1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 #include "e1000.h" 30 #include <net/ip6_checksum.h> 31 #include <linux/io.h> 32 #include <linux/prefetch.h> 33 #include <linux/bitops.h> 34 #include <linux/if_vlan.h> 35 36 char e1000_driver_name[] = "e1000"; 37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 38 #define DRV_VERSION "7.3.21-k8-NAPI" 39 const char e1000_driver_version[] = DRV_VERSION; 40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 41 42 /* e1000_pci_tbl - PCI Device ID Table 43 * 44 * Last entry must be all 0s 45 * 46 * Macro expands to... 47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 48 */ 49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { 50 INTEL_E1000_ETHERNET_DEVICE(0x1000), 51 INTEL_E1000_ETHERNET_DEVICE(0x1001), 52 INTEL_E1000_ETHERNET_DEVICE(0x1004), 53 INTEL_E1000_ETHERNET_DEVICE(0x1008), 54 INTEL_E1000_ETHERNET_DEVICE(0x1009), 55 INTEL_E1000_ETHERNET_DEVICE(0x100C), 56 INTEL_E1000_ETHERNET_DEVICE(0x100D), 57 INTEL_E1000_ETHERNET_DEVICE(0x100E), 58 INTEL_E1000_ETHERNET_DEVICE(0x100F), 59 INTEL_E1000_ETHERNET_DEVICE(0x1010), 60 INTEL_E1000_ETHERNET_DEVICE(0x1011), 61 INTEL_E1000_ETHERNET_DEVICE(0x1012), 62 INTEL_E1000_ETHERNET_DEVICE(0x1013), 63 INTEL_E1000_ETHERNET_DEVICE(0x1014), 64 INTEL_E1000_ETHERNET_DEVICE(0x1015), 65 INTEL_E1000_ETHERNET_DEVICE(0x1016), 66 INTEL_E1000_ETHERNET_DEVICE(0x1017), 67 INTEL_E1000_ETHERNET_DEVICE(0x1018), 68 INTEL_E1000_ETHERNET_DEVICE(0x1019), 69 INTEL_E1000_ETHERNET_DEVICE(0x101A), 70 INTEL_E1000_ETHERNET_DEVICE(0x101D), 71 INTEL_E1000_ETHERNET_DEVICE(0x101E), 72 INTEL_E1000_ETHERNET_DEVICE(0x1026), 73 INTEL_E1000_ETHERNET_DEVICE(0x1027), 74 INTEL_E1000_ETHERNET_DEVICE(0x1028), 75 INTEL_E1000_ETHERNET_DEVICE(0x1075), 76 INTEL_E1000_ETHERNET_DEVICE(0x1076), 77 INTEL_E1000_ETHERNET_DEVICE(0x1077), 78 INTEL_E1000_ETHERNET_DEVICE(0x1078), 79 INTEL_E1000_ETHERNET_DEVICE(0x1079), 80 INTEL_E1000_ETHERNET_DEVICE(0x107A), 81 INTEL_E1000_ETHERNET_DEVICE(0x107B), 82 INTEL_E1000_ETHERNET_DEVICE(0x107C), 83 INTEL_E1000_ETHERNET_DEVICE(0x108A), 84 INTEL_E1000_ETHERNET_DEVICE(0x1099), 85 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 87 /* required last entry */ 88 {0,} 89 }; 90 91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 92 93 int e1000_up(struct e1000_adapter *adapter); 94 void e1000_down(struct e1000_adapter *adapter); 95 void e1000_reinit_locked(struct e1000_adapter *adapter); 96 void e1000_reset(struct e1000_adapter *adapter); 97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 102 struct e1000_tx_ring *txdr); 103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 104 struct e1000_rx_ring *rxdr); 105 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 106 struct e1000_tx_ring *tx_ring); 107 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 108 struct e1000_rx_ring *rx_ring); 109 void e1000_update_stats(struct e1000_adapter *adapter); 110 111 static int e1000_init_module(void); 112 static void e1000_exit_module(void); 113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 114 static void e1000_remove(struct pci_dev *pdev); 115 static int e1000_alloc_queues(struct e1000_adapter *adapter); 116 static int e1000_sw_init(struct e1000_adapter *adapter); 117 static int e1000_open(struct net_device *netdev); 118 static int e1000_close(struct net_device *netdev); 119 static void e1000_configure_tx(struct e1000_adapter *adapter); 120 static void e1000_configure_rx(struct e1000_adapter *adapter); 121 static void e1000_setup_rctl(struct e1000_adapter *adapter); 122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 125 struct e1000_tx_ring *tx_ring); 126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 127 struct e1000_rx_ring *rx_ring); 128 static void e1000_set_rx_mode(struct net_device *netdev); 129 static void e1000_update_phy_info_task(struct work_struct *work); 130 static void e1000_watchdog(struct work_struct *work); 131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 133 struct net_device *netdev); 134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); 135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 136 static int e1000_set_mac(struct net_device *netdev, void *p); 137 static irqreturn_t e1000_intr(int irq, void *data); 138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 139 struct e1000_tx_ring *tx_ring); 140 static int e1000_clean(struct napi_struct *napi, int budget); 141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 142 struct e1000_rx_ring *rx_ring, 143 int *work_done, int work_to_do); 144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 145 struct e1000_rx_ring *rx_ring, 146 int *work_done, int work_to_do); 147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 148 struct e1000_rx_ring *rx_ring, 149 int cleaned_count); 150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 151 struct e1000_rx_ring *rx_ring, 152 int cleaned_count); 153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 155 int cmd); 156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 158 static void e1000_tx_timeout(struct net_device *dev); 159 static void e1000_reset_task(struct work_struct *work); 160 static void e1000_smartspeed(struct e1000_adapter *adapter); 161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 162 struct sk_buff *skb); 163 164 static bool e1000_vlan_used(struct e1000_adapter *adapter); 165 static void e1000_vlan_mode(struct net_device *netdev, 166 netdev_features_t features); 167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 168 bool filter_on); 169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 170 __be16 proto, u16 vid); 171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 172 __be16 proto, u16 vid); 173 static void e1000_restore_vlan(struct e1000_adapter *adapter); 174 175 #ifdef CONFIG_PM 176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 177 static int e1000_resume(struct pci_dev *pdev); 178 #endif 179 static void e1000_shutdown(struct pci_dev *pdev); 180 181 #ifdef CONFIG_NET_POLL_CONTROLLER 182 /* for netdump / net console */ 183 static void e1000_netpoll (struct net_device *netdev); 184 #endif 185 186 #define COPYBREAK_DEFAULT 256 187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 188 module_param(copybreak, uint, 0644); 189 MODULE_PARM_DESC(copybreak, 190 "Maximum size of packet that is copied to a new buffer on receive"); 191 192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 193 pci_channel_state_t state); 194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 195 static void e1000_io_resume(struct pci_dev *pdev); 196 197 static const struct pci_error_handlers e1000_err_handler = { 198 .error_detected = e1000_io_error_detected, 199 .slot_reset = e1000_io_slot_reset, 200 .resume = e1000_io_resume, 201 }; 202 203 static struct pci_driver e1000_driver = { 204 .name = e1000_driver_name, 205 .id_table = e1000_pci_tbl, 206 .probe = e1000_probe, 207 .remove = e1000_remove, 208 #ifdef CONFIG_PM 209 /* Power Management Hooks */ 210 .suspend = e1000_suspend, 211 .resume = e1000_resume, 212 #endif 213 .shutdown = e1000_shutdown, 214 .err_handler = &e1000_err_handler 215 }; 216 217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 219 MODULE_LICENSE("GPL"); 220 MODULE_VERSION(DRV_VERSION); 221 222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 223 static int debug = -1; 224 module_param(debug, int, 0); 225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 226 227 /** 228 * e1000_get_hw_dev - return device 229 * used by hardware layer to print debugging information 230 * 231 **/ 232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 233 { 234 struct e1000_adapter *adapter = hw->back; 235 return adapter->netdev; 236 } 237 238 /** 239 * e1000_init_module - Driver Registration Routine 240 * 241 * e1000_init_module is the first routine called when the driver is 242 * loaded. All it does is register with the PCI subsystem. 243 **/ 244 static int __init e1000_init_module(void) 245 { 246 int ret; 247 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); 248 249 pr_info("%s\n", e1000_copyright); 250 251 ret = pci_register_driver(&e1000_driver); 252 if (copybreak != COPYBREAK_DEFAULT) { 253 if (copybreak == 0) 254 pr_info("copybreak disabled\n"); 255 else 256 pr_info("copybreak enabled for " 257 "packets <= %u bytes\n", copybreak); 258 } 259 return ret; 260 } 261 262 module_init(e1000_init_module); 263 264 /** 265 * e1000_exit_module - Driver Exit Cleanup Routine 266 * 267 * e1000_exit_module is called just before the driver is removed 268 * from memory. 269 **/ 270 static void __exit e1000_exit_module(void) 271 { 272 pci_unregister_driver(&e1000_driver); 273 } 274 275 module_exit(e1000_exit_module); 276 277 static int e1000_request_irq(struct e1000_adapter *adapter) 278 { 279 struct net_device *netdev = adapter->netdev; 280 irq_handler_t handler = e1000_intr; 281 int irq_flags = IRQF_SHARED; 282 int err; 283 284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 285 netdev); 286 if (err) { 287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 288 } 289 290 return err; 291 } 292 293 static void e1000_free_irq(struct e1000_adapter *adapter) 294 { 295 struct net_device *netdev = adapter->netdev; 296 297 free_irq(adapter->pdev->irq, netdev); 298 } 299 300 /** 301 * e1000_irq_disable - Mask off interrupt generation on the NIC 302 * @adapter: board private structure 303 **/ 304 static void e1000_irq_disable(struct e1000_adapter *adapter) 305 { 306 struct e1000_hw *hw = &adapter->hw; 307 308 ew32(IMC, ~0); 309 E1000_WRITE_FLUSH(); 310 synchronize_irq(adapter->pdev->irq); 311 } 312 313 /** 314 * e1000_irq_enable - Enable default interrupt generation settings 315 * @adapter: board private structure 316 **/ 317 static void e1000_irq_enable(struct e1000_adapter *adapter) 318 { 319 struct e1000_hw *hw = &adapter->hw; 320 321 ew32(IMS, IMS_ENABLE_MASK); 322 E1000_WRITE_FLUSH(); 323 } 324 325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 326 { 327 struct e1000_hw *hw = &adapter->hw; 328 struct net_device *netdev = adapter->netdev; 329 u16 vid = hw->mng_cookie.vlan_id; 330 u16 old_vid = adapter->mng_vlan_id; 331 332 if (!e1000_vlan_used(adapter)) 333 return; 334 335 if (!test_bit(vid, adapter->active_vlans)) { 336 if (hw->mng_cookie.status & 337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 338 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 339 adapter->mng_vlan_id = vid; 340 } else { 341 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 342 } 343 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 344 (vid != old_vid) && 345 !test_bit(old_vid, adapter->active_vlans)) 346 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 347 old_vid); 348 } else { 349 adapter->mng_vlan_id = vid; 350 } 351 } 352 353 static void e1000_init_manageability(struct e1000_adapter *adapter) 354 { 355 struct e1000_hw *hw = &adapter->hw; 356 357 if (adapter->en_mng_pt) { 358 u32 manc = er32(MANC); 359 360 /* disable hardware interception of ARP */ 361 manc &= ~(E1000_MANC_ARP_EN); 362 363 ew32(MANC, manc); 364 } 365 } 366 367 static void e1000_release_manageability(struct e1000_adapter *adapter) 368 { 369 struct e1000_hw *hw = &adapter->hw; 370 371 if (adapter->en_mng_pt) { 372 u32 manc = er32(MANC); 373 374 /* re-enable hardware interception of ARP */ 375 manc |= E1000_MANC_ARP_EN; 376 377 ew32(MANC, manc); 378 } 379 } 380 381 /** 382 * e1000_configure - configure the hardware for RX and TX 383 * @adapter = private board structure 384 **/ 385 static void e1000_configure(struct e1000_adapter *adapter) 386 { 387 struct net_device *netdev = adapter->netdev; 388 int i; 389 390 e1000_set_rx_mode(netdev); 391 392 e1000_restore_vlan(adapter); 393 e1000_init_manageability(adapter); 394 395 e1000_configure_tx(adapter); 396 e1000_setup_rctl(adapter); 397 e1000_configure_rx(adapter); 398 /* call E1000_DESC_UNUSED which always leaves 399 * at least 1 descriptor unused to make sure 400 * next_to_use != next_to_clean 401 */ 402 for (i = 0; i < adapter->num_rx_queues; i++) { 403 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 404 adapter->alloc_rx_buf(adapter, ring, 405 E1000_DESC_UNUSED(ring)); 406 } 407 } 408 409 int e1000_up(struct e1000_adapter *adapter) 410 { 411 struct e1000_hw *hw = &adapter->hw; 412 413 /* hardware has been reset, we need to reload some things */ 414 e1000_configure(adapter); 415 416 clear_bit(__E1000_DOWN, &adapter->flags); 417 418 napi_enable(&adapter->napi); 419 420 e1000_irq_enable(adapter); 421 422 netif_wake_queue(adapter->netdev); 423 424 /* fire a link change interrupt to start the watchdog */ 425 ew32(ICS, E1000_ICS_LSC); 426 return 0; 427 } 428 429 /** 430 * e1000_power_up_phy - restore link in case the phy was powered down 431 * @adapter: address of board private structure 432 * 433 * The phy may be powered down to save power and turn off link when the 434 * driver is unloaded and wake on lan is not enabled (among others) 435 * *** this routine MUST be followed by a call to e1000_reset *** 436 **/ 437 void e1000_power_up_phy(struct e1000_adapter *adapter) 438 { 439 struct e1000_hw *hw = &adapter->hw; 440 u16 mii_reg = 0; 441 442 /* Just clear the power down bit to wake the phy back up */ 443 if (hw->media_type == e1000_media_type_copper) { 444 /* according to the manual, the phy will retain its 445 * settings across a power-down/up cycle 446 */ 447 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 448 mii_reg &= ~MII_CR_POWER_DOWN; 449 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 450 } 451 } 452 453 static void e1000_power_down_phy(struct e1000_adapter *adapter) 454 { 455 struct e1000_hw *hw = &adapter->hw; 456 457 /* Power down the PHY so no link is implied when interface is down * 458 * The PHY cannot be powered down if any of the following is true * 459 * (a) WoL is enabled 460 * (b) AMT is active 461 * (c) SoL/IDER session is active 462 */ 463 if (!adapter->wol && hw->mac_type >= e1000_82540 && 464 hw->media_type == e1000_media_type_copper) { 465 u16 mii_reg = 0; 466 467 switch (hw->mac_type) { 468 case e1000_82540: 469 case e1000_82545: 470 case e1000_82545_rev_3: 471 case e1000_82546: 472 case e1000_ce4100: 473 case e1000_82546_rev_3: 474 case e1000_82541: 475 case e1000_82541_rev_2: 476 case e1000_82547: 477 case e1000_82547_rev_2: 478 if (er32(MANC) & E1000_MANC_SMBUS_EN) 479 goto out; 480 break; 481 default: 482 goto out; 483 } 484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 485 mii_reg |= MII_CR_POWER_DOWN; 486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 487 msleep(1); 488 } 489 out: 490 return; 491 } 492 493 static void e1000_down_and_stop(struct e1000_adapter *adapter) 494 { 495 set_bit(__E1000_DOWN, &adapter->flags); 496 497 cancel_delayed_work_sync(&adapter->watchdog_task); 498 499 /* 500 * Since the watchdog task can reschedule other tasks, we should cancel 501 * it first, otherwise we can run into the situation when a work is 502 * still running after the adapter has been turned down. 503 */ 504 505 cancel_delayed_work_sync(&adapter->phy_info_task); 506 cancel_delayed_work_sync(&adapter->fifo_stall_task); 507 508 /* Only kill reset task if adapter is not resetting */ 509 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 510 cancel_work_sync(&adapter->reset_task); 511 } 512 513 void e1000_down(struct e1000_adapter *adapter) 514 { 515 struct e1000_hw *hw = &adapter->hw; 516 struct net_device *netdev = adapter->netdev; 517 u32 rctl, tctl; 518 519 520 /* disable receives in the hardware */ 521 rctl = er32(RCTL); 522 ew32(RCTL, rctl & ~E1000_RCTL_EN); 523 /* flush and sleep below */ 524 525 netif_tx_disable(netdev); 526 527 /* disable transmits in the hardware */ 528 tctl = er32(TCTL); 529 tctl &= ~E1000_TCTL_EN; 530 ew32(TCTL, tctl); 531 /* flush both disables and wait for them to finish */ 532 E1000_WRITE_FLUSH(); 533 msleep(10); 534 535 napi_disable(&adapter->napi); 536 537 e1000_irq_disable(adapter); 538 539 /* Setting DOWN must be after irq_disable to prevent 540 * a screaming interrupt. Setting DOWN also prevents 541 * tasks from rescheduling. 542 */ 543 e1000_down_and_stop(adapter); 544 545 adapter->link_speed = 0; 546 adapter->link_duplex = 0; 547 netif_carrier_off(netdev); 548 549 e1000_reset(adapter); 550 e1000_clean_all_tx_rings(adapter); 551 e1000_clean_all_rx_rings(adapter); 552 } 553 554 void e1000_reinit_locked(struct e1000_adapter *adapter) 555 { 556 WARN_ON(in_interrupt()); 557 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 558 msleep(1); 559 e1000_down(adapter); 560 e1000_up(adapter); 561 clear_bit(__E1000_RESETTING, &adapter->flags); 562 } 563 564 void e1000_reset(struct e1000_adapter *adapter) 565 { 566 struct e1000_hw *hw = &adapter->hw; 567 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 568 bool legacy_pba_adjust = false; 569 u16 hwm; 570 571 /* Repartition Pba for greater than 9k mtu 572 * To take effect CTRL.RST is required. 