1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 #include "e1000.h"
5 #include <net/ip6_checksum.h>
6 #include <linux/io.h>
7 #include <linux/prefetch.h>
8 #include <linux/bitops.h>
9 #include <linux/if_vlan.h>
10 
11 char e1000_driver_name[] = "e1000";
12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13 #define DRV_VERSION "7.3.21-k8-NAPI"
14 const char e1000_driver_version[] = DRV_VERSION;
15 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
16 
17 /* e1000_pci_tbl - PCI Device ID Table
18  *
19  * Last entry must be all 0s
20  *
21  * Macro expands to...
22  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
23  */
24 static const struct pci_device_id e1000_pci_tbl[] = {
25 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
26 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
27 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
28 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
29 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
30 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
31 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
32 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
33 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
34 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
35 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
36 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
37 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
38 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
39 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
40 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
41 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
42 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
43 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
44 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
45 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
46 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
47 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
48 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
49 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
50 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
55 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
56 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
57 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
58 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
60 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
61 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
62 	/* required last entry */
63 	{0,}
64 };
65 
66 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
67 
68 int e1000_up(struct e1000_adapter *adapter);
69 void e1000_down(struct e1000_adapter *adapter);
70 void e1000_reinit_locked(struct e1000_adapter *adapter);
71 void e1000_reset(struct e1000_adapter *adapter);
72 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
73 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
74 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
75 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
76 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
77 				    struct e1000_tx_ring *txdr);
78 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
79 				    struct e1000_rx_ring *rxdr);
80 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
81 				    struct e1000_tx_ring *tx_ring);
82 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
83 				    struct e1000_rx_ring *rx_ring);
84 void e1000_update_stats(struct e1000_adapter *adapter);
85 
86 static int e1000_init_module(void);
87 static void e1000_exit_module(void);
88 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
89 static void e1000_remove(struct pci_dev *pdev);
90 static int e1000_alloc_queues(struct e1000_adapter *adapter);
91 static int e1000_sw_init(struct e1000_adapter *adapter);
92 int e1000_open(struct net_device *netdev);
93 int e1000_close(struct net_device *netdev);
94 static void e1000_configure_tx(struct e1000_adapter *adapter);
95 static void e1000_configure_rx(struct e1000_adapter *adapter);
96 static void e1000_setup_rctl(struct e1000_adapter *adapter);
97 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
98 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
99 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
100 				struct e1000_tx_ring *tx_ring);
101 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
102 				struct e1000_rx_ring *rx_ring);
103 static void e1000_set_rx_mode(struct net_device *netdev);
104 static void e1000_update_phy_info_task(struct work_struct *work);
105 static void e1000_watchdog(struct work_struct *work);
106 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
107 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
108 				    struct net_device *netdev);
109 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
110 static int e1000_set_mac(struct net_device *netdev, void *p);
111 static irqreturn_t e1000_intr(int irq, void *data);
112 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
113 			       struct e1000_tx_ring *tx_ring);
114 static int e1000_clean(struct napi_struct *napi, int budget);
115 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
116 			       struct e1000_rx_ring *rx_ring,
117 			       int *work_done, int work_to_do);
118 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
119 				     struct e1000_rx_ring *rx_ring,
120 				     int *work_done, int work_to_do);
121 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
122 					 struct e1000_rx_ring *rx_ring,
123 					 int cleaned_count)
124 {
125 }
126 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
127 				   struct e1000_rx_ring *rx_ring,
128 				   int cleaned_count);
129 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
130 					 struct e1000_rx_ring *rx_ring,
131 					 int cleaned_count);
132 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
133 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
134 			   int cmd);
135 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
136 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
137 static void e1000_tx_timeout(struct net_device *dev);
138 static void e1000_reset_task(struct work_struct *work);
139 static void e1000_smartspeed(struct e1000_adapter *adapter);
140 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
141 				       struct sk_buff *skb);
142 
143 static bool e1000_vlan_used(struct e1000_adapter *adapter);
144 static void e1000_vlan_mode(struct net_device *netdev,
145 			    netdev_features_t features);
146 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
147 				     bool filter_on);
148 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
149 				 __be16 proto, u16 vid);
150 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
151 				  __be16 proto, u16 vid);
152 static void e1000_restore_vlan(struct e1000_adapter *adapter);
153 
154 #ifdef CONFIG_PM
155 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
156 static int e1000_resume(struct pci_dev *pdev);
157 #endif
158 static void e1000_shutdown(struct pci_dev *pdev);
159 
160 #ifdef CONFIG_NET_POLL_CONTROLLER
161 /* for netdump / net console */
162 static void e1000_netpoll (struct net_device *netdev);
163 #endif
164 
165 #define COPYBREAK_DEFAULT 256
166 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
167 module_param(copybreak, uint, 0644);
168 MODULE_PARM_DESC(copybreak,
169 	"Maximum size of packet that is copied to a new buffer on receive");
170 
171 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
172 						pci_channel_state_t state);
173 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
174 static void e1000_io_resume(struct pci_dev *pdev);
175 
176 static const struct pci_error_handlers e1000_err_handler = {
177 	.error_detected = e1000_io_error_detected,
178 	.slot_reset = e1000_io_slot_reset,
179 	.resume = e1000_io_resume,
180 };
181 
182 static struct pci_driver e1000_driver = {
183 	.name     = e1000_driver_name,
184 	.id_table = e1000_pci_tbl,
185 	.probe    = e1000_probe,
186 	.remove   = e1000_remove,
187 #ifdef CONFIG_PM
188 	/* Power Management Hooks */
189 	.suspend  = e1000_suspend,
190 	.resume   = e1000_resume,
191 #endif
192 	.shutdown = e1000_shutdown,
193 	.err_handler = &e1000_err_handler
194 };
195 
196 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
197 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
198 MODULE_LICENSE("GPL");
199 MODULE_VERSION(DRV_VERSION);
200 
201 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
202 static int debug = -1;
203 module_param(debug, int, 0);
204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
205 
206 /**
207  * e1000_get_hw_dev - return device
208  * used by hardware layer to print debugging information
209  *
210  **/
211 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
212 {
213 	struct e1000_adapter *adapter = hw->back;
214 	return adapter->netdev;
215 }
216 
217 /**
218  * e1000_init_module - Driver Registration Routine
219  *
220  * e1000_init_module is the first routine called when the driver is
221  * loaded. All it does is register with the PCI subsystem.
222  **/
223 static int __init e1000_init_module(void)
224 {
225 	int ret;
226 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
227 
228 	pr_info("%s\n", e1000_copyright);
229 
230 	ret = pci_register_driver(&e1000_driver);
231 	if (copybreak != COPYBREAK_DEFAULT) {
232 		if (copybreak == 0)
233 			pr_info("copybreak disabled\n");
234 		else
235 			pr_info("copybreak enabled for "
236 				   "packets <= %u bytes\n", copybreak);
237 	}
238 	return ret;
239 }
240 
241 module_init(e1000_init_module);
242 
243 /**
244  * e1000_exit_module - Driver Exit Cleanup Routine
245  *
246  * e1000_exit_module is called just before the driver is removed
247  * from memory.
248  **/
249 static void __exit e1000_exit_module(void)
250 {
251 	pci_unregister_driver(&e1000_driver);
252 }
253 
254 module_exit(e1000_exit_module);
255 
256 static int e1000_request_irq(struct e1000_adapter *adapter)
257 {
258 	struct net_device *netdev = adapter->netdev;
259 	irq_handler_t handler = e1000_intr;
260 	int irq_flags = IRQF_SHARED;
261 	int err;
262 
263 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
264 			  netdev);
265 	if (err) {
266 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
267 	}
268 
269 	return err;
270 }
271 
272 static void e1000_free_irq(struct e1000_adapter *adapter)
273 {
274 	struct net_device *netdev = adapter->netdev;
275 
276 	free_irq(adapter->pdev->irq, netdev);
277 }
278 
279 /**
280  * e1000_irq_disable - Mask off interrupt generation on the NIC
281  * @adapter: board private structure
282  **/
283 static void e1000_irq_disable(struct e1000_adapter *adapter)
284 {
285 	struct e1000_hw *hw = &adapter->hw;
286 
287 	ew32(IMC, ~0);
288 	E1000_WRITE_FLUSH();
289 	synchronize_irq(adapter->pdev->irq);
290 }
291 
292 /**
293  * e1000_irq_enable - Enable default interrupt generation settings
294  * @adapter: board private structure
295  **/
296 static void e1000_irq_enable(struct e1000_adapter *adapter)
297 {
298 	struct e1000_hw *hw = &adapter->hw;
299 
300 	ew32(IMS, IMS_ENABLE_MASK);
301 	E1000_WRITE_FLUSH();
302 }
303 
304 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
305 {
306 	struct e1000_hw *hw = &adapter->hw;
307 	struct net_device *netdev = adapter->netdev;
308 	u16 vid = hw->mng_cookie.vlan_id;
309 	u16 old_vid = adapter->mng_vlan_id;
310 
311 	if (!e1000_vlan_used(adapter))
312 		return;
313 
314 	if (!test_bit(vid, adapter->active_vlans)) {
315 		if (hw->mng_cookie.status &
316 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
317 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
318 			adapter->mng_vlan_id = vid;
319 		} else {
320 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
321 		}
322 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
323 		    (vid != old_vid) &&
324 		    !test_bit(old_vid, adapter->active_vlans))
325 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
326 					       old_vid);
327 	} else {
328 		adapter->mng_vlan_id = vid;
329 	}
330 }
331 
332 static void e1000_init_manageability(struct e1000_adapter *adapter)
333 {
334 	struct e1000_hw *hw = &adapter->hw;
335 
336 	if (adapter->en_mng_pt) {
337 		u32 manc = er32(MANC);
338 
339 		/* disable hardware interception of ARP */
340 		manc &= ~(E1000_MANC_ARP_EN);
341 
342 		ew32(MANC, manc);
343 	}
344 }
345 
346 static void e1000_release_manageability(struct e1000_adapter *adapter)
347 {
348 	struct e1000_hw *hw = &adapter->hw;
349 
350 	if (adapter->en_mng_pt) {
351 		u32 manc = er32(MANC);
352 
353 		/* re-enable hardware interception of ARP */
354 		manc |= E1000_MANC_ARP_EN;
355 
356 		ew32(MANC, manc);
357 	}
358 }
359 
360 /**
361  * e1000_configure - configure the hardware for RX and TX
362  * @adapter = private board structure
363  **/
364 static void e1000_configure(struct e1000_adapter *adapter)
365 {
366 	struct net_device *netdev = adapter->netdev;
367 	int i;
368 
369 	e1000_set_rx_mode(netdev);
370 
371 	e1000_restore_vlan(adapter);
372 	e1000_init_manageability(adapter);
373 
374 	e1000_configure_tx(adapter);
375 	e1000_setup_rctl(adapter);
376 	e1000_configure_rx(adapter);
377 	/* call E1000_DESC_UNUSED which always leaves
378 	 * at least 1 descriptor unused to make sure
379 	 * next_to_use != next_to_clean
380 	 */
381 	for (i = 0; i < adapter->num_rx_queues; i++) {
382 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
383 		adapter->alloc_rx_buf(adapter, ring,
384 				      E1000_DESC_UNUSED(ring));
385 	}
386 }
387 
388 int e1000_up(struct e1000_adapter *adapter)
389 {
390 	struct e1000_hw *hw = &adapter->hw;
391 
392 	/* hardware has been reset, we need to reload some things */
393 	e1000_configure(adapter);
394 
395 	clear_bit(__E1000_DOWN, &adapter->flags);
396 
397 	napi_enable(&adapter->napi);
398 
399 	e1000_irq_enable(adapter);
400 
401 	netif_wake_queue(adapter->netdev);
402 
403 	/* fire a link change interrupt to start the watchdog */
404 	ew32(ICS, E1000_ICS_LSC);
405 	return 0;
406 }
407 
408 /**
409  * e1000_power_up_phy - restore link in case the phy was powered down
410  * @adapter: address of board private structure
411  *
412  * The phy may be powered down to save power and turn off link when the
413  * driver is unloaded and wake on lan is not enabled (among others)
414  * *** this routine MUST be followed by a call to e1000_reset ***
415  **/
416 void e1000_power_up_phy(struct e1000_adapter *adapter)
417 {
418 	struct e1000_hw *hw = &adapter->hw;
419 	u16 mii_reg = 0;
420 
421 	/* Just clear the power down bit to wake the phy back up */
422 	if (hw->media_type == e1000_media_type_copper) {
423 		/* according to the manual, the phy will retain its
424 		 * settings across a power-down/up cycle
425 		 */
426 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
427 		mii_reg &= ~MII_CR_POWER_DOWN;
428 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
429 	}
430 }
431 
432 static void e1000_power_down_phy(struct e1000_adapter *adapter)
433 {
434 	struct e1000_hw *hw = &adapter->hw;
435 
436 	/* Power down the PHY so no link is implied when interface is down *
437 	 * The PHY cannot be powered down if any of the following is true *
438 	 * (a) WoL is enabled
439 	 * (b) AMT is active
440 	 * (c) SoL/IDER session is active
441 	 */
442 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
443 	   hw->media_type == e1000_media_type_copper) {
444 		u16 mii_reg = 0;
445 
446 		switch (hw->mac_type) {
447 		case e1000_82540:
448 		case e1000_82545:
449 		case e1000_82545_rev_3:
450 		case e1000_82546:
451 		case e1000_ce4100:
452 		case e1000_82546_rev_3:
453 		case e1000_82541:
454 		case e1000_82541_rev_2:
455 		case e1000_82547:
456 		case e1000_82547_rev_2:
457 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
458 				goto out;
459 			break;
460 		default:
461 			goto out;
462 		}
463 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
464 		mii_reg |= MII_CR_POWER_DOWN;
465 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
466 		msleep(1);
467 	}
468 out:
469 	return;
470 }
471 
472 static void e1000_down_and_stop(struct e1000_adapter *adapter)
473 {
474 	set_bit(__E1000_DOWN, &adapter->flags);
475 
476 	cancel_delayed_work_sync(&adapter->watchdog_task);
477 
478 	/*
479 	 * Since the watchdog task can reschedule other tasks, we should cancel
480 	 * it first, otherwise we can run into the situation when a work is
481 	 * still running after the adapter has been turned down.
