1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 			       struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 			       struct e1000_rx_ring *rx_ring,
143 			       int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 				     struct e1000_rx_ring *rx_ring,
146 				     int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 				   struct e1000_rx_ring *rx_ring,
149 				   int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 					 struct e1000_rx_ring *rx_ring,
152 					 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 			   int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163 
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 			    netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 				     bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171 static void e1000_restore_vlan(struct e1000_adapter *adapter);
172 
173 #ifdef CONFIG_PM
174 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175 static int e1000_resume(struct pci_dev *pdev);
176 #endif
177 static void e1000_shutdown(struct pci_dev *pdev);
178 
179 #ifdef CONFIG_NET_POLL_CONTROLLER
180 /* for netdump / net console */
181 static void e1000_netpoll (struct net_device *netdev);
182 #endif
183 
184 #define COPYBREAK_DEFAULT 256
185 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186 module_param(copybreak, uint, 0644);
187 MODULE_PARM_DESC(copybreak,
188 	"Maximum size of packet that is copied to a new buffer on receive");
189 
190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191                      pci_channel_state_t state);
192 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193 static void e1000_io_resume(struct pci_dev *pdev);
194 
195 static const struct pci_error_handlers e1000_err_handler = {
196 	.error_detected = e1000_io_error_detected,
197 	.slot_reset = e1000_io_slot_reset,
198 	.resume = e1000_io_resume,
199 };
200 
201 static struct pci_driver e1000_driver = {
202 	.name     = e1000_driver_name,
203 	.id_table = e1000_pci_tbl,
204 	.probe    = e1000_probe,
205 	.remove   = e1000_remove,
206 #ifdef CONFIG_PM
207 	/* Power Management Hooks */
208 	.suspend  = e1000_suspend,
209 	.resume   = e1000_resume,
210 #endif
211 	.shutdown = e1000_shutdown,
212 	.err_handler = &e1000_err_handler
213 };
214 
215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217 MODULE_LICENSE("GPL");
218 MODULE_VERSION(DRV_VERSION);
219 
220 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
221 static int debug = -1;
222 module_param(debug, int, 0);
223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224 
225 /**
226  * e1000_get_hw_dev - return device
227  * used by hardware layer to print debugging information
228  *
229  **/
230 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231 {
232 	struct e1000_adapter *adapter = hw->back;
233 	return adapter->netdev;
234 }
235 
236 /**
237  * e1000_init_module - Driver Registration Routine
238  *
239  * e1000_init_module is the first routine called when the driver is
240  * loaded. All it does is register with the PCI subsystem.
241  **/
242 
243 static int __init e1000_init_module(void)
244 {
245 	int ret;
246 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
247 
248 	pr_info("%s\n", e1000_copyright);
249 
250 	ret = pci_register_driver(&e1000_driver);
251 	if (copybreak != COPYBREAK_DEFAULT) {
252 		if (copybreak == 0)
253 			pr_info("copybreak disabled\n");
254 		else
255 			pr_info("copybreak enabled for "
256 				   "packets <= %u bytes\n", copybreak);
257 	}
258 	return ret;
259 }
260 
261 module_init(e1000_init_module);
262 
263 /**
264  * e1000_exit_module - Driver Exit Cleanup Routine
265  *
266  * e1000_exit_module is called just before the driver is removed
267  * from memory.
268  **/
269 
270 static void __exit e1000_exit_module(void)
271 {
272 	pci_unregister_driver(&e1000_driver);
273 }
274 
275 module_exit(e1000_exit_module);
276 
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279 	struct net_device *netdev = adapter->netdev;
280 	irq_handler_t handler = e1000_intr;
281 	int irq_flags = IRQF_SHARED;
282 	int err;
283 
284 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 	                  netdev);
286 	if (err) {
287 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 	}
289 
290 	return err;
291 }
292 
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295 	struct net_device *netdev = adapter->netdev;
296 
297 	free_irq(adapter->pdev->irq, netdev);
298 }
299 
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304 
305 static void e1000_irq_disable(struct e1000_adapter *adapter)
306 {
307 	struct e1000_hw *hw = &adapter->hw;
308 
309 	ew32(IMC, ~0);
310 	E1000_WRITE_FLUSH();
311 	synchronize_irq(adapter->pdev->irq);
312 }
313 
314 /**
315  * e1000_irq_enable - Enable default interrupt generation settings
316  * @adapter: board private structure
317  **/
318 
319 static void e1000_irq_enable(struct e1000_adapter *adapter)
320 {
321 	struct e1000_hw *hw = &adapter->hw;
322 
323 	ew32(IMS, IMS_ENABLE_MASK);
324 	E1000_WRITE_FLUSH();
325 }
326 
327 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
328 {
329 	struct e1000_hw *hw = &adapter->hw;
330 	struct net_device *netdev = adapter->netdev;
331 	u16 vid = hw->mng_cookie.vlan_id;
332 	u16 old_vid = adapter->mng_vlan_id;
333 
334 	if (!e1000_vlan_used(adapter))
335 		return;
336 
337 	if (!test_bit(vid, adapter->active_vlans)) {
338 		if (hw->mng_cookie.status &
339 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
340 			e1000_vlan_rx_add_vid(netdev, vid);
341 			adapter->mng_vlan_id = vid;
342 		} else {
343 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
344 		}
345 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
346 		    (vid != old_vid) &&
347 		    !test_bit(old_vid, adapter->active_vlans))
348 			e1000_vlan_rx_kill_vid(netdev, old_vid);
349 	} else {
350 		adapter->mng_vlan_id = vid;
351 	}
352 }
353 
354 static void e1000_init_manageability(struct e1000_adapter *adapter)
355 {
356 	struct e1000_hw *hw = &adapter->hw;
357 
358 	if (adapter->en_mng_pt) {
359 		u32 manc = er32(MANC);
360 
361 		/* disable hardware interception of ARP */
362 		manc &= ~(E1000_MANC_ARP_EN);
363 
364 		ew32(MANC, manc);
365 	}
366 }
367 
368 static void e1000_release_manageability(struct e1000_adapter *adapter)
369 {
370 	struct e1000_hw *hw = &adapter->hw;
371 
372 	if (adapter->en_mng_pt) {
373 		u32 manc = er32(MANC);
374 
375 		/* re-enable hardware interception of ARP */
376 		manc |= E1000_MANC_ARP_EN;
377 
378 		ew32(MANC, manc);
379 	}
380 }
381 
382 /**
383  * e1000_configure - configure the hardware for RX and TX
384  * @adapter = private board structure
385  **/
386 static void e1000_configure(struct e1000_adapter *adapter)
387 {
388 	struct net_device *netdev = adapter->netdev;
389 	int i;
390 
391 	e1000_set_rx_mode(netdev);
392 
393 	e1000_restore_vlan(adapter);
394 	e1000_init_manageability(adapter);
395 
396 	e1000_configure_tx(adapter);
397 	e1000_setup_rctl(adapter);
398 	e1000_configure_rx(adapter);
399 	/* call E1000_DESC_UNUSED which always leaves
400 	 * at least 1 descriptor unused to make sure
401 	 * next_to_use != next_to_clean */
402 	for (i = 0; i < adapter->num_rx_queues; i++) {
403 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 		adapter->alloc_rx_buf(adapter, ring,
405 		                      E1000_DESC_UNUSED(ring));
406 	}
407 }
408 
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411 	struct e1000_hw *hw = &adapter->hw;
412 
413 	/* hardware has been reset, we need to reload some things */
414 	e1000_configure(adapter);
415 
416 	clear_bit(__E1000_DOWN, &adapter->flags);
417 
418 	napi_enable(&adapter->napi);
419 
420 	e1000_irq_enable(adapter);
421 
422 	netif_wake_queue(adapter->netdev);
423 
424 	/* fire a link change interrupt to start the watchdog */
425 	ew32(ICS, E1000_ICS_LSC);
426 	return 0;
427 }
428 
429 /**
430  * e1000_power_up_phy - restore link in case the phy was powered down
431  * @adapter: address of board private structure
432  *
433  * The phy may be powered down to save power and turn off link when the
434  * driver is unloaded and wake on lan is not enabled (among others)
435  * *** this routine MUST be followed by a call to e1000_reset ***
436  *
437  **/
438 
439 void e1000_power_up_phy(struct e1000_adapter *adapter)
440 {
441 	struct e1000_hw *hw = &adapter->hw;
442 	u16 mii_reg = 0;
443 
444 	/* Just clear the power down bit to wake the phy back up */
445 	if (hw->media_type == e1000_media_type_copper) {
446 		/* according to the manual, the phy will retain its
447 		 * settings across a power-down/up cycle */
448 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
449 		mii_reg &= ~MII_CR_POWER_DOWN;
450 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
451 	}
452 }
453 
454 static void e1000_power_down_phy(struct e1000_adapter *adapter)
455 {
456 	struct e1000_hw *hw = &adapter->hw;
457 
458 	/* Power down the PHY so no link is implied when interface is down *
459 	 * The PHY cannot be powered down if any of the following is true *
460 	 * (a) WoL is enabled
461 	 * (b) AMT is active
462 	 * (c) SoL/IDER session is active */
463 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 	   hw->media_type == e1000_media_type_copper) {
465 		u16 mii_reg = 0;
466 
467 		switch (hw->mac_type) {
468 		case e1000_82540:
469 		case e1000_82545:
470 		case e1000_82545_rev_3:
471 		case e1000_82546:
472 		case e1000_ce4100:
473 		case e1000_82546_rev_3:
474 		case e1000_82541:
475 		case e1000_82541_rev_2:
476 		case e1000_82547:
477 		case e1000_82547_rev_2:
478 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 				goto out;
480 			break;
481 		default:
482 			goto out;
483 		}
484 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 		mii_reg |= MII_CR_POWER_DOWN;
486 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 		msleep(1);
488 	}
489 out:
490 	return;
491 }
492 
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495 	set_bit(__E1000_DOWN, &adapter->flags);
496 
497 	/* Only kill reset task if adapter is not resetting */
498 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
499 		cancel_work_sync(&adapter->reset_task);
500 
501 	cancel_delayed_work_sync(&adapter->watchdog_task);
502 	cancel_delayed_work_sync(&adapter->phy_info_task);
503 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
504 }
505 
506 void e1000_down(struct e1000_adapter *adapter)
507 {
508 	struct e1000_hw *hw = &adapter->hw;
509 	struct net_device *netdev = adapter->netdev;
510 	u32 rctl, tctl;
511 
512 
513 	/* disable receives in the hardware */
514 	rctl = er32(RCTL);
515 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
516 	/* flush and sleep below */
517 
518 	netif_tx_disable(netdev);
519 
520 	/* disable transmits in the hardware */
521 	tctl = er32(TCTL);
522 	tctl &= ~E1000_TCTL_EN;
523 	ew32(TCTL, tctl);
524 	/* flush both disables and wait for them to finish */
525 	E1000_WRITE_FLUSH();
526 	msleep(10);
527 
528 	napi_disable(&adapter->napi);
529 
530 	e1000_irq_disable(adapter);
531 
532 	/*
533 	 * Setting DOWN must be after irq_disable to prevent
534 	 * a screaming interrupt.  Setting DOWN also prevents
535 	 * tasks from rescheduling.
536 	 */
537 	e1000_down_and_stop(adapter);
538 
539 	adapter->link_speed = 0;
540 	adapter->link_duplex = 0;
541 	netif_carrier_off(netdev);
542 
543 	e1000_reset(adapter);
544 	e1000_clean_all_tx_rings(adapter);
545 	e1000_clean_all_rx_rings(adapter);
546 }
547 
548 static void e1000_reinit_safe(struct e1000_adapter *adapter)
549 {
550 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
551 		msleep(1);
552 	mutex_lock(&adapter->mutex);
553 	e1000_down(adapter);
554 	e1000_up(adapter);
555 	mutex_unlock(&adapter->mutex);
556 	clear_bit(__E1000_RESETTING, &adapter->flags);
557 }
558 
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561 	/* if rtnl_lock is not held the call path is bogus */
562 	ASSERT_RTNL();
563 	WARN_ON(in_interrupt());
564 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565 		msleep(1);
566 	e1000_down(adapter);
567 	e1000_up(adapter);
568 	clear_bit(__E1000_RESETTING, &adapter->flags);
569 }
570 
571 void e1000_reset(struct e1000_adapter *adapter)
572 {
573 	struct e1000_hw *hw = &adapter->hw;
574 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
575 	bool legacy_pba_adjust = false;
576 	u16 hwm;
577 
578 	/* Repartition Pba for greater than 9k mtu
579 	 * To take effect CTRL.RST is required.
580 	 */
581 
582 	switch (hw->mac_type) {
583 	case e1000_82542_rev2_0:
584 	case e1000_82542_rev2_1:
585 	case e1000_82543:
586 	case e1000_82544:
587 	case e1000_82540:
588 	case e1000_82541:
589 	case e1000_82541_rev_2:
590 		legacy_pba_adjust = true;
591 		pba = E1000_PBA_48K;
592 		break;
593 	case e1000_82545:
594 	case e1000_82545_rev_3:
595 	case e1000_82546:
596 	case e1000_ce4100:
597 	case e1000_82546_rev_3:
598 		pba = E1000_PBA_48K;
599 		break;
600 	case e1000_82547:
601 	case e1000_82547_rev_2:
602 		legacy_pba_adjust = true;
603 		pba = E1000_PBA_30K;
604 		break;
605 	case e1000_undefined:
606 	case e1000_num_macs:
607 		break;
608 	}
609 
610 	if (legacy_pba_adjust) {
611 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
612 			pba -= 8; /* allocate more FIFO for Tx */
613 
614 		if (hw->mac_type == e1000_82547) {
615 			adapter->tx_fifo_head = 0;
616 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
617 			adapter->tx_fifo_size =
618 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
619 			atomic_set(&adapter->tx_fifo_stall, 0);
620 		}
621 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
622 		/* adjust PBA for jumbo frames */
623 		ew32(PBA, pba);
624 
625 		/* To maintain wire speed transmits, the Tx FIFO should be
626 		 * large enough to accommodate two full transmit packets,
627 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
628 		 * the Rx FIFO should be large enough to accommodate at least
629 		 * one full receive packet and is similarly rounded up and
630 		 * expressed in KB. */
631 		pba = er32(PBA);
632 		/* upper 16 bits has Tx packet buffer allocation size in KB */
633 		tx_space = pba >> 16;
634 		/* lower 16 bits has Rx packet buffer allocation size in KB */
635 		pba &= 0xffff;
636 		/*
637 		 * the tx fifo also stores 16 bytes of information about the tx
638 		 * but don't include ethernet FCS because hardware appends it
639 		 */
640 		min_tx_space = (hw->max_frame_size +
641 		                sizeof(struct e1000_tx_desc) -
642 		                ETH_FCS_LEN) * 2;
643 		min_tx_space = ALIGN(min_tx_space, 1024);
644 		min_tx_space >>= 10;
645 		/* software strips receive CRC, so leave room for it */
646 		min_rx_space = hw->max_frame_size;
647 		min_rx_space = ALIGN(min_rx_space, 1024);
648 		min_rx_space >>= 10;
649 
650 		/* If current Tx allocation is less than the min Tx FIFO size,
651 		 * and the min Tx FIFO size is less than the current Rx FIFO
652 		 * allocation, take space away from current Rx allocation */
653 		if (tx_space < min_tx_space &&
654 		    ((min_tx_space - tx_space) < pba)) {
655 			pba = pba - (min_tx_space - tx_space);
656 
657 			/* PCI/PCIx hardware has PBA alignment constraints */
658 			switch (hw->mac_type) {
659 			case e1000_82545 ... e1000_82546_rev_3:
660 				pba &= ~(E1000_PBA_8K - 1);
661 				break;
662 			default:
663 				break;
664 			}
665 
666 			/* if short on rx space, rx wins and must trump tx
667 			 * adjustment or use Early Receive if available */
668 			if (pba < min_rx_space)
669 				pba = min_rx_space;
670 		}
671 	}
672 
673 	ew32(PBA, pba);
674 
675 	/*
676 	 * flow control settings:
677 	 * The high water mark must be low enough to fit one full frame
678 	 * (or the size used for early receive) above it in the Rx FIFO.
679 	 * Set it to the lower of:
680 	 * - 90% of the Rx FIFO size, and
681 	 * - the full Rx FIFO size minus the early receive size (for parts
682 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
683 	 * - the full Rx FIFO size minus one full frame
684 	 */
685 	hwm = min(((pba << 10) * 9 / 10),
686 		  ((pba << 10) - hw->max_frame_size));
687 
688 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
689 	hw->fc_low_water = hw->fc_high_water - 8;
690 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691 	hw->fc_send_xon = 1;
692 	hw->fc = hw->original_fc;
693 
694 	/* Allow time for pending master requests to run */
695 	e1000_reset_hw(hw);
696 	if (hw->mac_type >= e1000_82544)
697 		ew32(WUC, 0);
698 
699 	if (e1000_init_hw(hw))
700 		e_dev_err("Hardware Error\n");
701 	e1000_update_mng_vlan(adapter);
702 
703 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704 	if (hw->mac_type >= e1000_82544 &&
705 	    hw->autoneg == 1 &&
706 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
707 		u32 ctrl = er32(CTRL);
708 		/* clear phy power management bit if we are in gig only mode,
709 		 * which if enabled will attempt negotiation to 100Mb, which
710 		 * can cause a loss of link at power off or driver unload */
711 		ctrl &= ~E1000_CTRL_SWDPIN3;
712 		ew32(CTRL, ctrl);
713 	}
714 
715 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717 
718 	e1000_reset_adaptive(hw);
719 	e1000_phy_get_info(hw, &adapter->phy_info);
720 
721 	e1000_release_manageability(adapter);
722 }
723 
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726 {
727 	struct net_device *netdev = adapter->netdev;
728 	struct ethtool_eeprom eeprom;
729 	const struct ethtool_ops *ops = netdev->ethtool_ops;
730 	u8 *data;
731 	int i;
732 	u16 csum_old, csum_new = 0;
733 
734 	eeprom.len = ops->get_eeprom_len(netdev);
735 	eeprom.offset = 0;
736 
737 	data = kmalloc(eeprom.len, GFP_KERNEL);
738 	if (!data)
739 		return;
740 
741 	ops->get_eeprom(netdev, &eeprom, data);
742 
743 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 		csum_new += data[i] + (data[i + 1] << 8);
747 	csum_new = EEPROM_SUM - csum_new;
748 
749 	pr_err("/*********************/\n");
750 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 	pr_err("Calculated              : 0x%04x\n", csum_new);
752 
753 	pr_err("Offset    Values\n");
754 	pr_err("========  ======\n");
755 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756 
757 	pr_err("Include this output when contacting your support provider.\n");
758 	pr_err("This is not a software error! Something bad happened to\n");
759 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 	pr_err("result in further problems, possibly loss of data,\n");
761 	pr_err("corruption or system hangs!\n");
762 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 	pr_err("which is invalid and requires you to set the proper MAC\n");
764 	pr_err("address manually before continuing to enable this network\n");
765 	pr_err("device. Please inspect the EEPROM dump and report the\n");
766 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 	pr_err("/*********************/\n");
768 
769 	kfree(data);
770 }
771 
772 /**
773  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774  * @pdev: PCI device information struct
775  *
776  * Return true if an adapter needs ioport resources
777  **/
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
779 {
780 	switch (pdev->device) {
781 	case E1000_DEV_ID_82540EM:
782 	case E1000_DEV_ID_82540EM_LOM:
783 	case E1000_DEV_ID_82540EP:
784 	case E1000_DEV_ID_82540EP_LOM:
785 	case E1000_DEV_ID_82540EP_LP:
786 	case E1000_DEV_ID_82541EI:
787 	case E1000_DEV_ID_82541EI_MOBILE:
788 	case E1000_DEV_ID_82541ER:
789 	case E1000_DEV_ID_82541ER_LOM:
790 	case E1000_DEV_ID_82541GI:
791 	case E1000_DEV_ID_82541GI_LF:
792 	case E1000_DEV_ID_82541GI_MOBILE:
793 	case E1000_DEV_ID_82544EI_COPPER:
794 	case E1000_DEV_ID_82544EI_FIBER:
795 	case E1000_DEV_ID_82544GC_COPPER:
796 	case E1000_DEV_ID_82544GC_LOM:
797 	case E1000_DEV_ID_82545EM_COPPER:
798 	case E1000_DEV_ID_82545EM_FIBER:
799 	case E1000_DEV_ID_82546EB_COPPER:
800 	case E1000_DEV_ID_82546EB_FIBER:
801 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 		return true;
803 	default:
804 		return false;
805 	}
806 }
807 
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 	netdev_features_t features)
810 {
811 	/*
812 	 * Since there is no support for separate rx/tx vlan accel
813 	 * enable/disable make sure tx flag is always in same state as rx.
