1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 			       struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 			       struct e1000_rx_ring *rx_ring,
143 			       int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 				     struct e1000_rx_ring *rx_ring,
146 				     int *work_done, int work_to_do);
147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 					 struct e1000_rx_ring *rx_ring,
149 					 int cleaned_count)
150 {
151 }
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 				   struct e1000_rx_ring *rx_ring,
154 				   int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 					 struct e1000_rx_ring *rx_ring,
157 					 int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 			   int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167                                        struct sk_buff *skb);
168 
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev,
171 			    netdev_features_t features);
172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 				     bool filter_on);
174 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 				 __be16 proto, u16 vid);
176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 				  __be16 proto, u16 vid);
178 static void e1000_restore_vlan(struct e1000_adapter *adapter);
179 
180 #ifdef CONFIG_PM
181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184 static void e1000_shutdown(struct pci_dev *pdev);
185 
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void e1000_netpoll (struct net_device *netdev);
189 #endif
190 
191 #define COPYBREAK_DEFAULT 256
192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193 module_param(copybreak, uint, 0644);
194 MODULE_PARM_DESC(copybreak,
195 	"Maximum size of packet that is copied to a new buffer on receive");
196 
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198                      pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201 
202 static const struct pci_error_handlers e1000_err_handler = {
203 	.error_detected = e1000_io_error_detected,
204 	.slot_reset = e1000_io_slot_reset,
205 	.resume = e1000_io_resume,
206 };
207 
208 static struct pci_driver e1000_driver = {
209 	.name     = e1000_driver_name,
210 	.id_table = e1000_pci_tbl,
211 	.probe    = e1000_probe,
212 	.remove   = e1000_remove,
213 #ifdef CONFIG_PM
214 	/* Power Management Hooks */
215 	.suspend  = e1000_suspend,
216 	.resume   = e1000_resume,
217 #endif
218 	.shutdown = e1000_shutdown,
219 	.err_handler = &e1000_err_handler
220 };
221 
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226 
227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228 static int debug = -1;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231 
232 /**
233  * e1000_get_hw_dev - return device
234  * used by hardware layer to print debugging information
235  *
236  **/
237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238 {
239 	struct e1000_adapter *adapter = hw->back;
240 	return adapter->netdev;
241 }
242 
243 /**
244  * e1000_init_module - Driver Registration Routine
245  *
246  * e1000_init_module is the first routine called when the driver is
247  * loaded. All it does is register with the PCI subsystem.
248  **/
249 static int __init e1000_init_module(void)
250 {
251 	int ret;
252 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253 
254 	pr_info("%s\n", e1000_copyright);
255 
256 	ret = pci_register_driver(&e1000_driver);
257 	if (copybreak != COPYBREAK_DEFAULT) {
258 		if (copybreak == 0)
259 			pr_info("copybreak disabled\n");
260 		else
261 			pr_info("copybreak enabled for "
262 				   "packets <= %u bytes\n", copybreak);
263 	}
264 	return ret;
265 }
266 
267 module_init(e1000_init_module);
268 
269 /**
270  * e1000_exit_module - Driver Exit Cleanup Routine
271  *
272  * e1000_exit_module is called just before the driver is removed
273  * from memory.
274  **/
275 static void __exit e1000_exit_module(void)
276 {
277 	pci_unregister_driver(&e1000_driver);
278 }
279 
280 module_exit(e1000_exit_module);
281 
282 static int e1000_request_irq(struct e1000_adapter *adapter)
283 {
284 	struct net_device *netdev = adapter->netdev;
285 	irq_handler_t handler = e1000_intr;
286 	int irq_flags = IRQF_SHARED;
287 	int err;
288 
289 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 	                  netdev);
291 	if (err) {
292 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 	}
294 
295 	return err;
296 }
297 
298 static void e1000_free_irq(struct e1000_adapter *adapter)
299 {
300 	struct net_device *netdev = adapter->netdev;
301 
302 	free_irq(adapter->pdev->irq, netdev);
303 }
304 
305 /**
306  * e1000_irq_disable - Mask off interrupt generation on the NIC
307  * @adapter: board private structure
308  **/
309 static void e1000_irq_disable(struct e1000_adapter *adapter)
310 {
311 	struct e1000_hw *hw = &adapter->hw;
312 
313 	ew32(IMC, ~0);
314 	E1000_WRITE_FLUSH();
315 	synchronize_irq(adapter->pdev->irq);
316 }
317 
318 /**
319  * e1000_irq_enable - Enable default interrupt generation settings
320  * @adapter: board private structure
321  **/
322 static void e1000_irq_enable(struct e1000_adapter *adapter)
323 {
324 	struct e1000_hw *hw = &adapter->hw;
325 
326 	ew32(IMS, IMS_ENABLE_MASK);
327 	E1000_WRITE_FLUSH();
328 }
329 
330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331 {
332 	struct e1000_hw *hw = &adapter->hw;
333 	struct net_device *netdev = adapter->netdev;
334 	u16 vid = hw->mng_cookie.vlan_id;
335 	u16 old_vid = adapter->mng_vlan_id;
336 
337 	if (!e1000_vlan_used(adapter))
338 		return;
339 
340 	if (!test_bit(vid, adapter->active_vlans)) {
341 		if (hw->mng_cookie.status &
342 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 			adapter->mng_vlan_id = vid;
345 		} else {
346 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 		}
348 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 		    (vid != old_vid) &&
350 		    !test_bit(old_vid, adapter->active_vlans))
351 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 					       old_vid);
353 	} else {
354 		adapter->mng_vlan_id = vid;
355 	}
356 }
357 
358 static void e1000_init_manageability(struct e1000_adapter *adapter)
359 {
360 	struct e1000_hw *hw = &adapter->hw;
361 
362 	if (adapter->en_mng_pt) {
363 		u32 manc = er32(MANC);
364 
365 		/* disable hardware interception of ARP */
366 		manc &= ~(E1000_MANC_ARP_EN);
367 
368 		ew32(MANC, manc);
369 	}
370 }
371 
372 static void e1000_release_manageability(struct e1000_adapter *adapter)
373 {
374 	struct e1000_hw *hw = &adapter->hw;
375 
376 	if (adapter->en_mng_pt) {
377 		u32 manc = er32(MANC);
378 
379 		/* re-enable hardware interception of ARP */
380 		manc |= E1000_MANC_ARP_EN;
381 
382 		ew32(MANC, manc);
383 	}
384 }
385 
386 /**
387  * e1000_configure - configure the hardware for RX and TX
388  * @adapter = private board structure
389  **/
390 static void e1000_configure(struct e1000_adapter *adapter)
391 {
392 	struct net_device *netdev = adapter->netdev;
393 	int i;
394 
395 	e1000_set_rx_mode(netdev);
396 
397 	e1000_restore_vlan(adapter);
398 	e1000_init_manageability(adapter);
399 
400 	e1000_configure_tx(adapter);
401 	e1000_setup_rctl(adapter);
402 	e1000_configure_rx(adapter);
403 	/* call E1000_DESC_UNUSED which always leaves
404 	 * at least 1 descriptor unused to make sure
405 	 * next_to_use != next_to_clean
406 	 */
407 	for (i = 0; i < adapter->num_rx_queues; i++) {
408 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 		adapter->alloc_rx_buf(adapter, ring,
410 				      E1000_DESC_UNUSED(ring));
411 	}
412 }
413 
414 int e1000_up(struct e1000_adapter *adapter)
415 {
416 	struct e1000_hw *hw = &adapter->hw;
417 
418 	/* hardware has been reset, we need to reload some things */
419 	e1000_configure(adapter);
420 
421 	clear_bit(__E1000_DOWN, &adapter->flags);
422 
423 	napi_enable(&adapter->napi);
424 
425 	e1000_irq_enable(adapter);
426 
427 	netif_wake_queue(adapter->netdev);
428 
429 	/* fire a link change interrupt to start the watchdog */
430 	ew32(ICS, E1000_ICS_LSC);
431 	return 0;
432 }
433 
434 /**
435  * e1000_power_up_phy - restore link in case the phy was powered down
436  * @adapter: address of board private structure
437  *
438  * The phy may be powered down to save power and turn off link when the
439  * driver is unloaded and wake on lan is not enabled (among others)
440  * *** this routine MUST be followed by a call to e1000_reset ***
441  **/
442 void e1000_power_up_phy(struct e1000_adapter *adapter)
443 {
444 	struct e1000_hw *hw = &adapter->hw;
445 	u16 mii_reg = 0;
446 
447 	/* Just clear the power down bit to wake the phy back up */
448 	if (hw->media_type == e1000_media_type_copper) {
449 		/* according to the manual, the phy will retain its
450 		 * settings across a power-down/up cycle
451 		 */
452 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 		mii_reg &= ~MII_CR_POWER_DOWN;
454 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 	}
456 }
457 
458 static void e1000_power_down_phy(struct e1000_adapter *adapter)
459 {
460 	struct e1000_hw *hw = &adapter->hw;
461 
462 	/* Power down the PHY so no link is implied when interface is down *
463 	 * The PHY cannot be powered down if any of the following is true *
464 	 * (a) WoL is enabled
465 	 * (b) AMT is active
466 	 * (c) SoL/IDER session is active
467 	 */
468 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 	   hw->media_type == e1000_media_type_copper) {
470 		u16 mii_reg = 0;
471 
472 		switch (hw->mac_type) {
473 		case e1000_82540:
474 		case e1000_82545:
475 		case e1000_82545_rev_3:
476 		case e1000_82546:
477 		case e1000_ce4100:
478 		case e1000_82546_rev_3:
479 		case e1000_82541:
480 		case e1000_82541_rev_2:
481 		case e1000_82547:
482 		case e1000_82547_rev_2:
483 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 				goto out;
485 			break;
486 		default:
487 			goto out;
488 		}
489 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 		mii_reg |= MII_CR_POWER_DOWN;
491 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 		msleep(1);
493 	}
494 out:
495 	return;
496 }
497 
498 static void e1000_down_and_stop(struct e1000_adapter *adapter)
499 {
500 	set_bit(__E1000_DOWN, &adapter->flags);
501 
502 	cancel_delayed_work_sync(&adapter->watchdog_task);
503 
504 	/*
505 	 * Since the watchdog task can reschedule other tasks, we should cancel
506 	 * it first, otherwise we can run into the situation when a work is
507 	 * still running after the adapter has been turned down.
508 	 */
509 
510 	cancel_delayed_work_sync(&adapter->phy_info_task);
511 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
512 
513 	/* Only kill reset task if adapter is not resetting */
514 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 		cancel_work_sync(&adapter->reset_task);
516 }
517 
518 void e1000_down(struct e1000_adapter *adapter)
519 {
520 	struct e1000_hw *hw = &adapter->hw;
521 	struct net_device *netdev = adapter->netdev;
522 	u32 rctl, tctl;
523 
524 	netif_carrier_off(netdev);
525 
526 	/* disable receives in the hardware */
527 	rctl = er32(RCTL);
528 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 	/* flush and sleep below */
530 
531 	netif_tx_disable(netdev);
532 
533 	/* disable transmits in the hardware */
534 	tctl = er32(TCTL);
535 	tctl &= ~E1000_TCTL_EN;
536 	ew32(TCTL, tctl);
537 	/* flush both disables and wait for them to finish */
538 	E1000_WRITE_FLUSH();
539 	msleep(10);
540 
541 	napi_disable(&adapter->napi);
542 
543 	e1000_irq_disable(adapter);
544 
545 	/* Setting DOWN must be after irq_disable to prevent
546 	 * a screaming interrupt.  Setting DOWN also prevents
547 	 * tasks from rescheduling.
548 	 */
549 	e1000_down_and_stop(adapter);
550 
551 	adapter->link_speed = 0;
552 	adapter->link_duplex = 0;
553 
554 	e1000_reset(adapter);
555 	e1000_clean_all_tx_rings(adapter);
556 	e1000_clean_all_rx_rings(adapter);
557 }
558 
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561 	WARN_ON(in_interrupt());
562 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 		msleep(1);
564 	e1000_down(adapter);
565 	e1000_up(adapter);
566 	clear_bit(__E1000_RESETTING, &adapter->flags);
567 }
568 
569 void e1000_reset(struct e1000_adapter *adapter)
570 {
571 	struct e1000_hw *hw = &adapter->hw;
572 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 	bool legacy_pba_adjust = false;
574 	u16 hwm;
575 
576 	/* Repartition Pba for greater than 9k mtu
577 	 * To take effect CTRL.RST is required.
578 	 */
579 
580 	switch (hw->mac_type) {
581 	case e1000_82542_rev2_0:
582 	case e1000_82542_rev2_1:
583 	case e1000_82543:
584 	case e1000_82544:
585 	case e1000_82540:
586 	case e1000_82541:
587 	case e1000_82541_rev_2:
588 		legacy_pba_adjust = true;
589 		pba = E1000_PBA_48K;
590 		break;
591 	case e1000_82545:
592 	case e1000_82545_rev_3:
593 	case e1000_82546:
594 	case e1000_ce4100:
595 	case e1000_82546_rev_3:
596 		pba = E1000_PBA_48K;
597 		break;
598 	case e1000_82547:
599 	case e1000_82547_rev_2:
600 		legacy_pba_adjust = true;
601 		pba = E1000_PBA_30K;
602 		break;
603 	case e1000_undefined:
604 	case e1000_num_macs:
605 		break;
606 	}
607 
608 	if (legacy_pba_adjust) {
609 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 			pba -= 8; /* allocate more FIFO for Tx */
611 
612 		if (hw->mac_type == e1000_82547) {
613 			adapter->tx_fifo_head = 0;
614 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 			adapter->tx_fifo_size =
616 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 			atomic_set(&adapter->tx_fifo_stall, 0);
618 		}
619 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
620 		/* adjust PBA for jumbo frames */
621 		ew32(PBA, pba);
622 
623 		/* To maintain wire speed transmits, the Tx FIFO should be
624 		 * large enough to accommodate two full transmit packets,
625 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
626 		 * the Rx FIFO should be large enough to accommodate at least
627 		 * one full receive packet and is similarly rounded up and
628 		 * expressed in KB.
629 		 */
630 		pba = er32(PBA);
631 		/* upper 16 bits has Tx packet buffer allocation size in KB */
632 		tx_space = pba >> 16;
633 		/* lower 16 bits has Rx packet buffer allocation size in KB */
634 		pba &= 0xffff;
635 		/* the Tx fifo also stores 16 bytes of information about the Tx
636 		 * but don't include ethernet FCS because hardware appends it
637 		 */
638 		min_tx_space = (hw->max_frame_size +
639 		                sizeof(struct e1000_tx_desc) -
640 		                ETH_FCS_LEN) * 2;
641 		min_tx_space = ALIGN(min_tx_space, 1024);
642 		min_tx_space >>= 10;
643 		/* software strips receive CRC, so leave room for it */
644 		min_rx_space = hw->max_frame_size;
645 		min_rx_space = ALIGN(min_rx_space, 1024);
646 		min_rx_space >>= 10;
647 
648 		/* If current Tx allocation is less than the min Tx FIFO size,
649 		 * and the min Tx FIFO size is less than the current Rx FIFO
650 		 * allocation, take space away from current Rx allocation
651 		 */
652 		if (tx_space < min_tx_space &&
653 		    ((min_tx_space - tx_space) < pba)) {
654 			pba = pba - (min_tx_space - tx_space);
655 
656 			/* PCI/PCIx hardware has PBA alignment constraints */
657 			switch (hw->mac_type) {
658 			case e1000_82545 ... e1000_82546_rev_3:
659 				pba &= ~(E1000_PBA_8K - 1);
660 				break;
661 			default:
662 				break;
663 			}
664 
665 			/* if short on Rx space, Rx wins and must trump Tx
666 			 * adjustment or use Early Receive if available
667 			 */
668 			if (pba < min_rx_space)
669 				pba = min_rx_space;
670 		}
671 	}
672 
673 	ew32(PBA, pba);
674 
675 	/* flow control settings:
676 	 * The high water mark must be low enough to fit one full frame
677 	 * (or the size used for early receive) above it in the Rx FIFO.
678 	 * Set it to the lower of:
679 	 * - 90% of the Rx FIFO size, and
680 	 * - the full Rx FIFO size minus the early receive size (for parts
681 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
682 	 * - the full Rx FIFO size minus one full frame
683 	 */
684 	hwm = min(((pba << 10) * 9 / 10),
685 		  ((pba << 10) - hw->max_frame_size));
686 
687 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
688 	hw->fc_low_water = hw->fc_high_water - 8;
689 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 	hw->fc_send_xon = 1;
691 	hw->fc = hw->original_fc;
692 
693 	/* Allow time for pending master requests to run */
694 	e1000_reset_hw(hw);
695 	if (hw->mac_type >= e1000_82544)
696 		ew32(WUC, 0);
697 
698 	if (e1000_init_hw(hw))
699 		e_dev_err("Hardware Error\n");
700 	e1000_update_mng_vlan(adapter);
701 
702 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 	if (hw->mac_type >= e1000_82544 &&
704 	    hw->autoneg == 1 &&
705 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 		u32 ctrl = er32(CTRL);
707 		/* clear phy power management bit if we are in gig only mode,
708 		 * which if enabled will attempt negotiation to 100Mb, which
709 		 * can cause a loss of link at power off or driver unload
710 		 */
711 		ctrl &= ~E1000_CTRL_SWDPIN3;
712 		ew32(CTRL, ctrl);
713 	}
714 
715 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717 
718 	e1000_reset_adaptive(hw);
719 	e1000_phy_get_info(hw, &adapter->phy_info);
720 
721 	e1000_release_manageability(adapter);
722 }
723 
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726 {
727 	struct net_device *netdev = adapter->netdev;
728 	struct ethtool_eeprom eeprom;
729 	const struct ethtool_ops *ops = netdev->ethtool_ops;
730 	u8 *data;
731 	int i;
732 	u16 csum_old, csum_new = 0;
733 
734 	eeprom.len = ops->get_eeprom_len(netdev);
735 	eeprom.offset = 0;
736 
737 	data = kmalloc(eeprom.len, GFP_KERNEL);
738 	if (!data)
739 		return;
740 
741 	ops->get_eeprom(netdev, &eeprom, data);
742 
743 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 		csum_new += data[i] + (data[i + 1] << 8);
747 	csum_new = EEPROM_SUM - csum_new;
748 
749 	pr_err("/*********************/\n");
750 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 	pr_err("Calculated              : 0x%04x\n", csum_new);
752 
753 	pr_err("Offset    Values\n");
754 	pr_err("========  ======\n");
755 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756 
757 	pr_err("Include this output when contacting your support provider.\n");
758 	pr_err("This is not a software error! Something bad happened to\n");
759 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 	pr_err("result in further problems, possibly loss of data,\n");
761 	pr_err("corruption or system hangs!\n");
762 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 	pr_err("which is invalid and requires you to set the proper MAC\n");
764 	pr_err("address manually before continuing to enable this network\n");
765 	pr_err("device. Please inspect the EEPROM dump and report the\n");
766 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 	pr_err("/*********************/\n");
768 
769 	kfree(data);
770 }
771 
772 /**
773  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774  * @pdev: PCI device information struct
775  *
776  * Return true if an adapter needs ioport resources
777  **/
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
779 {
780 	switch (pdev->device) {
781 	case E1000_DEV_ID_82540EM:
782 	case E1000_DEV_ID_82540EM_LOM:
783 	case E1000_DEV_ID_82540EP:
784 	case E1000_DEV_ID_82540EP_LOM:
785 	case E1000_DEV_ID_82540EP_LP:
786 	case E1000_DEV_ID_82541EI:
787 	case E1000_DEV_ID_82541EI_MOBILE:
788 	case E1000_DEV_ID_82541ER:
789 	case E1000_DEV_ID_82541ER_LOM:
790 	case E1000_DEV_ID_82541GI:
791 	case E1000_DEV_ID_82541GI_LF:
792 	case E1000_DEV_ID_82541GI_MOBILE:
793 	case E1000_DEV_ID_82544EI_COPPER:
794 	case E1000_DEV_ID_82544EI_FIBER:
795 	case E1000_DEV_ID_82544GC_COPPER:
796 	case E1000_DEV_ID_82544GC_LOM:
797 	case E1000_DEV_ID_82545EM_COPPER:
798 	case E1000_DEV_ID_82545EM_FIBER:
799 	case E1000_DEV_ID_82546EB_COPPER:
800 	case E1000_DEV_ID_82546EB_FIBER:
801 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 		return true;
803 	default:
804 		return false;
805 	}
806 }
807 
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 	netdev_features_t features)
810 {
811 	/* Since there is no support for separate Rx/Tx vlan accel
812 	 * enable/disable make sure Tx flag is always in same state as Rx.