482 	 */
483 
484 	cancel_delayed_work_sync(&adapter->phy_info_task);
485 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
486 
487 	/* Only kill reset task if adapter is not resetting */
488 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
489 		cancel_work_sync(&adapter->reset_task);
490 }
491 
492 void e1000_down(struct e1000_adapter *adapter)
493 {
494 	struct e1000_hw *hw = &adapter->hw;
495 	struct net_device *netdev = adapter->netdev;
496 	u32 rctl, tctl;
497 
498 	/* disable receives in the hardware */
499 	rctl = er32(RCTL);
500 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
501 	/* flush and sleep below */
502 
503 	netif_tx_disable(netdev);
504 
505 	/* disable transmits in the hardware */
506 	tctl = er32(TCTL);
507 	tctl &= ~E1000_TCTL_EN;
508 	ew32(TCTL, tctl);
509 	/* flush both disables and wait for them to finish */
510 	E1000_WRITE_FLUSH();
511 	msleep(10);
512 
513 	/* Set the carrier off after transmits have been disabled in the
514 	 * hardware, to avoid race conditions with e1000_watchdog() (which
515 	 * may be running concurrently to us, checking for the carrier
516 	 * bit to decide whether it should enable transmits again). Such
517 	 * a race condition would result into transmission being disabled
518 	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
519 	 */
520 	netif_carrier_off(netdev);
521 
522 	napi_disable(&adapter->napi);
523 
524 	e1000_irq_disable(adapter);
525 
526 	/* Setting DOWN must be after irq_disable to prevent
527 	 * a screaming interrupt.  Setting DOWN also prevents
528 	 * tasks from rescheduling.
529 	 */
530 	e1000_down_and_stop(adapter);
531 
532 	adapter->link_speed = 0;
533 	adapter->link_duplex = 0;
534 
535 	e1000_reset(adapter);
536 	e1000_clean_all_tx_rings(adapter);
537 	e1000_clean_all_rx_rings(adapter);
538 }
539 
540 void e1000_reinit_locked(struct e1000_adapter *adapter)
541 {
542 	WARN_ON(in_interrupt());
543 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
544 		msleep(1);
545 	e1000_down(adapter);
546 	e1000_up(adapter);
547 	clear_bit(__E1000_RESETTING, &adapter->flags);
548 }
549 
550 void e1000_reset(struct e1000_adapter *adapter)
551 {
552 	struct e1000_hw *hw = &adapter->hw;
553 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554 	bool legacy_pba_adjust = false;
555 	u16 hwm;
556 
557 	/* Repartition Pba for greater than 9k mtu
558 	 * To take effect CTRL.RST is required.
559 	 */
560 
561 	switch (hw->mac_type) {
562 	case e1000_82542_rev2_0:
563 	case e1000_82542_rev2_1:
564 	case e1000_82543:
565 	case e1000_82544:
566 	case e1000_82540:
567 	case e1000_82541:
568 	case e1000_82541_rev_2:
569 		legacy_pba_adjust = true;
570 		pba = E1000_PBA_48K;
571 		break;
572 	case e1000_82545:
573 	case e1000_82545_rev_3:
574 	case e1000_82546:
575 	case e1000_ce4100:
576 	case e1000_82546_rev_3:
577 		pba = E1000_PBA_48K;
578 		break;
579 	case e1000_82547:
580 	case e1000_82547_rev_2:
581 		legacy_pba_adjust = true;
582 		pba = E1000_PBA_30K;
583 		break;
584 	case e1000_undefined:
585 	case e1000_num_macs:
586 		break;
587 	}
588 
589 	if (legacy_pba_adjust) {
590 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
591 			pba -= 8; /* allocate more FIFO for Tx */
592 
593 		if (hw->mac_type == e1000_82547) {
594 			adapter->tx_fifo_head = 0;
595 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 			adapter->tx_fifo_size =
597 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 			atomic_set(&adapter->tx_fifo_stall, 0);
599 		}
600 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
601 		/* adjust PBA for jumbo frames */
602 		ew32(PBA, pba);
603 
604 		/* To maintain wire speed transmits, the Tx FIFO should be
605 		 * large enough to accommodate two full transmit packets,
606 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
607 		 * the Rx FIFO should be large enough to accommodate at least
608 		 * one full receive packet and is similarly rounded up and
609 		 * expressed in KB.
610 		 */
611 		pba = er32(PBA);
612 		/* upper 16 bits has Tx packet buffer allocation size in KB */
613 		tx_space = pba >> 16;
614 		/* lower 16 bits has Rx packet buffer allocation size in KB */
615 		pba &= 0xffff;
616 		/* the Tx fifo also stores 16 bytes of information about the Tx
617 		 * but don't include ethernet FCS because hardware appends it
618 		 */
619 		min_tx_space = (hw->max_frame_size +
620 				sizeof(struct e1000_tx_desc) -
621 				ETH_FCS_LEN) * 2;
622 		min_tx_space = ALIGN(min_tx_space, 1024);
623 		min_tx_space >>= 10;
624 		/* software strips receive CRC, so leave room for it */
625 		min_rx_space = hw->max_frame_size;
626 		min_rx_space = ALIGN(min_rx_space, 1024);
627 		min_rx_space >>= 10;
628 
629 		/* If current Tx allocation is less than the min Tx FIFO size,
630 		 * and the min Tx FIFO size is less than the current Rx FIFO
631 		 * allocation, take space away from current Rx allocation
632 		 */
633 		if (tx_space < min_tx_space &&
634 		    ((min_tx_space - tx_space) < pba)) {
635 			pba = pba - (min_tx_space - tx_space);
636 
637 			/* PCI/PCIx hardware has PBA alignment constraints */
638 			switch (hw->mac_type) {
639 			case e1000_82545 ... e1000_82546_rev_3:
640 				pba &= ~(E1000_PBA_8K - 1);
641 				break;
642 			default:
643 				break;
644 			}
645 
646 			/* if short on Rx space, Rx wins and must trump Tx
647 			 * adjustment or use Early Receive if available
648 			 */
649 			if (pba < min_rx_space)
650 				pba = min_rx_space;
651 		}
652 	}
653 
654 	ew32(PBA, pba);
655 
656 	/* flow control settings:
657 	 * The high water mark must be low enough to fit one full frame
658 	 * (or the size used for early receive) above it in the Rx FIFO.