814 	 */
815 	if (features & NETIF_F_HW_VLAN_RX)
816 		features |= NETIF_F_HW_VLAN_TX;
817 	else
818 		features &= ~NETIF_F_HW_VLAN_TX;
819 
820 	return features;
821 }
822 
823 static int e1000_set_features(struct net_device *netdev,
824 	netdev_features_t features)
825 {
826 	struct e1000_adapter *adapter = netdev_priv(netdev);
827 	netdev_features_t changed = features ^ netdev->features;
828 
829 	if (changed & NETIF_F_HW_VLAN_RX)
830 		e1000_vlan_mode(netdev, features);
831 
832 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
833 		return 0;
834 
835 	netdev->features = features;
836 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
837 
838 	if (netif_running(netdev))
839 		e1000_reinit_locked(adapter);
840 	else
841 		e1000_reset(adapter);
842 
843 	return 0;
844 }
845 
846 static const struct net_device_ops e1000_netdev_ops = {
847 	.ndo_open		= e1000_open,
848 	.ndo_stop		= e1000_close,
849 	.ndo_start_xmit		= e1000_xmit_frame,
850 	.ndo_get_stats		= e1000_get_stats,
851 	.ndo_set_rx_mode	= e1000_set_rx_mode,
852 	.ndo_set_mac_address	= e1000_set_mac,
853 	.ndo_tx_timeout		= e1000_tx_timeout,
854 	.ndo_change_mtu		= e1000_change_mtu,
855 	.ndo_do_ioctl		= e1000_ioctl,
856 	.ndo_validate_addr	= eth_validate_addr,
857 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
858 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
859 #ifdef CONFIG_NET_POLL_CONTROLLER
860 	.ndo_poll_controller	= e1000_netpoll,
861 #endif
862 	.ndo_fix_features	= e1000_fix_features,
863 	.ndo_set_features	= e1000_set_features,
864 };
865 
866 /**
867  * e1000_init_hw_struct - initialize members of hw struct
868  * @adapter: board private struct
869  * @hw: structure used by e1000_hw.c
870  *
871  * Factors out initialization of the e1000_hw struct to its own function
872  * that can be called very early at init (just after struct allocation).
873  * Fields are initialized based on PCI device information and
874  * OS network device settings (MTU size).
875  * Returns negative error codes if MAC type setup fails.
876  */
877 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
878 				struct e1000_hw *hw)
879 {
880 	struct pci_dev *pdev = adapter->pdev;
881 
882 	/* PCI config space info */
883 	hw->vendor_id = pdev->vendor;
884 	hw->device_id = pdev->device;
885 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
886 	hw->subsystem_id = pdev->subsystem_device;
887 	hw->revision_id = pdev->revision;
888 
889 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
890 
891 	hw->max_frame_size = adapter->netdev->mtu +
892 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
893 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
894 
895 	/* identify the MAC */
896 	if (e1000_set_mac_type(hw)) {
897 		e_err(probe, "Unknown MAC Type\n");
898 		return -EIO;
899 	}
900 
901 	switch (hw->mac_type) {
902 	default:
903 		break;
904 	case e1000_82541:
905 	case e1000_82547:
906 	case e1000_82541_rev_2:
907 	case e1000_82547_rev_2:
908 		hw->phy_init_script = 1;
909 		break;
910 	}
911 
912 	e1000_set_media_type(hw);
913 	e1000_get_bus_info(hw);
914 
915 	hw->wait_autoneg_complete = false;
916 	hw->tbi_compatibility_en = true;
917 	hw->adaptive_ifs = true;
918 
919 	/* Copper options */
920 
921 	if (hw->media_type == e1000_media_type_copper) {
922 		hw->mdix = AUTO_ALL_MODES;
923 		hw->disable_polarity_correction = false;
924 		hw->master_slave = E1000_MASTER_SLAVE;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  * e1000_probe - Device Initialization Routine
932  * @pdev: PCI device information struct
933  * @ent: entry in e1000_pci_tbl
934  *
935  * Returns 0 on success, negative on failure
936  *
937  * e1000_probe initializes an adapter identified by a pci_dev structure.
938  * The OS initialization, configuring of the adapter private structure,
939  * and a hardware reset occur.
940  **/
941 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
942 {
943 	struct net_device *netdev;
944 	struct e1000_adapter *adapter;
945 	struct e1000_hw *hw;
946 
947 	static int cards_found = 0;
948 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
949 	int i, err, pci_using_dac;
950 	u16 eeprom_data = 0;
951 	u16 tmp = 0;
952 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
953 	int bars, need_ioport;
954 
955 	/* do not allocate ioport bars when not needed */
956 	need_ioport = e1000_is_need_ioport(pdev);
957 	if (need_ioport) {
958 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
959 		err = pci_enable_device(pdev);
960 	} else {
961 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
962 		err = pci_enable_device_mem(pdev);
963 	}
964 	if (err)
965 		return err;
966 
967 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
968 	if (err)
969 		goto err_pci_reg;
970 
971 	pci_set_master(pdev);
972 	err = pci_save_state(pdev);
973 	if (err)
974 		goto err_alloc_etherdev;
975 
976 	err = -ENOMEM;
977 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
978 	if (!netdev)
979 		goto err_alloc_etherdev;
980 
981 	SET_NETDEV_DEV(netdev, &pdev->dev);
982 
983 	pci_set_drvdata(pdev, netdev);
984 	adapter = netdev_priv(netdev);
985 	adapter->netdev = netdev;
986 	adapter->pdev = pdev;
987 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
988 	adapter->bars = bars;
989 	adapter->need_ioport = need_ioport;
990 
991 	hw = &adapter->hw;
992 	hw->back = adapter;
993 
994 	err = -EIO;
995 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
996 	if (!hw->hw_addr)
997 		goto err_ioremap;
998 
999 	if (adapter->need_ioport) {
1000 		for (i = BAR_1; i <= BAR_5; i++) {
1001 			if (pci_resource_len(pdev, i) == 0)
1002 				continue;
1003 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1004 				hw->io_base = pci_resource_start(pdev, i);
1005 				break;
1006 			}
1007 		}
1008 	}
1009 
1010 	/* make ready for any if (hw->...) below */
1011 	err = e1000_init_hw_struct(adapter, hw);
1012 	if (err)
1013 		goto err_sw_init;
1014 
1015 	/*
1016 	 * there is a workaround being applied below that limits
1017 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1018 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1019 	 */
1020 	pci_using_dac = 0;
1021 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1022 	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1023 		/*
1024 		 * according to DMA-API-HOWTO, coherent calls will always
1025 		 * succeed if the set call did
1026 		 */
1027 		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1028 		pci_using_dac = 1;
1029 	} else {
1030 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1031 		if (err) {
1032 			pr_err("No usable DMA config, aborting\n");
1033 			goto err_dma;
1034 		}
1035 		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1036 	}
1037 
1038 	netdev->netdev_ops = &e1000_netdev_ops;
1039 	e1000_set_ethtool_ops(netdev);
1040 	netdev->watchdog_timeo = 5 * HZ;
1041 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1042 
1043 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1044 
1045 	adapter->bd_number = cards_found;
1046 
1047 	/* setup the private structure */
1048 
1049 	err = e1000_sw_init(adapter);
1050 	if (err)
1051 		goto err_sw_init;
1052 
1053 	err = -EIO;
1054 	if (hw->mac_type == e1000_ce4100) {
1055 		hw->ce4100_gbe_mdio_base_virt =
1056 					ioremap(pci_resource_start(pdev, BAR_1),
1057 		                                pci_resource_len(pdev, BAR_1));
1058 
1059 		if (!hw->ce4100_gbe_mdio_base_virt)
1060 			goto err_mdio_ioremap;
1061 	}
1062 
1063 	if (hw->mac_type >= e1000_82543) {
1064 		netdev->hw_features = NETIF_F_SG |
1065 				   NETIF_F_HW_CSUM |
1066 				   NETIF_F_HW_VLAN_RX;
1067 		netdev->features = NETIF_F_HW_VLAN_TX |
1068 				   NETIF_F_HW_VLAN_FILTER;
1069 	}
1070 
1071 	if ((hw->mac_type >= e1000_82544) &&
1072 	   (hw->mac_type != e1000_82547))
1073 		netdev->hw_features |= NETIF_F_TSO;
1074 
1075 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1076 
1077 	netdev->features |= netdev->hw_features;
1078 	netdev->hw_features |= (NETIF_F_RXCSUM |
1079 				NETIF_F_RXALL |
1080 				NETIF_F_RXFCS);
1081 
1082 	if (pci_using_dac) {
1083 		netdev->features |= NETIF_F_HIGHDMA;
1084 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1085 	}
1086 
1087 	netdev->vlan_features |= (NETIF_F_TSO |
1088 				  NETIF_F_HW_CSUM |
1089 				  NETIF_F_SG);
1090 
1091 	netdev->priv_flags |= IFF_UNICAST_FLT;
1092 
1093 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1094 
1095 	/* initialize eeprom parameters */
1096 	if (e1000_init_eeprom_params(hw)) {
1097 		e_err(probe, "EEPROM initialization failed\n");
1098 		goto err_eeprom;
1099 	}
1100 
1101 	/* before reading the EEPROM, reset the controller to
1102 	 * put the device in a known good starting state */
1103 
1104 	e1000_reset_hw(hw);
1105 
1106 	/* make sure the EEPROM is good */
1107 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1108 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1109 		e1000_dump_eeprom(adapter);
1110 		/*
1111 		 * set MAC address to all zeroes to invalidate and temporary
1112 		 * disable this device for the user. This blocks regular
1113 		 * traffic while still permitting ethtool ioctls from reaching
1114 		 * the hardware as well as allowing the user to run the
1115 		 * interface after manually setting a hw addr using
1116 		 * `ip set address`
1117 		 */
1118 		memset(hw->mac_addr, 0, netdev->addr_len);
1119 	} else {
1120 		/* copy the MAC address out of the EEPROM */
1121 		if (e1000_read_mac_addr(hw))
1122 			e_err(probe, "EEPROM Read Error\n");
1123 	}
1124 	/* don't block initalization here due to bad MAC address */
1125 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1126 	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1127 
1128 	if (!is_valid_ether_addr(netdev->perm_addr))
1129 		e_err(probe, "Invalid MAC Address\n");
1130 
1131 
1132 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1133 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1134 			  e1000_82547_tx_fifo_stall_task);
1135 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1136 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1137 
1138 	e1000_check_options(adapter);
1139 
1140 	/* Initial Wake on LAN setting
1141 	 * If APM wake is enabled in the EEPROM,
1142 	 * enable the ACPI Magic Packet filter
1143 	 */
1144 
1145 	switch (hw->mac_type) {
1146 	case e1000_82542_rev2_0:
1147 	case e1000_82542_rev2_1:
1148 	case e1000_82543:
1149 		break;
1150 	case e1000_82544:
1151 		e1000_read_eeprom(hw,
1152 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1153 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1154 		break;
1155 	case e1000_82546:
1156 	case e1000_82546_rev_3:
1157 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1158 			e1000_read_eeprom(hw,
1159 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1160 			break;
1161 		}
1162 		/* Fall Through */
1163 	default:
1164 		e1000_read_eeprom(hw,
1165 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1166 		break;
1167 	}
1168 	if (eeprom_data & eeprom_apme_mask)
1169 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1170 
1171 	/* now that we have the eeprom settings, apply the special cases
1172 	 * where the eeprom may be wrong or the board simply won't support
1173 	 * wake on lan on a particular port */
1174 	switch (pdev->device) {
1175 	case E1000_DEV_ID_82546GB_PCIE:
1176 		adapter->eeprom_wol = 0;
1177 		break;
1178 	case E1000_DEV_ID_82546EB_FIBER:
1179 	case E1000_DEV_ID_82546GB_FIBER:
1180 		/* Wake events only supported on port A for dual fiber
1181 		 * regardless of eeprom setting */
1182 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1183 			adapter->eeprom_wol = 0;
1184 		break;
1185 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1186 		/* if quad port adapter, disable WoL on all but port A */
1187 		if (global_quad_port_a != 0)
1188 			adapter->eeprom_wol = 0;
1189 		else
1190 			adapter->quad_port_a = true;
1191 		/* Reset for multiple quad port adapters */
1192 		if (++global_quad_port_a == 4)
1193 			global_quad_port_a = 0;
1194 		break;
1195 	}
1196 
1197 	/* initialize the wol settings based on the eeprom settings */
1198 	adapter->wol = adapter->eeprom_wol;
1199 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1200 
1201 	/* Auto detect PHY address */
1202 	if (hw->mac_type == e1000_ce4100) {
1203 		for (i = 0; i < 32; i++) {
1204 			hw->phy_addr = i;
1205 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1206 			if (tmp == 0 || tmp == 0xFF) {
1207 				if (i == 31)
1208 					goto err_eeprom;
1209 				continue;
1210 			} else
1211 				break;
1212 		}
1213 	}
1214 
1215 	/* reset the hardware with the new settings */
1216 	e1000_reset(adapter);
1217 
1218 	strcpy(netdev->name, "eth%d");
1219 	err = register_netdev(netdev);
1220 	if (err)
1221 		goto err_register;
1222 
1223 	e1000_vlan_filter_on_off(adapter, false);
1224 
1225 	/* print bus type/speed/width info */
1226 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1227 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1228 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1229 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1230 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1231 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1232 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1233 	       netdev->dev_addr);
1234 
1235 	/* carrier off reporting is important to ethtool even BEFORE open */
1236 	netif_carrier_off(netdev);
1237 
1238 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1239 
1240 	cards_found++;
1241 	return 0;
1242 
1243 err_register:
1244 err_eeprom:
1245 	e1000_phy_hw_reset(hw);
1246 
1247 	if (hw->flash_address)
1248 		iounmap(hw->flash_address);
1249 	kfree(adapter->tx_ring);
1250 	kfree(adapter->rx_ring);
1251 err_dma:
1252 err_sw_init:
1253 err_mdio_ioremap:
1254 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1255 	iounmap(hw->hw_addr);
1256 err_ioremap:
1257 	free_netdev(netdev);
1258 err_alloc_etherdev:
1259 	pci_release_selected_regions(pdev, bars);
1260 err_pci_reg:
1261 	pci_disable_device(pdev);
1262 	return err;
1263 }
1264 
1265 /**
1266  * e1000_remove - Device Removal Routine
1267  * @pdev: PCI device information struct
1268  *
1269  * e1000_remove is called by the PCI subsystem to alert the driver
1270  * that it should release a PCI device.  The could be caused by a
1271  * Hot-Plug event, or because the driver is going to be removed from
1272  * memory.
1273  **/
1274 
1275 static void e1000_remove(struct pci_dev *pdev)
1276 {
1277 	struct net_device *netdev = pci_get_drvdata(pdev);
1278 	struct e1000_adapter *adapter = netdev_priv(netdev);
1279 	struct e1000_hw *hw = &adapter->hw;
1280 
1281 	e1000_down_and_stop(adapter);
1282 	e1000_release_manageability(adapter);
1283 
1284 	unregister_netdev(netdev);
1285 
1286 	e1000_phy_hw_reset(hw);
1287 
1288 	kfree(adapter->tx_ring);
1289 	kfree(adapter->rx_ring);
1290 
1291 	if (hw->mac_type == e1000_ce4100)
1292 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1293 	iounmap(hw->hw_addr);
1294 	if (hw->flash_address)
1295 		iounmap(hw->flash_address);
1296 	pci_release_selected_regions(pdev, adapter->bars);
1297 
1298 	free_netdev(netdev);
1299 
1300 	pci_disable_device(pdev);
1301 }
1302 
1303 /**
1304  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1305  * @adapter: board private structure to initialize
1306  *
1307  * e1000_sw_init initializes the Adapter private data structure.
1308  * e1000_init_hw_struct MUST be called before this function
1309  **/
1310 
1311 static int e1000_sw_init(struct e1000_adapter *adapter)
1312 {
1313 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1314 
1315 	adapter->num_tx_queues = 1;
1316 	adapter->num_rx_queues = 1;
1317 
1318 	if (e1000_alloc_queues(adapter)) {
1319 		e_err(probe, "Unable to allocate memory for queues\n");
1320 		return -ENOMEM;
1321 	}
1322 
1323 	/* Explicitly disable IRQ since the NIC can be in any state. */
1324 	e1000_irq_disable(adapter);
1325 
1326 	spin_lock_init(&adapter->stats_lock);
1327 	mutex_init(&adapter->mutex);
1328 
1329 	set_bit(__E1000_DOWN, &adapter->flags);
1330 
1331 	return 0;
1332 }
1333 
1334 /**
1335  * e1000_alloc_queues - Allocate memory for all rings
1336  * @adapter: board private structure to initialize
1337  *
1338  * We allocate one ring per queue at run-time since we don't know the
1339  * number of queues at compile-time.
1340  **/
1341 
1342 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1343 {
1344 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1345 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1346 	if (!adapter->tx_ring)
1347 		return -ENOMEM;
1348 
1349 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1350 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1351 	if (!adapter->rx_ring) {
1352 		kfree(adapter->tx_ring);
1353 		return -ENOMEM;
1354 	}
1355 
1356 	return E1000_SUCCESS;
1357 }
1358 
1359 /**
1360  * e1000_open - Called when a network interface is made active
1361  * @netdev: network interface device structure
1362  *
1363  * Returns 0 on success, negative value on failure
1364  *
1365  * The open entry point is called when a network interface is made
1366  * active by the system (IFF_UP).  At this point all resources needed
1367  * for transmit and receive operations are allocated, the interrupt
1368  * handler is registered with the OS, the watchdog task is started,
1369  * and the stack is notified that the interface is ready.
1370  **/
1371 
1372 static int e1000_open(struct net_device *netdev)
1373 {
1374 	struct e1000_adapter *adapter = netdev_priv(netdev);
1375 	struct e1000_hw *hw = &adapter->hw;
1376 	int err;
1377 
1378 	/* disallow open during test */
1379 	if (test_bit(__E1000_TESTING, &adapter->flags))
1380 		return -EBUSY;
1381 
1382 	netif_carrier_off(netdev);
1383 
1384 	/* allocate transmit descriptors */
1385 	err = e1000_setup_all_tx_resources(adapter);
1386 	if (err)
1387 		goto err_setup_tx;
1388 
1389 	/* allocate receive descriptors */
1390 	err = e1000_setup_all_rx_resources(adapter);
1391 	if (err)
1392 		goto err_setup_rx;
1393 
1394 	e1000_power_up_phy(adapter);
1395 
1396 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1397 	if ((hw->mng_cookie.status &
1398 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1399 		e1000_update_mng_vlan(adapter);
1400 	}
1401 
1402 	/* before we allocate an interrupt, we must be ready to handle it.
1403 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1404 	 * as soon as we call pci_request_irq, so we have to setup our
1405 	 * clean_rx handler before we do so.  */
1406 	e1000_configure(adapter);
1407 
1408 	err = e1000_request_irq(adapter);
1409 	if (err)
1410 		goto err_req_irq;
1411 
1412 	/* From here on the code is the same as e1000_up() */
1413 	clear_bit(__E1000_DOWN, &adapter->flags);
1414 
1415 	napi_enable(&adapter->napi);
1416 
1417 	e1000_irq_enable(adapter);
1418 
1419 	netif_start_queue(netdev);
1420 
1421 	/* fire a link status change interrupt to start the watchdog */
1422 	ew32(ICS, E1000_ICS_LSC);
1423 
1424 	return E1000_SUCCESS;
1425 
1426 err_req_irq:
1427 	e1000_power_down_phy(adapter);
1428 	e1000_free_all_rx_resources(adapter);
1429 err_setup_rx:
1430 	e1000_free_all_tx_resources(adapter);
1431 err_setup_tx:
1432 	e1000_reset(adapter);
1433 
1434 	return err;
1435 }
1436 
1437 /**
1438  * e1000_close - Disables a network interface
1439  * @netdev: network interface device structure
1440  *
1441  * Returns 0, this is not allowed to fail
1442  *
1443  * The close entry point is called when an interface is de-activated
1444  * by the OS.  The hardware is still under the drivers control, but
1445  * needs to be disabled.  A global MAC reset is issued to stop the
1446  * hardware, and all transmit and receive resources are freed.
