1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 				    struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 				    struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 				    struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 				    struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 int e1000_open(struct net_device *netdev);
118 int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 				struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 				struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
135 static int e1000_set_mac(struct net_device *netdev, void *p);
136 static irqreturn_t e1000_intr(int irq, void *data);
137 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
138 			       struct e1000_tx_ring *tx_ring);
139 static int e1000_clean(struct napi_struct *napi, int budget);
140 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
141 			       struct e1000_rx_ring *rx_ring,
142 			       int *work_done, int work_to_do);
143 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
144 				     struct e1000_rx_ring *rx_ring,
145 				     int *work_done, int work_to_do);
146 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
147 					 struct e1000_rx_ring *rx_ring,
148 					 int cleaned_count)
149 {
150 }
151 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
152 				   struct e1000_rx_ring *rx_ring,
153 				   int cleaned_count);
154 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
155 					 struct e1000_rx_ring *rx_ring,
156 					 int cleaned_count);
157 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
158 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
159 			   int cmd);
160 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
161 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_tx_timeout(struct net_device *dev);
163 static void e1000_reset_task(struct work_struct *work);
164 static void e1000_smartspeed(struct e1000_adapter *adapter);
165 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
166 				       struct sk_buff *skb);
167 
168 static bool e1000_vlan_used(struct e1000_adapter *adapter);
169 static void e1000_vlan_mode(struct net_device *netdev,
170 			    netdev_features_t features);
171 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
172 				     bool filter_on);
173 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
174 				 __be16 proto, u16 vid);
175 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
176 				  __be16 proto, u16 vid);
177 static void e1000_restore_vlan(struct e1000_adapter *adapter);
178 
179 #ifdef CONFIG_PM
180 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
181 static int e1000_resume(struct pci_dev *pdev);
182 #endif
183 static void e1000_shutdown(struct pci_dev *pdev);
184 
185 #ifdef CONFIG_NET_POLL_CONTROLLER
186 /* for netdump / net console */
187 static void e1000_netpoll (struct net_device *netdev);
188 #endif
189 
190 #define COPYBREAK_DEFAULT 256
191 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
192 module_param(copybreak, uint, 0644);
193 MODULE_PARM_DESC(copybreak,
194 	"Maximum size of packet that is copied to a new buffer on receive");
195 
196 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
197 						pci_channel_state_t state);
198 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
199 static void e1000_io_resume(struct pci_dev *pdev);
200 
201 static const struct pci_error_handlers e1000_err_handler = {
202 	.error_detected = e1000_io_error_detected,
203 	.slot_reset = e1000_io_slot_reset,
204 	.resume = e1000_io_resume,
205 };
206 
207 static struct pci_driver e1000_driver = {
208 	.name     = e1000_driver_name,
209 	.id_table = e1000_pci_tbl,
210 	.probe    = e1000_probe,
211 	.remove   = e1000_remove,
212 #ifdef CONFIG_PM
213 	/* Power Management Hooks */
214 	.suspend  = e1000_suspend,
215 	.resume   = e1000_resume,
216 #endif
217 	.shutdown = e1000_shutdown,
218 	.err_handler = &e1000_err_handler
219 };
220 
221 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
222 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
223 MODULE_LICENSE("GPL");
224 MODULE_VERSION(DRV_VERSION);
225 
226 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
227 static int debug = -1;
228 module_param(debug, int, 0);
229 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
230 
231 /**
232  * e1000_get_hw_dev - return device
233  * used by hardware layer to print debugging information
234  *
235  **/
236 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
237 {
238 	struct e1000_adapter *adapter = hw->back;
239 	return adapter->netdev;
240 }
241 
242 /**
243  * e1000_init_module - Driver Registration Routine
244  *
245  * e1000_init_module is the first routine called when the driver is
246  * loaded. All it does is register with the PCI subsystem.
247  **/
248 static int __init e1000_init_module(void)
249 {
250 	int ret;
251 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
252 
253 	pr_info("%s\n", e1000_copyright);
254 
255 	ret = pci_register_driver(&e1000_driver);
256 	if (copybreak != COPYBREAK_DEFAULT) {
257 		if (copybreak == 0)
258 			pr_info("copybreak disabled\n");
259 		else
260 			pr_info("copybreak enabled for "
261 				   "packets <= %u bytes\n", copybreak);
262 	}
263 	return ret;
264 }
265 
266 module_init(e1000_init_module);
267 
268 /**
269  * e1000_exit_module - Driver Exit Cleanup Routine
270  *
271  * e1000_exit_module is called just before the driver is removed
272  * from memory.
273  **/
274 static void __exit e1000_exit_module(void)
275 {
276 	pci_unregister_driver(&e1000_driver);
277 }
278 
279 module_exit(e1000_exit_module);
280 
281 static int e1000_request_irq(struct e1000_adapter *adapter)
282 {
283 	struct net_device *netdev = adapter->netdev;
284 	irq_handler_t handler = e1000_intr;
285 	int irq_flags = IRQF_SHARED;
286 	int err;
287 
288 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
289 			  netdev);
290 	if (err) {
291 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
292 	}
293 
294 	return err;
295 }
296 
297 static void e1000_free_irq(struct e1000_adapter *adapter)
298 {
299 	struct net_device *netdev = adapter->netdev;
300 
301 	free_irq(adapter->pdev->irq, netdev);
302 }
303 
304 /**
305  * e1000_irq_disable - Mask off interrupt generation on the NIC
306  * @adapter: board private structure
307  **/
308 static void e1000_irq_disable(struct e1000_adapter *adapter)
309 {
310 	struct e1000_hw *hw = &adapter->hw;
311 
312 	ew32(IMC, ~0);
313 	E1000_WRITE_FLUSH();
314 	synchronize_irq(adapter->pdev->irq);
315 }
316 
317 /**
318  * e1000_irq_enable - Enable default interrupt generation settings
319  * @adapter: board private structure
320  **/
321 static void e1000_irq_enable(struct e1000_adapter *adapter)
322 {
323 	struct e1000_hw *hw = &adapter->hw;
324 
325 	ew32(IMS, IMS_ENABLE_MASK);
326 	E1000_WRITE_FLUSH();
327 }
328 
329 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
330 {
331 	struct e1000_hw *hw = &adapter->hw;
332 	struct net_device *netdev = adapter->netdev;
333 	u16 vid = hw->mng_cookie.vlan_id;
334 	u16 old_vid = adapter->mng_vlan_id;
335 
336 	if (!e1000_vlan_used(adapter))
337 		return;
338 
339 	if (!test_bit(vid, adapter->active_vlans)) {
340 		if (hw->mng_cookie.status &
341 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
342 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
343 			adapter->mng_vlan_id = vid;
344 		} else {
345 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
346 		}
347 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
348 		    (vid != old_vid) &&
349 		    !test_bit(old_vid, adapter->active_vlans))
350 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
351 					       old_vid);
352 	} else {
353 		adapter->mng_vlan_id = vid;
354 	}
355 }
356 
357 static void e1000_init_manageability(struct e1000_adapter *adapter)
358 {
359 	struct e1000_hw *hw = &adapter->hw;
360 
361 	if (adapter->en_mng_pt) {
362 		u32 manc = er32(MANC);
363 
364 		/* disable hardware interception of ARP */
365 		manc &= ~(E1000_MANC_ARP_EN);
366 
367 		ew32(MANC, manc);
368 	}
369 }
370 
371 static void e1000_release_manageability(struct e1000_adapter *adapter)
372 {
373 	struct e1000_hw *hw = &adapter->hw;
374 
375 	if (adapter->en_mng_pt) {
376 		u32 manc = er32(MANC);
377 
378 		/* re-enable hardware interception of ARP */
379 		manc |= E1000_MANC_ARP_EN;
380 
381 		ew32(MANC, manc);
382 	}
383 }
384 
385 /**
386  * e1000_configure - configure the hardware for RX and TX
387  * @adapter = private board structure
388  **/
389 static void e1000_configure(struct e1000_adapter *adapter)
390 {
391 	struct net_device *netdev = adapter->netdev;
392 	int i;
393 
394 	e1000_set_rx_mode(netdev);
395 
396 	e1000_restore_vlan(adapter);
397 	e1000_init_manageability(adapter);
398 
399 	e1000_configure_tx(adapter);
400 	e1000_setup_rctl(adapter);
401 	e1000_configure_rx(adapter);
402 	/* call E1000_DESC_UNUSED which always leaves
403 	 * at least 1 descriptor unused to make sure
404 	 * next_to_use != next_to_clean
405 	 */
406 	for (i = 0; i < adapter->num_rx_queues; i++) {
407 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
408 		adapter->alloc_rx_buf(adapter, ring,
409 				      E1000_DESC_UNUSED(ring));
410 	}
411 }
412 
413 int e1000_up(struct e1000_adapter *adapter)
414 {
415 	struct e1000_hw *hw = &adapter->hw;
416 
417 	/* hardware has been reset, we need to reload some things */
418 	e1000_configure(adapter);
419 
420 	clear_bit(__E1000_DOWN, &adapter->flags);
421 
422 	napi_enable(&adapter->napi);
423 
424 	e1000_irq_enable(adapter);
425 
426 	netif_wake_queue(adapter->netdev);
427 
428 	/* fire a link change interrupt to start the watchdog */
429 	ew32(ICS, E1000_ICS_LSC);
430 	return 0;
431 }
432 
433 /**
434  * e1000_power_up_phy - restore link in case the phy was powered down
435  * @adapter: address of board private structure
436  *
437  * The phy may be powered down to save power and turn off link when the
438  * driver is unloaded and wake on lan is not enabled (among others)
439  * *** this routine MUST be followed by a call to e1000_reset ***
440  **/
441 void e1000_power_up_phy(struct e1000_adapter *adapter)
442 {
443 	struct e1000_hw *hw = &adapter->hw;
444 	u16 mii_reg = 0;
445 
446 	/* Just clear the power down bit to wake the phy back up */
447 	if (hw->media_type == e1000_media_type_copper) {
448 		/* according to the manual, the phy will retain its
449 		 * settings across a power-down/up cycle
450 		 */
451 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
452 		mii_reg &= ~MII_CR_POWER_DOWN;
453 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
454 	}
455 }
456 
457 static void e1000_power_down_phy(struct e1000_adapter *adapter)
458 {
459 	struct e1000_hw *hw = &adapter->hw;
460 
461 	/* Power down the PHY so no link is implied when interface is down *
462 	 * The PHY cannot be powered down if any of the following is true *
463 	 * (a) WoL is enabled
464 	 * (b) AMT is active
465 	 * (c) SoL/IDER session is active
466 	 */
467 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
468 	   hw->media_type == e1000_media_type_copper) {
469 		u16 mii_reg = 0;
470 
471 		switch (hw->mac_type) {
472 		case e1000_82540:
473 		case e1000_82545:
474 		case e1000_82545_rev_3:
475 		case e1000_82546:
476 		case e1000_ce4100:
477 		case e1000_82546_rev_3:
478 		case e1000_82541:
479 		case e1000_82541_rev_2:
480 		case e1000_82547:
481 		case e1000_82547_rev_2:
482 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
483 				goto out;
484 			break;
485 		default:
486 			goto out;
487 		}
488 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
489 		mii_reg |= MII_CR_POWER_DOWN;
490 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
491 		msleep(1);
492 	}
493 out:
494 	return;
495 }
496 
497 static void e1000_down_and_stop(struct e1000_adapter *adapter)
498 {
499 	set_bit(__E1000_DOWN, &adapter->flags);
500 
501 	cancel_delayed_work_sync(&adapter->watchdog_task);
502 
503 	/*
504 	 * Since the watchdog task can reschedule other tasks, we should cancel
505 	 * it first, otherwise we can run into the situation when a work is
506 	 * still running after the adapter has been turned down.
507 	 */
508 
509 	cancel_delayed_work_sync(&adapter->phy_info_task);
510 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
511 
512 	/* Only kill reset task if adapter is not resetting */
513 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
514 		cancel_work_sync(&adapter->reset_task);
515 }
516 
517 void e1000_down(struct e1000_adapter *adapter)
518 {
519 	struct e1000_hw *hw = &adapter->hw;
520 	struct net_device *netdev = adapter->netdev;
521 	u32 rctl, tctl;
522 
523 	/* disable receives in the hardware */
524 	rctl = er32(RCTL);
525 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
526 	/* flush and sleep below */
527 
528 	netif_tx_disable(netdev);
529 
530 	/* disable transmits in the hardware */
531 	tctl = er32(TCTL);
532 	tctl &= ~E1000_TCTL_EN;
533 	ew32(TCTL, tctl);
534 	/* flush both disables and wait for them to finish */
535 	E1000_WRITE_FLUSH();
536 	msleep(10);
537 
538 	/* Set the carrier off after transmits have been disabled in the
539 	 * hardware, to avoid race conditions with e1000_watchdog() (which
540 	 * may be running concurrently to us, checking for the carrier
541 	 * bit to decide whether it should enable transmits again). Such
542 	 * a race condition would result into transmission being disabled
543 	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
544 	 */
545 	netif_carrier_off(netdev);
546 
547 	napi_disable(&adapter->napi);
548 
549 	e1000_irq_disable(adapter);
550 
551 	/* Setting DOWN must be after irq_disable to prevent
552 	 * a screaming interrupt.  Setting DOWN also prevents
553 	 * tasks from rescheduling.
554 	 */
555 	e1000_down_and_stop(adapter);
556 
557 	adapter->link_speed = 0;
558 	adapter->link_duplex = 0;
559 
560 	e1000_reset(adapter);
561 	e1000_clean_all_tx_rings(adapter);
562 	e1000_clean_all_rx_rings(adapter);
563 }
564 
565 void e1000_reinit_locked(struct e1000_adapter *adapter)
566 {
567 	WARN_ON(in_interrupt());
568 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
569 		msleep(1);
570 	e1000_down(adapter);
571 	e1000_up(adapter);
572 	clear_bit(__E1000_RESETTING, &adapter->flags);
573 }
574 
575 void e1000_reset(struct e1000_adapter *adapter)
576 {
577 	struct e1000_hw *hw = &adapter->hw;
578 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
579 	bool legacy_pba_adjust = false;
580 	u16 hwm;
581 
582 	/* Repartition Pba for greater than 9k mtu
583 	 * To take effect CTRL.RST is required.
584 	 */
585 
586 	switch (hw->mac_type) {
587 	case e1000_82542_rev2_0:
588 	case e1000_82542_rev2_1:
589 	case e1000_82543:
590 	case e1000_82544:
591 	case e1000_82540:
592 	case e1000_82541:
593 	case e1000_82541_rev_2:
594 		legacy_pba_adjust = true;
595 		pba = E1000_PBA_48K;
596 		break;
597 	case e1000_82545:
598 	case e1000_82545_rev_3:
599 	case e1000_82546:
600 	case e1000_ce4100:
601 	case e1000_82546_rev_3:
602 		pba = E1000_PBA_48K;
603 		break;
604 	case e1000_82547:
605 	case e1000_82547_rev_2:
606 		legacy_pba_adjust = true;
607 		pba = E1000_PBA_30K;
608 		break;
609 	case e1000_undefined:
610 	case e1000_num_macs:
611 		break;
612 	}
613 
614 	if (legacy_pba_adjust) {
615 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
616 			pba -= 8; /* allocate more FIFO for Tx */
617 
618 		if (hw->mac_type == e1000_82547) {
619 			adapter->tx_fifo_head = 0;
620 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
621 			adapter->tx_fifo_size =
622 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
623 			atomic_set(&adapter->tx_fifo_stall, 0);
624 		}
625 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
626 		/* adjust PBA for jumbo frames */
627 		ew32(PBA, pba);
628 
629 		/* To maintain wire speed transmits, the Tx FIFO should be
630 		 * large enough to accommodate two full transmit packets,
631 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
632 		 * the Rx FIFO should be large enough to accommodate at least
633 		 * one full receive packet and is similarly rounded up and
634 		 * expressed in KB.
635 		 */
636 		pba = er32(PBA);
637 		/* upper 16 bits has Tx packet buffer allocation size in KB */
638 		tx_space = pba >> 16;
639 		/* lower 16 bits has Rx packet buffer allocation size in KB */
640 		pba &= 0xffff;
641 		/* the Tx fifo also stores 16 bytes of information about the Tx
642 		 * but don't include ethernet FCS because hardware appends it
643 		 */
644 		min_tx_space = (hw->max_frame_size +
645 				sizeof(struct e1000_tx_desc) -
646 				ETH_FCS_LEN) * 2;
647 		min_tx_space = ALIGN(min_tx_space, 1024);
648 		min_tx_space >>= 10;
649 		/* software strips receive CRC, so leave room for it */
650 		min_rx_space = hw->max_frame_size;
651 		min_rx_space = ALIGN(min_rx_space, 1024);
652 		min_rx_space >>= 10;
653 
654 		/* If current Tx allocation is less than the min Tx FIFO size,
655 		 * and the min Tx FIFO size is less than the current Rx FIFO
656 		 * allocation, take space away from current Rx allocation
657 		 */
658 		if (tx_space < min_tx_space &&
659 		    ((min_tx_space - tx_space) < pba)) {
660 			pba = pba - (min_tx_space - tx_space);
661 
662 			/* PCI/PCIx hardware has PBA alignment constraints */
663 			switch (hw->mac_type) {
664 			case e1000_82545 ... e1000_82546_rev_3:
665 				pba &= ~(E1000_PBA_8K - 1);
666 				break;
667 			default:
668 				break;
669 			}
670 
671 			/* if short on Rx space, Rx wins and must trump Tx
672 			 * adjustment or use Early Receive if available
673 			 */
674 			if (pba < min_rx_space)
675 				pba = min_rx_space;
676 		}
677 	}
678 
679 	ew32(PBA, pba);
680 
681 	/* flow control settings:
682 	 * The high water mark must be low enough to fit one full frame
683 	 * (or the size used for early receive) above it in the Rx FIFO.
684 	 * Set it to the lower of:
685 	 * - 90% of the Rx FIFO size, and
686 	 * - the full Rx FIFO size minus the early receive size (for parts
687 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
688 	 * - the full Rx FIFO size minus one full frame
689 	 */
690 	hwm = min(((pba << 10) * 9 / 10),
691 		  ((pba << 10) - hw->max_frame_size));
692 
693 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
694 	hw->fc_low_water = hw->fc_high_water - 8;
695 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
696 	hw->fc_send_xon = 1;
697 	hw->fc = hw->original_fc;
698 
699 	/* Allow time for pending master requests to run */
700 	e1000_reset_hw(hw);
701 	if (hw->mac_type >= e1000_82544)
702 		ew32(WUC, 0);
703 
704 	if (e1000_init_hw(hw))
705 		e_dev_err("Hardware Error\n");
706 	e1000_update_mng_vlan(adapter);
707 
708 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
709 	if (hw->mac_type >= e1000_82544 &&
710 	    hw->autoneg == 1 &&
711 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
712 		u32 ctrl = er32(CTRL);
713 		/* clear phy power management bit if we are in gig only mode,
714 		 * which if enabled will attempt negotiation to 100Mb, which
715 		 * can cause a loss of link at power off or driver unload
716 		 */
717 		ctrl &= ~E1000_CTRL_SWDPIN3;
718 		ew32(CTRL, ctrl);
719 	}
720 
721 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
722 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
723 
724 	e1000_reset_adaptive(hw);
725 	e1000_phy_get_info(hw, &adapter->phy_info);
726 
727 	e1000_release_manageability(adapter);
728 }
729 
730 /* Dump the eeprom for users having checksum issues */
731 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
732 {
733 	struct net_device *netdev = adapter->netdev;
734 	struct ethtool_eeprom eeprom;
735 	const struct ethtool_ops *ops = netdev->ethtool_ops;
736 	u8 *data;
737 	int i;
738 	u16 csum_old, csum_new = 0;
739 
740 	eeprom.len = ops->get_eeprom_len(netdev);
741 	eeprom.offset = 0;
742 
743 	data = kmalloc(eeprom.len, GFP_KERNEL);
744 	if (!data)
745 		return;
746 
747 	ops->get_eeprom(netdev, &eeprom, data);
748 
749 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
750 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
751 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
752 		csum_new += data[i] + (data[i + 1] << 8);
753 	csum_new = EEPROM_SUM - csum_new;
754 
755 	pr_err("/*********************/\n");
756 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
757 	pr_err("Calculated              : 0x%04x\n", csum_new);
758 
759 	pr_err("Offset    Values\n");
760 	pr_err("========  ======\n");
761 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
762 
763 	pr_err("Include this output when contacting your support provider.\n");
764 	pr_err("This is not a software error! Something bad happened to\n");
765 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
766 	pr_err("result in further problems, possibly loss of data,\n");
767 	pr_err("corruption or system hangs!\n");
768 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
769 	pr_err("which is invalid and requires you to set the proper MAC\n");
770 	pr_err("address manually before continuing to enable this network\n");
771 	pr_err("device. Please inspect the EEPROM dump and report the\n");
772 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
773 	pr_err("/*********************/\n");
774 
775 	kfree(data);
776 }
777 
778 /**
779  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
780  * @pdev: PCI device information struct
781  *
782  * Return true if an adapter needs ioport resources
783  **/
784 static int e1000_is_need_ioport(struct pci_dev *pdev)
785 {
786 	switch (pdev->device) {
787 	case E1000_DEV_ID_82540EM:
788 	case E1000_DEV_ID_82540EM_LOM:
789 	case E1000_DEV_ID_82540EP:
790 	case E1000_DEV_ID_82540EP_LOM:
791 	case E1000_DEV_ID_82540EP_LP:
792 	case E1000_DEV_ID_82541EI:
793 	case E1000_DEV_ID_82541EI_MOBILE:
794 	case E1000_DEV_ID_82541ER:
795 	case E1000_DEV_ID_82541ER_LOM:
796 	case E1000_DEV_ID_82541GI:
797 	case E1000_DEV_ID_82541GI_LF:
798 	case E1000_DEV_ID_82541GI_MOBILE:
799 	case E1000_DEV_ID_82544EI_COPPER:
800 	case E1000_DEV_ID_82544EI_FIBER:
801 	case E1000_DEV_ID_82544GC_COPPER:
802 	case E1000_DEV_ID_82544GC_LOM:
803 	case E1000_DEV_ID_82545EM_COPPER:
804 	case E1000_DEV_ID_82545EM_FIBER:
805 	case E1000_DEV_ID_82546EB_COPPER:
806 	case E1000_DEV_ID_82546EB_FIBER:
807 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
808 		return true;
809 	default:
810 		return false;
811 	}
812 }
813 
814 static netdev_features_t e1000_fix_features(struct net_device *netdev,
815 	netdev_features_t features)
816 {
817 	/* Since there is no support for separate Rx/Tx vlan accel
818 	 * enable/disable make sure Tx flag is always in same state as Rx.
