1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 #include "e1000.h" 30 #include <net/ip6_checksum.h> 31 #include <linux/io.h> 32 #include <linux/prefetch.h> 33 #include <linux/bitops.h> 34 #include <linux/if_vlan.h> 35 36 char e1000_driver_name[] = "e1000"; 37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 38 #define DRV_VERSION "7.3.21-k8-NAPI" 39 const char e1000_driver_version[] = DRV_VERSION; 40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 41 42 /* e1000_pci_tbl - PCI Device ID Table 43 * 44 * Last entry must be all 0s 45 * 46 * Macro expands to... 47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 48 */ 49 static const struct pci_device_id e1000_pci_tbl[] = { 50 INTEL_E1000_ETHERNET_DEVICE(0x1000), 51 INTEL_E1000_ETHERNET_DEVICE(0x1001), 52 INTEL_E1000_ETHERNET_DEVICE(0x1004), 53 INTEL_E1000_ETHERNET_DEVICE(0x1008), 54 INTEL_E1000_ETHERNET_DEVICE(0x1009), 55 INTEL_E1000_ETHERNET_DEVICE(0x100C), 56 INTEL_E1000_ETHERNET_DEVICE(0x100D), 57 INTEL_E1000_ETHERNET_DEVICE(0x100E), 58 INTEL_E1000_ETHERNET_DEVICE(0x100F), 59 INTEL_E1000_ETHERNET_DEVICE(0x1010), 60 INTEL_E1000_ETHERNET_DEVICE(0x1011), 61 INTEL_E1000_ETHERNET_DEVICE(0x1012), 62 INTEL_E1000_ETHERNET_DEVICE(0x1013), 63 INTEL_E1000_ETHERNET_DEVICE(0x1014), 64 INTEL_E1000_ETHERNET_DEVICE(0x1015), 65 INTEL_E1000_ETHERNET_DEVICE(0x1016), 66 INTEL_E1000_ETHERNET_DEVICE(0x1017), 67 INTEL_E1000_ETHERNET_DEVICE(0x1018), 68 INTEL_E1000_ETHERNET_DEVICE(0x1019), 69 INTEL_E1000_ETHERNET_DEVICE(0x101A), 70 INTEL_E1000_ETHERNET_DEVICE(0x101D), 71 INTEL_E1000_ETHERNET_DEVICE(0x101E), 72 INTEL_E1000_ETHERNET_DEVICE(0x1026), 73 INTEL_E1000_ETHERNET_DEVICE(0x1027), 74 INTEL_E1000_ETHERNET_DEVICE(0x1028), 75 INTEL_E1000_ETHERNET_DEVICE(0x1075), 76 INTEL_E1000_ETHERNET_DEVICE(0x1076), 77 INTEL_E1000_ETHERNET_DEVICE(0x1077), 78 INTEL_E1000_ETHERNET_DEVICE(0x1078), 79 INTEL_E1000_ETHERNET_DEVICE(0x1079), 80 INTEL_E1000_ETHERNET_DEVICE(0x107A), 81 INTEL_E1000_ETHERNET_DEVICE(0x107B), 82 INTEL_E1000_ETHERNET_DEVICE(0x107C), 83 INTEL_E1000_ETHERNET_DEVICE(0x108A), 84 INTEL_E1000_ETHERNET_DEVICE(0x1099), 85 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 87 /* required last entry */ 88 {0,} 89 }; 90 91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 92 93 int e1000_up(struct e1000_adapter *adapter); 94 void e1000_down(struct e1000_adapter *adapter); 95 void e1000_reinit_locked(struct e1000_adapter *adapter); 96 void e1000_reset(struct e1000_adapter *adapter); 97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 102 struct e1000_tx_ring *txdr); 103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 104 struct e1000_rx_ring *rxdr); 105 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 106 struct e1000_tx_ring *tx_ring); 107 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 108 struct e1000_rx_ring *rx_ring); 109 void e1000_update_stats(struct e1000_adapter *adapter); 110 111 static int e1000_init_module(void); 112 static void e1000_exit_module(void); 113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 114 static void e1000_remove(struct pci_dev *pdev); 115 static int e1000_alloc_queues(struct e1000_adapter *adapter); 116 static int e1000_sw_init(struct e1000_adapter *adapter); 117 int e1000_open(struct net_device *netdev); 118 int e1000_close(struct net_device *netdev); 119 static void e1000_configure_tx(struct e1000_adapter *adapter); 120 static void e1000_configure_rx(struct e1000_adapter *adapter); 121 static void e1000_setup_rctl(struct e1000_adapter *adapter); 122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 125 struct e1000_tx_ring *tx_ring); 126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 127 struct e1000_rx_ring *rx_ring); 128 static void e1000_set_rx_mode(struct net_device *netdev); 129 static void e1000_update_phy_info_task(struct work_struct *work); 130 static void e1000_watchdog(struct work_struct *work); 131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 133 struct net_device *netdev); 134 static struct net_device_stats *e1000_get_stats(struct net_device *netdev); 135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 136 static int e1000_set_mac(struct net_device *netdev, void *p); 137 static irqreturn_t e1000_intr(int irq, void *data); 138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 139 struct e1000_tx_ring *tx_ring); 140 static int e1000_clean(struct napi_struct *napi, int budget); 141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 142 struct e1000_rx_ring *rx_ring, 143 int *work_done, int work_to_do); 144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 145 struct e1000_rx_ring *rx_ring, 146 int *work_done, int work_to_do); 147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, 148 struct e1000_rx_ring *rx_ring, 149 int cleaned_count) 150 { 151 } 152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 153 struct e1000_rx_ring *rx_ring, 154 int cleaned_count); 155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 156 struct e1000_rx_ring *rx_ring, 157 int cleaned_count); 158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 160 int cmd); 161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 163 static void e1000_tx_timeout(struct net_device *dev); 164 static void e1000_reset_task(struct work_struct *work); 165 static void e1000_smartspeed(struct e1000_adapter *adapter); 166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 167 struct sk_buff *skb); 168 169 static bool e1000_vlan_used(struct e1000_adapter *adapter); 170 static void e1000_vlan_mode(struct net_device *netdev, 171 netdev_features_t features); 172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 173 bool filter_on); 174 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 175 __be16 proto, u16 vid); 176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 177 __be16 proto, u16 vid); 178 static void e1000_restore_vlan(struct e1000_adapter *adapter); 179 180 #ifdef CONFIG_PM 181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 182 static int e1000_resume(struct pci_dev *pdev); 183 #endif 184 static void e1000_shutdown(struct pci_dev *pdev); 185 186 #ifdef CONFIG_NET_POLL_CONTROLLER 187 /* for netdump / net console */ 188 static void e1000_netpoll (struct net_device *netdev); 189 #endif 190 191 #define COPYBREAK_DEFAULT 256 192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 193 module_param(copybreak, uint, 0644); 194 MODULE_PARM_DESC(copybreak, 195 "Maximum size of packet that is copied to a new buffer on receive"); 196 197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 198 pci_channel_state_t state); 199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 200 static void e1000_io_resume(struct pci_dev *pdev); 201 202 static const struct pci_error_handlers e1000_err_handler = { 203 .error_detected = e1000_io_error_detected, 204 .slot_reset = e1000_io_slot_reset, 205 .resume = e1000_io_resume, 206 }; 207 208 static struct pci_driver e1000_driver = { 209 .name = e1000_driver_name, 210 .id_table = e1000_pci_tbl, 211 .probe = e1000_probe, 212 .remove = e1000_remove, 213 #ifdef CONFIG_PM 214 /* Power Management Hooks */ 215 .suspend = e1000_suspend, 216 .resume = e1000_resume, 217 #endif 218 .shutdown = e1000_shutdown, 219 .err_handler = &e1000_err_handler 220 }; 221 222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 224 MODULE_LICENSE("GPL"); 225 MODULE_VERSION(DRV_VERSION); 226 227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 228 static int debug = -1; 229 module_param(debug, int, 0); 230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 231 232 /** 233 * e1000_get_hw_dev - return device 234 * used by hardware layer to print debugging information 235 * 236 **/ 237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 238 { 239 struct e1000_adapter *adapter = hw->back; 240 return adapter->netdev; 241 } 242 243 /** 244 * e1000_init_module - Driver Registration Routine 245 * 246 * e1000_init_module is the first routine called when the driver is 247 * loaded. All it does is register with the PCI subsystem. 248 **/ 249 static int __init e1000_init_module(void) 250 { 251 int ret; 252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); 253 254 pr_info("%s\n", e1000_copyright); 255 256 ret = pci_register_driver(&e1000_driver); 257 if (copybreak != COPYBREAK_DEFAULT) { 258 if (copybreak == 0) 259 pr_info("copybreak disabled\n"); 260 else 261 pr_info("copybreak enabled for " 262 "packets <= %u bytes\n", copybreak); 263 } 264 return ret; 265 } 266 267 module_init(e1000_init_module); 268 269 /** 270 * e1000_exit_module - Driver Exit Cleanup Routine 271 * 272 * e1000_exit_module is called just before the driver is removed 273 * from memory. 274 **/ 275 static void __exit e1000_exit_module(void) 276 { 277 pci_unregister_driver(&e1000_driver); 278 } 279 280 module_exit(e1000_exit_module); 281 282 static int e1000_request_irq(struct e1000_adapter *adapter) 283 { 284 struct net_device *netdev = adapter->netdev; 285 irq_handler_t handler = e1000_intr; 286 int irq_flags = IRQF_SHARED; 287 int err; 288 289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 290 netdev); 291 if (err) { 292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 293 } 294 295 return err; 296 } 297 298 static void e1000_free_irq(struct e1000_adapter *adapter) 299 { 300 struct net_device *netdev = adapter->netdev; 301 302 free_irq(adapter->pdev->irq, netdev); 303 } 304 305 /** 306 * e1000_irq_disable - Mask off interrupt generation on the NIC 307 * @adapter: board private structure 308 **/ 309 static void e1000_irq_disable(struct e1000_adapter *adapter) 310 { 311 struct e1000_hw *hw = &adapter->hw; 312 313 ew32(IMC, ~0); 314 E1000_WRITE_FLUSH(); 315 synchronize_irq(adapter->pdev->irq); 316 } 317 318 /** 319 * e1000_irq_enable - Enable default interrupt generation settings 320 * @adapter: board private structure 321 **/ 322 static void e1000_irq_enable(struct e1000_adapter *adapter) 323 { 324 struct e1000_hw *hw = &adapter->hw; 325 326 ew32(IMS, IMS_ENABLE_MASK); 327 E1000_WRITE_FLUSH(); 328 } 329 330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 331 { 332 struct e1000_hw *hw = &adapter->hw; 333 struct net_device *netdev = adapter->netdev; 334 u16 vid = hw->mng_cookie.vlan_id; 335 u16 old_vid = adapter->mng_vlan_id; 336 337 if (!e1000_vlan_used(adapter)) 338 return; 339 340 if (!test_bit(vid, adapter->active_vlans)) { 341 if (hw->mng_cookie.status & 342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 344 adapter->mng_vlan_id = vid; 345 } else { 346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 347 } 348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 349 (vid != old_vid) && 350 !test_bit(old_vid, adapter->active_vlans)) 351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 352 old_vid); 353 } else { 354 adapter->mng_vlan_id = vid; 355 } 356 } 357 358 static void e1000_init_manageability(struct e1000_adapter *adapter) 359 { 360 struct e1000_hw *hw = &adapter->hw; 361 362 if (adapter->en_mng_pt) { 363 u32 manc = er32(MANC); 364 365 /* disable hardware interception of ARP */ 366 manc &= ~(E1000_MANC_ARP_EN); 367 368 ew32(MANC, manc); 369 } 370 } 371 372 static void e1000_release_manageability(struct e1000_adapter *adapter) 373 { 374 struct e1000_hw *hw = &adapter->hw; 375 376 if (adapter->en_mng_pt) { 377 u32 manc = er32(MANC); 378 379 /* re-enable hardware interception of ARP */ 380 manc |= E1000_MANC_ARP_EN; 381 382 ew32(MANC, manc); 383 } 384 } 385 386 /** 387 * e1000_configure - configure the hardware for RX and TX 388 * @adapter = private board structure 389 **/ 390 static void e1000_configure(struct e1000_adapter *adapter) 391 { 392 struct net_device *netdev = adapter->netdev; 393 int i; 394 395 e1000_set_rx_mode(netdev); 396 397 e1000_restore_vlan(adapter); 398 e1000_init_manageability(adapter); 399 400 e1000_configure_tx(adapter); 401 e1000_setup_rctl(adapter); 402 e1000_configure_rx(adapter); 403 /* call E1000_DESC_UNUSED which always leaves 404 * at least 1 descriptor unused to make sure 405 * next_to_use != next_to_clean 406 */ 407 for (i = 0; i < adapter->num_rx_queues; i++) { 408 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 409 adapter->alloc_rx_buf(adapter, ring, 410 E1000_DESC_UNUSED(ring)); 411 } 412 } 413 414 int e1000_up(struct e1000_adapter *adapter) 415 { 416 struct e1000_hw *hw = &adapter->hw; 417 418 /* hardware has been reset, we need to reload some things */ 419 e1000_configure(adapter); 420 421 clear_bit(__E1000_DOWN, &adapter->flags); 422 423 napi_enable(&adapter->napi); 424 425 e1000_irq_enable(adapter); 426 427 netif_wake_queue(adapter->netdev); 428 429 /* fire a link change interrupt to start the watchdog */ 430 ew32(ICS, E1000_ICS_LSC); 431 return 0; 432 } 433 434 /** 435 * e1000_power_up_phy - restore link in case the phy was powered down 436 * @adapter: address of board private structure 437 * 438 * The phy may be powered down to save power and turn off link when the 439 * driver is unloaded and wake on lan is not enabled (among others) 440 * *** this routine MUST be followed by a call to e1000_reset *** 441 **/ 442 void e1000_power_up_phy(struct e1000_adapter *adapter) 443 { 444 struct e1000_hw *hw = &adapter->hw; 445 u16 mii_reg = 0; 446 447 /* Just clear the power down bit to wake the phy back up */ 448 if (hw->media_type == e1000_media_type_copper) { 449 /* according to the manual, the phy will retain its 450 * settings across a power-down/up cycle 451 */ 452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 453 mii_reg &= ~MII_CR_POWER_DOWN; 454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 455 } 456 } 457 458 static void e1000_power_down_phy(struct e1000_adapter *adapter) 459 { 460 struct e1000_hw *hw = &adapter->hw; 461 462 /* Power down the PHY so no link is implied when interface is down * 463 * The PHY cannot be powered down if any of the following is true * 464 * (a) WoL is enabled 465 * (b) AMT is active 466 * (c) SoL/IDER session is active 467 */ 468 if (!adapter->wol && hw->mac_type >= e1000_82540 && 469 hw->media_type == e1000_media_type_copper) { 470 u16 mii_reg = 0; 471 472 switch (hw->mac_type) { 473 case e1000_82540: 474 case e1000_82545: 475 case e1000_82545_rev_3: 476 case e1000_82546: 477 case e1000_ce4100: 478 case e1000_82546_rev_3: 479 case e1000_82541: 480 case e1000_82541_rev_2: 481 case e1000_82547: 482 case e1000_82547_rev_2: 483 if (er32(MANC) & E1000_MANC_SMBUS_EN) 484 goto out; 485 break; 486 default: 487 goto out; 488 } 489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 490 mii_reg |= MII_CR_POWER_DOWN; 491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 492 msleep(1); 493 } 494 out: 495 return; 496 } 497 498 static void e1000_down_and_stop(struct e1000_adapter *adapter) 499 { 500 set_bit(__E1000_DOWN, &adapter->flags); 501 502 cancel_delayed_work_sync(&adapter->watchdog_task); 503 504 /* 505 * Since the watchdog task can reschedule other tasks, we should cancel 506 * it first, otherwise we can run into the situation when a work is 507 * still running after the adapter has been turned down. 508 */ 509 510 cancel_delayed_work_sync(&adapter->phy_info_task); 511 cancel_delayed_work_sync(&adapter->fifo_stall_task); 512 513 /* Only kill reset task if adapter is not resetting */ 514 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 515 cancel_work_sync(&adapter->reset_task); 516 } 517 518 void e1000_down(struct e1000_adapter *adapter) 519 { 520 struct e1000_hw *hw = &adapter->hw; 521 struct net_device *netdev = adapter->netdev; 522 u32 rctl, tctl; 523 524 netif_carrier_off(netdev); 525 526 /* disable receives in the hardware */ 527 rctl = er32(RCTL); 528 ew32(RCTL, rctl & ~E1000_RCTL_EN); 529 /* flush and sleep below */ 530 531 netif_tx_disable(netdev); 532 533 /* disable transmits in the hardware */ 534 tctl = er32(TCTL); 535 tctl &= ~E1000_TCTL_EN; 536 ew32(TCTL, tctl); 537 /* flush both disables and wait for them to finish */ 538 E1000_WRITE_FLUSH(); 539 msleep(10); 540 541 napi_disable(&adapter->napi); 542 543 e1000_irq_disable(adapter); 544 545 /* Setting DOWN must be after irq_disable to prevent 546 * a screaming interrupt. Setting DOWN also prevents 547 * tasks from rescheduling. 548 */ 549 e1000_down_and_stop(adapter); 550 551 adapter->link_speed = 0; 552 adapter->link_duplex = 0; 553 554 e1000_reset(adapter); 555 e1000_clean_all_tx_rings(adapter); 556 e1000_clean_all_rx_rings(adapter); 557 } 558 559 void e1000_reinit_locked(struct e1000_adapter *adapter) 560 { 561 WARN_ON(in_interrupt()); 562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 563 msleep(1); 564 e1000_down(adapter); 565 e1000_up(adapter); 566 clear_bit(__E1000_RESETTING, &adapter->flags); 567 } 568 569 void e1000_reset(struct e1000_adapter *adapter) 570 { 571 struct e1000_hw *hw = &adapter->hw; 572 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 573 bool legacy_pba_adjust = false; 574 u16 hwm; 575 576 /* Repartition Pba for greater than 9k mtu 577 * To take effect CTRL.RST is required. 578 */ 579 580 switch (hw->mac_type) { 581 case e1000_82542_rev2_0: 582 case e1000_82542_rev2_1: 583 case e1000_82543: 584 case e1000_82544: 585 case e1000_82540: 586 case e1000_82541: 587 case e1000_82541_rev_2: 588 legacy_pba_adjust = true; 589 pba = E1000_PBA_48K; 590 break; 591 case e1000_82545: 592 case e1000_82545_rev_3: 593 case e1000_82546: 594 case e1000_ce4100: 595 case e1000_82546_rev_3: 596 pba = E1000_PBA_48K; 597 break; 598 case e1000_82547: 599 case e1000_82547_rev_2: 600 legacy_pba_adjust = true; 601 pba = E1000_PBA_30K; 602 break; 603 case e1000_undefined: 604 case e1000_num_macs: 605 break; 606 } 607 608 if (legacy_pba_adjust) { 609 if (hw->max_frame_size > E1000_RXBUFFER_8192) 610 pba -= 8; /* allocate more FIFO for Tx */ 611 612 if (hw->mac_type == e1000_82547) { 613 adapter->tx_fifo_head = 0; 614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 615 adapter->tx_fifo_size = 616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 617 atomic_set(&adapter->tx_fifo_stall, 0); 618 } 619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 620 /* adjust PBA for jumbo frames */ 621 ew32(PBA, pba); 622 623 /* To maintain wire speed transmits, the Tx FIFO should be 624 * large enough to accommodate two full transmit packets, 625 * rounded up to the next 1KB and expressed in KB. Likewise, 626 * the Rx FIFO should be large enough to accommodate at least 627 * one full receive packet and is similarly rounded up and 628 * expressed in KB. 629 */ 630 pba = er32(PBA); 631 /* upper 16 bits has Tx packet buffer allocation size in KB */ 632 tx_space = pba >> 16; 633 /* lower 16 bits has Rx packet buffer allocation size in KB */ 634 pba &= 0xffff; 635 /* the Tx fifo also stores 16 bytes of information about the Tx 636 * but don't include ethernet FCS because hardware appends it 637 */ 638 min_tx_space = (hw->max_frame_size + 639 sizeof(struct e1000_tx_desc) - 640 ETH_FCS_LEN) * 2; 641 min_tx_space = ALIGN(min_tx_space, 1024); 642 min_tx_space >>= 10; 643 /* software strips receive CRC, so leave room for it */ 644 min_rx_space = hw->max_frame_size; 645 min_rx_space = ALIGN(min_rx_space, 1024); 646 min_rx_space >>= 10; 647 648 /* If current Tx allocation is less than the min Tx FIFO size, 649 * and the min Tx FIFO size is less than the current Rx FIFO 650 * allocation, take space away from current Rx allocation 651 */ 652 if (tx_space < min_tx_space && 653 ((min_tx_space - tx_space) < pba)) { 654 pba = pba - (min_tx_space - tx_space); 655 656 /* PCI/PCIx hardware has PBA alignment constraints */ 657 switch (hw->mac_type) { 658 case e1000_82545 ... e1000_82546_rev_3: 659 pba &= ~(E1000_PBA_8K - 1); 660 break; 661 default: 662 break; 663 } 664 665 /* if short on Rx space, Rx wins and must trump Tx 666 * adjustment or use Early Receive if available 667 */ 668 if (pba < min_rx_space) 669 pba = min_rx_space; 670 } 671 } 672 673 ew32(PBA, pba); 674 675 /* flow control settings: 676 * The high water mark must be low enough to fit one full frame 677 * (or the size used for early receive) above it in the Rx FIFO. 678 * Set it to the lower of: 679 * - 90% of the Rx FIFO size, and 680 * - the full Rx FIFO size minus the early receive size (for parts 681 * with ERT support assuming ERT set to E1000_ERT_2048), or 682 * - the full Rx FIFO size minus one full frame 683 */ 684 hwm = min(((pba << 10) * 9 / 10), 685 ((pba << 10) - hw->max_frame_size)); 686 687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 688 hw->fc_low_water = hw->fc_high_water - 8; 689 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 690 hw->fc_send_xon = 1; 691 hw->fc = hw->original_fc; 692 693 /* Allow time for pending master requests to run */ 694 e1000_reset_hw(hw); 695 if (hw->mac_type >= e1000_82544) 696 ew32(WUC, 0); 697 698 if (e1000_init_hw(hw)) 699 e_dev_err("Hardware Error\n"); 700 e1000_update_mng_vlan(adapter); 701 702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 703 if (hw->mac_type >= e1000_82544 && 704 hw->autoneg == 1 && 705 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 706 u32 ctrl = er32(CTRL); 707 /* clear phy power management bit if we are in gig only mode, 708 * which if enabled will attempt negotiation to 100Mb, which 709 * can cause a loss of link at power off or driver unload 710 */ 711 ctrl &= ~E1000_CTRL_SWDPIN3; 712 ew32(CTRL, ctrl); 713 } 714 715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 717 718 e1000_reset_adaptive(hw); 719 e1000_phy_get_info(hw, &adapter->phy_info); 720 721 e1000_release_manageability(adapter); 722 } 723 724 /* Dump the eeprom for users having checksum issues */ 725 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 726 { 727 struct net_device *netdev = adapter->netdev; 728 struct ethtool_eeprom eeprom; 729 const struct ethtool_ops *ops = netdev->ethtool_ops; 730 u8 *data; 731 int i; 732 u16 csum_old, csum_new = 0; 733 734 eeprom.len = ops->get_eeprom_len(netdev); 735 eeprom.offset = 0; 736 737 data = kmalloc(eeprom.len, GFP_KERNEL); 738 if (!data) 739 return; 740 741 ops->get_eeprom(netdev, &eeprom, data); 742 743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 746 csum_new += data[i] + (data[i + 1] << 8); 747 csum_new = EEPROM_SUM - csum_new; 748 749 pr_err("/*********************/\n"); 750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 751 pr_err("Calculated : 0x%04x\n", csum_new); 752 753 pr_err("Offset Values\n"); 754 pr_err("======== ======\n"); 755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 756 757 pr_err("Include this output when contacting your support provider.