813 	 */
814 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 		features |= NETIF_F_HW_VLAN_CTAG_TX;
816 	else
817 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818 
819 	return features;
820 }
821 
822 static int e1000_set_features(struct net_device *netdev,
823 	netdev_features_t features)
824 {
825 	struct e1000_adapter *adapter = netdev_priv(netdev);
826 	netdev_features_t changed = features ^ netdev->features;
827 
828 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 		e1000_vlan_mode(netdev, features);
830 
831 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 		return 0;
833 
834 	netdev->features = features;
835 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836 
837 	if (netif_running(netdev))
838 		e1000_reinit_locked(adapter);
839 	else
840 		e1000_reset(adapter);
841 
842 	return 0;
843 }
844 
845 static const struct net_device_ops e1000_netdev_ops = {
846 	.ndo_open		= e1000_open,
847 	.ndo_stop		= e1000_close,
848 	.ndo_start_xmit		= e1000_xmit_frame,
849 	.ndo_get_stats		= e1000_get_stats,
850 	.ndo_set_rx_mode	= e1000_set_rx_mode,
851 	.ndo_set_mac_address	= e1000_set_mac,
852 	.ndo_tx_timeout		= e1000_tx_timeout,
853 	.ndo_change_mtu		= e1000_change_mtu,
854 	.ndo_do_ioctl		= e1000_ioctl,
855 	.ndo_validate_addr	= eth_validate_addr,
856 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
857 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
858 #ifdef CONFIG_NET_POLL_CONTROLLER
859 	.ndo_poll_controller	= e1000_netpoll,
860 #endif
861 	.ndo_fix_features	= e1000_fix_features,
862 	.ndo_set_features	= e1000_set_features,
863 };
864 
865 /**
866  * e1000_init_hw_struct - initialize members of hw struct
867  * @adapter: board private struct
868  * @hw: structure used by e1000_hw.c
869  *
870  * Factors out initialization of the e1000_hw struct to its own function
871  * that can be called very early at init (just after struct allocation).
872  * Fields are initialized based on PCI device information and
873  * OS network device settings (MTU size).
874  * Returns negative error codes if MAC type setup fails.
875  */
876 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 				struct e1000_hw *hw)
878 {
879 	struct pci_dev *pdev = adapter->pdev;
880 
881 	/* PCI config space info */
882 	hw->vendor_id = pdev->vendor;
883 	hw->device_id = pdev->device;
884 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 	hw->subsystem_id = pdev->subsystem_device;
886 	hw->revision_id = pdev->revision;
887 
888 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889 
890 	hw->max_frame_size = adapter->netdev->mtu +
891 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893 
894 	/* identify the MAC */
895 	if (e1000_set_mac_type(hw)) {
896 		e_err(probe, "Unknown MAC Type\n");
897 		return -EIO;
898 	}
899 
900 	switch (hw->mac_type) {
901 	default:
902 		break;
903 	case e1000_82541:
904 	case e1000_82547:
905 	case e1000_82541_rev_2:
906 	case e1000_82547_rev_2:
907 		hw->phy_init_script = 1;
908 		break;
909 	}
910 
911 	e1000_set_media_type(hw);
912 	e1000_get_bus_info(hw);
913 
914 	hw->wait_autoneg_complete = false;
915 	hw->tbi_compatibility_en = true;
916 	hw->adaptive_ifs = true;
917 
918 	/* Copper options */
919 
920 	if (hw->media_type == e1000_media_type_copper) {
921 		hw->mdix = AUTO_ALL_MODES;
922 		hw->disable_polarity_correction = false;
923 		hw->master_slave = E1000_MASTER_SLAVE;
924 	}
925 
926 	return 0;
927 }
928 
929 /**
930  * e1000_probe - Device Initialization Routine
931  * @pdev: PCI device information struct
932  * @ent: entry in e1000_pci_tbl
933  *
934  * Returns 0 on success, negative on failure
935  *
936  * e1000_probe initializes an adapter identified by a pci_dev structure.
937  * The OS initialization, configuring of the adapter private structure,
938  * and a hardware reset occur.
939  **/
940 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941 {
942 	struct net_device *netdev;
943 	struct e1000_adapter *adapter;
944 	struct e1000_hw *hw;
945 
946 	static int cards_found = 0;
947 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
948 	int i, err, pci_using_dac;
949 	u16 eeprom_data = 0;
950 	u16 tmp = 0;
951 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 	int bars, need_ioport;
953 
954 	/* do not allocate ioport bars when not needed */
955 	need_ioport = e1000_is_need_ioport(pdev);
956 	if (need_ioport) {
957 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 		err = pci_enable_device(pdev);
959 	} else {
960 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 		err = pci_enable_device_mem(pdev);
962 	}
963 	if (err)
964 		return err;
965 
966 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 	if (err)
968 		goto err_pci_reg;
969 
970 	pci_set_master(pdev);
971 	err = pci_save_state(pdev);
972 	if (err)
973 		goto err_alloc_etherdev;
974 
975 	err = -ENOMEM;
976 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 	if (!netdev)
978 		goto err_alloc_etherdev;
979 
980 	SET_NETDEV_DEV(netdev, &pdev->dev);
981 
982 	pci_set_drvdata(pdev, netdev);
983 	adapter = netdev_priv(netdev);
984 	adapter->netdev = netdev;
985 	adapter->pdev = pdev;
986 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 	adapter->bars = bars;
988 	adapter->need_ioport = need_ioport;
989 
990 	hw = &adapter->hw;
991 	hw->back = adapter;
992 
993 	err = -EIO;
994 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 	if (!hw->hw_addr)
996 		goto err_ioremap;
997 
998 	if (adapter->need_ioport) {
999 		for (i = BAR_1; i <= BAR_5; i++) {
1000 			if (pci_resource_len(pdev, i) == 0)
1001 				continue;
1002 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 				hw->io_base = pci_resource_start(pdev, i);
1004 				break;
1005 			}
1006 		}
1007 	}
1008 
1009 	/* make ready for any if (hw->...) below */
1010 	err = e1000_init_hw_struct(adapter, hw);
1011 	if (err)
1012 		goto err_sw_init;
1013 
1014 	/* there is a workaround being applied below that limits
1015 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1016 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 	 */
1018 	pci_using_dac = 0;
1019 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 		pci_using_dac = 1;
1022 	} else {
1023 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 		if (err) {
1025 			pr_err("No usable DMA config, aborting\n");
1026 			goto err_dma;
1027 		}
1028 	}
1029 
1030 	netdev->netdev_ops = &e1000_netdev_ops;
1031 	e1000_set_ethtool_ops(netdev);
1032 	netdev->watchdog_timeo = 5 * HZ;
1033 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034 
1035 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036 
1037 	adapter->bd_number = cards_found;
1038 
1039 	/* setup the private structure */
1040 
1041 	err = e1000_sw_init(adapter);
1042 	if (err)
1043 		goto err_sw_init;
1044 
1045 	err = -EIO;
1046 	if (hw->mac_type == e1000_ce4100) {
1047 		hw->ce4100_gbe_mdio_base_virt =
1048 					ioremap(pci_resource_start(pdev, BAR_1),
1049 		                                pci_resource_len(pdev, BAR_1));
1050 
1051 		if (!hw->ce4100_gbe_mdio_base_virt)
1052 			goto err_mdio_ioremap;
1053 	}
1054 
1055 	if (hw->mac_type >= e1000_82543) {
1056 		netdev->hw_features = NETIF_F_SG |
1057 				   NETIF_F_HW_CSUM |
1058 				   NETIF_F_HW_VLAN_CTAG_RX;
1059 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1061 	}
1062 
1063 	if ((hw->mac_type >= e1000_82544) &&
1064 	   (hw->mac_type != e1000_82547))
1065 		netdev->hw_features |= NETIF_F_TSO;
1066 
1067 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1068 
1069 	netdev->features |= netdev->hw_features;
1070 	netdev->hw_features |= (NETIF_F_RXCSUM |
1071 				NETIF_F_RXALL |
1072 				NETIF_F_RXFCS);
1073 
1074 	if (pci_using_dac) {
1075 		netdev->features |= NETIF_F_HIGHDMA;
1076 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 	}
1078 
1079 	netdev->vlan_features |= (NETIF_F_TSO |
1080 				  NETIF_F_HW_CSUM |
1081 				  NETIF_F_SG);
1082 
1083 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 		netdev->priv_flags |= IFF_UNICAST_FLT;
1087 
1088 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089 
1090 	/* initialize eeprom parameters */
1091 	if (e1000_init_eeprom_params(hw)) {
1092 		e_err(probe, "EEPROM initialization failed\n");
1093 		goto err_eeprom;
1094 	}
1095 
1096 	/* before reading the EEPROM, reset the controller to
1097 	 * put the device in a known good starting state
1098 	 */
1099 
1100 	e1000_reset_hw(hw);
1101 
1102 	/* make sure the EEPROM is good */
1103 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1104 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105 		e1000_dump_eeprom(adapter);
1106 		/* set MAC address to all zeroes to invalidate and temporary
1107 		 * disable this device for the user. This blocks regular
1108 		 * traffic while still permitting ethtool ioctls from reaching
1109 		 * the hardware as well as allowing the user to run the
1110 		 * interface after manually setting a hw addr using
1111 		 * `ip set address`
1112 		 */
1113 		memset(hw->mac_addr, 0, netdev->addr_len);
1114 	} else {
1115 		/* copy the MAC address out of the EEPROM */
1116 		if (e1000_read_mac_addr(hw))
1117 			e_err(probe, "EEPROM Read Error\n");
1118 	}
1119 	/* don't block initialization here due to bad MAC address */
1120 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121 
1122 	if (!is_valid_ether_addr(netdev->dev_addr))
1123 		e_err(probe, "Invalid MAC Address\n");
1124 
1125 
1126 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128 			  e1000_82547_tx_fifo_stall_task);
1129 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131 
1132 	e1000_check_options(adapter);
1133 
1134 	/* Initial Wake on LAN setting
1135 	 * If APM wake is enabled in the EEPROM,
1136 	 * enable the ACPI Magic Packet filter
1137 	 */
1138 
1139 	switch (hw->mac_type) {
1140 	case e1000_82542_rev2_0:
1141 	case e1000_82542_rev2_1:
1142 	case e1000_82543:
1143 		break;
1144 	case e1000_82544:
1145 		e1000_read_eeprom(hw,
1146 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148 		break;
1149 	case e1000_82546:
1150 	case e1000_82546_rev_3:
1151 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1152 			e1000_read_eeprom(hw,
1153 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154 			break;
1155 		}
1156 		/* Fall Through */
1157 	default:
1158 		e1000_read_eeprom(hw,
1159 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160 		break;
1161 	}
1162 	if (eeprom_data & eeprom_apme_mask)
1163 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1164 
1165 	/* now that we have the eeprom settings, apply the special cases
1166 	 * where the eeprom may be wrong or the board simply won't support
1167 	 * wake on lan on a particular port
1168 	 */
1169 	switch (pdev->device) {
1170 	case E1000_DEV_ID_82546GB_PCIE:
1171 		adapter->eeprom_wol = 0;
1172 		break;
1173 	case E1000_DEV_ID_82546EB_FIBER:
1174 	case E1000_DEV_ID_82546GB_FIBER:
1175 		/* Wake events only supported on port A for dual fiber
1176 		 * regardless of eeprom setting
1177 		 */
1178 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179 			adapter->eeprom_wol = 0;
1180 		break;
1181 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182 		/* if quad port adapter, disable WoL on all but port A */
1183 		if (global_quad_port_a != 0)
1184 			adapter->eeprom_wol = 0;
1185 		else
1186 			adapter->quad_port_a = true;
1187 		/* Reset for multiple quad port adapters */
1188 		if (++global_quad_port_a == 4)
1189 			global_quad_port_a = 0;
1190 		break;
1191 	}
1192 
1193 	/* initialize the wol settings based on the eeprom settings */
1194 	adapter->wol = adapter->eeprom_wol;
1195 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196 
1197 	/* Auto detect PHY address */
1198 	if (hw->mac_type == e1000_ce4100) {
1199 		for (i = 0; i < 32; i++) {
1200 			hw->phy_addr = i;
1201 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202 			if (tmp == 0 || tmp == 0xFF) {
1203 				if (i == 31)
1204 					goto err_eeprom;
1205 				continue;
1206 			} else
1207 				break;
1208 		}
1209 	}
1210 
1211 	/* reset the hardware with the new settings */
1212 	e1000_reset(adapter);
1213 
1214 	strcpy(netdev->name, "eth%d");
1215 	err = register_netdev(netdev);
1216 	if (err)
1217 		goto err_register;
1218 
1219 	e1000_vlan_filter_on_off(adapter, false);
1220 
1221 	/* print bus type/speed/width info */
1222 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229 	       netdev->dev_addr);
1230 
1231 	/* carrier off reporting is important to ethtool even BEFORE open */
1232 	netif_carrier_off(netdev);
1233 
1234 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235 
1236 	cards_found++;
1237 	return 0;
1238 
1239 err_register:
1240 err_eeprom:
1241 	e1000_phy_hw_reset(hw);
1242 
1243 	if (hw->flash_address)
1244 		iounmap(hw->flash_address);
1245 	kfree(adapter->tx_ring);
1246 	kfree(adapter->rx_ring);
1247 err_dma:
1248 err_sw_init:
1249 err_mdio_ioremap:
1250 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1251 	iounmap(hw->hw_addr);
1252 err_ioremap:
1253 	free_netdev(netdev);
1254 err_alloc_etherdev:
1255 	pci_release_selected_regions(pdev, bars);
1256 err_pci_reg:
1257 	pci_disable_device(pdev);
1258 	return err;
1259 }
1260 
1261 /**
1262  * e1000_remove - Device Removal Routine
1263  * @pdev: PCI device information struct
1264  *
1265  * e1000_remove is called by the PCI subsystem to alert the driver
1266  * that it should release a PCI device.  The could be caused by a
1267  * Hot-Plug event, or because the driver is going to be removed from
1268  * memory.
1269  **/
1270 static void e1000_remove(struct pci_dev *pdev)
1271 {
1272 	struct net_device *netdev = pci_get_drvdata(pdev);
1273 	struct e1000_adapter *adapter = netdev_priv(netdev);
1274 	struct e1000_hw *hw = &adapter->hw;
1275 
1276 	e1000_down_and_stop(adapter);
1277 	e1000_release_manageability(adapter);
1278 
1279 	unregister_netdev(netdev);
1280 
1281 	e1000_phy_hw_reset(hw);
1282 
1283 	kfree(adapter->tx_ring);
1284 	kfree(adapter->rx_ring);
1285 
1286 	if (hw->mac_type == e1000_ce4100)
1287 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1288 	iounmap(hw->hw_addr);
1289 	if (hw->flash_address)
1290 		iounmap(hw->flash_address);
1291 	pci_release_selected_regions(pdev, adapter->bars);
1292 
1293 	free_netdev(netdev);
1294 
1295 	pci_disable_device(pdev);
1296 }
1297 
1298 /**
1299  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300  * @adapter: board private structure to initialize
1301  *
1302  * e1000_sw_init initializes the Adapter private data structure.
1303  * e1000_init_hw_struct MUST be called before this function
1304  **/
1305 static int e1000_sw_init(struct e1000_adapter *adapter)
1306 {
1307 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308 
1309 	adapter->num_tx_queues = 1;
1310 	adapter->num_rx_queues = 1;
1311 
1312 	if (e1000_alloc_queues(adapter)) {
1313 		e_err(probe, "Unable to allocate memory for queues\n");
1314 		return -ENOMEM;
1315 	}
1316 
1317 	/* Explicitly disable IRQ since the NIC can be in any state. */
1318 	e1000_irq_disable(adapter);
1319 
1320 	spin_lock_init(&adapter->stats_lock);
1321 
1322 	set_bit(__E1000_DOWN, &adapter->flags);
1323 
1324 	return 0;
1325 }
1326 
1327 /**
1328  * e1000_alloc_queues - Allocate memory for all rings
1329  * @adapter: board private structure to initialize
1330  *
1331  * We allocate one ring per queue at run-time since we don't know the
1332  * number of queues at compile-time.
1333  **/
1334 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335 {
1336 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338 	if (!adapter->tx_ring)
1339 		return -ENOMEM;
1340 
1341 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343 	if (!adapter->rx_ring) {
1344 		kfree(adapter->tx_ring);
1345 		return -ENOMEM;
1346 	}
1347 
1348 	return E1000_SUCCESS;
1349 }
1350 
1351 /**
1352  * e1000_open - Called when a network interface is made active
1353  * @netdev: network interface device structure
1354  *
1355  * Returns 0 on success, negative value on failure
1356  *
1357  * The open entry point is called when a network interface is made
1358  * active by the system (IFF_UP).  At this point all resources needed
1359  * for transmit and receive operations are allocated, the interrupt
1360  * handler is registered with the OS, the watchdog task is started,
1361  * and the stack is notified that the interface is ready.
1362  **/
1363 static int e1000_open(struct net_device *netdev)
1364 {
1365 	struct e1000_adapter *adapter = netdev_priv(netdev);
1366 	struct e1000_hw *hw = &adapter->hw;
1367 	int err;
1368 
1369 	/* disallow open during test */
1370 	if (test_bit(__E1000_TESTING, &adapter->flags))
1371 		return -EBUSY;
1372 
1373 	netif_carrier_off(netdev);
1374 
1375 	/* allocate transmit descriptors */
1376 	err = e1000_setup_all_tx_resources(adapter);
1377 	if (err)
1378 		goto err_setup_tx;
1379 
1380 	/* allocate receive descriptors */
1381 	err = e1000_setup_all_rx_resources(adapter);
1382 	if (err)
1383 		goto err_setup_rx;
1384 
1385 	e1000_power_up_phy(adapter);
1386 
1387 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388 	if ((hw->mng_cookie.status &
1389 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390 		e1000_update_mng_vlan(adapter);
1391 	}
1392 
1393 	/* before we allocate an interrupt, we must be ready to handle it.
1394 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395 	 * as soon as we call pci_request_irq, so we have to setup our
1396 	 * clean_rx handler before we do so.
1397 	 */
1398 	e1000_configure(adapter);
1399 
1400 	err = e1000_request_irq(adapter);
1401 	if (err)
1402 		goto err_req_irq;
1403 
1404 	/* From here on the code is the same as e1000_up() */
1405 	clear_bit(__E1000_DOWN, &adapter->flags);
1406 
1407 	napi_enable(&adapter->napi);
1408 
1409 	e1000_irq_enable(adapter);
1410 
1411 	netif_start_queue(netdev);
1412 
1413 	/* fire a link status change interrupt to start the watchdog */
1414 	ew32(ICS, E1000_ICS_LSC);
1415 
1416 	return E1000_SUCCESS;
1417 
1418 err_req_irq:
1419 	e1000_power_down_phy(adapter);
1420 	e1000_free_all_rx_resources(adapter);
1421 err_setup_rx:
1422 	e1000_free_all_tx_resources(adapter);
1423 err_setup_tx:
1424 	e1000_reset(adapter);
1425 
1426 	return err;
1427 }
1428 
1429 /**
1430  * e1000_close - Disables a network interface
1431  * @netdev: network interface device structure
1432  *
1433  * Returns 0, this is not allowed to fail
1434  *
1435  * The close entry point is called when an interface is de-activated
1436  * by the OS.  The hardware is still under the drivers control, but
1437  * needs to be disabled.  A global MAC reset is issued to stop the
1438  * hardware, and all transmit and receive resources are freed.