819 	 */
820 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
821 		features |= NETIF_F_HW_VLAN_CTAG_TX;
822 	else
823 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
824 
825 	return features;
826 }
827 
828 static int e1000_set_features(struct net_device *netdev,
829 	netdev_features_t features)
830 {
831 	struct e1000_adapter *adapter = netdev_priv(netdev);
832 	netdev_features_t changed = features ^ netdev->features;
833 
834 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
835 		e1000_vlan_mode(netdev, features);
836 
837 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
838 		return 0;
839 
840 	netdev->features = features;
841 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
842 
843 	if (netif_running(netdev))
844 		e1000_reinit_locked(adapter);
845 	else
846 		e1000_reset(adapter);
847 
848 	return 0;
849 }
850 
851 static const struct net_device_ops e1000_netdev_ops = {
852 	.ndo_open		= e1000_open,
853 	.ndo_stop		= e1000_close,
854 	.ndo_start_xmit		= e1000_xmit_frame,
855 	.ndo_set_rx_mode	= e1000_set_rx_mode,
856 	.ndo_set_mac_address	= e1000_set_mac,
857 	.ndo_tx_timeout		= e1000_tx_timeout,
858 	.ndo_change_mtu		= e1000_change_mtu,
859 	.ndo_do_ioctl		= e1000_ioctl,
860 	.ndo_validate_addr	= eth_validate_addr,
861 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
862 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
863 #ifdef CONFIG_NET_POLL_CONTROLLER
864 	.ndo_poll_controller	= e1000_netpoll,
865 #endif
866 	.ndo_fix_features	= e1000_fix_features,
867 	.ndo_set_features	= e1000_set_features,
868 };
869 
870 /**
871  * e1000_init_hw_struct - initialize members of hw struct
872  * @adapter: board private struct
873  * @hw: structure used by e1000_hw.c
874  *
875  * Factors out initialization of the e1000_hw struct to its own function
876  * that can be called very early at init (just after struct allocation).
877  * Fields are initialized based on PCI device information and
878  * OS network device settings (MTU size).
879  * Returns negative error codes if MAC type setup fails.
880  */
881 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
882 				struct e1000_hw *hw)
883 {
884 	struct pci_dev *pdev = adapter->pdev;
885 
886 	/* PCI config space info */
887 	hw->vendor_id = pdev->vendor;
888 	hw->device_id = pdev->device;
889 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
890 	hw->subsystem_id = pdev->subsystem_device;
891 	hw->revision_id = pdev->revision;
892 
893 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
894 
895 	hw->max_frame_size = adapter->netdev->mtu +
896 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
897 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
898 
899 	/* identify the MAC */
900 	if (e1000_set_mac_type(hw)) {
901 		e_err(probe, "Unknown MAC Type\n");
902 		return -EIO;
903 	}
904 
905 	switch (hw->mac_type) {
906 	default:
907 		break;
908 	case e1000_82541:
909 	case e1000_82547:
910 	case e1000_82541_rev_2:
911 	case e1000_82547_rev_2:
912 		hw->phy_init_script = 1;
913 		break;
914 	}
915 
916 	e1000_set_media_type(hw);
917 	e1000_get_bus_info(hw);
918 
919 	hw->wait_autoneg_complete = false;
920 	hw->tbi_compatibility_en = true;
921 	hw->adaptive_ifs = true;
922 
923 	/* Copper options */
924 
925 	if (hw->media_type == e1000_media_type_copper) {
926 		hw->mdix = AUTO_ALL_MODES;
927 		hw->disable_polarity_correction = false;
928 		hw->master_slave = E1000_MASTER_SLAVE;
929 	}
930 
931 	return 0;
932 }
933 
934 /**
935  * e1000_probe - Device Initialization Routine
936  * @pdev: PCI device information struct
937  * @ent: entry in e1000_pci_tbl
938  *
939  * Returns 0 on success, negative on failure
940  *
941  * e1000_probe initializes an adapter identified by a pci_dev structure.
942  * The OS initialization, configuring of the adapter private structure,
943  * and a hardware reset occur.
944  **/
945 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
946 {
947 	struct net_device *netdev;
948 	struct e1000_adapter *adapter;
949 	struct e1000_hw *hw;
950 
951 	static int cards_found;
952 	static int global_quad_port_a; /* global ksp3 port a indication */
953 	int i, err, pci_using_dac;
954 	u16 eeprom_data = 0;
955 	u16 tmp = 0;
956 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
957 	int bars, need_ioport;
958 
959 	/* do not allocate ioport bars when not needed */
960 	need_ioport = e1000_is_need_ioport(pdev);
961 	if (need_ioport) {
962 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
963 		err = pci_enable_device(pdev);
964 	} else {
965 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
966 		err = pci_enable_device_mem(pdev);
967 	}
968 	if (err)
969 		return err;
970 
971 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
972 	if (err)
973 		goto err_pci_reg;
974 
975 	pci_set_master(pdev);
976 	err = pci_save_state(pdev);
977 	if (err)
978 		goto err_alloc_etherdev;
979 
980 	err = -ENOMEM;
981 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
982 	if (!netdev)
983 		goto err_alloc_etherdev;
984 
985 	SET_NETDEV_DEV(netdev, &pdev->dev);
986 
987 	pci_set_drvdata(pdev, netdev);
988 	adapter = netdev_priv(netdev);
989 	adapter->netdev = netdev;
990 	adapter->pdev = pdev;
991 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
992 	adapter->bars = bars;
993 	adapter->need_ioport = need_ioport;
994 
995 	hw = &adapter->hw;
996 	hw->back = adapter;
997 
998 	err = -EIO;
999 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1000 	if (!hw->hw_addr)
1001 		goto err_ioremap;
1002 
1003 	if (adapter->need_ioport) {
1004 		for (i = BAR_1; i <= BAR_5; i++) {
1005 			if (pci_resource_len(pdev, i) == 0)
1006 				continue;
1007 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1008 				hw->io_base = pci_resource_start(pdev, i);
1009 				break;
1010 			}
1011 		}
1012 	}
1013 
1014 	/* make ready for any if (hw->...) below */
1015 	err = e1000_init_hw_struct(adapter, hw);
1016 	if (err)
1017 		goto err_sw_init;
1018 
1019 	/* there is a workaround being applied below that limits
1020 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1021 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1022 	 */
1023 	pci_using_dac = 0;
1024 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1025 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1026 		pci_using_dac = 1;
1027 	} else {
1028 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1029 		if (err) {
1030 			pr_err("No usable DMA config, aborting\n");
1031 			goto err_dma;
1032 		}
1033 	}
1034 
1035 	netdev->netdev_ops = &e1000_netdev_ops;
1036 	e1000_set_ethtool_ops(netdev);
1037 	netdev->watchdog_timeo = 5 * HZ;
1038 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1039 
1040 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1041 
1042 	adapter->bd_number = cards_found;
1043 
1044 	/* setup the private structure */
1045 
1046 	err = e1000_sw_init(adapter);
1047 	if (err)
1048 		goto err_sw_init;
1049 
1050 	err = -EIO;
1051 	if (hw->mac_type == e1000_ce4100) {
1052 		hw->ce4100_gbe_mdio_base_virt =
1053 					ioremap(pci_resource_start(pdev, BAR_1),
1054 						pci_resource_len(pdev, BAR_1));
1055 
1056 		if (!hw->ce4100_gbe_mdio_base_virt)
1057 			goto err_mdio_ioremap;
1058 	}
1059 
1060 	if (hw->mac_type >= e1000_82543) {
1061 		netdev->hw_features = NETIF_F_SG |
1062 				   NETIF_F_HW_CSUM |
1063 				   NETIF_F_HW_VLAN_CTAG_RX;
1064 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1065 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1066 	}
1067 
1068 	if ((hw->mac_type >= e1000_82544) &&
1069 	   (hw->mac_type != e1000_82547))
1070 		netdev->hw_features |= NETIF_F_TSO;
1071 
1072 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1073 
1074 	netdev->features |= netdev->hw_features;
1075 	netdev->hw_features |= (NETIF_F_RXCSUM |
1076 				NETIF_F_RXALL |
1077 				NETIF_F_RXFCS);
1078 
1079 	if (pci_using_dac) {
1080 		netdev->features |= NETIF_F_HIGHDMA;
1081 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1082 	}
1083 
1084 	netdev->vlan_features |= (NETIF_F_TSO |
1085 				  NETIF_F_HW_CSUM |
1086 				  NETIF_F_SG);
1087 
1088 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1089 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1090 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1091 		netdev->priv_flags |= IFF_UNICAST_FLT;
1092 
1093 	/* MTU range: 46 - 16110 */
1094 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1095 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1096 
1097 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1098 
1099 	/* initialize eeprom parameters */
1100 	if (e1000_init_eeprom_params(hw)) {
1101 		e_err(probe, "EEPROM initialization failed\n");
1102 		goto err_eeprom;
1103 	}
1104 
1105 	/* before reading the EEPROM, reset the controller to
1106 	 * put the device in a known good starting state
1107 	 */
1108 
1109 	e1000_reset_hw(hw);
1110 
1111 	/* make sure the EEPROM is good */
1112 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1113 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1114 		e1000_dump_eeprom(adapter);
1115 		/* set MAC address to all zeroes to invalidate and temporary
1116 		 * disable this device for the user. This blocks regular
1117 		 * traffic while still permitting ethtool ioctls from reaching
1118 		 * the hardware as well as allowing the user to run the
1119 		 * interface after manually setting a hw addr using
1120 		 * `ip set address`
1121 		 */
1122 		memset(hw->mac_addr, 0, netdev->addr_len);
1123 	} else {
1124 		/* copy the MAC address out of the EEPROM */
1125 		if (e1000_read_mac_addr(hw))
1126 			e_err(probe, "EEPROM Read Error\n");
1127 	}
1128 	/* don't block initialization here due to bad MAC address */
1129 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1130 
1131 	if (!is_valid_ether_addr(netdev->dev_addr))
1132 		e_err(probe, "Invalid MAC Address\n");
1133 
1134 
1135 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1136 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1137 			  e1000_82547_tx_fifo_stall_task);
1138 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1139 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1140 
1141 	e1000_check_options(adapter);
1142 
1143 	/* Initial Wake on LAN setting
1144 	 * If APM wake is enabled in the EEPROM,
1145 	 * enable the ACPI Magic Packet filter
1146 	 */
1147 
1148 	switch (hw->mac_type) {
1149 	case e1000_82542_rev2_0:
1150 	case e1000_82542_rev2_1:
1151 	case e1000_82543:
1152 		break;
1153 	case e1000_82544:
1154 		e1000_read_eeprom(hw,
1155 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1156 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1157 		break;
1158 	case e1000_82546:
1159 	case e1000_82546_rev_3:
1160 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1161 			e1000_read_eeprom(hw,
1162 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1163 			break;
1164 		}
1165 		/* Fall Through */
1166 	default:
1167 		e1000_read_eeprom(hw,
1168 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1169 		break;
1170 	}
1171 	if (eeprom_data & eeprom_apme_mask)
1172 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1173 
1174 	/* now that we have the eeprom settings, apply the special cases
1175 	 * where the eeprom may be wrong or the board simply won't support
1176 	 * wake on lan on a particular port
1177 	 */
1178 	switch (pdev->device) {
1179 	case E1000_DEV_ID_82546GB_PCIE:
1180 		adapter->eeprom_wol = 0;
1181 		break;
1182 	case E1000_DEV_ID_82546EB_FIBER:
1183 	case E1000_DEV_ID_82546GB_FIBER:
1184 		/* Wake events only supported on port A for dual fiber
1185 		 * regardless of eeprom setting
1186 		 */
1187 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1188 			adapter->eeprom_wol = 0;
1189 		break;
1190 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1191 		/* if quad port adapter, disable WoL on all but port A */
1192 		if (global_quad_port_a != 0)
1193 			adapter->eeprom_wol = 0;
1194 		else
1195 			adapter->quad_port_a = true;
1196 		/* Reset for multiple quad port adapters */
1197 		if (++global_quad_port_a == 4)
1198 			global_quad_port_a = 0;
1199 		break;
1200 	}
1201 
1202 	/* initialize the wol settings based on the eeprom settings */
1203 	adapter->wol = adapter->eeprom_wol;
1204 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1205 
1206 	/* Auto detect PHY address */
1207 	if (hw->mac_type == e1000_ce4100) {
1208 		for (i = 0; i < 32; i++) {
1209 			hw->phy_addr = i;
1210 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1211 
1212 			if (tmp != 0 && tmp != 0xFF)
1213 				break;
1214 		}
1215 
1216 		if (i >= 32)
1217 			goto err_eeprom;
1218 	}
1219 
1220 	/* reset the hardware with the new settings */
1221 	e1000_reset(adapter);
1222 
1223 	strcpy(netdev->name, "eth%d");
1224 	err = register_netdev(netdev);
1225 	if (err)
1226 		goto err_register;
1227 
1228 	e1000_vlan_filter_on_off(adapter, false);
1229 
1230 	/* print bus type/speed/width info */
1231 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1232 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1233 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1234 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1235 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1236 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1237 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1238 	       netdev->dev_addr);
1239 
1240 	/* carrier off reporting is important to ethtool even BEFORE open */
1241 	netif_carrier_off(netdev);
1242 
1243 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1244 
1245 	cards_found++;
1246 	return 0;
1247 
1248 err_register:
1249 err_eeprom:
1250 	e1000_phy_hw_reset(hw);
1251 
1252 	if (hw->flash_address)
1253 		iounmap(hw->flash_address);
1254 	kfree(adapter->tx_ring);
1255 	kfree(adapter->rx_ring);
1256 err_dma:
1257 err_sw_init:
1258 err_mdio_ioremap:
1259 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1260 	iounmap(hw->hw_addr);
1261 err_ioremap:
1262 	free_netdev(netdev);
1263 err_alloc_etherdev:
1264 	pci_release_selected_regions(pdev, bars);
1265 err_pci_reg:
1266 	pci_disable_device(pdev);
1267 	return err;
1268 }
1269 
1270 /**
1271  * e1000_remove - Device Removal Routine
1272  * @pdev: PCI device information struct
1273  *
1274  * e1000_remove is called by the PCI subsystem to alert the driver
1275  * that it should release a PCI device. That could be caused by a
1276  * Hot-Plug event, or because the driver is going to be removed from
1277  * memory.
1278  **/
1279 static void e1000_remove(struct pci_dev *pdev)
1280 {
1281 	struct net_device *netdev = pci_get_drvdata(pdev);
1282 	struct e1000_adapter *adapter = netdev_priv(netdev);
1283 	struct e1000_hw *hw = &adapter->hw;
1284 
1285 	e1000_down_and_stop(adapter);
1286 	e1000_release_manageability(adapter);
1287 
1288 	unregister_netdev(netdev);
1289 
1290 	e1000_phy_hw_reset(hw);
1291 
1292 	kfree(adapter->tx_ring);
1293 	kfree(adapter->rx_ring);
1294 
1295 	if (hw->mac_type == e1000_ce4100)
1296 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1297 	iounmap(hw->hw_addr);
1298 	if (hw->flash_address)
1299 		iounmap(hw->flash_address);
1300 	pci_release_selected_regions(pdev, adapter->bars);
1301 
1302 	free_netdev(netdev);
1303 
1304 	pci_disable_device(pdev);
1305 }
1306 
1307 /**
1308  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1309  * @adapter: board private structure to initialize
1310  *
1311  * e1000_sw_init initializes the Adapter private data structure.
1312  * e1000_init_hw_struct MUST be called before this function
1313  **/
1314 static int e1000_sw_init(struct e1000_adapter *adapter)
1315 {
1316 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1317 
1318 	adapter->num_tx_queues = 1;
1319 	adapter->num_rx_queues = 1;
1320 
1321 	if (e1000_alloc_queues(adapter)) {
1322 		e_err(probe, "Unable to allocate memory for queues\n");
1323 		return -ENOMEM;
1324 	}
1325 
1326 	/* Explicitly disable IRQ since the NIC can be in any state. */
1327 	e1000_irq_disable(adapter);
1328 
1329 	spin_lock_init(&adapter->stats_lock);
1330 
1331 	set_bit(__E1000_DOWN, &adapter->flags);
1332 
1333 	return 0;
1334 }
1335 
1336 /**
1337  * e1000_alloc_queues - Allocate memory for all rings
1338  * @adapter: board private structure to initialize
1339  *
1340  * We allocate one ring per queue at run-time since we don't know the
1341  * number of queues at compile-time.
1342  **/
1343 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1344 {
1345 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1346 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1347 	if (!adapter->tx_ring)
1348 		return -ENOMEM;
1349 
1350 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1351 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1352 	if (!adapter->rx_ring) {
1353 		kfree(adapter->tx_ring);
1354 		return -ENOMEM;
1355 	}
1356 
1357 	return E1000_SUCCESS;
1358 }
1359 
1360 /**
1361  * e1000_open - Called when a network interface is made active
1362  * @netdev: network interface device structure
1363  *
1364  * Returns 0 on success, negative value on failure
1365  *
1366  * The open entry point is called when a network interface is made
1367  * active by the system (IFF_UP).  At this point all resources needed
1368  * for transmit and receive operations are allocated, the interrupt
1369  * handler is registered with the OS, the watchdog task is started,
1370  * and the stack is notified that the interface is ready.
1371  **/
1372 int e1000_open(struct net_device *netdev)
1373 {
1374 	struct e1000_adapter *adapter = netdev_priv(netdev);
1375 	struct e1000_hw *hw = &adapter->hw;
1376 	int err;
1377 
1378 	/* disallow open during test */
1379 	if (test_bit(__E1000_TESTING, &adapter->flags))
1380 		return -EBUSY;
1381 
1382 	netif_carrier_off(netdev);
1383 
1384 	/* allocate transmit descriptors */
1385 	err = e1000_setup_all_tx_resources(adapter);
1386 	if (err)
1387 		goto err_setup_tx;
1388 
1389 	/* allocate receive descriptors */
1390 	err = e1000_setup_all_rx_resources(adapter);
1391 	if (err)
1392 		goto err_setup_rx;
1393 
1394 	e1000_power_up_phy(adapter);
1395 
1396 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1397 	if ((hw->mng_cookie.status &
1398 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1399 		e1000_update_mng_vlan(adapter);
1400 	}
1401 
1402 	/* before we allocate an interrupt, we must be ready to handle it.
1403 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1404 	 * as soon as we call pci_request_irq, so we have to setup our
1405 	 * clean_rx handler before we do so.
1406 	 */
1407 	e1000_configure(adapter);
1408 
1409 	err = e1000_request_irq(adapter);
1410 	if (err)
1411 		goto err_req_irq;
1412 
1413 	/* From here on the code is the same as e1000_up() */
1414 	clear_bit(__E1000_DOWN, &adapter->flags);
1415 
1416 	napi_enable(&adapter->napi);
1417 
1418 	e1000_irq_enable(adapter);
1419 
1420 	netif_start_queue(netdev);
1421 
1422 	/* fire a link status change interrupt to start the watchdog */
1423 	ew32(ICS, E1000_ICS_LSC);
1424 
1425 	return E1000_SUCCESS;
1426 
1427 err_req_irq:
1428 	e1000_power_down_phy(adapter);
1429 	e1000_free_all_rx_resources(adapter);
1430 err_setup_rx:
1431 	e1000_free_all_tx_resources(adapter);
1432 err_setup_tx:
1433 	e1000_reset(adapter);
1434 
1435 	return err;
1436 }
1437 
1438 /**
1439  * e1000_close - Disables a network interface
1440  * @netdev: network interface device structure
1441  *
1442  * Returns 0, this is not allowed to fail
1443  *
1444  * The close entry point is called when an interface is de-activated
1445  * by the OS.  The hardware is still under the drivers control, but
1446  * needs to be disabled.  A global MAC reset is issued to stop the
1447  * hardware, and all transmit and receive resources are freed.