\n"); 758 pr_err("This is not a software error! Something bad happened to\n"); 759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 760 pr_err("result in further problems, possibly loss of data,\n"); 761 pr_err("corruption or system hangs!\n"); 762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 763 pr_err("which is invalid and requires you to set the proper MAC\n"); 764 pr_err("address manually before continuing to enable this network\n"); 765 pr_err("device. Please inspect the EEPROM dump and report the\n"); 766 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 767 pr_err("/*********************/\n"); 768 769 kfree(data); 770 } 771 772 /** 773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 774 * @pdev: PCI device information struct 775 * 776 * Return true if an adapter needs ioport resources 777 **/ 778 static int e1000_is_need_ioport(struct pci_dev *pdev) 779 { 780 switch (pdev->device) { 781 case E1000_DEV_ID_82540EM: 782 case E1000_DEV_ID_82540EM_LOM: 783 case E1000_DEV_ID_82540EP: 784 case E1000_DEV_ID_82540EP_LOM: 785 case E1000_DEV_ID_82540EP_LP: 786 case E1000_DEV_ID_82541EI: 787 case E1000_DEV_ID_82541EI_MOBILE: 788 case E1000_DEV_ID_82541ER: 789 case E1000_DEV_ID_82541ER_LOM: 790 case E1000_DEV_ID_82541GI: 791 case E1000_DEV_ID_82541GI_LF: 792 case E1000_DEV_ID_82541GI_MOBILE: 793 case E1000_DEV_ID_82544EI_COPPER: 794 case E1000_DEV_ID_82544EI_FIBER: 795 case E1000_DEV_ID_82544GC_COPPER: 796 case E1000_DEV_ID_82544GC_LOM: 797 case E1000_DEV_ID_82545EM_COPPER: 798 case E1000_DEV_ID_82545EM_FIBER: 799 case E1000_DEV_ID_82546EB_COPPER: 800 case E1000_DEV_ID_82546EB_FIBER: 801 case E1000_DEV_ID_82546EB_QUAD_COPPER: 802 return true; 803 default: 804 return false; 805 } 806 } 807 808 static netdev_features_t e1000_fix_features(struct net_device *netdev, 809 netdev_features_t features) 810 { 811 /* Since there is no support for separate Rx/Tx vlan accel 812 * enable/disable make sure Tx flag is always in same state as Rx. 813 */ 814 if (features & NETIF_F_HW_VLAN_CTAG_RX) 815 features |= NETIF_F_HW_VLAN_CTAG_TX; 816 else 817 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 818 819 return features; 820 } 821 822 static int e1000_set_features(struct net_device *netdev, 823 netdev_features_t features) 824 { 825 struct e1000_adapter *adapter = netdev_priv(netdev); 826 netdev_features_t changed = features ^ netdev->features; 827 828 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 829 e1000_vlan_mode(netdev, features); 830 831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 832 return 0; 833 834 netdev->features = features; 835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 836 837 if (netif_running(netdev)) 838 e1000_reinit_locked(adapter); 839 else 840 e1000_reset(adapter); 841 842 return 0; 843 } 844 845 static const struct net_device_ops e1000_netdev_ops = { 846 .ndo_open = e1000_open, 847 .ndo_stop = e1000_close, 848 .ndo_start_xmit = e1000_xmit_frame, 849 .ndo_get_stats = e1000_get_stats, 850 .ndo_set_rx_mode = e1000_set_rx_mode, 851 .ndo_set_mac_address = e1000_set_mac, 852 .ndo_tx_timeout = e1000_tx_timeout, 853 .ndo_change_mtu = e1000_change_mtu, 854 .ndo_do_ioctl = e1000_ioctl, 855 .ndo_validate_addr = eth_validate_addr, 856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 858 #ifdef CONFIG_NET_POLL_CONTROLLER 859 .ndo_poll_controller = e1000_netpoll, 860 #endif 861 .ndo_fix_features = e1000_fix_features, 862 .ndo_set_features = e1000_set_features, 863 }; 864 865 /** 866 * e1000_init_hw_struct - initialize members of hw struct 867 * @adapter: board private struct 868 * @hw: structure used by e1000_hw.c 869 * 870 * Factors out initialization of the e1000_hw struct to its own function 871 * that can be called very early at init (just after struct allocation). 872 * Fields are initialized based on PCI device information and 873 * OS network device settings (MTU size). 874 * Returns negative error codes if MAC type setup fails. 875 */ 876 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 877 struct e1000_hw *hw) 878 { 879 struct pci_dev *pdev = adapter->pdev; 880 881 /* PCI config space info */ 882 hw->vendor_id = pdev->vendor; 883 hw->device_id = pdev->device; 884 hw->subsystem_vendor_id = pdev->subsystem_vendor; 885 hw->subsystem_id = pdev->subsystem_device; 886 hw->revision_id = pdev->revision; 887 888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 889 890 hw->max_frame_size = adapter->netdev->mtu + 891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 893 894 /* identify the MAC */ 895 if (e1000_set_mac_type(hw)) { 896 e_err(probe, "Unknown MAC Type\n"); 897 return -EIO; 898 } 899 900 switch (hw->mac_type) { 901 default: 902 break; 903 case e1000_82541: 904 case e1000_82547: 905 case e1000_82541_rev_2: 906 case e1000_82547_rev_2: 907 hw->phy_init_script = 1; 908 break; 909 } 910 911 e1000_set_media_type(hw); 912 e1000_get_bus_info(hw); 913 914 hw->wait_autoneg_complete = false; 915 hw->tbi_compatibility_en = true; 916 hw->adaptive_ifs = true; 917 918 /* Copper options */ 919 920 if (hw->media_type == e1000_media_type_copper) { 921 hw->mdix = AUTO_ALL_MODES; 922 hw->disable_polarity_correction = false; 923 hw->master_slave = E1000_MASTER_SLAVE; 924 } 925 926 return 0; 927 } 928 929 /** 930 * e1000_probe - Device Initialization Routine 931 * @pdev: PCI device information struct 932 * @ent: entry in e1000_pci_tbl 933 * 934 * Returns 0 on success, negative on failure 935 * 936 * e1000_probe initializes an adapter identified by a pci_dev structure. 937 * The OS initialization, configuring of the adapter private structure, 938 * and a hardware reset occur. 939 **/ 940 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 941 { 942 struct net_device *netdev; 943 struct e1000_adapter *adapter; 944 struct e1000_hw *hw; 945 946 static int cards_found; 947 static int global_quad_port_a; /* global ksp3 port a indication */ 948 int i, err, pci_using_dac; 949 u16 eeprom_data = 0; 950 u16 tmp = 0; 951 u16 eeprom_apme_mask = E1000_EEPROM_APME; 952 int bars, need_ioport; 953 954 /* do not allocate ioport bars when not needed */ 955 need_ioport = e1000_is_need_ioport(pdev); 956 if (need_ioport) { 957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 958 err = pci_enable_device(pdev); 959 } else { 960 bars = pci_select_bars(pdev, IORESOURCE_MEM); 961 err = pci_enable_device_mem(pdev); 962 } 963 if (err) 964 return err; 965 966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 967 if (err) 968 goto err_pci_reg; 969 970 pci_set_master(pdev); 971 err = pci_save_state(pdev); 972 if (err) 973 goto err_alloc_etherdev; 974 975 err = -ENOMEM; 976 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 977 if (!netdev) 978 goto err_alloc_etherdev; 979 980 SET_NETDEV_DEV(netdev, &pdev->dev); 981 982 pci_set_drvdata(pdev, netdev); 983 adapter = netdev_priv(netdev); 984 adapter->netdev = netdev; 985 adapter->pdev = pdev; 986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 987 adapter->bars = bars; 988 adapter->need_ioport = need_ioport; 989 990 hw = &adapter->hw; 991 hw->back = adapter; 992 993 err = -EIO; 994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 995 if (!hw->hw_addr) 996 goto err_ioremap; 997 998 if (adapter->need_ioport) { 999 for (i = BAR_1; i <= BAR_5; i++) { 1000 if (pci_resource_len(pdev, i) == 0) 1001 continue; 1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 1003 hw->io_base = pci_resource_start(pdev, i); 1004 break; 1005 } 1006 } 1007 } 1008 1009 /* make ready for any if (hw->...) below */ 1010 err = e1000_init_hw_struct(adapter, hw); 1011 if (err) 1012 goto err_sw_init; 1013 1014 /* there is a workaround being applied below that limits 1015 * 64-bit DMA addresses to 64-bit hardware. There are some 1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 1017 */ 1018 pci_using_dac = 0; 1019 if ((hw->bus_type == e1000_bus_type_pcix) && 1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1021 pci_using_dac = 1; 1022 } else { 1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1024 if (err) { 1025 pr_err("No usable DMA config, aborting\n"); 1026 goto err_dma; 1027 } 1028 } 1029 1030 netdev->netdev_ops = &e1000_netdev_ops; 1031 e1000_set_ethtool_ops(netdev); 1032 netdev->watchdog_timeo = 5 * HZ; 1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1034 1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1036 1037 adapter->bd_number = cards_found; 1038 1039 /* setup the private structure */ 1040 1041 err = e1000_sw_init(adapter); 1042 if (err) 1043 goto err_sw_init; 1044 1045 err = -EIO; 1046 if (hw->mac_type == e1000_ce4100) { 1047 hw->ce4100_gbe_mdio_base_virt = 1048 ioremap(pci_resource_start(pdev, BAR_1), 1049 pci_resource_len(pdev, BAR_1)); 1050 1051 if (!hw->ce4100_gbe_mdio_base_virt) 1052 goto err_mdio_ioremap; 1053 } 1054 1055 if (hw->mac_type >= e1000_82543) { 1056 netdev->hw_features = NETIF_F_SG | 1057 NETIF_F_HW_CSUM | 1058 NETIF_F_HW_VLAN_CTAG_RX; 1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1060 NETIF_F_HW_VLAN_CTAG_FILTER; 1061 } 1062 1063 if ((hw->mac_type >= e1000_82544) && 1064 (hw->mac_type != e1000_82547)) 1065 netdev->hw_features |= NETIF_F_TSO; 1066 1067 netdev->priv_flags |= IFF_SUPP_NOFCS; 1068 1069 netdev->features |= netdev->hw_features; 1070 netdev->hw_features |= (NETIF_F_RXCSUM | 1071 NETIF_F_RXALL | 1072 NETIF_F_RXFCS); 1073 1074 if (pci_using_dac) { 1075 netdev->features |= NETIF_F_HIGHDMA; 1076 netdev->vlan_features |= NETIF_F_HIGHDMA; 1077 } 1078 1079 netdev->vlan_features |= (NETIF_F_TSO | 1080 NETIF_F_HW_CSUM | 1081 NETIF_F_SG); 1082 1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1086 netdev->priv_flags |= IFF_UNICAST_FLT; 1087 1088 /* MTU range: 46 - 16110 */ 1089 netdev->min_mtu = ETH_ZLEN - ETH_HLEN; 1090 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1091 1092 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1093 1094 /* initialize eeprom parameters */ 1095 if (e1000_init_eeprom_params(hw)) { 1096 e_err(probe, "EEPROM initialization failed\n"); 1097 goto err_eeprom; 1098 } 1099 1100 /* before reading the EEPROM, reset the controller to 1101 * put the device in a known good starting state 1102 */ 1103 1104 e1000_reset_hw(hw); 1105 1106 /* make sure the EEPROM is good */ 1107 if (e1000_validate_eeprom_checksum(hw) < 0) { 1108 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1109 e1000_dump_eeprom(adapter); 1110 /* set MAC address to all zeroes to invalidate and temporary 1111 * disable this device for the user. This blocks regular 1112 * traffic while still permitting ethtool ioctls from reaching 1113 * the hardware as well as allowing the user to run the 1114 * interface after manually setting a hw addr using 1115 * `ip set address` 1116 */ 1117 memset(hw->mac_addr, 0, netdev->addr_len); 1118 } else { 1119 /* copy the MAC address out of the EEPROM */ 1120 if (e1000_read_mac_addr(hw)) 1121 e_err(probe, "EEPROM Read Error\n"); 1122 } 1123 /* don't block initialization here due to bad MAC address */ 1124 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1125 1126 if (!is_valid_ether_addr(netdev->dev_addr)) 1127 e_err(probe, "Invalid MAC Address\n"); 1128 1129 1130 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1131 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1132 e1000_82547_tx_fifo_stall_task); 1133 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1134 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1135 1136 e1000_check_options(adapter); 1137 1138 /* Initial Wake on LAN setting 1139 * If APM wake is enabled in the EEPROM, 1140 * enable the ACPI Magic Packet filter 1141 */ 1142 1143 switch (hw->mac_type) { 1144 case e1000_82542_rev2_0: 1145 case e1000_82542_rev2_1: 1146 case e1000_82543: 1147 break; 1148 case e1000_82544: 1149 e1000_read_eeprom(hw, 1150 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1151 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1152 break; 1153 case e1000_82546: 1154 case e1000_82546_rev_3: 1155 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1156 e1000_read_eeprom(hw, 1157 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1158 break; 1159 } 1160 /* Fall Through */ 1161 default: 1162 e1000_read_eeprom(hw, 1163 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1164 break; 1165 } 1166 if (eeprom_data & eeprom_apme_mask) 1167 adapter->eeprom_wol |= E1000_WUFC_MAG; 1168 1169 /* now that we have the eeprom settings, apply the special cases 1170 * where the eeprom may be wrong or the board simply won't support 1171 * wake on lan on a particular port 1172 */ 1173 switch (pdev->device) { 1174 case E1000_DEV_ID_82546GB_PCIE: 1175 adapter->eeprom_wol = 0; 1176 break; 1177 case E1000_DEV_ID_82546EB_FIBER: 1178 case E1000_DEV_ID_82546GB_FIBER: 1179 /* Wake events only supported on port A for dual fiber 1180 * regardless of eeprom setting 1181 */ 1182 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1183 adapter->eeprom_wol = 0; 1184 break; 1185 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1186 /* if quad port adapter, disable WoL on all but port A */ 1187 if (global_quad_port_a != 0) 1188 adapter->eeprom_wol = 0; 1189 else 1190 adapter->quad_port_a = true; 1191 /* Reset for multiple quad port adapters */ 1192 if (++global_quad_port_a == 4) 1193 global_quad_port_a = 0; 1194 break; 1195 } 1196 1197 /* initialize the wol settings based on the eeprom settings */ 1198 adapter->wol = adapter->eeprom_wol; 1199 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1200 1201 /* Auto detect PHY address */ 1202 if (hw->mac_type == e1000_ce4100) { 1203 for (i = 0; i < 32; i++) { 1204 hw->phy_addr = i; 1205 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1206 1207 if (tmp != 0 && tmp != 0xFF) 1208 break; 1209 } 1210 1211 if (i >= 32) 1212 goto err_eeprom; 1213 } 1214 1215 /* reset the hardware with the new settings */ 1216 e1000_reset(adapter); 1217 1218 strcpy(netdev->name, "eth%d"); 1219 err = register_netdev(netdev); 1220 if (err) 1221 goto err_register; 1222 1223 e1000_vlan_filter_on_off(adapter, false); 1224 1225 /* print bus type/speed/width info */ 1226 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1227 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1228 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1229 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1230 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1231 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1232 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1233 netdev->dev_addr); 1234 1235 /* carrier off reporting is important to ethtool even BEFORE open */ 1236 netif_carrier_off(netdev); 1237 1238 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1239 1240 cards_found++; 1241 return 0; 1242 1243 err_register: 1244 err_eeprom: 1245 e1000_phy_hw_reset(hw); 1246 1247 if (hw->flash_address) 1248 iounmap(hw->flash_address); 1249 kfree(adapter->tx_ring); 1250 kfree(adapter->rx_ring); 1251 err_dma: 1252 err_sw_init: 1253 err_mdio_ioremap: 1254 iounmap(hw->ce4100_gbe_mdio_base_virt); 1255 iounmap(hw->hw_addr); 1256 err_ioremap: 1257 free_netdev(netdev); 1258 err_alloc_etherdev: 1259 pci_release_selected_regions(pdev, bars); 1260 err_pci_reg: 1261 pci_disable_device(pdev); 1262 return err; 1263 } 1264 1265 /** 1266 * e1000_remove - Device Removal Routine 1267 * @pdev: PCI device information struct 1268 * 1269 * e1000_remove is called by the PCI subsystem to alert the driver 1270 * that it should release a PCI device. That could be caused by a 1271 * Hot-Plug event, or because the driver is going to be removed from 1272 * memory. 1273 **/ 1274 static void e1000_remove(struct pci_dev *pdev) 1275 { 1276 struct net_device *netdev = pci_get_drvdata(pdev); 1277 struct e1000_adapter *adapter = netdev_priv(netdev); 1278 struct e1000_hw *hw = &adapter->hw; 1279 1280 e1000_down_and_stop(adapter); 1281 e1000_release_manageability(adapter); 1282 1283 unregister_netdev(netdev); 1284 1285 e1000_phy_hw_reset(hw); 1286 1287 kfree(adapter->tx_ring); 1288 kfree(adapter->rx_ring); 1289 1290 if (hw->mac_type == e1000_ce4100) 1291 iounmap(hw->ce4100_gbe_mdio_base_virt); 1292 iounmap(hw->hw_addr); 1293 if (hw->flash_address) 1294 iounmap(hw->flash_address); 1295 pci_release_selected_regions(pdev, adapter->bars); 1296 1297 free_netdev(netdev); 1298 1299 pci_disable_device(pdev); 1300 } 1301 1302 /** 1303 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1304 * @adapter: board private structure to initialize 1305 * 1306 * e1000_sw_init initializes the Adapter private data structure. 1307 * e1000_init_hw_struct MUST be called before this function 1308 **/ 1309 static int e1000_sw_init(struct e1000_adapter *adapter) 1310 { 1311 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1312 1313 adapter->num_tx_queues = 1; 1314 adapter->num_rx_queues = 1; 1315 1316 if (e1000_alloc_queues(adapter)) { 1317 e_err(probe, "Unable to allocate memory for queues\n"); 1318 return -ENOMEM; 1319 } 1320 1321 /* Explicitly disable IRQ since the NIC can be in any state. */ 1322 e1000_irq_disable(adapter); 1323 1324 spin_lock_init(&adapter->stats_lock); 1325 1326 set_bit(__E1000_DOWN, &adapter->flags); 1327 1328 return 0; 1329 } 1330 1331 /** 1332 * e1000_alloc_queues - Allocate memory for all rings 1333 * @adapter: board private structure to initialize 1334 * 1335 * We allocate one ring per queue at run-time since we don't know the 1336 * number of queues at compile-time. 1337 **/ 1338 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1339 { 1340 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1341 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1342 if (!adapter->tx_ring) 1343 return -ENOMEM; 1344 1345 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1346 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1347 if (!adapter->rx_ring) { 1348 kfree(adapter->tx_ring); 1349 return -ENOMEM; 1350 } 1351 1352 return E1000_SUCCESS; 1353 } 1354 1355 /** 1356 * e1000_open - Called when a network interface is made active 1357 * @netdev: network interface device structure 1358 * 1359 * Returns 0 on success, negative value on failure 1360 * 1361 * The open entry point is called when a network interface is made 1362 * active by the system (IFF_UP). At this point all resources needed 1363 * for transmit and receive operations are allocated, the interrupt 1364 * handler is registered with the OS, the watchdog task is started, 1365 * and the stack is notified that the interface is ready. 