659 	 * Set it to the lower of:
660 	 * - 90% of the Rx FIFO size, and
661 	 * - the full Rx FIFO size minus the early receive size (for parts
662 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
663 	 * - the full Rx FIFO size minus one full frame
664 	 */
665 	hwm = min(((pba << 10) * 9 / 10),
666 		  ((pba << 10) - hw->max_frame_size));
667 
668 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
669 	hw->fc_low_water = hw->fc_high_water - 8;
670 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671 	hw->fc_send_xon = 1;
672 	hw->fc = hw->original_fc;
673 
674 	/* Allow time for pending master requests to run */
675 	e1000_reset_hw(hw);
676 	if (hw->mac_type >= e1000_82544)
677 		ew32(WUC, 0);
678 
679 	if (e1000_init_hw(hw))
680 		e_dev_err("Hardware Error\n");
681 	e1000_update_mng_vlan(adapter);
682 
683 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684 	if (hw->mac_type >= e1000_82544 &&
685 	    hw->autoneg == 1 &&
686 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687 		u32 ctrl = er32(CTRL);
688 		/* clear phy power management bit if we are in gig only mode,
689 		 * which if enabled will attempt negotiation to 100Mb, which
690 		 * can cause a loss of link at power off or driver unload
691 		 */
692 		ctrl &= ~E1000_CTRL_SWDPIN3;
693 		ew32(CTRL, ctrl);
694 	}
695 
696 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698 
699 	e1000_reset_adaptive(hw);
700 	e1000_phy_get_info(hw, &adapter->phy_info);
701 
702 	e1000_release_manageability(adapter);
703 }
704 
705 /* Dump the eeprom for users having checksum issues */
706 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707 {
708 	struct net_device *netdev = adapter->netdev;
709 	struct ethtool_eeprom eeprom;
710 	const struct ethtool_ops *ops = netdev->ethtool_ops;
711 	u8 *data;
712 	int i;
713 	u16 csum_old, csum_new = 0;
714 
715 	eeprom.len = ops->get_eeprom_len(netdev);
716 	eeprom.offset = 0;
717 
718 	data = kmalloc(eeprom.len, GFP_KERNEL);
719 	if (!data)
720 		return;
721 
722 	ops->get_eeprom(netdev, &eeprom, data);
723 
724 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727 		csum_new += data[i] + (data[i + 1] << 8);
728 	csum_new = EEPROM_SUM - csum_new;
729 
730 	pr_err("/*********************/\n");
731 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732 	pr_err("Calculated              : 0x%04x\n", csum_new);
733 
734 	pr_err("Offset    Values\n");
735 	pr_err("========  ======\n");
736 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737 
738 	pr_err("Include this output when contacting your support provider.\n");
739 	pr_err("This is not a software error! Something bad happened to\n");
740 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741 	pr_err("result in further problems, possibly loss of data,\n");
742 	pr_err("corruption or system hangs!\n");
743 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744 	pr_err("which is invalid and requires you to set the proper MAC\n");
745 	pr_err("address manually before continuing to enable this network\n");
746 	pr_err("device. Please inspect the EEPROM dump and report the\n");
747 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748 	pr_err("/*********************/\n");
749 
750 	kfree(data);
751 }
752 
753 /**
754  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755  * @pdev: PCI device information struct
756  *
757  * Return true if an adapter needs ioport resources
758  **/
759 static int e1000_is_need_ioport(struct pci_dev *pdev)
760 {
761 	switch (pdev->device) {
762 	case E1000_DEV_ID_82540EM:
763 	case E1000_DEV_ID_82540EM_LOM:
764 	case E1000_DEV_ID_82540EP:
765 	case E1000_DEV_ID_82540EP_LOM:
766 	case E1000_DEV_ID_82540EP_LP:
767 	case E1000_DEV_ID_82541EI:
768 	case E1000_DEV_ID_82541EI_MOBILE:
769 	case E1000_DEV_ID_82541ER:
770 	case E1000_DEV_ID_82541ER_LOM:
771 	case E1000_DEV_ID_82541GI:
772 	case E1000_DEV_ID_82541GI_LF:
773 	case E1000_DEV_ID_82541GI_MOBILE:
774 	case E1000_DEV_ID_82544EI_COPPER:
775 	case E1000_DEV_ID_82544EI_FIBER:
776 	case E1000_DEV_ID_82544GC_COPPER:
777 	case E1000_DEV_ID_82544GC_LOM:
778 	case E1000_DEV_ID_82545EM_COPPER:
779 	case E1000_DEV_ID_82545EM_FIBER:
780 	case E1000_DEV_ID_82546EB_COPPER:
781 	case E1000_DEV_ID_82546EB_FIBER:
782 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
783 		return true;
784 	default:
785 		return false;
786 	}
787 }
788 
789 static netdev_features_t e1000_fix_features(struct net_device *netdev,
790 	netdev_features_t features)
791 {
792 	/* Since there is no support for separate Rx/Tx vlan accel
793 	 * enable/disable make sure Tx flag is always in same state as Rx.
794 	 */
795 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
796 		features |= NETIF_F_HW_VLAN_CTAG_TX;
797 	else
798 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799 
800 	return features;
801 }
802 
803 static int e1000_set_features(struct net_device *netdev,
804 	netdev_features_t features)
805 {
806 	struct e1000_adapter *adapter = netdev_priv(netdev);
807 	netdev_features_t changed = features ^ netdev->features;
808 
809 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810 		e1000_vlan_mode(netdev, features);
811 
812 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813 		return 0;
814 
815 	netdev->features = features;
816 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817 
818 	if (netif_running(netdev))
819 		e1000_reinit_locked(adapter);
820 	else
821 		e1000_reset(adapter);
822 
823 	return 0;
824 }
825 
826 static const struct net_device_ops e1000_netdev_ops = {
827 	.ndo_open		= e1000_open,
828 	.ndo_stop		= e1000_close,
829 	.ndo_start_xmit		= e1000_xmit_frame,
830 	.ndo_set_rx_mode	= e1000_set_rx_mode,
831 	.ndo_set_mac_address	= e1000_set_mac,
832 	.ndo_tx_timeout		= e1000_tx_timeout,
833 	.ndo_change_mtu		= e1000_change_mtu,
834 	.ndo_do_ioctl		= e1000_ioctl,
835 	.ndo_validate_addr	= eth_validate_addr,
836 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
837 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
838 #ifdef CONFIG_NET_POLL_CONTROLLER
839 	.ndo_poll_controller	= e1000_netpoll,
840 #endif
841 	.ndo_fix_features	= e1000_fix_features,
842 	.ndo_set_features	= e1000_set_features,
843 };
844 
845 /**
846  * e1000_init_hw_struct - initialize members of hw struct
847  * @adapter: board private struct
848  * @hw: structure used by e1000_hw.c
849  *
850  * Factors out initialization of the e1000_hw struct to its own function
851  * that can be called very early at init (just after struct allocation).
852  * Fields are initialized based on PCI device information and
853  * OS network device settings (MTU size).
854  * Returns negative error codes if MAC type setup fails.
855  */
856 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857 				struct e1000_hw *hw)
858 {
859 	struct pci_dev *pdev = adapter->pdev;
860 
861 	/* PCI config space info */
862 	hw->vendor_id = pdev->vendor;
863 	hw->device_id = pdev->device;
864 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
865 	hw->subsystem_id = pdev->subsystem_device;
866 	hw->revision_id = pdev->revision;
867 
868 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869 
870 	hw->max_frame_size = adapter->netdev->mtu +
871 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873 
874 	/* identify the MAC */
875 	if (e1000_set_mac_type(hw)) {
876 		e_err(probe, "Unknown MAC Type\n");
877 		return -EIO;
878 	}
879 
880 	switch (hw->mac_type) {
881 	default:
882 		break;
883 	case e1000_82541:
884 	case e1000_82547:
885 	case e1000_82541_rev_2:
886 	case e1000_82547_rev_2:
887 		hw->phy_init_script = 1;
888 		break;
889 	}
890 
891 	e1000_set_media_type(hw);
892 	e1000_get_bus_info(hw);
893 
894 	hw->wait_autoneg_complete = false;
895 	hw->tbi_compatibility_en = true;
896 	hw->adaptive_ifs = true;
897 
898 	/* Copper options */
899 
900 	if (hw->media_type == e1000_media_type_copper) {
901 		hw->mdix = AUTO_ALL_MODES;
902 		hw->disable_polarity_correction = false;
903 		hw->master_slave = E1000_MASTER_SLAVE;
904 	}
905 
906 	return 0;
907 }
908 
909 /**
910  * e1000_probe - Device Initialization Routine
911  * @pdev: PCI device information struct
912  * @ent: entry in e1000_pci_tbl
913  *
914  * Returns 0 on success, negative on failure
915  *
916  * e1000_probe initializes an adapter identified by a pci_dev structure.
917  * The OS initialization, configuring of the adapter private structure,
918  * and a hardware reset occur.
919  **/
920 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921 {
922 	struct net_device *netdev;
923 	struct e1000_adapter *adapter = NULL;
924 	struct e1000_hw *hw;
925 
926 	static int cards_found;
927 	static int global_quad_port_a; /* global ksp3 port a indication */
928 	int i, err, pci_using_dac;
929 	u16 eeprom_data = 0;
930 	u16 tmp = 0;
931 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
932 	int bars, need_ioport;
933 	bool disable_dev = false;
934 
935 	/* do not allocate ioport bars when not needed */
936 	need_ioport = e1000_is_need_ioport(pdev);
937 	if (need_ioport) {
938 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939 		err = pci_enable_device(pdev);
940 	} else {
941 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
942 		err = pci_enable_device_mem(pdev);
943 	}
944 	if (err)
945 		return err;
946 
947 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948 	if (err)
949 		goto err_pci_reg;
950 
951 	pci_set_master(pdev);
952 	err = pci_save_state(pdev);
953 	if (err)
954 		goto err_alloc_etherdev;
955 
956 	err = -ENOMEM;
957 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958 	if (!netdev)
959 		goto err_alloc_etherdev;
960 
961 	SET_NETDEV_DEV(netdev, &pdev->dev);
962 
963 	pci_set_drvdata(pdev, netdev);
964 	adapter = netdev_priv(netdev);
965 	adapter->netdev = netdev;
966 	adapter->pdev = pdev;
967 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968 	adapter->bars = bars;
969 	adapter->need_ioport = need_ioport;
970 
971 	hw = &adapter->hw;
972 	hw->back = adapter;
973 
974 	err = -EIO;
975 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976 	if (!hw->hw_addr)
977 		goto err_ioremap;
978 
979 	if (adapter->need_ioport) {
980 		for (i = BAR_1; i <= BAR_5; i++) {
981 			if (pci_resource_len(pdev, i) == 0)
982 				continue;
983 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984 				hw->io_base = pci_resource_start(pdev, i);
985 				break;
986 			}
987 		}
988 	}
989 
990 	/* make ready for any if (hw->...) below */
991 	err = e1000_init_hw_struct(adapter, hw);
992 	if (err)
993 		goto err_sw_init;
994 
995 	/* there is a workaround being applied below that limits
996 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
997 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998 	 */
999 	pci_using_dac = 0;
1000 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1001 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002 		pci_using_dac = 1;
1003 	} else {
1004 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005 		if (err) {
1006 			pr_err("No usable DMA config, aborting\n");
1007 			goto err_dma;
1008 		}
1009 	}
1010 
1011 	netdev->netdev_ops = &e1000_netdev_ops;
1012 	e1000_set_ethtool_ops(netdev);
1013 	netdev->watchdog_timeo = 5 * HZ;
1014 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1015 
1016 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1017 
1018 	adapter->bd_number = cards_found;
1019 
1020 	/* setup the private structure */
1021 
1022 	err = e1000_sw_init(adapter);
1023 	if (err)
1024 		goto err_sw_init;
1025 
1026 	err = -EIO;
1027 	if (hw->mac_type == e1000_ce4100) {
1028 		hw->ce4100_gbe_mdio_base_virt =
1029 					ioremap(pci_resource_start(pdev, BAR_1),
1030 						pci_resource_len(pdev, BAR_1));
1031 
1032 		if (!hw->ce4100_gbe_mdio_base_virt)
1033 			goto err_mdio_ioremap;
1034 	}
1035 
1036 	if (hw->mac_type >= e1000_82543) {