1439  **/
1440 static int e1000_close(struct net_device *netdev)
1441 {
1442 	struct e1000_adapter *adapter = netdev_priv(netdev);
1443 	struct e1000_hw *hw = &adapter->hw;
1444 	int count = E1000_CHECK_RESET_COUNT;
1445 
1446 	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447 		usleep_range(10000, 20000);
1448 
1449 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450 	e1000_down(adapter);
1451 	e1000_power_down_phy(adapter);
1452 	e1000_free_irq(adapter);
1453 
1454 	e1000_free_all_tx_resources(adapter);
1455 	e1000_free_all_rx_resources(adapter);
1456 
1457 	/* kill manageability vlan ID if supported, but not if a vlan with
1458 	 * the same ID is registered on the host OS (let 8021q kill it)
1459 	 */
1460 	if ((hw->mng_cookie.status &
1461 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464 				       adapter->mng_vlan_id);
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 /**
1471  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472  * @adapter: address of board private structure
1473  * @start: address of beginning of memory
1474  * @len: length of memory
1475  **/
1476 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477 				  unsigned long len)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 	unsigned long begin = (unsigned long)start;
1481 	unsigned long end = begin + len;
1482 
1483 	/* First rev 82545 and 82546 need to not allow any memory
1484 	 * write location to cross 64k boundary due to errata 23
1485 	 */
1486 	if (hw->mac_type == e1000_82545 ||
1487 	    hw->mac_type == e1000_ce4100 ||
1488 	    hw->mac_type == e1000_82546) {
1489 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490 	}
1491 
1492 	return true;
1493 }
1494 
1495 /**
1496  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497  * @adapter: board private structure
1498  * @txdr:    tx descriptor ring (for a specific queue) to setup
1499  *
1500  * Return 0 on success, negative on failure
1501  **/
1502 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503 				    struct e1000_tx_ring *txdr)
1504 {
1505 	struct pci_dev *pdev = adapter->pdev;
1506 	int size;
1507 
1508 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509 	txdr->buffer_info = vzalloc(size);
1510 	if (!txdr->buffer_info)
1511 		return -ENOMEM;
1512 
1513 	/* round up to nearest 4K */
1514 
1515 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516 	txdr->size = ALIGN(txdr->size, 4096);
1517 
1518 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519 					GFP_KERNEL);
1520 	if (!txdr->desc) {
1521 setup_tx_desc_die:
1522 		vfree(txdr->buffer_info);
1523 		return -ENOMEM;
1524 	}
1525 
1526 	/* Fix for errata 23, can't cross 64kB boundary */
1527 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528 		void *olddesc = txdr->desc;
1529 		dma_addr_t olddma = txdr->dma;
1530 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531 		      txdr->size, txdr->desc);
1532 		/* Try again, without freeing the previous */
1533 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534 						&txdr->dma, GFP_KERNEL);
1535 		/* Failed allocation, critical failure */
1536 		if (!txdr->desc) {
1537 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538 					  olddma);
1539 			goto setup_tx_desc_die;
1540 		}
1541 
1542 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543 			/* give up */
1544 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545 					  txdr->dma);
1546 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 					  olddma);
1548 			e_err(probe, "Unable to allocate aligned memory "
1549 			      "for the transmit descriptor ring\n");
1550 			vfree(txdr->buffer_info);
1551 			return -ENOMEM;
1552 		} else {
1553 			/* Free old allocation, new allocation was successful */
1554 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555 					  olddma);
1556 		}
1557 	}
1558 	memset(txdr->desc, 0, txdr->size);
1559 
1560 	txdr->next_to_use = 0;
1561 	txdr->next_to_clean = 0;
1562 
1563 	return 0;
1564 }
1565 
1566 /**
1567  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568  * 				  (Descriptors) for all queues
1569  * @adapter: board private structure
1570  *
1571  * Return 0 on success, negative on failure
1572  **/
1573 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574 {
1575 	int i, err = 0;
1576 
1577 	for (i = 0; i < adapter->num_tx_queues; i++) {
1578 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579 		if (err) {
1580 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581 			for (i-- ; i >= 0; i--)
1582 				e1000_free_tx_resources(adapter,
1583 							&adapter->tx_ring[i]);
1584 			break;
1585 		}
1586 	}
1587 
1588 	return err;
1589 }
1590 
1591 /**
1592  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593  * @adapter: board private structure
1594  *
1595  * Configure the Tx unit of the MAC after a reset.
1596  **/
1597 static void e1000_configure_tx(struct e1000_adapter *adapter)
1598 {
1599 	u64 tdba;
1600 	struct e1000_hw *hw = &adapter->hw;
1601 	u32 tdlen, tctl, tipg;
1602 	u32 ipgr1, ipgr2;
1603 
1604 	/* Setup the HW Tx Head and Tail descriptor pointers */
1605 
1606 	switch (adapter->num_tx_queues) {
1607 	case 1:
1608 	default:
1609 		tdba = adapter->tx_ring[0].dma;
1610 		tdlen = adapter->tx_ring[0].count *
1611 			sizeof(struct e1000_tx_desc);
1612 		ew32(TDLEN, tdlen);
1613 		ew32(TDBAH, (tdba >> 32));
1614 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615 		ew32(TDT, 0);
1616 		ew32(TDH, 0);
1617 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618 					   E1000_TDH : E1000_82542_TDH);
1619 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620 					   E1000_TDT : E1000_82542_TDT);
1621 		break;
1622 	}
1623 
1624 	/* Set the default values for the Tx Inter Packet Gap timer */
1625 	if ((hw->media_type == e1000_media_type_fiber ||
1626 	     hw->media_type == e1000_media_type_internal_serdes))
1627 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628 	else
1629 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630 
1631 	switch (hw->mac_type) {
1632 	case e1000_82542_rev2_0:
1633 	case e1000_82542_rev2_1:
1634 		tipg = DEFAULT_82542_TIPG_IPGT;
1635 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637 		break;
1638 	default:
1639 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641 		break;
1642 	}
1643 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645 	ew32(TIPG, tipg);
1646 
1647 	/* Set the Tx Interrupt Delay register */
1648 
1649 	ew32(TIDV, adapter->tx_int_delay);
1650 	if (hw->mac_type >= e1000_82540)
1651 		ew32(TADV, adapter->tx_abs_int_delay);
1652 
1653 	/* Program the Transmit Control Register */
1654 
1655 	tctl = er32(TCTL);
1656 	tctl &= ~E1000_TCTL_CT;
1657 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659 
1660 	e1000_config_collision_dist(hw);
1661 
1662 	/* Setup Transmit Descriptor Settings for eop descriptor */
1663 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664 
1665 	/* only set IDE if we are delaying interrupts using the timers */
1666 	if (adapter->tx_int_delay)
1667 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668 
1669 	if (hw->mac_type < e1000_82543)
1670 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671 	else
1672 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673 
1674 	/* Cache if we're 82544 running in PCI-X because we'll
1675 	 * need this to apply a workaround later in the send path.
1676 	 */
1677 	if (hw->mac_type == e1000_82544 &&
1678 	    hw->bus_type == e1000_bus_type_pcix)
1679 		adapter->pcix_82544 = true;
1680 
1681 	ew32(TCTL, tctl);
1682 
1683 }
1684 
1685 /**
1686  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687  * @adapter: board private structure
1688  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1689  *
1690  * Returns 0 on success, negative on failure
1691  **/
1692 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693 				    struct e1000_rx_ring *rxdr)
1694 {
1695 	struct pci_dev *pdev = adapter->pdev;
1696 	int size, desc_len;
1697 
1698 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699 	rxdr->buffer_info = vzalloc(size);
1700 	if (!rxdr->buffer_info)
1701 		return -ENOMEM;
1702 
1703 	desc_len = sizeof(struct e1000_rx_desc);
1704 
1705 	/* Round up to nearest 4K */
1706 
1707 	rxdr->size = rxdr->count * desc_len;
1708 	rxdr->size = ALIGN(rxdr->size, 4096);
1709 
1710 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711 					GFP_KERNEL);
1712 	if (!rxdr->desc) {
1713 setup_rx_desc_die:
1714 		vfree(rxdr->buffer_info);
1715 		return -ENOMEM;
1716 	}
1717 
1718 	/* Fix for errata 23, can't cross 64kB boundary */
1719 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720 		void *olddesc = rxdr->desc;
1721 		dma_addr_t olddma = rxdr->dma;
1722 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723 		      rxdr->size, rxdr->desc);
1724 		/* Try again, without freeing the previous */
1725 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726 						&rxdr->dma, GFP_KERNEL);
1727 		/* Failed allocation, critical failure */
1728 		if (!rxdr->desc) {
1729 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730 					  olddma);
1731 			goto setup_rx_desc_die;
1732 		}
1733 
1734 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 			/* give up */
1736 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737 					  rxdr->dma);
1738 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739 					  olddma);
1740 			e_err(probe, "Unable to allocate aligned memory for "
1741 			      "the Rx descriptor ring\n");
1742 			goto setup_rx_desc_die;
1743 		} else {
1744 			/* Free old allocation, new allocation was successful */
1745 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 					  olddma);
1747 		}
1748 	}
1749 	memset(rxdr->desc, 0, rxdr->size);
1750 
1751 	rxdr->next_to_clean = 0;
1752 	rxdr->next_to_use = 0;
1753 	rxdr->rx_skb_top = NULL;
1754 
1755 	return 0;
1756 }
1757 
1758 /**
1759  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760  * 				  (Descriptors) for all queues
1761  * @adapter: board private structure
1762  *
1763  * Return 0 on success, negative on failure
1764  **/
1765 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766 {
1767 	int i, err = 0;
1768 
1769 	for (i = 0; i < adapter->num_rx_queues; i++) {
1770 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771 		if (err) {
1772 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773 			for (i-- ; i >= 0; i--)
1774 				e1000_free_rx_resources(adapter,
1775 							&adapter->rx_ring[i]);
1776 			break;
1777 		}
1778 	}
1779 
1780 	return err;
1781 }
1782 
1783 /**
1784  * e1000_setup_rctl - configure the receive control registers
1785  * @adapter: Board private structure
1786  **/
1787 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788 {
1789 	struct e1000_hw *hw = &adapter->hw;
1790 	u32 rctl;
1791 
1792 	rctl = er32(RCTL);
1793 
1794 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795 
1796 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797 		E1000_RCTL_RDMTS_HALF |
1798 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799 
1800 	if (hw->tbi_compatibility_on == 1)
1801 		rctl |= E1000_RCTL_SBP;
1802 	else
1803 		rctl &= ~E1000_RCTL_SBP;
1804 
1805 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806 		rctl &= ~E1000_RCTL_LPE;
1807 	else
1808 		rctl |= E1000_RCTL_LPE;
1809 
1810 	/* Setup buffer sizes */
1811 	rctl &= ~E1000_RCTL_SZ_4096;
1812 	rctl |= E1000_RCTL_BSEX;
1813 	switch (adapter->rx_buffer_len) {
1814 		case E1000_RXBUFFER_2048:
1815 		default:
1816 			rctl |= E1000_RCTL_SZ_2048;
1817 			rctl &= ~E1000_RCTL_BSEX;
1818 			break;
1819 		case E1000_RXBUFFER_4096:
1820 			rctl |= E1000_RCTL_SZ_4096;
1821 			break;
1822 		case E1000_RXBUFFER_8192:
1823 			rctl |= E1000_RCTL_SZ_8192;
1824 			break;
1825 		case E1000_RXBUFFER_16384:
1826 			rctl |= E1000_RCTL_SZ_16384;
1827 			break;
1828 	}
1829 
1830 	/* This is useful for sniffing bad packets. */
1831 	if (adapter->netdev->features & NETIF_F_RXALL) {
1832 		/* UPE and MPE will be handled by normal PROMISC logic
1833 		 * in e1000e_set_rx_mode
1834 		 */
1835 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838 
1839 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840 			  E1000_RCTL_DPF | /* Allow filtered pause */
1841 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 		 * and that breaks VLANs.
1844 		 */
1845 	}
1846 
1847 	ew32(RCTL, rctl);
1848 }
1849 
1850 /**
1851  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852  * @adapter: board private structure
1853  *
1854  * Configure the Rx unit of the MAC after a reset.
1855  **/
1856 static void e1000_configure_rx(struct e1000_adapter *adapter)
1857 {
1858 	u64 rdba;
1859 	struct e1000_hw *hw = &adapter->hw;
1860 	u32 rdlen, rctl, rxcsum;
1861 
1862 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863 		rdlen = adapter->rx_ring[0].count *
1864 		        sizeof(struct e1000_rx_desc);
1865 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867 	} else {
1868 		rdlen = adapter->rx_ring[0].count *
1869 		        sizeof(struct e1000_rx_desc);
1870 		adapter->clean_rx = e1000_clean_rx_irq;
1871 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872 	}
1873 
1874 	/* disable receives while setting up the descriptors */
1875 	rctl = er32(RCTL);
1876 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877 
1878 	/* set the Receive Delay Timer Register */
1879 	ew32(RDTR, adapter->rx_int_delay);
1880 
1881 	if (hw->mac_type >= e1000_82540) {
1882 		ew32(RADV, adapter->rx_abs_int_delay);
1883 		if (adapter->itr_setting != 0)
1884 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1885 	}
1886 
1887 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1888 	 * the Base and Length of the Rx Descriptor Ring
1889 	 */
1890 	switch (adapter->num_rx_queues) {
1891 	case 1:
1892 	default:
1893 		rdba = adapter->rx_ring[0].dma;
1894 		ew32(RDLEN, rdlen);
1895 		ew32(RDBAH, (rdba >> 32));
1896 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897 		ew32(RDT, 0);
1898 		ew32(RDH, 0);
1899 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900 					   E1000_RDH : E1000_82542_RDH);
1901 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902 					   E1000_RDT : E1000_82542_RDT);
1903 		break;
1904 	}
1905 
1906 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907 	if (hw->mac_type >= e1000_82543) {
1908 		rxcsum = er32(RXCSUM);
1909 		if (adapter->rx_csum)
1910 			rxcsum |= E1000_RXCSUM_TUOFL;
1911 		else
1912 			/* don't need to clear IPPCSE as it defaults to 0 */
1913 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1914 		ew32(RXCSUM, rxcsum);
1915 	}
1916 
1917 	/* Enable Receives */
1918 	ew32(RCTL, rctl | E1000_RCTL_EN);
1919 }
1920 
1921 /**
1922  * e1000_free_tx_resources - Free Tx Resources per Queue
1923  * @adapter: board private structure
1924  * @tx_ring: Tx descriptor ring for a specific queue
1925  *
1926  * Free all transmit software resources
1927  **/
1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929 				    struct e1000_tx_ring *tx_ring)
1930 {
1931 	struct pci_dev *pdev = adapter->pdev;
1932 
1933 	e1000_clean_tx_ring(adapter, tx_ring);
1934 
1935 	vfree(tx_ring->buffer_info);
1936 	tx_ring->buffer_info = NULL;
1937 
1938 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939 			  tx_ring->dma);
1940 
1941 	tx_ring->desc = NULL;
1942 }
1943 
1944 /**
1945  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946  * @adapter: board private structure
1947  *
1948  * Free all transmit software resources
1949  **/
1950 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951 {
1952 	int i;
1953 
1954 	for (i = 0; i < adapter->num_tx_queues; i++)
1955 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956 }
1957 
1958 static void
1959 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960 				 struct e1000_tx_buffer *buffer_info)
1961 {
1962 	if (buffer_info->dma) {
1963 		if (buffer_info->mapped_as_page)
1964 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965 				       buffer_info->length, DMA_TO_DEVICE);
1966 		else
1967 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968 					 buffer_info->length,
1969 					 DMA_TO_DEVICE);
1970 		buffer_info->dma = 0;
1971 	}
1972 	if (buffer_info->skb) {
1973 		dev_kfree_skb_any(buffer_info->skb);
1974 		buffer_info->skb = NULL;
1975 	}
1976 	buffer_info->time_stamp = 0;
1977 	/* buffer_info must be completely set up in the transmit path */
1978 }
1979 
1980 /**
1981  * e1000_clean_tx_ring - Free Tx Buffers
1982  * @adapter: board private structure
1983  * @tx_ring: ring to be cleaned
1984  **/
1985 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986 				struct e1000_tx_ring *tx_ring)
1987 {
1988 	struct e1000_hw *hw = &adapter->hw;
1989 	struct e1000_tx_buffer *buffer_info;
1990 	unsigned long size;
1991 	unsigned int i;
1992 
1993 	/* Free all the Tx ring sk_buffs */
1994 
1995 	for (i = 0; i < tx_ring->count; i++) {
1996 		buffer_info = &tx_ring->buffer_info[i];
1997 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998 	}
1999 
2000 	netdev_reset_queue(adapter->netdev);
2001 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002 	memset(tx_ring->buffer_info, 0, size);
2003 
2004 	/* Zero out the descriptor ring */
2005 
2006 	memset(tx_ring->desc, 0, tx_ring->size);
2007 
2008 	tx_ring->next_to_use = 0;
2009 	tx_ring->next_to_clean = 0;
2010 	tx_ring->last_tx_tso = false;
2011 
2012 	writel(0, hw->hw_addr + tx_ring->tdh);
2013 	writel(0, hw->hw_addr + tx_ring->tdt);
2014 }
2015 
2016 /**
2017  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018  * @adapter: board private structure
2019  **/
2020 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021 {
2022 	int i;
2023 
2024 	for (i = 0; i < adapter->num_tx_queues; i++)
2025 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026 }
2027 
2028 /**
2029  * e1000_free_rx_resources - Free Rx Resources
2030  * @adapter: board private structure
2031  * @rx_ring: ring to clean the resources from
2032  *
2033  * Free all receive software resources
2034  **/
2035 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036 				    struct e1000_rx_ring *rx_ring)
2037 {
2038 	struct pci_dev *pdev = adapter->pdev;
2039 
2040 	e1000_clean_rx_ring(adapter, rx_ring);
2041 
2042 	vfree(rx_ring->buffer_info);
2043 	rx_ring->buffer_info = NULL;
2044 
2045 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046 			  rx_ring->dma);
2047 
2048 	rx_ring->desc = NULL;
2049 }
2050 
2051 /**
2052  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053  * @adapter: board private structure
2054  *
2055  * Free all receive software resources
2056  **/
2057 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058 {
2059 	int i;
2060 
2061 	for (i = 0; i < adapter->num_rx_queues; i++)
2062 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063 }
2064 
2065 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067 {
2068 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070 }
2071 
2072 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073 {
2074 	unsigned int len = e1000_frag_len(a);
2075 	u8 *data = netdev_alloc_frag(len);
2076 
2077 	if (likely(data))
2078 		data += E1000_HEADROOM;
2079 	return data;
2080 }
2081 
2082 static void e1000_free_frag(const void *data)
2083 {
2084 	put_page(virt_to_head_page(data));
2085 }
2086 
2087 /**
2088  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2089  * @adapter: board private structure
2090  * @rx_ring: ring to free buffers from
2091  **/
2092 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2093 				struct e1000_rx_ring *rx_ring)
2094 {
2095 	struct e1000_hw *hw = &adapter->hw;
2096 	struct e1000_rx_buffer *buffer_info;
2097 	struct pci_dev *pdev = adapter->pdev;
2098 	unsigned long size;
2099 	unsigned int i;
2100 
2101 	/* Free all the Rx netfrags */
2102 	for (i = 0; i < rx_ring->count; i++) {
2103 		buffer_info = &rx_ring->buffer_info[i];
2104 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2105 			if (buffer_info->dma)
2106 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2107 						 adapter->rx_buffer_len,
2108 						 DMA_FROM_DEVICE);
2109 			if (buffer_info->rxbuf.data) {
2110 				e1000_free_frag(buffer_info->rxbuf.data);
2111 				buffer_info->rxbuf.data = NULL;
2112 			}
2113 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2114 			if (buffer_info->dma)
2115 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2116 					       adapter->rx_buffer_len,
2117 					       DMA_FROM_DEVICE);
2118 			if (buffer_info->rxbuf.page) {
2119 				put_page(buffer_info->rxbuf.page);
2120 				buffer_info->rxbuf.page = NULL;
2121 			}
2122 		}
2123 
2124 		buffer_info->dma = 0;
2125 	}
2126 
2127 	/* there also may be some cached data from a chained receive */
2128 	napi_free_frags(&adapter->napi);
2129 	rx_ring->rx_skb_top = NULL;
2130 
2131 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2132 	memset(rx_ring->buffer_info, 0, size);
2133 
2134 	/* Zero out the descriptor ring */
2135 	memset(rx_ring->desc, 0, rx_ring->size);
2136 
2137 	rx_ring->next_to_clean = 0;
2138 	rx_ring->next_to_use = 0;
2139 
2140 	writel(0, hw->hw_addr + rx_ring->rdh);
2141 	writel(0, hw->hw_addr + rx_ring->rdt);
2142 }
2143 
2144 /**
2145  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2146  * @adapter: board private structure
2147  **/
2148 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2149 {
2150 	int i;
2151 
2152 	for (i = 0; i < adapter->num_rx_queues; i++)
2153 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2154 }
2155 
2156 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2157  * and memory write and invalidate disabled for certain operations
2158  */
2159 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2160 {
2161 	struct e1000_hw *hw = &adapter->hw;
2162 	struct net_device *netdev = adapter->netdev;
2163 	u32 rctl;
2164 
2165 	e1000_pci_clear_mwi(hw);
2166 
2167 	rctl = er32(RCTL);
2168 	rctl |= E1000_RCTL_RST;
2169 	ew32(RCTL, rctl);
2170 	E1000_WRITE_FLUSH();
2171 	mdelay(5);
2172 
2173 	if (netif_running(netdev))
2174 		e1000_clean_all_rx_rings(adapter);
2175 }
2176 
2177 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2178 {
2179 	struct e1000_hw *hw = &adapter->hw;
2180 	struct net_device *netdev = adapter->netdev;
2181 	u32 rctl;
2182 
2183 	rctl = er32(RCTL);
2184 	rctl &= ~E1000_RCTL_RST;
2185 	ew32(RCTL, rctl);
2186 	E1000_WRITE_FLUSH();
2187 	mdelay(5);
2188 
2189 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2190 		e1000_pci_set_mwi(hw);
2191 
2192 	if (netif_running(netdev)) {
2193 		/* No need to loop, because 82542 supports only 1 queue */
2194 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2195 		e1000_configure_rx(adapter);
2196 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2197 	}
2198 }
2199 
2200 /**
2201  * e1000_set_mac - Change the Ethernet Address of the NIC
2202  * @netdev: network interface device structure
2203  * @p: pointer to an address structure
2204  *
2205  * Returns 0 on success, negative on failure
2206  **/
2207 static int e1000_set_mac(struct net_device *netdev, void *p)
2208 {
2209 	struct e1000_adapter *adapter = netdev_priv(netdev);
2210 	struct e1000_hw *hw = &adapter->hw;
2211 	struct sockaddr *addr = p;
2212 
2213 	if (!is_valid_ether_addr(addr->sa_data))
2214 		return -EADDRNOTAVAIL;
2215 
2216 	/* 82542 2.0 needs to be in reset to write receive address registers */
2217 
2218 	if (hw->mac_type == e1000_82542_rev2_0)
2219 		e1000_enter_82542_rst(adapter);
2220 
2221 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2222 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2223 
2224 	e1000_rar_set(hw, hw->mac_addr, 0);
2225 
2226 	if (hw->mac_type == e1000_82542_rev2_0)
2227 		e1000_leave_82542_rst(adapter);
2228 
2229 	return 0;
2230 }
2231 
2232 /**
2233  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2234  * @netdev: network interface device structure
2235  *
2236  * The set_rx_mode entry point is called whenever the unicast or multicast
2237  * address lists or the network interface flags are updated. This routine is
2238  * responsible for configuring the hardware for proper unicast, multicast,
2239  * promiscuous mode, and all-multi behavior.