1366 **/ 1367 int e1000_open(struct net_device *netdev) 1368 { 1369 struct e1000_adapter *adapter = netdev_priv(netdev); 1370 struct e1000_hw *hw = &adapter->hw; 1371 int err; 1372 1373 /* disallow open during test */ 1374 if (test_bit(__E1000_TESTING, &adapter->flags)) 1375 return -EBUSY; 1376 1377 netif_carrier_off(netdev); 1378 1379 /* allocate transmit descriptors */ 1380 err = e1000_setup_all_tx_resources(adapter); 1381 if (err) 1382 goto err_setup_tx; 1383 1384 /* allocate receive descriptors */ 1385 err = e1000_setup_all_rx_resources(adapter); 1386 if (err) 1387 goto err_setup_rx; 1388 1389 e1000_power_up_phy(adapter); 1390 1391 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1392 if ((hw->mng_cookie.status & 1393 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1394 e1000_update_mng_vlan(adapter); 1395 } 1396 1397 /* before we allocate an interrupt, we must be ready to handle it. 1398 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1399 * as soon as we call pci_request_irq, so we have to setup our 1400 * clean_rx handler before we do so. 1401 */ 1402 e1000_configure(adapter); 1403 1404 err = e1000_request_irq(adapter); 1405 if (err) 1406 goto err_req_irq; 1407 1408 /* From here on the code is the same as e1000_up() */ 1409 clear_bit(__E1000_DOWN, &adapter->flags); 1410 1411 napi_enable(&adapter->napi); 1412 1413 e1000_irq_enable(adapter); 1414 1415 netif_start_queue(netdev); 1416 1417 /* fire a link status change interrupt to start the watchdog */ 1418 ew32(ICS, E1000_ICS_LSC); 1419 1420 return E1000_SUCCESS; 1421 1422 err_req_irq: 1423 e1000_power_down_phy(adapter); 1424 e1000_free_all_rx_resources(adapter); 1425 err_setup_rx: 1426 e1000_free_all_tx_resources(adapter); 1427 err_setup_tx: 1428 e1000_reset(adapter); 1429 1430 return err; 1431 } 1432 1433 /** 1434 * e1000_close - Disables a network interface 1435 * @netdev: network interface device structure 1436 * 1437 * Returns 0, this is not allowed to fail 1438 * 1439 * The close entry point is called when an interface is de-activated 1440 * by the OS. The hardware is still under the drivers control, but 1441 * needs to be disabled. A global MAC reset is issued to stop the 1442 * hardware, and all transmit and receive resources are freed. 1443 **/ 1444 int e1000_close(struct net_device *netdev) 1445 { 1446 struct e1000_adapter *adapter = netdev_priv(netdev); 1447 struct e1000_hw *hw = &adapter->hw; 1448 int count = E1000_CHECK_RESET_COUNT; 1449 1450 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 1451 usleep_range(10000, 20000); 1452 1453 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 1454 e1000_down(adapter); 1455 e1000_power_down_phy(adapter); 1456 e1000_free_irq(adapter); 1457 1458 e1000_free_all_tx_resources(adapter); 1459 e1000_free_all_rx_resources(adapter); 1460 1461 /* kill manageability vlan ID if supported, but not if a vlan with 1462 * the same ID is registered on the host OS (let 8021q kill it) 1463 */ 1464 if ((hw->mng_cookie.status & 1465 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1466 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1467 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1468 adapter->mng_vlan_id); 1469 } 1470 1471 return 0; 1472 } 1473 1474 /** 1475 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1476 * @adapter: address of board private structure 1477 * @start: address of beginning of memory 1478 * @len: length of memory 1479 **/ 1480 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1481 unsigned long len) 1482 { 1483 struct e1000_hw *hw = &adapter->hw; 1484 unsigned long begin = (unsigned long)start; 1485 unsigned long end = begin + len; 1486 1487 /* First rev 82545 and 82546 need to not allow any memory 1488 * write location to cross 64k boundary due to errata 23 1489 */ 1490 if (hw->mac_type == e1000_82545 || 1491 hw->mac_type == e1000_ce4100 || 1492 hw->mac_type == e1000_82546) { 1493 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; 1494 } 1495 1496 return true; 1497 } 1498 1499 /** 1500 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1501 * @adapter: board private structure 1502 * @txdr: tx descriptor ring (for a specific queue) to setup 1503 * 1504 * Return 0 on success, negative on failure 1505 **/ 1506 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1507 struct e1000_tx_ring *txdr) 1508 { 1509 struct pci_dev *pdev = adapter->pdev; 1510 int size; 1511 1512 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1513 txdr->buffer_info = vzalloc(size); 1514 if (!txdr->buffer_info) 1515 return -ENOMEM; 1516 1517 /* round up to nearest 4K */ 1518 1519 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1520 txdr->size = ALIGN(txdr->size, 4096); 1521 1522 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1523 GFP_KERNEL); 1524 if (!txdr->desc) { 1525 setup_tx_desc_die: 1526 vfree(txdr->buffer_info); 1527 return -ENOMEM; 1528 } 1529 1530 /* Fix for errata 23, can't cross 64kB boundary */ 1531 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1532 void *olddesc = txdr->desc; 1533 dma_addr_t olddma = txdr->dma; 1534 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1535 txdr->size, txdr->desc); 1536 /* Try again, without freeing the previous */ 1537 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1538 &txdr->dma, GFP_KERNEL); 1539 /* Failed allocation, critical failure */ 1540 if (!txdr->desc) { 1541 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1542 olddma); 1543 goto setup_tx_desc_die; 1544 } 1545 1546 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1547 /* give up */ 1548 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1549 txdr->dma); 1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1551 olddma); 1552 e_err(probe, "Unable to allocate aligned memory " 1553 "for the transmit descriptor ring\n"); 1554 vfree(txdr->buffer_info); 1555 return -ENOMEM; 1556 } else { 1557 /* Free old allocation, new allocation was successful */ 1558 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1559 olddma); 1560 } 1561 } 1562 memset(txdr->desc, 0, txdr->size); 1563 1564 txdr->next_to_use = 0; 1565 txdr->next_to_clean = 0; 1566 1567 return 0; 1568 } 1569 1570 /** 1571 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1572 * (Descriptors) for all queues 1573 * @adapter: board private structure 1574 * 1575 * Return 0 on success, negative on failure 1576 **/ 1577 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1578 { 1579 int i, err = 0; 1580 1581 for (i = 0; i < adapter->num_tx_queues; i++) { 1582 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1583 if (err) { 1584 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1585 for (i-- ; i >= 0; i--) 1586 e1000_free_tx_resources(adapter, 1587 &adapter->tx_ring[i]); 1588 break; 1589 } 1590 } 1591 1592 return err; 1593 } 1594 1595 /** 1596 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1597 * @adapter: board private structure 1598 * 1599 * Configure the Tx unit of the MAC after a reset. 1600 **/ 1601 static void e1000_configure_tx(struct e1000_adapter *adapter) 1602 { 1603 u64 tdba; 1604 struct e1000_hw *hw = &adapter->hw; 1605 u32 tdlen, tctl, tipg; 1606 u32 ipgr1, ipgr2; 1607 1608 /* Setup the HW Tx Head and Tail descriptor pointers */ 1609 1610 switch (adapter->num_tx_queues) { 1611 case 1: 1612 default: 1613 tdba = adapter->tx_ring[0].dma; 1614 tdlen = adapter->tx_ring[0].count * 1615 sizeof(struct e1000_tx_desc); 1616 ew32(TDLEN, tdlen); 1617 ew32(TDBAH, (tdba >> 32)); 1618 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1619 ew32(TDT, 0); 1620 ew32(TDH, 0); 1621 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1622 E1000_TDH : E1000_82542_TDH); 1623 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1624 E1000_TDT : E1000_82542_TDT); 1625 break; 1626 } 1627 1628 /* Set the default values for the Tx Inter Packet Gap timer */ 1629 if ((hw->media_type == e1000_media_type_fiber || 1630 hw->media_type == e1000_media_type_internal_serdes)) 1631 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1632 else 1633 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1634 1635 switch (hw->mac_type) { 1636 case e1000_82542_rev2_0: 1637 case e1000_82542_rev2_1: 1638 tipg = DEFAULT_82542_TIPG_IPGT; 1639 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1640 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1641 break; 1642 default: 1643 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1644 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1645 break; 1646 } 1647 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1648 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1649 ew32(TIPG, tipg); 1650 1651 /* Set the Tx Interrupt Delay register */ 1652 1653 ew32(TIDV, adapter->tx_int_delay); 1654 if (hw->mac_type >= e1000_82540) 1655 ew32(TADV, adapter->tx_abs_int_delay); 1656 1657 /* Program the Transmit Control Register */ 1658 1659 tctl = er32(TCTL); 1660 tctl &= ~E1000_TCTL_CT; 1661 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1662 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1663 1664 e1000_config_collision_dist(hw); 1665 1666 /* Setup Transmit Descriptor Settings for eop descriptor */ 1667 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1668 1669 /* only set IDE if we are delaying interrupts using the timers */ 1670 if (adapter->tx_int_delay) 1671 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1672 1673 if (hw->mac_type < e1000_82543) 1674 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1675 else 1676 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1677 1678 /* Cache if we're 82544 running in PCI-X because we'll 1679 * need this to apply a workaround later in the send path. 1680 */ 1681 if (hw->mac_type == e1000_82544 && 1682 hw->bus_type == e1000_bus_type_pcix) 1683 adapter->pcix_82544 = true; 1684 1685 ew32(TCTL, tctl); 1686 1687 } 1688 1689 /** 1690 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1691 * @adapter: board private structure 1692 * @rxdr: rx descriptor ring (for a specific queue) to setup 1693 * 1694 * Returns 0 on success, negative on failure 1695 **/ 1696 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1697 struct e1000_rx_ring *rxdr) 1698 { 1699 struct pci_dev *pdev = adapter->pdev; 1700 int size, desc_len; 1701 1702 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1703 rxdr->buffer_info = vzalloc(size); 1704 if (!rxdr->buffer_info) 1705 return -ENOMEM; 1706 1707 desc_len = sizeof(struct e1000_rx_desc); 1708 1709 /* Round up to nearest 4K */ 1710 1711 rxdr->size = rxdr->count * desc_len; 1712 rxdr->size = ALIGN(rxdr->size, 4096); 1713 1714 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1715 GFP_KERNEL); 1716 if (!rxdr->desc) { 1717 setup_rx_desc_die: 1718 vfree(rxdr->buffer_info); 1719 return -ENOMEM; 1720 } 1721 1722 /* Fix for errata 23, can't cross 64kB boundary */ 1723 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1724 void *olddesc = rxdr->desc; 1725 dma_addr_t olddma = rxdr->dma; 1726 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1727 rxdr->size, rxdr->desc); 1728 /* Try again, without freeing the previous */ 1729 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1730 &rxdr->dma, GFP_KERNEL); 1731 /* Failed allocation, critical failure */ 1732 if (!rxdr->desc) { 1733 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1734 olddma); 1735 goto setup_rx_desc_die; 1736 } 1737 1738 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1739 /* give up */ 1740 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1741 rxdr->dma); 1742 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1743 olddma); 1744 e_err(probe, "Unable to allocate aligned memory for " 1745 "the Rx descriptor ring\n"); 1746 goto setup_rx_desc_die; 1747 } else { 1748 /* Free old allocation, new allocation was successful */ 1749 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1750 olddma); 1751 } 1752 } 1753 memset(rxdr->desc, 0, rxdr->size); 1754 1755 rxdr->next_to_clean = 0; 1756 rxdr->next_to_use = 0; 1757 rxdr->rx_skb_top = NULL; 1758 1759 return 0; 1760 } 1761 1762 /** 1763 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1764 * (Descriptors) for all queues 1765 * @adapter: board private structure 1766 * 1767 * Return 0 on success, negative on failure 1768 **/ 1769 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1770 { 1771 int i, err = 0; 1772 1773 for (i = 0; i < adapter->num_rx_queues; i++) { 1774 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1775 if (err) { 1776 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1777 for (i-- ; i >= 0; i--) 1778 e1000_free_rx_resources(adapter, 1779 &adapter->rx_ring[i]); 1780 break; 1781 } 1782 } 1783 1784 return err; 1785 } 1786 1787 /** 1788 * e1000_setup_rctl - configure the receive control registers 1789 * @adapter: Board private structure 1790 **/ 1791 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1792 { 1793 struct e1000_hw *hw = &adapter->hw; 1794 u32 rctl; 1795 1796 rctl = er32(RCTL); 1797 1798 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1799 1800 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1801 E1000_RCTL_RDMTS_HALF | 1802 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1803 1804 if (hw->tbi_compatibility_on == 1) 1805 rctl |= E1000_RCTL_SBP; 1806 else 1807 rctl &= ~E1000_RCTL_SBP; 1808 1809 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1810 rctl &= ~E1000_RCTL_LPE; 1811 else 1812 rctl |= E1000_RCTL_LPE; 1813 1814 /* Setup buffer sizes */ 1815 rctl &= ~E1000_RCTL_SZ_4096; 1816 rctl |= E1000_RCTL_BSEX; 1817 switch (adapter->rx_buffer_len) { 1818 case E1000_RXBUFFER_2048: 1819 default: 1820 rctl |= E1000_RCTL_SZ_2048; 1821 rctl &= ~E1000_RCTL_BSEX; 1822 break; 1823 case E1000_RXBUFFER_4096: 1824 rctl |= E1000_RCTL_SZ_4096; 1825 break; 1826 case E1000_RXBUFFER_8192: 1827 rctl |= E1000_RCTL_SZ_8192; 1828 break; 1829 case E1000_RXBUFFER_16384: 1830 rctl |= E1000_RCTL_SZ_16384; 1831 break; 1832 } 1833 1834 /* This is useful for sniffing bad packets. */ 1835 if (adapter->netdev->features & NETIF_F_RXALL) { 1836 /* UPE and MPE will be handled by normal PROMISC logic 1837 * in e1000e_set_rx_mode 1838 */ 1839 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1840 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1841 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1842 1843 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1844 E1000_RCTL_DPF | /* Allow filtered pause */ 1845 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1846 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1847 * and that breaks VLANs. 1848 */ 1849 } 1850 1851 ew32(RCTL, rctl); 1852 } 1853 1854 /** 1855 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1856 * @adapter: board private structure 1857 * 1858 * Configure the Rx unit of the MAC after a reset. 1859 **/ 1860 static void e1000_configure_rx(struct e1000_adapter *adapter) 1861 { 1862 u64 rdba; 1863 struct e1000_hw *hw = &adapter->hw; 1864 u32 rdlen, rctl, rxcsum; 1865 1866 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1867 rdlen = adapter->rx_ring[0].count * 1868 sizeof(struct e1000_rx_desc); 1869 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1870 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1871 } else { 1872 rdlen = adapter->rx_ring[0].count * 1873 sizeof(struct e1000_rx_desc); 1874 adapter->clean_rx = e1000_clean_rx_irq; 1875 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1876 } 1877 1878 /* disable receives while setting up the descriptors */ 1879 rctl = er32(RCTL); 1880 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1881 1882 /* set the Receive Delay Timer Register */ 1883 ew32(RDTR, adapter->rx_int_delay); 1884 1885 if (hw->mac_type >= e1000_82540) { 1886 ew32(RADV, adapter->rx_abs_int_delay); 1887 if (adapter->itr_setting != 0) 1888 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1889 } 1890 1891 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1892 * the Base and Length of the Rx Descriptor Ring 1893 */ 1894 switch (adapter->num_rx_queues) { 1895 case 1: 1896 default: 1897 rdba = adapter->rx_ring[0].dma; 1898 ew32(RDLEN, rdlen); 1899 ew32(RDBAH, (rdba >> 32)); 1900 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1901 ew32(RDT, 0); 1902 ew32(RDH, 0); 1903 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1904 E1000_RDH : E1000_82542_RDH); 1905 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1906 E1000_RDT : E1000_82542_RDT); 1907 break; 1908 } 1909 1910 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1911 if (hw->mac_type >= e1000_82543) { 1912 rxcsum = er32(RXCSUM); 1913 if (adapter->rx_csum) 1914 rxcsum |= E1000_RXCSUM_TUOFL; 1915 else 1916 /* don't need to clear IPPCSE as it defaults to 0 */ 1917 rxcsum &= ~E1000_RXCSUM_TUOFL; 1918 ew32(RXCSUM, rxcsum); 1919 } 1920 1921 /* Enable Receives */ 1922 ew32(RCTL, rctl | E1000_RCTL_EN); 1923 } 1924 1925 /** 1926 * e1000_free_tx_resources - Free Tx Resources per Queue 1927 * @adapter: board private structure 1928 * @tx_ring: Tx descriptor ring for a specific queue 1929 * 1930 * Free all transmit software resources 1931 **/ 1932 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1933 struct e1000_tx_ring *tx_ring) 1934 { 1935 struct pci_dev *pdev = adapter->pdev; 1936 1937 e1000_clean_tx_ring(adapter, tx_ring); 1938 1939 vfree(tx_ring->buffer_info); 1940 tx_ring->buffer_info = NULL; 1941 1942 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1943 tx_ring->dma); 1944 1945 tx_ring->desc = NULL; 1946 } 1947 1948 /** 1949 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1950 * @adapter: board private structure 1951 * 1952 * Free all transmit software resources 1953 **/ 1954 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1955 { 1956 int i; 1957 1958 for (i = 0; i < adapter->num_tx_queues; i++) 1959 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1960 } 1961 1962 static void 1963 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1964 struct e1000_tx_buffer *buffer_info) 1965 { 1966 if (buffer_info->dma) { 1967 if (buffer_info->mapped_as_page) 1968 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1969 buffer_info->length, DMA_TO_DEVICE); 1970 else 1971 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1972 buffer_info->length, 1973 DMA_TO_DEVICE); 1974 buffer_info->dma = 0; 1975 } 1976 if (buffer_info->skb) { 1977 dev_kfree_skb_any(buffer_info->skb); 1978 buffer_info->skb = NULL; 1979 } 1980 buffer_info->time_stamp = 0; 1981 /* buffer_info must be completely set up in the transmit path */ 1982 } 1983 1984 /** 1985 * e1000_clean_tx_ring - Free Tx Buffers 1986 * @adapter: board private structure 1987 * @tx_ring: ring to be cleaned 1988 **/ 1989 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1990 struct e1000_tx_ring *tx_ring) 1991 { 1992 struct e1000_hw *hw = &adapter->hw; 1993 struct e1000_tx_buffer *buffer_info; 1994 unsigned long size; 1995 unsigned int i; 1996 1997 /* Free all the Tx ring sk_buffs */ 1998 1999 for (i = 0; i < tx_ring->count; i++) { 2000 buffer_info = &tx_ring->buffer_info[i]; 2001 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2002 } 2003 2004 netdev_reset_queue(adapter->netdev); 2005 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 2006 memset(tx_ring->buffer_info, 0, size); 2007 2008 /* Zero out the descriptor ring */ 2009 2010 memset(tx_ring->desc, 0, tx_ring->size); 2011 2012 tx_ring->next_to_use = 0; 2013 tx_ring->next_to_clean = 0; 2014 tx_ring->last_tx_tso = false; 2015 2016 writel(0, hw->hw_addr + tx_ring->tdh); 2017 writel(0, hw->hw_addr + tx_ring->tdt); 2018 } 2019 2020 /** 2021 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2022 * @adapter: board private structure 2023 **/ 