timeout_count++;
3520 	schedule_work(&adapter->reset_task);
3521 }
3522 
3523 static void e1000_reset_task(struct work_struct *work)
3524 {
3525 	struct e1000_adapter *adapter =
3526 		container_of(work, struct e1000_adapter, reset_task);
3527 
3528 	e_err(drv, "Reset adapter\n");
3529 	e1000_reinit_locked(adapter);
3530 }
3531 
3532 /**
3533  * e1000_get_stats - Get System Network Statistics
3534  * @netdev: network interface device structure
3535  *
3536  * Returns the address of the device statistics structure.
3537  * The statistics are actually updated from the watchdog.
3538  **/
3539 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3540 {
3541 	/* only return the current stats */
3542 	return &netdev->stats;
3543 }
3544 
3545 /**
3546  * e1000_change_mtu - Change the Maximum Transfer Unit
3547  * @netdev: network interface device structure
3548  * @new_mtu: new value for maximum frame size
3549  *
3550  * Returns 0 on success, negative on failure
3551  **/
3552 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3553 {
3554 	struct e1000_adapter *adapter = netdev_priv(netdev);
3555 	struct e1000_hw *hw = &adapter->hw;
3556 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3557 
3558 	/* Adapter-specific max frame size limits. */
3559 	switch (hw->mac_type) {
3560 	case e1000_undefined ... e1000_82542_rev2_1:
3561 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3562 			e_err(probe, "Jumbo Frames not supported.\n");
3563 			return -EINVAL;
3564 		}
3565 		break;
3566 	default:
3567 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3568 		break;
3569 	}
3570 
3571 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3572 		msleep(1);
3573 	/* e1000_down has a dependency on max_frame_size */
3574 	hw->max_frame_size = max_frame;
3575 	if (netif_running(netdev)) {
3576 		/* prevent buffers from being reallocated */
3577 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3578 		e1000_down(adapter);
3579 	}
3580 
3581 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3582 	 * means we reserve 2 more, this pushes us to allocate from the next
3583 	 * larger slab size.
3584 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3585 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3586 	 * fragmented skbs
3587 	 */
3588 
3589 	if (max_frame <= E1000_RXBUFFER_2048)
3590 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3591 	else
3592 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3593 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3594 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3595 		adapter->rx_buffer_len = PAGE_SIZE;
3596 #endif
3597 
3598 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3599 	if (!hw->tbi_compatibility_on &&
3600 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3601 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3602 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3603 
3604 	pr_info("%s changing MTU from %d to %d\n",
3605 		netdev->name, netdev->mtu, new_mtu);
3606 	netdev->mtu = new_mtu;
3607 
3608 	if (netif_running(netdev))
3609 		e1000_up(adapter);
3610 	else
3611 		e1000_reset(adapter);
3612 
3613 	clear_bit(__E1000_RESETTING, &adapter->flags);
3614 
3615 	return 0;
3616 }
3617 
3618 /**
3619  * e1000_update_stats - Update the board statistics counters
3620  * @adapter: board private structure
3621  **/
3622 void e1000_update_stats(struct e1000_adapter *adapter)
3623 {
3624 	struct net_device *netdev = adapter->netdev;
3625 	struct e1000_hw *hw = &adapter->hw;
3626 	struct pci_dev *pdev = adapter->pdev;
3627 	unsigned long flags;
3628 	u16 phy_tmp;
3629 
3630 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3631 
3632 	/* Prevent stats update while adapter is being reset, or if the pci
3633 	 * connection is down.
3634 	 */
3635 	if (adapter->link_speed == 0)
3636 		return;
3637 	if (pci_channel_offline(pdev))
3638 		return;
3639 
3640 	spin_lock_irqsave(&adapter->stats_lock, flags);
3641 
3642 	/* these counters are modified from e1000_tbi_adjust_stats,
3643 	 * called from the interrupt context, so they must only
3644 	 * be written while holding adapter->stats_lock
3645 	 */
3646 
3647 	adapter->stats.crcerrs += er32(CRCERRS);
3648 	adapter->stats.gprc += er32(GPRC);
3649 	adapter->stats.gorcl += er32(GORCL);
3650 	adapter->stats.gorch += er32(GORCH);
3651 	adapter->stats.bprc += er32(BPRC);
3652 	adapter->stats.mprc += er32(MPRC);
3653 	adapter->stats.roc += er32(ROC);
3654 
3655 	adapter->stats.prc64 += er32(PRC64);
3656 	adapter->stats.prc127 += er32(PRC127);
3657 	adapter->stats.prc255 += er32(PRC255);
3658 	adapter->stats.prc511 += er32(PRC511);
3659 	adapter->stats.prc1023 += er32(PRC1023);
3660 	adapter->stats.prc1522 += er32(PRC1522);
3661 
3662 	adapter->stats.symerrs += er32(SYMERRS);
3663 	adapter->stats.mpc += er32(MPC);
3664 	adapter->stats.scc += er32(SCC);
3665 	adapter->stats.ecol += er32(ECOL);
3666 	adapter->stats.mcc += er32(MCC);
3667 	adapter->stats.latecol += er32(LATECOL);
3668 	adapter->stats.dc += er32(DC);
3669 	adapter->stats.sec += er32(SEC);
3670 	adapter->stats.rlec += er32(RLEC);
3671 	adapter->stats.xonrxc += er32(XONRXC);
3672 	adapter->stats.xontxc += er32(XONTXC);
3673 	adapter->stats.xoffrxc += er32(XOFFRXC);
3674 	adapter->stats.xofftxc += er32(XOFFTXC);
3675 	adapter->stats.fcruc += er32(FCRUC);
3676 	adapter->stats.gptc += er32(GPTC);
3677 	adapter->stats.gotcl += er32(GOTCL);
3678 	adapter->stats.gotch += er32(GOTCH);
3679 	adapter->stats.rnbc += er32(RNBC);
3680 	adapter->stats.ruc += er32(RUC);
3681 	adapter->stats.rfc += er32(RFC);
3682 	adapter->stats.rjc += er32(RJC);
3683 	adapter->stats.torl += er32(TORL);
3684 	adapter->stats.torh += er32(TORH);
3685 	adapter->stats.totl += er32(TOTL);
3686 	adapter->stats.toth += er32(TOTH);
3687 	adapter->stats.tpr += er32(TPR);
3688 
3689 	adapter->stats.ptc64 += er32(PTC64);
3690 	adapter->stats.ptc127 += er32(PTC127);
3691 	adapter->stats.ptc255 += er32(PTC255);
3692 	adapter->stats.ptc511 += er32(PTC511);
3693 	adapter->stats.ptc1023 += er32(PTC1023);
3694 	adapter->stats.ptc1522 += er32(PTC1522);
3695 
3696 	adapter->stats.mptc += er32(MPTC);
3697 	adapter->stats.bptc += er32(BPTC);
3698 
3699 	/* used for adaptive IFS */
3700 
3701 	hw->tx_packet_delta = er32(TPT);
3702 	adapter->stats.tpt += hw->tx_packet_delta;
3703 	hw->collision_delta = er32(COLC);
3704 	adapter->stats.colc += hw->collision_delta;
3705 
3706 	if (hw->mac_type >= e1000_82543) {
3707 		adapter->stats.algnerrc += er32(ALGNERRC);
3708 		adapter->stats.rxerrc += er32(RXERRC);
3709 		adapter->stats.tncrs += er32(TNCRS);
3710 		adapter->stats.cexterr += er32(CEXTERR);
3711 		adapter->stats.tsctc += er32(TSCTC);
3712 		adapter->stats.tsctfc += er32(TSCTFC);
3713 	}
3714 
3715 	/* Fill out the OS statistics structure */