1037 		netdev->hw_features = NETIF_F_SG |
1038 				   NETIF_F_HW_CSUM |
1039 				   NETIF_F_HW_VLAN_CTAG_RX;
1040 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1042 	}
1043 
1044 	if ((hw->mac_type >= e1000_82544) &&
1045 	   (hw->mac_type != e1000_82547))
1046 		netdev->hw_features |= NETIF_F_TSO;
1047 
1048 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1049 
1050 	netdev->features |= netdev->hw_features;
1051 	netdev->hw_features |= (NETIF_F_RXCSUM |
1052 				NETIF_F_RXALL |
1053 				NETIF_F_RXFCS);
1054 
1055 	if (pci_using_dac) {
1056 		netdev->features |= NETIF_F_HIGHDMA;
1057 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1058 	}
1059 
1060 	netdev->vlan_features |= (NETIF_F_TSO |
1061 				  NETIF_F_HW_CSUM |
1062 				  NETIF_F_SG);
1063 
1064 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067 		netdev->priv_flags |= IFF_UNICAST_FLT;
1068 
1069 	/* MTU range: 46 - 16110 */
1070 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072 
1073 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074 
1075 	/* initialize eeprom parameters */
1076 	if (e1000_init_eeprom_params(hw)) {
1077 		e_err(probe, "EEPROM initialization failed\n");
1078 		goto err_eeprom;
1079 	}
1080 
1081 	/* before reading the EEPROM, reset the controller to
1082 	 * put the device in a known good starting state
1083 	 */
1084 
1085 	e1000_reset_hw(hw);
1086 
1087 	/* make sure the EEPROM is good */
1088 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1089 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090 		e1000_dump_eeprom(adapter);
1091 		/* set MAC address to all zeroes to invalidate and temporary
1092 		 * disable this device for the user. This blocks regular
1093 		 * traffic while still permitting ethtool ioctls from reaching
1094 		 * the hardware as well as allowing the user to run the
1095 		 * interface after manually setting a hw addr using
1096 		 * `ip set address`
1097 		 */
1098 		memset(hw->mac_addr, 0, netdev->addr_len);
1099 	} else {
1100 		/* copy the MAC address out of the EEPROM */
1101 		if (e1000_read_mac_addr(hw))
1102 			e_err(probe, "EEPROM Read Error\n");
1103 	}
1104 	/* don't block initialization here due to bad MAC address */
1105 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1106 
1107 	if (!is_valid_ether_addr(netdev->dev_addr))
1108 		e_err(probe, "Invalid MAC Address\n");
1109 
1110 
1111 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113 			  e1000_82547_tx_fifo_stall_task);
1114 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116 
1117 	e1000_check_options(adapter);
1118 
1119 	/* Initial Wake on LAN setting
1120 	 * If APM wake is enabled in the EEPROM,
1121 	 * enable the ACPI Magic Packet filter
1122 	 */
1123 
1124 	switch (hw->mac_type) {
1125 	case e1000_82542_rev2_0:
1126 	case e1000_82542_rev2_1:
1127 	case e1000_82543:
1128 		break;
1129 	case e1000_82544:
1130 		e1000_read_eeprom(hw,
1131 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133 		break;
1134 	case e1000_82546:
1135 	case e1000_82546_rev_3:
1136 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137 			e1000_read_eeprom(hw,
1138 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 			break;
1140 		}
1141 		/* Fall Through */
1142 	default:
1143 		e1000_read_eeprom(hw,
1144 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 		break;
1146 	}
1147 	if (eeprom_data & eeprom_apme_mask)
1148 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1149 
1150 	/* now that we have the eeprom settings, apply the special cases
1151 	 * where the eeprom may be wrong or the board simply won't support
1152 	 * wake on lan on a particular port
1153 	 */
1154 	switch (pdev->device) {
1155 	case E1000_DEV_ID_82546GB_PCIE:
1156 		adapter->eeprom_wol = 0;
1157 		break;
1158 	case E1000_DEV_ID_82546EB_FIBER:
1159 	case E1000_DEV_ID_82546GB_FIBER:
1160 		/* Wake events only supported on port A for dual fiber
1161 		 * regardless of eeprom setting
1162 		 */
1163 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164 			adapter->eeprom_wol = 0;
1165 		break;
1166 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167 		/* if quad port adapter, disable WoL on all but port A */
1168 		if (global_quad_port_a != 0)
1169 			adapter->eeprom_wol = 0;
1170 		else
1171 			adapter->quad_port_a = true;
1172 		/* Reset for multiple quad port adapters */
1173 		if (++global_quad_port_a == 4)
1174 			global_quad_port_a = 0;
1175 		break;
1176 	}
1177 
1178 	/* initialize the wol settings based on the eeprom settings */
1179 	adapter->wol = adapter->eeprom_wol;
1180 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181 
1182 	/* Auto detect PHY address */
1183 	if (hw->mac_type == e1000_ce4100) {
1184 		for (i = 0; i < 32; i++) {
1185 			hw->phy_addr = i;
1186 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187 
1188 			if (tmp != 0 && tmp != 0xFF)
1189 				break;
1190 		}
1191 
1192 		if (i >= 32)
1193 			goto err_eeprom;
1194 	}
1195 
1196 	/* reset the hardware with the new settings */
1197 	e1000_reset(adapter);
1198 
1199 	strcpy(netdev->name, "eth%d");
1200 	err = register_netdev(netdev);
1201 	if (err)
1202 		goto err_register;
1203 
1204 	e1000_vlan_filter_on_off(adapter, false);
1205 
1206 	/* print bus type/speed/width info */
1207 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214 	       netdev->dev_addr);
1215 
1216 	/* carrier off reporting is important to ethtool even BEFORE open */
1217 	netif_carrier_off(netdev);
1218 
1219 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220 
1221 	cards_found++;
1222 	return 0;
1223 
1224 err_register:
1225 err_eeprom:
1226 	e1000_phy_hw_reset(hw);
1227 
1228 	if (hw->flash_address)
1229 		iounmap(hw->flash_address);
1230 	kfree(adapter->tx_ring);
1231 	kfree(adapter->rx_ring);
1232 err_dma:
1233 err_sw_init:
1234 err_mdio_ioremap:
1235 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1236 	iounmap(hw->hw_addr);
1237 err_ioremap:
1238 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239 	free_netdev(netdev);
1240 err_alloc_etherdev:
1241 	pci_release_selected_regions(pdev, bars);
1242 err_pci_reg:
1243 	if (!adapter || disable_dev)
1244 		pci_disable_device(pdev);
1245 	return err;
1246 }
1247 
1248 /**
1249  * e1000_remove - Device Removal Routine
1250  * @pdev: PCI device information struct
1251  *
1252  * e1000_remove is called by the PCI subsystem to alert the driver
1253  * that it should release a PCI device. That could be caused by a
1254  * Hot-Plug event, or because the driver is going to be removed from
1255  * memory.
1256  **/
1257 static void e1000_remove(struct pci_dev *pdev)
1258 {
1259 	struct net_device *netdev = pci_get_drvdata(pdev);
1260 	struct e1000_adapter *adapter = netdev_priv(netdev);
1261 	struct e1000_hw *hw = &adapter->hw;
1262 	bool disable_dev;
1263 
1264 	e1000_down_and_stop(adapter);
1265 	e1000_release_manageability(adapter);
1266 
1267 	unregister_netdev(netdev);
1268 
1269 	e1000_phy_hw_reset(hw);
1270 
1271 	kfree(adapter->tx_ring);
1272 	kfree(adapter->rx_ring);
1273 
1274 	if (hw->mac_type == e1000_ce4100)
1275 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1276 	iounmap(hw->hw_addr);
1277 	if (hw->flash_address)
1278 		iounmap(hw->flash_address);
1279 	pci_release_selected_regions(pdev, adapter->bars);
1280 
1281 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282 	free_netdev(netdev);
1283 
1284 	if (disable_dev)
1285 		pci_disable_device(pdev);
1286 }
1287 
1288 /**
1289  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290  * @adapter: board private structure to initialize
1291  *
1292  * e1000_sw_init initializes the Adapter private data structure.
1293  * e1000_init_hw_struct MUST be called before this function
1294  **/
1295 static int e1000_sw_init(struct e1000_adapter *adapter)
1296 {
1297 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298 
1299 	adapter->num_tx_queues = 1;
1300 	adapter->num_rx_queues = 1;
1301 
1302 	if (e1000_alloc_queues(adapter)) {
1303 		e_err(probe, "Unable to allocate memory for queues\n");
1304 		return -ENOMEM;
1305 	}
1306 
1307 	/* Explicitly disable IRQ since the NIC can be in any state. */
1308 	e1000_irq_disable(adapter);
1309 
1310 	spin_lock_init(&adapter->stats_lock);
1311 
1312 	set_bit(__E1000_DOWN, &adapter->flags);
1313 
1314 	return 0;
1315 }
1316 
1317 /**
1318  * e1000_alloc_queues - Allocate memory for all rings
1319  * @adapter: board private structure to initialize
1320  *
1321  * We allocate one ring per queue at run-time since we don't know the
1322  * number of queues at compile-time.
1323  **/
1324 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325 {
1326 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328 	if (!adapter->tx_ring)
1329 		return -ENOMEM;
1330 
1331 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333 	if (!adapter->rx_ring) {
1334 		kfree(adapter->tx_ring);
1335 		return -ENOMEM;
1336 	}
1337 
1338 	return E1000_SUCCESS;
1339 }
1340 
1341 /**
1342  * e1000_open - Called when a network interface is made active
1343  * @netdev: network interface device structure
1344  *
1345  * Returns 0 on success, negative value on failure
1346  *
1347  * The open entry point is called when a network interface is made
1348  * active by the system (IFF_UP).  At this point all resources needed
1349  * for transmit and receive operations are allocated, the interrupt
1350  * handler is registered with the OS, the watchdog task is started,
1351  * and the stack is notified that the interface is ready.
1352  **/
1353 int e1000_open(struct net_device *netdev)
1354 {
1355 	struct e1000_adapter *adapter = netdev_priv(netdev);
1356 	struct e1000_hw *hw = &adapter->hw;
1357 	int err;
1358 
1359 	/* disallow open during test */
1360 	if (test_bit(__E1000_TESTING, &adapter->flags))
1361 		return -EBUSY;
1362 
1363 	netif_carrier_off(netdev);
1364 
1365 	/* allocate transmit descriptors */
1366 	err = e1000_setup_all_tx_resources(adapter);
1367 	if (err)
1368 		goto err_setup_tx;
1369 
1370 	/* allocate receive descriptors */
1371 	err = e1000_setup_all_rx_resources(adapter);
1372 	if (err)
1373 		goto err_setup_rx;
1374 
1375 	e1000_power_up_phy(adapter);
1376 
1377 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378 	if ((hw->mng_cookie.status &
1379 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380 		e1000_update_mng_vlan(adapter);
1381 	}
1382 
1383 	/* before we allocate an interrupt, we must be ready to handle it.
1384 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385 	 * as soon as we call pci_request_irq, so we have to setup our
1386 	 * clean_rx handler before we do so.
1387 	 */
1388 	e1000_configure(adapter);
1389 
1390 	err = e1000_request_irq(adapter);
1391 	if (err)
1392 		goto err_req_irq;
1393 
1394 	/* From here on the code is the same as e1000_up() */
1395 	clear_bit(__E1000_DOWN, &adapter->flags);
1396 
1397 	napi_enable(&adapter->napi);
1398 
1399 	e1000_irq_enable(adapter);
1400 
1401 	netif_start_queue(netdev);
1402 
1403 	/* fire a link status change interrupt to start the watchdog */
1404 	ew32(ICS, E1000_ICS_LSC);
1405 
1406 	return E1000_SUCCESS;
1407 
1408 err_req_irq:
1409 	e1000_power_down_phy(adapter);
1410 	e1000_free_all_rx_resources(adapter);
1411 err_setup_rx:
1412 	e1000_free_all_tx_resources(adapter);
1413 err_setup_tx:
1414 	e1000_reset(adapter);
1415 
1416 	return err;
1417 }
1418 
1419 /**
1420  * e1000_close - Disables a network interface
1421  * @netdev: network interface device structure
1422  *
1423  * Returns 0, this is not allowed to fail
1424  *
1425  * The close entry point is called when an interface is de-activated
1426  * by the OS.  The hardware is still under the drivers control, but
1427  * needs to be disabled.  A global MAC reset is issued to stop the
1428  * hardware, and all transmit and receive resources are freed.