2024 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2025 { 2026 int i; 2027 2028 for (i = 0; i < adapter->num_tx_queues; i++) 2029 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2030 } 2031 2032 /** 2033 * e1000_free_rx_resources - Free Rx Resources 2034 * @adapter: board private structure 2035 * @rx_ring: ring to clean the resources from 2036 * 2037 * Free all receive software resources 2038 **/ 2039 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2040 struct e1000_rx_ring *rx_ring) 2041 { 2042 struct pci_dev *pdev = adapter->pdev; 2043 2044 e1000_clean_rx_ring(adapter, rx_ring); 2045 2046 vfree(rx_ring->buffer_info); 2047 rx_ring->buffer_info = NULL; 2048 2049 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2050 rx_ring->dma); 2051 2052 rx_ring->desc = NULL; 2053 } 2054 2055 /** 2056 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2057 * @adapter: board private structure 2058 * 2059 * Free all receive software resources 2060 **/ 2061 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2062 { 2063 int i; 2064 2065 for (i = 0; i < adapter->num_rx_queues; i++) 2066 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2067 } 2068 2069 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2070 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2071 { 2072 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2073 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2074 } 2075 2076 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2077 { 2078 unsigned int len = e1000_frag_len(a); 2079 u8 *data = netdev_alloc_frag(len); 2080 2081 if (likely(data)) 2082 data += E1000_HEADROOM; 2083 return data; 2084 } 2085 2086 /** 2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2088 * @adapter: board private structure 2089 * @rx_ring: ring to free buffers from 2090 **/ 2091 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2092 struct e1000_rx_ring *rx_ring) 2093 { 2094 struct e1000_hw *hw = &adapter->hw; 2095 struct e1000_rx_buffer *buffer_info; 2096 struct pci_dev *pdev = adapter->pdev; 2097 unsigned long size; 2098 unsigned int i; 2099 2100 /* Free all the Rx netfrags */ 2101 for (i = 0; i < rx_ring->count; i++) { 2102 buffer_info = &rx_ring->buffer_info[i]; 2103 if (adapter->clean_rx == e1000_clean_rx_irq) { 2104 if (buffer_info->dma) 2105 dma_unmap_single(&pdev->dev, buffer_info->dma, 2106 adapter->rx_buffer_len, 2107 DMA_FROM_DEVICE); 2108 if (buffer_info->rxbuf.data) { 2109 skb_free_frag(buffer_info->rxbuf.data); 2110 buffer_info->rxbuf.data = NULL; 2111 } 2112 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2113 if (buffer_info->dma) 2114 dma_unmap_page(&pdev->dev, buffer_info->dma, 2115 adapter->rx_buffer_len, 2116 DMA_FROM_DEVICE); 2117 if (buffer_info->rxbuf.page) { 2118 put_page(buffer_info->rxbuf.page); 2119 buffer_info->rxbuf.page = NULL; 2120 } 2121 } 2122 2123 buffer_info->dma = 0; 2124 } 2125 2126 /* there also may be some cached data from a chained receive */ 2127 napi_free_frags(&adapter->napi); 2128 rx_ring->rx_skb_top = NULL; 2129 2130 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2131 memset(rx_ring->buffer_info, 0, size); 2132 2133 /* Zero out the descriptor ring */ 2134 memset(rx_ring->desc, 0, rx_ring->size); 2135 2136 rx_ring->next_to_clean = 0; 2137 rx_ring->next_to_use = 0; 2138 2139 writel(0, hw->hw_addr + rx_ring->rdh); 2140 writel(0, hw->hw_addr + rx_ring->rdt); 2141 } 2142 2143 /** 2144 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2145 * @adapter: board private structure 2146 **/ 2147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2148 { 2149 int i; 2150 2151 for (i = 0; i < adapter->num_rx_queues; i++) 2152 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2153 } 2154 2155 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2156 * and memory write and invalidate disabled for certain operations 2157 */ 2158 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2159 { 2160 struct e1000_hw *hw = &adapter->hw; 2161 struct net_device *netdev = adapter->netdev; 2162 u32 rctl; 2163 2164 e1000_pci_clear_mwi(hw); 2165 2166 rctl = er32(RCTL); 2167 rctl |= E1000_RCTL_RST; 2168 ew32(RCTL, rctl); 2169 E1000_WRITE_FLUSH(); 2170 mdelay(5); 2171 2172 if (netif_running(netdev)) 2173 e1000_clean_all_rx_rings(adapter); 2174 } 2175 2176 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2177 { 2178 struct e1000_hw *hw = &adapter->hw; 2179 struct net_device *netdev = adapter->netdev; 2180 u32 rctl; 2181 2182 rctl = er32(RCTL); 2183 rctl &= ~E1000_RCTL_RST; 2184 ew32(RCTL, rctl); 2185 E1000_WRITE_FLUSH(); 2186 mdelay(5); 2187 2188 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2189 e1000_pci_set_mwi(hw); 2190 2191 if (netif_running(netdev)) { 2192 /* No need to loop, because 82542 supports only 1 queue */ 2193 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2194 e1000_configure_rx(adapter); 2195 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2196 } 2197 } 2198 2199 /** 2200 * e1000_set_mac - Change the Ethernet Address of the NIC 2201 * @netdev: network interface device structure 2202 * @p: pointer to an address structure 2203 * 2204 * Returns 0 on success, negative on failure 2205 **/ 2206 static int e1000_set_mac(struct net_device *netdev, void *p) 2207 { 2208 struct e1000_adapter *adapter = netdev_priv(netdev); 2209 struct e1000_hw *hw = &adapter->hw; 2210 struct sockaddr *addr = p; 2211 2212 if (!is_valid_ether_addr(addr->sa_data)) 2213 return -EADDRNOTAVAIL; 2214 2215 /* 82542 2.0 needs to be in reset to write receive address registers */ 2216 2217 if (hw->mac_type == e1000_82542_rev2_0) 2218 e1000_enter_82542_rst(adapter); 2219 2220 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2221 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2222 2223 e1000_rar_set(hw, hw->mac_addr, 0); 2224 2225 if (hw->mac_type == e1000_82542_rev2_0) 2226 e1000_leave_82542_rst(adapter); 2227 2228 return 0; 2229 } 2230 2231 /** 2232 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2233 * @netdev: network interface device structure 2234 * 2235 * The set_rx_mode entry point is called whenever the unicast or multicast 2236 * address lists or the network interface flags are updated. This routine is 2237 * responsible for configuring the hardware for proper unicast, multicast, 2238 * promiscuous mode, and all-multi behavior. 2239 **/ 2240 static void e1000_set_rx_mode(struct net_device *netdev) 2241 { 2242 struct e1000_adapter *adapter = netdev_priv(netdev); 2243 struct e1000_hw *hw = &adapter->hw; 2244 struct netdev_hw_addr *ha; 2245 bool use_uc = false; 2246 u32 rctl; 2247 u32 hash_value; 2248 int i, rar_entries = E1000_RAR_ENTRIES; 2249 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2250 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2251 2252 if (!mcarray) 2253 return; 2254 2255 /* Check for Promiscuous and All Multicast modes */ 2256 2257 rctl = er32(RCTL); 2258 2259 if (netdev->flags & IFF_PROMISC) { 2260 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2261 rctl &= ~E1000_RCTL_VFE; 2262 } else { 2263 if (netdev->flags & IFF_ALLMULTI) 2264 rctl |= E1000_RCTL_MPE; 2265 else 2266 rctl &= ~E1000_RCTL_MPE; 2267 /* Enable VLAN filter if there is a VLAN */ 2268 if (e1000_vlan_used(adapter)) 2269 rctl |= E1000_RCTL_VFE; 2270 } 2271 2272 if (netdev_uc_count(netdev) > rar_entries - 1) { 2273 rctl |= E1000_RCTL_UPE; 2274 } else if (!(netdev->flags & IFF_PROMISC)) { 2275 rctl &= ~E1000_RCTL_UPE; 2276 use_uc = true; 2277 } 2278 2279 ew32(RCTL, rctl); 2280 2281 /* 82542 2.0 needs to be in reset to write receive address registers */ 2282 2283 if (hw->mac_type == e1000_82542_rev2_0) 2284 e1000_enter_82542_rst(adapter); 2285 2286 /* load the first 14 addresses into the exact filters 1-14. Unicast 2287 * addresses take precedence to avoid disabling unicast filtering 2288 * when possible. 2289 * 2290 * RAR 0 is used for the station MAC address 2291 * if there are not 14 addresses, go ahead and clear the filters 2292 */ 2293 i = 1; 2294 if (use_uc) 2295 netdev_for_each_uc_addr(ha, netdev) { 2296 if (i == rar_entries) 2297 break; 2298 e1000_rar_set(hw, ha->addr, i++); 2299 } 2300 2301 netdev_for_each_mc_addr(ha, netdev) { 2302 if (i == rar_entries) { 2303 /* load any remaining addresses into the hash table */ 2304 u32 hash_reg, hash_bit, mta; 2305 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2306 hash_reg = (hash_value >> 5) & 0x7F; 2307 hash_bit = hash_value & 0x1F; 2308 mta = (1 << hash_bit); 2309 mcarray[hash_reg] |= mta; 2310 } else { 2311 e1000_rar_set(hw, ha->addr, i++); 2312 } 2313 } 2314 2315 for (; i < rar_entries; i++) { 2316 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2317 E1000_WRITE_FLUSH(); 2318 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2319 E1000_WRITE_FLUSH(); 2320 } 2321 2322 /* write the hash table completely, write from bottom to avoid 2323 * both stupid write combining chipsets, and flushing each write 2324 */ 2325 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2326 /* If we are on an 82544 has an errata where writing odd 2327 * offsets overwrites the previous even offset, but writing 2328 * backwards over the range solves the issue by always 2329 * writing the odd offset first 2330 */ 2331 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2332 } 2333 E1000_WRITE_FLUSH(); 2334 2335 if (hw->mac_type == e1000_82542_rev2_0) 2336 e1000_leave_82542_rst(adapter); 2337 2338 kfree(mcarray); 2339 } 2340 2341 /** 2342 * e1000_update_phy_info_task - get phy info 2343 * @work: work struct contained inside adapter struct 2344 * 2345 * Need to wait a few seconds after link up to get diagnostic information from 2346 * the phy 2347 */ 2348 static void e1000_update_phy_info_task(struct work_struct *work) 2349 { 2350 struct e1000_adapter *adapter = container_of(work, 2351 struct e1000_adapter, 2352 phy_info_task.work); 2353 2354 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2355 } 2356 2357 /** 2358 * e1000_82547_tx_fifo_stall_task - task to complete work 2359 * @work: work struct contained inside adapter struct 2360 **/ 2361 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2362 { 2363 struct e1000_adapter *adapter = container_of(work, 2364 struct e1000_adapter, 2365 fifo_stall_task.work); 2366 struct e1000_hw *hw = &adapter->hw; 2367 struct net_device *netdev = adapter->netdev; 2368 u32 tctl; 2369 2370 if (atomic_read(&adapter->tx_fifo_stall)) { 2371 if ((er32(TDT) == er32(TDH)) && 2372 (er32(TDFT) == er32(TDFH)) && 2373 (er32(TDFTS) == er32(TDFHS))) { 2374 tctl = er32(TCTL); 2375 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2376 ew32(TDFT, adapter->tx_head_addr); 2377 ew32(TDFH, adapter->tx_head_addr); 2378 ew32(TDFTS, adapter->tx_head_addr); 2379 ew32(TDFHS, adapter->tx_head_addr); 2380 ew32(TCTL, tctl); 2381 E1000_WRITE_FLUSH(); 2382 2383 adapter->tx_fifo_head = 0; 2384 atomic_set(&adapter->tx_fifo_stall, 0); 2385 netif_wake_queue(netdev); 2386 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2387 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2388 } 2389 } 2390 } 2391 2392 bool e1000_has_link(struct e1000_adapter *adapter) 2393 { 2394 struct e1000_hw *hw = &adapter->hw; 2395 bool link_active = false; 2396 2397 /* get_link_status is set on LSC (link status) interrupt or rx 2398 * sequence error interrupt (except on intel ce4100). 2399 * get_link_status will stay false until the 2400 * e1000_check_for_link establishes link for copper adapters 2401 * ONLY 2402 */ 2403 switch (hw->media_type) { 2404 case e1000_media_type_copper: 2405 if (hw->mac_type == e1000_ce4100) 2406 hw->get_link_status = 1; 2407 if (hw->get_link_status) { 2408 e1000_check_for_link(hw); 2409 link_active = !hw->get_link_status; 2410 } else { 2411 link_active = true; 2412 } 2413 break; 2414 case e1000_media_type_fiber: 2415 e1000_check_for_link(hw); 2416 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2417 break; 2418 case e1000_media_type_internal_serdes: 2419 e1000_check_for_link(hw); 2420 link_active = hw->serdes_has_link; 2421 break; 2422 default: 2423 break; 2424 } 2425 2426 return link_active; 2427 } 2428 2429 /** 2430 * e1000_watchdog - work function 2431 * @work: work struct contained inside adapter struct 2432 **/ 2433 static void e1000_watchdog(struct work_struct *work) 2434 { 2435 struct e1000_adapter *adapter = container_of(work, 2436 struct e1000_adapter, 2437 watchdog_task.work); 2438 struct e1000_hw *hw = &adapter->hw; 2439 struct net_device *netdev = adapter->netdev; 2440 struct e1000_tx_ring *txdr = adapter->tx_ring; 2441 u32 link, tctl; 2442 2443 link = e1000_has_link(adapter); 2444 if ((netif_carrier_ok(netdev)) && link) 2445 goto link_up; 2446 2447 if (link) { 2448 if (!netif_carrier_ok(netdev)) { 2449 u32 ctrl; 2450 bool txb2b = true; 2451 /* update snapshot of PHY registers on LSC */ 2452 e1000_get_speed_and_duplex(hw, 2453 &adapter->link_speed, 2454 &adapter->link_duplex); 2455 2456 ctrl = er32(CTRL); 2457 pr_info("%s NIC Link is Up %d Mbps %s, " 2458 "Flow Control: %s\n", 2459 netdev->name, 2460 adapter->link_speed, 2461 adapter->link_duplex == FULL_DUPLEX ? 2462 "Full Duplex" : "Half Duplex", 2463 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2464 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2465 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2466 E1000_CTRL_TFCE) ? "TX" : "None"))); 2467 2468 /* adjust timeout factor according to speed/duplex */ 2469 adapter->tx_timeout_factor = 1; 2470 switch (adapter->link_speed) { 2471 case SPEED_10: 2472 txb2b = false; 2473 adapter->tx_timeout_factor = 16; 2474 break; 2475 case SPEED_100: 2476 txb2b = false; 2477 /* maybe add some timeout factor ? */ 2478 break; 2479 } 2480 2481 /* enable transmits in the hardware */ 2482 tctl = er32(TCTL); 2483 tctl |= E1000_TCTL_EN; 2484 ew32(TCTL, tctl); 2485 2486 netif_carrier_on(netdev); 2487 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2488 schedule_delayed_work(&adapter->phy_info_task, 2489 2 * HZ); 2490 adapter->smartspeed = 0; 2491 } 2492 } else { 2493 if (netif_carrier_ok(netdev)) { 2494 adapter->link_speed = 0; 2495 adapter->link_duplex = 0; 2496 pr_info("%s NIC Link is Down\n", 2497 netdev->name); 2498 netif_carrier_off(netdev); 2499 2500 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2501 schedule_delayed_work(&adapter->phy_info_task, 2502 2 * HZ); 2503 } 2504 2505 e1000_smartspeed(adapter); 2506 } 2507 2508 link_up: 2509 e1000_update_stats(adapter); 2510 2511 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2512 adapter->tpt_old = adapter->stats.tpt; 2513 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2514 adapter->colc_old = adapter->stats.colc; 2515 2516 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2517 adapter->gorcl_old = adapter->stats.gorcl; 2518 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2519 adapter->gotcl_old = adapter->stats.gotcl; 2520 2521 e1000_update_adaptive(hw); 2522 2523 if (!netif_carrier_ok(netdev)) { 2524 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2525 /* We've lost link, so the controller stops DMA, 2526 * but we've got queued Tx work that's never going 2527 * to get done, so reset controller to flush Tx. 2528 * (Do the reset outside of interrupt context). 2529 */ 2530 adapter->tx_timeout_count++; 2531 schedule_work(&adapter->reset_task); 2532 /* exit immediately since reset is imminent */ 2533 return; 2534 } 2535 } 2536 2537 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2538 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2539 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2540 * Total asymmetrical Tx or Rx gets ITR=8000; 2541 * everyone else is between 2000-8000. 2542 */ 2543 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2544 u32 dif = (adapter->gotcl > adapter->gorcl ? 2545 adapter->gotcl - adapter->gorcl : 2546 adapter->gorcl - adapter->gotcl) / 10000; 2547 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2548 2549 ew32(ITR, 1000000000 / (itr * 256)); 2550 } 2551 2552 /* Cause software interrupt to ensure rx ring is cleaned */ 2553 ew32(ICS, E1000_ICS_RXDMT0); 2554 2555 /* Force detection of hung controller every watchdog period */ 2556 adapter->detect_tx_hung = true; 2557 2558 /* Reschedule the task */ 2559 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2560 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2561 } 2562 2563 enum latency_range { 2564 lowest_latency = 0, 2565 low_latency = 1, 2566 bulk_latency = 2, 2567 latency_invalid = 255 2568 }; 2569 2570 /** 2571 * e1000_update_itr - update the dynamic ITR value based on statistics 2572 * @adapter: pointer to adapter 2573 * @itr_setting: current adapter->itr 2574 * @packets: the number of packets during this measurement interval 2575 * @bytes: the number of bytes during this measurement interval 2576 * 2577 * Stores a new ITR value based on packets and byte 2578 * counts during the last interrupt. The advantage of per interrupt 2579 * computation is faster updates and more accurate ITR for the current 2580 * traffic pattern. Constants in this function were computed 2581 * based on theoretical maximum wire speed and thresholds were set based 2582 * on testing data as well as attempting to minimize response time 2583 * while increasing bulk throughput. 2584 * this functionality is controlled by the InterruptThrottleRate module 2585 * parameter (see e1000_param.c) 2586 **/ 2587 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2588 u16 itr_setting, int packets, int bytes) 2589 { 2590 unsigned int retval = itr_setting; 2591 struct e1000_hw *hw = &adapter->hw; 2592 2593 if (unlikely(hw->mac_type < e1000_82540)) 2594 goto update_itr_done; 2595 2596 if (packets == 0) 2597 goto update_itr_done; 2598 2599 switch (itr_setting) { 2600 case lowest_latency: 2601 /* jumbo frames get bulk treatment*/ 2602 if (bytes/packets > 8000) 2603 retval = bulk_latency; 2604 else if ((packets < 5) && (bytes > 512)) 2605 retval = low_latency; 2606 break; 2607 case low_latency: /* 50 usec aka 20000 ints/s */ 2608 if (bytes > 10000) { 2609 /* jumbo frames need bulk latency setting */ 2610 if (bytes/packets > 8000) 2611 retval = bulk_latency; 2612 else if ((packets < 10) || ((bytes/packets) > 1200)) 2613 retval = bulk_latency; 2614 else if ((packets > 35)) 2615 retval = lowest_latency; 2616 } else if (bytes/packets > 2000) 2617 retval = bulk_latency; 2618 else if (packets <= 2 && bytes < 512) 2619 retval = lowest_latency; 2620 break; 2621 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2622 if (bytes > 25000) { 2623 if (packets > 35) 2624 retval = low_latency; 2625 } else if (bytes < 6000) { 2626 retval = low_latency; 2627 } 2628 break; 2629 } 2630 2631 update_itr_done: 2632 return retval; 2633 } 2634 2635 static void e1000_set_itr(struct e1000_adapter *adapter) 2636 { 2637 struct e1000_hw *hw = &adapter->hw; 2638 u16 current_itr; 2639 u32 new_itr = adapter->itr; 2640 2641 if (unlikely(hw->mac_type < e1000_82540)) 2642 return; 2643 2644 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2645 if (unlikely(adapter->link_speed != SPEED_1000)) { 2646 current_itr = 0; 2647 new_itr = 4000; 2648 goto set_itr_now; 2649 } 2650 2651 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2652 adapter->total_tx_packets, 2653 adapter->total_tx_bytes); 2654 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2655 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2656 adapter->tx_itr = low_latency; 2657 2658 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2659 adapter->total_rx_packets, 2660 adapter->total_rx_bytes); 2661 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2662 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2663 adapter->rx_itr = low_latency; 2664 2665 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2666 2667 switch (current_itr) { 2668 /* counts and packets in update_itr are dependent on these numbers */ 2669 case lowest_latency: 2670 new_itr = 70000; 2671 break; 2672 case low_latency: 2673 new_itr = 20000; /* aka hwitr = ~200 */ 2674 break; 2675 case bulk_latency: 2676 new_itr = 4000; 2677 break; 2678 default: 2679 break; 2680 } 2681 2682 set_itr_now: 2683 if (new_itr != adapter->itr) { 2684 /* this attempts to bias the interrupt rate towards Bulk 2685 * by adding intermediate steps when interrupt rate is 2686 * increasing 2687 */ 2688 new_itr = new_itr > adapter->itr ? 