3716 	netdev->stats.multicast = adapter->stats.mprc;
3717 	netdev->stats.collisions = adapter->stats.colc;
3718 
3719 	/* Rx Errors */
3720 
3721 	/* RLEC on some newer hardware can be incorrect so build
3722 	 * our own version based on RUC and ROC
3723 	 */
3724 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3725 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3726 		adapter->stats.ruc + adapter->stats.roc +
3727 		adapter->stats.cexterr;
3728 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3729 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3730 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3731 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3732 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3733 
3734 	/* Tx Errors */
3735 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3736 	netdev->stats.tx_errors = adapter->stats.txerrc;
3737 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3738 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3739 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3740 	if (hw->bad_tx_carr_stats_fd &&
3741 	    adapter->link_duplex == FULL_DUPLEX) {
3742 		netdev->stats.tx_carrier_errors = 0;
3743 		adapter->stats.tncrs = 0;
3744 	}
3745 
3746 	/* Tx Dropped needs to be maintained elsewhere */
3747 
3748 	/* Phy Stats */
3749 	if (hw->media_type == e1000_media_type_copper) {
3750 		if ((adapter->link_speed == SPEED_1000) &&
3751 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3752 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3753 			adapter->phy_stats.idle_errors += phy_tmp;
3754 		}
3755 
3756 		if ((hw->mac_type <= e1000_82546) &&
3757 		   (hw->phy_type == e1000_phy_m88) &&
3758 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3759 			adapter->phy_stats.receive_errors += phy_tmp;
3760 	}
3761 
3762 	/* Management Stats */
3763 	if (hw->has_smbus) {
3764 		adapter->stats.mgptc += er32(MGTPTC);
3765 		adapter->stats.mgprc += er32(MGTPRC);
3766 		adapter->stats.mgpdc += er32(MGTPDC);
3767 	}
3768 
3769 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3770 }
3771 
3772 /**
3773  * e1000_intr - Interrupt Handler
3774  * @irq: interrupt number
3775  * @data: pointer to a network interface device structure
3776  **/
3777 static irqreturn_t e1000_intr(int irq, void *data)
3778 {
3779 	struct net_device *netdev = data;
3780 	struct e1000_adapter *adapter = netdev_priv(netdev);
3781 	struct e1000_hw *hw = &adapter->hw;
3782 	u32 icr = er32(ICR);
3783 
3784 	if (unlikely((!icr)))
3785 		return IRQ_NONE;  /* Not our interrupt */
3786 
3787 	/* we might have caused the interrupt, but the above
3788 	 * read cleared it, and just in case the driver is
3789 	 * down there is nothing to do so return handled
3790 	 */
3791 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3792 		return IRQ_HANDLED;
3793 
3794 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3795 		hw->get_link_status = 1;
3796 		/* guard against interrupt when we're going down */
3797 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3798 			schedule_delayed_work(&adapter->watchdog_task, 1);
3799 	}
3800 
3801 	/* disable interrupts, without the synchronize_irq bit */
3802 	ew32(IMC, ~0);
3803 	E1000_WRITE_FLUSH();
3804 
3805 	if (likely(napi_schedule_prep(&adapter->napi))) {
3806 		adapter->total_tx_bytes = 0;
3807 		adapter->total_tx_packets = 0;
3808 		adapter->total_rx_bytes = 0;
3809 		adapter->total_rx_packets = 0;
3810 		__napi_schedule(&adapter->napi);
3811 	} else {
3812 		/* this really should not happen! if it does it is basically a
3813 		 * bug, but not a hard error, so enable ints and continue
3814 		 */
3815 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3816 			e1000_irq_enable(adapter);
3817 	}
3818 
3819 	return IRQ_HANDLED;
3820 }
3821 
3822 /**
3823  * e1000_clean - NAPI Rx polling callback
3824  * @adapter: board private structure
3825  **/
3826 static int e1000_clean(struct napi_struct *napi, int budget)
3827 {
3828 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3829 						     napi);
3830 	int tx_clean_complete = 0, work_done = 0;
3831 
3832 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3833 
3834 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3835 
3836 	if (!tx_clean_complete)
3837 		work_done = budget;
3838 
3839 	/* If budget not fully consumed, exit the polling mode */
3840 	if (work_done < budget) {
3841 		if (likely(adapter->itr_setting & 3))
3842 			e1000_set_itr(adapter);
3843 		napi_complete_done(napi, work_done);
3844 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3845 			e1000_irq_enable(adapter);
3846 	}
3847 
3848 	return work_done;
3849 }
3850 
3851 /**
3852  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3853  * @adapter: board private structure
3854  **/
3855 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3856 			       struct e1000_tx_ring *tx_ring)
3857 {
3858 	struct e1000_hw *hw = &adapter->hw;
3859 	struct net_device *netdev = adapter->netdev;
3860 	struct e1000_tx_desc *tx_desc, *eop_desc;
3861 	struct e1000_tx_buffer *buffer_info;
3862 	unsigned int i, eop;
3863 	unsigned int count = 0;
3864 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3865 	unsigned int bytes_compl = 0, pkts_compl = 0;
3866 
3867 	i = tx_ring->next_to_clean;
3868 	eop = tx_ring->buffer_info[i].next_to_watch;
3869 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870 
3871 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3872 	       (count < tx_ring->count)) {
3873 		bool cleaned = false;
3874 		dma_rmb();	/* read buffer_info after eop_desc */
3875 		for ( ; !cleaned; count++) {
3876 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3877 			buffer_info = &tx_ring->buffer_info[i];
3878 			cleaned = (i == eop);
3879 
3880 			if (cleaned) {
3881 				total_tx_packets += buffer_info->segs;
3882 				total_tx_bytes += buffer_info->bytecount;
3883 				if (buffer_info->skb) {
3884 					bytes_compl += buffer_info->skb->len;
3885 					pkts_compl++;
3886 				}
3887 
3888 			}
3889 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3890 			tx_desc->upper.data = 0;
3891 
3892 			if (unlikely(++i == tx_ring->count))
3893 				i = 0;
3894 		}
3895 
3896 		eop = tx_ring->buffer_info[i].next_to_watch;
3897 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3898 	}
3899 
3900 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3901 	 * which will reuse the cleaned buffers.
3902 	 */
3903 	smp_store_release(&tx_ring->next_to_clean, i);
3904 
3905 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3906 
3907 #define TX_WAKE_THRESHOLD 32
3908 	if (unlikely(count && netif_carrier_ok(netdev) &&
3909 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3910 		/* Make sure that anybody stopping the queue after this
3911 		 * sees the new next_to_clean.