573 */ 574 575 switch (hw->mac_type) { 576 case e1000_82542_rev2_0: 577 case e1000_82542_rev2_1: 578 case e1000_82543: 579 case e1000_82544: 580 case e1000_82540: 581 case e1000_82541: 582 case e1000_82541_rev_2: 583 legacy_pba_adjust = true; 584 pba = E1000_PBA_48K; 585 break; 586 case e1000_82545: 587 case e1000_82545_rev_3: 588 case e1000_82546: 589 case e1000_ce4100: 590 case e1000_82546_rev_3: 591 pba = E1000_PBA_48K; 592 break; 593 case e1000_82547: 594 case e1000_82547_rev_2: 595 legacy_pba_adjust = true; 596 pba = E1000_PBA_30K; 597 break; 598 case e1000_undefined: 599 case e1000_num_macs: 600 break; 601 } 602 603 if (legacy_pba_adjust) { 604 if (hw->max_frame_size > E1000_RXBUFFER_8192) 605 pba -= 8; /* allocate more FIFO for Tx */ 606 607 if (hw->mac_type == e1000_82547) { 608 adapter->tx_fifo_head = 0; 609 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 610 adapter->tx_fifo_size = 611 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 612 atomic_set(&adapter->tx_fifo_stall, 0); 613 } 614 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 615 /* adjust PBA for jumbo frames */ 616 ew32(PBA, pba); 617 618 /* To maintain wire speed transmits, the Tx FIFO should be 619 * large enough to accommodate two full transmit packets, 620 * rounded up to the next 1KB and expressed in KB. Likewise, 621 * the Rx FIFO should be large enough to accommodate at least 622 * one full receive packet and is similarly rounded up and 623 * expressed in KB. 624 */ 625 pba = er32(PBA); 626 /* upper 16 bits has Tx packet buffer allocation size in KB */ 627 tx_space = pba >> 16; 628 /* lower 16 bits has Rx packet buffer allocation size in KB */ 629 pba &= 0xffff; 630 /* the Tx fifo also stores 16 bytes of information about the Tx 631 * but don't include ethernet FCS because hardware appends it 632 */ 633 min_tx_space = (hw->max_frame_size + 634 sizeof(struct e1000_tx_desc) - 635 ETH_FCS_LEN) * 2; 636 min_tx_space = ALIGN(min_tx_space, 1024); 637 min_tx_space >>= 10; 638 /* software strips receive CRC, so leave room for it */ 639 min_rx_space = hw->max_frame_size; 640 min_rx_space = ALIGN(min_rx_space, 1024); 641 min_rx_space >>= 10; 642 643 /* If current Tx allocation is less than the min Tx FIFO size, 644 * and the min Tx FIFO size is less than the current Rx FIFO 645 * allocation, take space away from current Rx allocation 646 */ 647 if (tx_space < min_tx_space && 648 ((min_tx_space - tx_space) < pba)) { 649 pba = pba - (min_tx_space - tx_space); 650 651 /* PCI/PCIx hardware has PBA alignment constraints */ 652 switch (hw->mac_type) { 653 case e1000_82545 ... e1000_82546_rev_3: 654 pba &= ~(E1000_PBA_8K - 1); 655 break; 656 default: 657 break; 658 } 659 660 /* if short on Rx space, Rx wins and must trump Tx 661 * adjustment or use Early Receive if available 662 */ 663 if (pba < min_rx_space) 664 pba = min_rx_space; 665 } 666 } 667 668 ew32(PBA, pba); 669 670 /* flow control settings: 671 * The high water mark must be low enough to fit one full frame 672 * (or the size used for early receive) above it in the Rx FIFO. 673 * Set it to the lower of: 674 * - 90% of the Rx FIFO size, and 675 * - the full Rx FIFO size minus the early receive size (for parts 676 * with ERT support assuming ERT set to E1000_ERT_2048), or 677 * - the full Rx FIFO size minus one full frame 678 */ 679 hwm = min(((pba << 10) * 9 / 10), 680 ((pba << 10) - hw->max_frame_size)); 681 682 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 683 hw->fc_low_water = hw->fc_high_water - 8; 684 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 685 hw->fc_send_xon = 1; 686 hw->fc = hw->original_fc; 687 688 /* Allow time for pending master requests to run */ 689 e1000_reset_hw(hw); 690 if (hw->mac_type >= e1000_82544) 691 ew32(WUC, 0); 692 693 if (e1000_init_hw(hw)) 694 e_dev_err("Hardware Error\n"); 695 e1000_update_mng_vlan(adapter); 696 697 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 698 if (hw->mac_type >= e1000_82544 && 699 hw->autoneg == 1 && 700 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 701 u32 ctrl = er32(CTRL); 702 /* clear phy power management bit if we are in gig only mode, 703 * which if enabled will attempt negotiation to 100Mb, which 704 * can cause a loss of link at power off or driver unload 705 */ 706 ctrl &= ~E1000_CTRL_SWDPIN3; 707 ew32(CTRL, ctrl); 708 } 709 710 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 711 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 712 713 e1000_reset_adaptive(hw); 714 e1000_phy_get_info(hw, &adapter->phy_info); 715 716 e1000_release_manageability(adapter); 717 } 718 719 /* Dump the eeprom for users having checksum issues */ 720 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 721 { 722 struct net_device *netdev = adapter->netdev; 723 struct ethtool_eeprom eeprom; 724 const struct ethtool_ops *ops = netdev->ethtool_ops; 725 u8 *data; 726 int i; 727 u16 csum_old, csum_new = 0; 728 729 eeprom.len = ops->get_eeprom_len(netdev); 730 eeprom.offset = 0; 731 732 data = kmalloc(eeprom.len, GFP_KERNEL); 733 if (!data) 734 return; 735 736 ops->get_eeprom(netdev, &eeprom, data); 737 738 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 739 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 740 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 741 csum_new += data[i] + (data[i + 1] << 8); 742 csum_new = EEPROM_SUM - csum_new; 743 744 pr_err("/*********************/\n"); 745 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 746 pr_err("Calculated : 0x%04x\n", csum_new); 747 748 pr_err("Offset Values\n"); 749 pr_err("======== ======\n"); 750 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 751 752 pr_err("Include this output when contacting your support provider.\n"); 753 pr_err("This is not a software error! Something bad happened to\n"); 754 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 755 pr_err("result in further problems, possibly loss of data,\n"); 756 pr_err("corruption or system hangs!\n"); 757 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 758 pr_err("which is invalid and requires you to set the proper MAC\n"); 759 pr_err("address manually before continuing to enable this network\n"); 760 pr_err("device. Please inspect the EEPROM dump and report the\n"); 761 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 762 pr_err("/*********************/\n"); 763 764 kfree(data); 765 } 766 767 /** 768 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 769 * @pdev: PCI device information struct 770 * 771 * Return true if an adapter needs ioport resources 772 **/ 773 static int e1000_is_need_ioport(struct pci_dev *pdev) 774 { 775 switch (pdev->device) { 776 case E1000_DEV_ID_82540EM: 777 case E1000_DEV_ID_82540EM_LOM: 778 case E1000_DEV_ID_82540EP: 779 case E1000_DEV_ID_82540EP_LOM: 780 case E1000_DEV_ID_82540EP_LP: 781 case E1000_DEV_ID_82541EI: 782 case E1000_DEV_ID_82541EI_MOBILE: 783 case E1000_DEV_ID_82541ER: 784 case E1000_DEV_ID_82541ER_LOM: 785 case E1000_DEV_ID_82541GI: 786 case E1000_DEV_ID_82541GI_LF: 787 case E1000_DEV_ID_82541GI_MOBILE: 788 case E1000_DEV_ID_82544EI_COPPER: 789 case E1000_DEV_ID_82544EI_FIBER: 790 case E1000_DEV_ID_82544GC_COPPER: 791 case E1000_DEV_ID_82544GC_LOM: 792 case E1000_DEV_ID_82545EM_COPPER: 793 case E1000_DEV_ID_82545EM_FIBER: 794 case E1000_DEV_ID_82546EB_COPPER: 795 case E1000_DEV_ID_82546EB_FIBER: 796 case E1000_DEV_ID_82546EB_QUAD_COPPER: 797 return true; 798 default: 799 return false; 800 } 801 } 802 803 static netdev_features_t e1000_fix_features(struct net_device *netdev, 804 netdev_features_t features) 805 { 806 /* Since there is no support for separate Rx/Tx vlan accel 807 * enable/disable make sure Tx flag is always in same state as Rx. 808 */ 809 if (features & NETIF_F_HW_VLAN_CTAG_RX) 810 features |= NETIF_F_HW_VLAN_CTAG_TX; 811 else 812 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 813 814 return features; 815 } 816 817 static int e1000_set_features(struct net_device *netdev, 818 netdev_features_t features) 819 { 820 struct e1000_adapter *adapter = netdev_priv(netdev); 821 netdev_features_t changed = features ^ netdev->features; 822 823 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 824 e1000_vlan_mode(netdev, features); 825 826 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 827 return 0; 828 829 netdev->features = features; 830 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 831 832 if (netif_running(netdev)) 833 e1000_reinit_locked(adapter); 834 else 835 e1000_reset(adapter); 836 837 return 0; 838 } 839 840 static const struct net_device_ops e1000_netdev_ops = { 841 .ndo_open = e1000_open, 842 .ndo_stop = e1000_close, 843 .ndo_start_xmit = e1000_xmit_frame, 844 .ndo_get_stats = e1000_get_stats, 845 .ndo_set_rx_mode = e1000_set_rx_mode, 846 .ndo_set_mac_address = e1000_set_mac, 847 .ndo_tx_timeout = e1000_tx_timeout, 848 .ndo_change_mtu = e1000_change_mtu, 849 .ndo_do_ioctl = e1000_ioctl, 850 .ndo_validate_addr = eth_validate_addr, 851 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 852 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 853 #ifdef CONFIG_NET_POLL_CONTROLLER 854 .ndo_poll_controller = e1000_netpoll, 855 #endif 856 .ndo_fix_features = e1000_fix_features, 857 .ndo_set_features = e1000_set_features, 858 }; 859 860 /** 861 * e1000_init_hw_struct - initialize members of hw struct 862 * @adapter: board private struct 863 * @hw: structure used by e1000_hw.c 864 * 865 * Factors out initialization of the e1000_hw struct to its own function 866 * that can be called very early at init (just after struct allocation). 867 * Fields are initialized based on PCI device information and 868 * OS network device settings (MTU size). 869 * Returns negative error codes if MAC type setup fails. 870 */ 871 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 872 struct e1000_hw *hw) 873 { 874 struct pci_dev *pdev = adapter->pdev; 875 876 /* PCI config space info */ 877 hw->vendor_id = pdev->vendor; 878 hw->device_id = pdev->device; 879 hw->subsystem_vendor_id = pdev->subsystem_vendor; 880 hw->subsystem_id = pdev->subsystem_device; 881 hw->revision_id = pdev->revision; 882 883 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 884 885 hw->max_frame_size = adapter->netdev->mtu + 886 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 887 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 888 889 /* identify the MAC */ 890 if (e1000_set_mac_type(hw)) { 891 e_err(probe, "Unknown MAC Type\n"); 892 return -EIO; 893 } 894 895 switch (hw->mac_type) { 896 default: 897 break; 898 case e1000_82541: 899 case e1000_82547: 900 case e1000_82541_rev_2: 901 case e1000_82547_rev_2: 902 hw->phy_init_script = 1; 903 break; 904 } 905 906 e1000_set_media_type(hw); 907 e1000_get_bus_info(hw); 908 909 hw->wait_autoneg_complete = false; 910 hw->tbi_compatibility_en = true; 911 hw->adaptive_ifs = true; 912 913 /* Copper options */ 914 915 if (hw->media_type == e1000_media_type_copper) { 916 hw->mdix = AUTO_ALL_MODES; 917 hw->disable_polarity_correction = false; 918 hw->master_slave = E1000_MASTER_SLAVE; 919 } 920 921 return 0; 922 } 923 924 /** 925 * e1000_probe - Device Initialization Routine 926 * @pdev: PCI device information struct 927 * @ent: entry in e1000_pci_tbl 928 * 929 * Returns 0 on success, negative on failure 930 * 931 * e1000_probe initializes an adapter identified by a pci_dev structure. 932 * The OS initialization, configuring of the adapter private structure, 933 * and a hardware reset occur. 934 **/ 935 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 936 { 937 struct net_device *netdev; 938 struct e1000_adapter *adapter; 939 struct e1000_hw *hw; 940 941 static int cards_found = 0; 942 static int global_quad_port_a = 0; /* global ksp3 port a indication */ 943 int i, err, pci_using_dac; 944 u16 eeprom_data = 0; 945 u16 tmp = 0; 946 u16 eeprom_apme_mask = E1000_EEPROM_APME; 947 int bars, need_ioport; 948 949 /* do not allocate ioport bars when not needed */ 950 need_ioport = e1000_is_need_ioport(pdev); 951 if (need_ioport) { 952 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 953 err = pci_enable_device(pdev); 954 } else { 955 bars = pci_select_bars(pdev, IORESOURCE_MEM); 956 err = pci_enable_device_mem(pdev); 957 } 958 if (err) 959 return err; 960 961 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 962 if (err) 963 goto err_pci_reg; 964 965 pci_set_master(pdev); 966 err = pci_save_state(pdev); 967 if (err) 968 goto err_alloc_etherdev; 969 970 err = -ENOMEM; 971 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 972 if (!netdev) 973 goto err_alloc_etherdev; 974 975 SET_NETDEV_DEV(netdev, &pdev->dev); 976 977 pci_set_drvdata(pdev, netdev); 978 adapter = netdev_priv(netdev); 979 adapter->netdev = netdev; 980 adapter->pdev = pdev; 981 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 982 adapter->bars = bars; 983 adapter->need_ioport = need_ioport; 984 985 hw = &adapter->hw; 986 hw->back = adapter; 987 988 err = -EIO; 989 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 990 if (!hw->hw_addr) 991 goto err_ioremap; 992 993 if (adapter->need_ioport) { 994 for (i = BAR_1; i <= BAR_5; i++) { 995 if (pci_resource_len(pdev, i) == 0) 996 continue; 997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 998 hw->io_base = pci_resource_start(pdev, i); 999 break; 1000 } 1001 } 1002 } 1003 1004 /* make ready for any if (hw->...) below */ 1005 err = e1000_init_hw_struct(adapter, hw); 1006 if (err) 1007 goto err_sw_init; 1008 1009 /* there is a workaround being applied below that limits 1010 * 64-bit DMA addresses to 64-bit hardware. There are some 1011 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 1012 */ 1013 pci_using_dac = 0; 1014 if ((hw->bus_type == e1000_bus_type_pcix) && 1015 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1016 pci_using_dac = 1; 1017 } else { 1018 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1019 if (err) { 1020 pr_err("No usable DMA config, aborting\n"); 1021 goto err_dma; 1022 } 1023 } 1024 1025 netdev->netdev_ops = &e1000_netdev_ops; 1026 e1000_set_ethtool_ops(netdev); 1027 netdev->watchdog_timeo = 5 * HZ; 1028 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1029 1030 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1031 1032 adapter->bd_number = cards_found; 1033 1034 /* setup the private structure */ 1035 1036 err = e1000_sw_init(adapter); 1037 if (err) 1038 goto err_sw_init; 1039 1040 err = -EIO; 1041 if (hw->mac_type == e1000_ce4100) { 1042 hw->ce4100_gbe_mdio_base_virt = 1043 ioremap(pci_resource_start(pdev, BAR_1), 1044 pci_resource_len(pdev, BAR_1)); 1045 1046 if (!hw->ce4100_gbe_mdio_base_virt) 1047 goto err_mdio_ioremap; 1048 } 1049 1050 if (hw->mac_type >= e1000_82543) { 1051 netdev->hw_features = NETIF_F_SG | 1052 NETIF_F_HW_CSUM | 1053 NETIF_F_HW_VLAN_CTAG_RX; 1054 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1055 NETIF_F_HW_VLAN_CTAG_FILTER; 1056 } 1057 1058 if ((hw->mac_type >= e1000_82544) && 1059 (hw->mac_type != e1000_82547)) 1060 netdev->hw_features |= NETIF_F_TSO; 1061 1062 netdev->priv_flags |= IFF_SUPP_NOFCS; 1063 1064 netdev->features |= netdev->hw_features; 1065 netdev->hw_features |= (NETIF_F_RXCSUM | 1066 NETIF_F_RXALL | 1067 NETIF_F_RXFCS); 1068 1069 if (pci_using_dac) { 1070 netdev->features |= NETIF_F_HIGHDMA; 1071 netdev->vlan_features |= NETIF_F_HIGHDMA; 1072 } 1073 1074 netdev->vlan_features |= (NETIF_F_TSO | 1075 NETIF_F_HW_CSUM | 1076 NETIF_F_SG); 1077 1078 netdev->priv_flags |= IFF_UNICAST_FLT; 1079 1080 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1081 1082 /* initialize eeprom parameters */ 1083 if (e1000_init_eeprom_params(hw)) { 1084 e_err(probe, "EEPROM initialization failed\n"); 1085 goto err_eeprom; 1086 } 1087 1088 /* before reading the EEPROM, reset the controller to 1089 * put the device in a known good starting state 1090 */ 1091 1092 e1000_reset_hw(hw); 1093 1094 /* make sure the EEPROM is good */ 1095 if (e1000_validate_eeprom_checksum(hw) < 0) { 1096 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1097 e1000_dump_eeprom(adapter); 1098 /* set MAC address to all zeroes to invalidate and temporary 1099 * disable this device for the user. This blocks regular 1100 * traffic while still permitting ethtool ioctls from reaching 1101 * the hardware as well as allowing the user to run the 1102 * interface after manually setting a hw addr using 1103 * `ip set address` 1104 */ 1105 memset(hw->mac_addr, 0, netdev->addr_len); 1106 } else { 1107 /* copy the MAC address out of the EEPROM */ 1108 if (e1000_read_mac_addr(hw)) 1109 e_err(probe, "EEPROM Read Error\n"); 1110 } 1111 /* don't block initalization here due to bad MAC address */ 1112 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1113 1114 if (!is_valid_ether_addr(netdev->dev_addr)) 1115 e_err(probe, "Invalid MAC Address\n"); 1116 1117 1118 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1119 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1120 e1000_82547_tx_fifo_stall_task); 1121 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1122 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1123 1124 e1000_check_options(adapter); 1125 1126 /* Initial Wake on LAN setting 1127 * If APM wake is enabled in the EEPROM, 1128 * enable the ACPI Magic Packet filter 1129 */ 1130 1131 switch (hw->mac_type) { 1132 case e1000_82542_rev2_0: 1133 case e1000_82542_rev2_1: 1134 case e1000_82543: 1135 break; 1136 case e1000_82544: 1137 e1000_read_eeprom(hw, 1138 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1139 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1140 break; 1141 case e1000_82546: 1142 case e1000_82546_rev_3: 1143 if (er32(STATUS) & E1000_STATUS_FUNC_1){ 1144 e1000_read_eeprom(hw, 1145 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1146 break; 1147 } 1148 /* Fall Through */ 1149 default: 1150 e1000_read_eeprom(hw, 1151 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1152 break; 1153 } 1154 if (eeprom_data & eeprom_apme_mask) 1155 adapter->eeprom_wol |= E1000_WUFC_MAG; 1156 1157 /* now that we have the eeprom settings, apply the special cases 1158 * where the eeprom may be wrong or the board simply won't support 1159 * wake on lan on a particular port 1160 */ 1161 switch (pdev->device) { 1162 case E1000_DEV_ID_82546GB_PCIE: 1163 adapter->eeprom_wol = 0; 1164 break; 1165 case E1000_DEV_ID_82546EB_FIBER: 1166 case E1000_DEV_ID_82546GB_FIBER: 1167 /* Wake events only supported on port A for dual fiber 1168 * regardless of eeprom setting 1169 */ 1170 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1171 adapter->eeprom_wol = 0; 1172 break; 1173 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1174 /* if quad port adapter, disable WoL on all but port A */ 1175 if (global_quad_port_a != 0) 1176 adapter->eeprom_wol = 0; 1177 else 1178 adapter->quad_port_a = true; 1179 /* Reset for multiple quad port adapters */ 1180 if (++global_quad_port_a == 4) 1181 global_quad_port_a = 0; 1182 break; 1183 } 1184 1185 /* initialize the wol settings based on the eeprom settings */ 1186 adapter->wol = adapter->eeprom_wol; 1187 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1188 1189 /* Auto detect PHY address */ 1190 if (hw->mac_type == e1000_ce4100) { 1191 for (i = 0; i < 32; i++) { 1192 hw->phy_addr = i; 1193 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1194 if (tmp == 0 || tmp == 0xFF) { 1195 if (i == 31) 1196 goto err_eeprom; 1197 continue; 1198 } else 1199 break; 1200 } 1201 } 1202 1203 /* reset the hardware with the new settings */ 1204 e1000_reset(adapter); 1205 1206 strcpy(netdev->name, "eth%d"); 1207 err = register_netdev(netdev); 1208 if (err) 1209 goto err_register; 1210 1211 e1000_vlan_filter_on_off(adapter, false); 1212 1213 /* print bus type/speed/width info */ 1214 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1215 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1216 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1217 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1218 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1219 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1220 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1221 netdev->dev_addr); 1222 1223 /* carrier off reporting is important to ethtool even BEFORE open */ 1224 netif_carrier_off(netdev); 1225 1226 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1227 1228 cards_found++; 1229 return 0; 1230 1231 err_register: 1232 err_eeprom: 1233 e1000_phy_hw_reset(hw); 1234 1235 if (hw->flash_address) 1236 iounmap(hw->flash_address); 1237 kfree(adapter->tx_ring); 1238 kfree(adapter->rx_ring); 1239 err_dma: 1240 err_sw_init: 1241 err_mdio_ioremap: 1242 iounmap(hw->ce4100_gbe_mdio_base_virt); 1243 iounmap(hw->hw_addr); 1244 err_ioremap: 1245 free_netdev(netdev); 1246 err_alloc_etherdev: 1247 pci_release_selected_regions(pdev, bars); 1248 err_pci_reg: 1249 pci_disable_device(pdev); 1250 return err; 1251 } 1252 1253 /** 1254 * e1000_remove - Device Removal Routine 1255 * @pdev: PCI device information struct 1256 * 1257 * e1000_remove is called by the PCI subsystem to alert the driver 1258 * that it should release a PCI device. The could be caused by a 1259 * Hot-Plug event, or because the driver is going to be removed from 1260 * memory. 1261 **/ 1262 static void e1000_remove(struct pci_dev *pdev) 1263 { 1264 struct net_device *netdev = pci_get_drvdata(pdev); 1265 struct e1000_adapter *adapter = netdev_priv(netdev); 1266 struct e1000_hw *hw = &adapter->hw; 1267 1268 e1000_down_and_stop(adapter); 1269 e1000_release_manageability(adapter); 1270 1271 unregister_netdev(netdev); 1272 1273 e1000_phy_hw_reset(hw); 1274 1275 kfree(adapter->tx_ring); 1276 kfree(adapter->rx_ring); 1277 1278 if (hw->mac_type == e1000_ce4100) 1279 iounmap(hw->ce4100_gbe_mdio_base_virt); 1280 iounmap(hw->hw_addr); 1281 if (hw->flash_address) 1282 iounmap(hw->flash_address); 1283 pci_release_selected_regions(pdev, adapter->bars); 1284 1285 free_netdev(netdev); 1286 1287 pci_disable_device(pdev); 1288 } 1289 1290 /** 1291 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1292 * @adapter: board private structure to initialize 1293 * 1294 * e1000_sw_init initializes the Adapter private data structure. 