1448  **/
1449 int e1000_close(struct net_device *netdev)
1450 {
1451 	struct e1000_adapter *adapter = netdev_priv(netdev);
1452 	struct e1000_hw *hw = &adapter->hw;
1453 	int count = E1000_CHECK_RESET_COUNT;
1454 
1455 	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1456 		usleep_range(10000, 20000);
1457 
1458 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1459 	e1000_down(adapter);
1460 	e1000_power_down_phy(adapter);
1461 	e1000_free_irq(adapter);
1462 
1463 	e1000_free_all_tx_resources(adapter);
1464 	e1000_free_all_rx_resources(adapter);
1465 
1466 	/* kill manageability vlan ID if supported, but not if a vlan with
1467 	 * the same ID is registered on the host OS (let 8021q kill it)
1468 	 */
1469 	if ((hw->mng_cookie.status &
1470 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1471 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1472 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1473 				       adapter->mng_vlan_id);
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 /**
1480  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1481  * @adapter: address of board private structure
1482  * @start: address of beginning of memory
1483  * @len: length of memory
1484  **/
1485 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1486 				  unsigned long len)
1487 {
1488 	struct e1000_hw *hw = &adapter->hw;
1489 	unsigned long begin = (unsigned long)start;
1490 	unsigned long end = begin + len;
1491 
1492 	/* First rev 82545 and 82546 need to not allow any memory
1493 	 * write location to cross 64k boundary due to errata 23
1494 	 */
1495 	if (hw->mac_type == e1000_82545 ||
1496 	    hw->mac_type == e1000_ce4100 ||
1497 	    hw->mac_type == e1000_82546) {
1498 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1499 	}
1500 
1501 	return true;
1502 }
1503 
1504 /**
1505  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1506  * @adapter: board private structure
1507  * @txdr:    tx descriptor ring (for a specific queue) to setup
1508  *
1509  * Return 0 on success, negative on failure
1510  **/
1511 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1512 				    struct e1000_tx_ring *txdr)
1513 {
1514 	struct pci_dev *pdev = adapter->pdev;
1515 	int size;
1516 
1517 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1518 	txdr->buffer_info = vzalloc(size);
1519 	if (!txdr->buffer_info)
1520 		return -ENOMEM;
1521 
1522 	/* round up to nearest 4K */
1523 
1524 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1525 	txdr->size = ALIGN(txdr->size, 4096);
1526 
1527 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1528 					GFP_KERNEL);
1529 	if (!txdr->desc) {
1530 setup_tx_desc_die:
1531 		vfree(txdr->buffer_info);
1532 		return -ENOMEM;
1533 	}
1534 
1535 	/* Fix for errata 23, can't cross 64kB boundary */
1536 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1537 		void *olddesc = txdr->desc;
1538 		dma_addr_t olddma = txdr->dma;
1539 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1540 		      txdr->size, txdr->desc);
1541 		/* Try again, without freeing the previous */
1542 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1543 						&txdr->dma, GFP_KERNEL);
1544 		/* Failed allocation, critical failure */
1545 		if (!txdr->desc) {
1546 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 					  olddma);
1548 			goto setup_tx_desc_die;
1549 		}
1550 
1551 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1552 			/* give up */
1553 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1554 					  txdr->dma);
1555 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1556 					  olddma);
1557 			e_err(probe, "Unable to allocate aligned memory "
1558 			      "for the transmit descriptor ring\n");
1559 			vfree(txdr->buffer_info);
1560 			return -ENOMEM;
1561 		} else {
1562 			/* Free old allocation, new allocation was successful */
1563 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1564 					  olddma);
1565 		}
1566 	}
1567 	memset(txdr->desc, 0, txdr->size);
1568 
1569 	txdr->next_to_use = 0;
1570 	txdr->next_to_clean = 0;
1571 
1572 	return 0;
1573 }
1574 
1575 /**
1576  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1577  * 				  (Descriptors) for all queues
1578  * @adapter: board private structure
1579  *
1580  * Return 0 on success, negative on failure
1581  **/
1582 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1583 {
1584 	int i, err = 0;
1585 
1586 	for (i = 0; i < adapter->num_tx_queues; i++) {
1587 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1588 		if (err) {
1589 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1590 			for (i-- ; i >= 0; i--)
1591 				e1000_free_tx_resources(adapter,
1592 							&adapter->tx_ring[i]);
1593 			break;
1594 		}
1595 	}
1596 
1597 	return err;
1598 }
1599 
1600 /**
1601  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1602  * @adapter: board private structure
1603  *
1604  * Configure the Tx unit of the MAC after a reset.
1605  **/
1606 static void e1000_configure_tx(struct e1000_adapter *adapter)
1607 {
1608 	u64 tdba;
1609 	struct e1000_hw *hw = &adapter->hw;
1610 	u32 tdlen, tctl, tipg;
1611 	u32 ipgr1, ipgr2;
1612 
1613 	/* Setup the HW Tx Head and Tail descriptor pointers */
1614 
1615 	switch (adapter->num_tx_queues) {
1616 	case 1:
1617 	default:
1618 		tdba = adapter->tx_ring[0].dma;
1619 		tdlen = adapter->tx_ring[0].count *
1620 			sizeof(struct e1000_tx_desc);
1621 		ew32(TDLEN, tdlen);
1622 		ew32(TDBAH, (tdba >> 32));
1623 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1624 		ew32(TDT, 0);
1625 		ew32(TDH, 0);
1626 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1627 					   E1000_TDH : E1000_82542_TDH);
1628 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1629 					   E1000_TDT : E1000_82542_TDT);
1630 		break;
1631 	}
1632 
1633 	/* Set the default values for the Tx Inter Packet Gap timer */
1634 	if ((hw->media_type == e1000_media_type_fiber ||
1635 	     hw->media_type == e1000_media_type_internal_serdes))
1636 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1637 	else
1638 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1639 
1640 	switch (hw->mac_type) {
1641 	case e1000_82542_rev2_0:
1642 	case e1000_82542_rev2_1:
1643 		tipg = DEFAULT_82542_TIPG_IPGT;
1644 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1645 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1646 		break;
1647 	default:
1648 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1649 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1650 		break;
1651 	}
1652 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1653 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1654 	ew32(TIPG, tipg);
1655 
1656 	/* Set the Tx Interrupt Delay register */
1657 
1658 	ew32(TIDV, adapter->tx_int_delay);
1659 	if (hw->mac_type >= e1000_82540)
1660 		ew32(TADV, adapter->tx_abs_int_delay);
1661 
1662 	/* Program the Transmit Control Register */
1663 
1664 	tctl = er32(TCTL);
1665 	tctl &= ~E1000_TCTL_CT;
1666 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1667 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1668 
1669 	e1000_config_collision_dist(hw);
1670 
1671 	/* Setup Transmit Descriptor Settings for eop descriptor */
1672 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1673 
1674 	/* only set IDE if we are delaying interrupts using the timers */
1675 	if (adapter->tx_int_delay)
1676 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1677 
1678 	if (hw->mac_type < e1000_82543)
1679 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1680 	else
1681 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1682 
1683 	/* Cache if we're 82544 running in PCI-X because we'll
1684 	 * need this to apply a workaround later in the send path.
1685 	 */
1686 	if (hw->mac_type == e1000_82544 &&
1687 	    hw->bus_type == e1000_bus_type_pcix)
1688 		adapter->pcix_82544 = true;
1689 
1690 	ew32(TCTL, tctl);
1691 
1692 }
1693 
1694 /**
1695  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1696  * @adapter: board private structure
1697  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1698  *
1699  * Returns 0 on success, negative on failure
1700  **/
1701 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1702 				    struct e1000_rx_ring *rxdr)
1703 {
1704 	struct pci_dev *pdev = adapter->pdev;
1705 	int size, desc_len;
1706 
1707 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1708 	rxdr->buffer_info = vzalloc(size);
1709 	if (!rxdr->buffer_info)
1710 		return -ENOMEM;
1711 
1712 	desc_len = sizeof(struct e1000_rx_desc);
1713 
1714 	/* Round up to nearest 4K */
1715 
1716 	rxdr->size = rxdr->count * desc_len;
1717 	rxdr->size = ALIGN(rxdr->size, 4096);
1718 
1719 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1720 					GFP_KERNEL);
1721 	if (!rxdr->desc) {
1722 setup_rx_desc_die:
1723 		vfree(rxdr->buffer_info);
1724 		return -ENOMEM;
1725 	}
1726 
1727 	/* Fix for errata 23, can't cross 64kB boundary */
1728 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1729 		void *olddesc = rxdr->desc;
1730 		dma_addr_t olddma = rxdr->dma;
1731 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1732 		      rxdr->size, rxdr->desc);
1733 		/* Try again, without freeing the previous */
1734 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1735 						&rxdr->dma, GFP_KERNEL);
1736 		/* Failed allocation, critical failure */
1737 		if (!rxdr->desc) {
1738 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739 					  olddma);
1740 			goto setup_rx_desc_die;
1741 		}
1742 
1743 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1744 			/* give up */
1745 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1746 					  rxdr->dma);
1747 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1748 					  olddma);
1749 			e_err(probe, "Unable to allocate aligned memory for "
1750 			      "the Rx descriptor ring\n");
1751 			goto setup_rx_desc_die;
1752 		} else {
1753 			/* Free old allocation, new allocation was successful */
1754 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755 					  olddma);
1756 		}
1757 	}
1758 	memset(rxdr->desc, 0, rxdr->size);
1759 
1760 	rxdr->next_to_clean = 0;
1761 	rxdr->next_to_use = 0;
1762 	rxdr->rx_skb_top = NULL;
1763 
1764 	return 0;
1765 }
1766 
1767 /**
1768  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1769  * 				  (Descriptors) for all queues
1770  * @adapter: board private structure
1771  *
1772  * Return 0 on success, negative on failure
1773  **/
1774 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1775 {
1776 	int i, err = 0;
1777 
1778 	for (i = 0; i < adapter->num_rx_queues; i++) {
1779 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1780 		if (err) {
1781 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1782 			for (i-- ; i >= 0; i--)
1783 				e1000_free_rx_resources(adapter,
1784 							&adapter->rx_ring[i]);
1785 			break;
1786 		}
1787 	}
1788 
1789 	return err;
1790 }
1791 
1792 /**
1793  * e1000_setup_rctl - configure the receive control registers
1794  * @adapter: Board private structure
1795  **/
1796 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1797 {
1798 	struct e1000_hw *hw = &adapter->hw;
1799 	u32 rctl;
1800 
1801 	rctl = er32(RCTL);
1802 
1803 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1804 
1805 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1806 		E1000_RCTL_RDMTS_HALF |
1807 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1808 
1809 	if (hw->tbi_compatibility_on == 1)
1810 		rctl |= E1000_RCTL_SBP;
1811 	else
1812 		rctl &= ~E1000_RCTL_SBP;
1813 
1814 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1815 		rctl &= ~E1000_RCTL_LPE;
1816 	else
1817 		rctl |= E1000_RCTL_LPE;
1818 
1819 	/* Setup buffer sizes */
1820 	rctl &= ~E1000_RCTL_SZ_4096;
1821 	rctl |= E1000_RCTL_BSEX;
1822 	switch (adapter->rx_buffer_len) {
1823 	case E1000_RXBUFFER_2048:
1824 	default:
1825 		rctl |= E1000_RCTL_SZ_2048;
1826 		rctl &= ~E1000_RCTL_BSEX;
1827 		break;
1828 	case E1000_RXBUFFER_4096:
1829 		rctl |= E1000_RCTL_SZ_4096;
1830 		break;
1831 	case E1000_RXBUFFER_8192:
1832 		rctl |= E1000_RCTL_SZ_8192;
1833 		break;
1834 	case E1000_RXBUFFER_16384:
1835 		rctl |= E1000_RCTL_SZ_16384;
1836 		break;
1837 	}
1838 
1839 	/* This is useful for sniffing bad packets. */
1840 	if (adapter->netdev->features & NETIF_F_RXALL) {
1841 		/* UPE and MPE will be handled by normal PROMISC logic
1842 		 * in e1000e_set_rx_mode
1843 		 */
1844 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1845 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1846 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1847 
1848 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1849 			  E1000_RCTL_DPF | /* Allow filtered pause */
1850 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1851 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1852 		 * and that breaks VLANs.
1853 		 */
1854 	}
1855 
1856 	ew32(RCTL, rctl);
1857 }
1858 
1859 /**
1860  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1861  * @adapter: board private structure
1862  *
1863  * Configure the Rx unit of the MAC after a reset.
1864  **/
1865 static void e1000_configure_rx(struct e1000_adapter *adapter)
1866 {
1867 	u64 rdba;
1868 	struct e1000_hw *hw = &adapter->hw;
1869 	u32 rdlen, rctl, rxcsum;
1870 
1871 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1872 		rdlen = adapter->rx_ring[0].count *
1873 			sizeof(struct e1000_rx_desc);
1874 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1875 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1876 	} else {
1877 		rdlen = adapter->rx_ring[0].count *
1878 			sizeof(struct e1000_rx_desc);
1879 		adapter->clean_rx = e1000_clean_rx_irq;
1880 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1881 	}
1882 
1883 	/* disable receives while setting up the descriptors */
1884 	rctl = er32(RCTL);
1885 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1886 
1887 	/* set the Receive Delay Timer Register */
1888 	ew32(RDTR, adapter->rx_int_delay);
1889 
1890 	if (hw->mac_type >= e1000_82540) {
1891 		ew32(RADV, adapter->rx_abs_int_delay);
1892 		if (adapter->itr_setting != 0)
1893 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1894 	}
1895 
1896 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1897 	 * the Base and Length of the Rx Descriptor Ring
1898 	 */
1899 	switch (adapter->num_rx_queues) {
1900 	case 1:
1901 	default:
1902 		rdba = adapter->rx_ring[0].dma;
1903 		ew32(RDLEN, rdlen);
1904 		ew32(RDBAH, (rdba >> 32));
1905 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1906 		ew32(RDT, 0);
1907 		ew32(RDH, 0);
1908 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1909 					   E1000_RDH : E1000_82542_RDH);
1910 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1911 					   E1000_RDT : E1000_82542_RDT);
1912 		break;
1913 	}
1914 
1915 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1916 	if (hw->mac_type >= e1000_82543) {
1917 		rxcsum = er32(RXCSUM);
1918 		if (adapter->rx_csum)
1919 			rxcsum |= E1000_RXCSUM_TUOFL;
1920 		else
1921 			/* don't need to clear IPPCSE as it defaults to 0 */
1922 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1923 		ew32(RXCSUM, rxcsum);
1924 	}
1925 
1926 	/* Enable Receives */
1927 	ew32(RCTL, rctl | E1000_RCTL_EN);
1928 }
1929 
1930 /**
1931  * e1000_free_tx_resources - Free Tx Resources per Queue
1932  * @adapter: board private structure
1933  * @tx_ring: Tx descriptor ring for a specific queue
1934  *
1935  * Free all transmit software resources
1936  **/
1937 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1938 				    struct e1000_tx_ring *tx_ring)
1939 {
1940 	struct pci_dev *pdev = adapter->pdev;
1941 
1942 	e1000_clean_tx_ring(adapter, tx_ring);
1943 
1944 	vfree(tx_ring->buffer_info);
1945 	tx_ring->buffer_info = NULL;
1946 
1947 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1948 			  tx_ring->dma);
1949 
1950 	tx_ring->desc = NULL;
1951 }
1952 
1953 /**
1954  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1955  * @adapter: board private structure
1956  *
1957  * Free all transmit software resources
1958  **/
1959 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1960 {
1961 	int i;
1962 
1963 	for (i = 0; i < adapter->num_tx_queues; i++)
1964 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1965 }
1966 
1967 static void
1968 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1969 				 struct e1000_tx_buffer *buffer_info)
1970 {
1971 	if (buffer_info->dma) {
1972 		if (buffer_info->mapped_as_page)
1973 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1974 				       buffer_info->length, DMA_TO_DEVICE);
1975 		else
1976 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1977 					 buffer_info->length,
1978 					 DMA_TO_DEVICE);
1979 		buffer_info->dma = 0;
1980 	}
1981 	if (buffer_info->skb) {
1982 		dev_kfree_skb_any(buffer_info->skb);
1983 		buffer_info->skb = NULL;
1984 	}
1985 	buffer_info->time_stamp = 0;
1986 	/* buffer_info must be completely set up in the transmit path */
1987 }
1988 
1989 /**
1990  * e1000_clean_tx_ring - Free Tx Buffers
1991  * @adapter: board private structure
1992  * @tx_ring: ring to be cleaned
1993  **/
1994 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1995 				struct e1000_tx_ring *tx_ring)
1996 {
1997 	struct e1000_hw *hw = &adapter->hw;
1998 	struct e1000_tx_buffer *buffer_info;
1999 	unsigned long size;
2000 	unsigned int i;
2001 
2002 	/* Free all the Tx ring sk_buffs */
2003 
2004 	for (i = 0; i < tx_ring->count; i++) {
2005 		buffer_info = &tx_ring->buffer_info[i];
2006 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2007 	}
2008 
2009 	netdev_reset_queue(adapter->netdev);
2010 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2011 	memset(tx_ring->buffer_info, 0, size);
2012 
2013 	/* Zero out the descriptor ring */
2014 
2015 	memset(tx_ring->desc, 0, tx_ring->size);
2016 
2017 	tx_ring->next_to_use = 0;
2018 	tx_ring->next_to_clean = 0;
2019 	tx_ring->last_tx_tso = false;
2020 
2021 	writel(0, hw->hw_addr + tx_ring->tdh);
2022 	writel(0, hw->hw_addr + tx_ring->tdt);
2023 }
2024 
2025 /**
2026  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2027  * @adapter: board private structure
2028  **/
2029 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2030 {
2031 	int i;
2032 
2033 	for (i = 0; i < adapter->num_tx_queues; i++)
2034 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2035 }
2036 
2037 /**
2038  * e1000_free_rx_resources - Free Rx Resources
2039  * @adapter: board private structure
2040  * @rx_ring: ring to clean the resources from
2041  *
2042  * Free all receive software resources
2043  **/
2044 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2045 				    struct e1000_rx_ring *rx_ring)
2046 {
2047 	struct pci_dev *pdev = adapter->pdev;
2048 
2049 	e1000_clean_rx_ring(adapter, rx_ring);
2050 
2051 	vfree(rx_ring->buffer_info);
2052 	rx_ring->buffer_info = NULL;
2053 
2054 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2055 			  rx_ring->dma);
2056 
2057 	rx_ring->desc = NULL;
2058 }
2059 
2060 /**
2061  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2062  * @adapter: board private structure
2063  *
2064  * Free all receive software resources
2065  **/
2066 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2067 {
2068 	int i;
2069 
2070 	for (i = 0; i < adapter->num_rx_queues; i++)
2071 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2072 }
2073 
2074 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2075 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2076 {
2077 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2078 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2079 }
2080 
2081 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2082 {
2083 	unsigned int len = e1000_frag_len(a);
2084 	u8 *data = netdev_alloc_frag(len);
2085 
2086 	if (likely(data))
2087 		data += E1000_HEADROOM;
2088 	return data;
2089 }
2090 
2091 /**
2092  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2093  * @adapter: board private structure
2094  * @rx_ring: ring to free buffers from
2095  **/
2096 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2097 				struct e1000_rx_ring *rx_ring)
2098 {
2099 	struct e1000_hw *hw = &adapter->hw;
2100 	struct e1000_rx_buffer *buffer_info;
2101 	struct pci_dev *pdev = adapter->pdev;
2102 	unsigned long size;
2103 	unsigned int i;
2104 
2105 	/* Free all the Rx netfrags */
2106 	for (i = 0; i < rx_ring->count; i++) {
2107 		buffer_info = &rx_ring->buffer_info[i];
2108 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2109 			if (buffer_info->dma)
2110 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2111 						 adapter->rx_buffer_len,
2112 						 DMA_FROM_DEVICE);
2113 			if (buffer_info->rxbuf.data) {
2114 				skb_free_frag(buffer_info->rxbuf.data);
2115 				buffer_info->rxbuf.data = NULL;
2116 			}
2117 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2118 			if (buffer_info->dma)
2119 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2120 					       adapter->rx_buffer_len,
2121 					       DMA_FROM_DEVICE);
2122 			if (buffer_info->rxbuf.page) {
2123 				put_page(buffer_info->rxbuf.page);
2124 				buffer_info->rxbuf.page = NULL;
2125 			}
2126 		}
2127 
2128 		buffer_info->dma = 0;
2129 	}
2130 
2131 	/* there also may be some cached data from a chained receive */
2132 	napi_free_frags(&adapter->napi);
2133 	rx_ring->rx_skb_top = NULL;
2134 
2135 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2136 	memset(rx_ring->buffer_info, 0, size);
2137 
2138 	/* Zero out the descriptor ring */
2139 	memset(rx_ring->desc, 0, rx_ring->size);
2140 
2141 	rx_ring->next_to_clean = 0;
2142 	rx_ring->next_to_use = 0;
2143 
2144 	writel(0, hw->hw_addr + rx_ring->rdh);
2145 	writel(0, hw->hw_addr + rx_ring->rdt);
2146 }
2147 
2148 /**
2149  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2150  * @adapter: board private structure
2151  **/
2152 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2153 {
2154 	int i;
2155 
2156 	for (i = 0; i < adapter->num_rx_queues; i++)
2157 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2158 }
2159 
2160 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2161  * and memory write and invalidate disabled for certain operations
2162  */
2163 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2164 {
2165 	struct e1000_hw *hw = &adapter->hw;
2166 	struct net_device *netdev = adapter->netdev;
2167 	u32 rctl;
2168 
2169 	e1000_pci_clear_mwi(hw);
2170 
2171 	rctl = er32(RCTL);
2172 	rctl |= E1000_RCTL_RST;
2173 	ew32(RCTL, rctl);
2174 	E1000_WRITE_FLUSH();
2175 	mdelay(5);
2176 
2177 	if (netif_running(netdev))
2178 		e1000_clean_all_rx_rings(adapter);
2179 }
2180 
2181 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2182 {
2183 	struct e1000_hw *hw = &adapter->hw;
2184 	struct net_device *netdev = adapter->netdev;
2185 	u32 rctl;
2186 
2187 	rctl = er32(RCTL);
2188 	rctl &= ~E1000_RCTL_RST;
2189 	ew32(RCTL, rctl);
2190 	E1000_WRITE_FLUSH();
2191 	mdelay(5);
2192 
2193 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2194 		e1000_pci_set_mwi(hw);
2195 
2196 	if (netif_running(netdev)) {
2197 		/* No need to loop, because 82542 supports only 1 queue */
2198 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2199 		e1000_configure_rx(adapter);
2200 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2201 	}
2202 }
2203 
2204 /**
2205  * e1000_set_mac - Change the Ethernet Address of the NIC
2206  * @netdev: network interface device structure
2207  * @p: pointer to an address structure
2208  *
2209  * Returns 0 on success, negative on failure
2210  **/
2211 static int e1000_set_mac(struct net_device *netdev, void *p)
2212 {
2213 	struct e1000_adapter *adapter = netdev_priv(netdev);
2214 	struct e1000_hw *hw = &adapter->hw;
2215 	struct sockaddr *addr = p;
2216 
2217 	if (!is_valid_ether_addr(addr->sa_data))
2218 		return -EADDRNOTAVAIL;
2219 
2220 	/* 82542 2.0 needs to be in reset to write receive address registers */
2221 
2222 	if (hw->mac_type == e1000_82542_rev2_0)
2223 		e1000_enter_82542_rst(adapter);
2224 
2225 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2226 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2227 
2228 	e1000_rar_set(hw, hw->mac_addr, 0);
2229 
2230 	if (hw->mac_type == e1000_82542_rev2_0)
2231 		e1000_leave_82542_rst(adapter);
2232 
2233 	return 0;
2234 }
2235 
2236 /**
2237  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2238  * @netdev: network interface device structure
2239  *
2240  * The set_rx_mode entry point is called whenever the unicast or multicast
2241  * address lists or the network interface flags are updated. This routine is
2242  * responsible for configuring the hardware for proper unicast, multicast,
2243  * promiscuous mode, and all-multi behavior.