3912 		 */
3913 		smp_mb();
3914 
3915 		if (netif_queue_stopped(netdev) &&
3916 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3917 			netif_wake_queue(netdev);
3918 			++adapter->restart_queue;
3919 		}
3920 	}
3921 
3922 	if (adapter->detect_tx_hung) {
3923 		/* Detect a transmit hang in hardware, this serializes the
3924 		 * check with the clearing of time_stamp and movement of i
3925 		 */
3926 		adapter->detect_tx_hung = false;
3927 		if (tx_ring->buffer_info[eop].time_stamp &&
3928 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3929 			       (adapter->tx_timeout_factor * HZ)) &&
3930 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3931 
3932 			/* detected Tx unit hang */
3933 			e_err(drv, "Detected Tx Unit Hang\n"
3934 			      "  Tx Queue             <%lu>\n"
3935 			      "  TDH                  <%x>\n"
3936 			      "  TDT                  <%x>\n"
3937 			      "  next_to_use          <%x>\n"
3938 			      "  next_to_clean        <%x>\n"
3939 			      "buffer_info[next_to_clean]\n"
3940 			      "  time_stamp           <%lx>\n"
3941 			      "  next_to_watch        <%x>\n"
3942 			      "  jiffies              <%lx>\n"
3943 			      "  next_to_watch.status <%x>\n",
3944 				(unsigned long)(tx_ring - adapter->tx_ring),
3945 				readl(hw->hw_addr + tx_ring->tdh),
3946 				readl(hw->hw_addr + tx_ring->tdt),
3947 				tx_ring->next_to_use,
3948 				tx_ring->next_to_clean,
3949 				tx_ring->buffer_info[eop].time_stamp,
3950 				eop,
3951 				jiffies,
3952 				eop_desc->upper.fields.status);
3953 			e1000_dump(adapter);
3954 			netif_stop_queue(netdev);
3955 		}
3956 	}
3957 	adapter->total_tx_bytes += total_tx_bytes;
3958 	adapter->total_tx_packets += total_tx_packets;
3959 	netdev->stats.tx_bytes += total_tx_bytes;
3960 	netdev->stats.tx_packets += total_tx_packets;
3961 	return count < tx_ring->count;
3962 }
3963 
3964 /**
3965  * e1000_rx_checksum - Receive Checksum Offload for 82543
3966  * @adapter:     board private structure
3967  * @status_err:  receive descriptor status and error fields
3968  * @csum:        receive descriptor csum field
3969  * @sk_buff:     socket buffer with received data
3970  **/
3971 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3972 			      u32 csum, struct sk_buff *skb)
3973 {
3974 	struct e1000_hw *hw = &adapter->hw;
3975 	u16 status = (u16)status_err;
3976 	u8 errors = (u8)(status_err >> 24);
3977 
3978 	skb_checksum_none_assert(skb);
3979 
3980 	/* 82543 or newer only */
3981 	if (unlikely(hw->mac_type < e1000_82543))
3982 		return;
3983 	/* Ignore Checksum bit is set */
3984 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3985 		return;
3986 	/* TCP/UDP checksum error bit is set */
3987 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3988 		/* let the stack verify checksum errors */
3989 		adapter->hw_csum_err++;
3990 		return;
3991 	}
3992 	/* TCP/UDP Checksum has not been calculated */
3993 	if (!(status & E1000_RXD_STAT_TCPCS))
3994 		return;
3995 
3996 	/* It must be a TCP or UDP packet with a valid checksum */
3997 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3998 		/* TCP checksum is good */
3999 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4000 	}
4001 	adapter->hw_csum_good++;
4002 }
4003 
4004 /**
4005  * e1000_consume_page - helper function for jumbo Rx path
4006  **/
4007 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4008 			       u16 length)
4009 {
4010 	bi->rxbuf.page = NULL;
4011 	skb->len += length;
4012 	skb->data_len += length;
4013 	skb->truesize += PAGE_SIZE;
4014 }
4015 
4016 /**
4017  * e1000_receive_skb - helper function to handle rx indications
4018  * @adapter: board private structure
4019  * @status: descriptor status field as written by hardware
4020  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4021  * @skb: pointer to sk_buff to be indicated to stack
4022  */
4023 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4024 			      __le16 vlan, struct sk_buff *skb)
4025 {
4026 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4027 
4028 	if (status & E1000_RXD_STAT_VP) {
4029 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4030 
4031 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4032 	}
4033 	napi_gro_receive(&adapter->napi, skb);
4034 }
4035 
4036 /**
4037  * e1000_tbi_adjust_stats
4038  * @hw: Struct containing variables accessed by shared code
4039  * @frame_len: The length of the frame in question
4040  * @mac_addr: The Ethernet destination address of the frame in question
4041  *
4042  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4043  */
4044 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4045 				   struct e1000_hw_stats *stats,
4046 				   u32 frame_len, const u8 *mac_addr)
4047 {
4048 	u64 carry_bit;
4049 
4050 	/* First adjust the frame length. */
4051 	frame_len--;
4052 	/* We need to adjust the statistics counters, since the hardware
4053 	 * counters overcount this packet as a CRC error and undercount
4054 	 * the packet as a good packet
4055 	 */
4056 	/* This packet should not be counted as a CRC error. */
4057 	stats->crcerrs--;
4058 	/* This packet does count as a Good Packet Received. */
4059 	stats->gprc++;
4060 
4061 	/* Adjust the Good Octets received counters */
4062 	carry_bit = 0x80000000 & stats->gorcl;
4063 	stats->gorcl += frame_len;
4064 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4065 	 * Received Count) was one before the addition,
4066 	 * AND it is zero after, then we lost the carry out,
4067 	 * need to add one to Gorch (Good Octets Received Count High).
4068 	 * This could be simplified if all environments supported
4069 	 * 64-bit integers.
4070 	 */
4071 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4072 		stats->gorch++;
4073 	/* Is this a broadcast or multicast?  Check broadcast first,
4074 	 * since the test for a multicast frame will test positive on
4075 	 * a broadcast frame.
4076 	 */
4077 	if (is_broadcast_ether_addr(mac_addr))
4078 		stats->bprc++;
4079 	else if (is_multicast_ether_addr(mac_addr))
4080 		stats->mprc++;
4081 
4082 	if (frame_len == hw->max_frame_size) {
4083 		/* In this case, the hardware has overcounted the number of
4084 		 * oversize frames.
4085 		 */
4086 		if (stats->roc > 0)
4087 			stats->roc--;
4088 	}
4089 
4090 	/* Adjust the bin counters when the extra byte put the frame in the
4091 	 * wrong bin. Remember that the frame_len was adjusted above.