2240  **/
2241 static void e1000_set_rx_mode(struct net_device *netdev)
2242 {
2243 	struct e1000_adapter *adapter = netdev_priv(netdev);
2244 	struct e1000_hw *hw = &adapter->hw;
2245 	struct netdev_hw_addr *ha;
2246 	bool use_uc = false;
2247 	u32 rctl;
2248 	u32 hash_value;
2249 	int i, rar_entries = E1000_RAR_ENTRIES;
2250 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2251 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2252 
2253 	if (!mcarray)
2254 		return;
2255 
2256 	/* Check for Promiscuous and All Multicast modes */
2257 
2258 	rctl = er32(RCTL);
2259 
2260 	if (netdev->flags & IFF_PROMISC) {
2261 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2262 		rctl &= ~E1000_RCTL_VFE;
2263 	} else {
2264 		if (netdev->flags & IFF_ALLMULTI)
2265 			rctl |= E1000_RCTL_MPE;
2266 		else
2267 			rctl &= ~E1000_RCTL_MPE;
2268 		/* Enable VLAN filter if there is a VLAN */
2269 		if (e1000_vlan_used(adapter))
2270 			rctl |= E1000_RCTL_VFE;
2271 	}
2272 
2273 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2274 		rctl |= E1000_RCTL_UPE;
2275 	} else if (!(netdev->flags & IFF_PROMISC)) {
2276 		rctl &= ~E1000_RCTL_UPE;
2277 		use_uc = true;
2278 	}
2279 
2280 	ew32(RCTL, rctl);
2281 
2282 	/* 82542 2.0 needs to be in reset to write receive address registers */
2283 
2284 	if (hw->mac_type == e1000_82542_rev2_0)
2285 		e1000_enter_82542_rst(adapter);
2286 
2287 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2288 	 * addresses take precedence to avoid disabling unicast filtering
2289 	 * when possible.
2290 	 *
2291 	 * RAR 0 is used for the station MAC address
2292 	 * if there are not 14 addresses, go ahead and clear the filters
2293 	 */
2294 	i = 1;
2295 	if (use_uc)
2296 		netdev_for_each_uc_addr(ha, netdev) {
2297 			if (i == rar_entries)
2298 				break;
2299 			e1000_rar_set(hw, ha->addr, i++);
2300 		}
2301 
2302 	netdev_for_each_mc_addr(ha, netdev) {
2303 		if (i == rar_entries) {
2304 			/* load any remaining addresses into the hash table */
2305 			u32 hash_reg, hash_bit, mta;
2306 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2307 			hash_reg = (hash_value >> 5) & 0x7F;
2308 			hash_bit = hash_value & 0x1F;
2309 			mta = (1 << hash_bit);
2310 			mcarray[hash_reg] |= mta;
2311 		} else {
2312 			e1000_rar_set(hw, ha->addr, i++);
2313 		}
2314 	}
2315 
2316 	for (; i < rar_entries; i++) {
2317 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2318 		E1000_WRITE_FLUSH();
2319 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2320 		E1000_WRITE_FLUSH();
2321 	}
2322 
2323 	/* write the hash table completely, write from bottom to avoid
2324 	 * both stupid write combining chipsets, and flushing each write
2325 	 */
2326 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2327 		/* If we are on an 82544 has an errata where writing odd
2328 		 * offsets overwrites the previous even offset, but writing
2329 		 * backwards over the range solves the issue by always
2330 		 * writing the odd offset first
2331 		 */
2332 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2333 	}
2334 	E1000_WRITE_FLUSH();
2335 
2336 	if (hw->mac_type == e1000_82542_rev2_0)
2337 		e1000_leave_82542_rst(adapter);
2338 
2339 	kfree(mcarray);
2340 }
2341 
2342 /**
2343  * e1000_update_phy_info_task - get phy info
2344  * @work: work struct contained inside adapter struct
2345  *
2346  * Need to wait a few seconds after link up to get diagnostic information from
2347  * the phy
2348  */
2349 static void e1000_update_phy_info_task(struct work_struct *work)
2350 {
2351 	struct e1000_adapter *adapter = container_of(work,
2352 						     struct e1000_adapter,
2353 						     phy_info_task.work);
2354 
2355 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2356 }
2357 
2358 /**
2359  * e1000_82547_tx_fifo_stall_task - task to complete work
2360  * @work: work struct contained inside adapter struct
2361  **/
2362 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2363 {
2364 	struct e1000_adapter *adapter = container_of(work,
2365 						     struct e1000_adapter,
2366 						     fifo_stall_task.work);
2367 	struct e1000_hw *hw = &adapter->hw;
2368 	struct net_device *netdev = adapter->netdev;
2369 	u32 tctl;
2370 
2371 	if (atomic_read(&adapter->tx_fifo_stall)) {
2372 		if ((er32(TDT) == er32(TDH)) &&
2373 		   (er32(TDFT) == er32(TDFH)) &&
2374 		   (er32(TDFTS) == er32(TDFHS))) {
2375 			tctl = er32(TCTL);
2376 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2377 			ew32(TDFT, adapter->tx_head_addr);
2378 			ew32(TDFH, adapter->tx_head_addr);
2379 			ew32(TDFTS, adapter->tx_head_addr);
2380 			ew32(TDFHS, adapter->tx_head_addr);
2381 			ew32(TCTL, tctl);
2382 			E1000_WRITE_FLUSH();
2383 
2384 			adapter->tx_fifo_head = 0;
2385 			atomic_set(&adapter->tx_fifo_stall, 0);
2386 			netif_wake_queue(netdev);
2387 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2388 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2389 		}
2390 	}
2391 }
2392 
2393 bool e1000_has_link(struct e1000_adapter *adapter)
2394 {
2395 	struct e1000_hw *hw = &adapter->hw;
2396 	bool link_active = false;
2397 
2398 	/* get_link_status is set on LSC (link status) interrupt or rx
2399 	 * sequence error interrupt (except on intel ce4100).
2400 	 * get_link_status will stay false until the
2401 	 * e1000_check_for_link establishes link for copper adapters
2402 	 * ONLY
2403 	 */
2404 	switch (hw->media_type) {
2405 	case e1000_media_type_copper:
2406 		if (hw->mac_type == e1000_ce4100)
2407 			hw->get_link_status = 1;
2408 		if (hw->get_link_status) {
2409 			e1000_check_for_link(hw);
2410 			link_active = !hw->get_link_status;
2411 		} else {
2412 			link_active = true;
2413 		}
2414 		break;
2415 	case e1000_media_type_fiber:
2416 		e1000_check_for_link(hw);
2417 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2418 		break;
2419 	case e1000_media_type_internal_serdes:
2420 		e1000_check_for_link(hw);
2421 		link_active = hw->serdes_has_link;
2422 		break;
2423 	default:
2424 		break;
2425 	}
2426 
2427 	return link_active;
2428 }
2429 
2430 /**
2431  * e1000_watchdog - work function
2432  * @work: work struct contained inside adapter struct
2433  **/
2434 static void e1000_watchdog(struct work_struct *work)
2435 {
2436 	struct e1000_adapter *adapter = container_of(work,
2437 						     struct e1000_adapter,
2438 						     watchdog_task.work);
2439 	struct e1000_hw *hw = &adapter->hw;
2440 	struct net_device *netdev = adapter->netdev;
2441 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2442 	u32 link, tctl;
2443 
2444 	link = e1000_has_link(adapter);
2445 	if ((netif_carrier_ok(netdev)) && link)
2446 		goto link_up;
2447 
2448 	if (link) {
2449 		if (!netif_carrier_ok(netdev)) {
2450 			u32 ctrl;
2451 			bool txb2b = true;
2452 			/* update snapshot of PHY registers on LSC */
2453 			e1000_get_speed_and_duplex(hw,
2454 						   &adapter->link_speed,
2455 						   &adapter->link_duplex);
2456 
2457 			ctrl = er32(CTRL);
2458 			pr_info("%s NIC Link is Up %d Mbps %s, "
2459 				"Flow Control: %s\n",
2460 				netdev->name,
2461 				adapter->link_speed,
2462 				adapter->link_duplex == FULL_DUPLEX ?
2463 				"Full Duplex" : "Half Duplex",
2464 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2465 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2466 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2467 				E1000_CTRL_TFCE) ? "TX" : "None")));
2468 
2469 			/* adjust timeout factor according to speed/duplex */
2470 			adapter->tx_timeout_factor = 1;
2471 			switch (adapter->link_speed) {
2472 			case SPEED_10:
2473 				txb2b = false;
2474 				adapter->tx_timeout_factor = 16;
2475 				break;
2476 			case SPEED_100:
2477 				txb2b = false;
2478 				/* maybe add some timeout factor ? */
2479 				break;
2480 			}
2481 
2482 			/* enable transmits in the hardware */
2483 			tctl = er32(TCTL);
2484 			tctl |= E1000_TCTL_EN;
2485 			ew32(TCTL, tctl);
2486 
2487 			netif_carrier_on(netdev);
2488 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2489 				schedule_delayed_work(&adapter->phy_info_task,
2490 						      2 * HZ);
2491 			adapter->smartspeed = 0;
2492 		}
2493 	} else {
2494 		if (netif_carrier_ok(netdev)) {
2495 			adapter->link_speed = 0;
2496 			adapter->link_duplex = 0;
2497 			pr_info("%s NIC Link is Down\n",
2498 				netdev->name);
2499 			netif_carrier_off(netdev);
2500 
2501 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2502 				schedule_delayed_work(&adapter->phy_info_task,
2503 						      2 * HZ);
2504 		}
2505 
2506 		e1000_smartspeed(adapter);
2507 	}
2508 
2509 link_up:
2510 	e1000_update_stats(adapter);
2511 
2512 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2513 	adapter->tpt_old = adapter->stats.tpt;
2514 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2515 	adapter->colc_old = adapter->stats.colc;
2516 
2517 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2518 	adapter->gorcl_old = adapter->stats.gorcl;
2519 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2520 	adapter->gotcl_old = adapter->stats.gotcl;
2521 
2522 	e1000_update_adaptive(hw);
2523 
2524 	if (!netif_carrier_ok(netdev)) {
2525 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2526 			/* We've lost link, so the controller stops DMA,
2527 			 * but we've got queued Tx work that's never going
2528 			 * to get done, so reset controller to flush Tx.
2529 			 * (Do the reset outside of interrupt context).
2530 			 */
2531 			adapter->tx_timeout_count++;
2532 			schedule_work(&adapter->reset_task);
2533 			/* exit immediately since reset is imminent */
2534 			return;
2535 		}
2536 	}
2537 
2538 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2539 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2540 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2541 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2542 		 * everyone else is between 2000-8000.
2543 		 */
2544 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2545 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2546 			    adapter->gotcl - adapter->gorcl :
2547 			    adapter->gorcl - adapter->gotcl) / 10000;
2548 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2549 
2550 		ew32(ITR, 1000000000 / (itr * 256));
2551 	}
2552 
2553 	/* Cause software interrupt to ensure rx ring is cleaned */
2554 	ew32(ICS, E1000_ICS_RXDMT0);
2555 
2556 	/* Force detection of hung controller every watchdog period */
2557 	adapter->detect_tx_hung = true;
2558 
2559 	/* Reschedule the task */
2560 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2561 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2562 }
2563 
2564 enum latency_range {
2565 	lowest_latency = 0,
2566 	low_latency = 1,
2567 	bulk_latency = 2,
2568 	latency_invalid = 255
2569 };
2570 
2571 /**
2572  * e1000_update_itr - update the dynamic ITR value based on statistics
2573  * @adapter: pointer to adapter
2574  * @itr_setting: current adapter->itr
2575  * @packets: the number of packets during this measurement interval
2576  * @bytes: the number of bytes during this measurement interval
2577  *
2578  *      Stores a new ITR value based on packets and byte
2579  *      counts during the last interrupt.  The advantage of per interrupt
2580  *      computation is faster updates and more accurate ITR for the current
2581  *      traffic pattern.  Constants in this function were computed
2582  *      based on theoretical maximum wire speed and thresholds were set based
2583  *      on testing data as well as attempting to minimize response time
2584  *      while increasing bulk throughput.
2585  *      this functionality is controlled by the InterruptThrottleRate module
2586  *      parameter (see e1000_param.c)
2587  **/
2588 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2589 				     u16 itr_setting, int packets, int bytes)
2590 {
2591 	unsigned int retval = itr_setting;
2592 	struct e1000_hw *hw = &adapter->hw;
2593 
2594 	if (unlikely(hw->mac_type < e1000_82540))
2595 		goto update_itr_done;
2596 
2597 	if (packets == 0)
2598 		goto update_itr_done;
2599 
2600 	switch (itr_setting) {
2601 	case lowest_latency:
2602 		/* jumbo frames get bulk treatment*/
2603 		if (bytes/packets > 8000)
2604 			retval = bulk_latency;
2605 		else if ((packets < 5) && (bytes > 512))
2606 			retval = low_latency;
2607 		break;
2608 	case low_latency:  /* 50 usec aka 20000 ints/s */
2609 		if (bytes > 10000) {
2610 			/* jumbo frames need bulk latency setting */
2611 			if (bytes/packets > 8000)
2612 				retval = bulk_latency;
2613 			else if ((packets < 10) || ((bytes/packets) > 1200))
2614 				retval = bulk_latency;
2615 			else if ((packets > 35))
2616 				retval = lowest_latency;
2617 		} else if (bytes/packets > 2000)
2618 			retval = bulk_latency;
2619 		else if (packets <= 2 && bytes < 512)
2620 			retval = lowest_latency;
2621 		break;
2622 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2623 		if (bytes > 25000) {
2624 			if (packets > 35)
2625 				retval = low_latency;
2626 		} else if (bytes < 6000) {
2627 			retval = low_latency;
2628 		}
2629 		break;
2630 	}
2631 
2632 update_itr_done:
2633 	return retval;
2634 }
2635 
2636 static void e1000_set_itr(struct e1000_adapter *adapter)
2637 {
2638 	struct e1000_hw *hw = &adapter->hw;
2639 	u16 current_itr;
2640 	u32 new_itr = adapter->itr;
2641 
2642 	if (unlikely(hw->mac_type < e1000_82540))
2643 		return;
2644 
2645 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2646 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2647 		current_itr = 0;
2648 		new_itr = 4000;
2649 		goto set_itr_now;
2650 	}
2651 
2652 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2653 					   adapter->total_tx_packets,
2654 					   adapter->total_tx_bytes);
2655 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2656 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2657 		adapter->tx_itr = low_latency;
2658 
2659 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2660 					   adapter->total_rx_packets,
2661 					   adapter->total_rx_bytes);
2662 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2663 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2664 		adapter->rx_itr = low_latency;
2665 
2666 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2667 
2668 	switch (current_itr) {
2669 	/* counts and packets in update_itr are dependent on these numbers */
2670 	case lowest_latency:
2671 		new_itr = 70000;
2672 		break;
2673 	case low_latency:
2674 		new_itr = 20000; /* aka hwitr = ~200 */
2675 		break;
2676 	case bulk_latency:
2677 		new_itr = 4000;
2678 		break;
2679 	default:
2680 		break;
2681 	}
2682 
2683 set_itr_now:
2684 	if (new_itr != adapter->itr) {
2685 		/* this attempts to bias the interrupt rate towards Bulk
2686 		 * by adding intermediate steps when interrupt rate is
2687 		 * increasing
2688 		 */
2689 		new_itr = new_itr > adapter->itr ?
2690 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2691 			  new_itr;
2692 		adapter->itr = new_itr;
2693 		ew32(ITR, 1000000000 / (new_itr * 256));
2694 	}
2695 }
2696 
2697 #define E1000_TX_FLAGS_CSUM		0x00000001
2698 #define E1000_TX_FLAGS_VLAN		0x00000002
2699 #define E1000_TX_FLAGS_TSO		0x00000004
2700 #define E1000_TX_FLAGS_IPV4		0x00000008
2701 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2702 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2703 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2704 
2705 static int e1000_tso(struct e1000_adapter *adapter,
2706 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2707 		     __be16 protocol)
2708 {
2709 	struct e1000_context_desc *context_desc;
2710 	struct e1000_tx_buffer *buffer_info;
2711 	unsigned int i;
2712 	u32 cmd_length = 0;
2713 	u16 ipcse = 0, tucse, mss;
2714 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2715 
2716 	if (skb_is_gso(skb)) {
2717 		int err;
2718 
2719 		err = skb_cow_head(skb, 0);
2720 		if (err < 0)
2721 			return err;
2722 
2723 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2724 		mss = skb_shinfo(skb)->gso_size;
2725 		if (protocol == htons(ETH_P_IP)) {
2726 			struct iphdr *iph = ip_hdr(skb);
2727 			iph->tot_len = 0;
2728 			iph->check = 0;
2729 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2730 								 iph->daddr, 0,
2731 								 IPPROTO_TCP,
2732 								 0);
2733 			cmd_length = E1000_TXD_CMD_IP;
2734 			ipcse = skb_transport_offset(skb) - 1;
2735 		} else if (skb_is_gso_v6(skb)) {
2736 			ipv6_hdr(skb)->payload_len = 0;
2737 			tcp_hdr(skb)->check =
2738 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2739 						 &ipv6_hdr(skb)->daddr,
2740 						 0, IPPROTO_TCP, 0);
2741 			ipcse = 0;
2742 		}
2743 		ipcss = skb_network_offset(skb);
2744 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2745 		tucss = skb_transport_offset(skb);
2746 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2747 		tucse = 0;
2748 
2749 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2750 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2751 
2752 		i = tx_ring->next_to_use;
2753 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2754 		buffer_info = &tx_ring->buffer_info[i];
2755 
2756 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2757 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2758 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2759 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2760 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2761 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2762 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2763 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2764 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2765 
2766 		buffer_info->time_stamp = jiffies;
2767 		buffer_info->next_to_watch = i;
2768 
2769 		if (++i == tx_ring->count) i = 0;
2770 		tx_ring->next_to_use = i;
2771 
2772 		return true;
2773 	}
2774 	return false;
2775 }
2776 
2777 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2778 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2779 			  __be16 protocol)
2780 {
2781 	struct e1000_context_desc *context_desc;
2782 	struct e1000_tx_buffer *buffer_info;
2783 	unsigned int i;
2784 	u8 css;
2785 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2786 
2787 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2788 		return false;
2789 
2790 	switch (protocol) {
2791 	case cpu_to_be16(ETH_P_IP):
2792 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2793 			cmd_len |= E1000_TXD_CMD_TCP;
2794 		break;
2795 	case cpu_to_be16(ETH_P_IPV6):
2796 		/* XXX not handling all IPV6 headers */
2797 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2798 			cmd_len |= E1000_TXD_CMD_TCP;
2799 		break;
2800 	default:
2801 		if (unlikely(net_ratelimit()))
2802 			e_warn(drv, "checksum_partial proto=%x!\n",
2803 			       skb->protocol);
2804 		break;
2805 	}
2806 
2807 	css = skb_checksum_start_offset(skb);
2808 
2809 	i = tx_ring->next_to_use;
2810 	buffer_info = &tx_ring->buffer_info[i];
2811 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2812 
2813 	context_desc->lower_setup.ip_config = 0;
2814 	context_desc->upper_setup.tcp_fields.tucss = css;
2815 	context_desc->upper_setup.tcp_fields.tucso =
2816 		css + skb->csum_offset;
2817 	context_desc->upper_setup.tcp_fields.tucse = 0;
2818 	context_desc->tcp_seg_setup.data = 0;
2819 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2820 
2821 	buffer_info->time_stamp = jiffies;
2822 	buffer_info->next_to_watch = i;
2823 
2824 	if (unlikely(++i == tx_ring->count)) i = 0;
2825 	tx_ring->next_to_use = i;
2826 
2827 	return true;
2828 }
2829 
2830 #define E1000_MAX_TXD_PWR	12
2831 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2832 
2833 static int e1000_tx_map(struct e1000_adapter *adapter,
2834 			struct e1000_tx_ring *tx_ring,
2835 			struct sk_buff *skb, unsigned int first,
2836 			unsigned int max_per_txd, unsigned int nr_frags,
2837 			unsigned int mss)
2838 {
2839 	struct e1000_hw *hw = &adapter->hw;
2840 	struct pci_dev *pdev = adapter->pdev;
2841 	struct e1000_tx_buffer *buffer_info;
2842 	unsigned int len = skb_headlen(skb);
2843 	unsigned int offset = 0, size, count = 0, i;
2844 	unsigned int f, bytecount, segs;
2845 
2846 	i = tx_ring->next_to_use;
2847 
2848 	while (len) {
2849 		buffer_info = &tx_ring->buffer_info[i];
2850 		size = min(len, max_per_txd);
2851 		/* Workaround for Controller erratum --
2852 		 * descriptor for non-tso packet in a linear SKB that follows a
2853 		 * tso gets written back prematurely before the data is fully
2854 		 * DMA'd to the controller
2855 		 */
2856 		if (!skb->data_len && tx_ring->last_tx_tso &&
2857 		    !skb_is_gso(skb)) {
2858 			tx_ring->last_tx_tso = false;
2859 			size -= 4;
2860 		}
2861 
2862 		/* Workaround for premature desc write-backs
2863 		 * in TSO mode.  Append 4-byte sentinel desc
2864 		 */
2865 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2866 			size -= 4;
2867 		/* work-around for errata 10 and it applies
2868 		 * to all controllers in PCI-X mode
2869 		 * The fix is to make sure that the first descriptor of a
2870 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2871 		 */
2872 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2873 		                (size > 2015) && count == 0))
2874 		        size = 2015;
2875 
2876 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2877 		 * terminating buffers within evenly-aligned dwords.