2689 min(adapter->itr + (new_itr >> 2), new_itr) : 2690 new_itr; 2691 adapter->itr = new_itr; 2692 ew32(ITR, 1000000000 / (new_itr * 256)); 2693 } 2694 } 2695 2696 #define E1000_TX_FLAGS_CSUM 0x00000001 2697 #define E1000_TX_FLAGS_VLAN 0x00000002 2698 #define E1000_TX_FLAGS_TSO 0x00000004 2699 #define E1000_TX_FLAGS_IPV4 0x00000008 2700 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2701 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2702 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2703 2704 static int e1000_tso(struct e1000_adapter *adapter, 2705 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2706 __be16 protocol) 2707 { 2708 struct e1000_context_desc *context_desc; 2709 struct e1000_tx_buffer *buffer_info; 2710 unsigned int i; 2711 u32 cmd_length = 0; 2712 u16 ipcse = 0, tucse, mss; 2713 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2714 2715 if (skb_is_gso(skb)) { 2716 int err; 2717 2718 err = skb_cow_head(skb, 0); 2719 if (err < 0) 2720 return err; 2721 2722 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2723 mss = skb_shinfo(skb)->gso_size; 2724 if (protocol == htons(ETH_P_IP)) { 2725 struct iphdr *iph = ip_hdr(skb); 2726 iph->tot_len = 0; 2727 iph->check = 0; 2728 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2729 iph->daddr, 0, 2730 IPPROTO_TCP, 2731 0); 2732 cmd_length = E1000_TXD_CMD_IP; 2733 ipcse = skb_transport_offset(skb) - 1; 2734 } else if (skb_is_gso_v6(skb)) { 2735 ipv6_hdr(skb)->payload_len = 0; 2736 tcp_hdr(skb)->check = 2737 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2738 &ipv6_hdr(skb)->daddr, 2739 0, IPPROTO_TCP, 0); 2740 ipcse = 0; 2741 } 2742 ipcss = skb_network_offset(skb); 2743 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2744 tucss = skb_transport_offset(skb); 2745 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2746 tucse = 0; 2747 2748 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2749 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2750 2751 i = tx_ring->next_to_use; 2752 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2753 buffer_info = &tx_ring->buffer_info[i]; 2754 2755 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2756 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2757 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2758 context_desc->upper_setup.tcp_fields.tucss = tucss; 2759 context_desc->upper_setup.tcp_fields.tucso = tucso; 2760 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2761 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2762 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2763 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2764 2765 buffer_info->time_stamp = jiffies; 2766 buffer_info->next_to_watch = i; 2767 2768 if (++i == tx_ring->count) 2769 i = 0; 2770 2771 tx_ring->next_to_use = i; 2772 2773 return true; 2774 } 2775 return false; 2776 } 2777 2778 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2779 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2780 __be16 protocol) 2781 { 2782 struct e1000_context_desc *context_desc; 2783 struct e1000_tx_buffer *buffer_info; 2784 unsigned int i; 2785 u8 css; 2786 u32 cmd_len = E1000_TXD_CMD_DEXT; 2787 2788 if (skb->ip_summed != CHECKSUM_PARTIAL) 2789 return false; 2790 2791 switch (protocol) { 2792 case cpu_to_be16(ETH_P_IP): 2793 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2794 cmd_len |= E1000_TXD_CMD_TCP; 2795 break; 2796 case cpu_to_be16(ETH_P_IPV6): 2797 /* XXX not handling all IPV6 headers */ 2798 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2799 cmd_len |= E1000_TXD_CMD_TCP; 2800 break; 2801 default: 2802 if (unlikely(net_ratelimit())) 2803 e_warn(drv, "checksum_partial proto=%x!\n", 2804 skb->protocol); 2805 break; 2806 } 2807 2808 css = skb_checksum_start_offset(skb); 2809 2810 i = tx_ring->next_to_use; 2811 buffer_info = &tx_ring->buffer_info[i]; 2812 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2813 2814 context_desc->lower_setup.ip_config = 0; 2815 context_desc->upper_setup.tcp_fields.tucss = css; 2816 context_desc->upper_setup.tcp_fields.tucso = 2817 css + skb->csum_offset; 2818 context_desc->upper_setup.tcp_fields.tucse = 0; 2819 context_desc->tcp_seg_setup.data = 0; 2820 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2821 2822 buffer_info->time_stamp = jiffies; 2823 buffer_info->next_to_watch = i; 2824 2825 if (unlikely(++i == tx_ring->count)) 2826 i = 0; 2827 2828 tx_ring->next_to_use = i; 2829 2830 return true; 2831 } 2832 2833 #define E1000_MAX_TXD_PWR 12 2834 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2835 2836 static int e1000_tx_map(struct e1000_adapter *adapter, 2837 struct e1000_tx_ring *tx_ring, 2838 struct sk_buff *skb, unsigned int first, 2839 unsigned int max_per_txd, unsigned int nr_frags, 2840 unsigned int mss) 2841 { 2842 struct e1000_hw *hw = &adapter->hw; 2843 struct pci_dev *pdev = adapter->pdev; 2844 struct e1000_tx_buffer *buffer_info; 2845 unsigned int len = skb_headlen(skb); 2846 unsigned int offset = 0, size, count = 0, i; 2847 unsigned int f, bytecount, segs; 2848 2849 i = tx_ring->next_to_use; 2850 2851 while (len) { 2852 buffer_info = &tx_ring->buffer_info[i]; 2853 size = min(len, max_per_txd); 2854 /* Workaround for Controller erratum -- 2855 * descriptor for non-tso packet in a linear SKB that follows a 2856 * tso gets written back prematurely before the data is fully 2857 * DMA'd to the controller 2858 */ 2859 if (!skb->data_len && tx_ring->last_tx_tso && 2860 !skb_is_gso(skb)) { 2861 tx_ring->last_tx_tso = false; 2862 size -= 4; 2863 } 2864 2865 /* Workaround for premature desc write-backs 2866 * in TSO mode. Append 4-byte sentinel desc 2867 */ 2868 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2869 size -= 4; 2870 /* work-around for errata 10 and it applies 2871 * to all controllers in PCI-X mode 2872 * The fix is to make sure that the first descriptor of a 2873 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2874 */ 2875 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2876 (size > 2015) && count == 0)) 2877 size = 2015; 2878 2879 /* Workaround for potential 82544 hang in PCI-X. Avoid 2880 * terminating buffers within evenly-aligned dwords. 2881 */ 2882 if (unlikely(adapter->pcix_82544 && 2883 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2884 size > 4)) 2885 size -= 4; 2886 2887 buffer_info->length = size; 2888 /* set time_stamp *before* dma to help avoid a possible race */ 2889 buffer_info->time_stamp = jiffies; 2890 buffer_info->mapped_as_page = false; 2891 buffer_info->dma = dma_map_single(&pdev->dev, 2892 skb->data + offset, 2893 size, DMA_TO_DEVICE); 2894 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2895 goto dma_error; 2896 buffer_info->next_to_watch = i; 2897 2898 len -= size; 2899 offset += size; 2900 count++; 2901 if (len) { 2902 i++; 2903 if (unlikely(i == tx_ring->count)) 2904 i = 0; 2905 } 2906 } 2907 2908 for (f = 0; f < nr_frags; f++) { 2909 const struct skb_frag_struct *frag; 2910 2911 frag = &skb_shinfo(skb)->frags[f]; 2912 len = skb_frag_size(frag); 2913 offset = 0; 2914 2915 while (len) { 2916 unsigned long bufend; 2917 i++; 2918 if (unlikely(i == tx_ring->count)) 2919 i = 0; 2920 2921 buffer_info = &tx_ring->buffer_info[i]; 2922 size = min(len, max_per_txd); 2923 /* Workaround for premature desc write-backs 2924 * in TSO mode. Append 4-byte sentinel desc 2925 */ 2926 if (unlikely(mss && f == (nr_frags-1) && 2927 size == len && size > 8)) 2928 size -= 4; 2929 /* Workaround for potential 82544 hang in PCI-X. 2930 * Avoid terminating buffers within evenly-aligned 2931 * dwords. 2932 */ 2933 bufend = (unsigned long) 2934 page_to_phys(skb_frag_page(frag)); 2935 bufend += offset + size - 1; 2936 if (unlikely(adapter->pcix_82544 && 2937 !(bufend & 4) && 2938 size > 4)) 2939 size -= 4; 2940 2941 buffer_info->length = size; 2942 buffer_info->time_stamp = jiffies; 2943 buffer_info->mapped_as_page = true; 2944 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2945 offset, size, DMA_TO_DEVICE); 2946 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2947 goto dma_error; 2948 buffer_info->next_to_watch = i; 2949 2950 len -= size; 2951 offset += size; 2952 count++; 2953 } 2954 } 2955 2956 segs = skb_shinfo(skb)->gso_segs ?: 1; 2957 /* multiply data chunks by size of headers */ 2958 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2959 2960 tx_ring->buffer_info[i].skb = skb; 2961 tx_ring->buffer_info[i].segs = segs; 2962 tx_ring->buffer_info[i].bytecount = bytecount; 2963 tx_ring->buffer_info[first].next_to_watch = i; 2964 2965 return count; 2966 2967 dma_error: 2968 dev_err(&pdev->dev, "TX DMA map failed\n"); 2969 buffer_info->dma = 0; 2970 if (count) 2971 count--; 2972 2973 while (count--) { 2974 if (i == 0) 2975 i += tx_ring->count; 2976 i--; 2977 buffer_info = &tx_ring->buffer_info[i]; 2978 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2979 } 2980 2981 return 0; 2982 } 2983 2984 static void e1000_tx_queue(struct e1000_adapter *adapter, 2985 struct e1000_tx_ring *tx_ring, int tx_flags, 2986 int count) 2987 { 2988 struct e1000_tx_desc *tx_desc = NULL; 2989 struct e1000_tx_buffer *buffer_info; 2990 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2991 unsigned int i; 2992 2993 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2994 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2995 E1000_TXD_CMD_TSE; 2996 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2997 2998 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2999 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 3000 } 3001 3002 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 3003 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 3004 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3005 } 3006 3007 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 3008 txd_lower |= E1000_TXD_CMD_VLE; 3009 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 3010 } 3011 3012 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3013 txd_lower &= ~(E1000_TXD_CMD_IFCS); 3014 3015 i = tx_ring->next_to_use; 3016 3017 while (count--) { 3018 buffer_info = &tx_ring->buffer_info[i]; 3019 tx_desc = E1000_TX_DESC(*tx_ring, i); 3020 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3021 tx_desc->lower.data = 3022 cpu_to_le32(txd_lower | buffer_info->length); 3023 tx_desc->upper.data = cpu_to_le32(txd_upper); 3024 if (unlikely(++i == tx_ring->count)) 3025 i = 0; 3026 } 3027 3028 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3029 3030 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3031 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3032 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3033 3034 /* Force memory writes to complete before letting h/w 3035 * know there are new descriptors to fetch. (Only 3036 * applicable for weak-ordered memory model archs, 3037 * such as IA-64). 3038 */ 3039 wmb(); 3040 3041 tx_ring->next_to_use = i; 3042 } 3043 3044 /* 82547 workaround to avoid controller hang in half-duplex environment. 3045 * The workaround is to avoid queuing a large packet that would span 3046 * the internal Tx FIFO ring boundary by notifying the stack to resend 3047 * the packet at a later time. This gives the Tx FIFO an opportunity to 3048 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3049 * to the beginning of the Tx FIFO. 3050 */ 3051 3052 #define E1000_FIFO_HDR 0x10 3053 #define E1000_82547_PAD_LEN 0x3E0 3054 3055 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3056 struct sk_buff *skb) 3057 { 3058 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3059 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3060 3061 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3062 3063 if (adapter->link_duplex != HALF_DUPLEX) 3064 goto no_fifo_stall_required; 3065 3066 if (atomic_read(&adapter->tx_fifo_stall)) 3067 return 1; 3068 3069 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3070 atomic_set(&adapter->tx_fifo_stall, 1); 3071 return 1; 3072 } 3073 3074 no_fifo_stall_required: 3075 adapter->tx_fifo_head += skb_fifo_len; 3076 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3077 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3078 return 0; 3079 } 3080 3081 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3082 { 3083 struct e1000_adapter *adapter = netdev_priv(netdev); 3084 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3085 3086 netif_stop_queue(netdev); 3087 /* Herbert's original patch had: 3088 * smp_mb__after_netif_stop_queue(); 3089 * but since that doesn't exist yet, just open code it. 3090 */ 3091 smp_mb(); 3092 3093 /* We need to check again in a case another CPU has just 3094 * made room available. 3095 */ 3096 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3097 return -EBUSY; 3098 3099 /* A reprieve! */ 3100 netif_start_queue(netdev); 3101 ++adapter->restart_queue; 3102 return 0; 3103 } 3104 3105 static int e1000_maybe_stop_tx(struct net_device *netdev, 3106 struct e1000_tx_ring *tx_ring, int size) 3107 { 3108 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3109 return 0; 3110 return __e1000_maybe_stop_tx(netdev, size); 3111 } 3112 3113 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) 3114 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3115 struct net_device *netdev) 3116 { 3117 struct e1000_adapter *adapter = netdev_priv(netdev); 3118 struct e1000_hw *hw = &adapter->hw; 3119 struct e1000_tx_ring *tx_ring; 3120 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3121 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3122 unsigned int tx_flags = 0; 3123 unsigned int len = skb_headlen(skb); 3124 unsigned int nr_frags; 3125 unsigned int mss; 3126 int count = 0; 3127 int tso; 3128 unsigned int f; 3129 __be16 protocol = vlan_get_protocol(skb); 3130 3131 /* This goes back to the question of how to logically map a Tx queue 3132 * to a flow. Right now, performance is impacted slightly negatively 3133 * if using multiple Tx queues. If the stack breaks away from a 3134 * single qdisc implementation, we can look at this again. 3135 */ 3136 tx_ring = adapter->tx_ring; 3137 3138 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3139 * packets may get corrupted during padding by HW. 3140 * To WA this issue, pad all small packets manually. 3141 */ 3142 if (eth_skb_pad(skb)) 3143 return NETDEV_TX_OK; 3144 3145 mss = skb_shinfo(skb)->gso_size; 3146 /* The controller does a simple calculation to 3147 * make sure there is enough room in the FIFO before 3148 * initiating the DMA for each buffer. The calc is: 3149 * 4 = ceil(buffer len/mss). To make sure we don't 3150 * overrun the FIFO, adjust the max buffer len if mss 3151 * drops. 3152 */ 3153 if (mss) { 3154 u8 hdr_len; 3155 max_per_txd = min(mss << 2, max_per_txd); 3156 max_txd_pwr = fls(max_per_txd) - 1; 3157 3158 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3159 if (skb->data_len && hdr_len == len) { 3160 switch (hw->mac_type) { 3161 unsigned int pull_size; 3162 case e1000_82544: 3163 /* Make sure we have room to chop off 4 bytes, 3164 * and that the end alignment will work out to 3165 * this hardware's requirements 3166 * NOTE: this is a TSO only workaround 3167 * if end byte alignment not correct move us 3168 * into the next dword 3169 */ 3170 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3171 & 4) 3172 break; 3173 /* fall through */ 3174 pull_size = min((unsigned int)4, skb->data_len); 3175 if (!__pskb_pull_tail(skb, pull_size)) { 3176 e_err(drv, "__pskb_pull_tail " 3177 "failed.\n"); 3178 dev_kfree_skb_any(skb); 3179 return NETDEV_TX_OK; 3180 } 3181 len = skb_headlen(skb); 3182 break; 3183 default: 3184 /* do nothing */ 3185 break; 3186 } 3187 } 3188 } 3189 3190 /* reserve a descriptor for the offload context */ 3191 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3192 count++; 3193 count++; 3194 3195 /* Controller Erratum workaround */ 3196 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3197 count++; 3198 3199 count += TXD_USE_COUNT(len, max_txd_pwr); 3200 3201 if (adapter->pcix_82544) 3202 count++; 3203 3204 /* work-around for errata 10 and it applies to all controllers 3205 * in PCI-X mode, so add one more descriptor to the count 3206 */ 3207 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3208 (len > 2015))) 3209 count++; 3210 3211 nr_frags = skb_shinfo(skb)->nr_frags; 3212 for (f = 0; f < nr_frags; f++) 3213 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3214 max_txd_pwr); 3215 if (adapter->pcix_82544) 3216 count += nr_frags; 3217 3218 /* need: count + 2 desc gap to keep tail from touching 3219 * head, otherwise try next time 3220 */ 3221 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3222 return NETDEV_TX_BUSY; 3223 3224 if (unlikely((hw->mac_type == e1000_82547) && 3225 (e1000_82547_fifo_workaround(adapter, skb)))) { 3226 netif_stop_queue(netdev); 3227 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3228 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3229 return NETDEV_TX_BUSY; 3230 } 3231 3232 if (skb_vlan_tag_present(skb)) { 3233 tx_flags |= E1000_TX_FLAGS_VLAN; 3234 tx_flags |= (skb_vlan_tag_get(skb) << 3235 E1000_TX_FLAGS_VLAN_SHIFT); 3236 } 3237 3238 first = tx_ring->next_to_use; 3239 3240 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3241 if (tso < 0) { 3242 dev_kfree_skb_any(skb); 3243 return NETDEV_TX_OK; 3244 } 3245 3246 if (likely(tso)) { 3247 if (likely(hw->mac_type != e1000_82544)) 3248 tx_ring->last_tx_tso = true; 3249 tx_flags |= E1000_TX_FLAGS_TSO; 3250 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3251 tx_flags |= E1000_TX_FLAGS_CSUM; 3252 3253 if (protocol == htons(ETH_P_IP)) 3254 tx_flags |= E1000_TX_FLAGS_IPV4; 3255 3256 if (unlikely(skb->no_fcs)) 3257 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3258 3259 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3260 nr_frags, mss); 3261 3262 if (count) { 3263 /* The descriptors needed is higher than other Intel drivers 3264 * due to a number of workarounds. The breakdown is below: 3265 * Data descriptors: MAX_SKB_FRAGS + 1 3266 * Context Descriptor: 1 3267 * Keep head from touching tail: 2 3268 * Workarounds: 3 3269 */ 3270 int desc_needed = MAX_SKB_FRAGS + 7; 3271 3272 netdev_sent_queue(netdev, skb->len); 3273 skb_tx_timestamp(skb); 3274 3275 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3276 3277 /* 82544 potentially requires twice as many data descriptors 3278 * in order to guarantee buffers don't end on evenly-aligned 3279 * dwords 3280 */ 3281 if (adapter->pcix_82544) 3282 desc_needed += MAX_SKB_FRAGS + 1; 3283 3284 /* Make sure there is space in the ring for the next send. */ 3285 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); 3286 3287 if (!skb->xmit_more || 3288 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 3289 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); 3290 /* we need this if more than one processor can write to 3291 * our tail at a time, it synchronizes IO on IA64/Altix 3292 * systems 3293 */ 3294 mmiowb(); 3295 } 3296 } else { 3297 dev_kfree_skb_any(skb); 3298 tx_ring->buffer_info[first].time_stamp = 0; 3299 tx_ring->next_to_use = first; 3300 } 3301 3302 return NETDEV_TX_OK; 3303 } 3304 3305 #define NUM_REGS 38 /* 1 based count */ 3306 static void e1000_regdump(struct e1000_adapter *adapter) 3307 { 3308 struct e1000_hw *hw = &adapter->hw; 3309 u32 regs[NUM_REGS]; 3310 u32 *regs_buff = regs; 3311 int i = 0; 3312 3313 static const char * const reg_name[] = { 3314 "CTRL", "STATUS", 3315 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3316 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3317 "TIDV", "TXDCTL", "TADV", "TARC0", 3318 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3319 "TXDCTL1", "TARC1", 3320 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3321 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3322 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3323 }; 3324 3325 regs_buff[0] = er32(CTRL); 3326 regs_buff[1] = er32(STATUS); 3327 3328 regs_buff[2] = er32(RCTL); 3329 regs_buff[3] = er32(RDLEN); 3330 regs_buff[4] = er32(RDH); 3331 regs_buff[5] = er32(RDT); 