1447  **/
1448 
1449 static int e1000_close(struct net_device *netdev)
1450 {
1451 	struct e1000_adapter *adapter = netdev_priv(netdev);
1452 	struct e1000_hw *hw = &adapter->hw;
1453 
1454 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1455 	e1000_down(adapter);
1456 	e1000_power_down_phy(adapter);
1457 	e1000_free_irq(adapter);
1458 
1459 	e1000_free_all_tx_resources(adapter);
1460 	e1000_free_all_rx_resources(adapter);
1461 
1462 	/* kill manageability vlan ID if supported, but not if a vlan with
1463 	 * the same ID is registered on the host OS (let 8021q kill it) */
1464 	if ((hw->mng_cookie.status &
1465 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1466 	     !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1467 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 /**
1474  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1475  * @adapter: address of board private structure
1476  * @start: address of beginning of memory
1477  * @len: length of memory
1478  **/
1479 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1480 				  unsigned long len)
1481 {
1482 	struct e1000_hw *hw = &adapter->hw;
1483 	unsigned long begin = (unsigned long)start;
1484 	unsigned long end = begin + len;
1485 
1486 	/* First rev 82545 and 82546 need to not allow any memory
1487 	 * write location to cross 64k boundary due to errata 23 */
1488 	if (hw->mac_type == e1000_82545 ||
1489 	    hw->mac_type == e1000_ce4100 ||
1490 	    hw->mac_type == e1000_82546) {
1491 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1492 	}
1493 
1494 	return true;
1495 }
1496 
1497 /**
1498  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1499  * @adapter: board private structure
1500  * @txdr:    tx descriptor ring (for a specific queue) to setup
1501  *
1502  * Return 0 on success, negative on failure
1503  **/
1504 
1505 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1506 				    struct e1000_tx_ring *txdr)
1507 {
1508 	struct pci_dev *pdev = adapter->pdev;
1509 	int size;
1510 
1511 	size = sizeof(struct e1000_buffer) * txdr->count;
1512 	txdr->buffer_info = vzalloc(size);
1513 	if (!txdr->buffer_info) {
1514 		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1515 		      "ring\n");
1516 		return -ENOMEM;
1517 	}
1518 
1519 	/* round up to nearest 4K */
1520 
1521 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1522 	txdr->size = ALIGN(txdr->size, 4096);
1523 
1524 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1525 					GFP_KERNEL);
1526 	if (!txdr->desc) {
1527 setup_tx_desc_die:
1528 		vfree(txdr->buffer_info);
1529 		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1530 		      "ring\n");
1531 		return -ENOMEM;
1532 	}
1533 
1534 	/* Fix for errata 23, can't cross 64kB boundary */
1535 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1536 		void *olddesc = txdr->desc;
1537 		dma_addr_t olddma = txdr->dma;
1538 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1539 		      txdr->size, txdr->desc);
1540 		/* Try again, without freeing the previous */
1541 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1542 						&txdr->dma, GFP_KERNEL);
1543 		/* Failed allocation, critical failure */
1544 		if (!txdr->desc) {
1545 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1546 					  olddma);
1547 			goto setup_tx_desc_die;
1548 		}
1549 
1550 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1551 			/* give up */
1552 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1553 					  txdr->dma);
1554 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555 					  olddma);
1556 			e_err(probe, "Unable to allocate aligned memory "
1557 			      "for the transmit descriptor ring\n");
1558 			vfree(txdr->buffer_info);
1559 			return -ENOMEM;
1560 		} else {
1561 			/* Free old allocation, new allocation was successful */
1562 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1563 					  olddma);
1564 		}
1565 	}
1566 	memset(txdr->desc, 0, txdr->size);
1567 
1568 	txdr->next_to_use = 0;
1569 	txdr->next_to_clean = 0;
1570 
1571 	return 0;
1572 }
1573 
1574 /**
1575  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1576  * 				  (Descriptors) for all queues
1577  * @adapter: board private structure
1578  *
1579  * Return 0 on success, negative on failure
1580  **/
1581 
1582 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1583 {
1584 	int i, err = 0;
1585 
1586 	for (i = 0; i < adapter->num_tx_queues; i++) {
1587 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1588 		if (err) {
1589 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1590 			for (i-- ; i >= 0; i--)
1591 				e1000_free_tx_resources(adapter,
1592 							&adapter->tx_ring[i]);
1593 			break;
1594 		}
1595 	}
1596 
1597 	return err;
1598 }
1599 
1600 /**
1601  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1602  * @adapter: board private structure
1603  *
1604  * Configure the Tx unit of the MAC after a reset.
1605  **/
1606 
1607 static void e1000_configure_tx(struct e1000_adapter *adapter)
1608 {
1609 	u64 tdba;
1610 	struct e1000_hw *hw = &adapter->hw;
1611 	u32 tdlen, tctl, tipg;
1612 	u32 ipgr1, ipgr2;
1613 
1614 	/* Setup the HW Tx Head and Tail descriptor pointers */
1615 
1616 	switch (adapter->num_tx_queues) {
1617 	case 1:
1618 	default:
1619 		tdba = adapter->tx_ring[0].dma;
1620 		tdlen = adapter->tx_ring[0].count *
1621 			sizeof(struct e1000_tx_desc);
1622 		ew32(TDLEN, tdlen);
1623 		ew32(TDBAH, (tdba >> 32));
1624 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1625 		ew32(TDT, 0);
1626 		ew32(TDH, 0);
1627 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1628 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1629 		break;
1630 	}
1631 
1632 	/* Set the default values for the Tx Inter Packet Gap timer */
1633 	if ((hw->media_type == e1000_media_type_fiber ||
1634 	     hw->media_type == e1000_media_type_internal_serdes))
1635 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1636 	else
1637 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1638 
1639 	switch (hw->mac_type) {
1640 	case e1000_82542_rev2_0:
1641 	case e1000_82542_rev2_1:
1642 		tipg = DEFAULT_82542_TIPG_IPGT;
1643 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1644 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1645 		break;
1646 	default:
1647 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1648 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1649 		break;
1650 	}
1651 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1652 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1653 	ew32(TIPG, tipg);
1654 
1655 	/* Set the Tx Interrupt Delay register */
1656 
1657 	ew32(TIDV, adapter->tx_int_delay);
1658 	if (hw->mac_type >= e1000_82540)
1659 		ew32(TADV, adapter->tx_abs_int_delay);
1660 
1661 	/* Program the Transmit Control Register */
1662 
1663 	tctl = er32(TCTL);
1664 	tctl &= ~E1000_TCTL_CT;
1665 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1666 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1667 
1668 	e1000_config_collision_dist(hw);
1669 
1670 	/* Setup Transmit Descriptor Settings for eop descriptor */
1671 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1672 
1673 	/* only set IDE if we are delaying interrupts using the timers */
1674 	if (adapter->tx_int_delay)
1675 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1676 
1677 	if (hw->mac_type < e1000_82543)
1678 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1679 	else
1680 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1681 
1682 	/* Cache if we're 82544 running in PCI-X because we'll
1683 	 * need this to apply a workaround later in the send path. */
1684 	if (hw->mac_type == e1000_82544 &&
1685 	    hw->bus_type == e1000_bus_type_pcix)
1686 		adapter->pcix_82544 = true;
1687 
1688 	ew32(TCTL, tctl);
1689 
1690 }
1691 
1692 /**
1693  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1694  * @adapter: board private structure
1695  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1696  *
1697  * Returns 0 on success, negative on failure
1698  **/
1699 
1700 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1701 				    struct e1000_rx_ring *rxdr)
1702 {
1703 	struct pci_dev *pdev = adapter->pdev;
1704 	int size, desc_len;
1705 
1706 	size = sizeof(struct e1000_buffer) * rxdr->count;
1707 	rxdr->buffer_info = vzalloc(size);
1708 	if (!rxdr->buffer_info) {
1709 		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1710 		      "ring\n");
1711 		return -ENOMEM;
1712 	}
1713 
1714 	desc_len = sizeof(struct e1000_rx_desc);
1715 
1716 	/* Round up to nearest 4K */
1717 
1718 	rxdr->size = rxdr->count * desc_len;
1719 	rxdr->size = ALIGN(rxdr->size, 4096);
1720 
1721 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1722 					GFP_KERNEL);
1723 
1724 	if (!rxdr->desc) {
1725 		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1726 		      "ring\n");
1727 setup_rx_desc_die:
1728 		vfree(rxdr->buffer_info);
1729 		return -ENOMEM;
1730 	}
1731 
1732 	/* Fix for errata 23, can't cross 64kB boundary */
1733 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1734 		void *olddesc = rxdr->desc;
1735 		dma_addr_t olddma = rxdr->dma;
1736 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1737 		      rxdr->size, rxdr->desc);
1738 		/* Try again, without freeing the previous */
1739 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1740 						&rxdr->dma, GFP_KERNEL);
1741 		/* Failed allocation, critical failure */
1742 		if (!rxdr->desc) {
1743 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744 					  olddma);
1745 			e_err(probe, "Unable to allocate memory for the Rx "
1746 			      "descriptor ring\n");
1747 			goto setup_rx_desc_die;
1748 		}
1749 
1750 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1751 			/* give up */
1752 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1753 					  rxdr->dma);
1754 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755 					  olddma);
1756 			e_err(probe, "Unable to allocate aligned memory for "
1757 			      "the Rx descriptor ring\n");
1758 			goto setup_rx_desc_die;
1759 		} else {
1760 			/* Free old allocation, new allocation was successful */
1761 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1762 					  olddma);
1763 		}
1764 	}
1765 	memset(rxdr->desc, 0, rxdr->size);
1766 
1767 	rxdr->next_to_clean = 0;
1768 	rxdr->next_to_use = 0;
1769 	rxdr->rx_skb_top = NULL;
1770 
1771 	return 0;
1772 }
1773 
1774 /**
1775  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1776  * 				  (Descriptors) for all queues
1777  * @adapter: board private structure
1778  *
1779  * Return 0 on success, negative on failure
1780  **/
1781 
1782 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1783 {
1784 	int i, err = 0;
1785 
1786 	for (i = 0; i < adapter->num_rx_queues; i++) {
1787 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1788 		if (err) {
1789 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1790 			for (i-- ; i >= 0; i--)
1791 				e1000_free_rx_resources(adapter,
1792 							&adapter->rx_ring[i]);
1793 			break;
1794 		}
1795 	}
1796 
1797 	return err;
1798 }
1799 
1800 /**
1801  * e1000_setup_rctl - configure the receive control registers
1802  * @adapter: Board private structure
1803  **/
1804 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1805 {
1806 	struct e1000_hw *hw = &adapter->hw;
1807 	u32 rctl;
1808 
1809 	rctl = er32(RCTL);
1810 
1811 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1812 
1813 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1814 		E1000_RCTL_RDMTS_HALF |
1815 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1816 
1817 	if (hw->tbi_compatibility_on == 1)
1818 		rctl |= E1000_RCTL_SBP;
1819 	else
1820 		rctl &= ~E1000_RCTL_SBP;
1821 
1822 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1823 		rctl &= ~E1000_RCTL_LPE;
1824 	else
1825 		rctl |= E1000_RCTL_LPE;
1826 
1827 	/* Setup buffer sizes */
1828 	rctl &= ~E1000_RCTL_SZ_4096;
1829 	rctl |= E1000_RCTL_BSEX;
1830 	switch (adapter->rx_buffer_len) {
1831 		case E1000_RXBUFFER_2048:
1832 		default:
1833 			rctl |= E1000_RCTL_SZ_2048;
1834 			rctl &= ~E1000_RCTL_BSEX;
1835 			break;
1836 		case E1000_RXBUFFER_4096:
1837 			rctl |= E1000_RCTL_SZ_4096;
1838 			break;
1839 		case E1000_RXBUFFER_8192:
1840 			rctl |= E1000_RCTL_SZ_8192;
1841 			break;
1842 		case E1000_RXBUFFER_16384:
1843 			rctl |= E1000_RCTL_SZ_16384;
1844 			break;
1845 	}
1846 
1847 	/* This is useful for sniffing bad packets. */
1848 	if (adapter->netdev->features & NETIF_F_RXALL) {
1849 		/* UPE and MPE will be handled by normal PROMISC logic
1850 		 * in e1000e_set_rx_mode */
1851 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1852 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1853 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1854 
1855 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1856 			  E1000_RCTL_DPF | /* Allow filtered pause */
1857 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1858 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1859 		 * and that breaks VLANs.
1860 		 */
1861 	}
1862 
1863 	ew32(RCTL, rctl);
1864 }
1865 
1866 /**
1867  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1868  * @adapter: board private structure
1869  *
1870  * Configure the Rx unit of the MAC after a reset.
1871  **/
1872 
1873 static void e1000_configure_rx(struct e1000_adapter *adapter)
1874 {
1875 	u64 rdba;
1876 	struct e1000_hw *hw = &adapter->hw;
1877 	u32 rdlen, rctl, rxcsum;
1878 
1879 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1880 		rdlen = adapter->rx_ring[0].count *
1881 		        sizeof(struct e1000_rx_desc);
1882 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1883 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1884 	} else {
1885 		rdlen = adapter->rx_ring[0].count *
1886 		        sizeof(struct e1000_rx_desc);
1887 		adapter->clean_rx = e1000_clean_rx_irq;
1888 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1889 	}
1890 
1891 	/* disable receives while setting up the descriptors */
1892 	rctl = er32(RCTL);
1893 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1894 
1895 	/* set the Receive Delay Timer Register */
1896 	ew32(RDTR, adapter->rx_int_delay);
1897 
1898 	if (hw->mac_type >= e1000_82540) {
1899 		ew32(RADV, adapter->rx_abs_int_delay);
1900 		if (adapter->itr_setting != 0)
1901 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1902 	}
1903 
1904 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1905 	 * the Base and Length of the Rx Descriptor Ring */
1906 	switch (adapter->num_rx_queues) {
1907 	case 1:
1908 	default:
1909 		rdba = adapter->rx_ring[0].dma;
1910 		ew32(RDLEN, rdlen);
1911 		ew32(RDBAH, (rdba >> 32));
1912 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1913 		ew32(RDT, 0);
1914 		ew32(RDH, 0);
1915 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1916 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1917 		break;
1918 	}
1919 
1920 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1921 	if (hw->mac_type >= e1000_82543) {
1922 		rxcsum = er32(RXCSUM);
1923 		if (adapter->rx_csum)
1924 			rxcsum |= E1000_RXCSUM_TUOFL;
1925 		else
1926 			/* don't need to clear IPPCSE as it defaults to 0 */
1927 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1928 		ew32(RXCSUM, rxcsum);
1929 	}
1930 
1931 	/* Enable Receives */
1932 	ew32(RCTL, rctl | E1000_RCTL_EN);
1933 }
1934 
1935 /**
1936  * e1000_free_tx_resources - Free Tx Resources per Queue
1937  * @adapter: board private structure
1938  * @tx_ring: Tx descriptor ring for a specific queue
1939  *
1940  * Free all transmit software resources
1941  **/
1942 
1943 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1944 				    struct e1000_tx_ring *tx_ring)
1945 {
1946 	struct pci_dev *pdev = adapter->pdev;
1947 
1948 	e1000_clean_tx_ring(adapter, tx_ring);
1949 
1950 	vfree(tx_ring->buffer_info);
1951 	tx_ring->buffer_info = NULL;
1952 
1953 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1954 			  tx_ring->dma);
1955 
1956 	tx_ring->desc = NULL;
1957 }
1958 
1959 /**
1960  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1961  * @adapter: board private structure
1962  *
1963  * Free all transmit software resources
1964  **/
1965 
1966 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1967 {
1968 	int i;
1969 
1970 	for (i = 0; i < adapter->num_tx_queues; i++)
1971 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1972 }
1973 
1974 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1975 					     struct e1000_buffer *buffer_info)
1976 {
1977 	if (buffer_info->dma) {
1978 		if (buffer_info->mapped_as_page)
1979 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1980 				       buffer_info->length, DMA_TO_DEVICE);
1981 		else
1982 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1983 					 buffer_info->length,
1984 					 DMA_TO_DEVICE);
1985 		buffer_info->dma = 0;
1986 	}
1987 	if (buffer_info->skb) {
1988 		dev_kfree_skb_any(buffer_info->skb);
1989 		buffer_info->skb = NULL;
1990 	}
1991 	buffer_info->time_stamp = 0;
1992 	/* buffer_info must be completely set up in the transmit path */
1993 }
1994 
1995 /**
1996  * e1000_clean_tx_ring - Free Tx Buffers
1997  * @adapter: board private structure
1998  * @tx_ring: ring to be cleaned
1999  **/
2000 
2001 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2002 				struct e1000_tx_ring *tx_ring)
2003 {
2004 	struct e1000_hw *hw = &adapter->hw;
2005 	struct e1000_buffer *buffer_info;
2006 	unsigned long size;
2007 	unsigned int i;
2008 
2009 	/* Free all the Tx ring sk_buffs */
2010 
2011 	for (i = 0; i < tx_ring->count; i++) {
2012 		buffer_info = &tx_ring->buffer_info[i];
2013 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2014 	}
2015 
2016 	netdev_reset_queue(adapter->netdev);
2017 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2018 	memset(tx_ring->buffer_info, 0, size);
2019 
2020 	/* Zero out the descriptor ring */
2021 
2022 	memset(tx_ring->desc, 0, tx_ring->size);
2023 
2024 	tx_ring->next_to_use = 0;
2025 	tx_ring->next_to_clean = 0;
2026 	tx_ring->last_tx_tso = false;
2027 
2028 	writel(0, hw->hw_addr + tx_ring->tdh);
2029 	writel(0, hw->hw_addr + tx_ring->tdt);
2030 }
2031 
2032 /**
2033  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2034  * @adapter: board private structure
2035  **/
2036 
2037 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2038 {
2039 	int i;
2040 
2041 	for (i = 0; i < adapter->num_tx_queues; i++)
2042 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2043 }
2044 
2045 /**
2046  * e1000_free_rx_resources - Free Rx Resources
2047  * @adapter: board private structure
2048  * @rx_ring: ring to clean the resources from
2049  *
2050  * Free all receive software resources
2051  **/
2052 
2053 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2054 				    struct e1000_rx_ring *rx_ring)
2055 {
2056 	struct pci_dev *pdev = adapter->pdev;
2057 
2058 	e1000_clean_rx_ring(adapter, rx_ring);
2059 
2060 	vfree(rx_ring->buffer_info);
2061 	rx_ring->buffer_info = NULL;
2062 
2063 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2064 			  rx_ring->dma);
2065 
2066 	rx_ring->desc = NULL;
2067 }
2068 
2069 /**
2070  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2071  * @adapter: board private structure
2072  *
2073  * Free all receive software resources
2074  **/
2075 
2076 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2077 {
2078 	int i;
2079 
2080 	for (i = 0; i < adapter->num_rx_queues; i++)
2081 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2082 }
2083 
2084 /**
2085  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2086  * @adapter: board private structure
2087  * @rx_ring: ring to free buffers from
2088  **/
2089 
2090 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2091 				struct e1000_rx_ring *rx_ring)
2092 {
2093 	struct e1000_hw *hw = &adapter->hw;
2094 	struct e1000_buffer *buffer_info;
2095 	struct pci_dev *pdev = adapter->pdev;
2096 	unsigned long size;
2097 	unsigned int i;
2098 
2099 	/* Free all the Rx ring sk_buffs */
2100 	for (i = 0; i < rx_ring->count; i++) {
2101 		buffer_info = &rx_ring->buffer_info[i];
2102 		if (buffer_info->dma &&
2103 		    adapter->clean_rx == e1000_clean_rx_irq) {
2104 			dma_unmap_single(&pdev->dev, buffer_info->dma,
2105 			                 buffer_info->length,
2106 					 DMA_FROM_DEVICE);
2107 		} else if (buffer_info->dma &&
2108 		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109 			dma_unmap_page(&pdev->dev, buffer_info->dma,
2110 				       buffer_info->length,
2111 				       DMA_FROM_DEVICE);
2112 		}
2113 
2114 		buffer_info->dma = 0;
2115 		if (buffer_info->page) {
2116 			put_page(buffer_info->page);
2117 			buffer_info->page = NULL;
2118 		}
2119 		if (buffer_info->skb) {
2120 			dev_kfree_skb(buffer_info->skb);
2121 			buffer_info->skb = NULL;
2122 		}
2123 	}
2124 
2125 	/* there also may be some cached data from a chained receive */
2126 	if (rx_ring->rx_skb_top) {
2127 		dev_kfree_skb(rx_ring->rx_skb_top);
2128 		rx_ring->rx_skb_top = NULL;
2129 	}
2130 
2131 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2132 	memset(rx_ring->buffer_info, 0, size);
2133 
2134 	/* Zero out the descriptor ring */
2135 	memset(rx_ring->desc, 0, rx_ring->size);
2136 
2137 	rx_ring->next_to_clean = 0;
2138 	rx_ring->next_to_use = 0;
2139 
2140 	writel(0, hw->hw_addr + rx_ring->rdh);
2141 	writel(0, hw->hw_addr + rx_ring->rdt);
2142 }
2143 
2144 /**
2145  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2146  * @adapter: board private structure
2147  **/
2148 
2149 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2150 {
2151 	int i;
2152 
2153 	for (i = 0; i < adapter->num_rx_queues; i++)
2154 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2155 }
2156 
2157 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2158  * and memory write and invalidate disabled for certain operations
2159  */
2160 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2161 {
2162 	struct e1000_hw *hw = &adapter->hw;
2163 	struct net_device *netdev = adapter->netdev;
2164 	u32 rctl;
2165 
2166 	e1000_pci_clear_mwi(hw);
2167 
2168 	rctl = er32(RCTL);
2169 	rctl |= E1000_RCTL_RST;
2170 	ew32(RCTL, rctl);
2171 	E1000_WRITE_FLUSH();
2172 	mdelay(5);
2173 
2174 	if (netif_running(netdev))
2175 		e1000_clean_all_rx_rings(adapter);
2176 }
2177 
2178 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2179 {
2180 	struct e1000_hw *hw = &adapter->hw;
2181 	struct net_device *netdev = adapter->netdev;
2182 	u32 rctl;
2183 
2184 	rctl = er32(RCTL);
2185 	rctl &= ~E1000_RCTL_RST;
2186 	ew32(RCTL, rctl);
2187 	E1000_WRITE_FLUSH();
2188 	mdelay(5);
2189 
2190 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2191 		e1000_pci_set_mwi(hw);
2192 
2193 	if (netif_running(netdev)) {
2194 		/* No need to loop, because 82542 supports only 1 queue */
2195 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2196 		e1000_configure_rx(adapter);
2197 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2198 	}
2199 }
2200 
2201 /**
2202  * e1000_set_mac - Change the Ethernet Address of the NIC
2203  * @netdev: network interface device structure
2204  * @p: pointer to an address structure
2205  *
2206  * Returns 0 on success, negative on failure
2207  **/
2208 
2209 static int e1000_set_mac(struct net_device *netdev, void *p)
2210 {
2211 	struct e1000_adapter *adapter = netdev_priv(netdev);
2212 	struct e1000_hw *hw = &adapter->hw;
2213 	struct sockaddr *addr = p;
2214 
2215 	if (!is_valid_ether_addr(addr->sa_data))
2216 		return -EADDRNOTAVAIL;
2217 
2218 	/* 82542 2.0 needs to be in reset to write receive address registers */
2219 
2220 	if (hw->mac_type == e1000_82542_rev2_0)
2221 		e1000_enter_82542_rst(adapter);
2222 
2223 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2224 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2225 
2226 	e1000_rar_set(hw, hw->mac_addr, 0);
2227 
2228 	if (hw->mac_type == e1000_82542_rev2_0)
2229 		e1000_leave_82542_rst(adapter);
2230 
2231 	return 0;
2232 }
2233 
2234 /**
2235  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2236  * @netdev: network interface device structure
2237  *
2238  * The set_rx_mode entry point is called whenever the unicast or multicast
2239  * address lists or the network interface flags are updated. This routine is
2240  * responsible for configuring the hardware for proper unicast, multicast,
2241  * promiscuous mode, and all-multi behavior.