2244  **/
2245 static void e1000_set_rx_mode(struct net_device *netdev)
2246 {
2247 	struct e1000_adapter *adapter = netdev_priv(netdev);
2248 	struct e1000_hw *hw = &adapter->hw;
2249 	struct netdev_hw_addr *ha;
2250 	bool use_uc = false;
2251 	u32 rctl;
2252 	u32 hash_value;
2253 	int i, rar_entries = E1000_RAR_ENTRIES;
2254 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2255 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2256 
2257 	if (!mcarray)
2258 		return;
2259 
2260 	/* Check for Promiscuous and All Multicast modes */
2261 
2262 	rctl = er32(RCTL);
2263 
2264 	if (netdev->flags & IFF_PROMISC) {
2265 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2266 		rctl &= ~E1000_RCTL_VFE;
2267 	} else {
2268 		if (netdev->flags & IFF_ALLMULTI)
2269 			rctl |= E1000_RCTL_MPE;
2270 		else
2271 			rctl &= ~E1000_RCTL_MPE;
2272 		/* Enable VLAN filter if there is a VLAN */
2273 		if (e1000_vlan_used(adapter))
2274 			rctl |= E1000_RCTL_VFE;
2275 	}
2276 
2277 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2278 		rctl |= E1000_RCTL_UPE;
2279 	} else if (!(netdev->flags & IFF_PROMISC)) {
2280 		rctl &= ~E1000_RCTL_UPE;
2281 		use_uc = true;
2282 	}
2283 
2284 	ew32(RCTL, rctl);
2285 
2286 	/* 82542 2.0 needs to be in reset to write receive address registers */
2287 
2288 	if (hw->mac_type == e1000_82542_rev2_0)
2289 		e1000_enter_82542_rst(adapter);
2290 
2291 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2292 	 * addresses take precedence to avoid disabling unicast filtering
2293 	 * when possible.
2294 	 *
2295 	 * RAR 0 is used for the station MAC address
2296 	 * if there are not 14 addresses, go ahead and clear the filters
2297 	 */
2298 	i = 1;
2299 	if (use_uc)
2300 		netdev_for_each_uc_addr(ha, netdev) {
2301 			if (i == rar_entries)
2302 				break;
2303 			e1000_rar_set(hw, ha->addr, i++);
2304 		}
2305 
2306 	netdev_for_each_mc_addr(ha, netdev) {
2307 		if (i == rar_entries) {
2308 			/* load any remaining addresses into the hash table */
2309 			u32 hash_reg, hash_bit, mta;
2310 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2311 			hash_reg = (hash_value >> 5) & 0x7F;
2312 			hash_bit = hash_value & 0x1F;
2313 			mta = (1 << hash_bit);
2314 			mcarray[hash_reg] |= mta;
2315 		} else {
2316 			e1000_rar_set(hw, ha->addr, i++);
2317 		}
2318 	}
2319 
2320 	for (; i < rar_entries; i++) {
2321 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2322 		E1000_WRITE_FLUSH();
2323 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2324 		E1000_WRITE_FLUSH();
2325 	}
2326 
2327 	/* write the hash table completely, write from bottom to avoid
2328 	 * both stupid write combining chipsets, and flushing each write
2329 	 */
2330 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2331 		/* If we are on an 82544 has an errata where writing odd
2332 		 * offsets overwrites the previous even offset, but writing
2333 		 * backwards over the range solves the issue by always
2334 		 * writing the odd offset first
2335 		 */
2336 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2337 	}
2338 	E1000_WRITE_FLUSH();
2339 
2340 	if (hw->mac_type == e1000_82542_rev2_0)
2341 		e1000_leave_82542_rst(adapter);
2342 
2343 	kfree(mcarray);
2344 }
2345 
2346 /**
2347  * e1000_update_phy_info_task - get phy info
2348  * @work: work struct contained inside adapter struct
2349  *
2350  * Need to wait a few seconds after link up to get diagnostic information from
2351  * the phy
2352  */
2353 static void e1000_update_phy_info_task(struct work_struct *work)
2354 {
2355 	struct e1000_adapter *adapter = container_of(work,
2356 						     struct e1000_adapter,
2357 						     phy_info_task.work);
2358 
2359 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2360 }
2361 
2362 /**
2363  * e1000_82547_tx_fifo_stall_task - task to complete work
2364  * @work: work struct contained inside adapter struct
2365  **/
2366 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2367 {
2368 	struct e1000_adapter *adapter = container_of(work,
2369 						     struct e1000_adapter,
2370 						     fifo_stall_task.work);
2371 	struct e1000_hw *hw = &adapter->hw;
2372 	struct net_device *netdev = adapter->netdev;
2373 	u32 tctl;
2374 
2375 	if (atomic_read(&adapter->tx_fifo_stall)) {
2376 		if ((er32(TDT) == er32(TDH)) &&
2377 		   (er32(TDFT) == er32(TDFH)) &&
2378 		   (er32(TDFTS) == er32(TDFHS))) {
2379 			tctl = er32(TCTL);
2380 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2381 			ew32(TDFT, adapter->tx_head_addr);
2382 			ew32(TDFH, adapter->tx_head_addr);
2383 			ew32(TDFTS, adapter->tx_head_addr);
2384 			ew32(TDFHS, adapter->tx_head_addr);
2385 			ew32(TCTL, tctl);
2386 			E1000_WRITE_FLUSH();
2387 
2388 			adapter->tx_fifo_head = 0;
2389 			atomic_set(&adapter->tx_fifo_stall, 0);
2390 			netif_wake_queue(netdev);
2391 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2392 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2393 		}
2394 	}
2395 }
2396 
2397 bool e1000_has_link(struct e1000_adapter *adapter)
2398 {
2399 	struct e1000_hw *hw = &adapter->hw;
2400 	bool link_active = false;
2401 
2402 	/* get_link_status is set on LSC (link status) interrupt or rx
2403 	 * sequence error interrupt (except on intel ce4100).
2404 	 * get_link_status will stay false until the
2405 	 * e1000_check_for_link establishes link for copper adapters
2406 	 * ONLY
2407 	 */
2408 	switch (hw->media_type) {
2409 	case e1000_media_type_copper:
2410 		if (hw->mac_type == e1000_ce4100)
2411 			hw->get_link_status = 1;
2412 		if (hw->get_link_status) {
2413 			e1000_check_for_link(hw);
2414 			link_active = !hw->get_link_status;
2415 		} else {
2416 			link_active = true;
2417 		}
2418 		break;
2419 	case e1000_media_type_fiber:
2420 		e1000_check_for_link(hw);
2421 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2422 		break;
2423 	case e1000_media_type_internal_serdes:
2424 		e1000_check_for_link(hw);
2425 		link_active = hw->serdes_has_link;
2426 		break;
2427 	default:
2428 		break;
2429 	}
2430 
2431 	return link_active;
2432 }
2433 
2434 /**
2435  * e1000_watchdog - work function
2436  * @work: work struct contained inside adapter struct
2437  **/
2438 static void e1000_watchdog(struct work_struct *work)
2439 {
2440 	struct e1000_adapter *adapter = container_of(work,
2441 						     struct e1000_adapter,
2442 						     watchdog_task.work);
2443 	struct e1000_hw *hw = &adapter->hw;
2444 	struct net_device *netdev = adapter->netdev;
2445 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2446 	u32 link, tctl;
2447 
2448 	link = e1000_has_link(adapter);
2449 	if ((netif_carrier_ok(netdev)) && link)
2450 		goto link_up;
2451 
2452 	if (link) {
2453 		if (!netif_carrier_ok(netdev)) {
2454 			u32 ctrl;
2455 			bool txb2b = true;
2456 			/* update snapshot of PHY registers on LSC */
2457 			e1000_get_speed_and_duplex(hw,
2458 						   &adapter->link_speed,
2459 						   &adapter->link_duplex);
2460 
2461 			ctrl = er32(CTRL);
2462 			pr_info("%s NIC Link is Up %d Mbps %s, "
2463 				"Flow Control: %s\n",
2464 				netdev->name,
2465 				adapter->link_speed,
2466 				adapter->link_duplex == FULL_DUPLEX ?
2467 				"Full Duplex" : "Half Duplex",
2468 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2469 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2470 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2471 				E1000_CTRL_TFCE) ? "TX" : "None")));
2472 
2473 			/* adjust timeout factor according to speed/duplex */
2474 			adapter->tx_timeout_factor = 1;
2475 			switch (adapter->link_speed) {
2476 			case SPEED_10:
2477 				txb2b = false;
2478 				adapter->tx_timeout_factor = 16;
2479 				break;
2480 			case SPEED_100:
2481 				txb2b = false;
2482 				/* maybe add some timeout factor ? */
2483 				break;
2484 			}
2485 
2486 			/* enable transmits in the hardware */
2487 			tctl = er32(TCTL);
2488 			tctl |= E1000_TCTL_EN;
2489 			ew32(TCTL, tctl);
2490 
2491 			netif_carrier_on(netdev);
2492 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2493 				schedule_delayed_work(&adapter->phy_info_task,
2494 						      2 * HZ);
2495 			adapter->smartspeed = 0;
2496 		}
2497 	} else {
2498 		if (netif_carrier_ok(netdev)) {
2499 			adapter->link_speed = 0;
2500 			adapter->link_duplex = 0;
2501 			pr_info("%s NIC Link is Down\n",
2502 				netdev->name);
2503 			netif_carrier_off(netdev);
2504 
2505 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2506 				schedule_delayed_work(&adapter->phy_info_task,
2507 						      2 * HZ);
2508 		}
2509 
2510 		e1000_smartspeed(adapter);
2511 	}
2512 
2513 link_up:
2514 	e1000_update_stats(adapter);
2515 
2516 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2517 	adapter->tpt_old = adapter->stats.tpt;
2518 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2519 	adapter->colc_old = adapter->stats.colc;
2520 
2521 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2522 	adapter->gorcl_old = adapter->stats.gorcl;
2523 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2524 	adapter->gotcl_old = adapter->stats.gotcl;
2525 
2526 	e1000_update_adaptive(hw);
2527 
2528 	if (!netif_carrier_ok(netdev)) {
2529 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2530 			/* We've lost link, so the controller stops DMA,
2531 			 * but we've got queued Tx work that's never going
2532 			 * to get done, so reset controller to flush Tx.
2533 			 * (Do the reset outside of interrupt context).
2534 			 */
2535 			adapter->tx_timeout_count++;
2536 			schedule_work(&adapter->reset_task);
2537 			/* exit immediately since reset is imminent */
2538 			return;
2539 		}
2540 	}
2541 
2542 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2543 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2544 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2545 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2546 		 * everyone else is between 2000-8000.
2547 		 */
2548 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2549 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2550 			    adapter->gotcl - adapter->gorcl :
2551 			    adapter->gorcl - adapter->gotcl) / 10000;
2552 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2553 
2554 		ew32(ITR, 1000000000 / (itr * 256));
2555 	}
2556 
2557 	/* Cause software interrupt to ensure rx ring is cleaned */
2558 	ew32(ICS, E1000_ICS_RXDMT0);
2559 
2560 	/* Force detection of hung controller every watchdog period */
2561 	adapter->detect_tx_hung = true;
2562 
2563 	/* Reschedule the task */
2564 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2565 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2566 }
2567 
2568 enum latency_range {
2569 	lowest_latency = 0,
2570 	low_latency = 1,
2571 	bulk_latency = 2,
2572 	latency_invalid = 255
2573 };
2574 
2575 /**
2576  * e1000_update_itr - update the dynamic ITR value based on statistics
2577  * @adapter: pointer to adapter
2578  * @itr_setting: current adapter->itr
2579  * @packets: the number of packets during this measurement interval
2580  * @bytes: the number of bytes during this measurement interval
2581  *
2582  *      Stores a new ITR value based on packets and byte
2583  *      counts during the last interrupt.  The advantage of per interrupt
2584  *      computation is faster updates and more accurate ITR for the current
2585  *      traffic pattern.  Constants in this function were computed
2586  *      based on theoretical maximum wire speed and thresholds were set based
2587  *      on testing data as well as attempting to minimize response time
2588  *      while increasing bulk throughput.
2589  *      this functionality is controlled by the InterruptThrottleRate module
2590  *      parameter (see e1000_param.c)
2591  **/
2592 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2593 				     u16 itr_setting, int packets, int bytes)
2594 {
2595 	unsigned int retval = itr_setting;
2596 	struct e1000_hw *hw = &adapter->hw;
2597 
2598 	if (unlikely(hw->mac_type < e1000_82540))
2599 		goto update_itr_done;
2600 
2601 	if (packets == 0)
2602 		goto update_itr_done;
2603 
2604 	switch (itr_setting) {
2605 	case lowest_latency:
2606 		/* jumbo frames get bulk treatment*/
2607 		if (bytes/packets > 8000)
2608 			retval = bulk_latency;
2609 		else if ((packets < 5) && (bytes > 512))
2610 			retval = low_latency;
2611 		break;
2612 	case low_latency:  /* 50 usec aka 20000 ints/s */
2613 		if (bytes > 10000) {
2614 			/* jumbo frames need bulk latency setting */
2615 			if (bytes/packets > 8000)
2616 				retval = bulk_latency;
2617 			else if ((packets < 10) || ((bytes/packets) > 1200))
2618 				retval = bulk_latency;
2619 			else if ((packets > 35))
2620 				retval = lowest_latency;
2621 		} else if (bytes/packets > 2000)
2622 			retval = bulk_latency;
2623 		else if (packets <= 2 && bytes < 512)
2624 			retval = lowest_latency;
2625 		break;
2626 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2627 		if (bytes > 25000) {
2628 			if (packets > 35)
2629 				retval = low_latency;
2630 		} else if (bytes < 6000) {
2631 			retval = low_latency;
2632 		}
2633 		break;
2634 	}
2635 
2636 update_itr_done:
2637 	return retval;
2638 }
2639 
2640 static void e1000_set_itr(struct e1000_adapter *adapter)
2641 {
2642 	struct e1000_hw *hw = &adapter->hw;
2643 	u16 current_itr;
2644 	u32 new_itr = adapter->itr;
2645 
2646 	if (unlikely(hw->mac_type < e1000_82540))
2647 		return;
2648 
2649 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2650 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2651 		current_itr = 0;
2652 		new_itr = 4000;
2653 		goto set_itr_now;
2654 	}
2655 
2656 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2657 					   adapter->total_tx_packets,
2658 					   adapter->total_tx_bytes);
2659 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2660 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2661 		adapter->tx_itr = low_latency;
2662 
2663 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2664 					   adapter->total_rx_packets,
2665 					   adapter->total_rx_bytes);
2666 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2667 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2668 		adapter->rx_itr = low_latency;
2669 
2670 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2671 
2672 	switch (current_itr) {
2673 	/* counts and packets in update_itr are dependent on these numbers */
2674 	case lowest_latency:
2675 		new_itr = 70000;
2676 		break;
2677 	case low_latency:
2678 		new_itr = 20000; /* aka hwitr = ~200 */
2679 		break;
2680 	case bulk_latency:
2681 		new_itr = 4000;
2682 		break;
2683 	default:
2684 		break;
2685 	}
2686 
2687 set_itr_now:
2688 	if (new_itr != adapter->itr) {
2689 		/* this attempts to bias the interrupt rate towards Bulk
2690 		 * by adding intermediate steps when interrupt rate is
2691 		 * increasing
2692 		 */
2693 		new_itr = new_itr > adapter->itr ?