3332 regs_buff[6] = er32(RDTR); 3333 3334 regs_buff[7] = er32(TCTL); 3335 regs_buff[8] = er32(TDBAL); 3336 regs_buff[9] = er32(TDBAH); 3337 regs_buff[10] = er32(TDLEN); 3338 regs_buff[11] = er32(TDH); 3339 regs_buff[12] = er32(TDT); 3340 regs_buff[13] = er32(TIDV); 3341 regs_buff[14] = er32(TXDCTL); 3342 regs_buff[15] = er32(TADV); 3343 regs_buff[16] = er32(TARC0); 3344 3345 regs_buff[17] = er32(TDBAL1); 3346 regs_buff[18] = er32(TDBAH1); 3347 regs_buff[19] = er32(TDLEN1); 3348 regs_buff[20] = er32(TDH1); 3349 regs_buff[21] = er32(TDT1); 3350 regs_buff[22] = er32(TXDCTL1); 3351 regs_buff[23] = er32(TARC1); 3352 regs_buff[24] = er32(CTRL_EXT); 3353 regs_buff[25] = er32(ERT); 3354 regs_buff[26] = er32(RDBAL0); 3355 regs_buff[27] = er32(RDBAH0); 3356 regs_buff[28] = er32(TDFH); 3357 regs_buff[29] = er32(TDFT); 3358 regs_buff[30] = er32(TDFHS); 3359 regs_buff[31] = er32(TDFTS); 3360 regs_buff[32] = er32(TDFPC); 3361 regs_buff[33] = er32(RDFH); 3362 regs_buff[34] = er32(RDFT); 3363 regs_buff[35] = er32(RDFHS); 3364 regs_buff[36] = er32(RDFTS); 3365 regs_buff[37] = er32(RDFPC); 3366 3367 pr_info("Register dump\n"); 3368 for (i = 0; i < NUM_REGS; i++) 3369 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3370 } 3371 3372 /* 3373 * e1000_dump: Print registers, tx ring and rx ring 3374 */ 3375 static void e1000_dump(struct e1000_adapter *adapter) 3376 { 3377 /* this code doesn't handle multiple rings */ 3378 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3379 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3380 int i; 3381 3382 if (!netif_msg_hw(adapter)) 3383 return; 3384 3385 /* Print Registers */ 3386 e1000_regdump(adapter); 3387 3388 /* transmit dump */ 3389 pr_info("TX Desc ring0 dump\n"); 3390 3391 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3392 * 3393 * Legacy Transmit Descriptor 3394 * +--------------------------------------------------------------+ 3395 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3396 * +--------------------------------------------------------------+ 3397 * 8 | Special | CSS | Status | CMD | CSO | Length | 3398 * +--------------------------------------------------------------+ 3399 * 63 48 47 36 35 32 31 24 23 16 15 0 3400 * 3401 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3402 * 63 48 47 40 39 32 31 16 15 8 7 0 3403 * +----------------------------------------------------------------+ 3404 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3405 * +----------------------------------------------------------------+ 3406 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3407 * +----------------------------------------------------------------+ 3408 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3409 * 3410 * Extended Data Descriptor (DTYP=0x1) 3411 * +----------------------------------------------------------------+ 3412 * 0 | Buffer Address [63:0] | 3413 * +----------------------------------------------------------------+ 3414 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3415 * +----------------------------------------------------------------+ 3416 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3417 */ 3418 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3419 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3420 3421 if (!netif_msg_tx_done(adapter)) 3422 goto rx_ring_summary; 3423 3424 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3425 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3426 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3427 struct my_u { __le64 a; __le64 b; }; 3428 struct my_u *u = (struct my_u *)tx_desc; 3429 const char *type; 3430 3431 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3432 type = "NTC/U"; 3433 else if (i == tx_ring->next_to_use) 3434 type = "NTU"; 3435 else if (i == tx_ring->next_to_clean) 3436 type = "NTC"; 3437 else 3438 type = ""; 3439 3440 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3441 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3442 le64_to_cpu(u->a), le64_to_cpu(u->b), 3443 (u64)buffer_info->dma, buffer_info->length, 3444 buffer_info->next_to_watch, 3445 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3446 } 3447 3448 rx_ring_summary: 3449 /* receive dump */ 3450 pr_info("\nRX Desc ring dump\n"); 3451 3452 /* Legacy Receive Descriptor Format 3453 * 3454 * +-----------------------------------------------------+ 3455 * | Buffer Address [63:0] | 3456 * +-----------------------------------------------------+ 3457 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3458 * +-----------------------------------------------------+ 3459 * 63 48 47 40 39 32 31 16 15 0 3460 */ 3461 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3462 3463 if (!netif_msg_rx_status(adapter)) 3464 goto exit; 3465 3466 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3467 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3468 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3469 struct my_u { __le64 a; __le64 b; }; 3470 struct my_u *u = (struct my_u *)rx_desc; 3471 const char *type; 3472 3473 if (i == rx_ring->next_to_use) 3474 type = "NTU"; 3475 else if (i == rx_ring->next_to_clean) 3476 type = "NTC"; 3477 else 3478 type = ""; 3479 3480 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3481 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3482 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3483 } /* for */ 3484 3485 /* dump the descriptor caches */ 3486 /* rx */ 3487 pr_info("Rx descriptor cache in 64bit format\n"); 3488 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3489 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3490 i, 3491 readl(adapter->hw.hw_addr + i+4), 3492 readl(adapter->hw.hw_addr + i), 3493 readl(adapter->hw.hw_addr + i+12), 3494 readl(adapter->hw.hw_addr + i+8)); 3495 } 3496 /* tx */ 3497 pr_info("Tx descriptor cache in 64bit format\n"); 3498 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3499 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3500 i, 3501 readl(adapter->hw.hw_addr + i+4), 3502 readl(adapter->hw.hw_addr + i), 3503 readl(adapter->hw.hw_addr + i+12), 3504 readl(adapter->hw.hw_addr + i+8)); 3505 } 3506 exit: 3507 return; 3508 } 3509 3510 /** 3511 * e1000_tx_timeout - Respond to a Tx Hang 3512 * @netdev: network interface device structure 3513 **/ 3514 static void e1000_tx_timeout(struct net_device *netdev) 3515 { 3516 struct e1000_adapter *adapter = netdev_priv(netdev); 3517 3518 /* Do the reset outside of interrupt context */ 3519 adapter->tx_timeout_count++; 3520 schedule_work(&adapter->reset_task); 3521 } 3522 3523 static void e1000_reset_task(struct work_struct *work) 3524 { 3525 struct e1000_adapter *adapter = 3526 container_of(work, struct e1000_adapter, reset_task); 3527 3528 e_err(drv, "Reset adapter\n"); 3529 e1000_reinit_locked(adapter); 3530 } 3531 3532 /** 3533 * e1000_get_stats - Get System Network Statistics 3534 * @netdev: network interface device structure 3535 * 3536 * Returns the address of the device statistics structure. 3537 * The statistics are actually updated from the watchdog. 3538 **/ 3539 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 3540 { 3541 /* only return the current stats */ 3542 return &netdev->stats; 3543 } 3544 3545 /** 3546 * e1000_change_mtu - Change the Maximum Transfer Unit 3547 * @netdev: network interface device structure 3548 * @new_mtu: new value for maximum frame size 3549 * 3550 * Returns 0 on success, negative on failure 3551 **/ 3552 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3553 { 3554 struct e1000_adapter *adapter = netdev_priv(netdev); 3555 struct e1000_hw *hw = &adapter->hw; 3556 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3557 3558 /* Adapter-specific max frame size limits. */ 3559 switch (hw->mac_type) { 3560 case e1000_undefined ... e1000_82542_rev2_1: 3561 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3562 e_err(probe, "Jumbo Frames not supported.\n"); 3563 return -EINVAL; 3564 } 3565 break; 3566 default: 3567 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3568 break; 3569 } 3570 3571 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3572 msleep(1); 3573 /* e1000_down has a dependency on max_frame_size */ 3574 hw->max_frame_size = max_frame; 3575 if (netif_running(netdev)) { 3576 /* prevent buffers from being reallocated */ 3577 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; 3578 e1000_down(adapter); 3579 } 3580 3581 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3582 * means we reserve 2 more, this pushes us to allocate from the next 3583 * larger slab size. 3584 * i.e. RXBUFFER_2048 --> size-4096 slab 3585 * however with the new *_jumbo_rx* routines, jumbo receives will use 3586 * fragmented skbs 3587 */ 3588 3589 if (max_frame <= E1000_RXBUFFER_2048) 3590 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3591 else 3592 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3593 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3594 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3595 adapter->rx_buffer_len = PAGE_SIZE; 3596 #endif 3597 3598 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3599 if (!hw->tbi_compatibility_on && 3600 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3601 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3602 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3603 3604 pr_info("%s changing MTU from %d to %d\n", 3605 netdev->name, netdev->mtu, new_mtu); 3606 netdev->mtu = new_mtu; 3607 3608 if (netif_running(netdev)) 3609 e1000_up(adapter); 3610 else 3611 e1000_reset(adapter); 3612 3613 clear_bit(__E1000_RESETTING, &adapter->flags); 3614 3615 return 0; 3616 } 3617 3618 /** 3619 * e1000_update_stats - Update the board statistics counters 3620 * @adapter: board private structure 3621 **/ 3622 void e1000_update_stats(struct e1000_adapter *adapter) 3623 { 3624 struct net_device *netdev = adapter->netdev; 3625 struct e1000_hw *hw = &adapter->hw; 3626 struct pci_dev *pdev = adapter->pdev; 3627 unsigned long flags; 3628 u16 phy_tmp; 3629 3630 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3631 3632 /* Prevent stats update while adapter is being reset, or if the pci 3633 * connection is down. 3634 */ 3635 if (adapter->link_speed == 0) 3636 return; 3637 if (pci_channel_offline(pdev)) 3638 return; 3639 3640 spin_lock_irqsave(&adapter->stats_lock, flags); 3641 3642 /* these counters are modified from e1000_tbi_adjust_stats, 3643 * called from the interrupt context, so they must only 3644 * be written while holding adapter->stats_lock 3645 */ 3646 3647 adapter->stats.crcerrs += er32(CRCERRS); 3648 adapter->stats.gprc += er32(GPRC); 3649 adapter->stats.gorcl += er32(GORCL); 3650 adapter->stats.gorch += er32(GORCH); 3651 adapter->stats.bprc += er32(BPRC); 3652 adapter->stats.mprc += er32(MPRC); 3653 adapter->stats.roc += er32(ROC); 3654 3655 adapter->stats.prc64 += er32(PRC64); 3656 adapter->stats.prc127 += er32(PRC127); 3657 adapter->stats.prc255 += er32(PRC255); 3658 adapter->stats.prc511 += er32(PRC511); 3659 adapter->stats.prc1023 += er32(PRC1023); 3660 adapter->stats.prc1522 += er32(PRC1522); 3661 3662 adapter->stats.symerrs += er32(SYMERRS); 3663 adapter->stats.mpc += er32(MPC); 3664 adapter->stats.scc += er32(SCC); 3665 adapter->stats.ecol += er32(ECOL); 3666 adapter->stats.mcc += er32(MCC); 3667 adapter->stats.latecol += er32(LATECOL); 3668 adapter->stats.dc += er32(DC); 3669 adapter->stats.sec += er32(SEC); 3670 adapter->stats.rlec += er32(RLEC); 3671 adapter->stats.xonrxc += er32(XONRXC); 3672 adapter->stats.xontxc += er32(XONTXC); 3673 adapter->stats.xoffrxc += er32(XOFFRXC); 3674 adapter->stats.xofftxc += er32(XOFFTXC); 3675 adapter->stats.fcruc += er32(FCRUC); 3676 adapter->stats.gptc += er32(GPTC); 3677 adapter->stats.gotcl += er32(GOTCL); 3678 adapter->stats.gotch += er32(GOTCH); 3679 adapter->stats.rnbc += er32(RNBC); 3680 adapter->stats.ruc += er32(RUC); 3681 adapter->stats.rfc += er32(RFC); 3682 adapter->stats.rjc += er32(RJC); 3683 adapter->stats.torl += er32(TORL); 3684 adapter->stats.torh += er32(TORH); 3685 adapter->stats.totl += er32(TOTL); 3686 adapter->stats.toth += er32(TOTH); 3687 adapter->stats.tpr += er32(TPR); 3688 3689 adapter->stats.ptc64 += er32(PTC64); 3690 adapter->stats.ptc127 += er32(PTC127); 3691 adapter->stats.ptc255 += er32(PTC255); 3692 adapter->stats.ptc511 += er32(PTC511); 3693 adapter->stats.ptc1023 += er32(PTC1023); 3694 adapter->stats.ptc1522 += er32(PTC1522); 3695 3696 adapter->stats.mptc += er32(MPTC); 3697 adapter->stats.bptc += er32(BPTC); 3698 3699 /* used for adaptive IFS */ 3700 3701 hw->tx_packet_delta = er32(TPT); 3702 adapter->stats.tpt += hw->tx_packet_delta; 3703 hw->collision_delta = er32(COLC); 3704 adapter->stats.colc += hw->collision_delta; 3705 3706 if (hw->mac_type >= e1000_82543) { 3707 adapter->stats.algnerrc += er32(ALGNERRC); 3708 adapter->stats.rxerrc += er32(RXERRC); 3709 adapter->stats.tncrs += er32(TNCRS); 3710 adapter->stats.cexterr += er32(CEXTERR); 3711 adapter->stats.tsctc += er32(TSCTC); 3712 adapter->stats.tsctfc += er32(TSCTFC); 3713 } 3714 3715 /* Fill out the OS statistics structure */ 3716 netdev->stats.multicast = adapter->stats.mprc; 3717 netdev->stats.collisions = adapter->stats.colc; 3718 3719 /* Rx Errors */ 3720 3721 /* RLEC on some newer hardware can be incorrect so build 3722 * our own version based on RUC and ROC 3723 */ 3724 netdev->stats.rx_errors = adapter->stats.rxerrc + 3725 adapter->stats.crcerrs + adapter->stats.algnerrc + 3726 adapter->stats.ruc + adapter->stats.roc + 3727 adapter->stats.cexterr; 3728 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3729 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3730 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3731 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3732 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3733 3734 /* Tx Errors */ 3735 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3736 netdev->stats.tx_errors = adapter->stats.txerrc; 3737 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3738 netdev->stats.tx_window_errors = adapter->stats.latecol; 3739 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3740 if (hw->bad_tx_carr_stats_fd && 3741 adapter->link_duplex == FULL_DUPLEX) { 3742 netdev->stats.tx_carrier_errors = 0; 3743 adapter->stats.tncrs = 0; 3744 } 3745 3746 /* Tx Dropped needs to be maintained elsewhere */ 3747 3748 /* Phy Stats */ 3749 if (hw->media_type == e1000_media_type_copper) { 3750 if ((adapter->link_speed == SPEED_1000) && 3751 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3752 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3753 adapter->phy_stats.idle_errors += phy_tmp; 3754 } 3755 3756 if ((hw->mac_type <= e1000_82546) && 3757 (hw->phy_type == e1000_phy_m88) && 3758 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3759 adapter->phy_stats.receive_errors += phy_tmp; 3760 } 3761 3762 /* Management Stats */ 3763 if (hw->has_smbus) { 3764 adapter->stats.mgptc += er32(MGTPTC); 3765 adapter->stats.mgprc += er32(MGTPRC); 3766 adapter->stats.mgpdc += er32(MGTPDC); 3767 } 3768 3769 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3770 } 3771 3772 /** 3773 * e1000_intr - Interrupt Handler 3774 * @irq: interrupt number 3775 * @data: pointer to a network interface device structure 3776 **/ 3777 static irqreturn_t e1000_intr(int irq, void *data) 3778 { 3779 struct net_device *netdev = data; 3780 struct e1000_adapter *adapter = netdev_priv(netdev); 3781 struct e1000_hw *hw = &adapter->hw; 3782 u32 icr = er32(ICR); 3783 3784 if (unlikely((!icr))) 3785 return IRQ_NONE; /* Not our interrupt */ 3786 3787 /* we might have caused the interrupt, but the above 3788 * read cleared it, and just in case the driver is 3789 * down there is nothing to do so return handled 3790 */ 3791 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3792 return IRQ_HANDLED; 3793 3794 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3795 hw->get_link_status = 1; 3796 /* guard against interrupt when we're going down */ 3797 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3798 schedule_delayed_work(&adapter->watchdog_task, 1); 3799 } 3800 3801 /* disable interrupts, without the synchronize_irq bit */ 3802 ew32(IMC, ~0); 3803 E1000_WRITE_FLUSH(); 3804 3805 if (likely(napi_schedule_prep(&adapter->napi))) { 3806 adapter->total_tx_bytes = 0; 3807 adapter->total_tx_packets = 0; 3808 adapter->total_rx_bytes = 0; 3809 adapter->total_rx_packets = 0; 3810 __napi_schedule(&adapter->napi); 3811 } else { 3812 /* this really should not happen! if it does it is basically a 3813 * bug, but not a hard error, so enable ints and continue 3814 */ 3815 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3816 e1000_irq_enable(adapter); 3817 } 3818 3819 return IRQ_HANDLED; 3820 } 3821 3822 /** 3823 * e1000_clean - NAPI Rx polling callback 3824 * @adapter: board private structure 3825 **/ 3826 static int e1000_clean(struct napi_struct *napi, int budget) 3827 { 3828 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3829 napi); 3830 int tx_clean_complete = 0, work_done = 0; 3831 3832 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3833 3834 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3835 3836 if (!tx_clean_complete) 3837 work_done = budget; 3838 3839 /* If budget not fully consumed, exit the polling mode */ 3840 if (work_done < budget) { 3841 if (likely(adapter->itr_setting & 3)) 3842 e1000_set_itr(adapter); 3843 napi_complete_done(napi, work_done); 3844 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3845 e1000_irq_enable(adapter); 3846 } 3847 3848 return work_done; 3849 } 3850 3851 /** 3852 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3853 * @adapter: board private structure 3854 **/ 3855 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3856 struct e1000_tx_ring *tx_ring) 3857 { 3858 struct e1000_hw *hw = &adapter->hw; 3859 struct net_device *netdev = adapter->netdev; 3860 struct e1000_tx_desc *tx_desc, *eop_desc; 3861 struct e1000_tx_buffer *buffer_info; 3862 unsigned int i, eop; 3863 unsigned int count = 0; 3864 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 3865 unsigned int bytes_compl = 0, pkts_compl = 0; 3866 3867 i = tx_ring->next_to_clean; 3868 eop = tx_ring->buffer_info[i].next_to_watch; 3869 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3870 3871 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3872 (count < tx_ring->count)) { 3873 bool cleaned = false; 3874 dma_rmb(); /* read buffer_info after eop_desc */ 3875 for ( ; !cleaned; count++) { 3876 tx_desc = E1000_TX_DESC(*tx_ring, i); 3877 buffer_info = &tx_ring->buffer_info[i]; 3878 cleaned = (i == eop); 3879 3880 if (cleaned) { 3881 total_tx_packets += buffer_info->segs; 3882 total_tx_bytes += buffer_info->bytecount; 3883 if (buffer_info->skb) { 3884 bytes_compl += buffer_info->skb->len; 3885 pkts_compl++; 3886 } 3887 3888 } 3889 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3890 tx_desc->upper.data = 0; 3891 3892 if (unlikely(++i == tx_ring->count)) 3893 i = 0; 3894 } 3895 3896 eop = tx_ring->buffer_info[i].next_to_watch; 3897 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3898 } 3899 3900 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, 3901 * which will reuse the cleaned buffers. 3902 */ 3903 smp_store_release(&tx_ring->next_to_clean, i); 3904 3905 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3906 3907 #define TX_WAKE_THRESHOLD 32 3908 if (unlikely(count && netif_carrier_ok(netdev) && 3909 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3910 /* Make sure that anybody stopping the queue after this 3911 * sees the new next_to_clean. 