2242  **/
2243 
2244 static void e1000_set_rx_mode(struct net_device *netdev)
2245 {
2246 	struct e1000_adapter *adapter = netdev_priv(netdev);
2247 	struct e1000_hw *hw = &adapter->hw;
2248 	struct netdev_hw_addr *ha;
2249 	bool use_uc = false;
2250 	u32 rctl;
2251 	u32 hash_value;
2252 	int i, rar_entries = E1000_RAR_ENTRIES;
2253 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2254 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2255 
2256 	if (!mcarray) {
2257 		e_err(probe, "memory allocation failed\n");
2258 		return;
2259 	}
2260 
2261 	/* Check for Promiscuous and All Multicast modes */
2262 
2263 	rctl = er32(RCTL);
2264 
2265 	if (netdev->flags & IFF_PROMISC) {
2266 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2267 		rctl &= ~E1000_RCTL_VFE;
2268 	} else {
2269 		if (netdev->flags & IFF_ALLMULTI)
2270 			rctl |= E1000_RCTL_MPE;
2271 		else
2272 			rctl &= ~E1000_RCTL_MPE;
2273 		/* Enable VLAN filter if there is a VLAN */
2274 		if (e1000_vlan_used(adapter))
2275 			rctl |= E1000_RCTL_VFE;
2276 	}
2277 
2278 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2279 		rctl |= E1000_RCTL_UPE;
2280 	} else if (!(netdev->flags & IFF_PROMISC)) {
2281 		rctl &= ~E1000_RCTL_UPE;
2282 		use_uc = true;
2283 	}
2284 
2285 	ew32(RCTL, rctl);
2286 
2287 	/* 82542 2.0 needs to be in reset to write receive address registers */
2288 
2289 	if (hw->mac_type == e1000_82542_rev2_0)
2290 		e1000_enter_82542_rst(adapter);
2291 
2292 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2293 	 * addresses take precedence to avoid disabling unicast filtering
2294 	 * when possible.
2295 	 *
2296 	 * RAR 0 is used for the station MAC address
2297 	 * if there are not 14 addresses, go ahead and clear the filters
2298 	 */
2299 	i = 1;
2300 	if (use_uc)
2301 		netdev_for_each_uc_addr(ha, netdev) {
2302 			if (i == rar_entries)
2303 				break;
2304 			e1000_rar_set(hw, ha->addr, i++);
2305 		}
2306 
2307 	netdev_for_each_mc_addr(ha, netdev) {
2308 		if (i == rar_entries) {
2309 			/* load any remaining addresses into the hash table */
2310 			u32 hash_reg, hash_bit, mta;
2311 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2312 			hash_reg = (hash_value >> 5) & 0x7F;
2313 			hash_bit = hash_value & 0x1F;
2314 			mta = (1 << hash_bit);
2315 			mcarray[hash_reg] |= mta;
2316 		} else {
2317 			e1000_rar_set(hw, ha->addr, i++);
2318 		}
2319 	}
2320 
2321 	for (; i < rar_entries; i++) {
2322 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2323 		E1000_WRITE_FLUSH();
2324 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2325 		E1000_WRITE_FLUSH();
2326 	}
2327 
2328 	/* write the hash table completely, write from bottom to avoid
2329 	 * both stupid write combining chipsets, and flushing each write */
2330 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2331 		/*
2332 		 * If we are on an 82544 has an errata where writing odd
2333 		 * offsets overwrites the previous even offset, but writing
2334 		 * backwards over the range solves the issue by always
2335 		 * writing the odd offset first
2336 		 */
2337 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2338 	}
2339 	E1000_WRITE_FLUSH();
2340 
2341 	if (hw->mac_type == e1000_82542_rev2_0)
2342 		e1000_leave_82542_rst(adapter);
2343 
2344 	kfree(mcarray);
2345 }
2346 
2347 /**
2348  * e1000_update_phy_info_task - get phy info
2349  * @work: work struct contained inside adapter struct
2350  *
2351  * Need to wait a few seconds after link up to get diagnostic information from
2352  * the phy
2353  */
2354 static void e1000_update_phy_info_task(struct work_struct *work)
2355 {
2356 	struct e1000_adapter *adapter = container_of(work,
2357 						     struct e1000_adapter,
2358 						     phy_info_task.work);
2359 	if (test_bit(__E1000_DOWN, &adapter->flags))
2360 		return;
2361 	mutex_lock(&adapter->mutex);
2362 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2363 	mutex_unlock(&adapter->mutex);
2364 }
2365 
2366 /**
2367  * e1000_82547_tx_fifo_stall_task - task to complete work
2368  * @work: work struct contained inside adapter struct
2369  **/
2370 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2371 {
2372 	struct e1000_adapter *adapter = container_of(work,
2373 						     struct e1000_adapter,
2374 						     fifo_stall_task.work);
2375 	struct e1000_hw *hw = &adapter->hw;
2376 	struct net_device *netdev = adapter->netdev;
2377 	u32 tctl;
2378 
2379 	if (test_bit(__E1000_DOWN, &adapter->flags))
2380 		return;
2381 	mutex_lock(&adapter->mutex);
2382 	if (atomic_read(&adapter->tx_fifo_stall)) {
2383 		if ((er32(TDT) == er32(TDH)) &&
2384 		   (er32(TDFT) == er32(TDFH)) &&
2385 		   (er32(TDFTS) == er32(TDFHS))) {
2386 			tctl = er32(TCTL);
2387 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2388 			ew32(TDFT, adapter->tx_head_addr);
2389 			ew32(TDFH, adapter->tx_head_addr);
2390 			ew32(TDFTS, adapter->tx_head_addr);
2391 			ew32(TDFHS, adapter->tx_head_addr);
2392 			ew32(TCTL, tctl);
2393 			E1000_WRITE_FLUSH();
2394 
2395 			adapter->tx_fifo_head = 0;
2396 			atomic_set(&adapter->tx_fifo_stall, 0);
2397 			netif_wake_queue(netdev);
2398 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2399 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2400 		}
2401 	}
2402 	mutex_unlock(&adapter->mutex);
2403 }
2404 
2405 bool e1000_has_link(struct e1000_adapter *adapter)
2406 {
2407 	struct e1000_hw *hw = &adapter->hw;
2408 	bool link_active = false;
2409 
2410 	/* get_link_status is set on LSC (link status) interrupt or rx
2411 	 * sequence error interrupt (except on intel ce4100).
2412 	 * get_link_status will stay false until the
2413 	 * e1000_check_for_link establishes link for copper adapters
2414 	 * ONLY
2415 	 */
2416 	switch (hw->media_type) {
2417 	case e1000_media_type_copper:
2418 		if (hw->mac_type == e1000_ce4100)
2419 			hw->get_link_status = 1;
2420 		if (hw->get_link_status) {
2421 			e1000_check_for_link(hw);
2422 			link_active = !hw->get_link_status;
2423 		} else {
2424 			link_active = true;
2425 		}
2426 		break;
2427 	case e1000_media_type_fiber:
2428 		e1000_check_for_link(hw);
2429 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2430 		break;
2431 	case e1000_media_type_internal_serdes:
2432 		e1000_check_for_link(hw);
2433 		link_active = hw->serdes_has_link;
2434 		break;
2435 	default:
2436 		break;
2437 	}
2438 
2439 	return link_active;
2440 }
2441 
2442 /**
2443  * e1000_watchdog - work function
2444  * @work: work struct contained inside adapter struct
2445  **/
2446 static void e1000_watchdog(struct work_struct *work)
2447 {
2448 	struct e1000_adapter *adapter = container_of(work,
2449 						     struct e1000_adapter,
2450 						     watchdog_task.work);
2451 	struct e1000_hw *hw = &adapter->hw;
2452 	struct net_device *netdev = adapter->netdev;
2453 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2454 	u32 link, tctl;
2455 
2456 	if (test_bit(__E1000_DOWN, &adapter->flags))
2457 		return;
2458 
2459 	mutex_lock(&adapter->mutex);
2460 	link = e1000_has_link(adapter);
2461 	if ((netif_carrier_ok(netdev)) && link)
2462 		goto link_up;
2463 
2464 	if (link) {
2465 		if (!netif_carrier_ok(netdev)) {
2466 			u32 ctrl;
2467 			bool txb2b = true;
2468 			/* update snapshot of PHY registers on LSC */
2469 			e1000_get_speed_and_duplex(hw,
2470 			                           &adapter->link_speed,
2471 			                           &adapter->link_duplex);
2472 
2473 			ctrl = er32(CTRL);
2474 			pr_info("%s NIC Link is Up %d Mbps %s, "
2475 				"Flow Control: %s\n",
2476 				netdev->name,
2477 				adapter->link_speed,
2478 				adapter->link_duplex == FULL_DUPLEX ?
2479 				"Full Duplex" : "Half Duplex",
2480 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2481 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2482 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2483 				E1000_CTRL_TFCE) ? "TX" : "None")));
2484 
2485 			/* adjust timeout factor according to speed/duplex */
2486 			adapter->tx_timeout_factor = 1;
2487 			switch (adapter->link_speed) {
2488 			case SPEED_10:
2489 				txb2b = false;
2490 				adapter->tx_timeout_factor = 16;
2491 				break;
2492 			case SPEED_100:
2493 				txb2b = false;
2494 				/* maybe add some timeout factor ? */
2495 				break;
2496 			}
2497 
2498 			/* enable transmits in the hardware */
2499 			tctl = er32(TCTL);
2500 			tctl |= E1000_TCTL_EN;
2501 			ew32(TCTL, tctl);
2502 
2503 			netif_carrier_on(netdev);
2504 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2505 				schedule_delayed_work(&adapter->phy_info_task,
2506 						      2 * HZ);
2507 			adapter->smartspeed = 0;
2508 		}
2509 	} else {
2510 		if (netif_carrier_ok(netdev)) {
2511 			adapter->link_speed = 0;
2512 			adapter->link_duplex = 0;
2513 			pr_info("%s NIC Link is Down\n",
2514 				netdev->name);
2515 			netif_carrier_off(netdev);
2516 
2517 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2518 				schedule_delayed_work(&adapter->phy_info_task,
2519 						      2 * HZ);
2520 		}
2521 
2522 		e1000_smartspeed(adapter);
2523 	}
2524 
2525 link_up:
2526 	e1000_update_stats(adapter);
2527 
2528 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2529 	adapter->tpt_old = adapter->stats.tpt;
2530 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2531 	adapter->colc_old = adapter->stats.colc;
2532 
2533 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2534 	adapter->gorcl_old = adapter->stats.gorcl;
2535 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2536 	adapter->gotcl_old = adapter->stats.gotcl;
2537 
2538 	e1000_update_adaptive(hw);
2539 
2540 	if (!netif_carrier_ok(netdev)) {
2541 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2542 			/* We've lost link, so the controller stops DMA,
2543 			 * but we've got queued Tx work that's never going
2544 			 * to get done, so reset controller to flush Tx.
2545 			 * (Do the reset outside of interrupt context). */
2546 			adapter->tx_timeout_count++;
2547 			schedule_work(&adapter->reset_task);
2548 			/* exit immediately since reset is imminent */
2549 			goto unlock;
2550 		}
2551 	}
2552 
2553 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2554 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2555 		/*
2556 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
2557 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2558 		 * everyone else is between 2000-8000.
2559 		 */
2560 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2561 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2562 			    adapter->gotcl - adapter->gorcl :
2563 			    adapter->gorcl - adapter->gotcl) / 10000;
2564 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2565 
2566 		ew32(ITR, 1000000000 / (itr * 256));
2567 	}
2568 
2569 	/* Cause software interrupt to ensure rx ring is cleaned */
2570 	ew32(ICS, E1000_ICS_RXDMT0);
2571 
2572 	/* Force detection of hung controller every watchdog period */
2573 	adapter->detect_tx_hung = true;
2574 
2575 	/* Reschedule the task */
2576 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2577 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2578 
2579 unlock:
2580 	mutex_unlock(&adapter->mutex);
2581 }
2582 
2583 enum latency_range {
2584 	lowest_latency = 0,
2585 	low_latency = 1,
2586 	bulk_latency = 2,
2587 	latency_invalid = 255
2588 };
2589 
2590 /**
2591  * e1000_update_itr - update the dynamic ITR value based on statistics
2592  * @adapter: pointer to adapter
2593  * @itr_setting: current adapter->itr
2594  * @packets: the number of packets during this measurement interval
2595  * @bytes: the number of bytes during this measurement interval
2596  *
2597  *      Stores a new ITR value based on packets and byte
2598  *      counts during the last interrupt.  The advantage of per interrupt
2599  *      computation is faster updates and more accurate ITR for the current
2600  *      traffic pattern.  Constants in this function were computed
2601  *      based on theoretical maximum wire speed and thresholds were set based
2602  *      on testing data as well as attempting to minimize response time
2603  *      while increasing bulk throughput.
2604  *      this functionality is controlled by the InterruptThrottleRate module
2605  *      parameter (see e1000_param.c)
2606  **/
2607 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2608 				     u16 itr_setting, int packets, int bytes)
2609 {
2610 	unsigned int retval = itr_setting;
2611 	struct e1000_hw *hw = &adapter->hw;
2612 
2613 	if (unlikely(hw->mac_type < e1000_82540))
2614 		goto update_itr_done;
2615 
2616 	if (packets == 0)
2617 		goto update_itr_done;
2618 
2619 	switch (itr_setting) {
2620 	case lowest_latency:
2621 		/* jumbo frames get bulk treatment*/
2622 		if (bytes/packets > 8000)
2623 			retval = bulk_latency;
2624 		else if ((packets < 5) && (bytes > 512))
2625 			retval = low_latency;
2626 		break;
2627 	case low_latency:  /* 50 usec aka 20000 ints/s */
2628 		if (bytes > 10000) {
2629 			/* jumbo frames need bulk latency setting */
2630 			if (bytes/packets > 8000)
2631 				retval = bulk_latency;
2632 			else if ((packets < 10) || ((bytes/packets) > 1200))
2633 				retval = bulk_latency;
2634 			else if ((packets > 35))
2635 				retval = lowest_latency;
2636 		} else if (bytes/packets > 2000)
2637 			retval = bulk_latency;
2638 		else if (packets <= 2 && bytes < 512)
2639 			retval = lowest_latency;
2640 		break;
2641 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2642 		if (bytes > 25000) {
2643 			if (packets > 35)
2644 				retval = low_latency;
2645 		} else if (bytes < 6000) {
2646 			retval = low_latency;
2647 		}
2648 		break;
2649 	}
2650 
2651 update_itr_done:
2652 	return retval;
2653 }
2654 
2655 static void e1000_set_itr(struct e1000_adapter *adapter)
2656 {
2657 	struct e1000_hw *hw = &adapter->hw;
2658 	u16 current_itr;
2659 	u32 new_itr = adapter->itr;
2660 
2661 	if (unlikely(hw->mac_type < e1000_82540))
2662 		return;
2663 
2664 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2665 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2666 		current_itr = 0;
2667 		new_itr = 4000;
2668 		goto set_itr_now;
2669 	}
2670 
2671 	adapter->tx_itr = e1000_update_itr(adapter,
2672 	                            adapter->tx_itr,
2673 	                            adapter->total_tx_packets,
2674 	                            adapter->total_tx_bytes);
2675 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2676 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2677 		adapter->tx_itr = low_latency;
2678 
2679 	adapter->rx_itr = e1000_update_itr(adapter,
2680 	                            adapter->rx_itr,
2681 	                            adapter->total_rx_packets,
2682 	                            adapter->total_rx_bytes);
2683 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2684 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2685 		adapter->rx_itr = low_latency;
2686 
2687 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2688 
2689 	switch (current_itr) {
2690 	/* counts and packets in update_itr are dependent on these numbers */
2691 	case lowest_latency:
2692 		new_itr = 70000;
2693 		break;
2694 	case low_latency:
2695 		new_itr = 20000; /* aka hwitr = ~200 */
2696 		break;
2697 	case bulk_latency:
2698 		new_itr = 4000;
2699 		break;
2700 	default:
2701 		break;
2702 	}
2703 
2704 set_itr_now:
2705 	if (new_itr != adapter->itr) {
2706 		/* this attempts to bias the interrupt rate towards Bulk
2707 		 * by adding intermediate steps when interrupt rate is
2708 		 * increasing */
2709 		new_itr = new_itr > adapter->itr ?