1429  **/
1430 int e1000_close(struct net_device *netdev)
1431 {
1432 	struct e1000_adapter *adapter = netdev_priv(netdev);
1433 	struct e1000_hw *hw = &adapter->hw;
1434 	int count = E1000_CHECK_RESET_COUNT;
1435 
1436 	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1437 		usleep_range(10000, 20000);
1438 
1439 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1440 	e1000_down(adapter);
1441 	e1000_power_down_phy(adapter);
1442 	e1000_free_irq(adapter);
1443 
1444 	e1000_free_all_tx_resources(adapter);
1445 	e1000_free_all_rx_resources(adapter);
1446 
1447 	/* kill manageability vlan ID if supported, but not if a vlan with
1448 	 * the same ID is registered on the host OS (let 8021q kill it)
1449 	 */
1450 	if ((hw->mng_cookie.status &
1451 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1452 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1453 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1454 				       adapter->mng_vlan_id);
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 /**
1461  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1462  * @adapter: address of board private structure
1463  * @start: address of beginning of memory
1464  * @len: length of memory
1465  **/
1466 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1467 				  unsigned long len)
1468 {
1469 	struct e1000_hw *hw = &adapter->hw;
1470 	unsigned long begin = (unsigned long)start;
1471 	unsigned long end = begin + len;
1472 
1473 	/* First rev 82545 and 82546 need to not allow any memory
1474 	 * write location to cross 64k boundary due to errata 23
1475 	 */
1476 	if (hw->mac_type == e1000_82545 ||
1477 	    hw->mac_type == e1000_ce4100 ||
1478 	    hw->mac_type == e1000_82546) {
1479 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1480 	}
1481 
1482 	return true;
1483 }
1484 
1485 /**
1486  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1487  * @adapter: board private structure
1488  * @txdr:    tx descriptor ring (for a specific queue) to setup
1489  *
1490  * Return 0 on success, negative on failure
1491  **/
1492 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1493 				    struct e1000_tx_ring *txdr)
1494 {
1495 	struct pci_dev *pdev = adapter->pdev;
1496 	int size;
1497 
1498 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1499 	txdr->buffer_info = vzalloc(size);
1500 	if (!txdr->buffer_info)
1501 		return -ENOMEM;
1502 
1503 	/* round up to nearest 4K */
1504 
1505 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1506 	txdr->size = ALIGN(txdr->size, 4096);
1507 
1508 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1509 					GFP_KERNEL);
1510 	if (!txdr->desc) {
1511 setup_tx_desc_die:
1512 		vfree(txdr->buffer_info);
1513 		return -ENOMEM;
1514 	}
1515 
1516 	/* Fix for errata 23, can't cross 64kB boundary */
1517 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1518 		void *olddesc = txdr->desc;
1519 		dma_addr_t olddma = txdr->dma;
1520 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1521 		      txdr->size, txdr->desc);
1522 		/* Try again, without freeing the previous */
1523 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1524 						&txdr->dma, GFP_KERNEL);
1525 		/* Failed allocation, critical failure */
1526 		if (!txdr->desc) {
1527 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1528 					  olddma);
1529 			goto setup_tx_desc_die;
1530 		}
1531 
1532 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1533 			/* give up */
1534 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1535 					  txdr->dma);
1536 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1537 					  olddma);
1538 			e_err(probe, "Unable to allocate aligned memory "
1539 			      "for the transmit descriptor ring\n");
1540 			vfree(txdr->buffer_info);
1541 			return -ENOMEM;
1542 		} else {
1543 			/* Free old allocation, new allocation was successful */
1544 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545 					  olddma);
1546 		}
1547 	}
1548 	memset(txdr->desc, 0, txdr->size);
1549 
1550 	txdr->next_to_use = 0;
1551 	txdr->next_to_clean = 0;
1552 
1553 	return 0;
1554 }
1555 
1556 /**
1557  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1558  * 				  (Descriptors) for all queues
1559  * @adapter: board private structure
1560  *
1561  * Return 0 on success, negative on failure
1562  **/
1563 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1564 {
1565 	int i, err = 0;
1566 
1567 	for (i = 0; i < adapter->num_tx_queues; i++) {
1568 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1569 		if (err) {
1570 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1571 			for (i-- ; i >= 0; i--)
1572 				e1000_free_tx_resources(adapter,
1573 							&adapter->tx_ring[i]);
1574 			break;
1575 		}
1576 	}
1577 
1578 	return err;
1579 }
1580 
1581 /**
1582  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1583  * @adapter: board private structure
1584  *
1585  * Configure the Tx unit of the MAC after a reset.
1586  **/
1587 static void e1000_configure_tx(struct e1000_adapter *adapter)
1588 {
1589 	u64 tdba;
1590 	struct e1000_hw *hw = &adapter->hw;
1591 	u32 tdlen, tctl, tipg;
1592 	u32 ipgr1, ipgr2;
1593 
1594 	/* Setup the HW Tx Head and Tail descriptor pointers */
1595 
1596 	switch (adapter->num_tx_queues) {
1597 	case 1:
1598 	default:
1599 		tdba = adapter->tx_ring[0].dma;
1600 		tdlen = adapter->tx_ring[0].count *
1601 			sizeof(struct e1000_tx_desc);
1602 		ew32(TDLEN, tdlen);
1603 		ew32(TDBAH, (tdba >> 32));
1604 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1605 		ew32(TDT, 0);
1606 		ew32(TDH, 0);
1607 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1608 					   E1000_TDH : E1000_82542_TDH);
1609 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1610 					   E1000_TDT : E1000_82542_TDT);
1611 		break;
1612 	}
1613 
1614 	/* Set the default values for the Tx Inter Packet Gap timer */
1615 	if ((hw->media_type == e1000_media_type_fiber ||
1616 	     hw->media_type == e1000_media_type_internal_serdes))
1617 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1618 	else
1619 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1620 
1621 	switch (hw->mac_type) {
1622 	case e1000_82542_rev2_0:
1623 	case e1000_82542_rev2_1:
1624 		tipg = DEFAULT_82542_TIPG_IPGT;
1625 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1626 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1627 		break;
1628 	default:
1629 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1630 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1631 		break;
1632 	}
1633 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1634 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1635 	ew32(TIPG, tipg);
1636 
1637 	/* Set the Tx Interrupt Delay register */
1638 
1639 	ew32(TIDV, adapter->tx_int_delay);
1640 	if (hw->mac_type >= e1000_82540)
1641 		ew32(TADV, adapter->tx_abs_int_delay);
1642 
1643 	/* Program the Transmit Control Register */
1644 
1645 	tctl = er32(TCTL);
1646 	tctl &= ~E1000_TCTL_CT;
1647 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1648 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1649 
1650 	e1000_config_collision_dist(hw);
1651 
1652 	/* Setup Transmit Descriptor Settings for eop descriptor */
1653 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1654 
1655 	/* only set IDE if we are delaying interrupts using the timers */
1656 	if (adapter->tx_int_delay)
1657 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1658 
1659 	if (hw->mac_type < e1000_82543)
1660 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1661 	else
1662 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1663 
1664 	/* Cache if we're 82544 running in PCI-X because we'll
1665 	 * need this to apply a workaround later in the send path.
1666 	 */
1667 	if (hw->mac_type == e1000_82544 &&
1668 	    hw->bus_type == e1000_bus_type_pcix)
1669 		adapter->pcix_82544 = true;
1670 
1671 	ew32(TCTL, tctl);
1672 
1673 }
1674 
1675 /**
1676  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1677  * @adapter: board private structure
1678  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1679  *
1680  * Returns 0 on success, negative on failure
1681  **/
1682 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1683 				    struct e1000_rx_ring *rxdr)
1684 {
1685 	struct pci_dev *pdev = adapter->pdev;
1686 	int size, desc_len;
1687 
1688 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1689 	rxdr->buffer_info = vzalloc(size);
1690 	if (!rxdr->buffer_info)
1691 		return -ENOMEM;
1692 
1693 	desc_len = sizeof(struct e1000_rx_desc);
1694 
1695 	/* Round up to nearest 4K */
1696 
1697 	rxdr->size = rxdr->count * desc_len;
1698 	rxdr->size = ALIGN(rxdr->size, 4096);
1699 
1700 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1701 					GFP_KERNEL);
1702 	if (!rxdr->desc) {
1703 setup_rx_desc_die:
1704 		vfree(rxdr->buffer_info);
1705 		return -ENOMEM;
1706 	}
1707 
1708 	/* Fix for errata 23, can't cross 64kB boundary */
1709 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1710 		void *olddesc = rxdr->desc;
1711 		dma_addr_t olddma = rxdr->dma;
1712 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1713 		      rxdr->size, rxdr->desc);
1714 		/* Try again, without freeing the previous */
1715 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1716 						&rxdr->dma, GFP_KERNEL);
1717 		/* Failed allocation, critical failure */
1718 		if (!rxdr->desc) {
1719 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1720 					  olddma);
1721 			goto setup_rx_desc_die;
1722 		}
1723 
1724 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1725 			/* give up */
1726 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1727 					  rxdr->dma);
1728 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1729 					  olddma);
1730 			e_err(probe, "Unable to allocate aligned memory for "
1731 			      "the Rx descriptor ring\n");
1732 			goto setup_rx_desc_die;
1733 		} else {
1734 			/* Free old allocation, new allocation was successful */
1735 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1736 					  olddma);
1737 		}
1738 	}
1739 	memset(rxdr->desc, 0, rxdr->size);
1740 
1741 	rxdr->next_to_clean = 0;
1742 	rxdr->next_to_use = 0;
1743 	rxdr->rx_skb_top = NULL;
1744 
1745 	return 0;
1746 }
1747 
1748 /**
1749  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1750  * 				  (Descriptors) for all queues
1751  * @adapter: board private structure
1752  *
1753  * Return 0 on success, negative on failure
1754  **/
1755 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1756 {
1757 	int i, err = 0;
1758 
1759 	for (i = 0; i < adapter->num_rx_queues; i++) {
1760 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1761 		if (err) {
1762 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1763 			for (i-- ; i >= 0; i--)
1764 				e1000_free_rx_resources(adapter,
1765 							&adapter->rx_ring[i]);
1766 			break;
1767 		}
1768 	}
1769 
1770 	return err;
1771 }
1772 
1773 /**
1774  * e1000_setup_rctl - configure the receive control registers
1775  * @adapter: Board private structure
1776  **/
1777 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1778 {
1779 	struct e1000_hw *hw = &adapter->hw;
1780 	u32 rctl;
1781 
1782 	rctl = er32(RCTL);
1783 
1784 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1785 
1786 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1787 		E1000_RCTL_RDMTS_HALF |
1788 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1789 
1790 	if (hw->tbi_compatibility_on == 1)
1791 		rctl |= E1000_RCTL_SBP;
1792 	else
1793 		rctl &= ~E1000_RCTL_SBP;
1794 
1795 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1796 		rctl &= ~E1000_RCTL_LPE;
1797 	else
1798 		rctl |= E1000_RCTL_LPE;
1799 
1800 	/* Setup buffer sizes */
1801 	rctl &= ~E1000_RCTL_SZ_4096;
1802 	rctl |= E1000_RCTL_BSEX;
1803 	switch (adapter->rx_buffer_len) {
1804 	case E1000_RXBUFFER_2048:
1805 	default:
1806 		rctl |= E1000_RCTL_SZ_2048;
1807 		rctl &= ~E1000_RCTL_BSEX;
1808 		break;
1809 	case E1000_RXBUFFER_4096:
1810 		rctl |= E1000_RCTL_SZ_4096;
1811 		break;
1812 	case E1000_RXBUFFER_8192:
1813 		rctl |= E1000_RCTL_SZ_8192;
1814 		break;
1815 	case E1000_RXBUFFER_16384:
1816 		rctl |= E1000_RCTL_SZ_16384;
1817 		break;
1818 	}
1819 
1820 	/* This is useful for sniffing bad packets. */
1821 	if (adapter->netdev->features & NETIF_F_RXALL) {
1822 		/* UPE and MPE will be handled by normal PROMISC logic
1823 		 * in e1000e_set_rx_mode
1824 		 */
1825 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1826 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1827 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1828 
1829 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1830 			  E1000_RCTL_DPF | /* Allow filtered pause */
1831 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1832 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1833 		 * and that breaks VLANs.