1295 * e1000_init_hw_struct MUST be called before this function 1296 **/ 1297 static int e1000_sw_init(struct e1000_adapter *adapter) 1298 { 1299 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1300 1301 adapter->num_tx_queues = 1; 1302 adapter->num_rx_queues = 1; 1303 1304 if (e1000_alloc_queues(adapter)) { 1305 e_err(probe, "Unable to allocate memory for queues\n"); 1306 return -ENOMEM; 1307 } 1308 1309 /* Explicitly disable IRQ since the NIC can be in any state. */ 1310 e1000_irq_disable(adapter); 1311 1312 spin_lock_init(&adapter->stats_lock); 1313 1314 set_bit(__E1000_DOWN, &adapter->flags); 1315 1316 return 0; 1317 } 1318 1319 /** 1320 * e1000_alloc_queues - Allocate memory for all rings 1321 * @adapter: board private structure to initialize 1322 * 1323 * We allocate one ring per queue at run-time since we don't know the 1324 * number of queues at compile-time. 1325 **/ 1326 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1327 { 1328 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1329 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1330 if (!adapter->tx_ring) 1331 return -ENOMEM; 1332 1333 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1334 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1335 if (!adapter->rx_ring) { 1336 kfree(adapter->tx_ring); 1337 return -ENOMEM; 1338 } 1339 1340 return E1000_SUCCESS; 1341 } 1342 1343 /** 1344 * e1000_open - Called when a network interface is made active 1345 * @netdev: network interface device structure 1346 * 1347 * Returns 0 on success, negative value on failure 1348 * 1349 * The open entry point is called when a network interface is made 1350 * active by the system (IFF_UP). At this point all resources needed 1351 * for transmit and receive operations are allocated, the interrupt 1352 * handler is registered with the OS, the watchdog task is started, 1353 * and the stack is notified that the interface is ready. 1354 **/ 1355 static int e1000_open(struct net_device *netdev) 1356 { 1357 struct e1000_adapter *adapter = netdev_priv(netdev); 1358 struct e1000_hw *hw = &adapter->hw; 1359 int err; 1360 1361 /* disallow open during test */ 1362 if (test_bit(__E1000_TESTING, &adapter->flags)) 1363 return -EBUSY; 1364 1365 netif_carrier_off(netdev); 1366 1367 /* allocate transmit descriptors */ 1368 err = e1000_setup_all_tx_resources(adapter); 1369 if (err) 1370 goto err_setup_tx; 1371 1372 /* allocate receive descriptors */ 1373 err = e1000_setup_all_rx_resources(adapter); 1374 if (err) 1375 goto err_setup_rx; 1376 1377 e1000_power_up_phy(adapter); 1378 1379 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1380 if ((hw->mng_cookie.status & 1381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1382 e1000_update_mng_vlan(adapter); 1383 } 1384 1385 /* before we allocate an interrupt, we must be ready to handle it. 1386 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1387 * as soon as we call pci_request_irq, so we have to setup our 1388 * clean_rx handler before we do so. 1389 */ 1390 e1000_configure(adapter); 1391 1392 err = e1000_request_irq(adapter); 1393 if (err) 1394 goto err_req_irq; 1395 1396 /* From here on the code is the same as e1000_up() */ 1397 clear_bit(__E1000_DOWN, &adapter->flags); 1398 1399 napi_enable(&adapter->napi); 1400 1401 e1000_irq_enable(adapter); 1402 1403 netif_start_queue(netdev); 1404 1405 /* fire a link status change interrupt to start the watchdog */ 1406 ew32(ICS, E1000_ICS_LSC); 1407 1408 return E1000_SUCCESS; 1409 1410 err_req_irq: 1411 e1000_power_down_phy(adapter); 1412 e1000_free_all_rx_resources(adapter); 1413 err_setup_rx: 1414 e1000_free_all_tx_resources(adapter); 1415 err_setup_tx: 1416 e1000_reset(adapter); 1417 1418 return err; 1419 } 1420 1421 /** 1422 * e1000_close - Disables a network interface 1423 * @netdev: network interface device structure 1424 * 1425 * Returns 0, this is not allowed to fail 1426 * 1427 * The close entry point is called when an interface is de-activated 1428 * by the OS. The hardware is still under the drivers control, but 1429 * needs to be disabled. A global MAC reset is issued to stop the 1430 * hardware, and all transmit and receive resources are freed. 1431 **/ 1432 static int e1000_close(struct net_device *netdev) 1433 { 1434 struct e1000_adapter *adapter = netdev_priv(netdev); 1435 struct e1000_hw *hw = &adapter->hw; 1436 int count = E1000_CHECK_RESET_COUNT; 1437 1438 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 1439 usleep_range(10000, 20000); 1440 1441 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 1442 e1000_down(adapter); 1443 e1000_power_down_phy(adapter); 1444 e1000_free_irq(adapter); 1445 1446 e1000_free_all_tx_resources(adapter); 1447 e1000_free_all_rx_resources(adapter); 1448 1449 /* kill manageability vlan ID if supported, but not if a vlan with 1450 * the same ID is registered on the host OS (let 8021q kill it) 1451 */ 1452 if ((hw->mng_cookie.status & 1453 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1454 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1455 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1456 adapter->mng_vlan_id); 1457 } 1458 1459 return 0; 1460 } 1461 1462 /** 1463 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1464 * @adapter: address of board private structure 1465 * @start: address of beginning of memory 1466 * @len: length of memory 1467 **/ 1468 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1469 unsigned long len) 1470 { 1471 struct e1000_hw *hw = &adapter->hw; 1472 unsigned long begin = (unsigned long)start; 1473 unsigned long end = begin + len; 1474 1475 /* First rev 82545 and 82546 need to not allow any memory 1476 * write location to cross 64k boundary due to errata 23 1477 */ 1478 if (hw->mac_type == e1000_82545 || 1479 hw->mac_type == e1000_ce4100 || 1480 hw->mac_type == e1000_82546) { 1481 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; 1482 } 1483 1484 return true; 1485 } 1486 1487 /** 1488 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1489 * @adapter: board private structure 1490 * @txdr: tx descriptor ring (for a specific queue) to setup 1491 * 1492 * Return 0 on success, negative on failure 1493 **/ 1494 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1495 struct e1000_tx_ring *txdr) 1496 { 1497 struct pci_dev *pdev = adapter->pdev; 1498 int size; 1499 1500 size = sizeof(struct e1000_buffer) * txdr->count; 1501 txdr->buffer_info = vzalloc(size); 1502 if (!txdr->buffer_info) 1503 return -ENOMEM; 1504 1505 /* round up to nearest 4K */ 1506 1507 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1508 txdr->size = ALIGN(txdr->size, 4096); 1509 1510 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1511 GFP_KERNEL); 1512 if (!txdr->desc) { 1513 setup_tx_desc_die: 1514 vfree(txdr->buffer_info); 1515 return -ENOMEM; 1516 } 1517 1518 /* Fix for errata 23, can't cross 64kB boundary */ 1519 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1520 void *olddesc = txdr->desc; 1521 dma_addr_t olddma = txdr->dma; 1522 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1523 txdr->size, txdr->desc); 1524 /* Try again, without freeing the previous */ 1525 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1526 &txdr->dma, GFP_KERNEL); 1527 /* Failed allocation, critical failure */ 1528 if (!txdr->desc) { 1529 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1530 olddma); 1531 goto setup_tx_desc_die; 1532 } 1533 1534 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1535 /* give up */ 1536 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1537 txdr->dma); 1538 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1539 olddma); 1540 e_err(probe, "Unable to allocate aligned memory " 1541 "for the transmit descriptor ring\n"); 1542 vfree(txdr->buffer_info); 1543 return -ENOMEM; 1544 } else { 1545 /* Free old allocation, new allocation was successful */ 1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1547 olddma); 1548 } 1549 } 1550 memset(txdr->desc, 0, txdr->size); 1551 1552 txdr->next_to_use = 0; 1553 txdr->next_to_clean = 0; 1554 1555 return 0; 1556 } 1557 1558 /** 1559 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1560 * (Descriptors) for all queues 1561 * @adapter: board private structure 1562 * 1563 * Return 0 on success, negative on failure 1564 **/ 1565 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1566 { 1567 int i, err = 0; 1568 1569 for (i = 0; i < adapter->num_tx_queues; i++) { 1570 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1571 if (err) { 1572 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1573 for (i-- ; i >= 0; i--) 1574 e1000_free_tx_resources(adapter, 1575 &adapter->tx_ring[i]); 1576 break; 1577 } 1578 } 1579 1580 return err; 1581 } 1582 1583 /** 1584 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1585 * @adapter: board private structure 1586 * 1587 * Configure the Tx unit of the MAC after a reset. 1588 **/ 1589 static void e1000_configure_tx(struct e1000_adapter *adapter) 1590 { 1591 u64 tdba; 1592 struct e1000_hw *hw = &adapter->hw; 1593 u32 tdlen, tctl, tipg; 1594 u32 ipgr1, ipgr2; 1595 1596 /* Setup the HW Tx Head and Tail descriptor pointers */ 1597 1598 switch (adapter->num_tx_queues) { 1599 case 1: 1600 default: 1601 tdba = adapter->tx_ring[0].dma; 1602 tdlen = adapter->tx_ring[0].count * 1603 sizeof(struct e1000_tx_desc); 1604 ew32(TDLEN, tdlen); 1605 ew32(TDBAH, (tdba >> 32)); 1606 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1607 ew32(TDT, 0); 1608 ew32(TDH, 0); 1609 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1610 E1000_TDH : E1000_82542_TDH); 1611 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1612 E1000_TDT : E1000_82542_TDT); 1613 break; 1614 } 1615 1616 /* Set the default values for the Tx Inter Packet Gap timer */ 1617 if ((hw->media_type == e1000_media_type_fiber || 1618 hw->media_type == e1000_media_type_internal_serdes)) 1619 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1620 else 1621 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1622 1623 switch (hw->mac_type) { 1624 case e1000_82542_rev2_0: 1625 case e1000_82542_rev2_1: 1626 tipg = DEFAULT_82542_TIPG_IPGT; 1627 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1628 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1629 break; 1630 default: 1631 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1632 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1633 break; 1634 } 1635 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1636 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1637 ew32(TIPG, tipg); 1638 1639 /* Set the Tx Interrupt Delay register */ 1640 1641 ew32(TIDV, adapter->tx_int_delay); 1642 if (hw->mac_type >= e1000_82540) 1643 ew32(TADV, adapter->tx_abs_int_delay); 1644 1645 /* Program the Transmit Control Register */ 1646 1647 tctl = er32(TCTL); 1648 tctl &= ~E1000_TCTL_CT; 1649 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1650 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1651 1652 e1000_config_collision_dist(hw); 1653 1654 /* Setup Transmit Descriptor Settings for eop descriptor */ 1655 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1656 1657 /* only set IDE if we are delaying interrupts using the timers */ 1658 if (adapter->tx_int_delay) 1659 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1660 1661 if (hw->mac_type < e1000_82543) 1662 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1663 else 1664 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1665 1666 /* Cache if we're 82544 running in PCI-X because we'll 1667 * need this to apply a workaround later in the send path. 1668 */ 1669 if (hw->mac_type == e1000_82544 && 1670 hw->bus_type == e1000_bus_type_pcix) 1671 adapter->pcix_82544 = true; 1672 1673 ew32(TCTL, tctl); 1674 1675 } 1676 1677 /** 1678 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1679 * @adapter: board private structure 1680 * @rxdr: rx descriptor ring (for a specific queue) to setup 1681 * 1682 * Returns 0 on success, negative on failure 1683 **/ 1684 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1685 struct e1000_rx_ring *rxdr) 1686 { 1687 struct pci_dev *pdev = adapter->pdev; 1688 int size, desc_len; 1689 1690 size = sizeof(struct e1000_buffer) * rxdr->count; 1691 rxdr->buffer_info = vzalloc(size); 1692 if (!rxdr->buffer_info) 1693 return -ENOMEM; 1694 1695 desc_len = sizeof(struct e1000_rx_desc); 1696 1697 /* Round up to nearest 4K */ 1698 1699 rxdr->size = rxdr->count * desc_len; 1700 rxdr->size = ALIGN(rxdr->size, 4096); 1701 1702 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1703 GFP_KERNEL); 1704 if (!rxdr->desc) { 1705 setup_rx_desc_die: 1706 vfree(rxdr->buffer_info); 1707 return -ENOMEM; 1708 } 1709 1710 /* Fix for errata 23, can't cross 64kB boundary */ 1711 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1712 void *olddesc = rxdr->desc; 1713 dma_addr_t olddma = rxdr->dma; 1714 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1715 rxdr->size, rxdr->desc); 1716 /* Try again, without freeing the previous */ 1717 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1718 &rxdr->dma, GFP_KERNEL); 1719 /* Failed allocation, critical failure */ 1720 if (!rxdr->desc) { 1721 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1722 olddma); 1723 goto setup_rx_desc_die; 1724 } 1725 1726 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1727 /* give up */ 1728 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1729 rxdr->dma); 1730 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1731 olddma); 1732 e_err(probe, "Unable to allocate aligned memory for " 1733 "the Rx descriptor ring\n"); 1734 goto setup_rx_desc_die; 1735 } else { 1736 /* Free old allocation, new allocation was successful */ 1737 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1738 olddma); 1739 } 1740 } 1741 memset(rxdr->desc, 0, rxdr->size); 1742 1743 rxdr->next_to_clean = 0; 1744 rxdr->next_to_use = 0; 1745 rxdr->rx_skb_top = NULL; 1746 1747 return 0; 1748 } 1749 1750 /** 1751 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1752 * (Descriptors) for all queues 1753 * @adapter: board private structure 1754 * 1755 * Return 0 on success, negative on failure 1756 **/ 1757 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1758 { 1759 int i, err = 0; 1760 1761 for (i = 0; i < adapter->num_rx_queues; i++) { 1762 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1763 if (err) { 1764 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1765 for (i-- ; i >= 0; i--) 1766 e1000_free_rx_resources(adapter, 1767 &adapter->rx_ring[i]); 1768 break; 1769 } 1770 } 1771 1772 return err; 1773 } 1774 1775 /** 1776 * e1000_setup_rctl - configure the receive control registers 1777 * @adapter: Board private structure 1778 **/ 1779 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1780 { 1781 struct e1000_hw *hw = &adapter->hw; 1782 u32 rctl; 1783 1784 rctl = er32(RCTL); 1785 1786 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1787 1788 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1789 E1000_RCTL_RDMTS_HALF | 1790 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1791 1792 if (hw->tbi_compatibility_on == 1) 1793 rctl |= E1000_RCTL_SBP; 1794 else 1795 rctl &= ~E1000_RCTL_SBP; 1796 1797 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1798 rctl &= ~E1000_RCTL_LPE; 1799 else 1800 rctl |= E1000_RCTL_LPE; 1801 1802 /* Setup buffer sizes */ 1803 rctl &= ~E1000_RCTL_SZ_4096; 1804 rctl |= E1000_RCTL_BSEX; 1805 switch (adapter->rx_buffer_len) { 1806 case E1000_RXBUFFER_2048: 1807 default: 1808 rctl |= E1000_RCTL_SZ_2048; 1809 rctl &= ~E1000_RCTL_BSEX; 1810 break; 1811 case E1000_RXBUFFER_4096: 1812 rctl |= E1000_RCTL_SZ_4096; 1813 break; 1814 case E1000_RXBUFFER_8192: 1815 rctl |= E1000_RCTL_SZ_8192; 1816 break; 1817 case E1000_RXBUFFER_16384: 1818 rctl |= E1000_RCTL_SZ_16384; 1819 break; 1820 } 1821 1822 /* This is useful for sniffing bad packets. */ 1823 if (adapter->netdev->features & NETIF_F_RXALL) { 1824 /* UPE and MPE will be handled by normal PROMISC logic 1825 * in e1000e_set_rx_mode 1826 */ 1827 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1828 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1829 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1830 1831 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1832 E1000_RCTL_DPF | /* Allow filtered pause */ 1833 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1834 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1835 * and that breaks VLANs. 1836 */ 1837 } 1838 1839 ew32(RCTL, rctl); 1840 } 1841 1842 /** 1843 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1844 * @adapter: board private structure 1845 * 1846 * Configure the Rx unit of the MAC after a reset. 1847 **/ 1848 static void e1000_configure_rx(struct e1000_adapter *adapter) 1849 { 1850 u64 rdba; 1851 struct e1000_hw *hw = &adapter->hw; 1852 u32 rdlen, rctl, rxcsum; 1853 1854 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1855 rdlen = adapter->rx_ring[0].count * 1856 sizeof(struct e1000_rx_desc); 1857 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1858 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1859 } else { 1860 rdlen = adapter->rx_ring[0].count * 1861 sizeof(struct e1000_rx_desc); 1862 adapter->clean_rx = e1000_clean_rx_irq; 1863 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1864 } 1865 1866 /* disable receives while setting up the descriptors */ 1867 rctl = er32(RCTL); 1868 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1869 1870 /* set the Receive Delay Timer Register */ 1871 ew32(RDTR, adapter->rx_int_delay); 1872 1873 if (hw->mac_type >= e1000_82540) { 1874 ew32(RADV, adapter->rx_abs_int_delay); 1875 if (adapter->itr_setting != 0) 1876 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1877 } 1878 1879 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1880 * the Base and Length of the Rx Descriptor Ring 1881 */ 1882 switch (adapter->num_rx_queues) { 1883 case 1: 1884 default: 1885 rdba = adapter->rx_ring[0].dma; 1886 ew32(RDLEN, rdlen); 1887 ew32(RDBAH, (rdba >> 32)); 1888 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1889 ew32(RDT, 0); 1890 ew32(RDH, 0); 1891 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1892 E1000_RDH : E1000_82542_RDH); 1893 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1894 E1000_RDT : E1000_82542_RDT); 1895 break; 1896 } 1897 1898 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1899 if (hw->mac_type >= e1000_82543) { 1900 rxcsum = er32(RXCSUM); 1901 if (adapter->rx_csum) 1902 rxcsum |= E1000_RXCSUM_TUOFL; 1903 else 1904 /* don't need to clear IPPCSE as it defaults to 0 */ 1905 rxcsum &= ~E1000_RXCSUM_TUOFL; 1906 ew32(RXCSUM, rxcsum); 1907 } 1908 1909 /* Enable Receives */ 1910 ew32(RCTL, rctl | E1000_RCTL_EN); 1911 } 1912 1913 /** 1914 * e1000_free_tx_resources - Free Tx Resources per Queue 1915 * @adapter: board private structure 1916 * @tx_ring: Tx descriptor ring for a specific queue 1917 * 1918 * Free all transmit software resources 1919 **/ 1920 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1921 struct e1000_tx_ring *tx_ring) 1922 { 1923 struct pci_dev *pdev = adapter->pdev; 1924 1925 e1000_clean_tx_ring(adapter, tx_ring); 1926 1927 vfree(tx_ring->buffer_info); 1928 tx_ring->buffer_info = NULL; 1929 1930 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1931 tx_ring->dma); 1932 1933 tx_ring->desc = NULL; 1934 } 1935 1936 /** 1937 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1938 * @adapter: board private structure 1939 * 1940 * Free all transmit software resources 1941 **/ 1942 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1943 { 1944 int i; 1945 1946 for (i = 0; i < adapter->num_tx_queues; i++) 1947 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1948 } 1949 1950 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1951 struct e1000_buffer *buffer_info) 1952 { 1953 if (buffer_info->dma) { 1954 if (buffer_info->mapped_as_page) 1955 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1956 buffer_info->length, DMA_TO_DEVICE); 1957 else 1958 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1959 buffer_info->length, 1960 DMA_TO_DEVICE); 