2710 		             min(adapter->itr + (new_itr >> 2), new_itr) :
2711 		             new_itr;
2712 		adapter->itr = new_itr;
2713 		ew32(ITR, 1000000000 / (new_itr * 256));
2714 	}
2715 }
2716 
2717 #define E1000_TX_FLAGS_CSUM		0x00000001
2718 #define E1000_TX_FLAGS_VLAN		0x00000002
2719 #define E1000_TX_FLAGS_TSO		0x00000004
2720 #define E1000_TX_FLAGS_IPV4		0x00000008
2721 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2722 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2723 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2724 
2725 static int e1000_tso(struct e1000_adapter *adapter,
2726 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2727 {
2728 	struct e1000_context_desc *context_desc;
2729 	struct e1000_buffer *buffer_info;
2730 	unsigned int i;
2731 	u32 cmd_length = 0;
2732 	u16 ipcse = 0, tucse, mss;
2733 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2734 	int err;
2735 
2736 	if (skb_is_gso(skb)) {
2737 		if (skb_header_cloned(skb)) {
2738 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2739 			if (err)
2740 				return err;
2741 		}
2742 
2743 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2744 		mss = skb_shinfo(skb)->gso_size;
2745 		if (skb->protocol == htons(ETH_P_IP)) {
2746 			struct iphdr *iph = ip_hdr(skb);
2747 			iph->tot_len = 0;
2748 			iph->check = 0;
2749 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2750 								 iph->daddr, 0,
2751 								 IPPROTO_TCP,
2752 								 0);
2753 			cmd_length = E1000_TXD_CMD_IP;
2754 			ipcse = skb_transport_offset(skb) - 1;
2755 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2756 			ipv6_hdr(skb)->payload_len = 0;
2757 			tcp_hdr(skb)->check =
2758 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2759 						 &ipv6_hdr(skb)->daddr,
2760 						 0, IPPROTO_TCP, 0);
2761 			ipcse = 0;
2762 		}
2763 		ipcss = skb_network_offset(skb);
2764 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2765 		tucss = skb_transport_offset(skb);
2766 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2767 		tucse = 0;
2768 
2769 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2770 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2771 
2772 		i = tx_ring->next_to_use;
2773 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2774 		buffer_info = &tx_ring->buffer_info[i];
2775 
2776 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2777 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2778 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2779 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2780 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2781 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2782 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2783 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2784 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2785 
2786 		buffer_info->time_stamp = jiffies;
2787 		buffer_info->next_to_watch = i;
2788 
2789 		if (++i == tx_ring->count) i = 0;
2790 		tx_ring->next_to_use = i;
2791 
2792 		return true;
2793 	}
2794 	return false;
2795 }
2796 
2797 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2798 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2799 {
2800 	struct e1000_context_desc *context_desc;
2801 	struct e1000_buffer *buffer_info;
2802 	unsigned int i;
2803 	u8 css;
2804 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2805 
2806 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2807 		return false;
2808 
2809 	switch (skb->protocol) {
2810 	case cpu_to_be16(ETH_P_IP):
2811 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2812 			cmd_len |= E1000_TXD_CMD_TCP;
2813 		break;
2814 	case cpu_to_be16(ETH_P_IPV6):
2815 		/* XXX not handling all IPV6 headers */
2816 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2817 			cmd_len |= E1000_TXD_CMD_TCP;
2818 		break;
2819 	default:
2820 		if (unlikely(net_ratelimit()))
2821 			e_warn(drv, "checksum_partial proto=%x!\n",
2822 			       skb->protocol);
2823 		break;
2824 	}
2825 
2826 	css = skb_checksum_start_offset(skb);
2827 
2828 	i = tx_ring->next_to_use;
2829 	buffer_info = &tx_ring->buffer_info[i];
2830 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2831 
2832 	context_desc->lower_setup.ip_config = 0;
2833 	context_desc->upper_setup.tcp_fields.tucss = css;
2834 	context_desc->upper_setup.tcp_fields.tucso =
2835 		css + skb->csum_offset;
2836 	context_desc->upper_setup.tcp_fields.tucse = 0;
2837 	context_desc->tcp_seg_setup.data = 0;
2838 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2839 
2840 	buffer_info->time_stamp = jiffies;
2841 	buffer_info->next_to_watch = i;
2842 
2843 	if (unlikely(++i == tx_ring->count)) i = 0;
2844 	tx_ring->next_to_use = i;
2845 
2846 	return true;
2847 }
2848 
2849 #define E1000_MAX_TXD_PWR	12
2850 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2851 
2852 static int e1000_tx_map(struct e1000_adapter *adapter,
2853 			struct e1000_tx_ring *tx_ring,
2854 			struct sk_buff *skb, unsigned int first,
2855 			unsigned int max_per_txd, unsigned int nr_frags,
2856 			unsigned int mss)
2857 {
2858 	struct e1000_hw *hw = &adapter->hw;
2859 	struct pci_dev *pdev = adapter->pdev;
2860 	struct e1000_buffer *buffer_info;
2861 	unsigned int len = skb_headlen(skb);
2862 	unsigned int offset = 0, size, count = 0, i;
2863 	unsigned int f, bytecount, segs;
2864 
2865 	i = tx_ring->next_to_use;
2866 
2867 	while (len) {
2868 		buffer_info = &tx_ring->buffer_info[i];
2869 		size = min(len, max_per_txd);
2870 		/* Workaround for Controller erratum --
2871 		 * descriptor for non-tso packet in a linear SKB that follows a
2872 		 * tso gets written back prematurely before the data is fully
2873 		 * DMA'd to the controller */
2874 		if (!skb->data_len && tx_ring->last_tx_tso &&
2875 		    !skb_is_gso(skb)) {
2876 			tx_ring->last_tx_tso = false;
2877 			size -= 4;
2878 		}
2879 
2880 		/* Workaround for premature desc write-backs
2881 		 * in TSO mode.  Append 4-byte sentinel desc */
2882 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2883 			size -= 4;
2884 		/* work-around for errata 10 and it applies
2885 		 * to all controllers in PCI-X mode
2886 		 * The fix is to make sure that the first descriptor of a
2887 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2888 		 */
2889 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2890 		                (size > 2015) && count == 0))
2891 		        size = 2015;
2892 
2893 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2894 		 * terminating buffers within evenly-aligned dwords. */
2895 		if (unlikely(adapter->pcix_82544 &&
2896 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2897 		   size > 4))
2898 			size -= 4;
2899 
2900 		buffer_info->length = size;
2901 		/* set time_stamp *before* dma to help avoid a possible race */
2902 		buffer_info->time_stamp = jiffies;
2903 		buffer_info->mapped_as_page = false;
2904 		buffer_info->dma = dma_map_single(&pdev->dev,
2905 						  skb->data + offset,
2906 						  size,	DMA_TO_DEVICE);
2907 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2908 			goto dma_error;
2909 		buffer_info->next_to_watch = i;
2910 
2911 		len -= size;
2912 		offset += size;
2913 		count++;
2914 		if (len) {
2915 			i++;
2916 			if (unlikely(i == tx_ring->count))
2917 				i = 0;
2918 		}
2919 	}
2920 
2921 	for (f = 0; f < nr_frags; f++) {
2922 		const struct skb_frag_struct *frag;
2923 
2924 		frag = &skb_shinfo(skb)->frags[f];
2925 		len = skb_frag_size(frag);
2926 		offset = 0;
2927 
2928 		while (len) {
2929 			unsigned long bufend;
2930 			i++;
2931 			if (unlikely(i == tx_ring->count))
2932 				i = 0;
2933 
2934 			buffer_info = &tx_ring->buffer_info[i];
2935 			size = min(len, max_per_txd);
2936 			/* Workaround for premature desc write-backs
2937 			 * in TSO mode.  Append 4-byte sentinel desc */
2938 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2939 				size -= 4;
2940 			/* Workaround for potential 82544 hang in PCI-X.
2941 			 * Avoid terminating buffers within evenly-aligned
2942 			 * dwords. */
2943 			bufend = (unsigned long)
2944 				page_to_phys(skb_frag_page(frag));
2945 			bufend += offset + size - 1;
2946 			if (unlikely(adapter->pcix_82544 &&
2947 				     !(bufend & 4) &&
2948 				     size > 4))
2949 				size -= 4;
2950 
2951 			buffer_info->length = size;
2952 			buffer_info->time_stamp = jiffies;
2953 			buffer_info->mapped_as_page = true;
2954 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2955 						offset, size, DMA_TO_DEVICE);
2956 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2957 				goto dma_error;
2958 			buffer_info->next_to_watch = i;
2959 
2960 			len -= size;
2961 			offset += size;
2962 			count++;
2963 		}
2964 	}
2965 
2966 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2967 	/* multiply data chunks by size of headers */
2968 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2969 
2970 	tx_ring->buffer_info[i].skb = skb;
2971 	tx_ring->buffer_info[i].segs = segs;
2972 	tx_ring->buffer_info[i].bytecount = bytecount;
2973 	tx_ring->buffer_info[first].next_to_watch = i;
2974 
2975 	return count;
2976 
2977 dma_error:
2978 	dev_err(&pdev->dev, "TX DMA map failed\n");
2979 	buffer_info->dma = 0;
2980 	if (count)
2981 		count--;
2982 
2983 	while (count--) {
2984 		if (i==0)
2985 			i += tx_ring->count;
2986 		i--;
2987 		buffer_info = &tx_ring->buffer_info[i];
2988 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2989 	}
2990 
2991 	return 0;
2992 }
2993 
2994 static void e1000_tx_queue(struct e1000_adapter *adapter,
2995 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2996 			   int count)
2997 {
2998 	struct e1000_hw *hw = &adapter->hw;
2999 	struct e1000_tx_desc *tx_desc = NULL;
3000 	struct e1000_buffer *buffer_info;
3001 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3002 	unsigned int i;
3003 
3004 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3005 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3006 		             E1000_TXD_CMD_TSE;
3007 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3008 
3009 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3010 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3011 	}
3012 
3013 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3014 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3015 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3016 	}
3017 
3018 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3019 		txd_lower |= E1000_TXD_CMD_VLE;
3020 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3021 	}
3022 
3023 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3024 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3025 
3026 	i = tx_ring->next_to_use;
3027 
3028 	while (count--) {
3029 		buffer_info = &tx_ring->buffer_info[i];
3030 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3031 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3032 		tx_desc->lower.data =
3033 			cpu_to_le32(txd_lower | buffer_info->length);
3034 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3035 		if (unlikely(++i == tx_ring->count)) i = 0;
3036 	}
3037 
3038 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3039 
3040 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3041 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3042 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3043 
3044 	/* Force memory writes to complete before letting h/w
3045 	 * know there are new descriptors to fetch.  (Only
3046 	 * applicable for weak-ordered memory model archs,
3047 	 * such as IA-64). */
3048 	wmb();
3049 
3050 	tx_ring->next_to_use = i;
3051 	writel(i, hw->hw_addr + tx_ring->tdt);
3052 	/* we need this if more than one processor can write to our tail
3053 	 * at a time, it syncronizes IO on IA64/Altix systems */
3054 	mmiowb();
3055 }
3056 
3057 /* 82547 workaround to avoid controller hang in half-duplex environment.
3058  * The workaround is to avoid queuing a large packet that would span
3059  * the internal Tx FIFO ring boundary by notifying the stack to resend
3060  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3061  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3062  * to the beginning of the Tx FIFO.
3063  */
3064 
3065 #define E1000_FIFO_HDR			0x10
3066 #define E1000_82547_PAD_LEN		0x3E0
3067 
3068 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3069 				       struct sk_buff *skb)
3070 {
3071 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3072 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3073 
3074 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3075 
3076 	if (adapter->link_duplex != HALF_DUPLEX)
3077 		goto no_fifo_stall_required;
3078 
3079 	if (atomic_read(&adapter->tx_fifo_stall))
3080 		return 1;
3081 
3082 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3083 		atomic_set(&adapter->tx_fifo_stall, 1);
3084 		return 1;
3085 	}
3086 
3087 no_fifo_stall_required:
3088 	adapter->tx_fifo_head += skb_fifo_len;
3089 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3090 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3091 	return 0;
3092 }
3093 
3094 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3095 {
3096 	struct e1000_adapter *adapter = netdev_priv(netdev);
3097 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3098 
3099 	netif_stop_queue(netdev);
3100 	/* Herbert's original patch had:
3101 	 *  smp_mb__after_netif_stop_queue();
3102 	 * but since that doesn't exist yet, just open code it. */
3103 	smp_mb();
3104 
3105 	/* We need to check again in a case another CPU has just
3106 	 * made room available. */
3107 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3108 		return -EBUSY;
3109 
3110 	/* A reprieve! */
3111 	netif_start_queue(netdev);
3112 	++adapter->restart_queue;
3113 	return 0;
3114 }
3115 
3116 static int e1000_maybe_stop_tx(struct net_device *netdev,
3117                                struct e1000_tx_ring *tx_ring, int size)
3118 {
3119 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3120 		return 0;
3121 	return __e1000_maybe_stop_tx(netdev, size);
3122 }
3123 
3124 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3125 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3126 				    struct net_device *netdev)
3127 {
3128 	struct e1000_adapter *adapter = netdev_priv(netdev);
3129 	struct e1000_hw *hw = &adapter->hw;
3130 	struct e1000_tx_ring *tx_ring;
3131 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3132 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3133 	unsigned int tx_flags = 0;
3134 	unsigned int len = skb_headlen(skb);
3135 	unsigned int nr_frags;
3136 	unsigned int mss;
3137 	int count = 0;
3138 	int tso;
3139 	unsigned int f;
3140 
3141 	/* This goes back to the question of how to logically map a tx queue
3142 	 * to a flow.  Right now, performance is impacted slightly negatively
3143 	 * if using multiple tx queues.  If the stack breaks away from a
3144 	 * single qdisc implementation, we can look at this again. */
3145 	tx_ring = adapter->tx_ring;
3146 
3147 	if (unlikely(skb->len <= 0)) {
3148 		dev_kfree_skb_any(skb);
3149 		return NETDEV_TX_OK;
3150 	}
3151 
3152 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3153 	 * packets may get corrupted during padding by HW.
3154 	 * To WA this issue, pad all small packets manually.
3155 	 */
3156 	if (skb->len < ETH_ZLEN) {
3157 		if (skb_pad(skb, ETH_ZLEN - skb->len))
3158 			return NETDEV_TX_OK;
3159 		skb->len = ETH_ZLEN;
3160 		skb_set_tail_pointer(skb, ETH_ZLEN);
3161 	}
3162 
3163 	mss = skb_shinfo(skb)->gso_size;
3164 	/* The controller does a simple calculation to
3165 	 * make sure there is enough room in the FIFO before
3166 	 * initiating the DMA for each buffer.  The calc is:
3167 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3168 	 * overrun the FIFO, adjust the max buffer len if mss
3169 	 * drops. */
3170 	if (mss) {
3171 		u8 hdr_len;
3172 		max_per_txd = min(mss << 2, max_per_txd);
3173 		max_txd_pwr = fls(max_per_txd) - 1;
3174 
3175 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3176 		if (skb->data_len && hdr_len == len) {
3177 			switch (hw->mac_type) {
3178 				unsigned int pull_size;
3179 			case e1000_82544:
3180 				/* Make sure we have room to chop off 4 bytes,
3181 				 * and that the end alignment will work out to
3182 				 * this hardware's requirements
3183 				 * NOTE: this is a TSO only workaround
3184 				 * if end byte alignment not correct move us
3185 				 * into the next dword */
3186 				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3187 					break;
3188 				/* fall through */
3189 				pull_size = min((unsigned int)4, skb->data_len);
3190 				if (!__pskb_pull_tail(skb, pull_size)) {
3191 					e_err(drv, "__pskb_pull_tail "
3192 					      "failed.\n");
3193 					dev_kfree_skb_any(skb);
3194 					return NETDEV_TX_OK;
3195 				}
3196 				len = skb_headlen(skb);
3197 				break;
3198 			default:
3199 				/* do nothing */
3200 				break;
3201 			}
3202 		}
3203 	}
3204 
3205 	/* reserve a descriptor for the offload context */
3206 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3207 		count++;
3208 	count++;
3209 
3210 	/* Controller Erratum workaround */
3211 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3212 		count++;
3213 
3214 	count += TXD_USE_COUNT(len, max_txd_pwr);
3215 
3216 	if (adapter->pcix_82544)
3217 		count++;
3218 
3219 	/* work-around for errata 10 and it applies to all controllers
3220 	 * in PCI-X mode, so add one more descriptor to the count
3221 	 */
3222 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3223 			(len > 2015)))
3224 		count++;
3225 
3226 	nr_frags = skb_shinfo(skb)->nr_frags;
3227 	for (f = 0; f < nr_frags; f++)
3228 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3229 				       max_txd_pwr);
3230 	if (adapter->pcix_82544)
3231 		count += nr_frags;
3232 
3233 	/* need: count + 2 desc gap to keep tail from touching
3234 	 * head, otherwise try next time */
3235 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3236 		return NETDEV_TX_BUSY;
3237 
3238 	if (unlikely((hw->mac_type == e1000_82547) &&
3239 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3240 		netif_stop_queue(netdev);
3241 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3242 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3243 		return NETDEV_TX_BUSY;
3244 	}
3245 
3246 	if (vlan_tx_tag_present(skb)) {
3247 		tx_flags |= E1000_TX_FLAGS_VLAN;
3248 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3249 	}
3250 
3251 	first = tx_ring->next_to_use;
3252 
3253 	tso = e1000_tso(adapter, tx_ring, skb);
3254 	if (tso < 0) {
3255 		dev_kfree_skb_any(skb);
3256 		return NETDEV_TX_OK;
3257 	}
3258 
3259 	if (likely(tso)) {
3260 		if (likely(hw->mac_type != e1000_82544))
3261 			tx_ring->last_tx_tso = true;
3262 		tx_flags |= E1000_TX_FLAGS_TSO;
3263 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3264 		tx_flags |= E1000_TX_FLAGS_CSUM;
3265 
3266 	if (likely(skb->protocol == htons(ETH_P_IP)))
3267 		tx_flags |= E1000_TX_FLAGS_IPV4;
3268 
3269 	if (unlikely(skb->no_fcs))
3270 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3271 
3272 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3273 	                     nr_frags, mss);
3274 
3275 	if (count) {
3276 		netdev_sent_queue(netdev, skb->len);
3277 		skb_tx_timestamp(skb);
3278 
3279 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3280 		/* Make sure there is space in the ring for the next send. */
3281 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3282 
3283 	} else {
3284 		dev_kfree_skb_any(skb);
3285 		tx_ring->buffer_info[first].time_stamp = 0;
3286 		tx_ring->next_to_use = first;
3287 	}
3288 
3289 	return NETDEV_TX_OK;
3290 }
3291 
3292 #define NUM_REGS 38 /* 1 based count */
3293 static void e1000_regdump(struct e1000_adapter *adapter)
3294 {
3295 	struct e1000_hw *hw = &adapter->hw;
3296 	u32 regs[NUM_REGS];
3297 	u32 *regs_buff = regs;
3298 	int i = 0;
3299 
3300 	static const char * const reg_name[] = {
3301 		"CTRL",  "STATUS",
3302 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3303 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3304 		"TIDV", "TXDCTL", "TADV", "TARC0",
3305 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3306 		"TXDCTL1", "TARC1",
3307 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3308 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3309 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3310 	};
3311 
3312 	regs_buff[0]  = er32(CTRL);
3313 	regs_buff[1]  = er32(STATUS);
3314 
3315 	regs_buff[2]  = er32(RCTL);
3316 	regs_buff[3]  = er32(RDLEN);
3317 	regs_buff[4]  = er32(RDH);
3318 	regs_buff[5]  = er32(RDT);
3319 	regs_buff[6]  = er32(RDTR);
3320 
3321 	regs_buff[7]  = er32(TCTL);
3322 	regs_buff[8]  = er32(TDBAL);
3323 	regs_buff[9]  = er32(TDBAH);
3324 	regs_buff[10] = er32(TDLEN);
3325 	regs_buff[11] = er32(TDH);
3326 	regs_buff[12] = er32(TDT);
3327 	regs_buff[13] = er32(TIDV);
3328 	regs_buff[14] = er32(TXDCTL);
3329 	regs_buff[15] = er32(TADV);
3330 	regs_buff[16] = er32(TARC0);
3331 
3332 	regs_buff[17] = er32(TDBAL1);
3333 	regs_buff[18] = er32(TDBAH1);
3334 	regs_buff[19] = er32(TDLEN1);
3335 	regs_buff[20] = er32(TDH1);
3336 	regs_buff[21] = er32(TDT1);
3337 	regs_buff[22] = er32(TXDCTL1);
3338 	regs_buff[23] = er32(TARC1);
3339 	regs_buff[24] = er32(CTRL_EXT);
3340 	regs_buff[25] = er32(ERT);
3341 	regs_buff[26] = er32(RDBAL0);
3342 	regs_buff[27] = er32(RDBAH0);
3343 	regs_buff[28] = er32(TDFH);
3344 	regs_buff[29] = er32(TDFT);
3345 	regs_buff[30] = er32(TDFHS);
3346 	regs_buff[31] = er32(TDFTS);
3347 	regs_buff[32] = er32(TDFPC);
3348 	regs_buff[33] = er32(RDFH);
3349 	regs_buff[34] = er32(RDFT);
3350 	regs_buff[35] = er32(RDFHS);
3351 	regs_buff[36] = er32(RDFTS);
3352 	regs_buff[37] = er32(RDFPC);
3353 
3354 	pr_info("Register dump\n");
3355 	for (i = 0; i < NUM_REGS; i++)
3356 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3357 }
3358 
3359 /*
3360  * e1000_dump: Print registers, tx ring and rx ring
3361  */
3362 static void e1000_dump(struct e1000_adapter *adapter)
3363 {
3364 	/* this code doesn't handle multiple rings */
3365 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3366 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3367 	int i;
3368 
3369 	if (!netif_msg_hw(adapter))
3370 		return;
3371 
3372 	/* Print Registers */
3373 	e1000_regdump(adapter);
3374 
3375 	/*
3376 	 * transmit dump
3377 	 */
3378 	pr_info("TX Desc ring0 dump\n");
3379 
3380 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3381 	 *
3382 	 * Legacy Transmit Descriptor
3383 	 *   +--------------------------------------------------------------+
3384 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3385 	 *   +--------------------------------------------------------------+
3386 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3387 	 *   +--------------------------------------------------------------+
3388 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3389 	 *
3390 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3391 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3392 	 *   +----------------------------------------------------------------+
3393 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3394 	 *   +----------------------------------------------------------------+
3395 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3396 	 *   +----------------------------------------------------------------+
3397 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3398 	 *
3399 	 * Extended Data Descriptor (DTYP=0x1)
3400 	 *   +----------------------------------------------------------------+
3401 	 * 0 |                     Buffer Address [63:0]                      |
3402 	 *   +----------------------------------------------------------------+
3403 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3404 	 *   +----------------------------------------------------------------+
3405 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3406 	 */
3407 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3408 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3409 
3410 	if (!netif_msg_tx_done(adapter))
3411 		goto rx_ring_summary;
3412 
3413 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3414 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3415 		struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3416 		struct my_u { __le64 a; __le64 b; };
3417 		struct my_u *u = (struct my_u *)tx_desc;
3418 		const char *type;
3419 
3420 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3421 			type = "NTC/U";
3422 		else if (i == tx_ring->next_to_use)
3423 			type = "NTU";
3424 		else if (i == tx_ring->next_to_clean)
3425 			type = "NTC";
3426 		else
3427 			type = "";
3428 
3429 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3430 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3431 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3432 			(u64)buffer_info->dma, buffer_info->length,
3433 			buffer_info->next_to_watch,
3434 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3435 	}
3436 
3437 rx_ring_summary:
3438 	/*
3439 	 * receive dump
3440 	 */
3441 	pr_info("\nRX Desc ring dump\n");
3442 
3443 	/* Legacy Receive Descriptor Format
3444 	 *
3445 	 * +-----------------------------------------------------+
3446 	 * |                Buffer Address [63:0]                |
3447 	 * +-----------------------------------------------------+
3448 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3449 	 * +-----------------------------------------------------+
3450 	 * 63       48 47    40 39      32 31         16 15      0
3451 	 */
3452 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3453 
3454 	if (!netif_msg_rx_status(adapter))
3455 		goto exit;
3456 
3457 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3458 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3459 		struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3460 		struct my_u { __le64 a; __le64 b; };
3461 		struct my_u *u = (struct my_u *)rx_desc;
3462 		const char *type;
3463 
3464 		if (i == rx_ring->next_to_use)
3465 			type = "NTU";
3466 		else if (i == rx_ring->next_to_clean)
3467 			type = "NTC";
3468 		else
3469 			type = "";
3470 
3471 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3472 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3473 			(u64)buffer_info->dma, buffer_info->skb, type);
3474 	} /* for */
3475 
3476 	/* dump the descriptor caches */
3477 	/* rx */
3478 	pr_info("Rx descriptor cache in 64bit format\n");
3479 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3480 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3481 			i,
3482 			readl(adapter->hw.hw_addr + i+4),
3483 			readl(adapter->hw.hw_addr + i),
3484 			readl(adapter->hw.hw_addr + i+12),
3485 			readl(adapter->hw.hw_addr + i+8));
3486 	}
3487 	/* tx */
3488 	pr_info("Tx descriptor cache in 64bit format\n");
3489 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3490 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3491 			i,
3492 			readl(adapter->hw.hw_addr + i+4),
3493 			readl(adapter->hw.hw_addr + i),
3494 			readl(adapter->hw.hw_addr + i+12),
3495 			readl(adapter->hw.hw_addr + i+8));
3496 	}
3497 exit:
3498 	return;
3499 }
3500 
3501 /**
3502  * e1000_tx_timeout - Respond to a Tx Hang
3503  * @netdev: network interface device structure
3504  **/
3505 
3506 static void e1000_tx_timeout(struct net_device *netdev)
3507 {
3508 	struct e1000_adapter *adapter = netdev_priv(netdev);
3509 
3510 	/* Do the reset outside of interrupt context */
3511 	adapter->tx_timeout_count++;
3512 	schedule_work(&adapter->reset_task);
3513 }
3514 
3515 static void e1000_reset_task(struct work_struct *work)
3516 {
3517 	struct e1000_adapter *adapter =
3518 		container_of(work, struct e1000_adapter, reset_task);
3519 
3520 	if (test_bit(__E1000_DOWN, &adapter->flags))
3521 		return;
3522 	e_err(drv, "Reset adapter\n");
3523 	e1000_reinit_safe(adapter);
3524 }
3525 
3526 /**
3527  * e1000_get_stats - Get System Network Statistics
3528  * @netdev: network interface device structure
3529  *
3530  * Returns the address of the device statistics structure.