4092 	 */
4093 	if (frame_len == 64) {
4094 		stats->prc64++;
4095 		stats->prc127--;
4096 	} else if (frame_len == 127) {
4097 		stats->prc127++;
4098 		stats->prc255--;
4099 	} else if (frame_len == 255) {
4100 		stats->prc255++;
4101 		stats->prc511--;
4102 	} else if (frame_len == 511) {
4103 		stats->prc511++;
4104 		stats->prc1023--;
4105 	} else if (frame_len == 1023) {
4106 		stats->prc1023++;
4107 		stats->prc1522--;
4108 	} else if (frame_len == 1522) {
4109 		stats->prc1522++;
4110 	}
4111 }
4112 
4113 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4114 				    u8 status, u8 errors,
4115 				    u32 length, const u8 *data)
4116 {
4117 	struct e1000_hw *hw = &adapter->hw;
4118 	u8 last_byte = *(data + length - 1);
4119 
4120 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4121 		unsigned long irq_flags;
4122 
4123 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4124 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4125 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4126 
4127 		return true;
4128 	}
4129 
4130 	return false;
4131 }
4132 
4133 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4134 					  unsigned int bufsz)
4135 {
4136 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4137 
4138 	if (unlikely(!skb))
4139 		adapter->alloc_rx_buff_failed++;
4140 	return skb;
4141 }
4142 
4143 /**
4144  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4145  * @adapter: board private structure
4146  * @rx_ring: ring to clean
4147  * @work_done: amount of napi work completed this call
4148  * @work_to_do: max amount of work allowed for this call to do
4149  *
4150  * the return value indicates whether actual cleaning was done, there
4151  * is no guarantee that everything was cleaned
4152  */
4153 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4154 				     struct e1000_rx_ring *rx_ring,
4155 				     int *work_done, int work_to_do)
4156 {
4157 	struct net_device *netdev = adapter->netdev;
4158 	struct pci_dev *pdev = adapter->pdev;
4159 	struct e1000_rx_desc *rx_desc, *next_rxd;
4160 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4161 	u32 length;
4162 	unsigned int i;
4163 	int cleaned_count = 0;
4164 	bool cleaned = false;
4165 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4166 
4167 	i = rx_ring->next_to_clean;
4168 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4169 	buffer_info = &rx_ring->buffer_info[i];
4170 
4171 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4172 		struct sk_buff *skb;
4173 		u8 status;
4174 
4175 		if (*work_done >= work_to_do)
4176 			break;
4177 		(*work_done)++;
4178 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4179 
4180 		status = rx_desc->status;
4181 
4182 		if (++i == rx_ring->count)
4183 			i = 0;
4184 
4185 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4186 		prefetch(next_rxd);
4187 
4188 		next_buffer = &rx_ring->buffer_info[i];
4189 
4190 		cleaned = true;
4191 		cleaned_count++;
4192 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4193 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4194 		buffer_info->dma = 0;
4195 
4196 		length = le16_to_cpu(rx_desc->length);
4197 
4198 		/* errors is only valid for DD + EOP descriptors */
4199 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4200 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4201 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4202 
4203 			if (e1000_tbi_should_accept(adapter, status,
4204 						    rx_desc->errors,
4205 						    length, mapped)) {
4206 				length--;
4207 			} else if (netdev->features & NETIF_F_RXALL) {
4208 				goto process_skb;
4209 			} else {
4210 				/* an error means any chain goes out the window
4211 				 * too
4212 				 */
4213 				if (rx_ring->rx_skb_top)
4214 					dev_kfree_skb(rx_ring->rx_skb_top);
4215 				rx_ring->rx_skb_top = NULL;
4216 				goto next_desc;
4217 			}
4218 		}
4219 
4220 #define rxtop rx_ring->rx_skb_top
4221 process_skb:
4222 		if (!(status & E1000_RXD_STAT_EOP)) {
4223 			/* this descriptor is only the beginning (or middle) */
4224 			if (!rxtop) {
4225 				/* this is the beginning of a chain */
4226 				rxtop = napi_get_frags(&adapter->napi);
4227 				if (!rxtop)
4228 					break;
4229 
4230 				skb_fill_page_desc(rxtop, 0,
4231 						   buffer_info->rxbuf.page,
4232 						   0, length);
4233 			} else {
4234 				/* this is the middle of a chain */
4235 				skb_fill_page_desc(rxtop,
4236 				    skb_shinfo(rxtop)->nr_frags,
4237 				    buffer_info->rxbuf.page, 0, length);
4238 			}
4239 			e1000_consume_page(buffer_info, rxtop, length);
4240 			goto next_desc;
4241 		} else {
4242 			if (rxtop) {
4243 				/* end of the chain */
4244 				skb_fill_page_desc(rxtop,
4245 				    skb_shinfo(rxtop)->nr_frags,
4246 				    buffer_info->rxbuf.page, 0, length);
4247 				skb = rxtop;
4248 				rxtop = NULL;
4249 				e1000_consume_page(buffer_info, skb, length);
4250 			} else {
4251 				struct page *p;
4252 				/* no chain, got EOP, this buf is the packet
4253 				 * copybreak to save the put_page/alloc_page
4254 				 */
4255 				p = buffer_info->rxbuf.page;
4256 				if (length <= copybreak) {
4257 					u8 *vaddr;
4258 
4259 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4260 						length -= 4;
4261 					skb = e1000_alloc_rx_skb(adapter,
4262 								 length);
4263 					if (!skb)
4264 						break;
4265 
4266 					vaddr = kmap_atomic(p);
4267 					memcpy(skb_tail_pointer(skb), vaddr,
4268 					       length);
4269 					kunmap_atomic(vaddr);
4270 					/* re-use the page, so don't erase
4271 					 * buffer_info->rxbuf.page
4272 					 */
4273 					skb_put(skb, length);
4274 					e1000_rx_checksum(adapter,
4275 							  status | rx_desc->errors << 24,
4276 							  le16_to_cpu(rx_desc->csum), skb);
4277 
4278 					total_rx_bytes += skb->len;
4279 					total_rx_packets++;
4280 
4281 					e1000_receive_skb(adapter, status,
4282 							  rx_desc->special, skb);
4283 					goto next_desc;
4284 				} else {
4285 					skb = napi_get_frags(&adapter->napi);
4286 					if (!skb) {
4287 						adapter->alloc_rx_buff_failed++;
4288 						break;
4289 					}
4290 					skb_fill_page_desc(skb, 0, p, 0,
4291 							   length);
4292 					e1000_consume_page(buffer_info, skb,
4293 							   length);
4294 				}
4295 			}
4296 		}
4297 
4298 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4299 		e1000_rx_checksum(adapter,
4300 				  (u32)(status) |
4301 				  ((u32)(rx_desc->errors) << 24),
4302 				  le16_to_cpu(rx_desc->csum), skb);
4303 
4304 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4305 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4306 			pskb_trim(skb, skb->len - 4);
4307 		total_rx_packets++;
4308 
4309 		if (status & E1000_RXD_STAT_VP) {
4310 			__le16 vlan = rx_desc->special;
4311 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4312 
4313 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4314 		}
4315 
4316 		napi_gro_frags(&adapter->napi);
4317 
4318 next_desc:
4319 		rx_desc->status = 0;
4320 
4321 		/* return some buffers to hardware, one at a time is too slow */
4322 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4323 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4324 			cleaned_count = 0;
4325 		}
4326 
4327 		/* use prefetched values */
4328 		rx_desc = next_rxd;
4329 		buffer_info = next_buffer;
4330 	}
4331 	rx_ring->next_to_clean = i;
4332 
4333 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4334 	if (cleaned_count)
4335 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4336 
4337 	adapter->total_rx_packets += total_rx_packets;
4338 	adapter->total_rx_bytes += total_rx_bytes;
4339 	netdev->stats.rx_bytes += total_rx_bytes;
4340 	netdev->stats.rx_packets += total_rx_packets;
4341 	return cleaned;
4342 }
4343 
4344 /* this should improve performance for small packets with large amounts
4345  * of reassembly being done in the stack
4346  */
4347 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4348 				       struct e1000_rx_buffer *buffer_info,
4349 				       u32 length, const void *data)
4350 {
4351 	struct sk_buff *skb;
4352 
4353 	if (length > copybreak)
4354 		return NULL;
4355 
4356 	skb = e1000_alloc_rx_skb(adapter, length);
4357 	if (!skb)
4358 		return NULL;
4359 
4360 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4361 				length, DMA_FROM_DEVICE);
4362 
4363 	memcpy(skb_put(skb, length), data, length);
4364 
4365 	return skb;
4366 }
4367 
4368 /**
4369  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4370  * @adapter: board private structure
4371  * @rx_ring: ring to clean
4372  * @work_done: amount of napi work completed this call
4373  * @work_to_do: max amount of work allowed for this call to do
4374  */
4375 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4376 			       struct e1000_rx_ring *rx_ring,
4377 			       int *work_done, int work_to_do)
4378 {
4379 	struct net_device *netdev = adapter->netdev;
4380 	struct pci_dev *pdev = adapter->pdev;
4381 	struct e1000_rx_desc *rx_desc, *next_rxd;
4382 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4383 	u32 length;
4384 	unsigned int i;
4385 	int cleaned_count = 0;
4386 	bool cleaned = false;
4387 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4388 
4389 	i = rx_ring->next_to_clean;
4390 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4391 	buffer_info = &rx_ring->buffer_info[i];