1961 buffer_info->dma = 0; 1962 } 1963 if (buffer_info->skb) { 1964 dev_kfree_skb_any(buffer_info->skb); 1965 buffer_info->skb = NULL; 1966 } 1967 buffer_info->time_stamp = 0; 1968 /* buffer_info must be completely set up in the transmit path */ 1969 } 1970 1971 /** 1972 * e1000_clean_tx_ring - Free Tx Buffers 1973 * @adapter: board private structure 1974 * @tx_ring: ring to be cleaned 1975 **/ 1976 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1977 struct e1000_tx_ring *tx_ring) 1978 { 1979 struct e1000_hw *hw = &adapter->hw; 1980 struct e1000_buffer *buffer_info; 1981 unsigned long size; 1982 unsigned int i; 1983 1984 /* Free all the Tx ring sk_buffs */ 1985 1986 for (i = 0; i < tx_ring->count; i++) { 1987 buffer_info = &tx_ring->buffer_info[i]; 1988 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 1989 } 1990 1991 netdev_reset_queue(adapter->netdev); 1992 size = sizeof(struct e1000_buffer) * tx_ring->count; 1993 memset(tx_ring->buffer_info, 0, size); 1994 1995 /* Zero out the descriptor ring */ 1996 1997 memset(tx_ring->desc, 0, tx_ring->size); 1998 1999 tx_ring->next_to_use = 0; 2000 tx_ring->next_to_clean = 0; 2001 tx_ring->last_tx_tso = false; 2002 2003 writel(0, hw->hw_addr + tx_ring->tdh); 2004 writel(0, hw->hw_addr + tx_ring->tdt); 2005 } 2006 2007 /** 2008 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2009 * @adapter: board private structure 2010 **/ 2011 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2012 { 2013 int i; 2014 2015 for (i = 0; i < adapter->num_tx_queues; i++) 2016 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2017 } 2018 2019 /** 2020 * e1000_free_rx_resources - Free Rx Resources 2021 * @adapter: board private structure 2022 * @rx_ring: ring to clean the resources from 2023 * 2024 * Free all receive software resources 2025 **/ 2026 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2027 struct e1000_rx_ring *rx_ring) 2028 { 2029 struct pci_dev *pdev = adapter->pdev; 2030 2031 e1000_clean_rx_ring(adapter, rx_ring); 2032 2033 vfree(rx_ring->buffer_info); 2034 rx_ring->buffer_info = NULL; 2035 2036 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2037 rx_ring->dma); 2038 2039 rx_ring->desc = NULL; 2040 } 2041 2042 /** 2043 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2044 * @adapter: board private structure 2045 * 2046 * Free all receive software resources 2047 **/ 2048 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2049 { 2050 int i; 2051 2052 for (i = 0; i < adapter->num_rx_queues; i++) 2053 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2054 } 2055 2056 /** 2057 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2058 * @adapter: board private structure 2059 * @rx_ring: ring to free buffers from 2060 **/ 2061 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2062 struct e1000_rx_ring *rx_ring) 2063 { 2064 struct e1000_hw *hw = &adapter->hw; 2065 struct e1000_buffer *buffer_info; 2066 struct pci_dev *pdev = adapter->pdev; 2067 unsigned long size; 2068 unsigned int i; 2069 2070 /* Free all the Rx ring sk_buffs */ 2071 for (i = 0; i < rx_ring->count; i++) { 2072 buffer_info = &rx_ring->buffer_info[i]; 2073 if (buffer_info->dma && 2074 adapter->clean_rx == e1000_clean_rx_irq) { 2075 dma_unmap_single(&pdev->dev, buffer_info->dma, 2076 buffer_info->length, 2077 DMA_FROM_DEVICE); 2078 } else if (buffer_info->dma && 2079 adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2080 dma_unmap_page(&pdev->dev, buffer_info->dma, 2081 buffer_info->length, 2082 DMA_FROM_DEVICE); 2083 } 2084 2085 buffer_info->dma = 0; 2086 if (buffer_info->page) { 2087 put_page(buffer_info->page); 2088 buffer_info->page = NULL; 2089 } 2090 if (buffer_info->skb) { 2091 dev_kfree_skb(buffer_info->skb); 2092 buffer_info->skb = NULL; 2093 } 2094 } 2095 2096 /* there also may be some cached data from a chained receive */ 2097 if (rx_ring->rx_skb_top) { 2098 dev_kfree_skb(rx_ring->rx_skb_top); 2099 rx_ring->rx_skb_top = NULL; 2100 } 2101 2102 size = sizeof(struct e1000_buffer) * rx_ring->count; 2103 memset(rx_ring->buffer_info, 0, size); 2104 2105 /* Zero out the descriptor ring */ 2106 memset(rx_ring->desc, 0, rx_ring->size); 2107 2108 rx_ring->next_to_clean = 0; 2109 rx_ring->next_to_use = 0; 2110 2111 writel(0, hw->hw_addr + rx_ring->rdh); 2112 writel(0, hw->hw_addr + rx_ring->rdt); 2113 } 2114 2115 /** 2116 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2117 * @adapter: board private structure 2118 **/ 2119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2120 { 2121 int i; 2122 2123 for (i = 0; i < adapter->num_rx_queues; i++) 2124 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2125 } 2126 2127 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2128 * and memory write and invalidate disabled for certain operations 2129 */ 2130 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2131 { 2132 struct e1000_hw *hw = &adapter->hw; 2133 struct net_device *netdev = adapter->netdev; 2134 u32 rctl; 2135 2136 e1000_pci_clear_mwi(hw); 2137 2138 rctl = er32(RCTL); 2139 rctl |= E1000_RCTL_RST; 2140 ew32(RCTL, rctl); 2141 E1000_WRITE_FLUSH(); 2142 mdelay(5); 2143 2144 if (netif_running(netdev)) 2145 e1000_clean_all_rx_rings(adapter); 2146 } 2147 2148 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2149 { 2150 struct e1000_hw *hw = &adapter->hw; 2151 struct net_device *netdev = adapter->netdev; 2152 u32 rctl; 2153 2154 rctl = er32(RCTL); 2155 rctl &= ~E1000_RCTL_RST; 2156 ew32(RCTL, rctl); 2157 E1000_WRITE_FLUSH(); 2158 mdelay(5); 2159 2160 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2161 e1000_pci_set_mwi(hw); 2162 2163 if (netif_running(netdev)) { 2164 /* No need to loop, because 82542 supports only 1 queue */ 2165 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2166 e1000_configure_rx(adapter); 2167 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2168 } 2169 } 2170 2171 /** 2172 * e1000_set_mac - Change the Ethernet Address of the NIC 2173 * @netdev: network interface device structure 2174 * @p: pointer to an address structure 2175 * 2176 * Returns 0 on success, negative on failure 2177 **/ 2178 static int e1000_set_mac(struct net_device *netdev, void *p) 2179 { 2180 struct e1000_adapter *adapter = netdev_priv(netdev); 2181 struct e1000_hw *hw = &adapter->hw; 2182 struct sockaddr *addr = p; 2183 2184 if (!is_valid_ether_addr(addr->sa_data)) 2185 return -EADDRNOTAVAIL; 2186 2187 /* 82542 2.0 needs to be in reset to write receive address registers */ 2188 2189 if (hw->mac_type == e1000_82542_rev2_0) 2190 e1000_enter_82542_rst(adapter); 2191 2192 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2193 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2194 2195 e1000_rar_set(hw, hw->mac_addr, 0); 2196 2197 if (hw->mac_type == e1000_82542_rev2_0) 2198 e1000_leave_82542_rst(adapter); 2199 2200 return 0; 2201 } 2202 2203 /** 2204 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2205 * @netdev: network interface device structure 2206 * 2207 * The set_rx_mode entry point is called whenever the unicast or multicast 2208 * address lists or the network interface flags are updated. This routine is 2209 * responsible for configuring the hardware for proper unicast, multicast, 2210 * promiscuous mode, and all-multi behavior. 2211 **/ 2212 static void e1000_set_rx_mode(struct net_device *netdev) 2213 { 2214 struct e1000_adapter *adapter = netdev_priv(netdev); 2215 struct e1000_hw *hw = &adapter->hw; 2216 struct netdev_hw_addr *ha; 2217 bool use_uc = false; 2218 u32 rctl; 2219 u32 hash_value; 2220 int i, rar_entries = E1000_RAR_ENTRIES; 2221 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2222 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2223 2224 if (!mcarray) 2225 return; 2226 2227 /* Check for Promiscuous and All Multicast modes */ 2228 2229 rctl = er32(RCTL); 2230 2231 if (netdev->flags & IFF_PROMISC) { 2232 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2233 rctl &= ~E1000_RCTL_VFE; 2234 } else { 2235 if (netdev->flags & IFF_ALLMULTI) 2236 rctl |= E1000_RCTL_MPE; 2237 else 2238 rctl &= ~E1000_RCTL_MPE; 2239 /* Enable VLAN filter if there is a VLAN */ 2240 if (e1000_vlan_used(adapter)) 2241 rctl |= E1000_RCTL_VFE; 2242 } 2243 2244 if (netdev_uc_count(netdev) > rar_entries - 1) { 2245 rctl |= E1000_RCTL_UPE; 2246 } else if (!(netdev->flags & IFF_PROMISC)) { 2247 rctl &= ~E1000_RCTL_UPE; 2248 use_uc = true; 2249 } 2250 2251 ew32(RCTL, rctl); 2252 2253 /* 82542 2.0 needs to be in reset to write receive address registers */ 2254 2255 if (hw->mac_type == e1000_82542_rev2_0) 2256 e1000_enter_82542_rst(adapter); 2257 2258 /* load the first 14 addresses into the exact filters 1-14. Unicast 2259 * addresses take precedence to avoid disabling unicast filtering 2260 * when possible. 2261 * 2262 * RAR 0 is used for the station MAC address 2263 * if there are not 14 addresses, go ahead and clear the filters 2264 */ 2265 i = 1; 2266 if (use_uc) 2267 netdev_for_each_uc_addr(ha, netdev) { 2268 if (i == rar_entries) 2269 break; 2270 e1000_rar_set(hw, ha->addr, i++); 2271 } 2272 2273 netdev_for_each_mc_addr(ha, netdev) { 2274 if (i == rar_entries) { 2275 /* load any remaining addresses into the hash table */ 2276 u32 hash_reg, hash_bit, mta; 2277 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2278 hash_reg = (hash_value >> 5) & 0x7F; 2279 hash_bit = hash_value & 0x1F; 2280 mta = (1 << hash_bit); 2281 mcarray[hash_reg] |= mta; 2282 } else { 2283 e1000_rar_set(hw, ha->addr, i++); 2284 } 2285 } 2286 2287 for (; i < rar_entries; i++) { 2288 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2289 E1000_WRITE_FLUSH(); 2290 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2291 E1000_WRITE_FLUSH(); 2292 } 2293 2294 /* write the hash table completely, write from bottom to avoid 2295 * both stupid write combining chipsets, and flushing each write 2296 */ 2297 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2298 /* If we are on an 82544 has an errata where writing odd 2299 * offsets overwrites the previous even offset, but writing 2300 * backwards over the range solves the issue by always 2301 * writing the odd offset first 2302 */ 2303 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2304 } 2305 E1000_WRITE_FLUSH(); 2306 2307 if (hw->mac_type == e1000_82542_rev2_0) 2308 e1000_leave_82542_rst(adapter); 2309 2310 kfree(mcarray); 2311 } 2312 2313 /** 2314 * e1000_update_phy_info_task - get phy info 2315 * @work: work struct contained inside adapter struct 2316 * 2317 * Need to wait a few seconds after link up to get diagnostic information from 2318 * the phy 2319 */ 2320 static void e1000_update_phy_info_task(struct work_struct *work) 2321 { 2322 struct e1000_adapter *adapter = container_of(work, 2323 struct e1000_adapter, 2324 phy_info_task.work); 2325 2326 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2327 } 2328 2329 /** 2330 * e1000_82547_tx_fifo_stall_task - task to complete work 2331 * @work: work struct contained inside adapter struct 2332 **/ 2333 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2334 { 2335 struct e1000_adapter *adapter = container_of(work, 2336 struct e1000_adapter, 2337 fifo_stall_task.work); 2338 struct e1000_hw *hw = &adapter->hw; 2339 struct net_device *netdev = adapter->netdev; 2340 u32 tctl; 2341 2342 if (atomic_read(&adapter->tx_fifo_stall)) { 2343 if ((er32(TDT) == er32(TDH)) && 2344 (er32(TDFT) == er32(TDFH)) && 2345 (er32(TDFTS) == er32(TDFHS))) { 2346 tctl = er32(TCTL); 2347 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2348 ew32(TDFT, adapter->tx_head_addr); 2349 ew32(TDFH, adapter->tx_head_addr); 2350 ew32(TDFTS, adapter->tx_head_addr); 2351 ew32(TDFHS, adapter->tx_head_addr); 2352 ew32(TCTL, tctl); 2353 E1000_WRITE_FLUSH(); 2354 2355 adapter->tx_fifo_head = 0; 2356 atomic_set(&adapter->tx_fifo_stall, 0); 2357 netif_wake_queue(netdev); 2358 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2359 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2360 } 2361 } 2362 } 2363 2364 bool e1000_has_link(struct e1000_adapter *adapter) 2365 { 2366 struct e1000_hw *hw = &adapter->hw; 2367 bool link_active = false; 2368 2369 /* get_link_status is set on LSC (link status) interrupt or rx 2370 * sequence error interrupt (except on intel ce4100). 2371 * get_link_status will stay false until the 2372 * e1000_check_for_link establishes link for copper adapters 2373 * ONLY 2374 */ 2375 switch (hw->media_type) { 2376 case e1000_media_type_copper: 2377 if (hw->mac_type == e1000_ce4100) 2378 hw->get_link_status = 1; 2379 if (hw->get_link_status) { 2380 e1000_check_for_link(hw); 2381 link_active = !hw->get_link_status; 2382 } else { 2383 link_active = true; 2384 } 2385 break; 2386 case e1000_media_type_fiber: 2387 e1000_check_for_link(hw); 2388 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2389 break; 2390 case e1000_media_type_internal_serdes: 2391 e1000_check_for_link(hw); 2392 link_active = hw->serdes_has_link; 2393 break; 2394 default: 2395 break; 2396 } 2397 2398 return link_active; 2399 } 2400 2401 /** 2402 * e1000_watchdog - work function 2403 * @work: work struct contained inside adapter struct 2404 **/ 2405 static void e1000_watchdog(struct work_struct *work) 2406 { 2407 struct e1000_adapter *adapter = container_of(work, 2408 struct e1000_adapter, 2409 watchdog_task.work); 2410 struct e1000_hw *hw = &adapter->hw; 2411 struct net_device *netdev = adapter->netdev; 2412 struct e1000_tx_ring *txdr = adapter->tx_ring; 2413 u32 link, tctl; 2414 2415 link = e1000_has_link(adapter); 2416 if ((netif_carrier_ok(netdev)) && link) 2417 goto link_up; 2418 2419 if (link) { 2420 if (!netif_carrier_ok(netdev)) { 2421 u32 ctrl; 2422 bool txb2b = true; 2423 /* update snapshot of PHY registers on LSC */ 2424 e1000_get_speed_and_duplex(hw, 2425 &adapter->link_speed, 2426 &adapter->link_duplex); 2427 2428 ctrl = er32(CTRL); 2429 pr_info("%s NIC Link is Up %d Mbps %s, " 2430 "Flow Control: %s\n", 2431 netdev->name, 2432 adapter->link_speed, 2433 adapter->link_duplex == FULL_DUPLEX ? 2434 "Full Duplex" : "Half Duplex", 2435 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2436 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2437 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2438 E1000_CTRL_TFCE) ? "TX" : "None"))); 2439 2440 /* adjust timeout factor according to speed/duplex */ 2441 adapter->tx_timeout_factor = 1; 2442 switch (adapter->link_speed) { 2443 case SPEED_10: 2444 txb2b = false; 2445 adapter->tx_timeout_factor = 16; 2446 break; 2447 case SPEED_100: 2448 txb2b = false; 2449 /* maybe add some timeout factor ? */ 2450 break; 2451 } 2452 2453 /* enable transmits in the hardware */ 2454 tctl = er32(TCTL); 2455 tctl |= E1000_TCTL_EN; 2456 ew32(TCTL, tctl); 2457 2458 netif_carrier_on(netdev); 2459 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2460 schedule_delayed_work(&adapter->phy_info_task, 2461 2 * HZ); 2462 adapter->smartspeed = 0; 2463 } 2464 } else { 2465 if (netif_carrier_ok(netdev)) { 2466 adapter->link_speed = 0; 2467 adapter->link_duplex = 0; 2468 pr_info("%s NIC Link is Down\n", 2469 netdev->name); 2470 netif_carrier_off(netdev); 2471 2472 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2473 schedule_delayed_work(&adapter->phy_info_task, 2474 2 * HZ); 2475 } 2476 2477 e1000_smartspeed(adapter); 2478 } 2479 2480 link_up: 2481 e1000_update_stats(adapter); 2482 2483 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2484 adapter->tpt_old = adapter->stats.tpt; 2485 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2486 adapter->colc_old = adapter->stats.colc; 2487 2488 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2489 adapter->gorcl_old = adapter->stats.gorcl; 2490 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2491 adapter->gotcl_old = adapter->stats.gotcl; 2492 2493 e1000_update_adaptive(hw); 2494 2495 if (!netif_carrier_ok(netdev)) { 2496 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2497 /* We've lost link, so the controller stops DMA, 2498 * but we've got queued Tx work that's never going 2499 * to get done, so reset controller to flush Tx. 2500 * (Do the reset outside of interrupt context). 2501 */ 2502 adapter->tx_timeout_count++; 2503 schedule_work(&adapter->reset_task); 2504 /* exit immediately since reset is imminent */ 2505 return; 2506 } 2507 } 2508 2509 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2510 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2511 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2512 * Total asymmetrical Tx or Rx gets ITR=8000; 2513 * everyone else is between 2000-8000. 2514 */ 2515 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2516 u32 dif = (adapter->gotcl > adapter->gorcl ? 2517 adapter->gotcl - adapter->gorcl : 2518 adapter->gorcl - adapter->gotcl) / 10000; 2519 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2520 2521 ew32(ITR, 1000000000 / (itr * 256)); 2522 } 2523 2524 /* Cause software interrupt to ensure rx ring is cleaned */ 2525 ew32(ICS, E1000_ICS_RXDMT0); 2526 2527 /* Force detection of hung controller every watchdog period */ 2528 adapter->detect_tx_hung = true; 2529 2530 /* Reschedule the task */ 2531 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2532 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2533 } 2534 2535 enum latency_range { 2536 lowest_latency = 0, 2537 low_latency = 1, 2538 bulk_latency = 2, 2539 latency_invalid = 255 2540 }; 2541 2542 /** 2543 * e1000_update_itr - update the dynamic ITR value based on statistics 2544 * @adapter: pointer to adapter 2545 * @itr_setting: current adapter->itr 2546 * @packets: the number of packets during this measurement interval 2547 * @bytes: the number of bytes during this measurement interval 2548 * 2549 * Stores a new ITR value based on packets and byte 2550 * counts during the last interrupt. The advantage of per interrupt 2551 * computation is faster updates and more accurate ITR for the current 2552 * traffic pattern. Constants in this function were computed 2553 * based on theoretical maximum wire speed and thresholds were set based 2554 * on testing data as well as attempting to minimize response time 2555 * while increasing bulk throughput. 2556 * this functionality is controlled by the InterruptThrottleRate module 2557 * parameter (see e1000_param.c) 2558 **/ 2559 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2560 u16 itr_setting, int packets, int bytes) 2561 { 2562 unsigned int retval = itr_setting; 2563 struct e1000_hw *hw = &adapter->hw; 2564 2565 if (unlikely(hw->mac_type < e1000_82540)) 2566 goto update_itr_done; 2567 2568 if (packets == 0) 2569 goto update_itr_done; 2570 2571 switch (itr_setting) { 2572 case lowest_latency: 2573 /* jumbo frames get bulk treatment*/ 2574 if (bytes/packets > 8000) 2575 retval = bulk_latency; 2576 else if ((packets < 5) && (bytes > 512)) 2577 retval = low_latency; 2578 break; 2579 case low_latency: /* 50 usec aka 20000 ints/s */ 2580 if (bytes > 10000) { 2581 /* jumbo frames need bulk latency setting */ 2582 if (bytes/packets > 8000) 2583 retval = bulk_latency; 2584 else if ((packets < 10) || ((bytes/packets) > 1200)) 2585 retval = bulk_latency; 2586 else if ((packets > 35)) 2587 retval = lowest_latency; 2588 } else if (bytes/packets > 2000) 2589 retval = bulk_latency; 2590 else if (packets <= 2 && bytes < 512) 2591 retval = lowest_latency; 2592 break; 2593 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2594 if (bytes > 25000) { 2595 if (packets > 35) 2596 retval = low_latency; 2597 } else if (bytes < 6000) { 2598 retval = low_latency; 2599 } 2600 break; 2601 } 2602 2603 update_itr_done: 2604 return retval; 2605 } 2606 2607 static void e1000_set_itr(struct e1000_adapter *adapter) 2608 { 2609 struct e1000_hw *hw = &adapter->hw; 2610 u16 current_itr; 2611 u32 new_itr = adapter->itr; 2612 2613 if (unlikely(hw->mac_type < e1000_82540)) 2614 return; 2615 2616 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2617 if (unlikely(adapter->link_speed != SPEED_1000)) { 2618 current_itr = 0; 2619 new_itr = 4000; 2620 goto set_itr_now; 2621 } 2622 2623 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2624 adapter->total_tx_packets, 2625 adapter->total_tx_bytes); 2626 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2627 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2628 adapter->tx_itr = low_latency; 2629 2630 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2631 adapter->total_rx_packets, 2632 adapter->total_rx_bytes); 2633 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2634 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2635 adapter->rx_itr = low_latency; 2636 2637 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2638 2639 switch (current_itr) { 2640 /* counts and packets in update_itr are dependent on these numbers */ 2641 case lowest_latency: 2642 new_itr = 70000; 2643 break; 2644 case low_latency: 2645 new_itr = 20000; /* aka hwitr = ~200 */ 2646 break; 2647 case bulk_latency: 2648 new_itr = 4000; 2649 break; 2650 default: 2651 break; 2652 } 2653 2654 set_itr_now: 2655 if (new_itr != adapter->itr) { 2656 /* this attempts to bias the interrupt rate towards Bulk 2657 * by adding intermediate steps when interrupt rate is 2658 * increasing 2659 */ 2660 new_itr = new_itr > adapter->itr ? 