3531  * The statistics are actually updated from the watchdog.
3532  **/
3533 
3534 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3535 {
3536 	/* only return the current stats */
3537 	return &netdev->stats;
3538 }
3539 
3540 /**
3541  * e1000_change_mtu - Change the Maximum Transfer Unit
3542  * @netdev: network interface device structure
3543  * @new_mtu: new value for maximum frame size
3544  *
3545  * Returns 0 on success, negative on failure
3546  **/
3547 
3548 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3549 {
3550 	struct e1000_adapter *adapter = netdev_priv(netdev);
3551 	struct e1000_hw *hw = &adapter->hw;
3552 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3553 
3554 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3555 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3556 		e_err(probe, "Invalid MTU setting\n");
3557 		return -EINVAL;
3558 	}
3559 
3560 	/* Adapter-specific max frame size limits. */
3561 	switch (hw->mac_type) {
3562 	case e1000_undefined ... e1000_82542_rev2_1:
3563 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3564 			e_err(probe, "Jumbo Frames not supported.\n");
3565 			return -EINVAL;
3566 		}
3567 		break;
3568 	default:
3569 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3570 		break;
3571 	}
3572 
3573 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3574 		msleep(1);
3575 	/* e1000_down has a dependency on max_frame_size */
3576 	hw->max_frame_size = max_frame;
3577 	if (netif_running(netdev))
3578 		e1000_down(adapter);
3579 
3580 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3581 	 * means we reserve 2 more, this pushes us to allocate from the next
3582 	 * larger slab size.
3583 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3584 	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
3585 	 *  fragmented skbs */
3586 
3587 	if (max_frame <= E1000_RXBUFFER_2048)
3588 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3589 	else
3590 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3591 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3592 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3593 		adapter->rx_buffer_len = PAGE_SIZE;
3594 #endif
3595 
3596 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3597 	if (!hw->tbi_compatibility_on &&
3598 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3599 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3600 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3601 
3602 	pr_info("%s changing MTU from %d to %d\n",
3603 		netdev->name, netdev->mtu, new_mtu);
3604 	netdev->mtu = new_mtu;
3605 
3606 	if (netif_running(netdev))
3607 		e1000_up(adapter);
3608 	else
3609 		e1000_reset(adapter);
3610 
3611 	clear_bit(__E1000_RESETTING, &adapter->flags);
3612 
3613 	return 0;
3614 }
3615 
3616 /**
3617  * e1000_update_stats - Update the board statistics counters
3618  * @adapter: board private structure
3619  **/
3620 
3621 void e1000_update_stats(struct e1000_adapter *adapter)
3622 {
3623 	struct net_device *netdev = adapter->netdev;
3624 	struct e1000_hw *hw = &adapter->hw;
3625 	struct pci_dev *pdev = adapter->pdev;
3626 	unsigned long flags;
3627 	u16 phy_tmp;
3628 
3629 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3630 
3631 	/*
3632 	 * Prevent stats update while adapter is being reset, or if the pci
3633 	 * connection is down.
3634 	 */
3635 	if (adapter->link_speed == 0)
3636 		return;
3637 	if (pci_channel_offline(pdev))
3638 		return;
3639 
3640 	spin_lock_irqsave(&adapter->stats_lock, flags);
3641 
3642 	/* these counters are modified from e1000_tbi_adjust_stats,
3643 	 * called from the interrupt context, so they must only
3644 	 * be written while holding adapter->stats_lock
3645 	 */
3646 
3647 	adapter->stats.crcerrs += er32(CRCERRS);
3648 	adapter->stats.gprc += er32(GPRC);
3649 	adapter->stats.gorcl += er32(GORCL);
3650 	adapter->stats.gorch += er32(GORCH);
3651 	adapter->stats.bprc += er32(BPRC);
3652 	adapter->stats.mprc += er32(MPRC);
3653 	adapter->stats.roc += er32(ROC);
3654 
3655 	adapter->stats.prc64 += er32(PRC64);
3656 	adapter->stats.prc127 += er32(PRC127);
3657 	adapter->stats.prc255 += er32(PRC255);
3658 	adapter->stats.prc511 += er32(PRC511);
3659 	adapter->stats.prc1023 += er32(PRC1023);
3660 	adapter->stats.prc1522 += er32(PRC1522);
3661 
3662 	adapter->stats.symerrs += er32(SYMERRS);
3663 	adapter->stats.mpc += er32(MPC);
3664 	adapter->stats.scc += er32(SCC);
3665 	adapter->stats.ecol += er32(ECOL);
3666 	adapter->stats.mcc += er32(MCC);
3667 	adapter->stats.latecol += er32(LATECOL);
3668 	adapter->stats.dc += er32(DC);
3669 	adapter->stats.sec += er32(SEC);
3670 	adapter->stats.rlec += er32(RLEC);
3671 	adapter->stats.xonrxc += er32(XONRXC);
3672 	adapter->stats.xontxc += er32(XONTXC);
3673 	adapter->stats.xoffrxc += er32(XOFFRXC);
3674 	adapter->stats.xofftxc += er32(XOFFTXC);
3675 	adapter->stats.fcruc += er32(FCRUC);
3676 	adapter->stats.gptc += er32(GPTC);
3677 	adapter->stats.gotcl += er32(GOTCL);
3678 	adapter->stats.gotch += er32(GOTCH);
3679 	adapter->stats.rnbc += er32(RNBC);
3680 	adapter->stats.ruc += er32(RUC);
3681 	adapter->stats.rfc += er32(RFC);
3682 	adapter->stats.rjc += er32(RJC);
3683 	adapter->stats.torl += er32(TORL);
3684 	adapter->stats.torh += er32(TORH);
3685 	adapter->stats.totl += er32(TOTL);
3686 	adapter->stats.toth += er32(TOTH);
3687 	adapter->stats.tpr += er32(TPR);
3688 
3689 	adapter->stats.ptc64 += er32(PTC64);
3690 	adapter->stats.ptc127 += er32(PTC127);
3691 	adapter->stats.ptc255 += er32(PTC255);
3692 	adapter->stats.ptc511 += er32(PTC511);
3693 	adapter->stats.ptc1023 += er32(PTC1023);
3694 	adapter->stats.ptc1522 += er32(PTC1522);
3695 
3696 	adapter->stats.mptc += er32(MPTC);
3697 	adapter->stats.bptc += er32(BPTC);
3698 
3699 	/* used for adaptive IFS */
3700 
3701 	hw->tx_packet_delta = er32(TPT);
3702 	adapter->stats.tpt += hw->tx_packet_delta;
3703 	hw->collision_delta = er32(COLC);
3704 	adapter->stats.colc += hw->collision_delta;
3705 
3706 	if (hw->mac_type >= e1000_82543) {
3707 		adapter->stats.algnerrc += er32(ALGNERRC);
3708 		adapter->stats.rxerrc += er32(RXERRC);
3709 		adapter->stats.tncrs += er32(TNCRS);
3710 		adapter->stats.cexterr += er32(CEXTERR);
3711 		adapter->stats.tsctc += er32(TSCTC);
3712 		adapter->stats.tsctfc += er32(TSCTFC);
3713 	}
3714 
3715 	/* Fill out the OS statistics structure */
3716 	netdev->stats.multicast = adapter->stats.mprc;
3717 	netdev->stats.collisions = adapter->stats.colc;
3718 
3719 	/* Rx Errors */
3720 
3721 	/* RLEC on some newer hardware can be incorrect so build
3722 	* our own version based on RUC and ROC */
3723 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3724 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3725 		adapter->stats.ruc + adapter->stats.roc +
3726 		adapter->stats.cexterr;
3727 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3728 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3729 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3730 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3731 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3732 
3733 	/* Tx Errors */
3734 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3735 	netdev->stats.tx_errors = adapter->stats.txerrc;
3736 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3737 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3738 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3739 	if (hw->bad_tx_carr_stats_fd &&
3740 	    adapter->link_duplex == FULL_DUPLEX) {
3741 		netdev->stats.tx_carrier_errors = 0;
3742 		adapter->stats.tncrs = 0;
3743 	}
3744 
3745 	/* Tx Dropped needs to be maintained elsewhere */
3746 
3747 	/* Phy Stats */
3748 	if (hw->media_type == e1000_media_type_copper) {
3749 		if ((adapter->link_speed == SPEED_1000) &&
3750 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3751 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3752 			adapter->phy_stats.idle_errors += phy_tmp;
3753 		}
3754 
3755 		if ((hw->mac_type <= e1000_82546) &&
3756 		   (hw->phy_type == e1000_phy_m88) &&
3757 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3758 			adapter->phy_stats.receive_errors += phy_tmp;
3759 	}
3760 
3761 	/* Management Stats */
3762 	if (hw->has_smbus) {
3763 		adapter->stats.mgptc += er32(MGTPTC);
3764 		adapter->stats.mgprc += er32(MGTPRC);
3765 		adapter->stats.mgpdc += er32(MGTPDC);
3766 	}
3767 
3768 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3769 }
3770 
3771 /**
3772  * e1000_intr - Interrupt Handler
3773  * @irq: interrupt number
3774  * @data: pointer to a network interface device structure
3775  **/
3776 
3777 static irqreturn_t e1000_intr(int irq, void *data)
3778 {
3779 	struct net_device *netdev = data;
3780 	struct e1000_adapter *adapter = netdev_priv(netdev);
3781 	struct e1000_hw *hw = &adapter->hw;
3782 	u32 icr = er32(ICR);
3783 
3784 	if (unlikely((!icr)))
3785 		return IRQ_NONE;  /* Not our interrupt */
3786 
3787 	/*
3788 	 * we might have caused the interrupt, but the above
3789 	 * read cleared it, and just in case the driver is
3790 	 * down there is nothing to do so return handled
3791 	 */
3792 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3793 		return IRQ_HANDLED;
3794 
3795 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3796 		hw->get_link_status = 1;
3797 		/* guard against interrupt when we're going down */
3798 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3799 			schedule_delayed_work(&adapter->watchdog_task, 1);
3800 	}
3801 
3802 	/* disable interrupts, without the synchronize_irq bit */
3803 	ew32(IMC, ~0);
3804 	E1000_WRITE_FLUSH();
3805 
3806 	if (likely(napi_schedule_prep(&adapter->napi))) {
3807 		adapter->total_tx_bytes = 0;
3808 		adapter->total_tx_packets = 0;
3809 		adapter->total_rx_bytes = 0;
3810 		adapter->total_rx_packets = 0;
3811 		__napi_schedule(&adapter->napi);
3812 	} else {
3813 		/* this really should not happen! if it does it is basically a
3814 		 * bug, but not a hard error, so enable ints and continue */
3815 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3816 			e1000_irq_enable(adapter);
3817 	}
3818 
3819 	return IRQ_HANDLED;
3820 }
3821 
3822 /**
3823  * e1000_clean - NAPI Rx polling callback
3824  * @adapter: board private structure
3825  **/
3826 static int e1000_clean(struct napi_struct *napi, int budget)
3827 {
3828 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3829 	int tx_clean_complete = 0, work_done = 0;
3830 
3831 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3832 
3833 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3834 
3835 	if (!tx_clean_complete)
3836 		work_done = budget;
3837 
3838 	/* If budget not fully consumed, exit the polling mode */
3839 	if (work_done < budget) {
3840 		if (likely(adapter->itr_setting & 3))
3841 			e1000_set_itr(adapter);
3842 		napi_complete(napi);
3843 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3844 			e1000_irq_enable(adapter);
3845 	}
3846 
3847 	return work_done;
3848 }
3849 
3850 /**
3851  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3852  * @adapter: board private structure
3853  **/
3854 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3855 			       struct e1000_tx_ring *tx_ring)
3856 {
3857 	struct e1000_hw *hw = &adapter->hw;
3858 	struct net_device *netdev = adapter->netdev;
3859 	struct e1000_tx_desc *tx_desc, *eop_desc;
3860 	struct e1000_buffer *buffer_info;
3861 	unsigned int i, eop;
3862 	unsigned int count = 0;
3863 	unsigned int total_tx_bytes=0, total_tx_packets=0;
3864 	unsigned int bytes_compl = 0, pkts_compl = 0;
3865 
3866 	i = tx_ring->next_to_clean;
3867 	eop = tx_ring->buffer_info[i].next_to_watch;
3868 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3869 
3870 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3871 	       (count < tx_ring->count)) {
3872 		bool cleaned = false;
3873 		rmb();	/* read buffer_info after eop_desc */
3874 		for ( ; !cleaned; count++) {
3875 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3876 			buffer_info = &tx_ring->buffer_info[i];
3877 			cleaned = (i == eop);
3878 
3879 			if (cleaned) {
3880 				total_tx_packets += buffer_info->segs;
3881 				total_tx_bytes += buffer_info->bytecount;
3882 				if (buffer_info->skb) {
3883 					bytes_compl += buffer_info->skb->len;
3884 					pkts_compl++;
3885 				}
3886 
3887 			}
3888 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3889 			tx_desc->upper.data = 0;
3890 
3891 			if (unlikely(++i == tx_ring->count)) i = 0;
3892 		}
3893 
3894 		eop = tx_ring->buffer_info[i].next_to_watch;
3895 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3896 	}
3897 
3898 	tx_ring->next_to_clean = i;
3899 
3900 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3901 
3902 #define TX_WAKE_THRESHOLD 32
3903 	if (unlikely(count && netif_carrier_ok(netdev) &&
3904 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3905 		/* Make sure that anybody stopping the queue after this
3906 		 * sees the new next_to_clean.