4392 
4393 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4394 		struct sk_buff *skb;
4395 		u8 *data;
4396 		u8 status;
4397 
4398 		if (*work_done >= work_to_do)
4399 			break;
4400 		(*work_done)++;
4401 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4402 
4403 		status = rx_desc->status;
4404 		length = le16_to_cpu(rx_desc->length);
4405 
4406 		data = buffer_info->rxbuf.data;
4407 		prefetch(data);
4408 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4409 		if (!skb) {
4410 			unsigned int frag_len = e1000_frag_len(adapter);
4411 
4412 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4413 			if (!skb) {
4414 				adapter->alloc_rx_buff_failed++;
4415 				break;
4416 			}
4417 
4418 			skb_reserve(skb, E1000_HEADROOM);
4419 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4420 					 adapter->rx_buffer_len,
4421 					 DMA_FROM_DEVICE);
4422 			buffer_info->dma = 0;
4423 			buffer_info->rxbuf.data = NULL;
4424 		}
4425 
4426 		if (++i == rx_ring->count)
4427 			i = 0;
4428 
4429 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4430 		prefetch(next_rxd);
4431 
4432 		next_buffer = &rx_ring->buffer_info[i];
4433 
4434 		cleaned = true;
4435 		cleaned_count++;
4436 
4437 		/* !EOP means multiple descriptors were used to store a single
4438 		 * packet, if thats the case we need to toss it.  In fact, we
4439 		 * to toss every packet with the EOP bit clear and the next
4440 		 * frame that _does_ have the EOP bit set, as it is by
4441 		 * definition only a frame fragment
4442 		 */
4443 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4444 			adapter->discarding = true;
4445 
4446 		if (adapter->discarding) {
4447 			/* All receives must fit into a single buffer */
4448 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4449 			dev_kfree_skb(skb);
4450 			if (status & E1000_RXD_STAT_EOP)
4451 				adapter->discarding = false;
4452 			goto next_desc;
4453 		}
4454 
4455 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4456 			if (e1000_tbi_should_accept(adapter, status,
4457 						    rx_desc->errors,
4458 						    length, data)) {
4459 				length--;
4460 			} else if (netdev->features & NETIF_F_RXALL) {
4461 				goto process_skb;
4462 			} else {
4463 				dev_kfree_skb(skb);
4464 				goto next_desc;
4465 			}
4466 		}
4467 
4468 process_skb:
4469 		total_rx_bytes += (length - 4); /* don't count FCS */
4470 		total_rx_packets++;
4471 
4472 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4473 			/* adjust length to remove Ethernet CRC, this must be
4474 			 * done after the TBI_ACCEPT workaround above
4475 			 */
4476 			length -= 4;
4477 
4478 		if (buffer_info->rxbuf.data == NULL)
4479 			skb_put(skb, length);
4480 		else /* copybreak skb */
4481 			skb_trim(skb, length);
4482 
4483 		/* Receive Checksum Offload */
4484 		e1000_rx_checksum(adapter,
4485 				  (u32)(status) |
4486 				  ((u32)(rx_desc->errors) << 24),
4487 				  le16_to_cpu(rx_desc->csum), skb);
4488 
4489 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4490 
4491 next_desc:
4492 		rx_desc->status = 0;
4493 
4494 		/* return some buffers to hardware, one at a time is too slow */
4495 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4496 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4497 			cleaned_count = 0;
4498 		}
4499 
4500 		/* use prefetched values */
4501 		rx_desc = next_rxd;
4502 		buffer_info = next_buffer;
4503 	}
4504 	rx_ring->next_to_clean = i;
4505 
4506 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4507 	if (cleaned_count)
4508 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4509 
4510 	adapter->total_rx_packets += total_rx_packets;
4511 	adapter->total_rx_bytes += total_rx_bytes;
4512 	netdev->stats.rx_bytes += total_rx_bytes;
4513 	netdev->stats.rx_packets += total_rx_packets;
4514 	return cleaned;
4515 }
4516 
4517 /**
4518  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4519  * @adapter: address of board private structure
4520  * @rx_ring: pointer to receive ring structure
4521  * @cleaned_count: number of buffers to allocate this pass
4522  **/
4523 static void
4524 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4525 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4526 {
4527 	struct pci_dev *pdev = adapter->pdev;
4528 	struct e1000_rx_desc *rx_desc;
4529 	struct e1000_rx_buffer *buffer_info;
4530 	unsigned int i;
4531 
4532 	i = rx_ring->next_to_use;
4533 	buffer_info = &rx_ring->buffer_info[i];
4534 
4535 	while (cleaned_count--) {
4536 		/* allocate a new page if necessary */
4537 		if (!buffer_info->rxbuf.page) {
4538 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4539 			if (unlikely(!buffer_info->rxbuf.page)) {
4540 				adapter->alloc_rx_buff_failed++;
4541 				break;
4542 			}
4543 		}
4544 
4545 		if (!buffer_info->dma) {
4546 			buffer_info->dma = dma_map_page(&pdev->dev,
4547 							buffer_info->rxbuf.page, 0,
4548 							adapter->rx_buffer_len,
4549 							DMA_FROM_DEVICE);
4550 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4551 				put_page(buffer_info->rxbuf.page);
4552 				buffer_info->rxbuf.page = NULL;
4553 				buffer_info->dma = 0;
4554 				adapter->alloc_rx_buff_failed++;
4555 				break;
4556 			}
4557 		}
4558 
4559 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4560 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4561 
4562 		if (unlikely(++i == rx_ring->count))
4563 			i = 0;
4564 		buffer_info = &rx_ring->buffer_info[i];
4565 	}
4566 
4567 	if (likely(rx_ring->next_to_use != i)) {
4568 		rx_ring->next_to_use = i;
4569 		if (unlikely(i-- == 0))
4570 			i = (rx_ring->count - 1);
4571 
4572 		/* Force memory writes to complete before letting h/w
4573 		 * know there are new descriptors to fetch.  (Only
4574 		 * applicable for weak-ordered memory model archs,
4575 		 * such as IA-64).
4576 		 */
4577 		wmb();
4578 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4579 	}
4580 }
4581 
4582 /**
4583  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4584  * @adapter: address of board private structure
4585  **/
4586 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4587 				   struct e1000_rx_ring *rx_ring,
4588 				   int cleaned_count)
4589 {
4590 	struct e1000_hw *hw = &adapter->hw;
4591 	struct pci_dev *pdev = adapter->pdev;
4592 	struct e1000_rx_desc *rx_desc;
4593 	struct e1000_rx_buffer *buffer_info;
4594 	unsigned int i;
4595 	unsigned int bufsz = adapter->rx_buffer_len;
4596 
4597 	i = rx_ring->next_to_use;
4598 	buffer_info = &rx_ring->buffer_info[i];
4599 
4600 	while (cleaned_count--) {
4601 		void *data;
4602 
4603 		if (buffer_info->rxbuf.data)
4604 			goto skip;
4605 
4606 		data = e1000_alloc_frag(adapter);
4607 		if (!data) {
4608 			/* Better luck next round */
4609 			adapter->alloc_rx_buff_failed++;
4610 			break;
4611 		}
4612 
4613 		/* Fix for errata 23, can't cross 64kB boundary */
4614 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4615 			void *olddata = data;
4616 			e_err(rx_err, "skb align check failed: %u bytes at "
4617 			      "%p\n", bufsz, data);
4618 			/* Try again, without freeing the previous */
4619 			data = e1000_alloc_frag(adapter);
4620 			/* Failed allocation, critical failure */
4621 			if (!data) {
4622 				skb_free_frag(olddata);
4623 				adapter->alloc_rx_buff_failed++;
4624 				break;
4625 			}
4626 
4627 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4628 				/* give up */
4629 				skb_free_frag(data);
4630 				skb_free_frag(olddata);
4631 				adapter->alloc_rx_buff_failed++;
4632 				break;
4633 			}
4634 
4635 			/* Use new allocation */
4636 			skb_free_frag(olddata);
4637 		}
4638 		buffer_info->dma = dma_map_single(&pdev->dev,
4639 						  data,
4640 						  adapter->rx_buffer_len,
4641 						  DMA_FROM_DEVICE);
4642 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4643 			skb_free_frag(data);
4644 			buffer_info->dma = 0;
4645 			adapter->alloc_rx_buff_failed++;
4646 			break;
4647 		}
4648 
4649 		/* XXX if it was allocated cleanly it will never map to a
4650 		 * boundary crossing
4651 		 */
4652 
4653 		/* Fix for errata 23, can't cross 64kB boundary */
4654 		if (!e1000_check_64k_bound(adapter,
4655 					(void *)(unsigned long)buffer_info->dma,
4656 					adapter->rx_buffer_len)) {
4657 			e_err(rx_err, "dma align check failed: %u bytes at "
4658 			      "%p\n", adapter->rx_buffer_len,
4659 			      (void *)(unsigned long)buffer_info->dma);
4660 
4661 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4662 					 adapter->rx_buffer_len,
4663 					 DMA_FROM_DEVICE);
4664 
4665 			skb_free_frag(data);
4666 			buffer_info->rxbuf.data = NULL;
4667 			buffer_info->dma = 0;
4668 
4669 			adapter->alloc_rx_buff_failed++;
4670 			break;
4671 		}
4672 		buffer_info->rxbuf.data = data;
4673  skip:
4674 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4675 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4676 
4677 		if (unlikely(++i == rx_ring->count))
4678 			i = 0;
4679 		buffer_info = &rx_ring->buffer_info[i];
4680 	}
4681 
4682 	if (likely(rx_ring->next_to_use != i)) {
4683 		rx_ring->next_to_use = i;
4684 		if (unlikely(i-- == 0))
4685 			i = (rx_ring->count - 1);
4686 
4687 		/* Force memory writes to complete before letting h/w
4688 		 * know there are new descriptors to fetch.  (Only
4689 		 * applicable for weak-ordered memory model archs,
4690 		 * such as IA-64).