2694 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2695 			  new_itr;
2696 		adapter->itr = new_itr;
2697 		ew32(ITR, 1000000000 / (new_itr * 256));
2698 	}
2699 }
2700 
2701 #define E1000_TX_FLAGS_CSUM		0x00000001
2702 #define E1000_TX_FLAGS_VLAN		0x00000002
2703 #define E1000_TX_FLAGS_TSO		0x00000004
2704 #define E1000_TX_FLAGS_IPV4		0x00000008
2705 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2706 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2707 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2708 
2709 static int e1000_tso(struct e1000_adapter *adapter,
2710 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2711 		     __be16 protocol)
2712 {
2713 	struct e1000_context_desc *context_desc;
2714 	struct e1000_tx_buffer *buffer_info;
2715 	unsigned int i;
2716 	u32 cmd_length = 0;
2717 	u16 ipcse = 0, tucse, mss;
2718 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2719 
2720 	if (skb_is_gso(skb)) {
2721 		int err;
2722 
2723 		err = skb_cow_head(skb, 0);
2724 		if (err < 0)
2725 			return err;
2726 
2727 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2728 		mss = skb_shinfo(skb)->gso_size;
2729 		if (protocol == htons(ETH_P_IP)) {
2730 			struct iphdr *iph = ip_hdr(skb);
2731 			iph->tot_len = 0;
2732 			iph->check = 0;
2733 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2734 								 iph->daddr, 0,
2735 								 IPPROTO_TCP,
2736 								 0);
2737 			cmd_length = E1000_TXD_CMD_IP;
2738 			ipcse = skb_transport_offset(skb) - 1;
2739 		} else if (skb_is_gso_v6(skb)) {
2740 			ipv6_hdr(skb)->payload_len = 0;
2741 			tcp_hdr(skb)->check =
2742 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2743 						 &ipv6_hdr(skb)->daddr,
2744 						 0, IPPROTO_TCP, 0);
2745 			ipcse = 0;
2746 		}
2747 		ipcss = skb_network_offset(skb);
2748 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2749 		tucss = skb_transport_offset(skb);
2750 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2751 		tucse = 0;
2752 
2753 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2754 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2755 
2756 		i = tx_ring->next_to_use;
2757 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2758 		buffer_info = &tx_ring->buffer_info[i];
2759 
2760 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2761 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2762 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2763 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2764 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2765 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2766 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2767 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2768 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2769 
2770 		buffer_info->time_stamp = jiffies;
2771 		buffer_info->next_to_watch = i;
2772 
2773 		if (++i == tx_ring->count)
2774 			i = 0;
2775 
2776 		tx_ring->next_to_use = i;
2777 
2778 		return true;
2779 	}
2780 	return false;
2781 }
2782 
2783 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2784 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2785 			  __be16 protocol)
2786 {
2787 	struct e1000_context_desc *context_desc;
2788 	struct e1000_tx_buffer *buffer_info;
2789 	unsigned int i;
2790 	u8 css;
2791 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2792 
2793 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2794 		return false;
2795 
2796 	switch (protocol) {
2797 	case cpu_to_be16(ETH_P_IP):
2798 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2799 			cmd_len |= E1000_TXD_CMD_TCP;
2800 		break;
2801 	case cpu_to_be16(ETH_P_IPV6):
2802 		/* XXX not handling all IPV6 headers */
2803 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2804 			cmd_len |= E1000_TXD_CMD_TCP;
2805 		break;
2806 	default:
2807 		if (unlikely(net_ratelimit()))
2808 			e_warn(drv, "checksum_partial proto=%x!\n",
2809 			       skb->protocol);
2810 		break;
2811 	}
2812 
2813 	css = skb_checksum_start_offset(skb);
2814 
2815 	i = tx_ring->next_to_use;
2816 	buffer_info = &tx_ring->buffer_info[i];
2817 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2818 
2819 	context_desc->lower_setup.ip_config = 0;
2820 	context_desc->upper_setup.tcp_fields.tucss = css;
2821 	context_desc->upper_setup.tcp_fields.tucso =
2822 		css + skb->csum_offset;
2823 	context_desc->upper_setup.tcp_fields.tucse = 0;
2824 	context_desc->tcp_seg_setup.data = 0;
2825 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2826 
2827 	buffer_info->time_stamp = jiffies;
2828 	buffer_info->next_to_watch = i;
2829 
2830 	if (unlikely(++i == tx_ring->count))
2831 		i = 0;
2832 
2833 	tx_ring->next_to_use = i;
2834 
2835 	return true;
2836 }
2837 
2838 #define E1000_MAX_TXD_PWR	12
2839 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2840 
2841 static int e1000_tx_map(struct e1000_adapter *adapter,
2842 			struct e1000_tx_ring *tx_ring,
2843 			struct sk_buff *skb, unsigned int first,
2844 			unsigned int max_per_txd, unsigned int nr_frags,
2845 			unsigned int mss)
2846 {
2847 	struct e1000_hw *hw = &adapter->hw;
2848 	struct pci_dev *pdev = adapter->pdev;
2849 	struct e1000_tx_buffer *buffer_info;
2850 	unsigned int len = skb_headlen(skb);
2851 	unsigned int offset = 0, size, count = 0, i;
2852 	unsigned int f, bytecount, segs;
2853 
2854 	i = tx_ring->next_to_use;
2855 
2856 	while (len) {
2857 		buffer_info = &tx_ring->buffer_info[i];
2858 		size = min(len, max_per_txd);
2859 		/* Workaround for Controller erratum --
2860 		 * descriptor for non-tso packet in a linear SKB that follows a
2861 		 * tso gets written back prematurely before the data is fully
2862 		 * DMA'd to the controller
2863 		 */
2864 		if (!skb->data_len && tx_ring->last_tx_tso &&
2865 		    !skb_is_gso(skb)) {
2866 			tx_ring->last_tx_tso = false;
2867 			size -= 4;
2868 		}
2869 
2870 		/* Workaround for premature desc write-backs
2871 		 * in TSO mode.  Append 4-byte sentinel desc
2872 		 */
2873 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2874 			size -= 4;
2875 		/* work-around for errata 10 and it applies
2876 		 * to all controllers in PCI-X mode
2877 		 * The fix is to make sure that the first descriptor of a
2878 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2879 		 */
2880 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2881 			     (size > 2015) && count == 0))
2882 			size = 2015;
2883 
2884 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2885 		 * terminating buffers within evenly-aligned dwords.
2886 		 */
2887 		if (unlikely(adapter->pcix_82544 &&
2888 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2889 		   size > 4))
2890 			size -= 4;
2891 
2892 		buffer_info->length = size;
2893 		/* set time_stamp *before* dma to help avoid a possible race */
2894 		buffer_info->time_stamp = jiffies;
2895 		buffer_info->mapped_as_page = false;
2896 		buffer_info->dma = dma_map_single(&pdev->dev,
2897 						  skb->data + offset,
2898 						  size, DMA_TO_DEVICE);
2899 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2900 			goto dma_error;
2901 		buffer_info->next_to_watch = i;
2902 
2903 		len -= size;
2904 		offset += size;
2905 		count++;
2906 		if (len) {
2907 			i++;
2908 			if (unlikely(i == tx_ring->count))
2909 				i = 0;
2910 		}
2911 	}
2912 
2913 	for (f = 0; f < nr_frags; f++) {
2914 		const struct skb_frag_struct *frag;
2915 
2916 		frag = &skb_shinfo(skb)->frags[f];
2917 		len = skb_frag_size(frag);
2918 		offset = 0;
2919 
2920 		while (len) {
2921 			unsigned long bufend;
2922 			i++;
2923 			if (unlikely(i == tx_ring->count))
2924 				i = 0;
2925 
2926 			buffer_info = &tx_ring->buffer_info[i];
2927 			size = min(len, max_per_txd);
2928 			/* Workaround for premature desc write-backs
2929 			 * in TSO mode.  Append 4-byte sentinel desc
2930 			 */
2931 			if (unlikely(mss && f == (nr_frags-1) &&
2932 			    size == len && size > 8))
2933 				size -= 4;
2934 			/* Workaround for potential 82544 hang in PCI-X.
2935 			 * Avoid terminating buffers within evenly-aligned
2936 			 * dwords.
2937 			 */
2938 			bufend = (unsigned long)
2939 				page_to_phys(skb_frag_page(frag));
2940 			bufend += offset + size - 1;
2941 			if (unlikely(adapter->pcix_82544 &&
2942 				     !(bufend & 4) &&
2943 				     size > 4))
2944 				size -= 4;
2945 
2946 			buffer_info->length = size;
2947 			buffer_info->time_stamp = jiffies;
2948 			buffer_info->mapped_as_page = true;
2949 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2950 						offset, size, DMA_TO_DEVICE);
2951 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2952 				goto dma_error;
2953 			buffer_info->next_to_watch = i;
2954 
2955 			len -= size;
2956 			offset += size;
2957 			count++;
2958 		}
2959 	}
2960 
2961 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2962 	/* multiply data chunks by size of headers */
2963 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2964 
2965 	tx_ring->buffer_info[i].skb = skb;
2966 	tx_ring->buffer_info[i].segs = segs;
2967 	tx_ring->buffer_info[i].bytecount = bytecount;
2968 	tx_ring->buffer_info[first].next_to_watch = i;
2969 
2970 	return count;
2971 
2972 dma_error:
2973 	dev_err(&pdev->dev, "TX DMA map failed\n");
2974 	buffer_info->dma = 0;
2975 	if (count)
2976 		count--;
2977 
2978 	while (count--) {
2979 		if (i == 0)
2980 			i += tx_ring->count;
2981 		i--;
2982 		buffer_info = &tx_ring->buffer_info[i];
2983 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2984 	}
2985 
2986 	return 0;
2987 }
2988 
2989 static void e1000_tx_queue(struct e1000_adapter *adapter,
2990 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2991 			   int count)
2992 {
2993 	struct e1000_tx_desc *tx_desc = NULL;
2994 	struct e1000_tx_buffer *buffer_info;
2995 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2996 	unsigned int i;
2997 
2998 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2999 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3000 			     E1000_TXD_CMD_TSE;
3001 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3002 
3003 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3004 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3005 	}
3006 
3007 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3008 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3009 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3010 	}
3011 
3012 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3013 		txd_lower |= E1000_TXD_CMD_VLE;
3014 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3015 	}
3016 
3017 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3019 
3020 	i = tx_ring->next_to_use;
3021 
3022 	while (count--) {
3023 		buffer_info = &tx_ring->buffer_info[i];
3024 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3025 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3026 		tx_desc->lower.data =
3027 			cpu_to_le32(txd_lower | buffer_info->length);
3028 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3029 		if (unlikely(++i == tx_ring->count))
3030 			i = 0;
3031 	}
3032 
3033 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3034 
3035 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3036 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3037 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3038 
3039 	/* Force memory writes to complete before letting h/w
3040 	 * know there are new descriptors to fetch.  (Only
3041 	 * applicable for weak-ordered memory model archs,
3042 	 * such as IA-64).
3043 	 */
3044 	wmb();
3045 
3046 	tx_ring->next_to_use = i;
3047 }
3048 
3049 /* 82547 workaround to avoid controller hang in half-duplex environment.
3050  * The workaround is to avoid queuing a large packet that would span
3051  * the internal Tx FIFO ring boundary by notifying the stack to resend
3052  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3053  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3054  * to the beginning of the Tx FIFO.
3055  */
3056 
3057 #define E1000_FIFO_HDR			0x10
3058 #define E1000_82547_PAD_LEN		0x3E0
3059 
3060 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3061 				       struct sk_buff *skb)
3062 {
3063 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3064 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3065 
3066 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3067 
3068 	if (adapter->link_duplex != HALF_DUPLEX)
3069 		goto no_fifo_stall_required;
3070 
3071 	if (atomic_read(&adapter->tx_fifo_stall))
3072 		return 1;
3073 
3074 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3075 		atomic_set(&adapter->tx_fifo_stall, 1);
3076 		return 1;
3077 	}
3078 
3079 no_fifo_stall_required:
3080 	adapter->tx_fifo_head += skb_fifo_len;
3081 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3082 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3083 	return 0;
3084 }
3085 
3086 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3087 {
3088 	struct e1000_adapter *adapter = netdev_priv(netdev);
3089 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3090 
3091 	netif_stop_queue(netdev);
3092 	/* Herbert's original patch had:
3093 	 *  smp_mb__after_netif_stop_queue();
3094 	 * but since that doesn't exist yet, just open code it.
3095 	 */
3096 	smp_mb();
3097 
3098 	/* We need to check again in a case another CPU has just
3099 	 * made room available.
3100 	 */
3101 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3102 		return -EBUSY;
3103 
3104 	/* A reprieve! */
3105 	netif_start_queue(netdev);
3106 	++adapter->restart_queue;
3107 	return 0;
3108 }
3109 
3110 static int e1000_maybe_stop_tx(struct net_device *netdev,
3111 			       struct e1000_tx_ring *tx_ring, int size)
3112 {
3113 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3114 		return 0;
3115 	return __e1000_maybe_stop_tx(netdev, size);
3116 }
3117 
3118 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3119 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3120 				    struct net_device *netdev)
3121 {
3122 	struct e1000_adapter *adapter = netdev_priv(netdev);
3123 	struct e1000_hw *hw = &adapter->hw;
3124 	struct e1000_tx_ring *tx_ring;
3125 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3126 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3127 	unsigned int tx_flags = 0;
3128 	unsigned int len = skb_headlen(skb);
3129 	unsigned int nr_frags;
3130 	unsigned int mss;
3131 	int count = 0;
3132 	int tso;
3133 	unsigned int f;
3134 	__be16 protocol = vlan_get_protocol(skb);
3135 
3136 	/* This goes back to the question of how to logically map a Tx queue
3137 	 * to a flow.  Right now, performance is impacted slightly negatively
3138 	 * if using multiple Tx queues.  If the stack breaks away from a
3139 	 * single qdisc implementation, we can look at this again.
3140 	 */
3141 	tx_ring = adapter->tx_ring;
3142 
3143 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3144 	 * packets may get corrupted during padding by HW.
3145 	 * To WA this issue, pad all small packets manually.
3146 	 */
3147 	if (eth_skb_pad(skb))
3148 		return NETDEV_TX_OK;
3149 
3150 	mss = skb_shinfo(skb)->gso_size;
3151 	/* The controller does a simple calculation to
3152 	 * make sure there is enough room in the FIFO before
3153 	 * initiating the DMA for each buffer.  The calc is:
3154 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3155 	 * overrun the FIFO, adjust the max buffer len if mss
3156 	 * drops.
3157 	 */
3158 	if (mss) {
3159 		u8 hdr_len;
3160 		max_per_txd = min(mss << 2, max_per_txd);
3161 		max_txd_pwr = fls(max_per_txd) - 1;
3162 
3163 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3164 		if (skb->data_len && hdr_len == len) {
3165 			switch (hw->mac_type) {
3166 				unsigned int pull_size;
3167 			case e1000_82544:
3168 				/* Make sure we have room to chop off 4 bytes,
3169 				 * and that the end alignment will work out to
3170 				 * this hardware's requirements
3171 				 * NOTE: this is a TSO only workaround
3172 				 * if end byte alignment not correct move us
3173 				 * into the next dword
3174 				 */
3175 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3176 				    & 4)
3177 					break;
3178 				/* fall through */
3179 				pull_size = min((unsigned int)4, skb->data_len);
3180 				if (!__pskb_pull_tail(skb, pull_size)) {
3181 					e_err(drv, "__pskb_pull_tail "
3182 					      "failed.\n");
3183 					dev_kfree_skb_any(skb);
3184 					return NETDEV_TX_OK;
3185 				}
3186 				len = skb_headlen(skb);
3187 				break;
3188 			default:
3189 				/* do nothing */
3190 				break;
3191 			}
3192 		}
3193 	}
3194 
3195 	/* reserve a descriptor for the offload context */
3196 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3197 		count++;
3198 	count++;
3199 
3200 	/* Controller Erratum workaround */
3201 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3202 		count++;
3203 
3204 	count += TXD_USE_COUNT(len, max_txd_pwr);
3205 
3206 	if (adapter->pcix_82544)
3207 		count++;
3208 
3209 	/* work-around for errata 10 and it applies to all controllers
3210 	 * in PCI-X mode, so add one more descriptor to the count
3211 	 */
3212 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3213 			(len > 2015)))
3214 		count++;
3215 
3216 	nr_frags = skb_shinfo(skb)->nr_frags;
3217 	for (f = 0; f < nr_frags; f++)
3218 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3219 				       max_txd_pwr);
3220 	if (adapter->pcix_82544)
3221 		count += nr_frags;
3222 
3223 	/* need: count + 2 desc gap to keep tail from touching
3224 	 * head, otherwise try next time
3225 	 */
3226 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3227 		return NETDEV_TX_BUSY;
3228 
3229 	if (unlikely((hw->mac_type == e1000_82547) &&
3230 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3231 		netif_stop_queue(netdev);
3232 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3233 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3234 		return NETDEV_TX_BUSY;
3235 	}
3236 
3237 	if (skb_vlan_tag_present(skb)) {
3238 		tx_flags |= E1000_TX_FLAGS_VLAN;
3239 		tx_flags |= (skb_vlan_tag_get(skb) <<
3240 			     E1000_TX_FLAGS_VLAN_SHIFT);
3241 	}
3242 
3243 	first = tx_ring->next_to_use;
3244 
3245 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3246 	if (tso < 0) {
3247 		dev_kfree_skb_any(skb);
3248 		return NETDEV_TX_OK;
3249 	}
3250 
3251 	if (likely(tso)) {
3252 		if (likely(hw->mac_type != e1000_82544))
3253 			tx_ring->last_tx_tso = true;
3254 		tx_flags |= E1000_TX_FLAGS_TSO;
3255 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3256 		tx_flags |= E1000_TX_FLAGS_CSUM;
3257 
3258 	if (protocol == htons(ETH_P_IP))
3259 		tx_flags |= E1000_TX_FLAGS_IPV4;
3260 
3261 	if (unlikely(skb->no_fcs))
3262 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3263 
3264 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3265 			     nr_frags, mss);
3266 
3267 	if (count) {
3268 		/* The descriptors needed is higher than other Intel drivers
3269 		 * due to a number of workarounds.  The breakdown is below:
3270 		 * Data descriptors: MAX_SKB_FRAGS + 1
3271 		 * Context Descriptor: 1
3272 		 * Keep head from touching tail: 2
3273 		 * Workarounds: 3
3274 		 */
3275 		int desc_needed = MAX_SKB_FRAGS + 7;
3276 
3277 		netdev_sent_queue(netdev, skb->len);
3278 		skb_tx_timestamp(skb);
3279 
3280 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3281 
3282 		/* 82544 potentially requires twice as many data descriptors
3283 		 * in order to guarantee buffers don't end on evenly-aligned
3284 		 * dwords
3285 		 */
3286 		if (adapter->pcix_82544)
3287 			desc_needed += MAX_SKB_FRAGS + 1;
3288 
3289 		/* Make sure there is space in the ring for the next send. */
3290 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3291 
3292 		if (!skb->xmit_more ||
3293 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3294 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3295 			/* we need this if more than one processor can write to
3296 			 * our tail at a time, it synchronizes IO on IA64/Altix
3297 			 * systems
3298 			 */
3299 			mmiowb();
3300 		}
3301 	} else {
3302 		dev_kfree_skb_any(skb);
3303 		tx_ring->buffer_info[first].time_stamp = 0;
3304 		tx_ring->next_to_use = first;
3305 	}
3306 
3307 	return NETDEV_TX_OK;
3308 }
3309 
3310 #define NUM_REGS 38 /* 1 based count */
3311 static void e1000_regdump(struct e1000_adapter *adapter)
3312 {
3313 	struct e1000_hw *hw = &adapter->hw;
3314 	u32 regs[NUM_REGS];
3315 	u32 *regs_buff = regs;
3316 	int i = 0;
3317 
3318 	static const char * const reg_name[] = {
3319 		"CTRL",  "STATUS",
3320 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3321 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3322 		"TIDV", "TXDCTL", "TADV", "TARC0",
3323 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3324 		"TXDCTL1", "TARC1",
3325 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3326 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3327 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3328 	};
3329 
3330 	regs_buff[0]  = er32(CTRL);
3331 	regs_buff[1]  = er32(STATUS);
3332 
3333 	regs_buff[2]  = er32(RCTL);
3334 	regs_buff[3]  = er32(RDLEN);
3335 	regs_buff[4]  = er32(RDH);
3336 	regs_buff[5]  = er32(RDT);
3337 	regs_buff[6]  = er32(RDTR);
3338 
3339 	regs_buff[7]  = er32(TCTL);
3340 	regs_buff[8]  = er32(TDBAL);
3341 	regs_buff[9]  = er32(TDBAH);
3342 	regs_buff[10] = er32(TDLEN);
3343 	regs_buff[11] = er32(TDH);
3344 	regs_buff[12] = er32(TDT);
3345 	regs_buff[13] = er32(TIDV);
3346 	regs_buff[14] = er32(TXDCTL);
3347 	regs_buff[15] = er32(TADV);
3348 	regs_buff[16] = er32(TARC0);
3349 
3350 	regs_buff[17] = er32(TDBAL1);
3351 	regs_buff[18] = er32(TDBAH1);
3352 	regs_buff[19] = er32(TDLEN1);
3353 	regs_buff[20] = er32(TDH1);
3354 	regs_buff[21] = er32(TDT1);
3355 	regs_buff[22] = er32(TXDCTL1);
3356 	regs_buff[23] = er32(TARC1);
3357 	regs_buff[24] = er32(CTRL_EXT);
3358 	regs_buff[25] = er32(ERT);
3359 	regs_buff[26] = er32(RDBAL0);
3360 	regs_buff[27] = er32(RDBAH0);
3361 	regs_buff[28] = er32(TDFH);
3362 	regs_buff[29] = er32(TDFT);
3363 	regs_buff[30] = er32(TDFHS);
3364 	regs_buff[31] = er32(TDFTS);
3365 	regs_buff[32] = er32(TDFPC);
3366 	regs_buff[33] = er32(RDFH);
3367 	regs_buff[34] = er32(RDFT);
3368 	regs_buff[35] = er32(RDFHS);
3369 	regs_buff[36] = er32(RDFTS);
3370 	regs_buff[37] = er32(RDFPC);
3371 
3372 	pr_info("Register dump\n");
3373 	for (i = 0; i < NUM_REGS; i++)
3374 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3375 }
3376 
3377 /*
3378  * e1000_dump: Print registers, tx ring and rx ring
3379  */
3380 static void e1000_dump(struct e1000_adapter *adapter)
3381 {
3382 	/* this code doesn't handle multiple rings */
3383 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3384 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3385 	int i;
3386 
3387 	if (!netif_msg_hw(adapter))
3388 		return;
3389 
3390 	/* Print Registers */
3391 	e1000_regdump(adapter);
3392 
3393 	/* transmit dump */
3394 	pr_info("TX Desc ring0 dump\n");
3395 
3396 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3397 	 *
3398 	 * Legacy Transmit Descriptor
3399 	 *   +--------------------------------------------------------------+
3400 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3401 	 *   +--------------------------------------------------------------+
3402 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3403 	 *   +--------------------------------------------------------------+
3404 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3405 	 *
3406 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3407 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3408 	 *   +----------------------------------------------------------------+
3409 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3410 	 *   +----------------------------------------------------------------+
3411 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3412 	 *   +----------------------------------------------------------------+
3413 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3414 	 *
3415 	 * Extended Data Descriptor (DTYP=0x1)
3416 	 *   +----------------------------------------------------------------+
3417 	 * 0 |                     Buffer Address [63:0]                      |
3418 	 *   +----------------------------------------------------------------+
3419 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3420 	 *   +----------------------------------------------------------------+
3421 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3422 	 */
3423 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3424 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3425 
3426 	if (!netif_msg_tx_done(adapter))
3427 		goto rx_ring_summary;
3428 
3429 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3430 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3431 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3432 		struct my_u { __le64 a; __le64 b; };
3433 		struct my_u *u = (struct my_u *)tx_desc;
3434 		const char *type;
3435 
3436 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3437 			type = "NTC/U";
3438 		else if (i == tx_ring->next_to_use)
3439 			type = "NTU";
3440 		else if (i == tx_ring->next_to_clean)
3441 			type = "NTC";
3442 		else
3443 			type = "";
3444 
3445 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3446 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3447 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3448 			(u64)buffer_info->dma, buffer_info->length,
3449 			buffer_info->next_to_watch,
3450 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3451 	}
3452 
3453 rx_ring_summary:
3454 	/* receive dump */
3455 	pr_info("\nRX Desc ring dump\n");
3456 
3457 	/* Legacy Receive Descriptor Format
3458 	 *
3459 	 * +-----------------------------------------------------+
3460 	 * |                Buffer Address [63:0]                |
3461 	 * +-----------------------------------------------------+
3462 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3463 	 * +-----------------------------------------------------+
3464 	 * 63       48 47    40 39      32 31         16 15      0
3465 	 */
3466 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3467 
3468 	if (!netif_msg_rx_status(adapter))
3469 		goto exit;
3470 
3471 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3472 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3473 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3474 		struct my_u { __le64 a; __le64 b; };
3475 		struct my_u *u = (struct my_u *)rx_desc;
3476 		const char *type;
3477 
3478 		if (i == rx_ring->next_to_use)
3479 			type = "NTU";
3480 		else if (i == rx_ring->next_to_clean)
3481 			type = "NTC";
3482 		else
3483 			type = "";
3484 
3485 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3486 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3487 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3488 	} /* for */
3489 
3490 	/* dump the descriptor caches */
3491 	/* rx */
3492 	pr_info("Rx descriptor cache in 64bit format\n");
3493 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3494 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3495 			i,
3496 			readl(adapter->hw.hw_addr + i+4),
3497 			readl(adapter->hw.hw_addr + i),
3498 			readl(adapter->hw.hw_addr + i+12),
3499 			readl(adapter->hw.hw_addr + i+8));
3500 	}
3501 	/* tx */
3502 	pr_info("Tx descriptor cache in 64bit format\n");
3503 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3504 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3505 			i,
3506 			readl(adapter->hw.hw_addr + i+4),
3507 			readl(adapter->hw.hw_addr + i),
3508 			readl(adapter->hw.hw_addr + i+12),
3509 			readl(adapter->hw.hw_addr + i+8));
3510 	}
3511 exit:
3512 	return;
3513 }
3514 
3515 /**
3516  * e1000_tx_timeout - Respond to a Tx Hang
3517  * @netdev: network interface device structure
3518  **/
3519 static void e1000_tx_timeout(struct net_device *netdev)
3520 {
3521 	struct e1000_adapter *adapter = netdev_priv(netdev);
3522 
3523 	/* Do the reset outside of interrupt context */
3524 	adapter->tx_timeout_count++;
3525 	schedule_work(&adapter->reset_task);
3526 }
3527 
3528 static void e1000_reset_task(struct work_struct *work)
3529 {
3530 	struct e1000_adapter *adapter =
3531 		container_of(work, struct e1000_adapter, reset_task);
3532 
3533 	e_err(drv, "Reset adapter\n");
3534 	e1000_reinit_locked(adapter);
3535 }
3536 
3537 /**
3538  * e1000_change_mtu - Change the Maximum Transfer Unit
3539  * @netdev: network interface device structure
3540  * @new_mtu: new value for maximum frame size
3541  *
3542  * Returns 0 on success, negative on failure
3543  **/
3544 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3545 {
3546 	struct e1000_adapter *adapter = netdev_priv(netdev);
3547 	struct e1000_hw *hw = &adapter->hw;
3548 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3549 
3550 	/* Adapter-specific max frame size limits. */
3551 	switch (hw->mac_type) {
3552 	case e1000_undefined ... e1000_82542_rev2_1:
3553 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3554 			e_err(probe, "Jumbo Frames not supported.\n");
3555 			return -EINVAL;
3556 		}
3557 		break;
3558 	default:
3559 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3560 		break;
3561 	}
3562 
3563 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3564 		msleep(1);
3565 	/* e1000_down has a dependency on max_frame_size */
3566 	hw->max_frame_size = max_frame;
3567 	if (netif_running(netdev)) {
3568 		/* prevent buffers from being reallocated */
3569 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3570 		e1000_down(adapter);
3571 	}
3572 
3573 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3574 	 * means we reserve 2 more, this pushes us to allocate from the next
3575 	 * larger slab size.