2661 min(adapter->itr + (new_itr >> 2), new_itr) : 2662 new_itr; 2663 adapter->itr = new_itr; 2664 ew32(ITR, 1000000000 / (new_itr * 256)); 2665 } 2666 } 2667 2668 #define E1000_TX_FLAGS_CSUM 0x00000001 2669 #define E1000_TX_FLAGS_VLAN 0x00000002 2670 #define E1000_TX_FLAGS_TSO 0x00000004 2671 #define E1000_TX_FLAGS_IPV4 0x00000008 2672 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2673 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2674 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2675 2676 static int e1000_tso(struct e1000_adapter *adapter, 2677 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) 2678 { 2679 struct e1000_context_desc *context_desc; 2680 struct e1000_buffer *buffer_info; 2681 unsigned int i; 2682 u32 cmd_length = 0; 2683 u16 ipcse = 0, tucse, mss; 2684 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2685 2686 if (skb_is_gso(skb)) { 2687 int err; 2688 2689 err = skb_cow_head(skb, 0); 2690 if (err < 0) 2691 return err; 2692 2693 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2694 mss = skb_shinfo(skb)->gso_size; 2695 if (skb->protocol == htons(ETH_P_IP)) { 2696 struct iphdr *iph = ip_hdr(skb); 2697 iph->tot_len = 0; 2698 iph->check = 0; 2699 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2700 iph->daddr, 0, 2701 IPPROTO_TCP, 2702 0); 2703 cmd_length = E1000_TXD_CMD_IP; 2704 ipcse = skb_transport_offset(skb) - 1; 2705 } else if (skb->protocol == htons(ETH_P_IPV6)) { 2706 ipv6_hdr(skb)->payload_len = 0; 2707 tcp_hdr(skb)->check = 2708 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2709 &ipv6_hdr(skb)->daddr, 2710 0, IPPROTO_TCP, 0); 2711 ipcse = 0; 2712 } 2713 ipcss = skb_network_offset(skb); 2714 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2715 tucss = skb_transport_offset(skb); 2716 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2717 tucse = 0; 2718 2719 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2720 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2721 2722 i = tx_ring->next_to_use; 2723 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2724 buffer_info = &tx_ring->buffer_info[i]; 2725 2726 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2727 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2728 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2729 context_desc->upper_setup.tcp_fields.tucss = tucss; 2730 context_desc->upper_setup.tcp_fields.tucso = tucso; 2731 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2732 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2733 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2734 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2735 2736 buffer_info->time_stamp = jiffies; 2737 buffer_info->next_to_watch = i; 2738 2739 if (++i == tx_ring->count) i = 0; 2740 tx_ring->next_to_use = i; 2741 2742 return true; 2743 } 2744 return false; 2745 } 2746 2747 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2748 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) 2749 { 2750 struct e1000_context_desc *context_desc; 2751 struct e1000_buffer *buffer_info; 2752 unsigned int i; 2753 u8 css; 2754 u32 cmd_len = E1000_TXD_CMD_DEXT; 2755 2756 if (skb->ip_summed != CHECKSUM_PARTIAL) 2757 return false; 2758 2759 switch (skb->protocol) { 2760 case cpu_to_be16(ETH_P_IP): 2761 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2762 cmd_len |= E1000_TXD_CMD_TCP; 2763 break; 2764 case cpu_to_be16(ETH_P_IPV6): 2765 /* XXX not handling all IPV6 headers */ 2766 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2767 cmd_len |= E1000_TXD_CMD_TCP; 2768 break; 2769 default: 2770 if (unlikely(net_ratelimit())) 2771 e_warn(drv, "checksum_partial proto=%x!\n", 2772 skb->protocol); 2773 break; 2774 } 2775 2776 css = skb_checksum_start_offset(skb); 2777 2778 i = tx_ring->next_to_use; 2779 buffer_info = &tx_ring->buffer_info[i]; 2780 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2781 2782 context_desc->lower_setup.ip_config = 0; 2783 context_desc->upper_setup.tcp_fields.tucss = css; 2784 context_desc->upper_setup.tcp_fields.tucso = 2785 css + skb->csum_offset; 2786 context_desc->upper_setup.tcp_fields.tucse = 0; 2787 context_desc->tcp_seg_setup.data = 0; 2788 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2789 2790 buffer_info->time_stamp = jiffies; 2791 buffer_info->next_to_watch = i; 2792 2793 if (unlikely(++i == tx_ring->count)) i = 0; 2794 tx_ring->next_to_use = i; 2795 2796 return true; 2797 } 2798 2799 #define E1000_MAX_TXD_PWR 12 2800 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2801 2802 static int e1000_tx_map(struct e1000_adapter *adapter, 2803 struct e1000_tx_ring *tx_ring, 2804 struct sk_buff *skb, unsigned int first, 2805 unsigned int max_per_txd, unsigned int nr_frags, 2806 unsigned int mss) 2807 { 2808 struct e1000_hw *hw = &adapter->hw; 2809 struct pci_dev *pdev = adapter->pdev; 2810 struct e1000_buffer *buffer_info; 2811 unsigned int len = skb_headlen(skb); 2812 unsigned int offset = 0, size, count = 0, i; 2813 unsigned int f, bytecount, segs; 2814 2815 i = tx_ring->next_to_use; 2816 2817 while (len) { 2818 buffer_info = &tx_ring->buffer_info[i]; 2819 size = min(len, max_per_txd); 2820 /* Workaround for Controller erratum -- 2821 * descriptor for non-tso packet in a linear SKB that follows a 2822 * tso gets written back prematurely before the data is fully 2823 * DMA'd to the controller 2824 */ 2825 if (!skb->data_len && tx_ring->last_tx_tso && 2826 !skb_is_gso(skb)) { 2827 tx_ring->last_tx_tso = false; 2828 size -= 4; 2829 } 2830 2831 /* Workaround for premature desc write-backs 2832 * in TSO mode. Append 4-byte sentinel desc 2833 */ 2834 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2835 size -= 4; 2836 /* work-around for errata 10 and it applies 2837 * to all controllers in PCI-X mode 2838 * The fix is to make sure that the first descriptor of a 2839 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2840 */ 2841 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2842 (size > 2015) && count == 0)) 2843 size = 2015; 2844 2845 /* Workaround for potential 82544 hang in PCI-X. Avoid 2846 * terminating buffers within evenly-aligned dwords. 2847 */ 2848 if (unlikely(adapter->pcix_82544 && 2849 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2850 size > 4)) 2851 size -= 4; 2852 2853 buffer_info->length = size; 2854 /* set time_stamp *before* dma to help avoid a possible race */ 2855 buffer_info->time_stamp = jiffies; 2856 buffer_info->mapped_as_page = false; 2857 buffer_info->dma = dma_map_single(&pdev->dev, 2858 skb->data + offset, 2859 size, DMA_TO_DEVICE); 2860 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2861 goto dma_error; 2862 buffer_info->next_to_watch = i; 2863 2864 len -= size; 2865 offset += size; 2866 count++; 2867 if (len) { 2868 i++; 2869 if (unlikely(i == tx_ring->count)) 2870 i = 0; 2871 } 2872 } 2873 2874 for (f = 0; f < nr_frags; f++) { 2875 const struct skb_frag_struct *frag; 2876 2877 frag = &skb_shinfo(skb)->frags[f]; 2878 len = skb_frag_size(frag); 2879 offset = 0; 2880 2881 while (len) { 2882 unsigned long bufend; 2883 i++; 2884 if (unlikely(i == tx_ring->count)) 2885 i = 0; 2886 2887 buffer_info = &tx_ring->buffer_info[i]; 2888 size = min(len, max_per_txd); 2889 /* Workaround for premature desc write-backs 2890 * in TSO mode. Append 4-byte sentinel desc 2891 */ 2892 if (unlikely(mss && f == (nr_frags-1) && 2893 size == len && size > 8)) 2894 size -= 4; 2895 /* Workaround for potential 82544 hang in PCI-X. 2896 * Avoid terminating buffers within evenly-aligned 2897 * dwords. 2898 */ 2899 bufend = (unsigned long) 2900 page_to_phys(skb_frag_page(frag)); 2901 bufend += offset + size - 1; 2902 if (unlikely(adapter->pcix_82544 && 2903 !(bufend & 4) && 2904 size > 4)) 2905 size -= 4; 2906 2907 buffer_info->length = size; 2908 buffer_info->time_stamp = jiffies; 2909 buffer_info->mapped_as_page = true; 2910 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2911 offset, size, DMA_TO_DEVICE); 2912 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2913 goto dma_error; 2914 buffer_info->next_to_watch = i; 2915 2916 len -= size; 2917 offset += size; 2918 count++; 2919 } 2920 } 2921 2922 segs = skb_shinfo(skb)->gso_segs ?: 1; 2923 /* multiply data chunks by size of headers */ 2924 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2925 2926 tx_ring->buffer_info[i].skb = skb; 2927 tx_ring->buffer_info[i].segs = segs; 2928 tx_ring->buffer_info[i].bytecount = bytecount; 2929 tx_ring->buffer_info[first].next_to_watch = i; 2930 2931 return count; 2932 2933 dma_error: 2934 dev_err(&pdev->dev, "TX DMA map failed\n"); 2935 buffer_info->dma = 0; 2936 if (count) 2937 count--; 2938 2939 while (count--) { 2940 if (i==0) 2941 i += tx_ring->count; 2942 i--; 2943 buffer_info = &tx_ring->buffer_info[i]; 2944 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2945 } 2946 2947 return 0; 2948 } 2949 2950 static void e1000_tx_queue(struct e1000_adapter *adapter, 2951 struct e1000_tx_ring *tx_ring, int tx_flags, 2952 int count) 2953 { 2954 struct e1000_hw *hw = &adapter->hw; 2955 struct e1000_tx_desc *tx_desc = NULL; 2956 struct e1000_buffer *buffer_info; 2957 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2958 unsigned int i; 2959 2960 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2961 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2962 E1000_TXD_CMD_TSE; 2963 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2964 2965 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2966 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2967 } 2968 2969 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2970 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 2971 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2972 } 2973 2974 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 2975 txd_lower |= E1000_TXD_CMD_VLE; 2976 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 2977 } 2978 2979 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 2980 txd_lower &= ~(E1000_TXD_CMD_IFCS); 2981 2982 i = tx_ring->next_to_use; 2983 2984 while (count--) { 2985 buffer_info = &tx_ring->buffer_info[i]; 2986 tx_desc = E1000_TX_DESC(*tx_ring, i); 2987 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 2988 tx_desc->lower.data = 2989 cpu_to_le32(txd_lower | buffer_info->length); 2990 tx_desc->upper.data = cpu_to_le32(txd_upper); 2991 if (unlikely(++i == tx_ring->count)) i = 0; 2992 } 2993 2994 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 2995 2996 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 2997 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 2998 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 2999 3000 /* Force memory writes to complete before letting h/w 3001 * know there are new descriptors to fetch. (Only 3002 * applicable for weak-ordered memory model archs, 3003 * such as IA-64). 3004 */ 3005 wmb(); 3006 3007 tx_ring->next_to_use = i; 3008 writel(i, hw->hw_addr + tx_ring->tdt); 3009 /* we need this if more than one processor can write to our tail 3010 * at a time, it synchronizes IO on IA64/Altix systems 3011 */ 3012 mmiowb(); 3013 } 3014 3015 /* 82547 workaround to avoid controller hang in half-duplex environment. 3016 * The workaround is to avoid queuing a large packet that would span 3017 * the internal Tx FIFO ring boundary by notifying the stack to resend 3018 * the packet at a later time. This gives the Tx FIFO an opportunity to 3019 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3020 * to the beginning of the Tx FIFO. 3021 */ 3022 3023 #define E1000_FIFO_HDR 0x10 3024 #define E1000_82547_PAD_LEN 0x3E0 3025 3026 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3027 struct sk_buff *skb) 3028 { 3029 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3030 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3031 3032 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3033 3034 if (adapter->link_duplex != HALF_DUPLEX) 3035 goto no_fifo_stall_required; 3036 3037 if (atomic_read(&adapter->tx_fifo_stall)) 3038 return 1; 3039 3040 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3041 atomic_set(&adapter->tx_fifo_stall, 1); 3042 return 1; 3043 } 3044 3045 no_fifo_stall_required: 3046 adapter->tx_fifo_head += skb_fifo_len; 3047 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3048 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3049 return 0; 3050 } 3051 3052 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3053 { 3054 struct e1000_adapter *adapter = netdev_priv(netdev); 3055 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3056 3057 netif_stop_queue(netdev); 3058 /* Herbert's original patch had: 3059 * smp_mb__after_netif_stop_queue(); 3060 * but since that doesn't exist yet, just open code it. 3061 */ 3062 smp_mb(); 3063 3064 /* We need to check again in a case another CPU has just 3065 * made room available. 3066 */ 3067 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3068 return -EBUSY; 3069 3070 /* A reprieve! */ 3071 netif_start_queue(netdev); 3072 ++adapter->restart_queue; 3073 return 0; 3074 } 3075 3076 static int e1000_maybe_stop_tx(struct net_device *netdev, 3077 struct e1000_tx_ring *tx_ring, int size) 3078 { 3079 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3080 return 0; 3081 return __e1000_maybe_stop_tx(netdev, size); 3082 } 3083 3084 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) 3085 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3086 struct net_device *netdev) 3087 { 3088 struct e1000_adapter *adapter = netdev_priv(netdev); 3089 struct e1000_hw *hw = &adapter->hw; 3090 struct e1000_tx_ring *tx_ring; 3091 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3092 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3093 unsigned int tx_flags = 0; 3094 unsigned int len = skb_headlen(skb); 3095 unsigned int nr_frags; 3096 unsigned int mss; 3097 int count = 0; 3098 int tso; 3099 unsigned int f; 3100 3101 /* This goes back to the question of how to logically map a Tx queue 3102 * to a flow. Right now, performance is impacted slightly negatively 3103 * if using multiple Tx queues. If the stack breaks away from a 3104 * single qdisc implementation, we can look at this again. 3105 */ 3106 tx_ring = adapter->tx_ring; 3107 3108 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3109 * packets may get corrupted during padding by HW. 3110 * To WA this issue, pad all small packets manually. 3111 */ 3112 if (skb->len < ETH_ZLEN) { 3113 if (skb_pad(skb, ETH_ZLEN - skb->len)) 3114 return NETDEV_TX_OK; 3115 skb->len = ETH_ZLEN; 3116 skb_set_tail_pointer(skb, ETH_ZLEN); 3117 } 3118 3119 mss = skb_shinfo(skb)->gso_size; 3120 /* The controller does a simple calculation to 3121 * make sure there is enough room in the FIFO before 3122 * initiating the DMA for each buffer. The calc is: 3123 * 4 = ceil(buffer len/mss). To make sure we don't 3124 * overrun the FIFO, adjust the max buffer len if mss 3125 * drops. 3126 */ 3127 if (mss) { 3128 u8 hdr_len; 3129 max_per_txd = min(mss << 2, max_per_txd); 3130 max_txd_pwr = fls(max_per_txd) - 1; 3131 3132 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3133 if (skb->data_len && hdr_len == len) { 3134 switch (hw->mac_type) { 3135 unsigned int pull_size; 3136 case e1000_82544: 3137 /* Make sure we have room to chop off 4 bytes, 3138 * and that the end alignment will work out to 3139 * this hardware's requirements 3140 * NOTE: this is a TSO only workaround 3141 * if end byte alignment not correct move us 3142 * into the next dword 3143 */ 3144 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3145 & 4) 3146 break; 3147 /* fall through */ 3148 pull_size = min((unsigned int)4, skb->data_len); 3149 if (!__pskb_pull_tail(skb, pull_size)) { 3150 e_err(drv, "__pskb_pull_tail " 3151 "failed.