2878 		 */
2879 		if (unlikely(adapter->pcix_82544 &&
2880 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2881 		   size > 4))
2882 			size -= 4;
2883 
2884 		buffer_info->length = size;
2885 		/* set time_stamp *before* dma to help avoid a possible race */
2886 		buffer_info->time_stamp = jiffies;
2887 		buffer_info->mapped_as_page = false;
2888 		buffer_info->dma = dma_map_single(&pdev->dev,
2889 						  skb->data + offset,
2890 						  size, DMA_TO_DEVICE);
2891 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2892 			goto dma_error;
2893 		buffer_info->next_to_watch = i;
2894 
2895 		len -= size;
2896 		offset += size;
2897 		count++;
2898 		if (len) {
2899 			i++;
2900 			if (unlikely(i == tx_ring->count))
2901 				i = 0;
2902 		}
2903 	}
2904 
2905 	for (f = 0; f < nr_frags; f++) {
2906 		const struct skb_frag_struct *frag;
2907 
2908 		frag = &skb_shinfo(skb)->frags[f];
2909 		len = skb_frag_size(frag);
2910 		offset = 0;
2911 
2912 		while (len) {
2913 			unsigned long bufend;
2914 			i++;
2915 			if (unlikely(i == tx_ring->count))
2916 				i = 0;
2917 
2918 			buffer_info = &tx_ring->buffer_info[i];
2919 			size = min(len, max_per_txd);
2920 			/* Workaround for premature desc write-backs
2921 			 * in TSO mode.  Append 4-byte sentinel desc
2922 			 */
2923 			if (unlikely(mss && f == (nr_frags-1) &&
2924 			    size == len && size > 8))
2925 				size -= 4;
2926 			/* Workaround for potential 82544 hang in PCI-X.
2927 			 * Avoid terminating buffers within evenly-aligned
2928 			 * dwords.
2929 			 */
2930 			bufend = (unsigned long)
2931 				page_to_phys(skb_frag_page(frag));
2932 			bufend += offset + size - 1;
2933 			if (unlikely(adapter->pcix_82544 &&
2934 				     !(bufend & 4) &&
2935 				     size > 4))
2936 				size -= 4;
2937 
2938 			buffer_info->length = size;
2939 			buffer_info->time_stamp = jiffies;
2940 			buffer_info->mapped_as_page = true;
2941 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2942 						offset, size, DMA_TO_DEVICE);
2943 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2944 				goto dma_error;
2945 			buffer_info->next_to_watch = i;
2946 
2947 			len -= size;
2948 			offset += size;
2949 			count++;
2950 		}
2951 	}
2952 
2953 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2954 	/* multiply data chunks by size of headers */
2955 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2956 
2957 	tx_ring->buffer_info[i].skb = skb;
2958 	tx_ring->buffer_info[i].segs = segs;
2959 	tx_ring->buffer_info[i].bytecount = bytecount;
2960 	tx_ring->buffer_info[first].next_to_watch = i;
2961 
2962 	return count;
2963 
2964 dma_error:
2965 	dev_err(&pdev->dev, "TX DMA map failed\n");
2966 	buffer_info->dma = 0;
2967 	if (count)
2968 		count--;
2969 
2970 	while (count--) {
2971 		if (i==0)
2972 			i += tx_ring->count;
2973 		i--;
2974 		buffer_info = &tx_ring->buffer_info[i];
2975 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2976 	}
2977 
2978 	return 0;
2979 }
2980 
2981 static void e1000_tx_queue(struct e1000_adapter *adapter,
2982 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2983 			   int count)
2984 {
2985 	struct e1000_tx_desc *tx_desc = NULL;
2986 	struct e1000_tx_buffer *buffer_info;
2987 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2988 	unsigned int i;
2989 
2990 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2991 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2992 			     E1000_TXD_CMD_TSE;
2993 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2994 
2995 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2996 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2997 	}
2998 
2999 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3000 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3001 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3002 	}
3003 
3004 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3005 		txd_lower |= E1000_TXD_CMD_VLE;
3006 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3007 	}
3008 
3009 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3010 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3011 
3012 	i = tx_ring->next_to_use;
3013 
3014 	while (count--) {
3015 		buffer_info = &tx_ring->buffer_info[i];
3016 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3017 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3018 		tx_desc->lower.data =
3019 			cpu_to_le32(txd_lower | buffer_info->length);
3020 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3021 		if (unlikely(++i == tx_ring->count)) i = 0;
3022 	}
3023 
3024 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025 
3026 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029 
3030 	/* Force memory writes to complete before letting h/w
3031 	 * know there are new descriptors to fetch.  (Only
3032 	 * applicable for weak-ordered memory model archs,
3033 	 * such as IA-64).
3034 	 */
3035 	wmb();
3036 
3037 	tx_ring->next_to_use = i;
3038 }
3039 
3040 /* 82547 workaround to avoid controller hang in half-duplex environment.
3041  * The workaround is to avoid queuing a large packet that would span
3042  * the internal Tx FIFO ring boundary by notifying the stack to resend
3043  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3044  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3045  * to the beginning of the Tx FIFO.
3046  */
3047 
3048 #define E1000_FIFO_HDR			0x10
3049 #define E1000_82547_PAD_LEN		0x3E0
3050 
3051 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052 				       struct sk_buff *skb)
3053 {
3054 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3056 
3057 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3058 
3059 	if (adapter->link_duplex != HALF_DUPLEX)
3060 		goto no_fifo_stall_required;
3061 
3062 	if (atomic_read(&adapter->tx_fifo_stall))
3063 		return 1;
3064 
3065 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066 		atomic_set(&adapter->tx_fifo_stall, 1);
3067 		return 1;
3068 	}
3069 
3070 no_fifo_stall_required:
3071 	adapter->tx_fifo_head += skb_fifo_len;
3072 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074 	return 0;
3075 }
3076 
3077 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078 {
3079 	struct e1000_adapter *adapter = netdev_priv(netdev);
3080 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081 
3082 	netif_stop_queue(netdev);
3083 	/* Herbert's original patch had:
3084 	 *  smp_mb__after_netif_stop_queue();
3085 	 * but since that doesn't exist yet, just open code it.
3086 	 */
3087 	smp_mb();
3088 
3089 	/* We need to check again in a case another CPU has just
3090 	 * made room available.
3091 	 */
3092 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093 		return -EBUSY;
3094 
3095 	/* A reprieve! */
3096 	netif_start_queue(netdev);
3097 	++adapter->restart_queue;
3098 	return 0;
3099 }
3100 
3101 static int e1000_maybe_stop_tx(struct net_device *netdev,
3102 			       struct e1000_tx_ring *tx_ring, int size)
3103 {
3104 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105 		return 0;
3106 	return __e1000_maybe_stop_tx(netdev, size);
3107 }
3108 
3109 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3110 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111 				    struct net_device *netdev)
3112 {
3113 	struct e1000_adapter *adapter = netdev_priv(netdev);
3114 	struct e1000_hw *hw = &adapter->hw;
3115 	struct e1000_tx_ring *tx_ring;
3116 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118 	unsigned int tx_flags = 0;
3119 	unsigned int len = skb_headlen(skb);
3120 	unsigned int nr_frags;
3121 	unsigned int mss;
3122 	int count = 0;
3123 	int tso;
3124 	unsigned int f;
3125 	__be16 protocol = vlan_get_protocol(skb);
3126 
3127 	/* This goes back to the question of how to logically map a Tx queue
3128 	 * to a flow.  Right now, performance is impacted slightly negatively
3129 	 * if using multiple Tx queues.  If the stack breaks away from a
3130 	 * single qdisc implementation, we can look at this again.
3131 	 */
3132 	tx_ring = adapter->tx_ring;
3133 
3134 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135 	 * packets may get corrupted during padding by HW.
3136 	 * To WA this issue, pad all small packets manually.
3137 	 */
3138 	if (eth_skb_pad(skb))
3139 		return NETDEV_TX_OK;
3140 
3141 	mss = skb_shinfo(skb)->gso_size;
3142 	/* The controller does a simple calculation to
3143 	 * make sure there is enough room in the FIFO before
3144 	 * initiating the DMA for each buffer.  The calc is:
3145 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3146 	 * overrun the FIFO, adjust the max buffer len if mss
3147 	 * drops.
3148 	 */
3149 	if (mss) {
3150 		u8 hdr_len;
3151 		max_per_txd = min(mss << 2, max_per_txd);
3152 		max_txd_pwr = fls(max_per_txd) - 1;
3153 
3154 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155 		if (skb->data_len && hdr_len == len) {
3156 			switch (hw->mac_type) {
3157 				unsigned int pull_size;
3158 			case e1000_82544:
3159 				/* Make sure we have room to chop off 4 bytes,
3160 				 * and that the end alignment will work out to
3161 				 * this hardware's requirements
3162 				 * NOTE: this is a TSO only workaround
3163 				 * if end byte alignment not correct move us
3164 				 * into the next dword
3165 				 */
3166 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167 				    & 4)
3168 					break;
3169 				/* fall through */
3170 				pull_size = min((unsigned int)4, skb->data_len);
3171 				if (!__pskb_pull_tail(skb, pull_size)) {
3172 					e_err(drv, "__pskb_pull_tail "
3173 					      "failed.\n");
3174 					dev_kfree_skb_any(skb);
3175 					return NETDEV_TX_OK;
3176 				}
3177 				len = skb_headlen(skb);
3178 				break;
3179 			default:
3180 				/* do nothing */
3181 				break;
3182 			}
3183 		}
3184 	}
3185 
3186 	/* reserve a descriptor for the offload context */
3187 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3188 		count++;
3189 	count++;
3190 
3191 	/* Controller Erratum workaround */
3192 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3193 		count++;
3194 
3195 	count += TXD_USE_COUNT(len, max_txd_pwr);
3196 
3197 	if (adapter->pcix_82544)
3198 		count++;
3199 
3200 	/* work-around for errata 10 and it applies to all controllers
3201 	 * in PCI-X mode, so add one more descriptor to the count
3202 	 */
3203 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3204 			(len > 2015)))
3205 		count++;
3206 
3207 	nr_frags = skb_shinfo(skb)->nr_frags;
3208 	for (f = 0; f < nr_frags; f++)
3209 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3210 				       max_txd_pwr);
3211 	if (adapter->pcix_82544)
3212 		count += nr_frags;
3213 
3214 	/* need: count + 2 desc gap to keep tail from touching
3215 	 * head, otherwise try next time
3216 	 */
3217 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218 		return NETDEV_TX_BUSY;
3219 
3220 	if (unlikely((hw->mac_type == e1000_82547) &&
3221 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3222 		netif_stop_queue(netdev);
3223 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3224 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225 		return NETDEV_TX_BUSY;
3226 	}
3227 
3228 	if (skb_vlan_tag_present(skb)) {
3229 		tx_flags |= E1000_TX_FLAGS_VLAN;
3230 		tx_flags |= (skb_vlan_tag_get(skb) <<
3231 			     E1000_TX_FLAGS_VLAN_SHIFT);
3232 	}
3233 
3234 	first = tx_ring->next_to_use;
3235 
3236 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3237 	if (tso < 0) {
3238 		dev_kfree_skb_any(skb);
3239 		return NETDEV_TX_OK;
3240 	}
3241 
3242 	if (likely(tso)) {
3243 		if (likely(hw->mac_type != e1000_82544))
3244 			tx_ring->last_tx_tso = true;
3245 		tx_flags |= E1000_TX_FLAGS_TSO;
3246 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247 		tx_flags |= E1000_TX_FLAGS_CSUM;
3248 
3249 	if (protocol == htons(ETH_P_IP))
3250 		tx_flags |= E1000_TX_FLAGS_IPV4;
3251 
3252 	if (unlikely(skb->no_fcs))
3253 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254 
3255 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256 			     nr_frags, mss);
3257 
3258 	if (count) {
3259 		netdev_sent_queue(netdev, skb->len);
3260 		skb_tx_timestamp(skb);
3261 
3262 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263 		/* Make sure there is space in the ring for the next send. */
3264 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3265 
3266 		if (!skb->xmit_more ||
3267 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3268 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3269 			/* we need this if more than one processor can write to
3270 			 * our tail at a time, it synchronizes IO on IA64/Altix
3271 			 * systems
3272 			 */
3273 			mmiowb();
3274 		}
3275 	} else {
3276 		dev_kfree_skb_any(skb);
3277 		tx_ring->buffer_info[first].time_stamp = 0;
3278 		tx_ring->next_to_use = first;
3279 	}
3280 
3281 	return NETDEV_TX_OK;
3282 }
3283 
3284 #define NUM_REGS 38 /* 1 based count */
3285 static void e1000_regdump(struct e1000_adapter *adapter)
3286 {
3287 	struct e1000_hw *hw = &adapter->hw;
3288 	u32 regs[NUM_REGS];
3289 	u32 *regs_buff = regs;
3290 	int i = 0;
3291 
3292 	static const char * const reg_name[] = {
3293 		"CTRL",  "STATUS",
3294 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3295 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3296 		"TIDV", "TXDCTL", "TADV", "TARC0",
3297 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3298 		"TXDCTL1", "TARC1",
3299 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3300 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3301 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3302 	};
3303 
3304 	regs_buff[0]  = er32(CTRL);
3305 	regs_buff[1]  = er32(STATUS);
3306 
3307 	regs_buff[2]  = er32(RCTL);
3308 	regs_buff[3]  = er32(RDLEN);
3309 	regs_buff[4]  = er32(RDH);
3310 	regs_buff[5]  = er32(RDT);
3311 	regs_buff[6]  = er32(RDTR);
3312 
3313 	regs_buff[7]  = er32(TCTL);
3314 	regs_buff[8]  = er32(TDBAL);
3315 	regs_buff[9]  = er32(TDBAH);
3316 	regs_buff[10] = er32(TDLEN);
3317 	regs_buff[11] = er32(TDH);
3318 	regs_buff[12] = er32(TDT);
3319 	regs_buff[13] = er32(TIDV);
3320 	regs_buff[14] = er32(TXDCTL);
3321 	regs_buff[15] = er32(TADV);
3322 	regs_buff[16] = er32(TARC0);
3323 
3324 	regs_buff[17] = er32(TDBAL1);
3325 	regs_buff[18] = er32(TDBAH1);
3326 	regs_buff[19] = er32(TDLEN1);
3327 	regs_buff[20] = er32(TDH1);
3328 	regs_buff[21] = er32(TDT1);
3329 	regs_buff[22] = er32(TXDCTL1);
3330 	regs_buff[23] = er32(TARC1);
3331 	regs_buff[24] = er32(CTRL_EXT);
3332 	regs_buff[25] = er32(ERT);
3333 	regs_buff[26] = er32(RDBAL0);
3334 	regs_buff[27] = er32(RDBAH0);
3335 	regs_buff[28] = er32(TDFH);
3336 	regs_buff[29] = er32(TDFT);
3337 	regs_buff[30] = er32(TDFHS);
3338 	regs_buff[31] = er32(TDFTS);
3339 	regs_buff[32] = er32(TDFPC);
3340 	regs_buff[33] = er32(RDFH);
3341 	regs_buff[34] = er32(RDFT);
3342 	regs_buff[35] = er32(RDFHS);
3343 	regs_buff[36] = er32(RDFTS);
3344 	regs_buff[37] = er32(RDFPC);
3345 
3346 	pr_info("Register dump\n");
3347 	for (i = 0; i < NUM_REGS; i++)
3348 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3349 }
3350 
3351 /*
3352  * e1000_dump: Print registers, tx ring and rx ring
3353  */
3354 static void e1000_dump(struct e1000_adapter *adapter)
3355 {
3356 	/* this code doesn't handle multiple rings */
3357 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3358 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3359 	int i;
3360 
3361 	if (!netif_msg_hw(adapter))
3362 		return;
3363 
3364 	/* Print Registers */
3365 	e1000_regdump(adapter);
3366 
3367 	/* transmit dump */
3368 	pr_info("TX Desc ring0 dump\n");
3369 
3370 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3371 	 *
3372 	 * Legacy Transmit Descriptor
3373 	 *   +--------------------------------------------------------------+
3374 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3375 	 *   +--------------------------------------------------------------+
3376 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3377 	 *   +--------------------------------------------------------------+
3378 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3379 	 *
3380 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3381 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3382 	 *   +----------------------------------------------------------------+
3383 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3384 	 *   +----------------------------------------------------------------+
3385 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3386 	 *   +----------------------------------------------------------------+
3387 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3388 	 *
3389 	 * Extended Data Descriptor (DTYP=0x1)
3390 	 *   +----------------------------------------------------------------+
3391 	 * 0 |                     Buffer Address [63:0]                      |
3392 	 *   +----------------------------------------------------------------+
3393 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3394 	 *   +----------------------------------------------------------------+
3395 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3396 	 */
3397 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3398 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399 
3400 	if (!netif_msg_tx_done(adapter))
3401 		goto rx_ring_summary;
3402 
3403 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3404 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3405 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3406 		struct my_u { __le64 a; __le64 b; };
3407 		struct my_u *u = (struct my_u *)tx_desc;
3408 		const char *type;
3409 
3410 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3411 			type = "NTC/U";
3412 		else if (i == tx_ring->next_to_use)
3413 			type = "NTU";
3414 		else if (i == tx_ring->next_to_clean)
3415 			type = "NTC";
3416 		else
3417 			type = "";
3418 
3419 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3420 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3421 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3422 			(u64)buffer_info->dma, buffer_info->length,
3423 			buffer_info->next_to_watch,
3424 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3425 	}
3426 
3427 rx_ring_summary:
3428 	/* receive dump */
3429 	pr_info("\nRX Desc ring dump\n");
3430 
3431 	/* Legacy Receive Descriptor Format
3432 	 *
3433 	 * +-----------------------------------------------------+
3434 	 * |                Buffer Address [63:0]                |
3435 	 * +-----------------------------------------------------+
3436 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3437 	 * +-----------------------------------------------------+
3438 	 * 63       48 47    40 39      32 31         16 15      0
3439 	 */
3440 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3441 
3442 	if (!netif_msg_rx_status(adapter))
3443 		goto exit;
3444 
3445 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3446 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3447 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3448 		struct my_u { __le64 a; __le64 b; };
3449 		struct my_u *u = (struct my_u *)rx_desc;
3450 		const char *type;
3451 
3452 		if (i == rx_ring->next_to_use)
3453 			type = "NTU";
3454 		else if (i == rx_ring->next_to_clean)
3455 			type = "NTC";
3456 		else
3457 			type = "";
3458 
3459 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3460 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3461 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3462 	} /* for */
3463 
3464 	/* dump the descriptor caches */
3465 	/* rx */
3466 	pr_info("Rx descriptor cache in 64bit format\n");
3467 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3468 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3469 			i,
3470 			readl(adapter->hw.hw_addr + i+4),
3471 			readl(adapter->hw.hw_addr + i),
3472 			readl(adapter->hw.hw_addr + i+12),
3473 			readl(adapter->hw.hw_addr + i+8));
3474 	}
3475 	/* tx */
3476 	pr_info("Tx descriptor cache in 64bit format\n");
3477 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3478 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3479 			i,
3480 			readl(adapter->hw.hw_addr + i+4),
3481 			readl(adapter->hw.hw_addr + i),
3482 			readl(adapter->hw.hw_addr + i+12),
3483 			readl(adapter->hw.hw_addr + i+8));
3484 	}
3485 exit:
3486 	return;
3487 }
3488 
3489 /**
3490  * e1000_tx_timeout - Respond to a Tx Hang
3491  * @netdev: network interface device structure
3492  **/
3493 static void e1000_tx_timeout(struct net_device *netdev)
3494 {
3495 	struct e1000_adapter *adapter = netdev_priv(netdev);
3496 
3497 	/* Do the reset outside of interrupt context */
3498 	adapter->tx_timeout_count++;
3499 	schedule_work(&adapter->reset_task);
3500 }
3501 
3502 static void e1000_reset_task(struct work_struct *work)
3503 {
3504 	struct e1000_adapter *adapter =
3505 		container_of(work, struct e1000_adapter, reset_task);
3506 
3507 	e_err(drv, "Reset adapter\n");
3508 	e1000_reinit_locked(adapter);
3509 }
3510 
3511 /**
3512  * e1000_get_stats - Get System Network Statistics
3513  * @netdev: network interface device structure
3514  *
3515  * Returns the address of the device statistics structure.