1834 		 */
1835 	}
1836 
1837 	ew32(RCTL, rctl);
1838 }
1839 
1840 /**
1841  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1842  * @adapter: board private structure
1843  *
1844  * Configure the Rx unit of the MAC after a reset.
1845  **/
1846 static void e1000_configure_rx(struct e1000_adapter *adapter)
1847 {
1848 	u64 rdba;
1849 	struct e1000_hw *hw = &adapter->hw;
1850 	u32 rdlen, rctl, rxcsum;
1851 
1852 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1853 		rdlen = adapter->rx_ring[0].count *
1854 			sizeof(struct e1000_rx_desc);
1855 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1856 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1857 	} else {
1858 		rdlen = adapter->rx_ring[0].count *
1859 			sizeof(struct e1000_rx_desc);
1860 		adapter->clean_rx = e1000_clean_rx_irq;
1861 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1862 	}
1863 
1864 	/* disable receives while setting up the descriptors */
1865 	rctl = er32(RCTL);
1866 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1867 
1868 	/* set the Receive Delay Timer Register */
1869 	ew32(RDTR, adapter->rx_int_delay);
1870 
1871 	if (hw->mac_type >= e1000_82540) {
1872 		ew32(RADV, adapter->rx_abs_int_delay);
1873 		if (adapter->itr_setting != 0)
1874 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1875 	}
1876 
1877 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1878 	 * the Base and Length of the Rx Descriptor Ring
1879 	 */
1880 	switch (adapter->num_rx_queues) {
1881 	case 1:
1882 	default:
1883 		rdba = adapter->rx_ring[0].dma;
1884 		ew32(RDLEN, rdlen);
1885 		ew32(RDBAH, (rdba >> 32));
1886 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1887 		ew32(RDT, 0);
1888 		ew32(RDH, 0);
1889 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1890 					   E1000_RDH : E1000_82542_RDH);
1891 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1892 					   E1000_RDT : E1000_82542_RDT);
1893 		break;
1894 	}
1895 
1896 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1897 	if (hw->mac_type >= e1000_82543) {
1898 		rxcsum = er32(RXCSUM);
1899 		if (adapter->rx_csum)
1900 			rxcsum |= E1000_RXCSUM_TUOFL;
1901 		else
1902 			/* don't need to clear IPPCSE as it defaults to 0 */
1903 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1904 		ew32(RXCSUM, rxcsum);
1905 	}
1906 
1907 	/* Enable Receives */
1908 	ew32(RCTL, rctl | E1000_RCTL_EN);
1909 }
1910 
1911 /**
1912  * e1000_free_tx_resources - Free Tx Resources per Queue
1913  * @adapter: board private structure
1914  * @tx_ring: Tx descriptor ring for a specific queue
1915  *
1916  * Free all transmit software resources
1917  **/
1918 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1919 				    struct e1000_tx_ring *tx_ring)
1920 {
1921 	struct pci_dev *pdev = adapter->pdev;
1922 
1923 	e1000_clean_tx_ring(adapter, tx_ring);
1924 
1925 	vfree(tx_ring->buffer_info);
1926 	tx_ring->buffer_info = NULL;
1927 
1928 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1929 			  tx_ring->dma);
1930 
1931 	tx_ring->desc = NULL;
1932 }
1933 
1934 /**
1935  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1936  * @adapter: board private structure
1937  *
1938  * Free all transmit software resources
1939  **/
1940 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1941 {
1942 	int i;
1943 
1944 	for (i = 0; i < adapter->num_tx_queues; i++)
1945 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1946 }
1947 
1948 static void
1949 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1950 				 struct e1000_tx_buffer *buffer_info)
1951 {
1952 	if (buffer_info->dma) {
1953 		if (buffer_info->mapped_as_page)
1954 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1955 				       buffer_info->length, DMA_TO_DEVICE);
1956 		else
1957 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1958 					 buffer_info->length,
1959 					 DMA_TO_DEVICE);
1960 		buffer_info->dma = 0;
1961 	}
1962 	if (buffer_info->skb) {
1963 		dev_kfree_skb_any(buffer_info->skb);
1964 		buffer_info->skb = NULL;
1965 	}
1966 	buffer_info->time_stamp = 0;
1967 	/* buffer_info must be completely set up in the transmit path */
1968 }
1969 
1970 /**
1971  * e1000_clean_tx_ring - Free Tx Buffers
1972  * @adapter: board private structure
1973  * @tx_ring: ring to be cleaned
1974  **/
1975 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1976 				struct e1000_tx_ring *tx_ring)
1977 {
1978 	struct e1000_hw *hw = &adapter->hw;
1979 	struct e1000_tx_buffer *buffer_info;
1980 	unsigned long size;
1981 	unsigned int i;
1982 
1983 	/* Free all the Tx ring sk_buffs */
1984 
1985 	for (i = 0; i < tx_ring->count; i++) {
1986 		buffer_info = &tx_ring->buffer_info[i];
1987 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1988 	}
1989 
1990 	netdev_reset_queue(adapter->netdev);
1991 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1992 	memset(tx_ring->buffer_info, 0, size);
1993 
1994 	/* Zero out the descriptor ring */
1995 
1996 	memset(tx_ring->desc, 0, tx_ring->size);
1997 
1998 	tx_ring->next_to_use = 0;
1999 	tx_ring->next_to_clean = 0;
2000 	tx_ring->last_tx_tso = false;
2001 
2002 	writel(0, hw->hw_addr + tx_ring->tdh);
2003 	writel(0, hw->hw_addr + tx_ring->tdt);
2004 }
2005 
2006 /**
2007  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2008  * @adapter: board private structure
2009  **/
2010 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2011 {
2012 	int i;
2013 
2014 	for (i = 0; i < adapter->num_tx_queues; i++)
2015 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2016 }
2017 
2018 /**
2019  * e1000_free_rx_resources - Free Rx Resources
2020  * @adapter: board private structure
2021  * @rx_ring: ring to clean the resources from
2022  *
2023  * Free all receive software resources
2024  **/
2025 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2026 				    struct e1000_rx_ring *rx_ring)
2027 {
2028 	struct pci_dev *pdev = adapter->pdev;
2029 
2030 	e1000_clean_rx_ring(adapter, rx_ring);
2031 
2032 	vfree(rx_ring->buffer_info);
2033 	rx_ring->buffer_info = NULL;
2034 
2035 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2036 			  rx_ring->dma);
2037 
2038 	rx_ring->desc = NULL;
2039 }
2040 
2041 /**
2042  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2043  * @adapter: board private structure
2044  *
2045  * Free all receive software resources
2046  **/
2047 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2048 {
2049 	int i;
2050 
2051 	for (i = 0; i < adapter->num_rx_queues; i++)
2052 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2053 }
2054 
2055 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2056 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2057 {
2058 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2059 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2060 }
2061 
2062 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2063 {
2064 	unsigned int len = e1000_frag_len(a);
2065 	u8 *data = netdev_alloc_frag(len);
2066 
2067 	if (likely(data))
2068 		data += E1000_HEADROOM;
2069 	return data;
2070 }
2071 
2072 /**
2073  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2074  * @adapter: board private structure
2075  * @rx_ring: ring to free buffers from
2076  **/
2077 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2078 				struct e1000_rx_ring *rx_ring)
2079 {
2080 	struct e1000_hw *hw = &adapter->hw;
2081 	struct e1000_rx_buffer *buffer_info;
2082 	struct pci_dev *pdev = adapter->pdev;
2083 	unsigned long size;
2084 	unsigned int i;
2085 
2086 	/* Free all the Rx netfrags */
2087 	for (i = 0; i < rx_ring->count; i++) {
2088 		buffer_info = &rx_ring->buffer_info[i];
2089 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2090 			if (buffer_info->dma)
2091 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2092 						 adapter->rx_buffer_len,
2093 						 DMA_FROM_DEVICE);
2094 			if (buffer_info->rxbuf.data) {
2095 				skb_free_frag(buffer_info->rxbuf.data);
2096 				buffer_info->rxbuf.data = NULL;
2097 			}
2098 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2099 			if (buffer_info->dma)
2100 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2101 					       adapter->rx_buffer_len,
2102 					       DMA_FROM_DEVICE);
2103 			if (buffer_info->rxbuf.page) {
2104 				put_page(buffer_info->rxbuf.page);
2105 				buffer_info->rxbuf.page = NULL;
2106 			}
2107 		}
2108 
2109 		buffer_info->dma = 0;
2110 	}
2111 
2112 	/* there also may be some cached data from a chained receive */
2113 	napi_free_frags(&adapter->napi);
2114 	rx_ring->rx_skb_top = NULL;
2115 
2116 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2117 	memset(rx_ring->buffer_info, 0, size);
2118 
2119 	/* Zero out the descriptor ring */
2120 	memset(rx_ring->desc, 0, rx_ring->size);
2121 
2122 	rx_ring->next_to_clean = 0;
2123 	rx_ring->next_to_use = 0;
2124 
2125 	writel(0, hw->hw_addr + rx_ring->rdh);
2126 	writel(0, hw->hw_addr + rx_ring->rdt);
2127 }
2128 
2129 /**
2130  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2131  * @adapter: board private structure
2132  **/
2133 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2134 {
2135 	int i;
2136 
2137 	for (i = 0; i < adapter->num_rx_queues; i++)
2138 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2139 }
2140 
2141 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2142  * and memory write and invalidate disabled for certain operations
2143  */
2144 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2145 {
2146 	struct e1000_hw *hw = &adapter->hw;
2147 	struct net_device *netdev = adapter->netdev;
2148 	u32 rctl;
2149 
2150 	e1000_pci_clear_mwi(hw);
2151 
2152 	rctl = er32(RCTL);
2153 	rctl |= E1000_RCTL_RST;
2154 	ew32(RCTL, rctl);
2155 	E1000_WRITE_FLUSH();
2156 	mdelay(5);
2157 
2158 	if (netif_running(netdev))
2159 		e1000_clean_all_rx_rings(adapter);
2160 }
2161 
2162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2163 {
2164 	struct e1000_hw *hw = &adapter->hw;
2165 	struct net_device *netdev = adapter->netdev;
2166 	u32 rctl;
2167 
2168 	rctl = er32(RCTL);
2169 	rctl &= ~E1000_RCTL_RST;
2170 	ew32(RCTL, rctl);
2171 	E1000_WRITE_FLUSH();
2172 	mdelay(5);
2173 
2174 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2175 		e1000_pci_set_mwi(hw);
2176 
2177 	if (netif_running(netdev)) {
2178 		/* No need to loop, because 82542 supports only 1 queue */
2179 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2180 		e1000_configure_rx(adapter);
2181 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2182 	}
2183 }
2184 
2185 /**
2186  * e1000_set_mac - Change the Ethernet Address of the NIC
2187  * @netdev: network interface device structure
2188  * @p: pointer to an address structure
2189  *
2190  * Returns 0 on success, negative on failure
2191  **/
2192 static int e1000_set_mac(struct net_device *netdev, void *p)
2193 {
2194 	struct e1000_adapter *adapter = netdev_priv(netdev);
2195 	struct e1000_hw *hw = &adapter->hw;
2196 	struct sockaddr *addr = p;
2197 
2198 	if (!is_valid_ether_addr(addr->sa_data))
2199 		return -EADDRNOTAVAIL;
2200 
2201 	/* 82542 2.0 needs to be in reset to write receive address registers */
2202 
2203 	if (hw->mac_type == e1000_82542_rev2_0)
2204 		e1000_enter_82542_rst(adapter);
2205 
2206 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2207 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2208 
2209 	e1000_rar_set(hw, hw->mac_addr, 0);
2210 
2211 	if (hw->mac_type == e1000_82542_rev2_0)
2212 		e1000_leave_82542_rst(adapter);
2213 
2214 	return 0;
2215 }
2216 
2217 /**
2218  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2219  * @netdev: network interface device structure
2220  *
2221  * The set_rx_mode entry point is called whenever the unicast or multicast
2222  * address lists or the network interface flags are updated. This routine is
2223  * responsible for configuring the hardware for proper unicast, multicast,
2224  * promiscuous mode, and all-multi behavior.