\n"); 3152 dev_kfree_skb_any(skb); 3153 return NETDEV_TX_OK; 3154 } 3155 len = skb_headlen(skb); 3156 break; 3157 default: 3158 /* do nothing */ 3159 break; 3160 } 3161 } 3162 } 3163 3164 /* reserve a descriptor for the offload context */ 3165 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3166 count++; 3167 count++; 3168 3169 /* Controller Erratum workaround */ 3170 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3171 count++; 3172 3173 count += TXD_USE_COUNT(len, max_txd_pwr); 3174 3175 if (adapter->pcix_82544) 3176 count++; 3177 3178 /* work-around for errata 10 and it applies to all controllers 3179 * in PCI-X mode, so add one more descriptor to the count 3180 */ 3181 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3182 (len > 2015))) 3183 count++; 3184 3185 nr_frags = skb_shinfo(skb)->nr_frags; 3186 for (f = 0; f < nr_frags; f++) 3187 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3188 max_txd_pwr); 3189 if (adapter->pcix_82544) 3190 count += nr_frags; 3191 3192 /* need: count + 2 desc gap to keep tail from touching 3193 * head, otherwise try next time 3194 */ 3195 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3196 return NETDEV_TX_BUSY; 3197 3198 if (unlikely((hw->mac_type == e1000_82547) && 3199 (e1000_82547_fifo_workaround(adapter, skb)))) { 3200 netif_stop_queue(netdev); 3201 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3202 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3203 return NETDEV_TX_BUSY; 3204 } 3205 3206 if (vlan_tx_tag_present(skb)) { 3207 tx_flags |= E1000_TX_FLAGS_VLAN; 3208 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 3209 } 3210 3211 first = tx_ring->next_to_use; 3212 3213 tso = e1000_tso(adapter, tx_ring, skb); 3214 if (tso < 0) { 3215 dev_kfree_skb_any(skb); 3216 return NETDEV_TX_OK; 3217 } 3218 3219 if (likely(tso)) { 3220 if (likely(hw->mac_type != e1000_82544)) 3221 tx_ring->last_tx_tso = true; 3222 tx_flags |= E1000_TX_FLAGS_TSO; 3223 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) 3224 tx_flags |= E1000_TX_FLAGS_CSUM; 3225 3226 if (likely(skb->protocol == htons(ETH_P_IP))) 3227 tx_flags |= E1000_TX_FLAGS_IPV4; 3228 3229 if (unlikely(skb->no_fcs)) 3230 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3231 3232 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3233 nr_frags, mss); 3234 3235 if (count) { 3236 netdev_sent_queue(netdev, skb->len); 3237 skb_tx_timestamp(skb); 3238 3239 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3240 /* Make sure there is space in the ring for the next send. */ 3241 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); 3242 3243 } else { 3244 dev_kfree_skb_any(skb); 3245 tx_ring->buffer_info[first].time_stamp = 0; 3246 tx_ring->next_to_use = first; 3247 } 3248 3249 return NETDEV_TX_OK; 3250 } 3251 3252 #define NUM_REGS 38 /* 1 based count */ 3253 static void e1000_regdump(struct e1000_adapter *adapter) 3254 { 3255 struct e1000_hw *hw = &adapter->hw; 3256 u32 regs[NUM_REGS]; 3257 u32 *regs_buff = regs; 3258 int i = 0; 3259 3260 static const char * const reg_name[] = { 3261 "CTRL", "STATUS", 3262 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3263 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3264 "TIDV", "TXDCTL", "TADV", "TARC0", 3265 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3266 "TXDCTL1", "TARC1", 3267 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3268 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3269 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3270 }; 3271 3272 regs_buff[0] = er32(CTRL); 3273 regs_buff[1] = er32(STATUS); 3274 3275 regs_buff[2] = er32(RCTL); 3276 regs_buff[3] = er32(RDLEN); 3277 regs_buff[4] = er32(RDH); 3278 regs_buff[5] = er32(RDT); 3279 regs_buff[6] = er32(RDTR); 3280 3281 regs_buff[7] = er32(TCTL); 3282 regs_buff[8] = er32(TDBAL); 3283 regs_buff[9] = er32(TDBAH); 3284 regs_buff[10] = er32(TDLEN); 3285 regs_buff[11] = er32(TDH); 3286 regs_buff[12] = er32(TDT); 3287 regs_buff[13] = er32(TIDV); 3288 regs_buff[14] = er32(TXDCTL); 3289 regs_buff[15] = er32(TADV); 3290 regs_buff[16] = er32(TARC0); 3291 3292 regs_buff[17] = er32(TDBAL1); 3293 regs_buff[18] = er32(TDBAH1); 3294 regs_buff[19] = er32(TDLEN1); 3295 regs_buff[20] = er32(TDH1); 3296 regs_buff[21] = er32(TDT1); 3297 regs_buff[22] = er32(TXDCTL1); 3298 regs_buff[23] = er32(TARC1); 3299 regs_buff[24] = er32(CTRL_EXT); 3300 regs_buff[25] = er32(ERT); 3301 regs_buff[26] = er32(RDBAL0); 3302 regs_buff[27] = er32(RDBAH0); 3303 regs_buff[28] = er32(TDFH); 3304 regs_buff[29] = er32(TDFT); 3305 regs_buff[30] = er32(TDFHS); 3306 regs_buff[31] = er32(TDFTS); 3307 regs_buff[32] = er32(TDFPC); 3308 regs_buff[33] = er32(RDFH); 3309 regs_buff[34] = er32(RDFT); 3310 regs_buff[35] = er32(RDFHS); 3311 regs_buff[36] = er32(RDFTS); 3312 regs_buff[37] = er32(RDFPC); 3313 3314 pr_info("Register dump\n"); 3315 for (i = 0; i < NUM_REGS; i++) 3316 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3317 } 3318 3319 /* 3320 * e1000_dump: Print registers, tx ring and rx ring 3321 */ 3322 static void e1000_dump(struct e1000_adapter *adapter) 3323 { 3324 /* this code doesn't handle multiple rings */ 3325 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3326 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3327 int i; 3328 3329 if (!netif_msg_hw(adapter)) 3330 return; 3331 3332 /* Print Registers */ 3333 e1000_regdump(adapter); 3334 3335 /* transmit dump */ 3336 pr_info("TX Desc ring0 dump\n"); 3337 3338 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3339 * 3340 * Legacy Transmit Descriptor 3341 * +--------------------------------------------------------------+ 3342 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3343 * +--------------------------------------------------------------+ 3344 * 8 | Special | CSS | Status | CMD | CSO | Length | 3345 * +--------------------------------------------------------------+ 3346 * 63 48 47 36 35 32 31 24 23 16 15 0 3347 * 3348 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3349 * 63 48 47 40 39 32 31 16 15 8 7 0 3350 * +----------------------------------------------------------------+ 3351 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3352 * +----------------------------------------------------------------+ 3353 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3354 * +----------------------------------------------------------------+ 3355 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3356 * 3357 * Extended Data Descriptor (DTYP=0x1) 3358 * +----------------------------------------------------------------+ 3359 * 0 | Buffer Address [63:0] | 3360 * +----------------------------------------------------------------+ 3361 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3362 * +----------------------------------------------------------------+ 3363 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3364 */ 3365 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3366 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3367 3368 if (!netif_msg_tx_done(adapter)) 3369 goto rx_ring_summary; 3370 3371 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3372 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3373 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i]; 3374 struct my_u { __le64 a; __le64 b; }; 3375 struct my_u *u = (struct my_u *)tx_desc; 3376 const char *type; 3377 3378 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3379 type = "NTC/U"; 3380 else if (i == tx_ring->next_to_use) 3381 type = "NTU"; 3382 else if (i == tx_ring->next_to_clean) 3383 type = "NTC"; 3384 else 3385 type = ""; 3386 3387 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3388 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3389 le64_to_cpu(u->a), le64_to_cpu(u->b), 3390 (u64)buffer_info->dma, buffer_info->length, 3391 buffer_info->next_to_watch, 3392 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3393 } 3394 3395 rx_ring_summary: 3396 /* receive dump */ 3397 pr_info("\nRX Desc ring dump\n"); 3398 3399 /* Legacy Receive Descriptor Format 3400 * 3401 * +-----------------------------------------------------+ 3402 * | Buffer Address [63:0] | 3403 * +-----------------------------------------------------+ 3404 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3405 * +-----------------------------------------------------+ 3406 * 63 48 47 40 39 32 31 16 15 0 3407 */ 3408 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3409 3410 if (!netif_msg_rx_status(adapter)) 3411 goto exit; 3412 3413 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3414 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3415 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i]; 3416 struct my_u { __le64 a; __le64 b; }; 3417 struct my_u *u = (struct my_u *)rx_desc; 3418 const char *type; 3419 3420 if (i == rx_ring->next_to_use) 3421 type = "NTU"; 3422 else if (i == rx_ring->next_to_clean) 3423 type = "NTC"; 3424 else 3425 type = ""; 3426 3427 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3428 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3429 (u64)buffer_info->dma, buffer_info->skb, type); 3430 } /* for */ 3431 3432 /* dump the descriptor caches */ 3433 /* rx */ 3434 pr_info("Rx descriptor cache in 64bit format\n"); 3435 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3436 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3437 i, 3438 readl(adapter->hw.hw_addr + i+4), 3439 readl(adapter->hw.hw_addr + i), 3440 readl(adapter->hw.hw_addr + i+12), 3441 readl(adapter->hw.hw_addr + i+8)); 3442 } 3443 /* tx */ 3444 pr_info("Tx descriptor cache in 64bit format\n"); 3445 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3446 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3447 i, 3448 readl(adapter->hw.hw_addr + i+4), 3449 readl(adapter->hw.hw_addr + i), 3450 readl(adapter->hw.hw_addr + i+12), 3451 readl(adapter->hw.hw_addr + i+8)); 3452 } 3453 exit: 3454 return; 3455 } 3456 3457 /** 3458 * e1000_tx_timeout - Respond to a Tx Hang 3459 * @netdev: network interface device structure 3460 **/ 3461 static void e1000_tx_timeout(struct net_device *netdev) 3462 { 3463 struct e1000_adapter *adapter = netdev_priv(netdev); 3464 3465 /* Do the reset outside of interrupt context */ 3466 adapter->tx_timeout_count++; 3467 schedule_work(&adapter->reset_task); 3468 } 3469 3470 static void e1000_reset_task(struct work_struct *work) 3471 { 3472 struct e1000_adapter *adapter = 3473 container_of(work, struct e1000_adapter, reset_task); 3474 3475 e_err(drv, "Reset adapter\n"); 3476 e1000_reinit_locked(adapter); 3477 } 3478 3479 /** 3480 * e1000_get_stats - Get System Network Statistics 3481 * @netdev: network interface device structure 3482 * 3483 * Returns the address of the device statistics structure. 3484 * The statistics are actually updated from the watchdog. 3485 **/ 3486 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 3487 { 3488 /* only return the current stats */ 3489 return &netdev->stats; 3490 } 3491 3492 /** 3493 * e1000_change_mtu - Change the Maximum Transfer Unit 3494 * @netdev: network interface device structure 3495 * @new_mtu: new value for maximum frame size 3496 * 3497 * Returns 0 on success, negative on failure 3498 **/ 3499 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3500 { 3501 struct e1000_adapter *adapter = netdev_priv(netdev); 3502 struct e1000_hw *hw = &adapter->hw; 3503 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 3504 3505 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || 3506 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 3507 e_err(probe, "Invalid MTU setting\n"); 3508 return -EINVAL; 3509 } 3510 3511 /* Adapter-specific max frame size limits. */ 3512 switch (hw->mac_type) { 3513 case e1000_undefined ... e1000_82542_rev2_1: 3514 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3515 e_err(probe, "Jumbo Frames not supported.\n"); 3516 return -EINVAL; 3517 } 3518 break; 3519 default: 3520 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3521 break; 3522 } 3523 3524 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3525 msleep(1); 3526 /* e1000_down has a dependency on max_frame_size */ 3527 hw->max_frame_size = max_frame; 3528 if (netif_running(netdev)) 3529 e1000_down(adapter); 3530 3531 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3532 * means we reserve 2 more, this pushes us to allocate from the next 3533 * larger slab size. 3534 * i.e. RXBUFFER_2048 --> size-4096 slab 3535 * however with the new *_jumbo_rx* routines, jumbo receives will use 3536 * fragmented skbs 3537 */ 3538 3539 if (max_frame <= E1000_RXBUFFER_2048) 3540 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3541 else 3542 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3543 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3544 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3545 adapter->rx_buffer_len = PAGE_SIZE; 3546 #endif 3547 3548 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3549 if (!hw->tbi_compatibility_on && 3550 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3551 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3552 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3553 3554 pr_info("%s changing MTU from %d to %d\n", 3555 netdev->name, netdev->mtu, new_mtu); 3556 netdev->mtu = new_mtu; 3557 3558 if (netif_running(netdev)) 3559 e1000_up(adapter); 3560 else 3561 e1000_reset(adapter); 3562 3563 clear_bit(__E1000_RESETTING, &adapter->flags); 3564 3565 return 0; 3566 } 3567 3568 /** 3569 * e1000_update_stats - Update the board statistics counters 3570 * @adapter: board private structure 3571 **/ 3572 void e1000_update_stats(struct e1000_adapter *adapter) 3573 { 3574 struct net_device *netdev = adapter->netdev; 3575 struct e1000_hw *hw = &adapter->hw; 3576 struct pci_dev *pdev = adapter->pdev; 3577 unsigned long flags; 3578 u16 phy_tmp; 3579 3580 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3581 3582 /* Prevent stats update while adapter is being reset, or if the pci 3583 * connection is down. 3584 */ 3585 if (adapter->link_speed == 0) 3586 return; 3587 if (pci_channel_offline(pdev)) 3588 return; 3589 3590 spin_lock_irqsave(&adapter->stats_lock, flags); 3591 3592 /* these counters are modified from e1000_tbi_adjust_stats, 3593 * called from the interrupt context, so they must only 3594 * be written while holding adapter->stats_lock 3595 */ 3596 3597 adapter->stats.crcerrs += er32(CRCERRS); 3598 adapter->stats.gprc += er32(GPRC); 3599 adapter->stats.gorcl += er32(GORCL); 3600 adapter->stats.gorch += er32(GORCH); 3601 adapter->stats.bprc += er32(BPRC); 3602 adapter->stats.mprc += er32(MPRC); 3603 adapter->stats.roc += er32(ROC); 3604 3605 adapter->stats.prc64 += er32(PRC64); 3606 adapter->stats.prc127 += er32(PRC127); 3607 adapter->stats.prc255 += er32(PRC255); 3608 adapter->stats.prc511 += er32(PRC511); 3609 adapter->stats.prc1023 += er32(PRC1023); 3610 adapter->stats.prc1522 += er32(PRC1522); 3611 3612 adapter->stats.symerrs += er32(SYMERRS); 3613 adapter->stats.mpc += er32(MPC); 3614 adapter->stats.scc += er32(SCC); 3615 adapter->stats.ecol += er32(ECOL); 3616 adapter->stats.mcc += er32(MCC); 3617 adapter->stats.latecol += er32(LATECOL); 3618 adapter->stats.dc += er32(DC); 3619 adapter->stats.sec += er32(SEC); 3620 adapter->stats.rlec += er32(RLEC); 3621 adapter->stats.xonrxc += er32(XONRXC); 3622 adapter->stats.xontxc += er32(XONTXC); 3623 adapter->stats.xoffrxc += er32(XOFFRXC); 3624 adapter->stats.xofftxc += er32(XOFFTXC); 3625 adapter->stats.fcruc += er32(FCRUC); 3626 adapter->stats.gptc += er32(GPTC); 3627 adapter->stats.gotcl += er32(GOTCL); 3628 adapter->stats.gotch += er32(GOTCH); 3629 adapter->stats.rnbc += er32(RNBC); 3630 adapter->stats.ruc += er32(RUC); 3631 adapter->stats.rfc += er32(RFC); 3632 adapter->stats.rjc += er32(RJC); 3633 adapter->stats.torl += er32(TORL); 3634 adapter->stats.torh += er32(TORH); 3635 adapter->stats.totl += er32(TOTL); 3636 adapter->stats.toth += er32(TOTH); 3637 adapter->stats.tpr += er32(TPR); 3638 3639 adapter->stats.ptc64 += er32(PTC64); 3640 adapter->stats.ptc127 += er32(PTC127); 3641 adapter->stats.ptc255 += er32(PTC255); 3642 adapter->stats.ptc511 += er32(PTC511); 3643 adapter->stats.ptc1023 += er32(PTC1023); 3644 adapter->stats.ptc1522 += er32(PTC1522); 3645 3646 adapter->stats.mptc += er32(MPTC); 3647 adapter->stats.bptc += er32(BPTC); 3648 3649 /* used for adaptive IFS */ 3650 3651 hw->tx_packet_delta = er32(TPT); 3652 adapter->stats.tpt += hw->tx_packet_delta; 3653 hw->collision_delta = er32(COLC); 3654 adapter->stats.colc += hw->collision_delta; 3655 3656 if (hw->mac_type >= e1000_82543) { 3657 adapter->stats.algnerrc += er32(ALGNERRC); 3658 adapter->stats.rxerrc += er32(RXERRC); 3659 adapter->stats.tncrs += er32(TNCRS); 3660 adapter->stats.cexterr += er32(CEXTERR); 3661 adapter->stats.tsctc += er32(TSCTC); 3662 adapter->stats.tsctfc += er32(TSCTFC); 3663 } 3664 3665 /* Fill out the OS statistics structure */ 3666 netdev->stats.multicast = adapter->stats.mprc; 3667 netdev->stats.collisions = adapter->stats.colc; 3668 3669 /* Rx Errors */ 3670 3671 /* RLEC on some newer hardware can be incorrect so build 3672 * our own version based on RUC and ROC 3673 */ 3674 netdev->stats.rx_errors = adapter->stats.rxerrc + 3675 adapter->stats.crcerrs + adapter->stats.algnerrc + 3676 adapter->stats.ruc + adapter->stats.roc + 3677 adapter->stats.cexterr; 3678 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3679 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3680 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3681 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3682 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3683 3684 /* Tx Errors */ 3685 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3686 netdev->stats.tx_errors = adapter->stats.txerrc; 3687 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3688 netdev->stats.tx_window_errors = adapter->stats.latecol; 3689 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3690 if (hw->bad_tx_carr_stats_fd && 3691 adapter->link_duplex == FULL_DUPLEX) { 3692 netdev->stats.tx_carrier_errors = 0; 3693 adapter->stats.tncrs = 0; 3694 } 3695 3696 /* Tx Dropped needs to be maintained elsewhere */ 3697 3698 /* Phy Stats */ 3699 if (hw->media_type == e1000_media_type_copper) { 3700 if ((adapter->link_speed == SPEED_1000) && 3701 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3702 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3703 adapter->phy_stats.idle_errors += phy_tmp; 3704 } 3705 3706 if ((hw->mac_type <= e1000_82546) && 3707 (hw->phy_type == e1000_phy_m88) && 3708 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3709 adapter->phy_stats.receive_errors += phy_tmp; 3710 } 3711 3712 /* Management Stats */ 3713 if (hw->has_smbus) { 3714 adapter->stats.mgptc += er32(MGTPTC); 3715 adapter->stats.mgprc += er32(MGTPRC); 3716 adapter->stats.mgpdc += er32(MGTPDC); 3717 } 3718 3719 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3720 } 3721 3722 /** 3723 * e1000_intr - Interrupt Handler 3724 * @irq: interrupt number 3725 * @data: pointer to a network interface device structure 3726 **/ 3727 static irqreturn_t e1000_intr(int irq, void *data) 3728 { 3729 struct net_device *netdev = data; 3730 struct e1000_adapter *adapter = netdev_priv(netdev); 3731 struct e1000_hw *hw = &adapter->hw; 3732 u32 icr = er32(ICR); 3733 3734 if (unlikely((!icr))) 3735 return IRQ_NONE; /* Not our interrupt */ 3736 3737 /* we might have caused the interrupt, but the above 3738 * read cleared it, and just in case the driver is 3739 * down there is nothing to do so return handled 3740 */ 3741 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3742 return IRQ_HANDLED; 3743 3744 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3745 hw->get_link_status = 1; 3746 /* guard against interrupt when we're going down */ 3747 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3748 schedule_delayed_work(&adapter->watchdog_task, 1); 3749 } 3750 3751 /* disable interrupts, without the synchronize_irq bit */ 3752 ew32(IMC, ~0); 3753 E1000_WRITE_FLUSH(); 3754 3755 if (likely(napi_schedule_prep(&adapter->napi))) { 3756 adapter->total_tx_bytes = 0; 3757 adapter->total_tx_packets = 0; 3758 adapter->total_rx_bytes = 0; 3759 adapter->total_rx_packets = 0; 3760 __napi_schedule(&adapter->napi); 3761 } else { 3762 /* this really should not happen! if it does it is basically a 3763 * bug, but not a hard error, so enable ints and continue 3764 */ 3765 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3766 e1000_irq_enable(adapter); 3767 } 3768 3769 return IRQ_HANDLED; 3770 } 3771 3772 /** 3773 * e1000_clean - NAPI Rx polling callback 3774 * @adapter: board private structure 3775 **/ 3776 static int e1000_clean(struct napi_struct *napi, int budget) 3777 { 3778 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3779 napi); 3780 int tx_clean_complete = 0, work_done = 0; 3781 3782 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3783 3784 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3785 3786 if (!tx_clean_complete) 3787 work_done = budget; 3788 3789 /* If budget not fully consumed, exit the polling mode */ 3790 if (work_done < budget) { 3791 if (likely(adapter->itr_setting & 3)) 3792 e1000_set_itr(adapter); 3793 napi_complete(napi); 3794 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3795 e1000_irq_enable(adapter); 3796 } 3797 3798 return work_done; 3799 } 3800 3801 /** 3802 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3803 * @adapter: board private structure 3804 **/ 3805 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3806 struct e1000_tx_ring *tx_ring) 3807 { 3808 struct e1000_hw *hw = &adapter->hw; 3809 struct net_device *netdev = adapter->netdev; 3810 struct e1000_tx_desc *tx_desc, *eop_desc; 3811 struct e1000_buffer *buffer_info; 3812 unsigned int i, eop; 3813 unsigned int count = 0; 3814 unsigned int total_tx_bytes=0, total_tx_packets=0; 3815 unsigned int bytes_compl = 0, pkts_compl = 0; 3816 3817 i = tx_ring->next_to_clean; 3818 eop = tx_ring->buffer_info[i].next_to_watch; 3819 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3820 3821 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3822 (count < tx_ring->count)) { 3823 bool cleaned = false; 3824 rmb(); /* read buffer_info after eop_desc */ 3825 for ( ; !cleaned; count++) { 3826 tx_desc = E1000_TX_DESC(*tx_ring, i); 3827 buffer_info = &tx_ring->buffer_info[i]; 3828 cleaned = (i == eop); 3829 3830 if (cleaned) { 3831 total_tx_packets += buffer_info->segs; 3832 total_tx_bytes += buffer_info->bytecount; 3833 if (buffer_info->skb) { 3834 bytes_compl += buffer_info->skb->len; 3835 pkts_compl++; 3836 } 3837 3838 } 3839 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3840 tx_desc->upper.data = 0; 3841 3842 if (unlikely(++i == tx_ring->count)) i = 0; 3843 } 3844 3845 eop = tx_ring->buffer_info[i].next_to_watch; 3846 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3847 } 3848 3849 tx_ring->next_to_clean = i; 3850 3851 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3852 3853 #define TX_WAKE_THRESHOLD 32 3854 if (unlikely(count && netif_carrier_ok(netdev) && 3855 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3856 /* Make sure that anybody stopping the queue after this 3857 * sees the new next_to_clean. 