3576 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3577 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3578 	 * fragmented skbs
3579 	 */
3580 
3581 	if (max_frame <= E1000_RXBUFFER_2048)
3582 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3583 	else
3584 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3585 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3586 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3587 		adapter->rx_buffer_len = PAGE_SIZE;
3588 #endif
3589 
3590 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3591 	if (!hw->tbi_compatibility_on &&
3592 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3593 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3594 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3595 
3596 	pr_info("%s changing MTU from %d to %d\n",
3597 		netdev->name, netdev->mtu, new_mtu);
3598 	netdev->mtu = new_mtu;
3599 
3600 	if (netif_running(netdev))
3601 		e1000_up(adapter);
3602 	else
3603 		e1000_reset(adapter);
3604 
3605 	clear_bit(__E1000_RESETTING, &adapter->flags);
3606 
3607 	return 0;
3608 }
3609 
3610 /**
3611  * e1000_update_stats - Update the board statistics counters
3612  * @adapter: board private structure
3613  **/
3614 void e1000_update_stats(struct e1000_adapter *adapter)
3615 {
3616 	struct net_device *netdev = adapter->netdev;
3617 	struct e1000_hw *hw = &adapter->hw;
3618 	struct pci_dev *pdev = adapter->pdev;
3619 	unsigned long flags;
3620 	u16 phy_tmp;
3621 
3622 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3623 
3624 	/* Prevent stats update while adapter is being reset, or if the pci
3625 	 * connection is down.
3626 	 */
3627 	if (adapter->link_speed == 0)
3628 		return;
3629 	if (pci_channel_offline(pdev))
3630 		return;
3631 
3632 	spin_lock_irqsave(&adapter->stats_lock, flags);
3633 
3634 	/* these counters are modified from e1000_tbi_adjust_stats,
3635 	 * called from the interrupt context, so they must only
3636 	 * be written while holding adapter->stats_lock
3637 	 */
3638 
3639 	adapter->stats.crcerrs += er32(CRCERRS);
3640 	adapter->stats.gprc += er32(GPRC);
3641 	adapter->stats.gorcl += er32(GORCL);
3642 	adapter->stats.gorch += er32(GORCH);
3643 	adapter->stats.bprc += er32(BPRC);
3644 	adapter->stats.mprc += er32(MPRC);
3645 	adapter->stats.roc += er32(ROC);
3646 
3647 	adapter->stats.prc64 += er32(PRC64);
3648 	adapter->stats.prc127 += er32(PRC127);
3649 	adapter->stats.prc255 += er32(PRC255);
3650 	adapter->stats.prc511 += er32(PRC511);
3651 	adapter->stats.prc1023 += er32(PRC1023);
3652 	adapter->stats.prc1522 += er32(PRC1522);
3653 
3654 	adapter->stats.symerrs += er32(SYMERRS);
3655 	adapter->stats.mpc += er32(MPC);
3656 	adapter->stats.scc += er32(SCC);
3657 	adapter->stats.ecol += er32(ECOL);
3658 	adapter->stats.mcc += er32(MCC);
3659 	adapter->stats.latecol += er32(LATECOL);
3660 	adapter->stats.dc += er32(DC);
3661 	adapter->stats.sec += er32(SEC);
3662 	adapter->stats.rlec += er32(RLEC);
3663 	adapter->stats.xonrxc += er32(XONRXC);
3664 	adapter->stats.xontxc += er32(XONTXC);
3665 	adapter->stats.xoffrxc += er32(XOFFRXC);
3666 	adapter->stats.xofftxc += er32(XOFFTXC);
3667 	adapter->stats.fcruc += er32(FCRUC);
3668 	adapter->stats.gptc += er32(GPTC);
3669 	adapter->stats.gotcl += er32(GOTCL);
3670 	adapter->stats.gotch += er32(GOTCH);
3671 	adapter->stats.rnbc += er32(RNBC);
3672 	adapter->stats.ruc += er32(RUC);
3673 	adapter->stats.rfc += er32(RFC);
3674 	adapter->stats.rjc += er32(RJC);
3675 	adapter->stats.torl += er32(TORL);
3676 	adapter->stats.torh += er32(TORH);
3677 	adapter->stats.totl += er32(TOTL);
3678 	adapter->stats.toth += er32(TOTH);
3679 	adapter->stats.tpr += er32(TPR);
3680 
3681 	adapter->stats.ptc64 += er32(PTC64);
3682 	adapter->stats.ptc127 += er32(PTC127);
3683 	adapter->stats.ptc255 += er32(PTC255);
3684 	adapter->stats.ptc511 += er32(PTC511);
3685 	adapter->stats.ptc1023 += er32(PTC1023);
3686 	adapter->stats.ptc1522 += er32(PTC1522);
3687 
3688 	adapter->stats.mptc += er32(MPTC);
3689 	adapter->stats.bptc += er32(BPTC);
3690 
3691 	/* used for adaptive IFS */
3692 
3693 	hw->tx_packet_delta = er32(TPT);
3694 	adapter->stats.tpt += hw->tx_packet_delta;
3695 	hw->collision_delta = er32(COLC);
3696 	adapter->stats.colc += hw->collision_delta;
3697 
3698 	if (hw->mac_type >= e1000_82543) {
3699 		adapter->stats.algnerrc += er32(ALGNERRC);
3700 		adapter->stats.rxerrc += er32(RXERRC);
3701 		adapter->stats.tncrs += er32(TNCRS);
3702 		adapter->stats.cexterr += er32(CEXTERR);
3703 		adapter->stats.tsctc += er32(TSCTC);
3704 		adapter->stats.tsctfc += er32(TSCTFC);
3705 	}
3706 
3707 	/* Fill out the OS statistics structure */
3708 	netdev->stats.multicast = adapter->stats.mprc;
3709 	netdev->stats.collisions = adapter->stats.colc;
3710 
3711 	/* Rx Errors */
3712 
3713 	/* RLEC on some newer hardware can be incorrect so build
3714 	 * our own version based on RUC and ROC
3715 	 */
3716 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3717 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3718 		adapter->stats.ruc + adapter->stats.roc +
3719 		adapter->stats.cexterr;
3720 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3721 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3722 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3723 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3724 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3725 
3726 	/* Tx Errors */
3727 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3728 	netdev->stats.tx_errors = adapter->stats.txerrc;
3729 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3730 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3731 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3732 	if (hw->bad_tx_carr_stats_fd &&
3733 	    adapter->link_duplex == FULL_DUPLEX) {
3734 		netdev->stats.tx_carrier_errors = 0;
3735 		adapter->stats.tncrs = 0;
3736 	}
3737 
3738 	/* Tx Dropped needs to be maintained elsewhere */
3739 
3740 	/* Phy Stats */
3741 	if (hw->media_type == e1000_media_type_copper) {
3742 		if ((adapter->link_speed == SPEED_1000) &&
3743 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3744 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3745 			adapter->phy_stats.idle_errors += phy_tmp;
3746 		}
3747 
3748 		if ((hw->mac_type <= e1000_82546) &&
3749 		   (hw->phy_type == e1000_phy_m88) &&
3750 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3751 			adapter->phy_stats.receive_errors += phy_tmp;
3752 	}
3753 
3754 	/* Management Stats */
3755 	if (hw->has_smbus) {
3756 		adapter->stats.mgptc += er32(MGTPTC);
3757 		adapter->stats.mgprc += er32(MGTPRC);
3758 		adapter->stats.mgpdc += er32(MGTPDC);
3759 	}
3760 
3761 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3762 }
3763 
3764 /**
3765  * e1000_intr - Interrupt Handler
3766  * @irq: interrupt number
3767  * @data: pointer to a network interface device structure
3768  **/
3769 static irqreturn_t e1000_intr(int irq, void *data)
3770 {
3771 	struct net_device *netdev = data;
3772 	struct e1000_adapter *adapter = netdev_priv(netdev);
3773 	struct e1000_hw *hw = &adapter->hw;
3774 	u32 icr = er32(ICR);
3775 
3776 	if (unlikely((!icr)))
3777 		return IRQ_NONE;  /* Not our interrupt */
3778 
3779 	/* we might have caused the interrupt, but the above
3780 	 * read cleared it, and just in case the driver is
3781 	 * down there is nothing to do so return handled
3782 	 */
3783 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3784 		return IRQ_HANDLED;
3785 
3786 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3787 		hw->get_link_status = 1;
3788 		/* guard against interrupt when we're going down */
3789 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3790 			schedule_delayed_work(&adapter->watchdog_task, 1);
3791 	}
3792 
3793 	/* disable interrupts, without the synchronize_irq bit */
3794 	ew32(IMC, ~0);
3795 	E1000_WRITE_FLUSH();
3796 
3797 	if (likely(napi_schedule_prep(&adapter->napi))) {
3798 		adapter->total_tx_bytes = 0;
3799 		adapter->total_tx_packets = 0;
3800 		adapter->total_rx_bytes = 0;
3801 		adapter->total_rx_packets = 0;
3802 		__napi_schedule(&adapter->napi);
3803 	} else {
3804 		/* this really should not happen! if it does it is basically a
3805 		 * bug, but not a hard error, so enable ints and continue
3806 		 */
3807 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3808 			e1000_irq_enable(adapter);
3809 	}
3810 
3811 	return IRQ_HANDLED;
3812 }
3813 
3814 /**
3815  * e1000_clean - NAPI Rx polling callback
3816  * @adapter: board private structure
3817  **/
3818 static int e1000_clean(struct napi_struct *napi, int budget)
3819 {
3820 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3821 						     napi);
3822 	int tx_clean_complete = 0, work_done = 0;
3823 
3824 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3825 
3826 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3827 
3828 	if (!tx_clean_complete)
3829 		work_done = budget;
3830 
3831 	/* If budget not fully consumed, exit the polling mode */
3832 	if (work_done < budget) {
3833 		if (likely(adapter->itr_setting & 3))
3834 			e1000_set_itr(adapter);
3835 		napi_complete_done(napi, work_done);
3836 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3837 			e1000_irq_enable(adapter);
3838 	}
3839 
3840 	return work_done;
3841 }
3842 
3843 /**
3844  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3845  * @adapter: board private structure
3846  **/
3847 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3848 			       struct e1000_tx_ring *tx_ring)
3849 {
3850 	struct e1000_hw *hw = &adapter->hw;
3851 	struct net_device *netdev = adapter->netdev;
3852 	struct e1000_tx_desc *tx_desc, *eop_desc;
3853 	struct e1000_tx_buffer *buffer_info;
3854 	unsigned int i, eop;
3855 	unsigned int count = 0;
3856 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3857 	unsigned int bytes_compl = 0, pkts_compl = 0;
3858 
3859 	i = tx_ring->next_to_clean;
3860 	eop = tx_ring->buffer_info[i].next_to_watch;
3861 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3862 
3863 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3864 	       (count < tx_ring->count)) {
3865 		bool cleaned = false;
3866 		dma_rmb();	/* read buffer_info after eop_desc */
3867 		for ( ; !cleaned; count++) {
3868 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3869 			buffer_info = &tx_ring->buffer_info[i];
3870 			cleaned = (i == eop);
3871 
3872 			if (cleaned) {
3873 				total_tx_packets += buffer_info->segs;
3874 				total_tx_bytes += buffer_info->bytecount;
3875 				if (buffer_info->skb) {
3876 					bytes_compl += buffer_info->skb->len;
3877 					pkts_compl++;
3878 				}
3879 
3880 			}
3881 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3882 			tx_desc->upper.data = 0;
3883 
3884 			if (unlikely(++i == tx_ring->count))
3885 				i = 0;
3886 		}
3887 
3888 		eop = tx_ring->buffer_info[i].next_to_watch;
3889 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3890 	}
3891 
3892 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3893 	 * which will reuse the cleaned buffers.
3894 	 */
3895 	smp_store_release(&tx_ring->next_to_clean, i);
3896 
3897 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3898 
3899 #define TX_WAKE_THRESHOLD 32
3900 	if (unlikely(count && netif_carrier_ok(netdev) &&
3901 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3902 		/* Make sure that anybody stopping the queue after this
3903 		 * sees the new next_to_clean.
3904 		 */
3905 		smp_mb();
3906 
3907 		if (netif_queue_stopped(netdev) &&
3908 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3909 			netif_wake_queue(netdev);
3910 			++adapter->restart_queue;
3911 		}
3912 	}
3913 
3914 	if (adapter->detect_tx_hung) {
3915 		/* Detect a transmit hang in hardware, this serializes the
3916 		 * check with the clearing of time_stamp and movement of i
3917 		 */
3918 		adapter->detect_tx_hung = false;
3919 		if (tx_ring->buffer_info[eop].time_stamp &&
3920 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3921 			       (adapter->tx_timeout_factor * HZ)) &&
3922 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3923 
3924 			/* detected Tx unit hang */
3925 			e_err(drv, "Detected Tx Unit Hang\n"
3926 			      "  Tx Queue             <%lu>\n"
3927 			      "  TDH                  <%x>\n"
3928 			      "  TDT                  <%x>\n"
3929 			      "  next_to_use          <%x>\n"
3930 			      "  next_to_clean        <%x>\n"
3931 			      "buffer_info[next_to_clean]\n"
3932 			      "  time_stamp           <%lx>\n"
3933 			      "  next_to_watch        <%x>\n"
3934 			      "  jiffies              <%lx>\n"
3935 			      "  next_to_watch.status <%x>\n",
3936 				(unsigned long)(tx_ring - adapter->tx_ring),
3937 				readl(hw->hw_addr + tx_ring->tdh),
3938 				readl(hw->hw_addr + tx_ring->tdt),
3939 				tx_ring->next_to_use,
3940 				tx_ring->next_to_clean,
3941 				tx_ring->buffer_info[eop].time_stamp,
3942 				eop,
3943 				jiffies,
3944 				eop_desc->upper.fields.status);
3945 			e1000_dump(adapter);
3946 			netif_stop_queue(netdev);
3947 		}
3948 	}
3949 	adapter->total_tx_bytes += total_tx_bytes;
3950 	adapter->total_tx_packets += total_tx_packets;
3951 	netdev->stats.tx_bytes += total_tx_bytes;
3952 	netdev->stats.tx_packets += total_tx_packets;
3953 	return count < tx_ring->count;
3954 }
3955 
3956 /**
3957  * e1000_rx_checksum - Receive Checksum Offload for 82543
3958  * @adapter:     board private structure
3959  * @status_err:  receive descriptor status and error fields
3960  * @csum:        receive descriptor csum field
3961  * @sk_buff:     socket buffer with received data
3962  **/
3963 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3964 			      u32 csum, struct sk_buff *skb)
3965 {
3966 	struct e1000_hw *hw = &adapter->hw;
3967 	u16 status = (u16)status_err;
3968 	u8 errors = (u8)(status_err >> 24);
3969 
3970 	skb_checksum_none_assert(skb);
3971 
3972 	/* 82543 or newer only */
3973 	if (unlikely(hw->mac_type < e1000_82543))
3974 		return;
3975 	/* Ignore Checksum bit is set */
3976 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3977 		return;
3978 	/* TCP/UDP checksum error bit is set */
3979 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3980 		/* let the stack verify checksum errors */
3981 		adapter->hw_csum_err++;
3982 		return;
3983 	}
3984 	/* TCP/UDP Checksum has not been calculated */
3985 	if (!(status & E1000_RXD_STAT_TCPCS))
3986 		return;
3987 
3988 	/* It must be a TCP or UDP packet with a valid checksum */
3989 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3990 		/* TCP checksum is good */
3991 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3992 	}
3993 	adapter->hw_csum_good++;
3994 }
3995 
3996 /**
3997  * e1000_consume_page - helper function for jumbo Rx path
3998  **/
3999 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4000 			       u16 length)
4001 {
4002 	bi->rxbuf.page = NULL;
4003 	skb->len += length;
4004 	skb->data_len += length;
4005 	skb->truesize += PAGE_SIZE;
4006 }
4007 
4008 /**
4009  * e1000_receive_skb - helper function to handle rx indications
4010  * @adapter: board private structure
4011  * @status: descriptor status field as written by hardware
4012  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4013  * @skb: pointer to sk_buff to be indicated to stack
4014  */
4015 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4016 			      __le16 vlan, struct sk_buff *skb)
4017 {
4018 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4019 
4020 	if (status & E1000_RXD_STAT_VP) {
4021 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4022 
4023 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4024 	}
4025 	napi_gro_receive(&adapter->napi, skb);
4026 }
4027 
4028 /**
4029  * e1000_tbi_adjust_stats
4030  * @hw: Struct containing variables accessed by shared code
4031  * @frame_len: The length of the frame in question
4032  * @mac_addr: The Ethernet destination address of the frame in question
4033  *
4034  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4035  */
4036 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4037 				   struct e1000_hw_stats *stats,
4038 				   u32 frame_len, const u8 *mac_addr)
4039 {
4040 	u64 carry_bit;
4041 
4042 	/* First adjust the frame length. */
4043 	frame_len--;
4044 	/* We need to adjust the statistics counters, since the hardware
4045 	 * counters overcount this packet as a CRC error and undercount
4046 	 * the packet as a good packet
4047 	 */
4048 	/* This packet should not be counted as a CRC error. */
4049 	stats->crcerrs--;
4050 	/* This packet does count as a Good Packet Received. */
4051 	stats->gprc++;
4052 
4053 	/* Adjust the Good Octets received counters */
4054 	carry_bit = 0x80000000 & stats->gorcl;
4055 	stats->gorcl += frame_len;
4056 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4057 	 * Received Count) was one before the addition,
4058 	 * AND it is zero after, then we lost the carry out,
4059 	 * need to add one to Gorch (Good Octets Received Count High).