4691 		 */
4692 		wmb();
4693 		writel(i, hw->hw_addr + rx_ring->rdt);
4694 	}
4695 }
4696 
4697 /**
4698  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4699  * @adapter:
4700  **/
4701 static void e1000_smartspeed(struct e1000_adapter *adapter)
4702 {
4703 	struct e1000_hw *hw = &adapter->hw;
4704 	u16 phy_status;
4705 	u16 phy_ctrl;
4706 
4707 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4708 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4709 		return;
4710 
4711 	if (adapter->smartspeed == 0) {
4712 		/* If Master/Slave config fault is asserted twice,
4713 		 * we assume back-to-back
4714 		 */
4715 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4716 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4717 			return;
4718 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4719 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4720 			return;
4721 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4722 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4723 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4724 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4725 					    phy_ctrl);
4726 			adapter->smartspeed++;
4727 			if (!e1000_phy_setup_autoneg(hw) &&
4728 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4729 					       &phy_ctrl)) {
4730 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4731 					     MII_CR_RESTART_AUTO_NEG);
4732 				e1000_write_phy_reg(hw, PHY_CTRL,
4733 						    phy_ctrl);
4734 			}
4735 		}
4736 		return;
4737 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4738 		/* If still no link, perhaps using 2/3 pair cable */
4739 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4740 		phy_ctrl |= CR_1000T_MS_ENABLE;
4741 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4742 		if (!e1000_phy_setup_autoneg(hw) &&
4743 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4744 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4745 				     MII_CR_RESTART_AUTO_NEG);
4746 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4747 		}
4748 	}
4749 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4750 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4751 		adapter->smartspeed = 0;
4752 }
4753 
4754 /**
4755  * e1000_ioctl -
4756  * @netdev:
4757  * @ifreq:
4758  * @cmd:
4759  **/
4760 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4761 {
4762 	switch (cmd) {
4763 	case SIOCGMIIPHY:
4764 	case SIOCGMIIREG:
4765 	case SIOCSMIIREG:
4766 		return e1000_mii_ioctl(netdev, ifr, cmd);
4767 	default:
4768 		return -EOPNOTSUPP;
4769 	}
4770 }
4771 
4772 /**
4773  * e1000_mii_ioctl -
4774  * @netdev:
4775  * @ifreq:
4776  * @cmd:
4777  **/
4778 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4779 			   int cmd)
4780 {
4781 	struct e1000_adapter *adapter = netdev_priv(netdev);
4782 	struct e1000_hw *hw = &adapter->hw;
4783 	struct mii_ioctl_data *data = if_mii(ifr);
4784 	int retval;
4785 	u16 mii_reg;
4786 	unsigned long flags;
4787 
4788 	if (hw->media_type != e1000_media_type_copper)
4789 		return -EOPNOTSUPP;
4790 
4791 	switch (cmd) {
4792 	case SIOCGMIIPHY:
4793 		data->phy_id = hw->phy_addr;
4794 		break;
4795 	case SIOCGMIIREG:
4796 		spin_lock_irqsave(&adapter->stats_lock, flags);
4797 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4798 				   &data->val_out)) {
4799 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4800 			return -EIO;
4801 		}
4802 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4803 		break;
4804 	case SIOCSMIIREG:
4805 		if (data->reg_num & ~(0x1F))
4806 			return -EFAULT;
4807 		mii_reg = data->val_in;
4808 		spin_lock_irqsave(&adapter->stats_lock, flags);
4809 		if (e1000_write_phy_reg(hw, data->reg_num,
4810 					mii_reg)) {
4811 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4812 			return -EIO;
4813 		}
4814 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4815 		if (hw->media_type == e1000_media_type_copper) {
4816 			switch (data->reg_num) {
4817 			case PHY_CTRL:
4818 				if (mii_reg & MII_CR_POWER_DOWN)
4819 					break;
4820 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4821 					hw->autoneg = 1;
4822 					hw->autoneg_advertised = 0x2F;
4823 				} else {
4824 					u32 speed;
4825 					if (mii_reg & 0x40)
4826 						speed = SPEED_1000;
4827 					else if (mii_reg & 0x2000)
4828 						speed = SPEED_100;
4829 					else
4830 						speed = SPEED_10;
4831 					retval = e1000_set_spd_dplx(
4832 						adapter, speed,
4833 						((mii_reg & 0x100)
4834 						 ? DUPLEX_FULL :
4835 						 DUPLEX_HALF));
4836 					if (retval)
4837 						return retval;
4838 				}
4839 				if (netif_running(adapter->netdev))
4840 					e1000_reinit_locked(adapter);
4841 				else
4842 					e1000_reset(adapter);
4843 				break;
4844 			case M88E1000_PHY_SPEC_CTRL:
4845 			case M88E1000_EXT_PHY_SPEC_CTRL:
4846 				if (e1000_phy_reset(hw))
4847 					return -EIO;
4848 				break;
4849 			}
4850 		} else {
4851 			switch (data->reg_num) {
4852 			case PHY_CTRL:
4853 				if (mii_reg & MII_CR_POWER_DOWN)
4854 					break;
4855 				if (netif_running(adapter->netdev))
4856 					e1000_reinit_locked(adapter);
4857 				else
4858 					e1000_reset(adapter);
4859 				break;
4860 			}
4861 		}
4862 		break;
4863 	default:
4864 		return -EOPNOTSUPP;
4865 	}
4866 	return E1000_SUCCESS;
4867 }
4868 
4869 void e1000_pci_set_mwi(struct e1000_hw *hw)
4870 {
4871 	struct e1000_adapter *adapter = hw->back;
4872 	int ret_val = pci_set_mwi(adapter->pdev);
4873 
4874 	if (ret_val)
4875 		e_err(probe, "Error in setting MWI\n");
4876 }
4877 
4878 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4879 {
4880 	struct e1000_adapter *adapter = hw->back;
4881 
4882 	pci_clear_mwi(adapter->pdev);
4883 }
4884 
4885 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4886 {
4887 	struct e1000_adapter *adapter = hw->back;
4888 	return pcix_get_mmrbc(adapter->pdev);
4889 }
4890 
4891 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4892 {
4893 	struct e1000_adapter *adapter = hw->back;
4894 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4895 }
4896 
4897 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4898 {
4899 	outl(value, port);
4900 }
4901 
4902 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4903 {
4904 	u16 vid;
4905 