3907 		 */
3908 		smp_mb();
3909 
3910 		if (netif_queue_stopped(netdev) &&
3911 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3912 			netif_wake_queue(netdev);
3913 			++adapter->restart_queue;
3914 		}
3915 	}
3916 
3917 	if (adapter->detect_tx_hung) {
3918 		/* Detect a transmit hang in hardware, this serializes the
3919 		 * check with the clearing of time_stamp and movement of i */
3920 		adapter->detect_tx_hung = false;
3921 		if (tx_ring->buffer_info[eop].time_stamp &&
3922 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3923 		               (adapter->tx_timeout_factor * HZ)) &&
3924 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3925 
3926 			/* detected Tx unit hang */
3927 			e_err(drv, "Detected Tx Unit Hang\n"
3928 			      "  Tx Queue             <%lu>\n"
3929 			      "  TDH                  <%x>\n"
3930 			      "  TDT                  <%x>\n"
3931 			      "  next_to_use          <%x>\n"
3932 			      "  next_to_clean        <%x>\n"
3933 			      "buffer_info[next_to_clean]\n"
3934 			      "  time_stamp           <%lx>\n"
3935 			      "  next_to_watch        <%x>\n"
3936 			      "  jiffies              <%lx>\n"
3937 			      "  next_to_watch.status <%x>\n",
3938 				(unsigned long)((tx_ring - adapter->tx_ring) /
3939 					sizeof(struct e1000_tx_ring)),
3940 				readl(hw->hw_addr + tx_ring->tdh),
3941 				readl(hw->hw_addr + tx_ring->tdt),
3942 				tx_ring->next_to_use,
3943 				tx_ring->next_to_clean,
3944 				tx_ring->buffer_info[eop].time_stamp,
3945 				eop,
3946 				jiffies,
3947 				eop_desc->upper.fields.status);
3948 			e1000_dump(adapter);
3949 			netif_stop_queue(netdev);
3950 		}
3951 	}
3952 	adapter->total_tx_bytes += total_tx_bytes;
3953 	adapter->total_tx_packets += total_tx_packets;
3954 	netdev->stats.tx_bytes += total_tx_bytes;
3955 	netdev->stats.tx_packets += total_tx_packets;
3956 	return count < tx_ring->count;
3957 }
3958 
3959 /**
3960  * e1000_rx_checksum - Receive Checksum Offload for 82543
3961  * @adapter:     board private structure
3962  * @status_err:  receive descriptor status and error fields
3963  * @csum:        receive descriptor csum field
3964  * @sk_buff:     socket buffer with received data
3965  **/
3966 
3967 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3968 			      u32 csum, struct sk_buff *skb)
3969 {
3970 	struct e1000_hw *hw = &adapter->hw;
3971 	u16 status = (u16)status_err;
3972 	u8 errors = (u8)(status_err >> 24);
3973 
3974 	skb_checksum_none_assert(skb);
3975 
3976 	/* 82543 or newer only */
3977 	if (unlikely(hw->mac_type < e1000_82543)) return;
3978 	/* Ignore Checksum bit is set */
3979 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3980 	/* TCP/UDP checksum error bit is set */
3981 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3982 		/* let the stack verify checksum errors */
3983 		adapter->hw_csum_err++;
3984 		return;
3985 	}
3986 	/* TCP/UDP Checksum has not been calculated */
3987 	if (!(status & E1000_RXD_STAT_TCPCS))
3988 		return;
3989 
3990 	/* It must be a TCP or UDP packet with a valid checksum */
3991 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3992 		/* TCP checksum is good */
3993 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3994 	}
3995 	adapter->hw_csum_good++;
3996 }
3997 
3998 /**
3999  * e1000_consume_page - helper function
4000  **/
4001 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
4002                                u16 length)
4003 {
4004 	bi->page = NULL;
4005 	skb->len += length;
4006 	skb->data_len += length;
4007 	skb->truesize += PAGE_SIZE;
4008 }
4009 
4010 /**
4011  * e1000_receive_skb - helper function to handle rx indications
4012  * @adapter: board private structure
4013  * @status: descriptor status field as written by hardware
4014  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4015  * @skb: pointer to sk_buff to be indicated to stack
4016  */
4017 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4018 			      __le16 vlan, struct sk_buff *skb)
4019 {
4020 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4021 
4022 	if (status & E1000_RXD_STAT_VP) {
4023 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4024 
4025 		__vlan_hwaccel_put_tag(skb, vid);
4026 	}
4027 	napi_gro_receive(&adapter->napi, skb);
4028 }
4029 
4030 /**
4031  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4032  * @adapter: board private structure
4033  * @rx_ring: ring to clean
4034  * @work_done: amount of napi work completed this call
4035  * @work_to_do: max amount of work allowed for this call to do
4036  *
4037  * the return value indicates whether actual cleaning was done, there
4038  * is no guarantee that everything was cleaned
4039  */
4040 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4041 				     struct e1000_rx_ring *rx_ring,
4042 				     int *work_done, int work_to_do)
4043 {
4044 	struct e1000_hw *hw = &adapter->hw;
4045 	struct net_device *netdev = adapter->netdev;
4046 	struct pci_dev *pdev = adapter->pdev;
4047 	struct e1000_rx_desc *rx_desc, *next_rxd;
4048 	struct e1000_buffer *buffer_info, *next_buffer;
4049 	unsigned long irq_flags;
4050 	u32 length;
4051 	unsigned int i;
4052 	int cleaned_count = 0;
4053 	bool cleaned = false;
4054 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4055 
4056 	i = rx_ring->next_to_clean;
4057 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4058 	buffer_info = &rx_ring->buffer_info[i];
4059 
4060 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4061 		struct sk_buff *skb;
4062 		u8 status;
4063 
4064 		if (*work_done >= work_to_do)
4065 			break;
4066 		(*work_done)++;
4067 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4068 
4069 		status = rx_desc->status;
4070 		skb = buffer_info->skb;
4071 		buffer_info->skb = NULL;
4072 
4073 		if (++i == rx_ring->count) i = 0;
4074 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4075 		prefetch(next_rxd);
4076 
4077 		next_buffer = &rx_ring->buffer_info[i];
4078 
4079 		cleaned = true;
4080 		cleaned_count++;
4081 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4082 			       buffer_info->length, DMA_FROM_DEVICE);
4083 		buffer_info->dma = 0;
4084 
4085 		length = le16_to_cpu(rx_desc->length);
4086 
4087 		/* errors is only valid for DD + EOP descriptors */
4088 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4089 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4090 			u8 *mapped;
4091 			u8 last_byte;
4092 
4093 			mapped = page_address(buffer_info->page);
4094 			last_byte = *(mapped + length - 1);
4095 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4096 				       last_byte)) {
4097 				spin_lock_irqsave(&adapter->stats_lock,
4098 				                  irq_flags);
4099 				e1000_tbi_adjust_stats(hw, &adapter->stats,
4100 						       length, mapped);
4101 				spin_unlock_irqrestore(&adapter->stats_lock,
4102 				                       irq_flags);
4103 				length--;
4104 			} else {
4105 				if (netdev->features & NETIF_F_RXALL)
4106 					goto process_skb;
4107 				/* recycle both page and skb */
4108 				buffer_info->skb = skb;
4109 				/* an error means any chain goes out the window
4110 				 * too */
4111 				if (rx_ring->rx_skb_top)
4112 					dev_kfree_skb(rx_ring->rx_skb_top);
4113 				rx_ring->rx_skb_top = NULL;
4114 				goto next_desc;
4115 			}
4116 		}
4117 
4118 #define rxtop rx_ring->rx_skb_top
4119 process_skb:
4120 		if (!(status & E1000_RXD_STAT_EOP)) {
4121 			/* this descriptor is only the beginning (or middle) */
4122 			if (!rxtop) {
4123 				/* this is the beginning of a chain */
4124 				rxtop = skb;
4125 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
4126 				                   0, length);
4127 			} else {
4128 				/* this is the middle of a chain */
4129 				skb_fill_page_desc(rxtop,
4130 				    skb_shinfo(rxtop)->nr_frags,
4131 				    buffer_info->page, 0, length);
4132 				/* re-use the skb, only consumed the page */
4133 				buffer_info->skb = skb;
4134 			}
4135 			e1000_consume_page(buffer_info, rxtop, length);
4136 			goto next_desc;
4137 		} else {
4138 			if (rxtop) {
4139 				/* end of the chain */
4140 				skb_fill_page_desc(rxtop,
4141 				    skb_shinfo(rxtop)->nr_frags,
4142 				    buffer_info->page, 0, length);
4143 				/* re-use the current skb, we only consumed the
4144 				 * page */
4145 				buffer_info->skb = skb;
4146 				skb = rxtop;
4147 				rxtop = NULL;
4148 				e1000_consume_page(buffer_info, skb, length);
4149 			} else {
4150 				/* no chain, got EOP, this buf is the packet
4151 				 * copybreak to save the put_page/alloc_page */
4152 				if (length <= copybreak &&
4153 				    skb_tailroom(skb) >= length) {
4154 					u8 *vaddr;
4155 					vaddr = kmap_atomic(buffer_info->page);
4156 					memcpy(skb_tail_pointer(skb), vaddr, length);
4157 					kunmap_atomic(vaddr);
4158 					/* re-use the page, so don't erase
4159 					 * buffer_info->page */
4160 					skb_put(skb, length);
4161 				} else {
4162 					skb_fill_page_desc(skb, 0,
4163 					                   buffer_info->page, 0,
4164 				                           length);
4165 					e1000_consume_page(buffer_info, skb,
4166 					                   length);
4167 				}
4168 			}
4169 		}
4170 
4171 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4172 		e1000_rx_checksum(adapter,
4173 		                  (u32)(status) |
4174 		                  ((u32)(rx_desc->errors) << 24),
4175 		                  le16_to_cpu(rx_desc->csum), skb);
4176 
4177 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4178 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4179 			pskb_trim(skb, skb->len - 4);
4180 		total_rx_packets++;
4181 
4182 		/* eth type trans needs skb->data to point to something */
4183 		if (!pskb_may_pull(skb, ETH_HLEN)) {
4184 			e_err(drv, "pskb_may_pull failed.\n");
4185 			dev_kfree_skb(skb);
4186 			goto next_desc;
4187 		}
4188 
4189 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4190 
4191 next_desc:
4192 		rx_desc->status = 0;
4193 
4194 		/* return some buffers to hardware, one at a time is too slow */
4195 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4196 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4197 			cleaned_count = 0;
4198 		}
4199 
4200 		/* use prefetched values */
4201 		rx_desc = next_rxd;
4202 		buffer_info = next_buffer;
4203 	}
4204 	rx_ring->next_to_clean = i;
4205 
4206 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4207 	if (cleaned_count)
4208 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4209 
4210 	adapter->total_rx_packets += total_rx_packets;
4211 	adapter->total_rx_bytes += total_rx_bytes;
4212 	netdev->stats.rx_bytes += total_rx_bytes;
4213 	netdev->stats.rx_packets += total_rx_packets;
4214 	return cleaned;
4215 }
4216 
4217 /*
4218  * this should improve performance for small packets with large amounts
4219  * of reassembly being done in the stack
4220  */
4221 static void e1000_check_copybreak(struct net_device *netdev,
4222 				 struct e1000_buffer *buffer_info,
4223 				 u32 length, struct sk_buff **skb)
4224 {
4225 	struct sk_buff *new_skb;
4226 
4227 	if (length > copybreak)
4228 		return;
4229 
4230 	new_skb = netdev_alloc_skb_ip_align(netdev, length);
4231 	if (!new_skb)
4232 		return;
4233 
4234 	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4235 				       (*skb)->data - NET_IP_ALIGN,
4236 				       length + NET_IP_ALIGN);
4237 	/* save the skb in buffer_info as good */
4238 	buffer_info->skb = *skb;
4239 	*skb = new_skb;
4240 }
4241 
4242 /**
4243  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4244  * @adapter: board private structure
4245  * @rx_ring: ring to clean
4246  * @work_done: amount of napi work completed this call
4247  * @work_to_do: max amount of work allowed for this call to do
4248  */
4249 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4250 			       struct e1000_rx_ring *rx_ring,
4251 			       int *work_done, int work_to_do)
4252 {
4253 	struct e1000_hw *hw = &adapter->hw;
4254 	struct net_device *netdev = adapter->netdev;
4255 	struct pci_dev *pdev = adapter->pdev;
4256 	struct e1000_rx_desc *rx_desc, *next_rxd;
4257 	struct e1000_buffer *buffer_info, *next_buffer;
4258 	unsigned long flags;
4259 	u32 length;
4260 	unsigned int i;
4261 	int cleaned_count = 0;
4262 	bool cleaned = false;
4263 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4264 
4265 	i = rx_ring->next_to_clean;
4266 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4267 	buffer_info = &rx_ring->buffer_info[i];
4268 
4269 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4270 		struct sk_buff *skb;
4271 		u8 status;
4272 
4273 		if (*work_done >= work_to_do)
4274 			break;
4275 		(*work_done)++;
4276 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4277 
4278 		status = rx_desc->status;
4279 		skb = buffer_info->skb;
4280 		buffer_info->skb = NULL;
4281 
4282 		prefetch(skb->data - NET_IP_ALIGN);
4283 
4284 		if (++i == rx_ring->count) i = 0;
4285 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4286 		prefetch(next_rxd);
4287 
4288 		next_buffer = &rx_ring->buffer_info[i];
4289 
4290 		cleaned = true;
4291 		cleaned_count++;
4292 		dma_unmap_single(&pdev->dev, buffer_info->dma,
4293 				 buffer_info->length, DMA_FROM_DEVICE);
4294 		buffer_info->dma = 0;
4295 
4296 		length = le16_to_cpu(rx_desc->length);
4297 		/* !EOP means multiple descriptors were used to store a single
4298 		 * packet, if thats the case we need to toss it.  In fact, we
4299 		 * to toss every packet with the EOP bit clear and the next
4300 		 * frame that _does_ have the EOP bit set, as it is by
4301 		 * definition only a frame fragment
4302 		 */
4303 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4304 			adapter->discarding = true;
4305 
4306 		if (adapter->discarding) {
4307 			/* All receives must fit into a single buffer */
4308 			e_dbg("Receive packet consumed multiple buffers\n");
4309 			/* recycle */
4310 			buffer_info->skb = skb;
4311 			if (status & E1000_RXD_STAT_EOP)
4312 				adapter->discarding = false;
4313 			goto next_desc;
4314 		}
4315 
4316 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4317 			u8 last_byte = *(skb->data + length - 1);
4318 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4319 				       last_byte)) {
4320 				spin_lock_irqsave(&adapter->stats_lock, flags);
4321 				e1000_tbi_adjust_stats(hw, &adapter->stats,
4322 				                       length, skb->data);
4323 				spin_unlock_irqrestore(&adapter->stats_lock,
4324 				                       flags);
4325 				length--;
4326 			} else {
4327 				if (netdev->features & NETIF_F_RXALL)
4328 					goto process_skb;
4329 				/* recycle */
4330 				buffer_info->skb = skb;
4331 				goto next_desc;
4332 			}
4333 		}
4334 
4335 process_skb:
4336 		total_rx_bytes += (length - 4); /* don't count FCS */
4337 		total_rx_packets++;
4338 
4339 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4340 			/* adjust length to remove Ethernet CRC, this must be
4341 			 * done after the TBI_ACCEPT workaround above
4342 			 */
4343 			length -= 4;
4344 
4345 		e1000_check_copybreak(netdev, buffer_info, length, &skb);
4346 
4347 		skb_put(skb, length);
4348 
4349 		/* Receive Checksum Offload */
4350 		e1000_rx_checksum(adapter,
4351 				  (u32)(status) |
4352 				  ((u32)(rx_desc->errors) << 24),
4353 				  le16_to_cpu(rx_desc->csum), skb);
4354 
4355 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4356 
4357 next_desc:
4358 		rx_desc->status = 0;
4359 
4360 		/* return some buffers to hardware, one at a time is too slow */
4361 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4362 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4363 			cleaned_count = 0;
4364 		}
4365 
4366 		/* use prefetched values */
4367 		rx_desc = next_rxd;
4368 		buffer_info = next_buffer;
4369 	}
4370 	rx_ring->next_to_clean = i;
4371 
4372 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4373 	if (cleaned_count)
4374 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4375 
4376 	adapter->total_rx_packets += total_rx_packets;
4377 	adapter->total_rx_bytes += total_rx_bytes;
4378 	netdev->stats.rx_bytes += total_rx_bytes;
4379 	netdev->stats.rx_packets += total_rx_packets;
4380 	return cleaned;
4381 }
4382 
4383 /**
4384  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4385  * @adapter: address of board private structure
4386  * @rx_ring: pointer to receive ring structure
4387  * @cleaned_count: number of buffers to allocate this pass
4388  **/
4389 
4390 static void
4391 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4392                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4393 {
4394 	struct net_device *netdev = adapter->netdev;
4395 	struct pci_dev *pdev = adapter->pdev;
4396 	struct e1000_rx_desc *rx_desc;
4397 	struct e1000_buffer *buffer_info;
4398 	struct sk_buff *skb;
4399 	unsigned int i;
4400 	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4401 
4402 	i = rx_ring->next_to_use;
4403 	buffer_info = &rx_ring->buffer_info[i];
4404 
4405 	while (cleaned_count--) {
4406 		skb = buffer_info->skb;
4407 		if (skb) {
4408 			skb_trim(skb, 0);
4409 			goto check_page;
4410 		}
4411 
4412 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4413 		if (unlikely(!skb)) {
4414 			/* Better luck next round */
4415 			adapter->alloc_rx_buff_failed++;
4416 			break;
4417 		}
4418 
4419 		buffer_info->skb = skb;
4420 		buffer_info->length = adapter->rx_buffer_len;
4421 check_page:
4422 		/* allocate a new page if necessary */
4423 		if (!buffer_info->page) {
4424 			buffer_info->page = alloc_page(GFP_ATOMIC);
4425 			if (unlikely(!buffer_info->page)) {
4426 				adapter->alloc_rx_buff_failed++;
4427 				break;
4428 			}
4429 		}
4430 
4431 		if (!buffer_info->dma) {
4432 			buffer_info->dma = dma_map_page(&pdev->dev,
4433 			                                buffer_info->page, 0,
4434 							buffer_info->length,
4435 							DMA_FROM_DEVICE);
4436 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4437 				put_page(buffer_info->page);
4438 				dev_kfree_skb(skb);
4439 				buffer_info->page = NULL;
4440 				buffer_info->skb = NULL;
4441 				buffer_info->dma = 0;
4442 				adapter->alloc_rx_buff_failed++;
4443 				break; /* while !buffer_info->skb */
4444 			}
4445 		}
4446 
4447 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4448 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4449 
4450 		if (unlikely(++i == rx_ring->count))
4451 			i = 0;
4452 		buffer_info = &rx_ring->buffer_info[i];
4453 	}
4454 
4455 	if (likely(rx_ring->next_to_use != i)) {
4456 		rx_ring->next_to_use = i;
4457 		if (unlikely(i-- == 0))
4458 			i = (rx_ring->count - 1);
4459 
4460 		/* Force memory writes to complete before letting h/w
4461 		 * know there are new descriptors to fetch.  (Only
4462 		 * applicable for weak-ordered memory model archs,
4463 		 * such as IA-64). */
4464 		wmb();
4465 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4466 	}
4467 }
4468 
4469 /**
4470  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4471  * @adapter: address of board private structure
4472  **/
4473 
4474 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4475 				   struct e1000_rx_ring *rx_ring,
4476 				   int cleaned_count)
4477 {
4478 	struct e1000_hw *hw = &adapter->hw;
4479 	struct net_device *netdev = adapter->netdev;
4480 	struct pci_dev *pdev = adapter->pdev;
4481 	struct e1000_rx_desc *rx_desc;
4482 	struct e1000_buffer *buffer_info;
4483 	struct sk_buff *skb;
4484 	unsigned int i;
4485 	unsigned int bufsz = adapter->rx_buffer_len;
4486 
4487 	i = rx_ring->next_to_use;
4488 	buffer_info = &rx_ring->buffer_info[i];
4489 
4490 	while (cleaned_count--) {
4491 		skb = buffer_info->skb;
4492 		if (skb) {
4493 			skb_trim(skb, 0);
4494 			goto map_skb;
4495 		}
4496 
4497 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4498 		if (unlikely(!skb)) {
4499 			/* Better luck next round */
4500 			adapter->alloc_rx_buff_failed++;
4501 			break;
4502 		}
4503 
4504 		/* Fix for errata 23, can't cross 64kB boundary */
4505 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4506 			struct sk_buff *oldskb = skb;
4507 			e_err(rx_err, "skb align check failed: %u bytes at "
4508 			      "%p\n", bufsz, skb->data);
4509 			/* Try again, without freeing the previous */
4510 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4511 			/* Failed allocation, critical failure */
4512 			if (!skb) {
4513 				dev_kfree_skb(oldskb);
4514 				adapter->alloc_rx_buff_failed++;
4515 				break;
4516 			}
4517 
4518 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4519 				/* give up */
4520 				dev_kfree_skb(skb);