2225  **/
2226 static void e1000_set_rx_mode(struct net_device *netdev)
2227 {
2228 	struct e1000_adapter *adapter = netdev_priv(netdev);
2229 	struct e1000_hw *hw = &adapter->hw;
2230 	struct netdev_hw_addr *ha;
2231 	bool use_uc = false;
2232 	u32 rctl;
2233 	u32 hash_value;
2234 	int i, rar_entries = E1000_RAR_ENTRIES;
2235 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2236 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2237 
2238 	if (!mcarray)
2239 		return;
2240 
2241 	/* Check for Promiscuous and All Multicast modes */
2242 
2243 	rctl = er32(RCTL);
2244 
2245 	if (netdev->flags & IFF_PROMISC) {
2246 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2247 		rctl &= ~E1000_RCTL_VFE;
2248 	} else {
2249 		if (netdev->flags & IFF_ALLMULTI)
2250 			rctl |= E1000_RCTL_MPE;
2251 		else
2252 			rctl &= ~E1000_RCTL_MPE;
2253 		/* Enable VLAN filter if there is a VLAN */
2254 		if (e1000_vlan_used(adapter))
2255 			rctl |= E1000_RCTL_VFE;
2256 	}
2257 
2258 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2259 		rctl |= E1000_RCTL_UPE;
2260 	} else if (!(netdev->flags & IFF_PROMISC)) {
2261 		rctl &= ~E1000_RCTL_UPE;
2262 		use_uc = true;
2263 	}
2264 
2265 	ew32(RCTL, rctl);
2266 
2267 	/* 82542 2.0 needs to be in reset to write receive address registers */
2268 
2269 	if (hw->mac_type == e1000_82542_rev2_0)
2270 		e1000_enter_82542_rst(adapter);
2271 
2272 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2273 	 * addresses take precedence to avoid disabling unicast filtering
2274 	 * when possible.
2275 	 *
2276 	 * RAR 0 is used for the station MAC address
2277 	 * if there are not 14 addresses, go ahead and clear the filters
2278 	 */
2279 	i = 1;
2280 	if (use_uc)
2281 		netdev_for_each_uc_addr(ha, netdev) {
2282 			if (i == rar_entries)
2283 				break;
2284 			e1000_rar_set(hw, ha->addr, i++);
2285 		}
2286 
2287 	netdev_for_each_mc_addr(ha, netdev) {
2288 		if (i == rar_entries) {
2289 			/* load any remaining addresses into the hash table */
2290 			u32 hash_reg, hash_bit, mta;
2291 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2292 			hash_reg = (hash_value >> 5) & 0x7F;
2293 			hash_bit = hash_value & 0x1F;
2294 			mta = (1 << hash_bit);
2295 			mcarray[hash_reg] |= mta;
2296 		} else {
2297 			e1000_rar_set(hw, ha->addr, i++);
2298 		}
2299 	}
2300 
2301 	for (; i < rar_entries; i++) {
2302 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2303 		E1000_WRITE_FLUSH();
2304 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2305 		E1000_WRITE_FLUSH();
2306 	}
2307 
2308 	/* write the hash table completely, write from bottom to avoid
2309 	 * both stupid write combining chipsets, and flushing each write
2310 	 */
2311 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2312 		/* If we are on an 82544 has an errata where writing odd
2313 		 * offsets overwrites the previous even offset, but writing
2314 		 * backwards over the range solves the issue by always
2315 		 * writing the odd offset first
2316 		 */
2317 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2318 	}
2319 	E1000_WRITE_FLUSH();
2320 
2321 	if (hw->mac_type == e1000_82542_rev2_0)
2322 		e1000_leave_82542_rst(adapter);
2323 
2324 	kfree(mcarray);
2325 }
2326 
2327 /**
2328  * e1000_update_phy_info_task - get phy info
2329  * @work: work struct contained inside adapter struct
2330  *
2331  * Need to wait a few seconds after link up to get diagnostic information from
2332  * the phy
2333  */
2334 static void e1000_update_phy_info_task(struct work_struct *work)
2335 {
2336 	struct e1000_adapter *adapter = container_of(work,
2337 						     struct e1000_adapter,
2338 						     phy_info_task.work);
2339 
2340 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2341 }
2342 
2343 /**
2344  * e1000_82547_tx_fifo_stall_task - task to complete work
2345  * @work: work struct contained inside adapter struct
2346  **/
2347 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2348 {
2349 	struct e1000_adapter *adapter = container_of(work,
2350 						     struct e1000_adapter,
2351 						     fifo_stall_task.work);
2352 	struct e1000_hw *hw = &adapter->hw;
2353 	struct net_device *netdev = adapter->netdev;
2354 	u32 tctl;
2355 
2356 	if (atomic_read(&adapter->tx_fifo_stall)) {
2357 		if ((er32(TDT) == er32(TDH)) &&
2358 		   (er32(TDFT) == er32(TDFH)) &&
2359 		   (er32(TDFTS) == er32(TDFHS))) {
2360 			tctl = er32(TCTL);
2361 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2362 			ew32(TDFT, adapter->tx_head_addr);
2363 			ew32(TDFH, adapter->tx_head_addr);
2364 			ew32(TDFTS, adapter->tx_head_addr);
2365 			ew32(TDFHS, adapter->tx_head_addr);
2366 			ew32(TCTL, tctl);
2367 			E1000_WRITE_FLUSH();
2368 
2369 			adapter->tx_fifo_head = 0;
2370 			atomic_set(&adapter->tx_fifo_stall, 0);
2371 			netif_wake_queue(netdev);
2372 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2373 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2374 		}
2375 	}
2376 }
2377 
2378 bool e1000_has_link(struct e1000_adapter *adapter)
2379 {
2380 	struct e1000_hw *hw = &adapter->hw;
2381 	bool link_active = false;
2382 
2383 	/* get_link_status is set on LSC (link status) interrupt or rx
2384 	 * sequence error interrupt (except on intel ce4100).
2385 	 * get_link_status will stay false until the
2386 	 * e1000_check_for_link establishes link for copper adapters
2387 	 * ONLY
2388 	 */
2389 	switch (hw->media_type) {
2390 	case e1000_media_type_copper:
2391 		if (hw->mac_type == e1000_ce4100)
2392 			hw->get_link_status = 1;
2393 		if (hw->get_link_status) {
2394 			e1000_check_for_link(hw);
2395 			link_active = !hw->get_link_status;
2396 		} else {
2397 			link_active = true;
2398 		}
2399 		break;
2400 	case e1000_media_type_fiber:
2401 		e1000_check_for_link(hw);
2402 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2403 		break;
2404 	case e1000_media_type_internal_serdes:
2405 		e1000_check_for_link(hw);
2406 		link_active = hw->serdes_has_link;
2407 		break;
2408 	default:
2409 		break;
2410 	}
2411 
2412 	return link_active;
2413 }
2414 
2415 /**
2416  * e1000_watchdog - work function
2417  * @work: work struct contained inside adapter struct
2418  **/
2419 static void e1000_watchdog(struct work_struct *work)
2420 {
2421 	struct e1000_adapter *adapter = container_of(work,
2422 						     struct e1000_adapter,
2423 						     watchdog_task.work);
2424 	struct e1000_hw *hw = &adapter->hw;
2425 	struct net_device *netdev = adapter->netdev;
2426 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2427 	u32 link, tctl;
2428 
2429 	link = e1000_has_link(adapter);
2430 	if ((netif_carrier_ok(netdev)) && link)
2431 		goto link_up;
2432 
2433 	if (link) {
2434 		if (!netif_carrier_ok(netdev)) {
2435 			u32 ctrl;
2436 			bool txb2b = true;
2437 			/* update snapshot of PHY registers on LSC */
2438 			e1000_get_speed_and_duplex(hw,
2439 						   &adapter->link_speed,
2440 						   &adapter->link_duplex);
2441 
2442 			ctrl = er32(CTRL);
2443 			pr_info("%s NIC Link is Up %d Mbps %s, "
2444 				"Flow Control: %s\n",
2445 				netdev->name,
2446 				adapter->link_speed,
2447 				adapter->link_duplex == FULL_DUPLEX ?
2448 				"Full Duplex" : "Half Duplex",
2449 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2450 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2451 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2452 				E1000_CTRL_TFCE) ? "TX" : "None")));
2453 
2454 			/* adjust timeout factor according to speed/duplex */
2455 			adapter->tx_timeout_factor = 1;
2456 			switch (adapter->link_speed) {
2457 			case SPEED_10:
2458 				txb2b = false;
2459 				adapter->tx_timeout_factor = 16;
2460 				break;
2461 			case SPEED_100:
2462 				txb2b = false;
2463 				/* maybe add some timeout factor ? */
2464 				break;
2465 			}
2466 
2467 			/* enable transmits in the hardware */
2468 			tctl = er32(TCTL);
2469 			tctl |= E1000_TCTL_EN;
2470 			ew32(TCTL, tctl);
2471 
2472 			netif_carrier_on(netdev);
2473 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2474 				schedule_delayed_work(&adapter->phy_info_task,
2475 						      2 * HZ);
2476 			adapter->smartspeed = 0;
2477 		}
2478 	} else {
2479 		if (netif_carrier_ok(netdev)) {
2480 			adapter->link_speed = 0;
2481 			adapter->link_duplex = 0;
2482 			pr_info("%s NIC Link is Down\n",
2483 				netdev->name);
2484 			netif_carrier_off(netdev);
2485 
2486 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2487 				schedule_delayed_work(&adapter->phy_info_task,
2488 						      2 * HZ);
2489 		}
2490 
2491 		e1000_smartspeed(adapter);
2492 	}
2493 
2494 link_up:
2495 	e1000_update_stats(adapter);
2496 
2497 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2498 	adapter->tpt_old = adapter->stats.tpt;
2499 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2500 	adapter->colc_old = adapter->stats.colc;
2501 
2502 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2503 	adapter->gorcl_old = adapter->stats.gorcl;
2504 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2505 	adapter->gotcl_old = adapter->stats.gotcl;
2506 
2507 	e1000_update_adaptive(hw);
2508 
2509 	if (!netif_carrier_ok(netdev)) {
2510 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2511 			/* We've lost link, so the controller stops DMA,
2512 			 * but we've got queued Tx work that's never going
2513 			 * to get done, so reset controller to flush Tx.