4906 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4907 		return true;
4908 	return false;
4909 }
4910 
4911 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4912 			      netdev_features_t features)
4913 {
4914 	struct e1000_hw *hw = &adapter->hw;
4915 	u32 ctrl;
4916 
4917 	ctrl = er32(CTRL);
4918 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4919 		/* enable VLAN tag insert/strip */
4920 		ctrl |= E1000_CTRL_VME;
4921 	} else {
4922 		/* disable VLAN tag insert/strip */
4923 		ctrl &= ~E1000_CTRL_VME;
4924 	}
4925 	ew32(CTRL, ctrl);
4926 }
4927 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4928 				     bool filter_on)
4929 {
4930 	struct e1000_hw *hw = &adapter->hw;
4931 	u32 rctl;
4932 
4933 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4934 		e1000_irq_disable(adapter);
4935 
4936 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4937 	if (filter_on) {
4938 		/* enable VLAN receive filtering */
4939 		rctl = er32(RCTL);
4940 		rctl &= ~E1000_RCTL_CFIEN;
4941 		if (!(adapter->netdev->flags & IFF_PROMISC))
4942 			rctl |= E1000_RCTL_VFE;
4943 		ew32(RCTL, rctl);
4944 		e1000_update_mng_vlan(adapter);
4945 	} else {
4946 		/* disable VLAN receive filtering */
4947 		rctl = er32(RCTL);
4948 		rctl &= ~E1000_RCTL_VFE;
4949 		ew32(RCTL, rctl);
4950 	}
4951 
4952 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4953 		e1000_irq_enable(adapter);
4954 }
4955 
4956 static void e1000_vlan_mode(struct net_device *netdev,
4957 			    netdev_features_t features)
4958 {
4959 	struct e1000_adapter *adapter = netdev_priv(netdev);
4960 
4961 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4962 		e1000_irq_disable(adapter);
4963 
4964 	__e1000_vlan_mode(adapter, features);
4965 
4966 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4967 		e1000_irq_enable(adapter);
4968 }
4969 
4970 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4971 				 __be16 proto, u16 vid)
4972 {
4973 	struct e1000_adapter *adapter = netdev_priv(netdev);
4974 	struct e1000_hw *hw = &adapter->hw;
4975 	u32 vfta, index;
4976 
4977 	if ((hw->mng_cookie.status &
4978 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4979 	    (vid == adapter->mng_vlan_id))
4980 		return 0;
4981 
4982 	if (!e1000_vlan_used(adapter))
4983 		e1000_vlan_filter_on_off(adapter, true);
4984 
4985 	/* add VID to filter table */
4986 	index = (vid >> 5) & 0x7F;
4987 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4988 	vfta |= (1 << (vid & 0x1F));
4989 	e1000_write_vfta(hw, index, vfta);
4990 
4991 	set_bit(vid, adapter->active_vlans);
4992 
4993 	return 0;
4994 }
4995 
4996 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4997 				  __be16 proto, u16 vid)
4998 {
4999 	struct e1000_adapter *adapter = netdev_priv(netdev);
5000 	struct e1000_hw *hw = &adapter->hw;
5001 	u32 vfta, index;
5002 
5003 	if (!test_bit(__E1000_DOWN, &adapter->flags))
5004 		e1000_irq_disable(adapter);
5005 	if (!test_bit(__E1000_DOWN, &adapter->flags))
5006 		e1000_irq_enable(adapter);
5007 
5008 	/* remove VID from filter table */
5009 	index = (vid >> 5) & 0x7F;
5010 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5011 	vfta &= ~(1 << (vid & 0x1F));
5012 	e1000_write_vfta(hw, index, vfta);
5013 
5014 	clear_bit(vid, adapter->active_vlans);
5015 
5016 	if (!e1000_vlan_used(adapter))
5017 		e1000_vlan_filter_on_off(adapter, false);
5018 
5019 	return 0;
5020 }
5021 
5022 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5023 {
5024 	u16 vid;
5025 
5026 	if (!e1000_vlan_used(adapter))
5027 		return;
5028 
5029 	e1000_vlan_filter_on_off(adapter, true);
5030 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5031 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5032 }
5033 
5034 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5035 {
5036 	struct e1000_hw *hw = &adapter->hw;
5037 
5038 	hw->autoneg = 0;
5039 
5040 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5041 	 * for the switch() below to work
5042 	 */
5043 	if ((spd & 1) || (dplx & ~1))
5044 		goto err_inval;
5045 
5046 	/* Fiber NICs only allow 1000 gbps Full duplex */
5047 	if ((hw->media_type == e1000_media_type_fiber) &&
5048 	    spd != SPEED_1000 &&
5049 	    dplx != DUPLEX_FULL)
5050 		goto err_inval;
5051 
5052 	switch (spd + dplx) {
5053 	case SPEED_10 + DUPLEX_HALF:
5054 		hw->forced_speed_duplex = e1000_10_half;
5055 		break;
5056 	case SPEED_10 + DUPLEX_FULL:
5057 		hw->forced_speed_duplex = e1000_10_full;
5058 		break;
5059 	case SPEED_100 + DUPLEX_HALF:
5060 		hw->forced_speed_duplex = e1000_100_half;
5061 		break;
5062 	case SPEED_100 + DUPLEX_FULL:
5063 		hw->forced_speed_duplex = e1000_100_full;
5064 		break;
5065 	case SPEED_1000 + DUPLEX_FULL:
5066 		hw->autoneg = 1;
5067 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5068 		break;
5069 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5070 	default:
5071 		goto err_inval;
5072 	}
5073 
5074 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5075 	hw->mdix = AUTO_ALL_MODES;
5076 
5077 	return 0;
5078 
5079 err_inval:
5080 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5081 	return -EINVAL;
5082 }
5083 
5084 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5085 {
5086 	struct net_device *netdev = pci_get_drvdata(pdev);
5087 	struct e1000_adapter *adapter = netdev_priv(netdev);
5088 	struct e1000_hw *hw = &adapter->hw;
5089 	u32 ctrl, ctrl_ext, rctl, status;
5090 	u32 wufc = adapter->wol;
5091 #ifdef CONFIG_PM
5092 	int retval = 0;
5093 #endif
5094 
5095 	netif_device_detach(netdev);
5096 
5097 	if (netif_running(netdev)) {
5098 		int count = E1000_CHECK_RESET_COUNT;
5099 
5100 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5101 			usleep_range(10000, 20000);
5102 
5103 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5104 		e1000_down(adapter);
5105 	}
5106 
5107 #ifdef CONFIG_PM
5108 	retval = pci_save_state(pdev);
5109 	if (retval)
5110 		return retval;
5111 #endif
5112 
5113 	status = er32(STATUS);
5114 	if (status & E1000_STATUS_LU)
5115 		wufc &= ~E1000_WUFC_LNKC;
5116 
5117 	if (wufc) {
5118 		e1000_setup_rctl(adapter);
5119 		e1000_set_rx_mode(netdev);
5120 
5121 		rctl = er32(RCTL);
5122 
5123 		/* turn on all-multi mode if wake on multicast is enabled */
5124 		if (wufc & E1000_WUFC_MC)