3912 */ 3913 smp_mb(); 3914 3915 if (netif_queue_stopped(netdev) && 3916 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3917 netif_wake_queue(netdev); 3918 ++adapter->restart_queue; 3919 } 3920 } 3921 3922 if (adapter->detect_tx_hung) { 3923 /* Detect a transmit hang in hardware, this serializes the 3924 * check with the clearing of time_stamp and movement of i 3925 */ 3926 adapter->detect_tx_hung = false; 3927 if (tx_ring->buffer_info[eop].time_stamp && 3928 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3929 (adapter->tx_timeout_factor * HZ)) && 3930 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3931 3932 /* detected Tx unit hang */ 3933 e_err(drv, "Detected Tx Unit Hang\n" 3934 " Tx Queue <%lu>\n" 3935 " TDH <%x>\n" 3936 " TDT <%x>\n" 3937 " next_to_use <%x>\n" 3938 " next_to_clean <%x>\n" 3939 "buffer_info[next_to_clean]\n" 3940 " time_stamp <%lx>\n" 3941 " next_to_watch <%x>\n" 3942 " jiffies <%lx>\n" 3943 " next_to_watch.status <%x>\n", 3944 (unsigned long)(tx_ring - adapter->tx_ring), 3945 readl(hw->hw_addr + tx_ring->tdh), 3946 readl(hw->hw_addr + tx_ring->tdt), 3947 tx_ring->next_to_use, 3948 tx_ring->next_to_clean, 3949 tx_ring->buffer_info[eop].time_stamp, 3950 eop, 3951 jiffies, 3952 eop_desc->upper.fields.status); 3953 e1000_dump(adapter); 3954 netif_stop_queue(netdev); 3955 } 3956 } 3957 adapter->total_tx_bytes += total_tx_bytes; 3958 adapter->total_tx_packets += total_tx_packets; 3959 netdev->stats.tx_bytes += total_tx_bytes; 3960 netdev->stats.tx_packets += total_tx_packets; 3961 return count < tx_ring->count; 3962 } 3963 3964 /** 3965 * e1000_rx_checksum - Receive Checksum Offload for 82543 3966 * @adapter: board private structure 3967 * @status_err: receive descriptor status and error fields 3968 * @csum: receive descriptor csum field 3969 * @sk_buff: socket buffer with received data 3970 **/ 3971 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3972 u32 csum, struct sk_buff *skb) 3973 { 3974 struct e1000_hw *hw = &adapter->hw; 3975 u16 status = (u16)status_err; 3976 u8 errors = (u8)(status_err >> 24); 3977 3978 skb_checksum_none_assert(skb); 3979 3980 /* 82543 or newer only */ 3981 if (unlikely(hw->mac_type < e1000_82543)) 3982 return; 3983 /* Ignore Checksum bit is set */ 3984 if (unlikely(status & E1000_RXD_STAT_IXSM)) 3985 return; 3986 /* TCP/UDP checksum error bit is set */ 3987 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3988 /* let the stack verify checksum errors */ 3989 adapter->hw_csum_err++; 3990 return; 3991 } 3992 /* TCP/UDP Checksum has not been calculated */ 3993 if (!(status & E1000_RXD_STAT_TCPCS)) 3994 return; 3995 3996 /* It must be a TCP or UDP packet with a valid checksum */ 3997 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3998 /* TCP checksum is good */ 3999 skb->ip_summed = CHECKSUM_UNNECESSARY; 4000 } 4001 adapter->hw_csum_good++; 4002 } 4003 4004 /** 4005 * e1000_consume_page - helper function for jumbo Rx path 4006 **/ 4007 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 4008 u16 length) 4009 { 4010 bi->rxbuf.page = NULL; 4011 skb->len += length; 4012 skb->data_len += length; 4013 skb->truesize += PAGE_SIZE; 4014 } 4015 4016 /** 4017 * e1000_receive_skb - helper function to handle rx indications 4018 * @adapter: board private structure 4019 * @status: descriptor status field as written by hardware 4020 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 4021 * @skb: pointer to sk_buff to be indicated to stack 4022 */ 4023 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 4024 __le16 vlan, struct sk_buff *skb) 4025 { 4026 skb->protocol = eth_type_trans(skb, adapter->netdev); 4027 4028 if (status & E1000_RXD_STAT_VP) { 4029 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4030 4031 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4032 } 4033 napi_gro_receive(&adapter->napi, skb); 4034 } 4035 4036 /** 4037 * e1000_tbi_adjust_stats 4038 * @hw: Struct containing variables accessed by shared code 4039 * @frame_len: The length of the frame in question 4040 * @mac_addr: The Ethernet destination address of the frame in question 4041 * 4042 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4043 */ 4044 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4045 struct e1000_hw_stats *stats, 4046 u32 frame_len, const u8 *mac_addr) 4047 { 4048 u64 carry_bit; 4049 4050 /* First adjust the frame length. */ 4051 frame_len--; 4052 /* We need to adjust the statistics counters, since the hardware 4053 * counters overcount this packet as a CRC error and undercount 4054 * the packet as a good packet 4055 */ 4056 /* This packet should not be counted as a CRC error. */ 4057 stats->crcerrs--; 4058 /* This packet does count as a Good Packet Received. */ 4059 stats->gprc++; 4060 4061 /* Adjust the Good Octets received counters */ 4062 carry_bit = 0x80000000 & stats->gorcl; 4063 stats->gorcl += frame_len; 4064 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4065 * Received Count) was one before the addition, 4066 * AND it is zero after, then we lost the carry out, 4067 * need to add one to Gorch (Good Octets Received Count High). 4068 * This could be simplified if all environments supported 4069 * 64-bit integers. 4070 */ 4071 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4072 stats->gorch++; 4073 /* Is this a broadcast or multicast? Check broadcast first, 4074 * since the test for a multicast frame will test positive on 4075 * a broadcast frame. 4076 */ 4077 if (is_broadcast_ether_addr(mac_addr)) 4078 stats->bprc++; 4079 else if (is_multicast_ether_addr(mac_addr)) 4080 stats->mprc++; 4081 4082 if (frame_len == hw->max_frame_size) { 4083 /* In this case, the hardware has overcounted the number of 4084 * oversize frames. 4085 */ 4086 if (stats->roc > 0) 4087 stats->roc--; 4088 } 4089 4090 /* Adjust the bin counters when the extra byte put the frame in the 4091 * wrong bin. Remember that the frame_len was adjusted above. 4092 */ 4093 if (frame_len == 64) { 4094 stats->prc64++; 4095 stats->prc127--; 4096 } else if (frame_len == 127) { 4097 stats->prc127++; 4098 stats->prc255--; 4099 } else if (frame_len == 255) { 4100 stats->prc255++; 4101 stats->prc511--; 4102 } else if (frame_len == 511) { 4103 stats->prc511++; 4104 stats->prc1023--; 4105 } else if (frame_len == 1023) { 4106 stats->prc1023++; 4107 stats->prc1522--; 4108 } else if (frame_len == 1522) { 4109 stats->prc1522++; 4110 } 4111 } 4112 4113 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4114 u8 status, u8 errors, 4115 u32 length, const u8 *data) 4116 { 4117 struct e1000_hw *hw = &adapter->hw; 4118 u8 last_byte = *(data + length - 1); 4119 4120 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4121 unsigned long irq_flags; 4122 4123 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4124 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4125 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4126 4127 return true; 4128 } 4129 4130 return false; 4131 } 4132 4133 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4134 unsigned int bufsz) 4135 { 4136 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4137 4138 if (unlikely(!skb)) 4139 adapter->alloc_rx_buff_failed++; 4140 return skb; 4141 } 4142 4143 /** 4144 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4145 * @adapter: board private structure 4146 * @rx_ring: ring to clean 4147 * @work_done: amount of napi work completed this call 4148 * @work_to_do: max amount of work allowed for this call to do 4149 * 4150 * the return value indicates whether actual cleaning was done, there 4151 * is no guarantee that everything was cleaned 4152 */ 4153 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4154 struct e1000_rx_ring *rx_ring, 4155 int *work_done, int work_to_do) 4156 { 4157 struct net_device *netdev = adapter->netdev; 4158 struct pci_dev *pdev = adapter->pdev; 4159 struct e1000_rx_desc *rx_desc, *next_rxd; 4160 struct e1000_rx_buffer *buffer_info, *next_buffer; 4161 u32 length; 4162 unsigned int i; 4163 int cleaned_count = 0; 4164 bool cleaned = false; 4165 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4166 4167 i = rx_ring->next_to_clean; 4168 rx_desc = E1000_RX_DESC(*rx_ring, i); 4169 buffer_info = &rx_ring->buffer_info[i]; 4170 4171 while (rx_desc->status & E1000_RXD_STAT_DD) { 4172 struct sk_buff *skb; 4173 u8 status; 4174 4175 if (*work_done >= work_to_do) 4176 break; 4177 (*work_done)++; 4178 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4179 4180 status = rx_desc->status; 4181 4182 if (++i == rx_ring->count) 4183 i = 0; 4184 4185 next_rxd = E1000_RX_DESC(*rx_ring, i); 4186 prefetch(next_rxd); 4187 4188 next_buffer = &rx_ring->buffer_info[i]; 4189 4190 cleaned = true; 4191 cleaned_count++; 4192 dma_unmap_page(&pdev->dev, buffer_info->dma, 4193 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4194 buffer_info->dma = 0; 4195 4196 length = le16_to_cpu(rx_desc->length); 4197 4198 /* errors is only valid for DD + EOP descriptors */ 4199 if (unlikely((status & E1000_RXD_STAT_EOP) && 4200 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4201 u8 *mapped = page_address(buffer_info->rxbuf.page); 4202 4203 if (e1000_tbi_should_accept(adapter, status, 4204 rx_desc->errors, 4205 length, mapped)) { 4206 length--; 4207 } else if (netdev->features & NETIF_F_RXALL) { 4208 goto process_skb; 4209 } else { 4210 /* an error means any chain goes out the window 4211 * too 4212 */ 4213 if (rx_ring->rx_skb_top) 4214 dev_kfree_skb(rx_ring->rx_skb_top); 4215 rx_ring->rx_skb_top = NULL; 4216 goto next_desc; 4217 } 4218 } 4219 4220 #define rxtop rx_ring->rx_skb_top 4221 process_skb: 4222 if (!(status & E1000_RXD_STAT_EOP)) { 4223 /* this descriptor is only the beginning (or middle) */ 4224 if (!rxtop) { 4225 /* this is the beginning of a chain */ 4226 rxtop = napi_get_frags(&adapter->napi); 4227 if (!rxtop) 4228 break; 4229 4230 skb_fill_page_desc(rxtop, 0, 4231 buffer_info->rxbuf.page, 4232 0, length); 4233 } else { 4234 /* this is the middle of a chain */ 4235 skb_fill_page_desc(rxtop, 4236 skb_shinfo(rxtop)->nr_frags, 4237 buffer_info->rxbuf.page, 0, length); 4238 } 4239 e1000_consume_page(buffer_info, rxtop, length); 4240 goto next_desc; 4241 } else { 4242 if (rxtop) { 4243 /* end of the chain */ 4244 skb_fill_page_desc(rxtop, 4245 skb_shinfo(rxtop)->nr_frags, 4246 buffer_info->rxbuf.page, 0, length); 4247 skb = rxtop; 4248 rxtop = NULL; 4249 e1000_consume_page(buffer_info, skb, length); 4250 } else { 4251 struct page *p; 4252 /* no chain, got EOP, this buf is the packet 4253 * copybreak to save the put_page/alloc_page 4254 */ 4255 p = buffer_info->rxbuf.page; 4256 if (length <= copybreak) { 4257 u8 *vaddr; 4258 4259 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4260 length -= 4; 4261 skb = e1000_alloc_rx_skb(adapter, 4262 length); 4263 if (!skb) 4264 break; 4265 4266 vaddr = kmap_atomic(p); 4267 memcpy(skb_tail_pointer(skb), vaddr, 4268 length); 4269 kunmap_atomic(vaddr); 4270 /* re-use the page, so don't erase 4271 * buffer_info->rxbuf.page 4272 */ 4273 skb_put(skb, length); 4274 e1000_rx_checksum(adapter, 4275 status | rx_desc->errors << 24, 4276 le16_to_cpu(rx_desc->csum), skb); 4277 4278 total_rx_bytes += skb->len; 4279 total_rx_packets++; 4280 4281 e1000_receive_skb(adapter, status, 4282 rx_desc->special, skb); 4283 goto next_desc; 4284 } else { 4285 skb = napi_get_frags(&adapter->napi); 4286 if (!skb) { 4287 adapter->alloc_rx_buff_failed++; 4288 break; 4289 } 4290 skb_fill_page_desc(skb, 0, p, 0, 4291 length); 4292 e1000_consume_page(buffer_info, skb, 4293 length); 4294 } 4295 } 4296 } 4297 4298 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4299 e1000_rx_checksum(adapter, 4300 (u32)(status) | 4301 ((u32)(rx_desc->errors) << 24), 4302 le16_to_cpu(rx_desc->csum), skb); 4303 4304 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4305 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4306 pskb_trim(skb, skb->len - 4); 4307 total_rx_packets++; 4308 4309 if (status & E1000_RXD_STAT_VP) { 4310 __le16 vlan = rx_desc->special; 4311 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4312 4313 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4314 } 4315 4316 napi_gro_frags(&adapter->napi); 4317 4318 next_desc: 4319 rx_desc->status = 0; 4320 4321 /* return some buffers to hardware, one at a time is too slow */ 4322 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4323 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4324 cleaned_count = 0; 4325 } 4326 4327 /* use prefetched values */ 4328 rx_desc = next_rxd; 4329 buffer_info = next_buffer; 4330 } 4331 rx_ring->next_to_clean = i; 4332 4333 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4334 if (cleaned_count) 4335 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4336 4337 adapter->total_rx_packets += total_rx_packets; 4338 adapter->total_rx_bytes += total_rx_bytes; 4339 netdev->stats.rx_bytes += total_rx_bytes; 4340 netdev->stats.rx_packets += total_rx_packets; 4341 return cleaned; 4342 } 4343 4344 /* this should improve performance for small packets with large amounts 4345 * of reassembly being done in the stack 4346 */ 4347 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4348 struct e1000_rx_buffer *buffer_info, 4349 u32 length, const void *data) 4350 { 4351 struct sk_buff *skb; 4352 4353 if (length > copybreak) 4354 return NULL; 4355 4356 skb = e1000_alloc_rx_skb(adapter, length); 4357 if (!skb) 4358 return NULL; 4359 4360 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4361 length, DMA_FROM_DEVICE); 4362 4363 memcpy(skb_put(skb, length), data, length); 4364 4365 return skb; 4366 } 4367 4368 /** 4369 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4370 * @adapter: board private structure 4371 * @rx_ring: ring to clean 4372 * @work_done: amount of napi work completed this call 4373 * @work_to_do: max amount of work allowed for this call to do 4374 */ 4375 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4376 struct e1000_rx_ring *rx_ring, 4377 int *work_done, int work_to_do) 4378 { 4379 struct net_device *netdev = adapter->netdev; 4380 struct pci_dev *pdev = adapter->pdev; 4381 struct e1000_rx_desc *rx_desc, *next_rxd; 4382 struct e1000_rx_buffer *buffer_info, *next_buffer; 4383 u32 length; 4384 unsigned int i; 4385 int cleaned_count = 0; 4386 bool cleaned = false; 4387 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4388 4389 i = rx_ring->next_to_clean; 4390 rx_desc = E1000_RX_DESC(*rx_ring, i); 4391 buffer_info = &rx_ring->buffer_info[i]; 4392 4393 while (rx_desc->status & E1000_RXD_STAT_DD) { 4394 struct sk_buff *skb; 4395 u8 *data; 4396 u8 status; 4397 4398 if (*work_done >= work_to_do) 4399 break; 4400 (*work_done)++; 4401 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4402 4403 status = rx_desc->status; 4404 length = le16_to_cpu(rx_desc->length); 4405 4406 data = buffer_info->rxbuf.data; 4407 prefetch(data); 4408 skb = e1000_copybreak(adapter, buffer_info, length, data); 4409 if (!skb) { 4410 unsigned int frag_len = e1000_frag_len(adapter); 4411 4412 skb = build_skb(data - E1000_HEADROOM, frag_len); 4413 if (!skb) { 4414 adapter->alloc_rx_buff_failed++; 4415 break; 4416 } 4417 4418 skb_reserve(skb, E1000_HEADROOM); 4419 dma_unmap_single(&pdev->dev, buffer_info->dma, 4420 adapter->rx_buffer_len, 4421 DMA_FROM_DEVICE); 4422 buffer_info->dma = 0; 4423 buffer_info->rxbuf.data = NULL; 4424 } 4425 4426 if (++i == rx_ring->count) 4427 i = 0; 4428 4429 next_rxd = E1000_RX_DESC(*rx_ring, i); 4430 prefetch(next_rxd); 4431 4432 next_buffer = &rx_ring->buffer_info[i]; 4433 4434 cleaned = true; 4435 cleaned_count++; 4436 4437 /* !EOP means multiple descriptors were used to store a single 4438 * packet, if thats the case we need to toss it. In fact, we 4439 * to toss every packet with the EOP bit clear and the next 4440 * frame that _does_ have the EOP bit set, as it is by 4441 * definition only a frame fragment 4442 */ 4443 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4444 adapter->discarding = true; 4445 4446 if (adapter->discarding) { 4447 /* All receives must fit into a single buffer */ 4448 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4449 dev_kfree_skb(skb); 4450 if (status & E1000_RXD_STAT_EOP) 4451 adapter->discarding = false; 4452 goto next_desc; 4453 } 4454 4455 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4456 if (e1000_tbi_should_accept(adapter, status, 4457 rx_desc->errors, 4458 length, data)) { 4459 length--; 4460 } else if (netdev->features & NETIF_F_RXALL) { 4461 goto process_skb; 4462 } else { 4463 dev_kfree_skb(skb); 4464 goto next_desc; 4465 } 4466 } 4467 4468 process_skb: 4469 total_rx_bytes += (length - 4); /* don't count FCS */ 4470 total_rx_packets++; 4471 4472 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4473 /* adjust length to remove Ethernet CRC, this must be 4474 * done after the TBI_ACCEPT workaround above 4475 */ 4476 length -= 4; 4477 4478 if (buffer_info->rxbuf.data == NULL) 4479 skb_put(skb, length); 4480 else /* copybreak skb */ 4481 skb_trim(skb, length); 4482 4483 /* Receive Checksum Offload */ 4484 e1000_rx_checksum(adapter, 4485 (u32)(status) | 4486 ((u32)(rx_desc->errors) << 24), 4487 le16_to_cpu(rx_desc->csum), skb); 4488 4489 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4490 4491 next_desc: 4492 rx_desc->status = 0; 4493 4494 /* return some buffers to hardware, one at a time is too slow */ 4495 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4496 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4497 cleaned_count = 0; 4498 } 4499 4500 /* use prefetched values */ 4501 rx_desc = next_rxd; 4502 buffer_info = next_buffer; 4503 } 4504 rx_ring->next_to_clean = i; 4505 4506 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4507 if (cleaned_count) 4508 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4509 4510 adapter->total_rx_packets += total_rx_packets; 4511 adapter->total_rx_bytes += total_rx_bytes; 4512 netdev->stats.rx_bytes += total_rx_bytes; 4513 netdev->stats.rx_packets += total_rx_packets; 4514 return cleaned; 4515 } 4516 4517 /** 4518 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4519 * @adapter: address of board private structure 4520 * @rx_ring: pointer to receive ring structure 4521 * @cleaned_count: number of buffers to allocate this pass 4522 **/ 4523 static void 4524 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4525 struct e1000_rx_ring *rx_ring, int cleaned_count) 4526 { 4527 struct pci_dev *pdev = adapter->pdev; 4528 struct e1000_rx_desc *rx_desc; 4529 struct e1000_rx_buffer *buffer_info; 4530 unsigned int i; 4531 4532 i = rx_ring->next_to_use; 4533 buffer_info = &rx_ring->buffer_info[i]; 4534 4535 while (cleaned_count--) { 4536 /* allocate a new page if necessary */ 4537 if (!buffer_info->rxbuf.page) { 4538 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4539 if (unlikely(!buffer_info->rxbuf.page)) { 4540 adapter->alloc_rx_buff_failed++; 4541 break; 4542 } 4543 } 4544 4545 if (!buffer_info->dma) { 4546 buffer_info->dma = dma_map_page(&pdev->dev, 4547 buffer_info->rxbuf.page, 0, 4548 adapter->rx_buffer_len, 4549 DMA_FROM_DEVICE); 4550 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4551 put_page(buffer_info->rxbuf.page); 4552 buffer_info->rxbuf.page = NULL; 4553 buffer_info->dma = 0; 4554 adapter->alloc_rx_buff_failed++; 4555 break; 4556 } 4557 } 4558 4559 rx_desc = E1000_RX_DESC(*rx_ring, i); 4560 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4561 4562 if (unlikely(++i == rx_ring->count)) 4563 i = 0; 4564 buffer_info = &rx_ring->buffer_info[i]; 4565 } 4566 4567 if (likely(rx_ring->next_to_use != i)) { 4568 rx_ring->next_to_use = i; 4569 if (unlikely(i-- == 0)) 4570 i = (rx_ring->count - 1); 4571 4572 /* Force memory writes to complete before letting h/w 4573 * know there are new descriptors to fetch. (Only 4574 * applicable for weak-ordered memory model archs, 4575 * such as IA-64). 