4060 	 * This could be simplified if all environments supported
4061 	 * 64-bit integers.
4062 	 */
4063 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4064 		stats->gorch++;
4065 	/* Is this a broadcast or multicast?  Check broadcast first,
4066 	 * since the test for a multicast frame will test positive on
4067 	 * a broadcast frame.
4068 	 */
4069 	if (is_broadcast_ether_addr(mac_addr))
4070 		stats->bprc++;
4071 	else if (is_multicast_ether_addr(mac_addr))
4072 		stats->mprc++;
4073 
4074 	if (frame_len == hw->max_frame_size) {
4075 		/* In this case, the hardware has overcounted the number of
4076 		 * oversize frames.
4077 		 */
4078 		if (stats->roc > 0)
4079 			stats->roc--;
4080 	}
4081 
4082 	/* Adjust the bin counters when the extra byte put the frame in the
4083 	 * wrong bin. Remember that the frame_len was adjusted above.
4084 	 */
4085 	if (frame_len == 64) {
4086 		stats->prc64++;
4087 		stats->prc127--;
4088 	} else if (frame_len == 127) {
4089 		stats->prc127++;
4090 		stats->prc255--;
4091 	} else if (frame_len == 255) {
4092 		stats->prc255++;
4093 		stats->prc511--;
4094 	} else if (frame_len == 511) {
4095 		stats->prc511++;
4096 		stats->prc1023--;
4097 	} else if (frame_len == 1023) {
4098 		stats->prc1023++;
4099 		stats->prc1522--;
4100 	} else if (frame_len == 1522) {
4101 		stats->prc1522++;
4102 	}
4103 }
4104 
4105 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4106 				    u8 status, u8 errors,
4107 				    u32 length, const u8 *data)
4108 {
4109 	struct e1000_hw *hw = &adapter->hw;
4110 	u8 last_byte = *(data + length - 1);
4111 
4112 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4113 		unsigned long irq_flags;
4114 
4115 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4116 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4117 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4118 
4119 		return true;
4120 	}
4121 
4122 	return false;
4123 }
4124 
4125 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4126 					  unsigned int bufsz)
4127 {
4128 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4129 
4130 	if (unlikely(!skb))
4131 		adapter->alloc_rx_buff_failed++;
4132 	return skb;
4133 }
4134 
4135 /**
4136  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4137  * @adapter: board private structure
4138  * @rx_ring: ring to clean
4139  * @work_done: amount of napi work completed this call
4140  * @work_to_do: max amount of work allowed for this call to do
4141  *
4142  * the return value indicates whether actual cleaning was done, there
4143  * is no guarantee that everything was cleaned
4144  */
4145 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4146 				     struct e1000_rx_ring *rx_ring,
4147 				     int *work_done, int work_to_do)
4148 {
4149 	struct net_device *netdev = adapter->netdev;
4150 	struct pci_dev *pdev = adapter->pdev;
4151 	struct e1000_rx_desc *rx_desc, *next_rxd;
4152 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4153 	u32 length;
4154 	unsigned int i;
4155 	int cleaned_count = 0;
4156 	bool cleaned = false;
4157 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4158 
4159 	i = rx_ring->next_to_clean;
4160 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4161 	buffer_info = &rx_ring->buffer_info[i];
4162 
4163 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4164 		struct sk_buff *skb;
4165 		u8 status;
4166 
4167 		if (*work_done >= work_to_do)
4168 			break;
4169 		(*work_done)++;
4170 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4171 
4172 		status = rx_desc->status;
4173 
4174 		if (++i == rx_ring->count)
4175 			i = 0;
4176 
4177 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4178 		prefetch(next_rxd);
4179 
4180 		next_buffer = &rx_ring->buffer_info[i];
4181 
4182 		cleaned = true;
4183 		cleaned_count++;
4184 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4185 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4186 		buffer_info->dma = 0;
4187 
4188 		length = le16_to_cpu(rx_desc->length);
4189 
4190 		/* errors is only valid for DD + EOP descriptors */
4191 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4192 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4193 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4194 
4195 			if (e1000_tbi_should_accept(adapter, status,
4196 						    rx_desc->errors,
4197 						    length, mapped)) {
4198 				length--;
4199 			} else if (netdev->features & NETIF_F_RXALL) {
4200 				goto process_skb;
4201 			} else {
4202 				/* an error means any chain goes out the window
4203 				 * too
4204 				 */
4205 				if (rx_ring->rx_skb_top)
4206 					dev_kfree_skb(rx_ring->rx_skb_top);
4207 				rx_ring->rx_skb_top = NULL;
4208 				goto next_desc;
4209 			}
4210 		}
4211 
4212 #define rxtop rx_ring->rx_skb_top
4213 process_skb:
4214 		if (!(status & E1000_RXD_STAT_EOP)) {
4215 			/* this descriptor is only the beginning (or middle) */
4216 			if (!rxtop) {
4217 				/* this is the beginning of a chain */
4218 				rxtop = napi_get_frags(&adapter->napi);
4219 				if (!rxtop)
4220 					break;
4221 
4222 				skb_fill_page_desc(rxtop, 0,
4223 						   buffer_info->rxbuf.page,
4224 						   0, length);
4225 			} else {
4226 				/* this is the middle of a chain */
4227 				skb_fill_page_desc(rxtop,
4228 				    skb_shinfo(rxtop)->nr_frags,
4229 				    buffer_info->rxbuf.page, 0, length);
4230 			}
4231 			e1000_consume_page(buffer_info, rxtop, length);
4232 			goto next_desc;
4233 		} else {
4234 			if (rxtop) {
4235 				/* end of the chain */
4236 				skb_fill_page_desc(rxtop,
4237 				    skb_shinfo(rxtop)->nr_frags,
4238 				    buffer_info->rxbuf.page, 0, length);
4239 				skb = rxtop;
4240 				rxtop = NULL;
4241 				e1000_consume_page(buffer_info, skb, length);
4242 			} else {
4243 				struct page *p;
4244 				/* no chain, got EOP, this buf is the packet
4245 				 * copybreak to save the put_page/alloc_page
4246 				 */
4247 				p = buffer_info->rxbuf.page;
4248 				if (length <= copybreak) {
4249 					u8 *vaddr;
4250 
4251 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4252 						length -= 4;
4253 					skb = e1000_alloc_rx_skb(adapter,
4254 								 length);
4255 					if (!skb)
4256 						break;
4257 
4258 					vaddr = kmap_atomic(p);
4259 					memcpy(skb_tail_pointer(skb), vaddr,
4260 					       length);
4261 					kunmap_atomic(vaddr);
4262 					/* re-use the page, so don't erase
4263 					 * buffer_info->rxbuf.page
4264 					 */
4265 					skb_put(skb, length);
4266 					e1000_rx_checksum(adapter,
4267 							  status | rx_desc->errors << 24,
4268 							  le16_to_cpu(rx_desc->csum), skb);
4269 
4270 					total_rx_bytes += skb->len;
4271 					total_rx_packets++;
4272 
4273 					e1000_receive_skb(adapter, status,
4274 							  rx_desc->special, skb);
4275 					goto next_desc;
4276 				} else {
4277 					skb = napi_get_frags(&adapter->napi);
4278 					if (!skb) {
4279 						adapter->alloc_rx_buff_failed++;
4280 						break;
4281 					}
4282 					skb_fill_page_desc(skb, 0, p, 0,
4283 							   length);
4284 					e1000_consume_page(buffer_info, skb,
4285 							   length);
4286 				}
4287 			}
4288 		}
4289 
4290 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4291 		e1000_rx_checksum(adapter,
4292 				  (u32)(status) |
4293 				  ((u32)(rx_desc->errors) << 24),
4294 				  le16_to_cpu(rx_desc->csum), skb);
4295 
4296 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4297 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4298 			pskb_trim(skb, skb->len - 4);
4299 		total_rx_packets++;
4300 
4301 		if (status & E1000_RXD_STAT_VP) {
4302 			__le16 vlan = rx_desc->special;
4303 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4304 
4305 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4306 		}
4307 
4308 		napi_gro_frags(&adapter->napi);
4309 
4310 next_desc:
4311 		rx_desc->status = 0;
4312 
4313 		/* return some buffers to hardware, one at a time is too slow */
4314 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4315 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4316 			cleaned_count = 0;
4317 		}
4318 
4319 		/* use prefetched values */
4320 		rx_desc = next_rxd;
4321 		buffer_info = next_buffer;
4322 	}
4323 	rx_ring->next_to_clean = i;
4324 
4325 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4326 	if (cleaned_count)
4327 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4328 
4329 	adapter->total_rx_packets += total_rx_packets;
4330 	adapter->total_rx_bytes += total_rx_bytes;
4331 	netdev->stats.rx_bytes += total_rx_bytes;
4332 	netdev->stats.rx_packets += total_rx_packets;
4333 	return cleaned;
4334 }
4335 
4336 /* this should improve performance for small packets with large amounts
4337  * of reassembly being done in the stack
4338  */
4339 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4340 				       struct e1000_rx_buffer *buffer_info,
4341 				       u32 length, const void *data)
4342 {
4343 	struct sk_buff *skb;
4344 
4345 	if (length > copybreak)
4346 		return NULL;
4347 
4348 	skb = e1000_alloc_rx_skb(adapter, length);
4349 	if (!skb)
4350 		return NULL;
4351 
4352 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4353 				length, DMA_FROM_DEVICE);
4354 
4355 	skb_put_data(skb, data, length);
4356 
4357 	return skb;
4358 }
4359 
4360 /**
4361  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4362  * @adapter: board private structure
4363  * @rx_ring: ring to clean
4364  * @work_done: amount of napi work completed this call
4365  * @work_to_do: max amount of work allowed for this call to do
4366  */
4367 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4368 			       struct e1000_rx_ring *rx_ring,
4369 			       int *work_done, int work_to_do)
4370 {
4371 	struct net_device *netdev = adapter->netdev;
4372 	struct pci_dev *pdev = adapter->pdev;
4373 	struct e1000_rx_desc *rx_desc, *next_rxd;
4374 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4375 	u32 length;
4376 	unsigned int i;
4377 	int cleaned_count = 0;
4378 	bool cleaned = false;
4379 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4380 
4381 	i = rx_ring->next_to_clean;
4382 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4383 	buffer_info = &rx_ring->buffer_info[i];
4384 
4385 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4386 		struct sk_buff *skb;
4387 		u8 *data;
4388 		u8 status;
4389 
4390 		if (*work_done >= work_to_do)
4391 			break;
4392 		(*work_done)++;
4393 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4394 
4395 		status = rx_desc->status;
4396 		length = le16_to_cpu(rx_desc->length);
4397 
4398 		data = buffer_info->rxbuf.data;
4399 		prefetch(data);
4400 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4401 		if (!skb) {
4402 			unsigned int frag_len = e1000_frag_len(adapter);
4403 
4404 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4405 			if (!skb) {
4406 				adapter->alloc_rx_buff_failed++;
4407 				break;
4408 			}
4409 
4410 			skb_reserve(skb, E1000_HEADROOM);
4411 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4412 					 adapter->rx_buffer_len,
4413 					 DMA_FROM_DEVICE);
4414 			buffer_info->dma = 0;
4415 			buffer_info->rxbuf.data = NULL;
4416 		}
4417 
4418 		if (++i == rx_ring->count)
4419 			i = 0;
4420 
4421 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4422 		prefetch(next_rxd);
4423 
4424 		next_buffer = &rx_ring->buffer_info[i];
4425 
4426 		cleaned = true;
4427 		cleaned_count++;
4428 
4429 		/* !EOP means multiple descriptors were used to store a single
4430 		 * packet, if thats the case we need to toss it.  In fact, we
4431 		 * to toss every packet with the EOP bit clear and the next
4432 		 * frame that _does_ have the EOP bit set, as it is by
4433 		 * definition only a frame fragment
4434 		 */
4435 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4436 			adapter->discarding = true;
4437 
4438 		if (adapter->discarding) {
4439 			/* All receives must fit into a single buffer */
4440 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4441 			dev_kfree_skb(skb);
4442 			if (status & E1000_RXD_STAT_EOP)
4443 				adapter->discarding = false;
4444 			goto next_desc;
4445 		}
4446 
4447 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4448 			if (e1000_tbi_should_accept(adapter, status,
4449 						    rx_desc->errors,
4450 						    length, data)) {
4451 				length--;
4452 			} else if (netdev->features & NETIF_F_RXALL) {
4453 				goto process_skb;
4454 			} else {
4455 				dev_kfree_skb(skb);
4456 				goto next_desc;
4457 			}
4458 		}
4459 
4460 process_skb:
4461 		total_rx_bytes += (length - 4); /* don't count FCS */
4462 		total_rx_packets++;
4463 
4464 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4465 			/* adjust length to remove Ethernet CRC, this must be
4466 			 * done after the TBI_ACCEPT workaround above
4467 			 */
4468 			length -= 4;
4469 
4470 		if (buffer_info->rxbuf.data == NULL)
4471 			skb_put(skb, length);
4472 		else /* copybreak skb */
4473 			skb_trim(skb, length);
4474 
4475 		/* Receive Checksum Offload */
4476 		e1000_rx_checksum(adapter,
4477 				  (u32)(status) |
4478 				  ((u32)(rx_desc->errors) << 24),
4479 				  le16_to_cpu(rx_desc->csum), skb);
4480 
4481 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4482 
4483 next_desc:
4484 		rx_desc->status = 0;
4485 
4486 		/* return some buffers to hardware, one at a time is too slow */
4487 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4488 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4489 			cleaned_count = 0;
4490 		}
4491 
4492 		/* use prefetched values */
4493 		rx_desc = next_rxd;
4494 		buffer_info = next_buffer;
4495 	}
4496 	rx_ring->next_to_clean = i;
4497 
4498 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4499 	if (cleaned_count)
4500 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4501 
4502 	adapter->total_rx_packets += total_rx_packets;
4503 	adapter->total_rx_bytes += total_rx_bytes;
4504 	netdev->stats.rx_bytes += total_rx_bytes;
4505 	netdev->stats.rx_packets += total_rx_packets;
4506 	return cleaned;
4507 }
4508 
4509 /**
4510  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4511  * @adapter: address of board private structure
4512  * @rx_ring: pointer to receive ring structure
4513  * @cleaned_count: number of buffers to allocate this pass
4514  **/
4515 static void
4516 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4517 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4518 {
4519 	struct pci_dev *pdev = adapter->pdev;
4520 	struct e1000_rx_desc *rx_desc;
4521 	struct e1000_rx_buffer *buffer_info;
4522 	unsigned int i;
4523 
4524 	i = rx_ring->next_to_use;
4525 	buffer_info = &rx_ring->buffer_info[i];
4526 
4527 	while (cleaned_count--) {
4528 		/* allocate a new page if necessary */
4529 		if (!buffer_info->rxbuf.page) {
4530 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4531 			if (unlikely(!buffer_info->rxbuf.page)) {
4532 				adapter->alloc_rx_buff_failed++;
4533 				break;
4534 			}
4535 		}
4536 
4537 		if (!buffer_info->dma) {
4538 			buffer_info->dma = dma_map_page(&pdev->dev,
4539 							buffer_info->rxbuf.page, 0,
4540 							adapter->rx_buffer_len,
4541 							DMA_FROM_DEVICE);
4542 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4543 				put_page(buffer_info->rxbuf.page);
4544 				buffer_info->rxbuf.page = NULL;
4545 				buffer_info->dma = 0;
4546 				adapter->alloc_rx_buff_failed++;
4547 				break;
4548 			}
4549 		}
4550 
4551 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4552 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4553 
4554 		if (unlikely(++i == rx_ring->count))
4555 			i = 0;
4556 		buffer_info = &rx_ring->buffer_info[i];
4557 	}
4558 
4559 	if (likely(rx_ring->next_to_use != i)) {
4560 		rx_ring->next_to_use = i;
4561 		if (unlikely(i-- == 0))
4562 			i = (rx_ring->count - 1);
4563 
4564 		/* Force memory writes to complete before letting h/w
4565 		 * know there are new descriptors to fetch.  (Only
4566 		 * applicable for weak-ordered memory model archs,
4567 		 * such as IA-64).
4568 		 */
4569 		wmb();
4570 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4571 	}
4572 }
4573 
4574 /**
4575  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4576  * @adapter: address of board private structure
4577  **/
4578 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4579 				   struct e1000_rx_ring *rx_ring,
4580 				   int cleaned_count)
4581 {
4582 	struct e1000_hw *hw = &adapter->hw;
4583 	struct pci_dev *pdev = adapter->pdev;
4584 	struct e1000_rx_desc *rx_desc;
4585 	struct e1000_rx_buffer *buffer_info;
4586 	unsigned int i;
4587 	unsigned int bufsz = adapter->rx_buffer_len;
4588 
4589 	i = rx_ring->next_to_use;
4590 	buffer_info = &rx_ring->buffer_info[i];
4591 
4592 	while (cleaned_count--) {
4593 		void *data;
4594 
4595 		if (buffer_info->rxbuf.data)
4596 			goto skip;
4597 
4598 		data = e1000_alloc_frag(adapter);
4599 		if (!data) {
4600 			/* Better luck next round */
4601 			adapter->alloc_rx_buff_failed++;
4602 			break;
4603 		}
4604 
4605 		/* Fix for errata 23, can't cross 64kB boundary */
4606 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4607 			void *olddata = data;
4608 			e_err(rx_err, "skb align check failed: %u bytes at "
4609 			      "%p\n", bufsz, data);
4610 			/* Try again, without freeing the previous */
4611 			data = e1000_alloc_frag(adapter);
4612 			/* Failed allocation, critical failure */
4613 			if (!data) {
4614 				skb_free_frag(olddata);
4615 				adapter->alloc_rx_buff_failed++;
4616 				break;
4617 			}
4618 
4619 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4620 				/* give up */
4621 				skb_free_frag(data);
4622 				skb_free_frag(olddata);
4623 				adapter->alloc_rx_buff_failed++;
4624 				break;
4625 			}
4626 
4627 			/* Use new allocation */
4628 			skb_free_frag(olddata);
4629 		}
4630 		buffer_info->dma = dma_map_single(&pdev->dev,
4631 						  data,
4632 						  adapter->rx_buffer_len,
4633 						  DMA_FROM_DEVICE);
4634 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4635 			skb_free_frag(data);
4636 			buffer_info->dma = 0;
4637 			adapter->alloc_rx_buff_failed++;
4638 			break;
4639 		}
4640 
4641 		/* XXX if it was allocated cleanly it will never map to a
4642 		 * boundary crossing
4643 		 */
4644 
4645 		/* Fix for errata 23, can't cross 64kB boundary */
4646 		if (!e1000_check_64k_bound(adapter,
4647 					(void *)(unsigned long)buffer_info->dma,
4648 					adapter->rx_buffer_len)) {
4649 			e_err(rx_err, "dma align check failed: %u bytes at "
4650 			      "%p\n", adapter->rx_buffer_len,
4651 			      (void *)(unsigned long)buffer_info->dma);
4652 
4653 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4654 					 adapter->rx_buffer_len,
4655 					 DMA_FROM_DEVICE);
4656 
4657 			skb_free_frag(data);
4658 			buffer_info->rxbuf.data = NULL;
4659 			buffer_info->dma = 0;
4660 
4661 			adapter->alloc_rx_buff_failed++;
4662 			break;
4663 		}
4664 		buffer_info->rxbuf.data = data;
4665  skip:
4666 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4667 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4668 
4669 		if (unlikely(++i == rx_ring->count))
4670 			i = 0;
4671 		buffer_info = &rx_ring->buffer_info[i];
4672 	}
4673 
4674 	if (likely(rx_ring->next_to_use != i)) {
4675 		rx_ring->next_to_use = i;
4676 		if (unlikely(i-- == 0))
4677 			i = (rx_ring->count - 1);
4678 
4679 		/* Force memory writes to complete before letting h/w
4680 		 * know there are new descriptors to fetch.  (Only
4681 		 * applicable for weak-ordered memory model archs,
4682 		 * such as IA-64).