3516  * The statistics are actually updated from the watchdog.
3517  **/
3518 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3519 {
3520 	/* only return the current stats */
3521 	return &netdev->stats;
3522 }
3523 
3524 /**
3525  * e1000_change_mtu - Change the Maximum Transfer Unit
3526  * @netdev: network interface device structure
3527  * @new_mtu: new value for maximum frame size
3528  *
3529  * Returns 0 on success, negative on failure
3530  **/
3531 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3532 {
3533 	struct e1000_adapter *adapter = netdev_priv(netdev);
3534 	struct e1000_hw *hw = &adapter->hw;
3535 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3536 
3537 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3538 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3539 		e_err(probe, "Invalid MTU setting\n");
3540 		return -EINVAL;
3541 	}
3542 
3543 	/* Adapter-specific max frame size limits. */
3544 	switch (hw->mac_type) {
3545 	case e1000_undefined ... e1000_82542_rev2_1:
3546 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3547 			e_err(probe, "Jumbo Frames not supported.\n");
3548 			return -EINVAL;
3549 		}
3550 		break;
3551 	default:
3552 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3553 		break;
3554 	}
3555 
3556 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3557 		msleep(1);
3558 	/* e1000_down has a dependency on max_frame_size */
3559 	hw->max_frame_size = max_frame;
3560 	if (netif_running(netdev)) {
3561 		/* prevent buffers from being reallocated */
3562 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3563 		e1000_down(adapter);
3564 	}
3565 
3566 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3567 	 * means we reserve 2 more, this pushes us to allocate from the next
3568 	 * larger slab size.
3569 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3570 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3571 	 * fragmented skbs
3572 	 */
3573 
3574 	if (max_frame <= E1000_RXBUFFER_2048)
3575 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3576 	else
3577 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3578 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3579 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3580 		adapter->rx_buffer_len = PAGE_SIZE;
3581 #endif
3582 
3583 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3584 	if (!hw->tbi_compatibility_on &&
3585 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3586 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3587 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3588 
3589 	pr_info("%s changing MTU from %d to %d\n",
3590 		netdev->name, netdev->mtu, new_mtu);
3591 	netdev->mtu = new_mtu;
3592 
3593 	if (netif_running(netdev))
3594 		e1000_up(adapter);
3595 	else
3596 		e1000_reset(adapter);
3597 
3598 	clear_bit(__E1000_RESETTING, &adapter->flags);
3599 
3600 	return 0;
3601 }
3602 
3603 /**
3604  * e1000_update_stats - Update the board statistics counters
3605  * @adapter: board private structure
3606  **/
3607 void e1000_update_stats(struct e1000_adapter *adapter)
3608 {
3609 	struct net_device *netdev = adapter->netdev;
3610 	struct e1000_hw *hw = &adapter->hw;
3611 	struct pci_dev *pdev = adapter->pdev;
3612 	unsigned long flags;
3613 	u16 phy_tmp;
3614 
3615 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3616 
3617 	/* Prevent stats update while adapter is being reset, or if the pci
3618 	 * connection is down.
3619 	 */
3620 	if (adapter->link_speed == 0)
3621 		return;
3622 	if (pci_channel_offline(pdev))
3623 		return;
3624 
3625 	spin_lock_irqsave(&adapter->stats_lock, flags);
3626 
3627 	/* these counters are modified from e1000_tbi_adjust_stats,
3628 	 * called from the interrupt context, so they must only
3629 	 * be written while holding adapter->stats_lock
3630 	 */
3631 
3632 	adapter->stats.crcerrs += er32(CRCERRS);
3633 	adapter->stats.gprc += er32(GPRC);
3634 	adapter->stats.gorcl += er32(GORCL);
3635 	adapter->stats.gorch += er32(GORCH);
3636 	adapter->stats.bprc += er32(BPRC);
3637 	adapter->stats.mprc += er32(MPRC);
3638 	adapter->stats.roc += er32(ROC);
3639 
3640 	adapter->stats.prc64 += er32(PRC64);
3641 	adapter->stats.prc127 += er32(PRC127);
3642 	adapter->stats.prc255 += er32(PRC255);
3643 	adapter->stats.prc511 += er32(PRC511);
3644 	adapter->stats.prc1023 += er32(PRC1023);
3645 	adapter->stats.prc1522 += er32(PRC1522);
3646 
3647 	adapter->stats.symerrs += er32(SYMERRS);
3648 	adapter->stats.mpc += er32(MPC);
3649 	adapter->stats.scc += er32(SCC);
3650 	adapter->stats.ecol += er32(ECOL);
3651 	adapter->stats.mcc += er32(MCC);
3652 	adapter->stats.latecol += er32(LATECOL);
3653 	adapter->stats.dc += er32(DC);
3654 	adapter->stats.sec += er32(SEC);
3655 	adapter->stats.rlec += er32(RLEC);
3656 	adapter->stats.xonrxc += er32(XONRXC);
3657 	adapter->stats.xontxc += er32(XONTXC);
3658 	adapter->stats.xoffrxc += er32(XOFFRXC);
3659 	adapter->stats.xofftxc += er32(XOFFTXC);
3660 	adapter->stats.fcruc += er32(FCRUC);
3661 	adapter->stats.gptc += er32(GPTC);
3662 	adapter->stats.gotcl += er32(GOTCL);
3663 	adapter->stats.gotch += er32(GOTCH);
3664 	adapter->stats.rnbc += er32(RNBC);
3665 	adapter->stats.ruc += er32(RUC);
3666 	adapter->stats.rfc += er32(RFC);
3667 	adapter->stats.rjc += er32(RJC);
3668 	adapter->stats.torl += er32(TORL);
3669 	adapter->stats.torh += er32(TORH);
3670 	adapter->stats.totl += er32(TOTL);
3671 	adapter->stats.toth += er32(TOTH);
3672 	adapter->stats.tpr += er32(TPR);
3673 
3674 	adapter->stats.ptc64 += er32(PTC64);
3675 	adapter->stats.ptc127 += er32(PTC127);
3676 	adapter->stats.ptc255 += er32(PTC255);
3677 	adapter->stats.ptc511 += er32(PTC511);
3678 	adapter->stats.ptc1023 += er32(PTC1023);
3679 	adapter->stats.ptc1522 += er32(PTC1522);
3680 
3681 	adapter->stats.mptc += er32(MPTC);
3682 	adapter->stats.bptc += er32(BPTC);
3683 
3684 	/* used for adaptive IFS */
3685 
3686 	hw->tx_packet_delta = er32(TPT);
3687 	adapter->stats.tpt += hw->tx_packet_delta;
3688 	hw->collision_delta = er32(COLC);
3689 	adapter->stats.colc += hw->collision_delta;
3690 
3691 	if (hw->mac_type >= e1000_82543) {
3692 		adapter->stats.algnerrc += er32(ALGNERRC);
3693 		adapter->stats.rxerrc += er32(RXERRC);
3694 		adapter->stats.tncrs += er32(TNCRS);
3695 		adapter->stats.cexterr += er32(CEXTERR);
3696 		adapter->stats.tsctc += er32(TSCTC);
3697 		adapter->stats.tsctfc += er32(TSCTFC);
3698 	}
3699 
3700 	/* Fill out the OS statistics structure */
3701 	netdev->stats.multicast = adapter->stats.mprc;
3702 	netdev->stats.collisions = adapter->stats.colc;
3703 
3704 	/* Rx Errors */
3705 
3706 	/* RLEC on some newer hardware can be incorrect so build
3707 	 * our own version based on RUC and ROC
3708 	 */
3709 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3710 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3711 		adapter->stats.ruc + adapter->stats.roc +
3712 		adapter->stats.cexterr;
3713 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3714 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3715 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3716 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3717 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3718 
3719 	/* Tx Errors */
3720 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3721 	netdev->stats.tx_errors = adapter->stats.txerrc;
3722 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3723 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3724 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3725 	if (hw->bad_tx_carr_stats_fd &&
3726 	    adapter->link_duplex == FULL_DUPLEX) {
3727 		netdev->stats.tx_carrier_errors = 0;
3728 		adapter->stats.tncrs = 0;
3729 	}
3730 
3731 	/* Tx Dropped needs to be maintained elsewhere */
3732 
3733 	/* Phy Stats */
3734 	if (hw->media_type == e1000_media_type_copper) {
3735 		if ((adapter->link_speed == SPEED_1000) &&
3736 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3737 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3738 			adapter->phy_stats.idle_errors += phy_tmp;
3739 		}
3740 
3741 		if ((hw->mac_type <= e1000_82546) &&
3742 		   (hw->phy_type == e1000_phy_m88) &&
3743 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3744 			adapter->phy_stats.receive_errors += phy_tmp;
3745 	}
3746 
3747 	/* Management Stats */
3748 	if (hw->has_smbus) {
3749 		adapter->stats.mgptc += er32(MGTPTC);
3750 		adapter->stats.mgprc += er32(MGTPRC);
3751 		adapter->stats.mgpdc += er32(MGTPDC);
3752 	}
3753 
3754 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3755 }
3756 
3757 /**
3758  * e1000_intr - Interrupt Handler
3759  * @irq: interrupt number
3760  * @data: pointer to a network interface device structure
3761  **/
3762 static irqreturn_t e1000_intr(int irq, void *data)
3763 {
3764 	struct net_device *netdev = data;
3765 	struct e1000_adapter *adapter = netdev_priv(netdev);
3766 	struct e1000_hw *hw = &adapter->hw;
3767 	u32 icr = er32(ICR);
3768 
3769 	if (unlikely((!icr)))
3770 		return IRQ_NONE;  /* Not our interrupt */
3771 
3772 	/* we might have caused the interrupt, but the above
3773 	 * read cleared it, and just in case the driver is
3774 	 * down there is nothing to do so return handled
3775 	 */
3776 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3777 		return IRQ_HANDLED;
3778 
3779 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3780 		hw->get_link_status = 1;
3781 		/* guard against interrupt when we're going down */
3782 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3783 			schedule_delayed_work(&adapter->watchdog_task, 1);
3784 	}
3785 
3786 	/* disable interrupts, without the synchronize_irq bit */
3787 	ew32(IMC, ~0);
3788 	E1000_WRITE_FLUSH();
3789 
3790 	if (likely(napi_schedule_prep(&adapter->napi))) {
3791 		adapter->total_tx_bytes = 0;
3792 		adapter->total_tx_packets = 0;
3793 		adapter->total_rx_bytes = 0;
3794 		adapter->total_rx_packets = 0;
3795 		__napi_schedule(&adapter->napi);
3796 	} else {
3797 		/* this really should not happen! if it does it is basically a
3798 		 * bug, but not a hard error, so enable ints and continue
3799 		 */
3800 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3801 			e1000_irq_enable(adapter);
3802 	}
3803 
3804 	return IRQ_HANDLED;
3805 }
3806 
3807 /**
3808  * e1000_clean - NAPI Rx polling callback
3809  * @adapter: board private structure
3810  **/
3811 static int e1000_clean(struct napi_struct *napi, int budget)
3812 {
3813 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3814 						     napi);
3815 	int tx_clean_complete = 0, work_done = 0;
3816 
3817 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3818 
3819 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3820 
3821 	if (!tx_clean_complete)
3822 		work_done = budget;
3823 
3824 	/* If budget not fully consumed, exit the polling mode */
3825 	if (work_done < budget) {
3826 		if (likely(adapter->itr_setting & 3))
3827 			e1000_set_itr(adapter);
3828 		napi_complete(napi);
3829 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3830 			e1000_irq_enable(adapter);
3831 	}
3832 
3833 	return work_done;
3834 }
3835 
3836 /**
3837  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3838  * @adapter: board private structure
3839  **/
3840 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3841 			       struct e1000_tx_ring *tx_ring)
3842 {
3843 	struct e1000_hw *hw = &adapter->hw;
3844 	struct net_device *netdev = adapter->netdev;
3845 	struct e1000_tx_desc *tx_desc, *eop_desc;
3846 	struct e1000_tx_buffer *buffer_info;
3847 	unsigned int i, eop;
3848 	unsigned int count = 0;
3849 	unsigned int total_tx_bytes=0, total_tx_packets=0;
3850 	unsigned int bytes_compl = 0, pkts_compl = 0;
3851 
3852 	i = tx_ring->next_to_clean;
3853 	eop = tx_ring->buffer_info[i].next_to_watch;
3854 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3855 
3856 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3857 	       (count < tx_ring->count)) {
3858 		bool cleaned = false;
3859 		dma_rmb();	/* read buffer_info after eop_desc */
3860 		for ( ; !cleaned; count++) {
3861 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3862 			buffer_info = &tx_ring->buffer_info[i];
3863 			cleaned = (i == eop);
3864 
3865 			if (cleaned) {
3866 				total_tx_packets += buffer_info->segs;
3867 				total_tx_bytes += buffer_info->bytecount;
3868 				if (buffer_info->skb) {
3869 					bytes_compl += buffer_info->skb->len;
3870 					pkts_compl++;
3871 				}
3872 
3873 			}
3874 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3875 			tx_desc->upper.data = 0;
3876 
3877 			if (unlikely(++i == tx_ring->count)) i = 0;
3878 		}
3879 
3880 		eop = tx_ring->buffer_info[i].next_to_watch;
3881 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3882 	}
3883 
3884 	tx_ring->next_to_clean = i;
3885 
3886 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3887 
3888 #define TX_WAKE_THRESHOLD 32
3889 	if (unlikely(count && netif_carrier_ok(netdev) &&
3890 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3891 		/* Make sure that anybody stopping the queue after this
3892 		 * sees the new next_to_clean.
3893 		 */
3894 		smp_mb();
3895 
3896 		if (netif_queue_stopped(netdev) &&
3897 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3898 			netif_wake_queue(netdev);
3899 			++adapter->restart_queue;
3900 		}
3901 	}
3902 
3903 	if (adapter->detect_tx_hung) {
3904 		/* Detect a transmit hang in hardware, this serializes the
3905 		 * check with the clearing of time_stamp and movement of i
3906 		 */
3907 		adapter->detect_tx_hung = false;
3908 		if (tx_ring->buffer_info[eop].time_stamp &&
3909 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3910 			       (adapter->tx_timeout_factor * HZ)) &&
3911 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3912 
3913 			/* detected Tx unit hang */
3914 			e_err(drv, "Detected Tx Unit Hang\n"
3915 			      "  Tx Queue             <%lu>\n"
3916 			      "  TDH                  <%x>\n"
3917 			      "  TDT                  <%x>\n"
3918 			      "  next_to_use          <%x>\n"
3919 			      "  next_to_clean        <%x>\n"
3920 			      "buffer_info[next_to_clean]\n"
3921 			      "  time_stamp           <%lx>\n"
3922 			      "  next_to_watch        <%x>\n"
3923 			      "  jiffies              <%lx>\n"
3924 			      "  next_to_watch.status <%x>\n",
3925 				(unsigned long)(tx_ring - adapter->tx_ring),
3926 				readl(hw->hw_addr + tx_ring->tdh),
3927 				readl(hw->hw_addr + tx_ring->tdt),
3928 				tx_ring->next_to_use,
3929 				tx_ring->next_to_clean,
3930 				tx_ring->buffer_info[eop].time_stamp,
3931 				eop,
3932 				jiffies,
3933 				eop_desc->upper.fields.status);
3934 			e1000_dump(adapter);
3935 			netif_stop_queue(netdev);
3936 		}
3937 	}
3938 	adapter->total_tx_bytes += total_tx_bytes;
3939 	adapter->total_tx_packets += total_tx_packets;
3940 	netdev->stats.tx_bytes += total_tx_bytes;
3941 	netdev->stats.tx_packets += total_tx_packets;
3942 	return count < tx_ring->count;
3943 }
3944 
3945 /**
3946  * e1000_rx_checksum - Receive Checksum Offload for 82543
3947  * @adapter:     board private structure
3948  * @status_err:  receive descriptor status and error fields
3949  * @csum:        receive descriptor csum field
3950  * @sk_buff:     socket buffer with received data
3951  **/
3952 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3953 			      u32 csum, struct sk_buff *skb)
3954 {
3955 	struct e1000_hw *hw = &adapter->hw;
3956 	u16 status = (u16)status_err;
3957 	u8 errors = (u8)(status_err >> 24);
3958 
3959 	skb_checksum_none_assert(skb);
3960 
3961 	/* 82543 or newer only */
3962 	if (unlikely(hw->mac_type < e1000_82543)) return;
3963 	/* Ignore Checksum bit is set */
3964 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3965 	/* TCP/UDP checksum error bit is set */
3966 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3967 		/* let the stack verify checksum errors */
3968 		adapter->hw_csum_err++;
3969 		return;
3970 	}
3971 	/* TCP/UDP Checksum has not been calculated */
3972 	if (!(status & E1000_RXD_STAT_TCPCS))
3973 		return;
3974 
3975 	/* It must be a TCP or UDP packet with a valid checksum */
3976 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3977 		/* TCP checksum is good */
3978 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3979 	}
3980 	adapter->hw_csum_good++;
3981 }
3982 
3983 /**
3984  * e1000_consume_page - helper function for jumbo Rx path
3985  **/
3986 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987 			       u16 length)
3988 {
3989 	bi->rxbuf.page = NULL;
3990 	skb->len += length;
3991 	skb->data_len += length;
3992 	skb->truesize += PAGE_SIZE;
3993 }
3994 
3995 /**
3996  * e1000_receive_skb - helper function to handle rx indications
3997  * @adapter: board private structure
3998  * @status: descriptor status field as written by hardware
3999  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000  * @skb: pointer to sk_buff to be indicated to stack
4001  */
4002 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003 			      __le16 vlan, struct sk_buff *skb)
4004 {
4005 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4006 
4007 	if (status & E1000_RXD_STAT_VP) {
4008 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009 
4010 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011 	}
4012 	napi_gro_receive(&adapter->napi, skb);
4013 }
4014 
4015 /**
4016  * e1000_tbi_adjust_stats
4017  * @hw: Struct containing variables accessed by shared code
4018  * @frame_len: The length of the frame in question
4019  * @mac_addr: The Ethernet destination address of the frame in question
4020  *
4021  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4022  */
4023 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4024 				   struct e1000_hw_stats *stats,
4025 				   u32 frame_len, const u8 *mac_addr)
4026 {
4027 	u64 carry_bit;
4028 
4029 	/* First adjust the frame length. */
4030 	frame_len--;
4031 	/* We need to adjust the statistics counters, since the hardware
4032 	 * counters overcount this packet as a CRC error and undercount
4033 	 * the packet as a good packet
4034 	 */
4035 	/* This packet should not be counted as a CRC error. */
4036 	stats->crcerrs--;
4037 	/* This packet does count as a Good Packet Received. */
4038 	stats->gprc++;
4039 
4040 	/* Adjust the Good Octets received counters */
4041 	carry_bit = 0x80000000 & stats->gorcl;
4042 	stats->gorcl += frame_len;
4043 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4044 	 * Received Count) was one before the addition,
4045 	 * AND it is zero after, then we lost the carry out,
4046 	 * need to add one to Gorch (Good Octets Received Count High).