3858 */ 3859 smp_mb(); 3860 3861 if (netif_queue_stopped(netdev) && 3862 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3863 netif_wake_queue(netdev); 3864 ++adapter->restart_queue; 3865 } 3866 } 3867 3868 if (adapter->detect_tx_hung) { 3869 /* Detect a transmit hang in hardware, this serializes the 3870 * check with the clearing of time_stamp and movement of i 3871 */ 3872 adapter->detect_tx_hung = false; 3873 if (tx_ring->buffer_info[eop].time_stamp && 3874 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3875 (adapter->tx_timeout_factor * HZ)) && 3876 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3877 3878 /* detected Tx unit hang */ 3879 e_err(drv, "Detected Tx Unit Hang\n" 3880 " Tx Queue <%lu>\n" 3881 " TDH <%x>\n" 3882 " TDT <%x>\n" 3883 " next_to_use <%x>\n" 3884 " next_to_clean <%x>\n" 3885 "buffer_info[next_to_clean]\n" 3886 " time_stamp <%lx>\n" 3887 " next_to_watch <%x>\n" 3888 " jiffies <%lx>\n" 3889 " next_to_watch.status <%x>\n", 3890 (unsigned long)(tx_ring - adapter->tx_ring), 3891 readl(hw->hw_addr + tx_ring->tdh), 3892 readl(hw->hw_addr + tx_ring->tdt), 3893 tx_ring->next_to_use, 3894 tx_ring->next_to_clean, 3895 tx_ring->buffer_info[eop].time_stamp, 3896 eop, 3897 jiffies, 3898 eop_desc->upper.fields.status); 3899 e1000_dump(adapter); 3900 netif_stop_queue(netdev); 3901 } 3902 } 3903 adapter->total_tx_bytes += total_tx_bytes; 3904 adapter->total_tx_packets += total_tx_packets; 3905 netdev->stats.tx_bytes += total_tx_bytes; 3906 netdev->stats.tx_packets += total_tx_packets; 3907 return count < tx_ring->count; 3908 } 3909 3910 /** 3911 * e1000_rx_checksum - Receive Checksum Offload for 82543 3912 * @adapter: board private structure 3913 * @status_err: receive descriptor status and error fields 3914 * @csum: receive descriptor csum field 3915 * @sk_buff: socket buffer with received data 3916 **/ 3917 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3918 u32 csum, struct sk_buff *skb) 3919 { 3920 struct e1000_hw *hw = &adapter->hw; 3921 u16 status = (u16)status_err; 3922 u8 errors = (u8)(status_err >> 24); 3923 3924 skb_checksum_none_assert(skb); 3925 3926 /* 82543 or newer only */ 3927 if (unlikely(hw->mac_type < e1000_82543)) return; 3928 /* Ignore Checksum bit is set */ 3929 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; 3930 /* TCP/UDP checksum error bit is set */ 3931 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3932 /* let the stack verify checksum errors */ 3933 adapter->hw_csum_err++; 3934 return; 3935 } 3936 /* TCP/UDP Checksum has not been calculated */ 3937 if (!(status & E1000_RXD_STAT_TCPCS)) 3938 return; 3939 3940 /* It must be a TCP or UDP packet with a valid checksum */ 3941 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3942 /* TCP checksum is good */ 3943 skb->ip_summed = CHECKSUM_UNNECESSARY; 3944 } 3945 adapter->hw_csum_good++; 3946 } 3947 3948 /** 3949 * e1000_consume_page - helper function 3950 **/ 3951 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 3952 u16 length) 3953 { 3954 bi->page = NULL; 3955 skb->len += length; 3956 skb->data_len += length; 3957 skb->truesize += PAGE_SIZE; 3958 } 3959 3960 /** 3961 * e1000_receive_skb - helper function to handle rx indications 3962 * @adapter: board private structure 3963 * @status: descriptor status field as written by hardware 3964 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3965 * @skb: pointer to sk_buff to be indicated to stack 3966 */ 3967 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3968 __le16 vlan, struct sk_buff *skb) 3969 { 3970 skb->protocol = eth_type_trans(skb, adapter->netdev); 3971 3972 if (status & E1000_RXD_STAT_VP) { 3973 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 3974 3975 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 3976 } 3977 napi_gro_receive(&adapter->napi, skb); 3978 } 3979 3980 /** 3981 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 3982 * @adapter: board private structure 3983 * @rx_ring: ring to clean 3984 * @work_done: amount of napi work completed this call 3985 * @work_to_do: max amount of work allowed for this call to do 3986 * 3987 * the return value indicates whether actual cleaning was done, there 3988 * is no guarantee that everything was cleaned 3989 */ 3990 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 3991 struct e1000_rx_ring *rx_ring, 3992 int *work_done, int work_to_do) 3993 { 3994 struct e1000_hw *hw = &adapter->hw; 3995 struct net_device *netdev = adapter->netdev; 3996 struct pci_dev *pdev = adapter->pdev; 3997 struct e1000_rx_desc *rx_desc, *next_rxd; 3998 struct e1000_buffer *buffer_info, *next_buffer; 3999 unsigned long irq_flags; 4000 u32 length; 4001 unsigned int i; 4002 int cleaned_count = 0; 4003 bool cleaned = false; 4004 unsigned int total_rx_bytes=0, total_rx_packets=0; 4005 4006 i = rx_ring->next_to_clean; 4007 rx_desc = E1000_RX_DESC(*rx_ring, i); 4008 buffer_info = &rx_ring->buffer_info[i]; 4009 4010 while (rx_desc->status & E1000_RXD_STAT_DD) { 4011 struct sk_buff *skb; 4012 u8 status; 4013 4014 if (*work_done >= work_to_do) 4015 break; 4016 (*work_done)++; 4017 rmb(); /* read descriptor and rx_buffer_info after status DD */ 4018 4019 status = rx_desc->status; 4020 skb = buffer_info->skb; 4021 buffer_info->skb = NULL; 4022 4023 if (++i == rx_ring->count) i = 0; 4024 next_rxd = E1000_RX_DESC(*rx_ring, i); 4025 prefetch(next_rxd); 4026 4027 next_buffer = &rx_ring->buffer_info[i]; 4028 4029 cleaned = true; 4030 cleaned_count++; 4031 dma_unmap_page(&pdev->dev, buffer_info->dma, 4032 buffer_info->length, DMA_FROM_DEVICE); 4033 buffer_info->dma = 0; 4034 4035 length = le16_to_cpu(rx_desc->length); 4036 4037 /* errors is only valid for DD + EOP descriptors */ 4038 if (unlikely((status & E1000_RXD_STAT_EOP) && 4039 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4040 u8 *mapped; 4041 u8 last_byte; 4042 4043 mapped = page_address(buffer_info->page); 4044 last_byte = *(mapped + length - 1); 4045 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, 4046 last_byte)) { 4047 spin_lock_irqsave(&adapter->stats_lock, 4048 irq_flags); 4049 e1000_tbi_adjust_stats(hw, &adapter->stats, 4050 length, mapped); 4051 spin_unlock_irqrestore(&adapter->stats_lock, 4052 irq_flags); 4053 length--; 4054 } else { 4055 if (netdev->features & NETIF_F_RXALL) 4056 goto process_skb; 4057 /* recycle both page and skb */ 4058 buffer_info->skb = skb; 4059 /* an error means any chain goes out the window 4060 * too 4061 */ 4062 if (rx_ring->rx_skb_top) 4063 dev_kfree_skb(rx_ring->rx_skb_top); 4064 rx_ring->rx_skb_top = NULL; 4065 goto next_desc; 4066 } 4067 } 4068 4069 #define rxtop rx_ring->rx_skb_top 4070 process_skb: 4071 if (!(status & E1000_RXD_STAT_EOP)) { 4072 /* this descriptor is only the beginning (or middle) */ 4073 if (!rxtop) { 4074 /* this is the beginning of a chain */ 4075 rxtop = skb; 4076 skb_fill_page_desc(rxtop, 0, buffer_info->page, 4077 0, length); 4078 } else { 4079 /* this is the middle of a chain */ 4080 skb_fill_page_desc(rxtop, 4081 skb_shinfo(rxtop)->nr_frags, 4082 buffer_info->page, 0, length); 4083 /* re-use the skb, only consumed the page */ 4084 buffer_info->skb = skb; 4085 } 4086 e1000_consume_page(buffer_info, rxtop, length); 4087 goto next_desc; 4088 } else { 4089 if (rxtop) { 4090 /* end of the chain */ 4091 skb_fill_page_desc(rxtop, 4092 skb_shinfo(rxtop)->nr_frags, 4093 buffer_info->page, 0, length); 4094 /* re-use the current skb, we only consumed the 4095 * page 4096 */ 4097 buffer_info->skb = skb; 4098 skb = rxtop; 4099 rxtop = NULL; 4100 e1000_consume_page(buffer_info, skb, length); 4101 } else { 4102 /* no chain, got EOP, this buf is the packet 4103 * copybreak to save the put_page/alloc_page 4104 */ 4105 if (length <= copybreak && 4106 skb_tailroom(skb) >= length) { 4107 u8 *vaddr; 4108 vaddr = kmap_atomic(buffer_info->page); 4109 memcpy(skb_tail_pointer(skb), vaddr, 4110 length); 4111 kunmap_atomic(vaddr); 4112 /* re-use the page, so don't erase 4113 * buffer_info->page 4114 */ 4115 skb_put(skb, length); 4116 } else { 4117 skb_fill_page_desc(skb, 0, 4118 buffer_info->page, 0, 4119 length); 4120 e1000_consume_page(buffer_info, skb, 4121 length); 4122 } 4123 } 4124 } 4125 4126 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4127 e1000_rx_checksum(adapter, 4128 (u32)(status) | 4129 ((u32)(rx_desc->errors) << 24), 4130 le16_to_cpu(rx_desc->csum), skb); 4131 4132 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4133 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4134 pskb_trim(skb, skb->len - 4); 4135 total_rx_packets++; 4136 4137 /* eth type trans needs skb->data to point to something */ 4138 if (!pskb_may_pull(skb, ETH_HLEN)) { 4139 e_err(drv, "pskb_may_pull failed.\n"); 4140 dev_kfree_skb(skb); 4141 goto next_desc; 4142 } 4143 4144 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4145 4146 next_desc: 4147 rx_desc->status = 0; 4148 4149 /* return some buffers to hardware, one at a time is too slow */ 4150 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4151 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4152 cleaned_count = 0; 4153 } 4154 4155 /* use prefetched values */ 4156 rx_desc = next_rxd; 4157 buffer_info = next_buffer; 4158 } 4159 rx_ring->next_to_clean = i; 4160 4161 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4162 if (cleaned_count) 4163 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4164 4165 adapter->total_rx_packets += total_rx_packets; 4166 adapter->total_rx_bytes += total_rx_bytes; 4167 netdev->stats.rx_bytes += total_rx_bytes; 4168 netdev->stats.rx_packets += total_rx_packets; 4169 return cleaned; 4170 } 4171 4172 /* this should improve performance for small packets with large amounts 4173 * of reassembly being done in the stack 4174 */ 4175 static void e1000_check_copybreak(struct net_device *netdev, 4176 struct e1000_buffer *buffer_info, 4177 u32 length, struct sk_buff **skb) 4178 { 4179 struct sk_buff *new_skb; 4180 4181 if (length > copybreak) 4182 return; 4183 4184 new_skb = netdev_alloc_skb_ip_align(netdev, length); 4185 if (!new_skb) 4186 return; 4187 4188 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN, 4189 (*skb)->data - NET_IP_ALIGN, 4190 length + NET_IP_ALIGN); 4191 /* save the skb in buffer_info as good */ 4192 buffer_info->skb = *skb; 4193 *skb = new_skb; 4194 } 4195 4196 /** 4197 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4198 * @adapter: board private structure 4199 * @rx_ring: ring to clean 4200 * @work_done: amount of napi work completed this call 4201 * @work_to_do: max amount of work allowed for this call to do 4202 */ 4203 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4204 struct e1000_rx_ring *rx_ring, 4205 int *work_done, int work_to_do) 4206 { 4207 struct e1000_hw *hw = &adapter->hw; 4208 struct net_device *netdev = adapter->netdev; 4209 struct pci_dev *pdev = adapter->pdev; 4210 struct e1000_rx_desc *rx_desc, *next_rxd; 4211 struct e1000_buffer *buffer_info, *next_buffer; 4212 unsigned long flags; 4213 u32 length; 4214 unsigned int i; 4215 int cleaned_count = 0; 4216 bool cleaned = false; 4217 unsigned int total_rx_bytes=0, total_rx_packets=0; 4218 4219 i = rx_ring->next_to_clean; 4220 rx_desc = E1000_RX_DESC(*rx_ring, i); 4221 buffer_info = &rx_ring->buffer_info[i]; 4222 4223 while (rx_desc->status & E1000_RXD_STAT_DD) { 4224 struct sk_buff *skb; 4225 u8 status; 4226 4227 if (*work_done >= work_to_do) 4228 break; 4229 (*work_done)++; 4230 rmb(); /* read descriptor and rx_buffer_info after status DD */ 4231 4232 status = rx_desc->status; 4233 skb = buffer_info->skb; 4234 buffer_info->skb = NULL; 4235 4236 prefetch(skb->data - NET_IP_ALIGN); 4237 4238 if (++i == rx_ring->count) i = 0; 4239 next_rxd = E1000_RX_DESC(*rx_ring, i); 4240 prefetch(next_rxd); 4241 4242 next_buffer = &rx_ring->buffer_info[i]; 4243 4244 cleaned = true; 4245 cleaned_count++; 4246 dma_unmap_single(&pdev->dev, buffer_info->dma, 4247 buffer_info->length, DMA_FROM_DEVICE); 4248 buffer_info->dma = 0; 4249 4250 length = le16_to_cpu(rx_desc->length); 4251 /* !EOP means multiple descriptors were used to store a single 4252 * packet, if thats the case we need to toss it. In fact, we 4253 * to toss every packet with the EOP bit clear and the next 4254 * frame that _does_ have the EOP bit set, as it is by 4255 * definition only a frame fragment 4256 */ 4257 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4258 adapter->discarding = true; 4259 4260 if (adapter->discarding) { 4261 /* All receives must fit into a single buffer */ 4262 e_dbg("Receive packet consumed multiple buffers\n"); 4263 /* recycle */ 4264 buffer_info->skb = skb; 4265 if (status & E1000_RXD_STAT_EOP) 4266 adapter->discarding = false; 4267 goto next_desc; 4268 } 4269 4270 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4271 u8 last_byte = *(skb->data + length - 1); 4272 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, 4273 last_byte)) { 4274 spin_lock_irqsave(&adapter->stats_lock, flags); 4275 e1000_tbi_adjust_stats(hw, &adapter->stats, 4276 length, skb->data); 4277 spin_unlock_irqrestore(&adapter->stats_lock, 4278 flags); 4279 length--; 4280 } else { 4281 if (netdev->features & NETIF_F_RXALL) 4282 goto process_skb; 4283 /* recycle */ 4284 buffer_info->skb = skb; 4285 goto next_desc; 4286 } 4287 } 4288 4289 process_skb: 4290 total_rx_bytes += (length - 4); /* don't count FCS */ 4291 total_rx_packets++; 4292 4293 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4294 /* adjust length to remove Ethernet CRC, this must be 4295 * done after the TBI_ACCEPT workaround above 4296 */ 4297 length -= 4; 4298 4299 e1000_check_copybreak(netdev, buffer_info, length, &skb); 4300 4301 skb_put(skb, length); 4302 4303 /* Receive Checksum Offload */ 4304 e1000_rx_checksum(adapter, 4305 (u32)(status) | 4306 ((u32)(rx_desc->errors) << 24), 4307 le16_to_cpu(rx_desc->csum), skb); 4308 4309 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4310 4311 next_desc: 4312 rx_desc->status = 0; 4313 4314 /* return some buffers to hardware, one at a time is too slow */ 4315 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4316 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4317 cleaned_count = 0; 4318 } 4319 4320 /* use prefetched values */ 4321 rx_desc = next_rxd; 4322 buffer_info = next_buffer; 4323 } 4324 rx_ring->next_to_clean = i; 4325 4326 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4327 if (cleaned_count) 4328 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4329 4330 adapter->total_rx_packets += total_rx_packets; 4331 adapter->total_rx_bytes += total_rx_bytes; 4332 netdev->stats.rx_bytes += total_rx_bytes; 4333 netdev->stats.rx_packets += total_rx_packets; 4334 return cleaned; 4335 } 4336 4337 /** 4338 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4339 * @adapter: address of board private structure 4340 * @rx_ring: pointer to receive ring structure 4341 * @cleaned_count: number of buffers to allocate this pass 4342 **/ 4343 static void 4344 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4345 struct e1000_rx_ring *rx_ring, int cleaned_count) 4346 { 4347 struct net_device *netdev = adapter->netdev; 4348 struct pci_dev *pdev = adapter->pdev; 4349 struct e1000_rx_desc *rx_desc; 4350 struct e1000_buffer *buffer_info; 4351 struct sk_buff *skb; 4352 unsigned int i; 4353 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ; 4354 4355 i = rx_ring->next_to_use; 4356 buffer_info = &rx_ring->buffer_info[i]; 4357 4358 while (cleaned_count--) { 4359 skb = buffer_info->skb; 4360 if (skb) { 4361 skb_trim(skb, 0); 4362 goto check_page; 4363 } 4364 4365 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 4366 if (unlikely(!skb)) { 4367 /* Better luck next round */ 4368 adapter->alloc_rx_buff_failed++; 4369 break; 4370 } 4371 4372 buffer_info->skb = skb; 4373 buffer_info->length = adapter->rx_buffer_len; 4374 check_page: 4375 /* allocate a new page if necessary */ 4376 if (!buffer_info->page) { 4377 buffer_info->page = alloc_page(GFP_ATOMIC); 4378 if (unlikely(!buffer_info->page)) { 4379 adapter->alloc_rx_buff_failed++; 4380 break; 4381 } 4382 } 4383 4384 if (!buffer_info->dma) { 4385 buffer_info->dma = dma_map_page(&pdev->dev, 4386 buffer_info->page, 0, 4387 buffer_info->length, 4388 DMA_FROM_DEVICE); 4389 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4390 put_page(buffer_info->page); 4391 dev_kfree_skb(skb); 4392 buffer_info->page = NULL; 4393 buffer_info->skb = NULL; 4394 buffer_info->dma = 0; 4395 adapter->alloc_rx_buff_failed++; 4396 break; /* while !buffer_info->skb */ 4397 } 4398 } 4399 4400 rx_desc = E1000_RX_DESC(*rx_ring, i); 4401 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4402 4403 if (unlikely(++i == rx_ring->count)) 4404 i = 0; 4405 buffer_info = &rx_ring->buffer_info[i]; 4406 } 4407 4408 if (likely(rx_ring->next_to_use != i)) { 4409 rx_ring->next_to_use = i; 4410 if (unlikely(i-- == 0)) 4411 i = (rx_ring->count - 1); 4412 4413 /* Force memory writes to complete before letting h/w 4414 * know there are new descriptors to fetch. (Only 4415 * applicable for weak-ordered memory model archs, 4416 * such as IA-64). 