4683 		 */
4684 		wmb();
4685 		writel(i, hw->hw_addr + rx_ring->rdt);
4686 	}
4687 }
4688 
4689 /**
4690  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4691  * @adapter:
4692  **/
4693 static void e1000_smartspeed(struct e1000_adapter *adapter)
4694 {
4695 	struct e1000_hw *hw = &adapter->hw;
4696 	u16 phy_status;
4697 	u16 phy_ctrl;
4698 
4699 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4700 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4701 		return;
4702 
4703 	if (adapter->smartspeed == 0) {
4704 		/* If Master/Slave config fault is asserted twice,
4705 		 * we assume back-to-back
4706 		 */
4707 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4708 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4709 			return;
4710 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4711 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4712 			return;
4713 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4714 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4715 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4716 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4717 					    phy_ctrl);
4718 			adapter->smartspeed++;
4719 			if (!e1000_phy_setup_autoneg(hw) &&
4720 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4721 					       &phy_ctrl)) {
4722 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723 					     MII_CR_RESTART_AUTO_NEG);
4724 				e1000_write_phy_reg(hw, PHY_CTRL,
4725 						    phy_ctrl);
4726 			}
4727 		}
4728 		return;
4729 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4730 		/* If still no link, perhaps using 2/3 pair cable */
4731 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4732 		phy_ctrl |= CR_1000T_MS_ENABLE;
4733 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4734 		if (!e1000_phy_setup_autoneg(hw) &&
4735 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4736 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4737 				     MII_CR_RESTART_AUTO_NEG);
4738 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4739 		}
4740 	}
4741 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4742 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4743 		adapter->smartspeed = 0;
4744 }
4745 
4746 /**
4747  * e1000_ioctl -
4748  * @netdev:
4749  * @ifreq:
4750  * @cmd:
4751  **/
4752 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4753 {
4754 	switch (cmd) {
4755 	case SIOCGMIIPHY:
4756 	case SIOCGMIIREG:
4757 	case SIOCSMIIREG:
4758 		return e1000_mii_ioctl(netdev, ifr, cmd);
4759 	default:
4760 		return -EOPNOTSUPP;
4761 	}
4762 }
4763 
4764 /**
4765  * e1000_mii_ioctl -
4766  * @netdev:
4767  * @ifreq:
4768  * @cmd:
4769  **/
4770 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4771 			   int cmd)
4772 {
4773 	struct e1000_adapter *adapter = netdev_priv(netdev);
4774 	struct e1000_hw *hw = &adapter->hw;
4775 	struct mii_ioctl_data *data = if_mii(ifr);
4776 	int retval;
4777 	u16 mii_reg;
4778 	unsigned long flags;
4779 
4780 	if (hw->media_type != e1000_media_type_copper)
4781 		return -EOPNOTSUPP;
4782 
4783 	switch (cmd) {
4784 	case SIOCGMIIPHY:
4785 		data->phy_id = hw->phy_addr;
4786 		break;
4787 	case SIOCGMIIREG:
4788 		spin_lock_irqsave(&adapter->stats_lock, flags);
4789 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4790 				   &data->val_out)) {
4791 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4792 			return -EIO;
4793 		}
4794 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4795 		break;
4796 	case SIOCSMIIREG:
4797 		if (data->reg_num & ~(0x1F))
4798 			return -EFAULT;
4799 		mii_reg = data->val_in;
4800 		spin_lock_irqsave(&adapter->stats_lock, flags);
4801 		if (e1000_write_phy_reg(hw, data->reg_num,
4802 					mii_reg)) {
4803 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4804 			return -EIO;
4805 		}
4806 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4807 		if (hw->media_type == e1000_media_type_copper) {
4808 			switch (data->reg_num) {
4809 			case PHY_CTRL:
4810 				if (mii_reg & MII_CR_POWER_DOWN)
4811 					break;
4812 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4813 					hw->autoneg = 1;
4814 					hw->autoneg_advertised = 0x2F;
4815 				} else {
4816 					u32 speed;
4817 					if (mii_reg & 0x40)
4818 						speed = SPEED_1000;
4819 					else if (mii_reg & 0x2000)
4820 						speed = SPEED_100;
4821 					else
4822 						speed = SPEED_10;
4823 					retval = e1000_set_spd_dplx(
4824 						adapter, speed,
4825 						((mii_reg & 0x100)
4826 						 ? DUPLEX_FULL :
4827 						 DUPLEX_HALF));
4828 					if (retval)
4829 						return retval;
4830 				}
4831 				if (netif_running(adapter->netdev))
4832 					e1000_reinit_locked(adapter);
4833 				else
4834 					e1000_reset(adapter);
4835 				break;
4836 			case M88E1000_PHY_SPEC_CTRL:
4837 			case M88E1000_EXT_PHY_SPEC_CTRL:
4838 				if (e1000_phy_reset(hw))
4839 					return -EIO;
4840 				break;
4841 			}
4842 		} else {
4843 			switch (data->reg_num) {
4844 			case PHY_CTRL:
4845 				if (mii_reg & MII_CR_POWER_DOWN)
4846 					break;
4847 				if (netif_running(adapter->netdev))
4848 					e1000_reinit_locked(adapter);
4849 				else
4850 					e1000_reset(adapter);
4851 				break;
4852 			}
4853 		}
4854 		break;
4855 	default:
4856 		return -EOPNOTSUPP;
4857 	}
4858 	return E1000_SUCCESS;
4859 }
4860 
4861 void e1000_pci_set_mwi(struct e1000_hw *hw)
4862 {
4863 	struct e1000_adapter *adapter = hw->back;
4864 	int ret_val = pci_set_mwi(adapter->pdev);
4865 
4866 	if (ret_val)
4867 		e_err(probe, "Error in setting MWI\n");
4868 }
4869 
4870 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4871 {
4872 	struct e1000_adapter *adapter = hw->back;
4873 
4874 	pci_clear_mwi(adapter->pdev);
4875 }
4876 
4877 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4878 {
4879 	struct e1000_adapter *adapter = hw->back;
4880 	return pcix_get_mmrbc(adapter->pdev);
4881 }
4882 
4883 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4884 {
4885 	struct e1000_adapter *adapter = hw->back;
4886 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4887 }
4888 
4889 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4890 {
4891 	outl(value, port);
4892 }
4893 
4894 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4895 {
4896 	u16 vid;
4897 
4898 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4899 		return true;
4900 	return false;
4901 }
4902 
4903 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4904 			      netdev_features_t features)
4905 {
4906 	struct e1000_hw *hw = &adapter->hw;
4907 	u32 ctrl;
4908 
4909 	ctrl = er32(CTRL);
4910 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4911 		/* enable VLAN tag insert/strip */
4912 		ctrl |= E1000_CTRL_VME;
4913 	} else {
4914 		/* disable VLAN tag insert/strip */
4915 		ctrl &= ~E1000_CTRL_VME;
4916 	}
4917 	ew32(CTRL, ctrl);
4918 }
4919 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4920 				     bool filter_on)
4921 {
4922 	struct e1000_hw *hw = &adapter->hw;
4923 	u32 rctl;
4924 
4925 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4926 		e1000_irq_disable(adapter);
4927 
4928 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4929 	if (filter_on) {
4930 		/* enable VLAN receive filtering */
4931 		rctl = er32(RCTL);
4932 		rctl &= ~E1000_RCTL_CFIEN;
4933 		if (!(adapter->netdev->flags & IFF_PROMISC))
4934 			rctl |= E1000_RCTL_VFE;
4935 		ew32(RCTL, rctl);
4936 		e1000_update_mng_vlan(adapter);
4937 	} else {
4938 		/* disable VLAN receive filtering */
4939 		rctl = er32(RCTL);
4940 		rctl &= ~E1000_RCTL_VFE;
4941 		ew32(RCTL, rctl);
4942 	}
4943 
4944 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4945 		e1000_irq_enable(adapter);
4946 }
4947 
4948 static void e1000_vlan_mode(struct net_device *netdev,
4949 			    netdev_features_t features)
4950 {
4951 	struct e1000_adapter *adapter = netdev_priv(netdev);
4952 
4953 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4954 		e1000_irq_disable(adapter);
4955 
4956 	__e1000_vlan_mode(adapter, features);
4957 
4958 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4959 		e1000_irq_enable(adapter);
4960 }
4961 
4962 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4963 				 __be16 proto, u16 vid)
4964 {
4965 	struct e1000_adapter *adapter = netdev_priv(netdev);
4966 	struct e1000_hw *hw = &adapter->hw;
4967 	u32 vfta, index;
4968 
4969 	if ((hw->mng_cookie.status &
4970 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4971 	    (vid == adapter->mng_vlan_id))
4972 		return 0;
4973 
4974 	if (!e1000_vlan_used(adapter))
4975 		e1000_vlan_filter_on_off(adapter, true);
4976 
4977 	/* add VID to filter table */
4978 	index = (vid >> 5) & 0x7F;
4979 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4980 	vfta |= (1 << (vid & 0x1F));
4981 	e1000_write_vfta(hw, index, vfta);
4982 
4983 	set_bit(vid, adapter->active_vlans);
4984 
4985 	return 0;
4986 }
4987 
4988 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4989 				  __be16 proto, u16 vid)
4990 {
4991 	struct e1000_adapter *adapter = netdev_priv(netdev);
4992 	struct e1000_hw *hw = &adapter->hw;
4993 	u32 vfta, index;
4994 
4995 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4996 		e1000_irq_disable(adapter);
4997 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4998 		e1000_irq_enable(adapter);
4999 
5000 	/* remove VID from filter table */
5001 	index = (vid >> 5) & 0x7F;
5002 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5003 	vfta &= ~(1 << (vid & 0x1F));
5004 	e1000_write_vfta(hw, index, vfta);
5005 
5006 	clear_bit(vid, adapter->active_vlans);
5007 
5008 	if (!e1000_vlan_used(adapter))
5009 		e1000_vlan_filter_on_off(adapter, false);
5010 
5011 	return 0;
5012 }
5013 
5014 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5015 {
5016 	u16 vid;
5017 
5018 	if (!e1000_vlan_used(adapter))
5019 		return;
5020 
5021 	e1000_vlan_filter_on_off(adapter, true);
5022 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5023 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5024 }
5025 
5026 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5027 {
5028 	struct e1000_hw *hw = &adapter->hw;
5029 
5030 	hw->autoneg = 0;
5031 
5032 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5033 	 * for the switch() below to work
5034 	 */
5035 	if ((spd & 1) || (dplx & ~1))
5036 		goto err_inval;
5037 
5038 	/* Fiber NICs only allow 1000 gbps Full duplex */
5039 	if ((hw->media_type == e1000_media_type_fiber) &&
5040 	    spd != SPEED_1000 &&
5041 	    dplx != DUPLEX_FULL)
5042 		goto err_inval;
5043 
5044 	switch (spd + dplx) {
5045 	case SPEED_10 + DUPLEX_HALF:
5046 		hw->forced_speed_duplex = e1000_10_half;
5047 		break;
5048 	case SPEED_10 + DUPLEX_FULL:
5049 		hw->forced_speed_duplex = e1000_10_full;
5050 		break;
5051 	case SPEED_100 + DUPLEX_HALF:
5052 		hw->forced_speed_duplex = e1000_100_half;
5053 		break;
5054 	case SPEED_100 + DUPLEX_FULL:
5055 		hw->forced_speed_duplex = e1000_100_full;
5056 		break;
5057 	case SPEED_1000 + DUPLEX_FULL:
5058 		hw->autoneg = 1;
5059 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5060 		break;
5061 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5062 	default:
5063 		goto err_inval;
5064 	}
5065 
5066 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5067 	hw->mdix = AUTO_ALL_MODES;
5068 
5069 	return 0;
5070 
5071 err_inval:
5072 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5073 	return -EINVAL;
5074 }
5075 
5076 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5077 {
5078 	struct net_device *netdev = pci_get_drvdata(pdev);
5079 	struct e1000_adapter *adapter = netdev_priv(netdev);
5080 	struct e1000_hw *hw = &adapter->hw;
5081 	u32 ctrl, ctrl_ext, rctl, status;
5082 	u32 wufc = adapter->wol;
5083 #ifdef CONFIG_PM
5084 	int retval = 0;
5085 #endif
5086 
5087 	netif_device_detach(netdev);
5088 
5089 	if (netif_running(netdev)) {
5090 		int count = E1000_CHECK_RESET_COUNT;
5091 
5092 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5093 			usleep_range(10000, 20000);
5094 
5095 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5096 		e1000_down(adapter);
5097 	}
5098 
5099 #ifdef CONFIG_PM
5100 	retval = pci_save_state(pdev);
5101 	if (retval)
5102 		return retval;
5103 #endif
5104 
5105 	status = er32(STATUS);
5106 	if (status & E1000_STATUS_LU)
5107 		wufc &= ~E1000_WUFC_LNKC;
5108 
5109 	if (wufc) {
5110 		e1000_setup_rctl(adapter);
5111 		e1000_set_rx_mode(netdev);
5112 
5113 		rctl = er32(RCTL);
5114 
5115 		/* turn on all-multi mode if wake on multicast is enabled */
5116 		if (wufc & E1000_WUFC_MC)
5117 			rctl |= E1000_RCTL_MPE;
5118 
5119 		/* enable receives in the hardware */
5120 		ew32(RCTL, rctl | E1000_RCTL_EN);
5121 
5122 		if (hw->mac_type >= e1000_82540) {
5123 			ctrl = er32(CTRL);
5124 			/* advertise wake from D3Cold */
5125 			#define E1000_CTRL_ADVD3WUC 0x00100000
5126 			/* phy power management enable */
5127 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5128 			ctrl |= E1000_CTRL_ADVD3WUC |
5129 				E1000_CTRL_EN_PHY_PWR_MGMT;
5130 			ew32(CTRL, ctrl);
5131 		}
5132 
5133 		if (hw->media_type == e1000_media_type_fiber ||
5134 		    hw->media_type == e1000_media_type_internal_serdes) {
5135 			/* keep the laser running in D3 */
5136 			ctrl_ext = er32(CTRL_EXT);
5137 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5138 			ew32(CTRL_EXT, ctrl_ext);
5139 		}
5140 
5141 		ew32(WUC, E1000_WUC_PME_EN);
5142 		ew32(WUFC, wufc);
5143 	} else {
5144 		ew32(WUC, 0);
5145 		ew32(WUFC, 0);
5146 	}
5147 
5148 	e1000_release_manageability(adapter);
5149 
5150 	*enable_wake = !!wufc;
5151 
5152 	/* make sure adapter isn't asleep if manageability is enabled */
5153 	if (adapter->en_mng_pt)
5154 		*enable_wake = true;
5155 
5156 	if (netif_running(netdev))
5157 		e1000_free_irq(adapter);
5158 
5159 	pci_disable_device(pdev);
5160 
5161 	return 0;
5162 }
5163 
5164 #ifdef CONFIG_PM
5165 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5166 {
5167 	int retval;
5168 	bool wake;
5169 
5170 	retval = __e1000_shutdown(pdev, &wake);
5171 	if (retval)
5172 		return retval;
5173 
5174 	if (wake) {
5175 		pci_prepare_to_sleep(pdev);
5176 	} else {
5177 		pci_wake_from_d3(pdev, false);
5178 		pci_set_power_state(pdev, PCI_D3hot);
5179 	}
5180 
5181 	return 0;
5182 }
5183 
5184 static int e1000_resume(struct pci_dev *pdev)
5185 {
5186 	struct net_device *netdev = pci_get_drvdata(pdev);
5187 	struct e1000_adapter *adapter = netdev_priv(netdev);
5188 	struct e1000_hw *hw = &adapter->hw;
5189 	u32 err;
5190 
5191 	pci_set_power_state(pdev, PCI_D0);
5192 	pci_restore_state(pdev);
5193 	pci_save_state(pdev);
5194 
5195 	if (adapter->need_ioport)
5196 		err = pci_enable_device(pdev);
5197 	else
5198 		err = pci_enable_device_mem(pdev);
5199 	if (err) {
5200 		pr_err("Cannot enable PCI device from suspend\n");
5201 		return err;
5202 	}
5203 	pci_set_master(pdev);
5204 
5205 	pci_enable_wake(pdev, PCI_D3hot, 0);
5206 	pci_enable_wake(pdev, PCI_D3cold, 0);
5207 
5208 	if (netif_running(netdev)) {
5209 		err = e1000_request_irq(adapter);
5210 		if (err)
5211 			return err;
5212 	}
5213 
5214 	e1000_power_up_phy(adapter);
5215 	e1000_reset(adapter);
5216 	ew32(WUS, ~0);
5217 
5218 	e1000_init_manageability(adapter);
5219 
5220 	if (netif_running(netdev))
5221 		e1000_up(adapter);
5222 
5223 	netif_device_attach(netdev);
5224 
5225 	return 0;
5226 }
5227 #endif
5228 
5229 static void e1000_shutdown(struct pci_dev *pdev)
5230 {
5231 	bool wake;
5232 
5233 	__e1000_shutdown(pdev, &wake);
5234 
5235 	if (system_state == SYSTEM_POWER_OFF) {
5236 		pci_wake_from_d3(pdev, wake);
5237 		pci_set_power_state(pdev, PCI_D3hot);
5238 	}
5239 }
5240 
5241 #ifdef CONFIG_NET_POLL_CONTROLLER
5242 /* Polling 'interrupt' - used by things like netconsole to send skbs
5243  * without having to re-enable interrupts. It's not called while
5244  * the interrupt routine is executing.
5245  */
5246 static void e1000_netpoll(struct net_device *netdev)
5247 {
5248 	struct e1000_adapter *adapter = netdev_priv(netdev);
5249 
5250 	if (disable_hardirq(adapter->pdev->irq))
5251 		e1000_intr(adapter->pdev->irq, netdev);
5252 	enable_irq(adapter->pdev->irq);
5253 }
5254 #endif
5255 
5256 /**
5257  * e1000_io_error_detected - called when PCI error is detected
5258  * @pdev: Pointer to PCI device
5259  * @state: The current pci connection state
5260  *
5261  * This function is called after a PCI bus error affecting
5262  * this device has been detected.
5263  */
5264 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5265 						pci_channel_state_t state)
5266 {
5267 	struct net_device *netdev = pci_get_drvdata(pdev);
5268 	struct e1000_adapter *adapter = netdev_priv(netdev);
5269 
5270 	netif_device_detach(netdev);
5271 
5272 	if (state == pci_channel_io_perm_failure)
5273 		return PCI_ERS_RESULT_DISCONNECT;
5274 
5275 	if (netif_running(netdev))
5276 		e1000_down(adapter);
5277 	pci_disable_device(pdev);
5278 
5279 	/* Request a slot slot reset. */
5280 	return PCI_ERS_RESULT_NEED_RESET;
5281 }
5282 
5283 /**
5284  * e1000_io_slot_reset - called after the pci bus has been reset.
5285  * @pdev: Pointer to PCI device
5286  *
5287  * Restart the card from scratch, as if from a cold-boot. Implementation
5288  * resembles the first-half of the e1000_resume routine.
5289  */
5290 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5291 {
5292 	struct net_device *netdev = pci_get_drvdata(pdev);
5293 	struct e1000_adapter *adapter = netdev_priv(netdev);
5294 	struct e1000_hw *hw = &adapter->hw;
5295 	int err;
5296 
5297 	if (adapter->need_ioport)
5298 		err = pci_enable_device(pdev);
5299 	else
5300 		err = pci_enable_device_mem(pdev);
5301 	if (err) {
5302 		pr_err("Cannot re-enable PCI device after reset.\n");
5303 		return PCI_ERS_RESULT_DISCONNECT;
5304 	}
5305 	pci_set_master(pdev);
5306 
5307 	pci_enable_wake(pdev, PCI_D3hot, 0);
5308 	pci_enable_wake(pdev, PCI_D3cold, 0);
5309 
5310 	e1000_reset(adapter);
5311 	ew32(WUS, ~0);
5312 
5313 	return PCI_ERS_RESULT_RECOVERED;
5314 }
5315 
5316 /**
5317  * e1000_io_resume - called when traffic can start flowing again.
5318  * @pdev: Pointer to PCI device
5319  *
5320  * This callback is called when the error recovery driver tells us that
5321  * its OK to resume normal operation. Implementation resembles the
5322  * second-half of the e1000_resume routine.
5323  */
5324 static void e1000_io_resume(struct pci_dev *pdev)
5325 {
5326 	struct net_device *netdev = pci_get_drvdata(pdev);
5327 	struct e1000_adapter *adapter = netdev_priv(netdev);
5328 
5329 	e1000_init_manageability(adapter);
5330 
5331 	if (netif_running(netdev)) {
5332 		if (e1000_up(adapter)) {
5333 			pr_info("can't bring device back up after reset\n");
5334 			return;
5335 		}
5336 	}
5337 
5338 	netif_device_attach(netdev);
5339 }
5340 
5341 /* e1000_main.c */
5342