4047 	 * This could be simplified if all environments supported
4048 	 * 64-bit integers.
4049 	 */
4050 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4051 		stats->gorch++;
4052 	/* Is this a broadcast or multicast?  Check broadcast first,
4053 	 * since the test for a multicast frame will test positive on
4054 	 * a broadcast frame.
4055 	 */
4056 	if (is_broadcast_ether_addr(mac_addr))
4057 		stats->bprc++;
4058 	else if (is_multicast_ether_addr(mac_addr))
4059 		stats->mprc++;
4060 
4061 	if (frame_len == hw->max_frame_size) {
4062 		/* In this case, the hardware has overcounted the number of
4063 		 * oversize frames.
4064 		 */
4065 		if (stats->roc > 0)
4066 			stats->roc--;
4067 	}
4068 
4069 	/* Adjust the bin counters when the extra byte put the frame in the
4070 	 * wrong bin. Remember that the frame_len was adjusted above.
4071 	 */
4072 	if (frame_len == 64) {
4073 		stats->prc64++;
4074 		stats->prc127--;
4075 	} else if (frame_len == 127) {
4076 		stats->prc127++;
4077 		stats->prc255--;
4078 	} else if (frame_len == 255) {
4079 		stats->prc255++;
4080 		stats->prc511--;
4081 	} else if (frame_len == 511) {
4082 		stats->prc511++;
4083 		stats->prc1023--;
4084 	} else if (frame_len == 1023) {
4085 		stats->prc1023++;
4086 		stats->prc1522--;
4087 	} else if (frame_len == 1522) {
4088 		stats->prc1522++;
4089 	}
4090 }
4091 
4092 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4093 				    u8 status, u8 errors,
4094 				    u32 length, const u8 *data)
4095 {
4096 	struct e1000_hw *hw = &adapter->hw;
4097 	u8 last_byte = *(data + length - 1);
4098 
4099 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4100 		unsigned long irq_flags;
4101 
4102 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4103 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4104 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4105 
4106 		return true;
4107 	}
4108 
4109 	return false;
4110 }
4111 
4112 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4113 					  unsigned int bufsz)
4114 {
4115 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4116 
4117 	if (unlikely(!skb))
4118 		adapter->alloc_rx_buff_failed++;
4119 	return skb;
4120 }
4121 
4122 /**
4123  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4124  * @adapter: board private structure
4125  * @rx_ring: ring to clean
4126  * @work_done: amount of napi work completed this call
4127  * @work_to_do: max amount of work allowed for this call to do
4128  *
4129  * the return value indicates whether actual cleaning was done, there
4130  * is no guarantee that everything was cleaned
4131  */
4132 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4133 				     struct e1000_rx_ring *rx_ring,
4134 				     int *work_done, int work_to_do)
4135 {
4136 	struct net_device *netdev = adapter->netdev;
4137 	struct pci_dev *pdev = adapter->pdev;
4138 	struct e1000_rx_desc *rx_desc, *next_rxd;
4139 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4140 	u32 length;
4141 	unsigned int i;
4142 	int cleaned_count = 0;
4143 	bool cleaned = false;
4144 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4145 
4146 	i = rx_ring->next_to_clean;
4147 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4148 	buffer_info = &rx_ring->buffer_info[i];
4149 
4150 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4151 		struct sk_buff *skb;
4152 		u8 status;
4153 
4154 		if (*work_done >= work_to_do)
4155 			break;
4156 		(*work_done)++;
4157 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4158 
4159 		status = rx_desc->status;
4160 
4161 		if (++i == rx_ring->count) i = 0;
4162 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4163 		prefetch(next_rxd);
4164 
4165 		next_buffer = &rx_ring->buffer_info[i];
4166 
4167 		cleaned = true;
4168 		cleaned_count++;
4169 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4170 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4171 		buffer_info->dma = 0;
4172 
4173 		length = le16_to_cpu(rx_desc->length);
4174 
4175 		/* errors is only valid for DD + EOP descriptors */
4176 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4177 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4178 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4179 
4180 			if (e1000_tbi_should_accept(adapter, status,
4181 						    rx_desc->errors,
4182 						    length, mapped)) {
4183 				length--;
4184 			} else if (netdev->features & NETIF_F_RXALL) {
4185 				goto process_skb;
4186 			} else {
4187 				/* an error means any chain goes out the window
4188 				 * too
4189 				 */
4190 				if (rx_ring->rx_skb_top)
4191 					dev_kfree_skb(rx_ring->rx_skb_top);
4192 				rx_ring->rx_skb_top = NULL;
4193 				goto next_desc;
4194 			}
4195 		}
4196 
4197 #define rxtop rx_ring->rx_skb_top
4198 process_skb:
4199 		if (!(status & E1000_RXD_STAT_EOP)) {
4200 			/* this descriptor is only the beginning (or middle) */
4201 			if (!rxtop) {
4202 				/* this is the beginning of a chain */
4203 				rxtop = napi_get_frags(&adapter->napi);
4204 				if (!rxtop)
4205 					break;
4206 
4207 				skb_fill_page_desc(rxtop, 0,
4208 						   buffer_info->rxbuf.page,
4209 						   0, length);
4210 			} else {
4211 				/* this is the middle of a chain */
4212 				skb_fill_page_desc(rxtop,
4213 				    skb_shinfo(rxtop)->nr_frags,
4214 				    buffer_info->rxbuf.page, 0, length);
4215 			}
4216 			e1000_consume_page(buffer_info, rxtop, length);
4217 			goto next_desc;
4218 		} else {
4219 			if (rxtop) {
4220 				/* end of the chain */
4221 				skb_fill_page_desc(rxtop,
4222 				    skb_shinfo(rxtop)->nr_frags,
4223 				    buffer_info->rxbuf.page, 0, length);
4224 				skb = rxtop;
4225 				rxtop = NULL;
4226 				e1000_consume_page(buffer_info, skb, length);
4227 			} else {
4228 				struct page *p;
4229 				/* no chain, got EOP, this buf is the packet
4230 				 * copybreak to save the put_page/alloc_page
4231 				 */
4232 				p = buffer_info->rxbuf.page;
4233 				if (length <= copybreak) {
4234 					u8 *vaddr;
4235 
4236 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237 						length -= 4;
4238 					skb = e1000_alloc_rx_skb(adapter,
4239 								 length);
4240 					if (!skb)
4241 						break;
4242 
4243 					vaddr = kmap_atomic(p);
4244 					memcpy(skb_tail_pointer(skb), vaddr,
4245 					       length);
4246 					kunmap_atomic(vaddr);
4247 					/* re-use the page, so don't erase
4248 					 * buffer_info->rxbuf.page
4249 					 */
4250 					skb_put(skb, length);
4251 					e1000_rx_checksum(adapter,
4252 							  status | rx_desc->errors << 24,
4253 							  le16_to_cpu(rx_desc->csum), skb);
4254 
4255 					total_rx_bytes += skb->len;
4256 					total_rx_packets++;
4257 
4258 					e1000_receive_skb(adapter, status,
4259 							  rx_desc->special, skb);
4260 					goto next_desc;
4261 				} else {
4262 					skb = napi_get_frags(&adapter->napi);
4263 					if (!skb) {
4264 						adapter->alloc_rx_buff_failed++;
4265 						break;
4266 					}
4267 					skb_fill_page_desc(skb, 0, p, 0,
4268 							   length);
4269 					e1000_consume_page(buffer_info, skb,
4270 							   length);
4271 				}
4272 			}
4273 		}
4274 
4275 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4276 		e1000_rx_checksum(adapter,
4277 				  (u32)(status) |
4278 				  ((u32)(rx_desc->errors) << 24),
4279 				  le16_to_cpu(rx_desc->csum), skb);
4280 
4281 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4282 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4283 			pskb_trim(skb, skb->len - 4);
4284 		total_rx_packets++;
4285 
4286 		if (status & E1000_RXD_STAT_VP) {
4287 			__le16 vlan = rx_desc->special;
4288 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4289 
4290 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4291 		}
4292 
4293 		napi_gro_frags(&adapter->napi);
4294 
4295 next_desc:
4296 		rx_desc->status = 0;
4297 
4298 		/* return some buffers to hardware, one at a time is too slow */
4299 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4300 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4301 			cleaned_count = 0;
4302 		}
4303 
4304 		/* use prefetched values */
4305 		rx_desc = next_rxd;
4306 		buffer_info = next_buffer;
4307 	}
4308 	rx_ring->next_to_clean = i;
4309 
4310 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4311 	if (cleaned_count)
4312 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4313 
4314 	adapter->total_rx_packets += total_rx_packets;
4315 	adapter->total_rx_bytes += total_rx_bytes;
4316 	netdev->stats.rx_bytes += total_rx_bytes;
4317 	netdev->stats.rx_packets += total_rx_packets;
4318 	return cleaned;
4319 }
4320 
4321 /* this should improve performance for small packets with large amounts
4322  * of reassembly being done in the stack
4323  */
4324 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4325 				       struct e1000_rx_buffer *buffer_info,
4326 				       u32 length, const void *data)
4327 {
4328 	struct sk_buff *skb;
4329 
4330 	if (length > copybreak)
4331 		return NULL;
4332 
4333 	skb = e1000_alloc_rx_skb(adapter, length);
4334 	if (!skb)
4335 		return NULL;
4336 
4337 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4338 				length, DMA_FROM_DEVICE);
4339 
4340 	memcpy(skb_put(skb, length), data, length);
4341 
4342 	return skb;
4343 }
4344 
4345 /**
4346  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4347  * @adapter: board private structure
4348  * @rx_ring: ring to clean
4349  * @work_done: amount of napi work completed this call
4350  * @work_to_do: max amount of work allowed for this call to do
4351  */
4352 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4353 			       struct e1000_rx_ring *rx_ring,
4354 			       int *work_done, int work_to_do)
4355 {
4356 	struct net_device *netdev = adapter->netdev;
4357 	struct pci_dev *pdev = adapter->pdev;
4358 	struct e1000_rx_desc *rx_desc, *next_rxd;
4359 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4360 	u32 length;
4361 	unsigned int i;
4362 	int cleaned_count = 0;
4363 	bool cleaned = false;
4364 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4365 
4366 	i = rx_ring->next_to_clean;
4367 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4368 	buffer_info = &rx_ring->buffer_info[i];
4369 
4370 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4371 		struct sk_buff *skb;
4372 		u8 *data;
4373 		u8 status;
4374 
4375 		if (*work_done >= work_to_do)
4376 			break;
4377 		(*work_done)++;
4378 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4379 
4380 		status = rx_desc->status;
4381 		length = le16_to_cpu(rx_desc->length);
4382 
4383 		data = buffer_info->rxbuf.data;
4384 		prefetch(data);
4385 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4386 		if (!skb) {
4387 			unsigned int frag_len = e1000_frag_len(adapter);
4388 
4389 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4390 			if (!skb) {
4391 				adapter->alloc_rx_buff_failed++;
4392 				break;
4393 			}
4394 
4395 			skb_reserve(skb, E1000_HEADROOM);
4396 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4397 					 adapter->rx_buffer_len,
4398 					 DMA_FROM_DEVICE);
4399 			buffer_info->dma = 0;
4400 			buffer_info->rxbuf.data = NULL;
4401 		}
4402 
4403 		if (++i == rx_ring->count) i = 0;
4404 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4405 		prefetch(next_rxd);
4406 
4407 		next_buffer = &rx_ring->buffer_info[i];
4408 
4409 		cleaned = true;
4410 		cleaned_count++;
4411 
4412 		/* !EOP means multiple descriptors were used to store a single
4413 		 * packet, if thats the case we need to toss it.  In fact, we
4414 		 * to toss every packet with the EOP bit clear and the next
4415 		 * frame that _does_ have the EOP bit set, as it is by
4416 		 * definition only a frame fragment
4417 		 */
4418 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4419 			adapter->discarding = true;
4420 
4421 		if (adapter->discarding) {
4422 			/* All receives must fit into a single buffer */
4423 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4424 			dev_kfree_skb(skb);
4425 			if (status & E1000_RXD_STAT_EOP)
4426 				adapter->discarding = false;
4427 			goto next_desc;
4428 		}
4429 
4430 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4431 			if (e1000_tbi_should_accept(adapter, status,
4432 						    rx_desc->errors,
4433 						    length, data)) {
4434 				length--;
4435 			} else if (netdev->features & NETIF_F_RXALL) {
4436 				goto process_skb;
4437 			} else {
4438 				dev_kfree_skb(skb);
4439 				goto next_desc;
4440 			}
4441 		}
4442 
4443 process_skb:
4444 		total_rx_bytes += (length - 4); /* don't count FCS */
4445 		total_rx_packets++;
4446 
4447 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4448 			/* adjust length to remove Ethernet CRC, this must be
4449 			 * done after the TBI_ACCEPT workaround above
4450 			 */
4451 			length -= 4;
4452 
4453 		if (buffer_info->rxbuf.data == NULL)
4454 			skb_put(skb, length);
4455 		else /* copybreak skb */
4456 			skb_trim(skb, length);
4457 
4458 		/* Receive Checksum Offload */
4459 		e1000_rx_checksum(adapter,
4460 				  (u32)(status) |
4461 				  ((u32)(rx_desc->errors) << 24),
4462 				  le16_to_cpu(rx_desc->csum), skb);
4463 
4464 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4465 
4466 next_desc:
4467 		rx_desc->status = 0;
4468 
4469 		/* return some buffers to hardware, one at a time is too slow */
4470 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4471 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4472 			cleaned_count = 0;
4473 		}
4474 
4475 		/* use prefetched values */
4476 		rx_desc = next_rxd;
4477 		buffer_info = next_buffer;
4478 	}
4479 	rx_ring->next_to_clean = i;
4480 
4481 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4482 	if (cleaned_count)
4483 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4484 
4485 	adapter->total_rx_packets += total_rx_packets;
4486 	adapter->total_rx_bytes += total_rx_bytes;
4487 	netdev->stats.rx_bytes += total_rx_bytes;
4488 	netdev->stats.rx_packets += total_rx_packets;
4489 	return cleaned;
4490 }
4491 
4492 /**
4493  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4494  * @adapter: address of board private structure
4495  * @rx_ring: pointer to receive ring structure
4496  * @cleaned_count: number of buffers to allocate this pass
4497  **/
4498 static void
4499 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4500 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4501 {
4502 	struct pci_dev *pdev = adapter->pdev;
4503 	struct e1000_rx_desc *rx_desc;
4504 	struct e1000_rx_buffer *buffer_info;
4505 	unsigned int i;
4506 
4507 	i = rx_ring->next_to_use;
4508 	buffer_info = &rx_ring->buffer_info[i];
4509 
4510 	while (cleaned_count--) {
4511 		/* allocate a new page if necessary */
4512 		if (!buffer_info->rxbuf.page) {
4513 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4514 			if (unlikely(!buffer_info->rxbuf.page)) {
4515 				adapter->alloc_rx_buff_failed++;
4516 				break;
4517 			}
4518 		}
4519 
4520 		if (!buffer_info->dma) {
4521 			buffer_info->dma = dma_map_page(&pdev->dev,
4522 							buffer_info->rxbuf.page, 0,
4523 							adapter->rx_buffer_len,
4524 							DMA_FROM_DEVICE);
4525 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4526 				put_page(buffer_info->rxbuf.page);
4527 				buffer_info->rxbuf.page = NULL;
4528 				buffer_info->dma = 0;
4529 				adapter->alloc_rx_buff_failed++;
4530 				break;
4531 			}
4532 		}
4533 
4534 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4535 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4536 
4537 		if (unlikely(++i == rx_ring->count))
4538 			i = 0;
4539 		buffer_info = &rx_ring->buffer_info[i];
4540 	}
4541 
4542 	if (likely(rx_ring->next_to_use != i)) {
4543 		rx_ring->next_to_use = i;
4544 		if (unlikely(i-- == 0))
4545 			i = (rx_ring->count - 1);
4546 
4547 		/* Force memory writes to complete before letting h/w
4548 		 * know there are new descriptors to fetch.  (Only
4549 		 * applicable for weak-ordered memory model archs,
4550 		 * such as IA-64).
4551 		 */
4552 		wmb();
4553 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4554 	}
4555 }
4556 
4557 /**
4558  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4559  * @adapter: address of board private structure
4560  **/
4561 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4562 				   struct e1000_rx_ring *rx_ring,
4563 				   int cleaned_count)
4564 {
4565 	struct e1000_hw *hw = &adapter->hw;
4566 	struct pci_dev *pdev = adapter->pdev;
4567 	struct e1000_rx_desc *rx_desc;
4568 	struct e1000_rx_buffer *buffer_info;
4569 	unsigned int i;
4570 	unsigned int bufsz = adapter->rx_buffer_len;
4571 
4572 	i = rx_ring->next_to_use;
4573 	buffer_info = &rx_ring->buffer_info[i];
4574 
4575 	while (cleaned_count--) {
4576 		void *data;
4577 
4578 		if (buffer_info->rxbuf.data)
4579 			goto skip;
4580 
4581 		data = e1000_alloc_frag(adapter);
4582 		if (!data) {
4583 			/* Better luck next round */
4584 			adapter->alloc_rx_buff_failed++;
4585 			break;
4586 		}
4587 
4588 		/* Fix for errata 23, can't cross 64kB boundary */
4589 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4590 			void *olddata = data;
4591 			e_err(rx_err, "skb align check failed: %u bytes at "
4592 			      "%p\n", bufsz, data);
4593 			/* Try again, without freeing the previous */
4594 			data = e1000_alloc_frag(adapter);
4595 			/* Failed allocation, critical failure */
4596 			if (!data) {
4597 				e1000_free_frag(olddata);
4598 				adapter->alloc_rx_buff_failed++;
4599 				break;
4600 			}
4601 
4602 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4603 				/* give up */
4604 				e1000_free_frag(data);
4605 				e1000_free_frag(olddata);
4606 				adapter->alloc_rx_buff_failed++;
4607 				break;
4608 			}
4609 
4610 			/* Use new allocation */
4611 			e1000_free_frag(olddata);
4612 		}
4613 		buffer_info->dma = dma_map_single(&pdev->dev,
4614 						  data,
4615 						  adapter->rx_buffer_len,
4616 						  DMA_FROM_DEVICE);
4617 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4618 			e1000_free_frag(data);
4619 			buffer_info->dma = 0;
4620 			adapter->alloc_rx_buff_failed++;
4621 			break;
4622 		}
4623 
4624 		/* XXX if it was allocated cleanly it will never map to a
4625 		 * boundary crossing
4626 		 */
4627 
4628 		/* Fix for errata 23, can't cross 64kB boundary */
4629 		if (!e1000_check_64k_bound(adapter,
4630 					(void *)(unsigned long)buffer_info->dma,
4631 					adapter->rx_buffer_len)) {
4632 			e_err(rx_err, "dma align check failed: %u bytes at "
4633 			      "%p\n", adapter->rx_buffer_len,
4634 			      (void *)(unsigned long)buffer_info->dma);
4635 
4636 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4637 					 adapter->rx_buffer_len,
4638 					 DMA_FROM_DEVICE);
4639 
4640 			e1000_free_frag(data);
4641 			buffer_info->rxbuf.data = NULL;
4642 			buffer_info->dma = 0;
4643 
4644 			adapter->alloc_rx_buff_failed++;
4645 			break;
4646 		}
4647 		buffer_info->rxbuf.data = data;
4648  skip:
4649 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4650 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4651 
4652 		if (unlikely(++i == rx_ring->count))
4653 			i = 0;
4654 		buffer_info = &rx_ring->buffer_info[i];
4655 	}
4656 
4657 	if (likely(rx_ring->next_to_use != i)) {
4658 		rx_ring->next_to_use = i;
4659 		if (unlikely(i-- == 0))
4660 			i = (rx_ring->count - 1);
4661 
4662 		/* Force memory writes to complete before letting h/w
4663 		 * know there are new descriptors to fetch.  (Only
4664 		 * applicable for weak-ordered memory model archs,
4665 		 * such as IA-64).