4521 				dev_kfree_skb(oldskb);
4522 				adapter->alloc_rx_buff_failed++;
4523 				break; /* while !buffer_info->skb */
4524 			}
4525 
4526 			/* Use new allocation */
4527 			dev_kfree_skb(oldskb);
4528 		}
4529 		buffer_info->skb = skb;
4530 		buffer_info->length = adapter->rx_buffer_len;
4531 map_skb:
4532 		buffer_info->dma = dma_map_single(&pdev->dev,
4533 						  skb->data,
4534 						  buffer_info->length,
4535 						  DMA_FROM_DEVICE);
4536 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4537 			dev_kfree_skb(skb);
4538 			buffer_info->skb = NULL;
4539 			buffer_info->dma = 0;
4540 			adapter->alloc_rx_buff_failed++;
4541 			break; /* while !buffer_info->skb */
4542 		}
4543 
4544 		/*
4545 		 * XXX if it was allocated cleanly it will never map to a
4546 		 * boundary crossing
4547 		 */
4548 
4549 		/* Fix for errata 23, can't cross 64kB boundary */
4550 		if (!e1000_check_64k_bound(adapter,
4551 					(void *)(unsigned long)buffer_info->dma,
4552 					adapter->rx_buffer_len)) {
4553 			e_err(rx_err, "dma align check failed: %u bytes at "
4554 			      "%p\n", adapter->rx_buffer_len,
4555 			      (void *)(unsigned long)buffer_info->dma);
4556 			dev_kfree_skb(skb);
4557 			buffer_info->skb = NULL;
4558 
4559 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4560 					 adapter->rx_buffer_len,
4561 					 DMA_FROM_DEVICE);
4562 			buffer_info->dma = 0;
4563 
4564 			adapter->alloc_rx_buff_failed++;
4565 			break; /* while !buffer_info->skb */
4566 		}
4567 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4568 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4569 
4570 		if (unlikely(++i == rx_ring->count))
4571 			i = 0;
4572 		buffer_info = &rx_ring->buffer_info[i];
4573 	}
4574 
4575 	if (likely(rx_ring->next_to_use != i)) {
4576 		rx_ring->next_to_use = i;
4577 		if (unlikely(i-- == 0))
4578 			i = (rx_ring->count - 1);
4579 
4580 		/* Force memory writes to complete before letting h/w
4581 		 * know there are new descriptors to fetch.  (Only
4582 		 * applicable for weak-ordered memory model archs,
4583 		 * such as IA-64). */
4584 		wmb();
4585 		writel(i, hw->hw_addr + rx_ring->rdt);
4586 	}
4587 }
4588 
4589 /**
4590  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4591  * @adapter:
4592  **/
4593 
4594 static void e1000_smartspeed(struct e1000_adapter *adapter)
4595 {
4596 	struct e1000_hw *hw = &adapter->hw;
4597 	u16 phy_status;
4598 	u16 phy_ctrl;
4599 
4600 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4601 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4602 		return;
4603 
4604 	if (adapter->smartspeed == 0) {
4605 		/* If Master/Slave config fault is asserted twice,
4606 		 * we assume back-to-back */
4607 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4608 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4609 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4610 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4611 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4612 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4613 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4614 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4615 					    phy_ctrl);
4616 			adapter->smartspeed++;
4617 			if (!e1000_phy_setup_autoneg(hw) &&
4618 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4619 				   	       &phy_ctrl)) {
4620 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4621 					     MII_CR_RESTART_AUTO_NEG);
4622 				e1000_write_phy_reg(hw, PHY_CTRL,
4623 						    phy_ctrl);
4624 			}
4625 		}
4626 		return;
4627 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4628 		/* If still no link, perhaps using 2/3 pair cable */
4629 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4630 		phy_ctrl |= CR_1000T_MS_ENABLE;
4631 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4632 		if (!e1000_phy_setup_autoneg(hw) &&
4633 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4634 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4635 				     MII_CR_RESTART_AUTO_NEG);
4636 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4637 		}
4638 	}
4639 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4640 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4641 		adapter->smartspeed = 0;
4642 }
4643 
4644 /**
4645  * e1000_ioctl -
4646  * @netdev:
4647  * @ifreq:
4648  * @cmd:
4649  **/
4650 
4651 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4652 {
4653 	switch (cmd) {
4654 	case SIOCGMIIPHY:
4655 	case SIOCGMIIREG:
4656 	case SIOCSMIIREG:
4657 		return e1000_mii_ioctl(netdev, ifr, cmd);
4658 	default:
4659 		return -EOPNOTSUPP;
4660 	}
4661 }
4662 
4663 /**
4664  * e1000_mii_ioctl -
4665  * @netdev:
4666  * @ifreq:
4667  * @cmd:
4668  **/
4669 
4670 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4671 			   int cmd)
4672 {
4673 	struct e1000_adapter *adapter = netdev_priv(netdev);
4674 	struct e1000_hw *hw = &adapter->hw;
4675 	struct mii_ioctl_data *data = if_mii(ifr);
4676 	int retval;
4677 	u16 mii_reg;
4678 	unsigned long flags;
4679 
4680 	if (hw->media_type != e1000_media_type_copper)
4681 		return -EOPNOTSUPP;
4682 
4683 	switch (cmd) {
4684 	case SIOCGMIIPHY:
4685 		data->phy_id = hw->phy_addr;
4686 		break;
4687 	case SIOCGMIIREG:
4688 		spin_lock_irqsave(&adapter->stats_lock, flags);
4689 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4690 				   &data->val_out)) {
4691 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4692 			return -EIO;
4693 		}
4694 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4695 		break;
4696 	case SIOCSMIIREG:
4697 		if (data->reg_num & ~(0x1F))
4698 			return -EFAULT;
4699 		mii_reg = data->val_in;
4700 		spin_lock_irqsave(&adapter->stats_lock, flags);
4701 		if (e1000_write_phy_reg(hw, data->reg_num,
4702 					mii_reg)) {
4703 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4704 			return -EIO;
4705 		}
4706 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4707 		if (hw->media_type == e1000_media_type_copper) {
4708 			switch (data->reg_num) {
4709 			case PHY_CTRL:
4710 				if (mii_reg & MII_CR_POWER_DOWN)
4711 					break;
4712 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4713 					hw->autoneg = 1;
4714 					hw->autoneg_advertised = 0x2F;
4715 				} else {
4716 					u32 speed;
4717 					if (mii_reg & 0x40)
4718 						speed = SPEED_1000;
4719 					else if (mii_reg & 0x2000)
4720 						speed = SPEED_100;
4721 					else
4722 						speed = SPEED_10;
4723 					retval = e1000_set_spd_dplx(
4724 						adapter, speed,
4725 						((mii_reg & 0x100)
4726 						 ? DUPLEX_FULL :
4727 						 DUPLEX_HALF));
4728 					if (retval)
4729 						return retval;
4730 				}
4731 				if (netif_running(adapter->netdev))
4732 					e1000_reinit_locked(adapter);
4733 				else
4734 					e1000_reset(adapter);
4735 				break;
4736 			case M88E1000_PHY_SPEC_CTRL:
4737 			case M88E1000_EXT_PHY_SPEC_CTRL:
4738 				if (e1000_phy_reset(hw))
4739 					return -EIO;
4740 				break;
4741 			}
4742 		} else {
4743 			switch (data->reg_num) {
4744 			case PHY_CTRL:
4745 				if (mii_reg & MII_CR_POWER_DOWN)
4746 					break;
4747 				if (netif_running(adapter->netdev))
4748 					e1000_reinit_locked(adapter);
4749 				else
4750 					e1000_reset(adapter);
4751 				break;
4752 			}
4753 		}
4754 		break;
4755 	default:
4756 		return -EOPNOTSUPP;
4757 	}
4758 	return E1000_SUCCESS;
4759 }
4760 
4761 void e1000_pci_set_mwi(struct e1000_hw *hw)
4762 {
4763 	struct e1000_adapter *adapter = hw->back;
4764 	int ret_val = pci_set_mwi(adapter->pdev);
4765 
4766 	if (ret_val)
4767 		e_err(probe, "Error in setting MWI\n");
4768 }
4769 
4770 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4771 {
4772 	struct e1000_adapter *adapter = hw->back;
4773 
4774 	pci_clear_mwi(adapter->pdev);
4775 }
4776 
4777 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4778 {
4779 	struct e1000_adapter *adapter = hw->back;
4780 	return pcix_get_mmrbc(adapter->pdev);
4781 }
4782 
4783 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4784 {
4785 	struct e1000_adapter *adapter = hw->back;
4786 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4787 }
4788 
4789 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4790 {
4791 	outl(value, port);
4792 }
4793 
4794 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4795 {
4796 	u16 vid;
4797 
4798 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4799 		return true;
4800 	return false;
4801 }
4802 
4803 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4804 			      netdev_features_t features)
4805 {
4806 	struct e1000_hw *hw = &adapter->hw;
4807 	u32 ctrl;
4808 
4809 	ctrl = er32(CTRL);
4810 	if (features & NETIF_F_HW_VLAN_RX) {
4811 		/* enable VLAN tag insert/strip */
4812 		ctrl |= E1000_CTRL_VME;
4813 	} else {
4814 		/* disable VLAN tag insert/strip */
4815 		ctrl &= ~E1000_CTRL_VME;
4816 	}
4817 	ew32(CTRL, ctrl);
4818 }
4819 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4820 				     bool filter_on)
4821 {
4822 	struct e1000_hw *hw = &adapter->hw;
4823 	u32 rctl;
4824 
4825 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4826 		e1000_irq_disable(adapter);
4827 
4828 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4829 	if (filter_on) {
4830 		/* enable VLAN receive filtering */
4831 		rctl = er32(RCTL);
4832 		rctl &= ~E1000_RCTL_CFIEN;
4833 		if (!(adapter->netdev->flags & IFF_PROMISC))
4834 			rctl |= E1000_RCTL_VFE;
4835 		ew32(RCTL, rctl);
4836 		e1000_update_mng_vlan(adapter);
4837 	} else {
4838 		/* disable VLAN receive filtering */
4839 		rctl = er32(RCTL);
4840 		rctl &= ~E1000_RCTL_VFE;
4841 		ew32(RCTL, rctl);
4842 	}
4843 
4844 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4845 		e1000_irq_enable(adapter);
4846 }
4847 
4848 static void e1000_vlan_mode(struct net_device *netdev,
4849 			    netdev_features_t features)
4850 {
4851 	struct e1000_adapter *adapter = netdev_priv(netdev);
4852 
4853 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4854 		e1000_irq_disable(adapter);
4855 
4856 	__e1000_vlan_mode(adapter, features);
4857 
4858 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4859 		e1000_irq_enable(adapter);
4860 }
4861 
4862 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4863 {
4864 	struct e1000_adapter *adapter = netdev_priv(netdev);
4865 	struct e1000_hw *hw = &adapter->hw;
4866 	u32 vfta, index;
4867 
4868 	if ((hw->mng_cookie.status &
4869 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4870 	    (vid == adapter->mng_vlan_id))
4871 		return 0;
4872 
4873 	if (!e1000_vlan_used(adapter))
4874 		e1000_vlan_filter_on_off(adapter, true);
4875 
4876 	/* add VID to filter table */
4877 	index = (vid >> 5) & 0x7F;
4878 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4879 	vfta |= (1 << (vid & 0x1F));
4880 	e1000_write_vfta(hw, index, vfta);
4881 
4882 	set_bit(vid, adapter->active_vlans);
4883 
4884 	return 0;
4885 }
4886 
4887 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4888 {
4889 	struct e1000_adapter *adapter = netdev_priv(netdev);
4890 	struct e1000_hw *hw = &adapter->hw;
4891 	u32 vfta, index;
4892 
4893 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4894 		e1000_irq_disable(adapter);
4895 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4896 		e1000_irq_enable(adapter);
4897 
4898 	/* remove VID from filter table */
4899 	index = (vid >> 5) & 0x7F;
4900 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4901 	vfta &= ~(1 << (vid & 0x1F));
4902 	e1000_write_vfta(hw, index, vfta);
4903 
4904 	clear_bit(vid, adapter->active_vlans);
4905 
4906 	if (!e1000_vlan_used(adapter))
4907 		e1000_vlan_filter_on_off(adapter, false);
4908 
4909 	return 0;
4910 }
4911 
4912 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4913 {
4914 	u16 vid;
4915 
4916 	if (!e1000_vlan_used(adapter))
4917 		return;
4918 
4919 	e1000_vlan_filter_on_off(adapter, true);
4920 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4921 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
4922 }
4923 
4924 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4925 {
4926 	struct e1000_hw *hw = &adapter->hw;
4927 
4928 	hw->autoneg = 0;
4929 
4930 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4931 	 * for the switch() below to work */
4932 	if ((spd & 1) || (dplx & ~1))
4933 		goto err_inval;
4934 
4935 	/* Fiber NICs only allow 1000 gbps Full duplex */
4936 	if ((hw->media_type == e1000_media_type_fiber) &&
4937 	    spd != SPEED_1000 &&
4938 	    dplx != DUPLEX_FULL)
4939 		goto err_inval;
4940 
4941 	switch (spd + dplx) {
4942 	case SPEED_10 + DUPLEX_HALF:
4943 		hw->forced_speed_duplex = e1000_10_half;
4944 		break;
4945 	case SPEED_10 + DUPLEX_FULL:
4946 		hw->forced_speed_duplex = e1000_10_full;
4947 		break;
4948 	case SPEED_100 + DUPLEX_HALF:
4949 		hw->forced_speed_duplex = e1000_100_half;
4950 		break;
4951 	case SPEED_100 + DUPLEX_FULL:
4952 		hw->forced_speed_duplex = e1000_100_full;
4953 		break;
4954 	case SPEED_1000 + DUPLEX_FULL:
4955 		hw->autoneg = 1;
4956 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
4957 		break;
4958 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4959 	default:
4960 		goto err_inval;
4961 	}
4962 
4963 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4964 	hw->mdix = AUTO_ALL_MODES;
4965 
4966 	return 0;
4967 
4968 err_inval:
4969 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
4970 	return -EINVAL;
4971 }
4972 
4973 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4974 {
4975 	struct net_device *netdev = pci_get_drvdata(pdev);
4976 	struct e1000_adapter *adapter = netdev_priv(netdev);
4977 	struct e1000_hw *hw = &adapter->hw;
4978 	u32 ctrl, ctrl_ext, rctl, status;
4979 	u32 wufc = adapter->wol;
4980 #ifdef CONFIG_PM
4981 	int retval = 0;
4982 #endif
4983 
4984 	netif_device_detach(netdev);
4985 
4986 	if (netif_running(netdev)) {
4987 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4988 		e1000_down(adapter);
4989 	}
4990 
4991 #ifdef CONFIG_PM
4992 	retval = pci_save_state(pdev);
4993 	if (retval)
4994 		return retval;
4995 #endif
4996 
4997 	status = er32(STATUS);
4998 	if (status & E1000_STATUS_LU)
4999 		wufc &= ~E1000_WUFC_LNKC;
5000 
5001 	if (wufc) {
5002 		e1000_setup_rctl(adapter);
5003 		e1000_set_rx_mode(netdev);
5004 
5005 		rctl = er32(RCTL);
5006 
5007 		/* turn on all-multi mode if wake on multicast is enabled */
5008 		if (wufc & E1000_WUFC_MC)
5009 			rctl |= E1000_RCTL_MPE;
5010 
5011 		/* enable receives in the hardware */
5012 		ew32(RCTL, rctl | E1000_RCTL_EN);
5013 
5014 		if (hw->mac_type >= e1000_82540) {
5015 			ctrl = er32(CTRL);
5016 			/* advertise wake from D3Cold */
5017 			#define E1000_CTRL_ADVD3WUC 0x00100000
5018 			/* phy power management enable */
5019 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5020 			ctrl |= E1000_CTRL_ADVD3WUC |
5021 				E1000_CTRL_EN_PHY_PWR_MGMT;
5022 			ew32(CTRL, ctrl);
5023 		}
5024 
5025 		if (hw->media_type == e1000_media_type_fiber ||
5026 		    hw->media_type == e1000_media_type_internal_serdes) {
5027 			/* keep the laser running in D3 */
5028 			ctrl_ext = er32(CTRL_EXT);
5029 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5030 			ew32(CTRL_EXT, ctrl_ext);
5031 		}
5032 
5033 		ew32(WUC, E1000_WUC_PME_EN);
5034 		ew32(WUFC, wufc);
5035 	} else {
5036 		ew32(WUC, 0);
5037 		ew32(WUFC, 0);
5038 	}
5039 
5040 	e1000_release_manageability(adapter);
5041 
5042 	*enable_wake = !!wufc;
5043 
5044 	/* make sure adapter isn't asleep if manageability is enabled */
5045 	if (adapter->en_mng_pt)
5046 		*enable_wake = true;
5047 
5048 	if (netif_running(netdev))
5049 		e1000_free_irq(adapter);
5050 
5051 	pci_disable_device(pdev);
5052 
5053 	return 0;
5054 }
5055 
5056 #ifdef CONFIG_PM
5057 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5058 {
5059 	int retval;
5060 	bool wake;
5061 
5062 	retval = __e1000_shutdown(pdev, &wake);
5063 	if (retval)
5064 		return retval;
5065 
5066 	if (wake) {
5067 		pci_prepare_to_sleep(pdev);
5068 	} else {
5069 		pci_wake_from_d3(pdev, false);
5070 		pci_set_power_state(pdev, PCI_D3hot);
5071 	}
5072 
5073 	return 0;
5074 }
5075 
5076 static int e1000_resume(struct pci_dev *pdev)
5077 {
5078 	struct net_device *netdev = pci_get_drvdata(pdev);
5079 	struct e1000_adapter *adapter = netdev_priv(netdev);
5080 	struct e1000_hw *hw = &adapter->hw;
5081 	u32 err;
5082 
5083 	pci_set_power_state(pdev, PCI_D0);
5084 	pci_restore_state(pdev);
5085 	pci_save_state(pdev);
5086 
5087 	if (adapter->need_ioport)
5088 		err = pci_enable_device(pdev);
5089 	else
5090 		err = pci_enable_device_mem(pdev);
5091 	if (err) {
5092 		pr_err("Cannot enable PCI device from suspend\n");
5093 		return err;
5094 	}
5095 	pci_set_master(pdev);
5096 
5097 	pci_enable_wake(pdev, PCI_D3hot, 0);
5098 	pci_enable_wake(pdev, PCI_D3cold, 0);
5099 
5100 	if (netif_running(netdev)) {
5101 		err = e1000_request_irq(adapter);
5102 		if (err)
5103 			return err;
5104 	}
5105 
5106 	e1000_power_up_phy(adapter);
5107 	e1000_reset(adapter);
5108 	ew32(WUS, ~0);
5109 
5110 	e1000_init_manageability(adapter);
5111 
5112 	if (netif_running(netdev))
5113 		e1000_up(adapter);
5114 
5115 	netif_device_attach(netdev);
5116 
5117 	return 0;
5118 }
5119 #endif
5120 
5121 static void e1000_shutdown(struct pci_dev *pdev)
5122 {
5123 	bool wake;
5124 
5125 	__e1000_shutdown(pdev, &wake);
5126 
5127 	if (system_state == SYSTEM_POWER_OFF) {
5128 		pci_wake_from_d3(pdev, wake);
5129 		pci_set_power_state(pdev, PCI_D3hot);
5130 	}
5131 }
5132 
5133 #ifdef CONFIG_NET_POLL_CONTROLLER
5134 /*
5135  * Polling 'interrupt' - used by things like netconsole to send skbs
5136  * without having to re-enable interrupts. It's not called while
5137  * the interrupt routine is executing.
5138  */
5139 static void e1000_netpoll(struct net_device *netdev)
5140 {
5141 	struct e1000_adapter *adapter = netdev_priv(netdev);
5142 
5143 	disable_irq(adapter->pdev->irq);
5144 	e1000_intr(adapter->pdev->irq, netdev);
5145 	enable_irq(adapter->pdev->irq);
5146 }
5147 #endif
5148 
5149 /**
5150  * e1000_io_error_detected - called when PCI error is detected
5151  * @pdev: Pointer to PCI device
5152  * @state: The current pci connection state
5153  *
5154  * This function is called after a PCI bus error affecting
5155  * this device has been detected.
5156  */
5157 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5158 						pci_channel_state_t state)
5159 {
5160 	struct net_device *netdev = pci_get_drvdata(pdev);
5161 	struct e1000_adapter *adapter = netdev_priv(netdev);
5162 
5163 	netif_device_detach(netdev);
5164 
5165 	if (state == pci_channel_io_perm_failure)
5166 		return PCI_ERS_RESULT_DISCONNECT;
5167 
5168 	if (netif_running(netdev))
5169 		e1000_down(adapter);
5170 	pci_disable_device(pdev);
5171 
5172 	/* Request a slot slot reset. */
5173 	return PCI_ERS_RESULT_NEED_RESET;
5174 }
5175 
5176 /**
5177  * e1000_io_slot_reset - called after the pci bus has been reset.
5178  * @pdev: Pointer to PCI device
5179  *
5180  * Restart the card from scratch, as if from a cold-boot. Implementation
5181  * resembles the first-half of the e1000_resume routine.
5182  */
5183 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5184 {
5185 	struct net_device *netdev = pci_get_drvdata(pdev);
5186 	struct e1000_adapter *adapter = netdev_priv(netdev);
5187 	struct e1000_hw *hw = &adapter->hw;
5188 	int err;
5189 
5190 	if (adapter->need_ioport)
5191 		err = pci_enable_device(pdev);
5192 	else
5193 		err = pci_enable_device_mem(pdev);
5194 	if (err) {
5195 		pr_err("Cannot re-enable PCI device after reset.\n");
5196 		return PCI_ERS_RESULT_DISCONNECT;
5197 	}
5198 	pci_set_master(pdev);
5199 
5200 	pci_enable_wake(pdev, PCI_D3hot, 0);
5201 	pci_enable_wake(pdev, PCI_D3cold, 0);
5202 
5203 	e1000_reset(adapter);
5204 	ew32(WUS, ~0);
5205 
5206 	return PCI_ERS_RESULT_RECOVERED;
5207 }
5208 
5209 /**
5210  * e1000_io_resume - called when traffic can start flowing again.
5211  * @pdev: Pointer to PCI device
5212  *
5213  * This callback is called when the error recovery driver tells us that
5214  * its OK to resume normal operation. Implementation resembles the
5215  * second-half of the e1000_resume routine.
5216  */
5217 static void e1000_io_resume(struct pci_dev *pdev)
5218 {
5219 	struct net_device *netdev = pci_get_drvdata(pdev);
5220 	struct e1000_adapter *adapter = netdev_priv(netdev);
5221 
5222 	e1000_init_manageability(adapter);
5223 
5224 	if (netif_running(netdev)) {
5225 		if (e1000_up(adapter)) {
5226 			pr_info("can't bring device back up after reset\n");
5227 			return;
5228 		}
5229 	}
5230 
5231 	netif_device_attach(netdev);
5232 }
5233 
5234 /* e1000_main.c */
5235