5125 			rctl |= E1000_RCTL_MPE;
5126 
5127 		/* enable receives in the hardware */
5128 		ew32(RCTL, rctl | E1000_RCTL_EN);
5129 
5130 		if (hw->mac_type >= e1000_82540) {
5131 			ctrl = er32(CTRL);
5132 			/* advertise wake from D3Cold */
5133 			#define E1000_CTRL_ADVD3WUC 0x00100000
5134 			/* phy power management enable */
5135 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5136 			ctrl |= E1000_CTRL_ADVD3WUC |
5137 				E1000_CTRL_EN_PHY_PWR_MGMT;
5138 			ew32(CTRL, ctrl);
5139 		}
5140 
5141 		if (hw->media_type == e1000_media_type_fiber ||
5142 		    hw->media_type == e1000_media_type_internal_serdes) {
5143 			/* keep the laser running in D3 */
5144 			ctrl_ext = er32(CTRL_EXT);
5145 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5146 			ew32(CTRL_EXT, ctrl_ext);
5147 		}
5148 
5149 		ew32(WUC, E1000_WUC_PME_EN);
5150 		ew32(WUFC, wufc);
5151 	} else {
5152 		ew32(WUC, 0);
5153 		ew32(WUFC, 0);
5154 	}
5155 
5156 	e1000_release_manageability(adapter);
5157 
5158 	*enable_wake = !!wufc;
5159 
5160 	/* make sure adapter isn't asleep if manageability is enabled */
5161 	if (adapter->en_mng_pt)
5162 		*enable_wake = true;
5163 
5164 	if (netif_running(netdev))
5165 		e1000_free_irq(adapter);
5166 
5167 	pci_disable_device(pdev);
5168 
5169 	return 0;
5170 }
5171 
5172 #ifdef CONFIG_PM
5173 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5174 {
5175 	int retval;
5176 	bool wake;
5177 
5178 	retval = __e1000_shutdown(pdev, &wake);
5179 	if (retval)
5180 		return retval;
5181 
5182 	if (wake) {
5183 		pci_prepare_to_sleep(pdev);
5184 	} else {
5185 		pci_wake_from_d3(pdev, false);
5186 		pci_set_power_state(pdev, PCI_D3hot);
5187 	}
5188 
5189 	return 0;
5190 }
5191 
5192 static int e1000_resume(struct pci_dev *pdev)
5193 {
5194 	struct net_device *netdev = pci_get_drvdata(pdev);
5195 	struct e1000_adapter *adapter = netdev_priv(netdev);
5196 	struct e1000_hw *hw = &adapter->hw;
5197 	u32 err;
5198 
5199 	pci_set_power_state(pdev, PCI_D0);
5200 	pci_restore_state(pdev);
5201 	pci_save_state(pdev);
5202 
5203 	if (adapter->need_ioport)
5204 		err = pci_enable_device(pdev);
5205 	else
5206 		err = pci_enable_device_mem(pdev);
5207 	if (err) {
5208 		pr_err("Cannot enable PCI device from suspend\n");
5209 		return err;
5210 	}
5211 	pci_set_master(pdev);
5212 
5213 	pci_enable_wake(pdev, PCI_D3hot, 0);
5214 	pci_enable_wake(pdev, PCI_D3cold, 0);
5215 
5216 	if (netif_running(netdev)) {
5217 		err = e1000_request_irq(adapter);
5218 		if (err)
5219 			return err;
5220 	}
5221 
5222 	e1000_power_up_phy(adapter);
5223 	e1000_reset(adapter);
5224 	ew32(WUS, ~0);
5225 
5226 	e1000_init_manageability(adapter);
5227 
5228 	if (netif_running(netdev))
5229 		e1000_up(adapter);
5230 
5231 	netif_device_attach(netdev);
5232 
5233 	return 0;
5234 }
5235 #endif
5236 
5237 static void e1000_shutdown(struct pci_dev *pdev)
5238 {
5239 	bool wake;
5240 
5241 	__e1000_shutdown(pdev, &wake);
5242 
5243 	if (system_state == SYSTEM_POWER_OFF) {
5244 		pci_wake_from_d3(pdev, wake);
5245 		pci_set_power_state(pdev, PCI_D3hot);
5246 	}
5247 }
5248 
5249 #ifdef CONFIG_NET_POLL_CONTROLLER
5250 /* Polling 'interrupt' - used by things like netconsole to send skbs
5251  * without having to re-enable interrupts. It's not called while
5252  * the interrupt routine is executing.
5253  */
5254 static void e1000_netpoll(struct net_device *netdev)
5255 {
5256 	struct e1000_adapter *adapter = netdev_priv(netdev);
5257 
5258 	if (disable_hardirq(adapter->pdev->irq))
5259 		e1000_intr(adapter->pdev->irq, netdev);
5260 	enable_irq(adapter->pdev->irq);
5261 }
5262 #endif
5263 
5264 /**
5265  * e1000_io_error_detected - called when PCI error is detected
5266  * @pdev: Pointer to PCI device
5267  * @state: The current pci connection state
5268  *
5269  * This function is called after a PCI bus error affecting
5270  * this device has been detected.
5271  */
5272 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5273 						pci_channel_state_t state)
5274 {
5275 	struct net_device *netdev = pci_get_drvdata(pdev);
5276 	struct e1000_adapter *adapter = netdev_priv(netdev);
5277 
5278 	netif_device_detach(netdev);
5279 
5280 	if (state == pci_channel_io_perm_failure)
5281 		return PCI_ERS_RESULT_DISCONNECT;
5282 
5283 	if (netif_running(netdev))
5284 		e1000_down(adapter);
5285 	pci_disable_device(pdev);
5286 
5287 	/* Request a slot slot reset. */
5288 	return PCI_ERS_RESULT_NEED_RESET;
5289 }
5290 
5291 /**
5292  * e1000_io_slot_reset - called after the pci bus has been reset.
5293  * @pdev: Pointer to PCI device
5294  *
5295  * Restart the card from scratch, as if from a cold-boot. Implementation
5296  * resembles the first-half of the e1000_resume routine.
5297  */
5298 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5299 {
5300 	struct net_device *netdev = pci_get_drvdata(pdev);
5301 	struct e1000_adapter *adapter = netdev_priv(netdev);
5302 	struct e1000_hw *hw = &adapter->hw;
5303 	int err;
5304 
5305 	if (adapter->need_ioport)
5306 		err = pci_enable_device(pdev);
5307 	else
5308 		err = pci_enable_device_mem(pdev);
5309 	if (err) {
5310 		pr_err("Cannot re-enable PCI device after reset.\n");
5311 		return PCI_ERS_RESULT_DISCONNECT;
5312 	}
5313 	pci_set_master(pdev);
5314 
5315 	pci_enable_wake(pdev, PCI_D3hot, 0);
5316 	pci_enable_wake(pdev, PCI_D3cold, 0);
5317 
5318 	e1000_reset(adapter);
5319 	ew32(WUS, ~0);
5320 
5321 	return PCI_ERS_RESULT_RECOVERED;
5322 }
5323 
5324 /**
5325  * e1000_io_resume - called when traffic can start flowing again.
5326  * @pdev: Pointer to PCI device
5327  *
5328  * This callback is called when the error recovery driver tells us that
5329  * its OK to resume normal operation. Implementation resembles the
5330  * second-half of the e1000_resume routine.
5331  */
5332 static void e1000_io_resume(struct pci_dev *pdev)
5333 {
5334 	struct net_device *netdev = pci_get_drvdata(pdev);
5335 	struct e1000_adapter *adapter = netdev_priv(netdev);
5336 
5337 	e1000_init_manageability(adapter);
5338 
5339 	if (netif_running(netdev)) {
5340 		if (e1000_up(adapter)) {
5341 			pr_info("can't bring device back up after reset\n");
5342 			return;
5343 		}
5344 	}
5345 
5346 	netif_device_attach(netdev);
5347 }
5348 
5349 /* e1000_main.c */
5350