4666 		 */
4667 		wmb();
4668 		writel(i, hw->hw_addr + rx_ring->rdt);
4669 	}
4670 }
4671 
4672 /**
4673  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4674  * @adapter:
4675  **/
4676 static void e1000_smartspeed(struct e1000_adapter *adapter)
4677 {
4678 	struct e1000_hw *hw = &adapter->hw;
4679 	u16 phy_status;
4680 	u16 phy_ctrl;
4681 
4682 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4683 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4684 		return;
4685 
4686 	if (adapter->smartspeed == 0) {
4687 		/* If Master/Slave config fault is asserted twice,
4688 		 * we assume back-to-back
4689 		 */
4690 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4691 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4692 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4693 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4694 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4695 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4696 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4697 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4698 					    phy_ctrl);
4699 			adapter->smartspeed++;
4700 			if (!e1000_phy_setup_autoneg(hw) &&
4701 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4702 					       &phy_ctrl)) {
4703 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4704 					     MII_CR_RESTART_AUTO_NEG);
4705 				e1000_write_phy_reg(hw, PHY_CTRL,
4706 						    phy_ctrl);
4707 			}
4708 		}
4709 		return;
4710 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4711 		/* If still no link, perhaps using 2/3 pair cable */
4712 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4713 		phy_ctrl |= CR_1000T_MS_ENABLE;
4714 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4715 		if (!e1000_phy_setup_autoneg(hw) &&
4716 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4717 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4718 				     MII_CR_RESTART_AUTO_NEG);
4719 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4720 		}
4721 	}
4722 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4723 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4724 		adapter->smartspeed = 0;
4725 }
4726 
4727 /**
4728  * e1000_ioctl -
4729  * @netdev:
4730  * @ifreq:
4731  * @cmd:
4732  **/
4733 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4734 {
4735 	switch (cmd) {
4736 	case SIOCGMIIPHY:
4737 	case SIOCGMIIREG:
4738 	case SIOCSMIIREG:
4739 		return e1000_mii_ioctl(netdev, ifr, cmd);
4740 	default:
4741 		return -EOPNOTSUPP;
4742 	}
4743 }
4744 
4745 /**
4746  * e1000_mii_ioctl -
4747  * @netdev:
4748  * @ifreq:
4749  * @cmd:
4750  **/
4751 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4752 			   int cmd)
4753 {
4754 	struct e1000_adapter *adapter = netdev_priv(netdev);
4755 	struct e1000_hw *hw = &adapter->hw;
4756 	struct mii_ioctl_data *data = if_mii(ifr);
4757 	int retval;
4758 	u16 mii_reg;
4759 	unsigned long flags;
4760 
4761 	if (hw->media_type != e1000_media_type_copper)
4762 		return -EOPNOTSUPP;
4763 
4764 	switch (cmd) {
4765 	case SIOCGMIIPHY:
4766 		data->phy_id = hw->phy_addr;
4767 		break;
4768 	case SIOCGMIIREG:
4769 		spin_lock_irqsave(&adapter->stats_lock, flags);
4770 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4771 				   &data->val_out)) {
4772 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4773 			return -EIO;
4774 		}
4775 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4776 		break;
4777 	case SIOCSMIIREG:
4778 		if (data->reg_num & ~(0x1F))
4779 			return -EFAULT;
4780 		mii_reg = data->val_in;
4781 		spin_lock_irqsave(&adapter->stats_lock, flags);
4782 		if (e1000_write_phy_reg(hw, data->reg_num,
4783 					mii_reg)) {
4784 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4785 			return -EIO;
4786 		}
4787 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4788 		if (hw->media_type == e1000_media_type_copper) {
4789 			switch (data->reg_num) {
4790 			case PHY_CTRL:
4791 				if (mii_reg & MII_CR_POWER_DOWN)
4792 					break;
4793 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4794 					hw->autoneg = 1;
4795 					hw->autoneg_advertised = 0x2F;
4796 				} else {
4797 					u32 speed;
4798 					if (mii_reg & 0x40)
4799 						speed = SPEED_1000;
4800 					else if (mii_reg & 0x2000)
4801 						speed = SPEED_100;
4802 					else
4803 						speed = SPEED_10;
4804 					retval = e1000_set_spd_dplx(
4805 						adapter, speed,
4806 						((mii_reg & 0x100)
4807 						 ? DUPLEX_FULL :
4808 						 DUPLEX_HALF));
4809 					if (retval)
4810 						return retval;
4811 				}
4812 				if (netif_running(adapter->netdev))
4813 					e1000_reinit_locked(adapter);
4814 				else
4815 					e1000_reset(adapter);
4816 				break;
4817 			case M88E1000_PHY_SPEC_CTRL:
4818 			case M88E1000_EXT_PHY_SPEC_CTRL:
4819 				if (e1000_phy_reset(hw))
4820 					return -EIO;
4821 				break;
4822 			}
4823 		} else {
4824 			switch (data->reg_num) {
4825 			case PHY_CTRL:
4826 				if (mii_reg & MII_CR_POWER_DOWN)
4827 					break;
4828 				if (netif_running(adapter->netdev))
4829 					e1000_reinit_locked(adapter);
4830 				else
4831 					e1000_reset(adapter);
4832 				break;
4833 			}
4834 		}
4835 		break;
4836 	default:
4837 		return -EOPNOTSUPP;
4838 	}
4839 	return E1000_SUCCESS;
4840 }
4841 
4842 void e1000_pci_set_mwi(struct e1000_hw *hw)
4843 {
4844 	struct e1000_adapter *adapter = hw->back;
4845 	int ret_val = pci_set_mwi(adapter->pdev);
4846 
4847 	if (ret_val)
4848 		e_err(probe, "Error in setting MWI\n");
4849 }
4850 
4851 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4852 {
4853 	struct e1000_adapter *adapter = hw->back;
4854 
4855 	pci_clear_mwi(adapter->pdev);
4856 }
4857 
4858 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4859 {
4860 	struct e1000_adapter *adapter = hw->back;
4861 	return pcix_get_mmrbc(adapter->pdev);
4862 }
4863 
4864 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4865 {
4866 	struct e1000_adapter *adapter = hw->back;
4867 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4868 }
4869 
4870 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4871 {
4872 	outl(value, port);
4873 }
4874 
4875 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4876 {
4877 	u16 vid;
4878 
4879 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4880 		return true;
4881 	return false;
4882 }
4883 
4884 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4885 			      netdev_features_t features)
4886 {
4887 	struct e1000_hw *hw = &adapter->hw;
4888 	u32 ctrl;
4889 
4890 	ctrl = er32(CTRL);
4891 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4892 		/* enable VLAN tag insert/strip */
4893 		ctrl |= E1000_CTRL_VME;
4894 	} else {
4895 		/* disable VLAN tag insert/strip */
4896 		ctrl &= ~E1000_CTRL_VME;
4897 	}
4898 	ew32(CTRL, ctrl);
4899 }
4900 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4901 				     bool filter_on)
4902 {
4903 	struct e1000_hw *hw = &adapter->hw;
4904 	u32 rctl;
4905 
4906 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4907 		e1000_irq_disable(adapter);
4908 
4909 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4910 	if (filter_on) {
4911 		/* enable VLAN receive filtering */
4912 		rctl = er32(RCTL);
4913 		rctl &= ~E1000_RCTL_CFIEN;
4914 		if (!(adapter->netdev->flags & IFF_PROMISC))
4915 			rctl |= E1000_RCTL_VFE;
4916 		ew32(RCTL, rctl);
4917 		e1000_update_mng_vlan(adapter);
4918 	} else {
4919 		/* disable VLAN receive filtering */
4920 		rctl = er32(RCTL);
4921 		rctl &= ~E1000_RCTL_VFE;
4922 		ew32(RCTL, rctl);
4923 	}
4924 
4925 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4926 		e1000_irq_enable(adapter);
4927 }
4928 
4929 static void e1000_vlan_mode(struct net_device *netdev,
4930 			    netdev_features_t features)
4931 {
4932 	struct e1000_adapter *adapter = netdev_priv(netdev);
4933 
4934 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4935 		e1000_irq_disable(adapter);
4936 
4937 	__e1000_vlan_mode(adapter, features);
4938 
4939 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4940 		e1000_irq_enable(adapter);
4941 }
4942 
4943 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4944 				 __be16 proto, u16 vid)
4945 {
4946 	struct e1000_adapter *adapter = netdev_priv(netdev);
4947 	struct e1000_hw *hw = &adapter->hw;
4948 	u32 vfta, index;
4949 
4950 	if ((hw->mng_cookie.status &
4951 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4952 	    (vid == adapter->mng_vlan_id))
4953 		return 0;
4954 
4955 	if (!e1000_vlan_used(adapter))
4956 		e1000_vlan_filter_on_off(adapter, true);
4957 
4958 	/* add VID to filter table */
4959 	index = (vid >> 5) & 0x7F;
4960 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4961 	vfta |= (1 << (vid & 0x1F));
4962 	e1000_write_vfta(hw, index, vfta);
4963 
4964 	set_bit(vid, adapter->active_vlans);
4965 
4966 	return 0;
4967 }
4968 
4969 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4970 				  __be16 proto, u16 vid)
4971 {
4972 	struct e1000_adapter *adapter = netdev_priv(netdev);
4973 	struct e1000_hw *hw = &adapter->hw;
4974 	u32 vfta, index;
4975 
4976 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4977 		e1000_irq_disable(adapter);
4978 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4979 		e1000_irq_enable(adapter);
4980 
4981 	/* remove VID from filter table */
4982 	index = (vid >> 5) & 0x7F;
4983 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4984 	vfta &= ~(1 << (vid & 0x1F));
4985 	e1000_write_vfta(hw, index, vfta);
4986 
4987 	clear_bit(vid, adapter->active_vlans);
4988 
4989 	if (!e1000_vlan_used(adapter))
4990 		e1000_vlan_filter_on_off(adapter, false);
4991 
4992 	return 0;
4993 }
4994 
4995 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4996 {
4997 	u16 vid;
4998 
4999 	if (!e1000_vlan_used(adapter))
5000 		return;
5001 
5002 	e1000_vlan_filter_on_off(adapter, true);
5003 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5004 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5005 }
5006 
5007 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5008 {
5009 	struct e1000_hw *hw = &adapter->hw;
5010 
5011 	hw->autoneg = 0;
5012 
5013 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5014 	 * for the switch() below to work
5015 	 */
5016 	if ((spd & 1) || (dplx & ~1))
5017 		goto err_inval;
5018 
5019 	/* Fiber NICs only allow 1000 gbps Full duplex */
5020 	if ((hw->media_type == e1000_media_type_fiber) &&
5021 	    spd != SPEED_1000 &&
5022 	    dplx != DUPLEX_FULL)
5023 		goto err_inval;
5024 
5025 	switch (spd + dplx) {
5026 	case SPEED_10 + DUPLEX_HALF:
5027 		hw->forced_speed_duplex = e1000_10_half;
5028 		break;
5029 	case SPEED_10 + DUPLEX_FULL:
5030 		hw->forced_speed_duplex = e1000_10_full;
5031 		break;
5032 	case SPEED_100 + DUPLEX_HALF:
5033 		hw->forced_speed_duplex = e1000_100_half;
5034 		break;
5035 	case SPEED_100 + DUPLEX_FULL:
5036 		hw->forced_speed_duplex = e1000_100_full;
5037 		break;
5038 	case SPEED_1000 + DUPLEX_FULL:
5039 		hw->autoneg = 1;
5040 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5041 		break;
5042 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5043 	default:
5044 		goto err_inval;
5045 	}
5046 
5047 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5048 	hw->mdix = AUTO_ALL_MODES;
5049 
5050 	return 0;
5051 
5052 err_inval:
5053 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5054 	return -EINVAL;
5055 }
5056 
5057 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5058 {
5059 	struct net_device *netdev = pci_get_drvdata(pdev);
5060 	struct e1000_adapter *adapter = netdev_priv(netdev);
5061 	struct e1000_hw *hw = &adapter->hw;
5062 	u32 ctrl, ctrl_ext, rctl, status;
5063 	u32 wufc = adapter->wol;
5064 #ifdef CONFIG_PM
5065 	int retval = 0;
5066 #endif
5067 
5068 	netif_device_detach(netdev);
5069 
5070 	if (netif_running(netdev)) {
5071 		int count = E1000_CHECK_RESET_COUNT;
5072 
5073 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5074 			usleep_range(10000, 20000);
5075 
5076 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5077 		e1000_down(adapter);
5078 	}
5079 
5080 #ifdef CONFIG_PM
5081 	retval = pci_save_state(pdev);
5082 	if (retval)
5083 		return retval;
5084 #endif
5085 
5086 	status = er32(STATUS);
5087 	if (status & E1000_STATUS_LU)
5088 		wufc &= ~E1000_WUFC_LNKC;
5089 
5090 	if (wufc) {
5091 		e1000_setup_rctl(adapter);
5092 		e1000_set_rx_mode(netdev);
5093 
5094 		rctl = er32(RCTL);
5095 
5096 		/* turn on all-multi mode if wake on multicast is enabled */
5097 		if (wufc & E1000_WUFC_MC)
5098 			rctl |= E1000_RCTL_MPE;
5099 
5100 		/* enable receives in the hardware */
5101 		ew32(RCTL, rctl | E1000_RCTL_EN);
5102 
5103 		if (hw->mac_type >= e1000_82540) {
5104 			ctrl = er32(CTRL);
5105 			/* advertise wake from D3Cold */
5106 			#define E1000_CTRL_ADVD3WUC 0x00100000
5107 			/* phy power management enable */
5108 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5109 			ctrl |= E1000_CTRL_ADVD3WUC |
5110 				E1000_CTRL_EN_PHY_PWR_MGMT;
5111 			ew32(CTRL, ctrl);
5112 		}
5113 
5114 		if (hw->media_type == e1000_media_type_fiber ||
5115 		    hw->media_type == e1000_media_type_internal_serdes) {
5116 			/* keep the laser running in D3 */
5117 			ctrl_ext = er32(CTRL_EXT);
5118 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5119 			ew32(CTRL_EXT, ctrl_ext);
5120 		}
5121 
5122 		ew32(WUC, E1000_WUC_PME_EN);
5123 		ew32(WUFC, wufc);
5124 	} else {
5125 		ew32(WUC, 0);
5126 		ew32(WUFC, 0);
5127 	}
5128 
5129 	e1000_release_manageability(adapter);
5130 
5131 	*enable_wake = !!wufc;
5132 
5133 	/* make sure adapter isn't asleep if manageability is enabled */
5134 	if (adapter->en_mng_pt)
5135 		*enable_wake = true;
5136 
5137 	if (netif_running(netdev))
5138 		e1000_free_irq(adapter);
5139 
5140 	pci_disable_device(pdev);
5141 
5142 	return 0;
5143 }
5144 
5145 #ifdef CONFIG_PM
5146 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5147 {
5148 	int retval;
5149 	bool wake;
5150 
5151 	retval = __e1000_shutdown(pdev, &wake);
5152 	if (retval)
5153 		return retval;
5154 
5155 	if (wake) {
5156 		pci_prepare_to_sleep(pdev);
5157 	} else {
5158 		pci_wake_from_d3(pdev, false);
5159 		pci_set_power_state(pdev, PCI_D3hot);
5160 	}
5161 
5162 	return 0;
5163 }
5164 
5165 static int e1000_resume(struct pci_dev *pdev)
5166 {
5167 	struct net_device *netdev = pci_get_drvdata(pdev);
5168 	struct e1000_adapter *adapter = netdev_priv(netdev);
5169 	struct e1000_hw *hw = &adapter->hw;
5170 	u32 err;
5171 
5172 	pci_set_power_state(pdev, PCI_D0);
5173 	pci_restore_state(pdev);
5174 	pci_save_state(pdev);
5175 
5176 	if (adapter->need_ioport)
5177 		err = pci_enable_device(pdev);
5178 	else
5179 		err = pci_enable_device_mem(pdev);
5180 	if (err) {
5181 		pr_err("Cannot enable PCI device from suspend\n");
5182 		return err;
5183 	}
5184 	pci_set_master(pdev);
5185 
5186 	pci_enable_wake(pdev, PCI_D3hot, 0);
5187 	pci_enable_wake(pdev, PCI_D3cold, 0);
5188 
5189 	if (netif_running(netdev)) {
5190 		err = e1000_request_irq(adapter);
5191 		if (err)
5192 			return err;
5193 	}
5194 
5195 	e1000_power_up_phy(adapter);
5196 	e1000_reset(adapter);
5197 	ew32(WUS, ~0);
5198 
5199 	e1000_init_manageability(adapter);
5200 
5201 	if (netif_running(netdev))
5202 		e1000_up(adapter);
5203 
5204 	netif_device_attach(netdev);
5205 
5206 	return 0;
5207 }
5208 #endif
5209 
5210 static void e1000_shutdown(struct pci_dev *pdev)
5211 {
5212 	bool wake;
5213 
5214 	__e1000_shutdown(pdev, &wake);
5215 
5216 	if (system_state == SYSTEM_POWER_OFF) {
5217 		pci_wake_from_d3(pdev, wake);
5218 		pci_set_power_state(pdev, PCI_D3hot);
5219 	}
5220 }
5221 
5222 #ifdef CONFIG_NET_POLL_CONTROLLER
5223 /* Polling 'interrupt' - used by things like netconsole to send skbs
5224  * without having to re-enable interrupts. It's not called while
5225  * the interrupt routine is executing.
5226  */
5227 static void e1000_netpoll(struct net_device *netdev)
5228 {
5229 	struct e1000_adapter *adapter = netdev_priv(netdev);
5230 
5231 	disable_irq(adapter->pdev->irq);
5232 	e1000_intr(adapter->pdev->irq, netdev);
5233 	enable_irq(adapter->pdev->irq);
5234 }
5235 #endif
5236 
5237 /**
5238  * e1000_io_error_detected - called when PCI error is detected
5239  * @pdev: Pointer to PCI device
5240  * @state: The current pci connection state
5241  *
5242  * This function is called after a PCI bus error affecting
5243  * this device has been detected.
5244  */
5245 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5246 						pci_channel_state_t state)
5247 {
5248 	struct net_device *netdev = pci_get_drvdata(pdev);
5249 	struct e1000_adapter *adapter = netdev_priv(netdev);
5250 
5251 	netif_device_detach(netdev);
5252 
5253 	if (state == pci_channel_io_perm_failure)
5254 		return PCI_ERS_RESULT_DISCONNECT;
5255 
5256 	if (netif_running(netdev))
5257 		e1000_down(adapter);
5258 	pci_disable_device(pdev);
5259 
5260 	/* Request a slot slot reset. */
5261 	return PCI_ERS_RESULT_NEED_RESET;
5262 }
5263 
5264 /**
5265  * e1000_io_slot_reset - called after the pci bus has been reset.
5266  * @pdev: Pointer to PCI device
5267  *
5268  * Restart the card from scratch, as if from a cold-boot. Implementation
5269  * resembles the first-half of the e1000_resume routine.
5270  */
5271 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5272 {
5273 	struct net_device *netdev = pci_get_drvdata(pdev);
5274 	struct e1000_adapter *adapter = netdev_priv(netdev);
5275 	struct e1000_hw *hw = &adapter->hw;
5276 	int err;
5277 
5278 	if (adapter->need_ioport)
5279 		err = pci_enable_device(pdev);
5280 	else
5281 		err = pci_enable_device_mem(pdev);
5282 	if (err) {
5283 		pr_err("Cannot re-enable PCI device after reset.\n");
5284 		return PCI_ERS_RESULT_DISCONNECT;
5285 	}
5286 	pci_set_master(pdev);
5287 
5288 	pci_enable_wake(pdev, PCI_D3hot, 0);
5289 	pci_enable_wake(pdev, PCI_D3cold, 0);
5290 
5291 	e1000_reset(adapter);
5292 	ew32(WUS, ~0);
5293 
5294 	return PCI_ERS_RESULT_RECOVERED;
5295 }
5296 
5297 /**
5298  * e1000_io_resume - called when traffic can start flowing again.
5299  * @pdev: Pointer to PCI device
5300  *
5301  * This callback is called when the error recovery driver tells us that
5302  * its OK to resume normal operation. Implementation resembles the
5303  * second-half of the e1000_resume routine.
5304  */
5305 static void e1000_io_resume(struct pci_dev *pdev)
5306 {
5307 	struct net_device *netdev = pci_get_drvdata(pdev);
5308 	struct e1000_adapter *adapter = netdev_priv(netdev);
5309 
5310 	e1000_init_manageability(adapter);
5311 
5312 	if (netif_running(netdev)) {
5313 		if (e1000_up(adapter)) {
5314 			pr_info("can't bring device back up after reset\n");
5315 			return;
5316 		}
5317 	}
5318 
5319 	netif_device_attach(netdev);
5320 }
5321 
5322 /* e1000_main.c */
5323