4576 */ 4577 wmb(); 4578 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4579 } 4580 } 4581 4582 /** 4583 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4584 * @adapter: address of board private structure 4585 **/ 4586 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4587 struct e1000_rx_ring *rx_ring, 4588 int cleaned_count) 4589 { 4590 struct e1000_hw *hw = &adapter->hw; 4591 struct pci_dev *pdev = adapter->pdev; 4592 struct e1000_rx_desc *rx_desc; 4593 struct e1000_rx_buffer *buffer_info; 4594 unsigned int i; 4595 unsigned int bufsz = adapter->rx_buffer_len; 4596 4597 i = rx_ring->next_to_use; 4598 buffer_info = &rx_ring->buffer_info[i]; 4599 4600 while (cleaned_count--) { 4601 void *data; 4602 4603 if (buffer_info->rxbuf.data) 4604 goto skip; 4605 4606 data = e1000_alloc_frag(adapter); 4607 if (!data) { 4608 /* Better luck next round */ 4609 adapter->alloc_rx_buff_failed++; 4610 break; 4611 } 4612 4613 /* Fix for errata 23, can't cross 64kB boundary */ 4614 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4615 void *olddata = data; 4616 e_err(rx_err, "skb align check failed: %u bytes at " 4617 "%p\n", bufsz, data); 4618 /* Try again, without freeing the previous */ 4619 data = e1000_alloc_frag(adapter); 4620 /* Failed allocation, critical failure */ 4621 if (!data) { 4622 skb_free_frag(olddata); 4623 adapter->alloc_rx_buff_failed++; 4624 break; 4625 } 4626 4627 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4628 /* give up */ 4629 skb_free_frag(data); 4630 skb_free_frag(olddata); 4631 adapter->alloc_rx_buff_failed++; 4632 break; 4633 } 4634 4635 /* Use new allocation */ 4636 skb_free_frag(olddata); 4637 } 4638 buffer_info->dma = dma_map_single(&pdev->dev, 4639 data, 4640 adapter->rx_buffer_len, 4641 DMA_FROM_DEVICE); 4642 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4643 skb_free_frag(data); 4644 buffer_info->dma = 0; 4645 adapter->alloc_rx_buff_failed++; 4646 break; 4647 } 4648 4649 /* XXX if it was allocated cleanly it will never map to a 4650 * boundary crossing 4651 */ 4652 4653 /* Fix for errata 23, can't cross 64kB boundary */ 4654 if (!e1000_check_64k_bound(adapter, 4655 (void *)(unsigned long)buffer_info->dma, 4656 adapter->rx_buffer_len)) { 4657 e_err(rx_err, "dma align check failed: %u bytes at " 4658 "%p\n", adapter->rx_buffer_len, 4659 (void *)(unsigned long)buffer_info->dma); 4660 4661 dma_unmap_single(&pdev->dev, buffer_info->dma, 4662 adapter->rx_buffer_len, 4663 DMA_FROM_DEVICE); 4664 4665 skb_free_frag(data); 4666 buffer_info->rxbuf.data = NULL; 4667 buffer_info->dma = 0; 4668 4669 adapter->alloc_rx_buff_failed++; 4670 break; 4671 } 4672 buffer_info->rxbuf.data = data; 4673 skip: 4674 rx_desc = E1000_RX_DESC(*rx_ring, i); 4675 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4676 4677 if (unlikely(++i == rx_ring->count)) 4678 i = 0; 4679 buffer_info = &rx_ring->buffer_info[i]; 4680 } 4681 4682 if (likely(rx_ring->next_to_use != i)) { 4683 rx_ring->next_to_use = i; 4684 if (unlikely(i-- == 0)) 4685 i = (rx_ring->count - 1); 4686 4687 /* Force memory writes to complete before letting h/w 4688 * know there are new descriptors to fetch. (Only 4689 * applicable for weak-ordered memory model archs, 4690 * such as IA-64). 4691 */ 4692 wmb(); 4693 writel(i, hw->hw_addr + rx_ring->rdt); 4694 } 4695 } 4696 4697 /** 4698 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4699 * @adapter: 4700 **/ 4701 static void e1000_smartspeed(struct e1000_adapter *adapter) 4702 { 4703 struct e1000_hw *hw = &adapter->hw; 4704 u16 phy_status; 4705 u16 phy_ctrl; 4706 4707 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4708 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4709 return; 4710 4711 if (adapter->smartspeed == 0) { 4712 /* If Master/Slave config fault is asserted twice, 4713 * we assume back-to-back 4714 */ 4715 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4716 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4717 return; 4718 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4719 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4720 return; 4721 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4722 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4723 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4724 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4725 phy_ctrl); 4726 adapter->smartspeed++; 4727 if (!e1000_phy_setup_autoneg(hw) && 4728 !e1000_read_phy_reg(hw, PHY_CTRL, 4729 &phy_ctrl)) { 4730 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4731 MII_CR_RESTART_AUTO_NEG); 4732 e1000_write_phy_reg(hw, PHY_CTRL, 4733 phy_ctrl); 4734 } 4735 } 4736 return; 4737 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4738 /* If still no link, perhaps using 2/3 pair cable */ 4739 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4740 phy_ctrl |= CR_1000T_MS_ENABLE; 4741 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4742 if (!e1000_phy_setup_autoneg(hw) && 4743 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4744 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4745 MII_CR_RESTART_AUTO_NEG); 4746 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4747 } 4748 } 4749 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4750 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4751 adapter->smartspeed = 0; 4752 } 4753 4754 /** 4755 * e1000_ioctl - 4756 * @netdev: 4757 * @ifreq: 4758 * @cmd: 4759 **/ 4760 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4761 { 4762 switch (cmd) { 4763 case SIOCGMIIPHY: 4764 case SIOCGMIIREG: 4765 case SIOCSMIIREG: 4766 return e1000_mii_ioctl(netdev, ifr, cmd); 4767 default: 4768 return -EOPNOTSUPP; 4769 } 4770 } 4771 4772 /** 4773 * e1000_mii_ioctl - 4774 * @netdev: 4775 * @ifreq: 4776 * @cmd: 4777 **/ 4778 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4779 int cmd) 4780 { 4781 struct e1000_adapter *adapter = netdev_priv(netdev); 4782 struct e1000_hw *hw = &adapter->hw; 4783 struct mii_ioctl_data *data = if_mii(ifr); 4784 int retval; 4785 u16 mii_reg; 4786 unsigned long flags; 4787 4788 if (hw->media_type != e1000_media_type_copper) 4789 return -EOPNOTSUPP; 4790 4791 switch (cmd) { 4792 case SIOCGMIIPHY: 4793 data->phy_id = hw->phy_addr; 4794 break; 4795 case SIOCGMIIREG: 4796 spin_lock_irqsave(&adapter->stats_lock, flags); 4797 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4798 &data->val_out)) { 4799 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4800 return -EIO; 4801 } 4802 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4803 break; 4804 case SIOCSMIIREG: 4805 if (data->reg_num & ~(0x1F)) 4806 return -EFAULT; 4807 mii_reg = data->val_in; 4808 spin_lock_irqsave(&adapter->stats_lock, flags); 4809 if (e1000_write_phy_reg(hw, data->reg_num, 4810 mii_reg)) { 4811 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4812 return -EIO; 4813 } 4814 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4815 if (hw->media_type == e1000_media_type_copper) { 4816 switch (data->reg_num) { 4817 case PHY_CTRL: 4818 if (mii_reg & MII_CR_POWER_DOWN) 4819 break; 4820 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4821 hw->autoneg = 1; 4822 hw->autoneg_advertised = 0x2F; 4823 } else { 4824 u32 speed; 4825 if (mii_reg & 0x40) 4826 speed = SPEED_1000; 4827 else if (mii_reg & 0x2000) 4828 speed = SPEED_100; 4829 else 4830 speed = SPEED_10; 4831 retval = e1000_set_spd_dplx( 4832 adapter, speed, 4833 ((mii_reg & 0x100) 4834 ? DUPLEX_FULL : 4835 DUPLEX_HALF)); 4836 if (retval) 4837 return retval; 4838 } 4839 if (netif_running(adapter->netdev)) 4840 e1000_reinit_locked(adapter); 4841 else 4842 e1000_reset(adapter); 4843 break; 4844 case M88E1000_PHY_SPEC_CTRL: 4845 case M88E1000_EXT_PHY_SPEC_CTRL: 4846 if (e1000_phy_reset(hw)) 4847 return -EIO; 4848 break; 4849 } 4850 } else { 4851 switch (data->reg_num) { 4852 case PHY_CTRL: 4853 if (mii_reg & MII_CR_POWER_DOWN) 4854 break; 4855 if (netif_running(adapter->netdev)) 4856 e1000_reinit_locked(adapter); 4857 else 4858 e1000_reset(adapter); 4859 break; 4860 } 4861 } 4862 break; 4863 default: 4864 return -EOPNOTSUPP; 4865 } 4866 return E1000_SUCCESS; 4867 } 4868 4869 void e1000_pci_set_mwi(struct e1000_hw *hw) 4870 { 4871 struct e1000_adapter *adapter = hw->back; 4872 int ret_val = pci_set_mwi(adapter->pdev); 4873 4874 if (ret_val) 4875 e_err(probe, "Error in setting MWI\n"); 4876 } 4877 4878 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4879 { 4880 struct e1000_adapter *adapter = hw->back; 4881 4882 pci_clear_mwi(adapter->pdev); 4883 } 4884 4885 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4886 { 4887 struct e1000_adapter *adapter = hw->back; 4888 return pcix_get_mmrbc(adapter->pdev); 4889 } 4890 4891 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4892 { 4893 struct e1000_adapter *adapter = hw->back; 4894 pcix_set_mmrbc(adapter->pdev, mmrbc); 4895 } 4896 4897 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4898 { 4899 outl(value, port); 4900 } 4901 4902 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4903 { 4904 u16 vid; 4905 4906 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4907 return true; 4908 return false; 4909 } 4910 4911 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4912 netdev_features_t features) 4913 { 4914 struct e1000_hw *hw = &adapter->hw; 4915 u32 ctrl; 4916 4917 ctrl = er32(CTRL); 4918 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4919 /* enable VLAN tag insert/strip */ 4920 ctrl |= E1000_CTRL_VME; 4921 } else { 4922 /* disable VLAN tag insert/strip */ 4923 ctrl &= ~E1000_CTRL_VME; 4924 } 4925 ew32(CTRL, ctrl); 4926 } 4927 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4928 bool filter_on) 4929 { 4930 struct e1000_hw *hw = &adapter->hw; 4931 u32 rctl; 4932 4933 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4934 e1000_irq_disable(adapter); 4935 4936 __e1000_vlan_mode(adapter, adapter->netdev->features); 4937 if (filter_on) { 4938 /* enable VLAN receive filtering */ 4939 rctl = er32(RCTL); 4940 rctl &= ~E1000_RCTL_CFIEN; 4941 if (!(adapter->netdev->flags & IFF_PROMISC)) 4942 rctl |= E1000_RCTL_VFE; 4943 ew32(RCTL, rctl); 4944 e1000_update_mng_vlan(adapter); 4945 } else { 4946 /* disable VLAN receive filtering */ 4947 rctl = er32(RCTL); 4948 rctl &= ~E1000_RCTL_VFE; 4949 ew32(RCTL, rctl); 4950 } 4951 4952 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4953 e1000_irq_enable(adapter); 4954 } 4955 4956 static void e1000_vlan_mode(struct net_device *netdev, 4957 netdev_features_t features) 4958 { 4959 struct e1000_adapter *adapter = netdev_priv(netdev); 4960 4961 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4962 e1000_irq_disable(adapter); 4963 4964 __e1000_vlan_mode(adapter, features); 4965 4966 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4967 e1000_irq_enable(adapter); 4968 } 4969 4970 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4971 __be16 proto, u16 vid) 4972 { 4973 struct e1000_adapter *adapter = netdev_priv(netdev); 4974 struct e1000_hw *hw = &adapter->hw; 4975 u32 vfta, index; 4976 4977 if ((hw->mng_cookie.status & 4978 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4979 (vid == adapter->mng_vlan_id)) 4980 return 0; 4981 4982 if (!e1000_vlan_used(adapter)) 4983 e1000_vlan_filter_on_off(adapter, true); 4984 4985 /* add VID to filter table */ 4986 index = (vid >> 5) & 0x7F; 4987 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4988 vfta |= (1 << (vid & 0x1F)); 4989 e1000_write_vfta(hw, index, vfta); 4990 4991 set_bit(vid, adapter->active_vlans); 4992 4993 return 0; 4994 } 4995 4996 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4997 __be16 proto, u16 vid) 4998 { 4999 struct e1000_adapter *adapter = netdev_priv(netdev); 5000 struct e1000_hw *hw = &adapter->hw; 5001 u32 vfta, index; 5002 5003 if (!test_bit(__E1000_DOWN, &adapter->flags)) 5004 e1000_irq_disable(adapter); 5005 if (!test_bit(__E1000_DOWN, &adapter->flags)) 5006 e1000_irq_enable(adapter); 5007 5008 /* remove VID from filter table */ 5009 index = (vid >> 5) & 0x7F; 5010 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 5011 vfta &= ~(1 << (vid & 0x1F)); 5012 e1000_write_vfta(hw, index, vfta); 5013 5014 clear_bit(vid, adapter->active_vlans); 5015 5016 if (!e1000_vlan_used(adapter)) 5017 e1000_vlan_filter_on_off(adapter, false); 5018 5019 return 0; 5020 } 5021 5022 static void e1000_restore_vlan(struct e1000_adapter *adapter) 5023 { 5024 u16 vid; 5025 5026 if (!e1000_vlan_used(adapter)) 5027 return; 5028 5029 e1000_vlan_filter_on_off(adapter, true); 5030 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 5031 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 5032 } 5033 5034 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 5035 { 5036 struct e1000_hw *hw = &adapter->hw; 5037 5038 hw->autoneg = 0; 5039 5040 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5041 * for the switch() below to work 5042 */ 5043 if ((spd & 1) || (dplx & ~1)) 5044 goto err_inval; 5045 5046 /* Fiber NICs only allow 1000 gbps Full duplex */ 5047 if ((hw->media_type == e1000_media_type_fiber) && 5048 spd != SPEED_1000 && 5049 dplx != DUPLEX_FULL) 5050 goto err_inval; 5051 5052 switch (spd + dplx) { 5053 case SPEED_10 + DUPLEX_HALF: 5054 hw->forced_speed_duplex = e1000_10_half; 5055 break; 5056 case SPEED_10 + DUPLEX_FULL: 5057 hw->forced_speed_duplex = e1000_10_full; 5058 break; 5059 case SPEED_100 + DUPLEX_HALF: 5060 hw->forced_speed_duplex = e1000_100_half; 5061 break; 5062 case SPEED_100 + DUPLEX_FULL: 5063 hw->forced_speed_duplex = e1000_100_full; 5064 break; 5065 case SPEED_1000 + DUPLEX_FULL: 5066 hw->autoneg = 1; 5067 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5068 break; 5069 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5070 default: 5071 goto err_inval; 5072 } 5073 5074 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5075 hw->mdix = AUTO_ALL_MODES; 5076 5077 return 0; 5078 5079 err_inval: 5080 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5081 return -EINVAL; 5082 } 5083 5084 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5085 { 5086 struct net_device *netdev = pci_get_drvdata(pdev); 5087 struct e1000_adapter *adapter = netdev_priv(netdev); 5088 struct e1000_hw *hw = &adapter->hw; 5089 u32 ctrl, ctrl_ext, rctl, status; 5090 u32 wufc = adapter->wol; 5091 #ifdef CONFIG_PM 5092 int retval = 0; 5093 #endif 5094 5095 netif_device_detach(netdev); 5096 5097 if (netif_running(netdev)) { 5098 int count = E1000_CHECK_RESET_COUNT; 5099 5100 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5101 usleep_range(10000, 20000); 5102 5103 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5104 e1000_down(adapter); 5105 } 5106 5107 #ifdef CONFIG_PM 5108 retval = pci_save_state(pdev); 5109 if (retval) 5110 return retval; 5111 #endif 5112 5113 status = er32(STATUS); 5114 if (status & E1000_STATUS_LU) 5115 wufc &= ~E1000_WUFC_LNKC; 5116 5117 if (wufc) { 5118 e1000_setup_rctl(adapter); 5119 e1000_set_rx_mode(netdev); 5120 5121 rctl = er32(RCTL); 5122 5123 /* turn on all-multi mode if wake on multicast is enabled */ 5124 if (wufc & E1000_WUFC_MC) 5125 rctl |= E1000_RCTL_MPE; 5126 5127 /* enable receives in the hardware */ 5128 ew32(RCTL, rctl | E1000_RCTL_EN); 5129 5130 if (hw->mac_type >= e1000_82540) { 5131 ctrl = er32(CTRL); 5132 /* advertise wake from D3Cold */ 5133 #define E1000_CTRL_ADVD3WUC 0x00100000 5134 /* phy power management enable */ 5135 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5136 ctrl |= E1000_CTRL_ADVD3WUC | 5137 E1000_CTRL_EN_PHY_PWR_MGMT; 5138 ew32(CTRL, ctrl); 5139 } 5140 5141 if (hw->media_type == e1000_media_type_fiber || 5142 hw->media_type == e1000_media_type_internal_serdes) { 5143 /* keep the laser running in D3 */ 5144 ctrl_ext = er32(CTRL_EXT); 5145 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5146 ew32(CTRL_EXT, ctrl_ext); 5147 } 5148 5149 ew32(WUC, E1000_WUC_PME_EN); 5150 ew32(WUFC, wufc); 5151 } else { 5152 ew32(WUC, 0); 5153 ew32(WUFC, 0); 5154 } 5155 5156 e1000_release_manageability(adapter); 5157 5158 *enable_wake = !!wufc; 5159 5160 /* make sure adapter isn't asleep if manageability is enabled */ 5161 if (adapter->en_mng_pt) 5162 *enable_wake = true; 5163 5164 if (netif_running(netdev)) 5165 e1000_free_irq(adapter); 5166 5167 pci_disable_device(pdev); 5168 5169 return 0; 5170 } 5171 5172 #ifdef CONFIG_PM 5173 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 5174 { 5175 int retval; 5176 bool wake; 5177 5178 retval = __e1000_shutdown(pdev, &wake); 5179 if (retval) 5180 return retval; 5181 5182 if (wake) { 5183 pci_prepare_to_sleep(pdev); 5184 } else { 5185 pci_wake_from_d3(pdev, false); 5186 pci_set_power_state(pdev, PCI_D3hot); 5187 } 5188 5189 return 0; 5190 } 5191 5192 static int e1000_resume(struct pci_dev *pdev) 5193 { 5194 struct net_device *netdev = pci_get_drvdata(pdev); 5195 struct e1000_adapter *adapter = netdev_priv(netdev); 5196 struct e1000_hw *hw = &adapter->hw; 5197 u32 err; 5198 5199 pci_set_power_state(pdev, PCI_D0); 5200 pci_restore_state(pdev); 5201 pci_save_state(pdev); 5202 5203 if (adapter->need_ioport) 5204 err = pci_enable_device(pdev); 5205 else 5206 err = pci_enable_device_mem(pdev); 5207 if (err) { 5208 pr_err("Cannot enable PCI device from suspend\n"); 5209 return err; 5210 } 5211 pci_set_master(pdev); 5212 5213 pci_enable_wake(pdev, PCI_D3hot, 0); 5214 pci_enable_wake(pdev, PCI_D3cold, 0); 5215 5216 if (netif_running(netdev)) { 5217 err = e1000_request_irq(adapter); 5218 if (err) 5219 return err; 5220 } 5221 5222 e1000_power_up_phy(adapter); 5223 e1000_reset(adapter); 5224 ew32(WUS, ~0); 5225 5226 e1000_init_manageability(adapter); 5227 5228 if (netif_running(netdev)) 5229 e1000_up(adapter); 5230 5231 netif_device_attach(netdev); 5232 5233 return 0; 5234 } 5235 #endif 5236 5237 static void e1000_shutdown(struct pci_dev *pdev) 5238 { 5239 bool wake; 5240 5241 __e1000_shutdown(pdev, &wake); 5242 5243 if (system_state == SYSTEM_POWER_OFF) { 5244 pci_wake_from_d3(pdev, wake); 5245 pci_set_power_state(pdev, PCI_D3hot); 5246 } 5247 } 5248 5249 #ifdef CONFIG_NET_POLL_CONTROLLER 5250 /* Polling 'interrupt' - used by things like netconsole to send skbs 5251 * without having to re-enable interrupts. It's not called while 5252 * the interrupt routine is executing. 5253 */ 5254 static void e1000_netpoll(struct net_device *netdev) 5255 { 5256 struct e1000_adapter *adapter = netdev_priv(netdev); 5257 5258 disable_irq(adapter->pdev->irq); 5259 e1000_intr(adapter->pdev->irq, netdev); 5260 enable_irq(adapter->pdev->irq); 5261 } 5262 #endif 5263 5264 /** 5265 * e1000_io_error_detected - called when PCI error is detected 5266 * @pdev: Pointer to PCI device 5267 * @state: The current pci connection state 5268 * 5269 * This function is called after a PCI bus error affecting 5270 * this device has been detected. 5271 */ 5272 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5273 pci_channel_state_t state) 5274 { 5275 struct net_device *netdev = pci_get_drvdata(pdev); 5276 struct e1000_adapter *adapter = netdev_priv(netdev); 5277 5278 netif_device_detach(netdev); 5279 5280 if (state == pci_channel_io_perm_failure) 5281 return PCI_ERS_RESULT_DISCONNECT; 5282 5283 if (netif_running(netdev)) 5284 e1000_down(adapter); 5285 pci_disable_device(pdev); 5286 5287 /* Request a slot slot reset. */ 5288 return PCI_ERS_RESULT_NEED_RESET; 5289 } 5290 5291 /** 5292 * e1000_io_slot_reset - called after the pci bus has been reset. 5293 * @pdev: Pointer to PCI device 5294 * 5295 * Restart the card from scratch, as if from a cold-boot. Implementation 5296 * resembles the first-half of the e1000_resume routine. 5297 */ 5298 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5299 { 5300 struct net_device *netdev = pci_get_drvdata(pdev); 5301 struct e1000_adapter *adapter = netdev_priv(netdev); 5302 struct e1000_hw *hw = &adapter->hw; 5303 int err; 5304 5305 if (adapter->need_ioport) 5306 err = pci_enable_device(pdev); 5307 else 5308 err = pci_enable_device_mem(pdev); 5309 if (err) { 5310 pr_err("Cannot re-enable PCI device after reset.\n"); 5311 return PCI_ERS_RESULT_DISCONNECT; 5312 } 5313 pci_set_master(pdev); 5314 5315 pci_enable_wake(pdev, PCI_D3hot, 0); 5316 pci_enable_wake(pdev, PCI_D3cold, 0); 5317 5318 e1000_reset(adapter); 5319 ew32(WUS, ~0); 5320 5321 return PCI_ERS_RESULT_RECOVERED; 5322 } 5323 5324 /** 5325 * e1000_io_resume - called when traffic can start flowing again. 5326 * @pdev: Pointer to PCI device 5327 * 5328 * This callback is called when the error recovery driver tells us that 5329 * its OK to resume normal operation. Implementation resembles the 5330 * second-half of the e1000_resume routine. 5331 */ 5332 static void e1000_io_resume(struct pci_dev *pdev) 5333 { 5334 struct net_device *netdev = pci_get_drvdata(pdev); 5335 struct e1000_adapter *adapter = netdev_priv(netdev); 5336 5337 e1000_init_manageability(adapter); 5338 5339 if (netif_running(netdev)) { 5340 if (e1000_up(adapter)) { 5341 pr_info("can't bring device back up after reset\n"); 5342 return; 5343 } 5344 } 5345 5346 netif_device_attach(netdev); 5347 } 5348 5349 /* e1000_main.c */ 5350