4417 */ 4418 wmb(); 4419 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4420 } 4421 } 4422 4423 /** 4424 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4425 * @adapter: address of board private structure 4426 **/ 4427 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4428 struct e1000_rx_ring *rx_ring, 4429 int cleaned_count) 4430 { 4431 struct e1000_hw *hw = &adapter->hw; 4432 struct net_device *netdev = adapter->netdev; 4433 struct pci_dev *pdev = adapter->pdev; 4434 struct e1000_rx_desc *rx_desc; 4435 struct e1000_buffer *buffer_info; 4436 struct sk_buff *skb; 4437 unsigned int i; 4438 unsigned int bufsz = adapter->rx_buffer_len; 4439 4440 i = rx_ring->next_to_use; 4441 buffer_info = &rx_ring->buffer_info[i]; 4442 4443 while (cleaned_count--) { 4444 skb = buffer_info->skb; 4445 if (skb) { 4446 skb_trim(skb, 0); 4447 goto map_skb; 4448 } 4449 4450 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 4451 if (unlikely(!skb)) { 4452 /* Better luck next round */ 4453 adapter->alloc_rx_buff_failed++; 4454 break; 4455 } 4456 4457 /* Fix for errata 23, can't cross 64kB boundary */ 4458 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { 4459 struct sk_buff *oldskb = skb; 4460 e_err(rx_err, "skb align check failed: %u bytes at " 4461 "%p\n", bufsz, skb->data); 4462 /* Try again, without freeing the previous */ 4463 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 4464 /* Failed allocation, critical failure */ 4465 if (!skb) { 4466 dev_kfree_skb(oldskb); 4467 adapter->alloc_rx_buff_failed++; 4468 break; 4469 } 4470 4471 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { 4472 /* give up */ 4473 dev_kfree_skb(skb); 4474 dev_kfree_skb(oldskb); 4475 adapter->alloc_rx_buff_failed++; 4476 break; /* while !buffer_info->skb */ 4477 } 4478 4479 /* Use new allocation */ 4480 dev_kfree_skb(oldskb); 4481 } 4482 buffer_info->skb = skb; 4483 buffer_info->length = adapter->rx_buffer_len; 4484 map_skb: 4485 buffer_info->dma = dma_map_single(&pdev->dev, 4486 skb->data, 4487 buffer_info->length, 4488 DMA_FROM_DEVICE); 4489 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4490 dev_kfree_skb(skb); 4491 buffer_info->skb = NULL; 4492 buffer_info->dma = 0; 4493 adapter->alloc_rx_buff_failed++; 4494 break; /* while !buffer_info->skb */ 4495 } 4496 4497 /* XXX if it was allocated cleanly it will never map to a 4498 * boundary crossing 4499 */ 4500 4501 /* Fix for errata 23, can't cross 64kB boundary */ 4502 if (!e1000_check_64k_bound(adapter, 4503 (void *)(unsigned long)buffer_info->dma, 4504 adapter->rx_buffer_len)) { 4505 e_err(rx_err, "dma align check failed: %u bytes at " 4506 "%p\n", adapter->rx_buffer_len, 4507 (void *)(unsigned long)buffer_info->dma); 4508 dev_kfree_skb(skb); 4509 buffer_info->skb = NULL; 4510 4511 dma_unmap_single(&pdev->dev, buffer_info->dma, 4512 adapter->rx_buffer_len, 4513 DMA_FROM_DEVICE); 4514 buffer_info->dma = 0; 4515 4516 adapter->alloc_rx_buff_failed++; 4517 break; /* while !buffer_info->skb */ 4518 } 4519 rx_desc = E1000_RX_DESC(*rx_ring, i); 4520 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4521 4522 if (unlikely(++i == rx_ring->count)) 4523 i = 0; 4524 buffer_info = &rx_ring->buffer_info[i]; 4525 } 4526 4527 if (likely(rx_ring->next_to_use != i)) { 4528 rx_ring->next_to_use = i; 4529 if (unlikely(i-- == 0)) 4530 i = (rx_ring->count - 1); 4531 4532 /* Force memory writes to complete before letting h/w 4533 * know there are new descriptors to fetch. (Only 4534 * applicable for weak-ordered memory model archs, 4535 * such as IA-64). 4536 */ 4537 wmb(); 4538 writel(i, hw->hw_addr + rx_ring->rdt); 4539 } 4540 } 4541 4542 /** 4543 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4544 * @adapter: 4545 **/ 4546 static void e1000_smartspeed(struct e1000_adapter *adapter) 4547 { 4548 struct e1000_hw *hw = &adapter->hw; 4549 u16 phy_status; 4550 u16 phy_ctrl; 4551 4552 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4553 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4554 return; 4555 4556 if (adapter->smartspeed == 0) { 4557 /* If Master/Slave config fault is asserted twice, 4558 * we assume back-to-back 4559 */ 4560 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4561 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; 4562 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4563 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; 4564 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4565 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4566 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4567 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4568 phy_ctrl); 4569 adapter->smartspeed++; 4570 if (!e1000_phy_setup_autoneg(hw) && 4571 !e1000_read_phy_reg(hw, PHY_CTRL, 4572 &phy_ctrl)) { 4573 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4574 MII_CR_RESTART_AUTO_NEG); 4575 e1000_write_phy_reg(hw, PHY_CTRL, 4576 phy_ctrl); 4577 } 4578 } 4579 return; 4580 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4581 /* If still no link, perhaps using 2/3 pair cable */ 4582 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4583 phy_ctrl |= CR_1000T_MS_ENABLE; 4584 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4585 if (!e1000_phy_setup_autoneg(hw) && 4586 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4587 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4588 MII_CR_RESTART_AUTO_NEG); 4589 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4590 } 4591 } 4592 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4593 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4594 adapter->smartspeed = 0; 4595 } 4596 4597 /** 4598 * e1000_ioctl - 4599 * @netdev: 4600 * @ifreq: 4601 * @cmd: 4602 **/ 4603 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4604 { 4605 switch (cmd) { 4606 case SIOCGMIIPHY: 4607 case SIOCGMIIREG: 4608 case SIOCSMIIREG: 4609 return e1000_mii_ioctl(netdev, ifr, cmd); 4610 default: 4611 return -EOPNOTSUPP; 4612 } 4613 } 4614 4615 /** 4616 * e1000_mii_ioctl - 4617 * @netdev: 4618 * @ifreq: 4619 * @cmd: 4620 **/ 4621 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4622 int cmd) 4623 { 4624 struct e1000_adapter *adapter = netdev_priv(netdev); 4625 struct e1000_hw *hw = &adapter->hw; 4626 struct mii_ioctl_data *data = if_mii(ifr); 4627 int retval; 4628 u16 mii_reg; 4629 unsigned long flags; 4630 4631 if (hw->media_type != e1000_media_type_copper) 4632 return -EOPNOTSUPP; 4633 4634 switch (cmd) { 4635 case SIOCGMIIPHY: 4636 data->phy_id = hw->phy_addr; 4637 break; 4638 case SIOCGMIIREG: 4639 spin_lock_irqsave(&adapter->stats_lock, flags); 4640 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4641 &data->val_out)) { 4642 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4643 return -EIO; 4644 } 4645 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4646 break; 4647 case SIOCSMIIREG: 4648 if (data->reg_num & ~(0x1F)) 4649 return -EFAULT; 4650 mii_reg = data->val_in; 4651 spin_lock_irqsave(&adapter->stats_lock, flags); 4652 if (e1000_write_phy_reg(hw, data->reg_num, 4653 mii_reg)) { 4654 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4655 return -EIO; 4656 } 4657 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4658 if (hw->media_type == e1000_media_type_copper) { 4659 switch (data->reg_num) { 4660 case PHY_CTRL: 4661 if (mii_reg & MII_CR_POWER_DOWN) 4662 break; 4663 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4664 hw->autoneg = 1; 4665 hw->autoneg_advertised = 0x2F; 4666 } else { 4667 u32 speed; 4668 if (mii_reg & 0x40) 4669 speed = SPEED_1000; 4670 else if (mii_reg & 0x2000) 4671 speed = SPEED_100; 4672 else 4673 speed = SPEED_10; 4674 retval = e1000_set_spd_dplx( 4675 adapter, speed, 4676 ((mii_reg & 0x100) 4677 ? DUPLEX_FULL : 4678 DUPLEX_HALF)); 4679 if (retval) 4680 return retval; 4681 } 4682 if (netif_running(adapter->netdev)) 4683 e1000_reinit_locked(adapter); 4684 else 4685 e1000_reset(adapter); 4686 break; 4687 case M88E1000_PHY_SPEC_CTRL: 4688 case M88E1000_EXT_PHY_SPEC_CTRL: 4689 if (e1000_phy_reset(hw)) 4690 return -EIO; 4691 break; 4692 } 4693 } else { 4694 switch (data->reg_num) { 4695 case PHY_CTRL: 4696 if (mii_reg & MII_CR_POWER_DOWN) 4697 break; 4698 if (netif_running(adapter->netdev)) 4699 e1000_reinit_locked(adapter); 4700 else 4701 e1000_reset(adapter); 4702 break; 4703 } 4704 } 4705 break; 4706 default: 4707 return -EOPNOTSUPP; 4708 } 4709 return E1000_SUCCESS; 4710 } 4711 4712 void e1000_pci_set_mwi(struct e1000_hw *hw) 4713 { 4714 struct e1000_adapter *adapter = hw->back; 4715 int ret_val = pci_set_mwi(adapter->pdev); 4716 4717 if (ret_val) 4718 e_err(probe, "Error in setting MWI\n"); 4719 } 4720 4721 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4722 { 4723 struct e1000_adapter *adapter = hw->back; 4724 4725 pci_clear_mwi(adapter->pdev); 4726 } 4727 4728 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4729 { 4730 struct e1000_adapter *adapter = hw->back; 4731 return pcix_get_mmrbc(adapter->pdev); 4732 } 4733 4734 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4735 { 4736 struct e1000_adapter *adapter = hw->back; 4737 pcix_set_mmrbc(adapter->pdev, mmrbc); 4738 } 4739 4740 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4741 { 4742 outl(value, port); 4743 } 4744 4745 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4746 { 4747 u16 vid; 4748 4749 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4750 return true; 4751 return false; 4752 } 4753 4754 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4755 netdev_features_t features) 4756 { 4757 struct e1000_hw *hw = &adapter->hw; 4758 u32 ctrl; 4759 4760 ctrl = er32(CTRL); 4761 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4762 /* enable VLAN tag insert/strip */ 4763 ctrl |= E1000_CTRL_VME; 4764 } else { 4765 /* disable VLAN tag insert/strip */ 4766 ctrl &= ~E1000_CTRL_VME; 4767 } 4768 ew32(CTRL, ctrl); 4769 } 4770 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4771 bool filter_on) 4772 { 4773 struct e1000_hw *hw = &adapter->hw; 4774 u32 rctl; 4775 4776 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4777 e1000_irq_disable(adapter); 4778 4779 __e1000_vlan_mode(adapter, adapter->netdev->features); 4780 if (filter_on) { 4781 /* enable VLAN receive filtering */ 4782 rctl = er32(RCTL); 4783 rctl &= ~E1000_RCTL_CFIEN; 4784 if (!(adapter->netdev->flags & IFF_PROMISC)) 4785 rctl |= E1000_RCTL_VFE; 4786 ew32(RCTL, rctl); 4787 e1000_update_mng_vlan(adapter); 4788 } else { 4789 /* disable VLAN receive filtering */ 4790 rctl = er32(RCTL); 4791 rctl &= ~E1000_RCTL_VFE; 4792 ew32(RCTL, rctl); 4793 } 4794 4795 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4796 e1000_irq_enable(adapter); 4797 } 4798 4799 static void e1000_vlan_mode(struct net_device *netdev, 4800 netdev_features_t features) 4801 { 4802 struct e1000_adapter *adapter = netdev_priv(netdev); 4803 4804 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4805 e1000_irq_disable(adapter); 4806 4807 __e1000_vlan_mode(adapter, features); 4808 4809 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4810 e1000_irq_enable(adapter); 4811 } 4812 4813 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4814 __be16 proto, u16 vid) 4815 { 4816 struct e1000_adapter *adapter = netdev_priv(netdev); 4817 struct e1000_hw *hw = &adapter->hw; 4818 u32 vfta, index; 4819 4820 if ((hw->mng_cookie.status & 4821 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4822 (vid == adapter->mng_vlan_id)) 4823 return 0; 4824 4825 if (!e1000_vlan_used(adapter)) 4826 e1000_vlan_filter_on_off(adapter, true); 4827 4828 /* add VID to filter table */ 4829 index = (vid >> 5) & 0x7F; 4830 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4831 vfta |= (1 << (vid & 0x1F)); 4832 e1000_write_vfta(hw, index, vfta); 4833 4834 set_bit(vid, adapter->active_vlans); 4835 4836 return 0; 4837 } 4838 4839 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4840 __be16 proto, u16 vid) 4841 { 4842 struct e1000_adapter *adapter = netdev_priv(netdev); 4843 struct e1000_hw *hw = &adapter->hw; 4844 u32 vfta, index; 4845 4846 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4847 e1000_irq_disable(adapter); 4848 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4849 e1000_irq_enable(adapter); 4850 4851 /* remove VID from filter table */ 4852 index = (vid >> 5) & 0x7F; 4853 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4854 vfta &= ~(1 << (vid & 0x1F)); 4855 e1000_write_vfta(hw, index, vfta); 4856 4857 clear_bit(vid, adapter->active_vlans); 4858 4859 if (!e1000_vlan_used(adapter)) 4860 e1000_vlan_filter_on_off(adapter, false); 4861 4862 return 0; 4863 } 4864 4865 static void e1000_restore_vlan(struct e1000_adapter *adapter) 4866 { 4867 u16 vid; 4868 4869 if (!e1000_vlan_used(adapter)) 4870 return; 4871 4872 e1000_vlan_filter_on_off(adapter, true); 4873 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4874 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 4875 } 4876 4877 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 4878 { 4879 struct e1000_hw *hw = &adapter->hw; 4880 4881 hw->autoneg = 0; 4882 4883 /* Make sure dplx is at most 1 bit and lsb of speed is not set 4884 * for the switch() below to work 4885 */ 4886 if ((spd & 1) || (dplx & ~1)) 4887 goto err_inval; 4888 4889 /* Fiber NICs only allow 1000 gbps Full duplex */ 4890 if ((hw->media_type == e1000_media_type_fiber) && 4891 spd != SPEED_1000 && 4892 dplx != DUPLEX_FULL) 4893 goto err_inval; 4894 4895 switch (spd + dplx) { 4896 case SPEED_10 + DUPLEX_HALF: 4897 hw->forced_speed_duplex = e1000_10_half; 4898 break; 4899 case SPEED_10 + DUPLEX_FULL: 4900 hw->forced_speed_duplex = e1000_10_full; 4901 break; 4902 case SPEED_100 + DUPLEX_HALF: 4903 hw->forced_speed_duplex = e1000_100_half; 4904 break; 4905 case SPEED_100 + DUPLEX_FULL: 4906 hw->forced_speed_duplex = e1000_100_full; 4907 break; 4908 case SPEED_1000 + DUPLEX_FULL: 4909 hw->autoneg = 1; 4910 hw->autoneg_advertised = ADVERTISE_1000_FULL; 4911 break; 4912 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 4913 default: 4914 goto err_inval; 4915 } 4916 4917 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 4918 hw->mdix = AUTO_ALL_MODES; 4919 4920 return 0; 4921 4922 err_inval: 4923 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 4924 return -EINVAL; 4925 } 4926 4927 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 4928 { 4929 struct net_device *netdev = pci_get_drvdata(pdev); 4930 struct e1000_adapter *adapter = netdev_priv(netdev); 4931 struct e1000_hw *hw = &adapter->hw; 4932 u32 ctrl, ctrl_ext, rctl, status; 4933 u32 wufc = adapter->wol; 4934 #ifdef CONFIG_PM 4935 int retval = 0; 4936 #endif 4937 4938 netif_device_detach(netdev); 4939 4940 if (netif_running(netdev)) { 4941 int count = E1000_CHECK_RESET_COUNT; 4942 4943 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 4944 usleep_range(10000, 20000); 4945 4946 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 4947 e1000_down(adapter); 4948 } 4949 4950 #ifdef CONFIG_PM 4951 retval = pci_save_state(pdev); 4952 if (retval) 4953 return retval; 4954 #endif 4955 4956 status = er32(STATUS); 4957 if (status & E1000_STATUS_LU) 4958 wufc &= ~E1000_WUFC_LNKC; 4959 4960 if (wufc) { 4961 e1000_setup_rctl(adapter); 4962 e1000_set_rx_mode(netdev); 4963 4964 rctl = er32(RCTL); 4965 4966 /* turn on all-multi mode if wake on multicast is enabled */ 4967 if (wufc & E1000_WUFC_MC) 4968 rctl |= E1000_RCTL_MPE; 4969 4970 /* enable receives in the hardware */ 4971 ew32(RCTL, rctl | E1000_RCTL_EN); 4972 4973 if (hw->mac_type >= e1000_82540) { 4974 ctrl = er32(CTRL); 4975 /* advertise wake from D3Cold */ 4976 #define E1000_CTRL_ADVD3WUC 0x00100000 4977 /* phy power management enable */ 4978 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 4979 ctrl |= E1000_CTRL_ADVD3WUC | 4980 E1000_CTRL_EN_PHY_PWR_MGMT; 4981 ew32(CTRL, ctrl); 4982 } 4983 4984 if (hw->media_type == e1000_media_type_fiber || 4985 hw->media_type == e1000_media_type_internal_serdes) { 4986 /* keep the laser running in D3 */ 4987 ctrl_ext = er32(CTRL_EXT); 4988 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 4989 ew32(CTRL_EXT, ctrl_ext); 4990 } 4991 4992 ew32(WUC, E1000_WUC_PME_EN); 4993 ew32(WUFC, wufc); 4994 } else { 4995 ew32(WUC, 0); 4996 ew32(WUFC, 0); 4997 } 4998 4999 e1000_release_manageability(adapter); 5000 5001 *enable_wake = !!wufc; 5002 5003 /* make sure adapter isn't asleep if manageability is enabled */ 5004 if (adapter->en_mng_pt) 5005 *enable_wake = true; 5006 5007 if (netif_running(netdev)) 5008 e1000_free_irq(adapter); 5009 5010 pci_disable_device(pdev); 5011 5012 return 0; 5013 } 5014 5015 #ifdef CONFIG_PM 5016 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 5017 { 5018 int retval; 5019 bool wake; 5020 5021 retval = __e1000_shutdown(pdev, &wake); 5022 if (retval) 5023 return retval; 5024 5025 if (wake) { 5026 pci_prepare_to_sleep(pdev); 5027 } else { 5028 pci_wake_from_d3(pdev, false); 5029 pci_set_power_state(pdev, PCI_D3hot); 5030 } 5031 5032 return 0; 5033 } 5034 5035 static int e1000_resume(struct pci_dev *pdev) 5036 { 5037 struct net_device *netdev = pci_get_drvdata(pdev); 5038 struct e1000_adapter *adapter = netdev_priv(netdev); 5039 struct e1000_hw *hw = &adapter->hw; 5040 u32 err; 5041 5042 pci_set_power_state(pdev, PCI_D0); 5043 pci_restore_state(pdev); 5044 pci_save_state(pdev); 5045 5046 if (adapter->need_ioport) 5047 err = pci_enable_device(pdev); 5048 else 5049 err = pci_enable_device_mem(pdev); 5050 if (err) { 5051 pr_err("Cannot enable PCI device from suspend\n"); 5052 return err; 5053 } 5054 pci_set_master(pdev); 5055 5056 pci_enable_wake(pdev, PCI_D3hot, 0); 5057 pci_enable_wake(pdev, PCI_D3cold, 0); 5058 5059 if (netif_running(netdev)) { 5060 err = e1000_request_irq(adapter); 5061 if (err) 5062 return err; 5063 } 5064 5065 e1000_power_up_phy(adapter); 5066 e1000_reset(adapter); 5067 ew32(WUS, ~0); 5068 5069 e1000_init_manageability(adapter); 5070 5071 if (netif_running(netdev)) 5072 e1000_up(adapter); 5073 5074 netif_device_attach(netdev); 5075 5076 return 0; 5077 } 5078 #endif 5079 5080 static void e1000_shutdown(struct pci_dev *pdev) 5081 { 5082 bool wake; 5083 5084 __e1000_shutdown(pdev, &wake); 5085 5086 if (system_state == SYSTEM_POWER_OFF) { 5087 pci_wake_from_d3(pdev, wake); 5088 pci_set_power_state(pdev, PCI_D3hot); 5089 } 5090 } 5091 5092 #ifdef CONFIG_NET_POLL_CONTROLLER 5093 /* Polling 'interrupt' - used by things like netconsole to send skbs 5094 * without having to re-enable interrupts. It's not called while 5095 * the interrupt routine is executing. 5096 */ 5097 static void e1000_netpoll(struct net_device *netdev) 5098 { 5099 struct e1000_adapter *adapter = netdev_priv(netdev); 5100 5101 disable_irq(adapter->pdev->irq); 5102 e1000_intr(adapter->pdev->irq, netdev); 5103 enable_irq(adapter->pdev->irq); 5104 } 5105 #endif 5106 5107 /** 5108 * e1000_io_error_detected - called when PCI error is detected 5109 * @pdev: Pointer to PCI device 5110 * @state: The current pci connection state 5111 * 5112 * This function is called after a PCI bus error affecting 5113 * this device has been detected. 5114 */ 5115 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5116 pci_channel_state_t state) 5117 { 5118 struct net_device *netdev = pci_get_drvdata(pdev); 5119 struct e1000_adapter *adapter = netdev_priv(netdev); 5120 5121 netif_device_detach(netdev); 5122 5123 if (state == pci_channel_io_perm_failure) 5124 return PCI_ERS_RESULT_DISCONNECT; 5125 5126 if (netif_running(netdev)) 5127 e1000_down(adapter); 5128 pci_disable_device(pdev); 5129 5130 /* Request a slot slot reset. */ 5131 return PCI_ERS_RESULT_NEED_RESET; 5132 } 5133 5134 /** 5135 * e1000_io_slot_reset - called after the pci bus has been reset. 5136 * @pdev: Pointer to PCI device 5137 * 5138 * Restart the card from scratch, as if from a cold-boot. Implementation 5139 * resembles the first-half of the e1000_resume routine. 5140 */ 5141 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5142 { 5143 struct net_device *netdev = pci_get_drvdata(pdev); 5144 struct e1000_adapter *adapter = netdev_priv(netdev); 5145 struct e1000_hw *hw = &adapter->hw; 5146 int err; 5147 5148 if (adapter->need_ioport) 5149 err = pci_enable_device(pdev); 5150 else 5151 err = pci_enable_device_mem(pdev); 5152 if (err) { 5153 pr_err("Cannot re-enable PCI device after reset.\n"); 5154 return PCI_ERS_RESULT_DISCONNECT; 5155 } 5156 pci_set_master(pdev); 5157 5158 pci_enable_wake(pdev, PCI_D3hot, 0); 5159 pci_enable_wake(pdev, PCI_D3cold, 0); 5160 5161 e1000_reset(adapter); 5162 ew32(WUS, ~0); 5163 5164 return PCI_ERS_RESULT_RECOVERED; 5165 } 5166 5167 /** 5168 * e1000_io_resume - called when traffic can start flowing again. 5169 * @pdev: Pointer to PCI device 5170 * 5171 * This callback is called when the error recovery driver tells us that 5172 * its OK to resume normal operation. Implementation resembles the 5173 * second-half of the e1000_resume routine. 5174 */ 5175 static void e1000_io_resume(struct pci_dev *pdev) 5176 { 5177 struct net_device *netdev = pci_get_drvdata(pdev); 5178 struct e1000_adapter *adapter = netdev_priv(netdev); 5179 5180 e1000_init_manageability(adapter); 5181 5182 if (netif_running(netdev)) { 5183 if (e1000_up(adapter)) { 5184 pr_info("can't bring device back up after reset\n"); 5185 return; 5186 } 5187 } 5188 5189 netif_device_attach(netdev); 5190 } 5191 5192 /* e1000_main.c */ 5193