2514 			 * (Do the reset outside of interrupt context).
2515 			 */
2516 			adapter->tx_timeout_count++;
2517 			schedule_work(&adapter->reset_task);
2518 			/* exit immediately since reset is imminent */
2519 			return;
2520 		}
2521 	}
2522 
2523 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2524 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2525 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2526 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2527 		 * everyone else is between 2000-8000.
2528 		 */
2529 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2530 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2531 			    adapter->gotcl - adapter->gorcl :
2532 			    adapter->gorcl - adapter->gotcl) / 10000;
2533 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2534 
2535 		ew32(ITR, 1000000000 / (itr * 256));
2536 	}
2537 
2538 	/* Cause software interrupt to ensure rx ring is cleaned */
2539 	ew32(ICS, E1000_ICS_RXDMT0);
2540 
2541 	/* Force detection of hung controller every watchdog period */
2542 	adapter->detect_tx_hung = true;
2543 
2544 	/* Reschedule the task */
2545 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2546 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2547 }
2548 
2549 enum latency_range {
2550 	lowest_latency = 0,
2551 	low_latency = 1,
2552 	bulk_latency = 2,
2553 	latency_invalid = 255
2554 };
2555 
2556 /**
2557  * e1000_update_itr - update the dynamic ITR value based on statistics
2558  * @adapter: pointer to adapter
2559  * @itr_setting: current adapter->itr
2560  * @packets: the number of packets during this measurement interval
2561  * @bytes: the number of bytes during this measurement interval
2562  *
2563  *      Stores a new ITR value based on packets and byte
2564  *      counts during the last interrupt.  The advantage of per interrupt
2565  *      computation is faster updates and more accurate ITR for the current
2566  *      traffic pattern.  Constants in this function were computed
2567  *      based on theoretical maximum wire speed and thresholds were set based
2568  *      on testing data as well as attempting to minimize response time
2569  *      while increasing bulk throughput.
2570  *      this functionality is controlled by the InterruptThrottleRate module
2571  *      parameter (see e1000_param.c)
2572  **/
2573 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2574 				     u16 itr_setting, int packets, int bytes)
2575 {
2576 	unsigned int retval = itr_setting;
2577 	struct e1000_hw *hw = &adapter->hw;
2578 
2579 	if (unlikely(hw->mac_type < e1000_82540))
2580 		goto update_itr_done;
2581 
2582 	if (packets == 0)
2583 		goto update_itr_done;
2584 
2585 	switch (itr_setting) {
2586 	case lowest_latency:
2587 		/* jumbo frames get bulk treatment*/
2588 		if (bytes/packets > 8000)
2589 			retval = bulk_latency;
2590 		else if ((packets < 5) && (bytes > 512))
2591 			retval = low_latency;
2592 		break;
2593 	case low_latency:  /* 50 usec aka 20000 ints/s */
2594 		if (bytes > 10000) {
2595 			/* jumbo frames need bulk latency setting */
2596 			if (bytes/packets > 8000)
2597 				retval = bulk_latency;
2598 			else if ((packets < 10) || ((bytes/packets) > 1200))
2599 				retval = bulk_latency;
2600 			else if ((packets > 35))
2601 				retval = lowest_latency;
2602 		} else if (bytes/packets > 2000)
2603 			retval = bulk_latency;
2604 		else if (packets <= 2 && bytes < 512)
2605 			retval = lowest_latency;
2606 		break;
2607 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2608 		if (bytes > 25000) {
2609 			if (packets > 35)
2610 				retval = low_latency;
2611 		} else if (bytes < 6000) {
2612 			retval = low_latency;
2613 		}
2614 		break;
2615 	}
2616 
2617 update_itr_done:
2618 	return retval;
2619 }
2620 
2621 static void e1000_set_itr(struct e1000_adapter *adapter)
2622 {
2623 	struct e1000_hw *hw = &adapter->hw;
2624 	u16 current_itr;
2625 	u32 new_itr = adapter->itr;
2626 
2627 	if (unlikely(hw->mac_type < e1000_82540))
2628 		return;
2629 
2630 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2631 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2632 		current_itr = 0;
2633 		new_itr = 4000;
2634 		goto set_itr_now;
2635 	}
2636 
2637 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2638 					   adapter->total_tx_packets,
2639 					   adapter->total_tx_bytes);
2640 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2641 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2642 		adapter->tx_itr = low_latency;
2643 
2644 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2645 					   adapter->total_rx_packets,
2646 					   adapter->total_rx_bytes);
2647 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2648 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2649 		adapter->rx_itr = low_latency;
2650 
2651 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2652 
2653 	switch (current_itr) {
2654 	/* counts and packets in update_itr are dependent on these numbers */
2655 	case lowest_latency:
2656 		new_itr = 70000;
2657 		break;
2658 	case low_latency:
2659 		new_itr = 20000; /* aka hwitr = ~200 */
2660 		break;
2661 	case bulk_latency:
2662 		new_itr = 4000;
2663 		break;
2664 	default:
2665 		break;
2666 	}
2667 
2668 set_itr_now:
2669 	if (new_itr != adapter->itr) {
2670 		/* this attempts to bias the interrupt rate towards Bulk
2671 		 * by adding intermediate steps when interrupt rate is
2672 		 * increasing
2673 		 */
2674 		new_itr = new_itr > adapter->itr ?
2675 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2676 			  new_itr;
2677 		adapter->itr = new_itr;
2678 		ew32(ITR, 1000000000 / (new_itr * 256));
2679 	}
2680 }
2681 
2682 #define E1000_TX_FLAGS_CSUM		0x00000001
2683 #define E1000_TX_FLAGS_VLAN		0x00000002
2684 #define E1000_TX_FLAGS_TSO		0x00000004
2685 #define E1000_TX_FLAGS_IPV4		0x00000008
2686 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2687 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2688 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2689 
2690 static int e1000_tso(struct e1000_adapter *adapter,
2691 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2692 		     __be16 protocol)
2693 {
2694 	struct e1000_context_desc *context_desc;
2695 	struct e1000_tx_buffer *buffer_info;
2696 	unsigned int i;
2697 	u32 cmd_length = 0;
2698 	u16 ipcse = 0, tucse, mss;
2699 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2700 
2701 	if (skb_is_gso(skb)) {
2702 		int err;
2703 
2704 		err = skb_cow_head(skb, 0);
2705 		if (err < 0)
2706 			return err;
2707 
2708 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2709 		mss = skb_shinfo(skb)->gso_size;
2710 		if (protocol == htons(ETH_P_IP)) {
2711 			struct iphdr *iph = ip_hdr(skb);
2712 			iph->tot_len = 0;
2713 			iph->check = 0;
2714 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2715 								 iph->daddr, 0,
2716 								 IPPROTO_TCP,
2717 								 0);
2718 			cmd_length = E1000_TXD_CMD_IP;
2719 			ipcse = skb_transport_offset(skb) - 1;
2720 		} else if (skb_is_gso_v6(skb)) {
2721 			ipv6_hdr(skb)->payload_len = 0;
2722 			tcp_hdr(skb)->check =
2723 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2724 						 &ipv6_hdr(skb)->daddr,
2725 						 0, IPPROTO_TCP, 0);
2726 			ipcse = 0;
2727 		}
2728 		ipcss = skb_network_offset(skb);
2729 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2730 		tucss = skb_transport_offset(skb);
2731 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2732 		tucse = 0;
2733 
2734 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2735 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2736 
2737 		i = tx_ring->next_to_use;
2738 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2739 		buffer_info = &tx_ring->buffer_info[i];
2740 
2741 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2742 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2743 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2744 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2745 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2746 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2747 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2748 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2749 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2750 
2751 		buffer_info->time_stamp = jiffies;
2752 		buffer_info->next_to_watch = i;
2753 
2754 		if (++i == tx_ring->count)
2755 			i = 0;
2756 
2757 		tx_ring->next_to_use = i;
2758 
2759 		return true;
2760 	}
2761 	return false;
2762 }
2763 
2764 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2765 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2766 			  __be16 protocol)
2767 {
2768 	struct e1000_context_desc *context_desc;
2769 	struct e1000_tx_buffer *buffer_info;
2770 	unsigned int i;
2771 	u8 css;
2772 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2773 
2774 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2775 		return false;
2776 
2777 	switch (protocol) {
2778 	case cpu_to_be16(ETH_P_IP):
2779 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2780 			cmd_len |= E1000_TXD_CMD_TCP;
2781 		break;
2782 	case cpu_to_be16(ETH_P_IPV6):
2783 		/* XXX not handling all IPV6 headers */
2784 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2785 			cmd_len |= E1000_TXD_CMD_TCP;
2786 		break;
2787 	default:
2788 		if (unlikely(net_ratelimit()))
2789 			e_warn(drv, "checksum_partial proto=%x!\n",
2790 			       skb->protocol);
2791 		break;
2792 	}
2793 
2794 	css = skb_checksum_start_offset(skb);
2795 
2796 	i = tx_ring->next_to_use;
2797 	buffer_info = &tx_ring->buffer_info[i];
2798 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2799 
2800 	context_desc->lower_setup.ip_config = 0;
2801 	context_desc->upper_setup.tcp_fields.tucss = css;
2802 	context_desc->upper_setup.tcp_fields.tucso =
2803 		css + skb->csum_offset;
2804 	context_desc->upper_setup.tcp_fields.tucse = 0;
2805 	context_desc->tcp_seg_setup.data = 0;
2806 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2807 
2808 	buffer_info->time_stamp = jiffies;
2809 	buffer_info->next_to_watch = i;
2810 
2811 	if (unlikely(++i == tx_ring->count))
2812 		i = 0;
2813 
2814 	tx_ring->next_to_use = i;
2815 
2816 	return true;
2817 }
2818 
2819 #define E1000_MAX_TXD_PWR	12
2820 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2821 
2822 static int e1000_tx_map(struct e1000_adapter *adapter,
2823 			struct e1000_tx_ring *tx_ring,
2824 			struct sk_buff *skb, unsigned int first,
2825 			unsigned int max_per_txd, unsigned int nr_frags,
2826 			unsigned int mss)
2827 {
2828 	struct e1000_hw *hw = &adapter->hw;
2829 	struct pci_dev *pdev = adapter->pdev;
2830 	struct e1000_tx_buffer *buffer_info;
2831 	unsigned int len = skb_headlen(skb);
2832 	unsigned int offset = 0, size, count = 0, i;
2833 	unsigned int f, bytecount, segs;
2834 
2835 	i = tx_ring->next_to_use;
2836 
2837 	while (len) {
2838 		buffer_info = &tx_ring->buffer_info[i];
2839 		size = min(len, max_per_txd);
2840 		/* Workaround for Controller erratum --
2841 		 * descriptor for non-tso packet in a linear SKB that follows a
2842 		 * tso gets written back prematurely before the data is fully
2843 		 * DMA'd to the controller
2844 		 */
2845 		if (!skb->data_len && tx_ring->last_tx_tso &&
2846 		    !skb_is_gso(skb)) {
2847 			tx_ring->last_tx_tso = false;
2848 			size -= 4;
2849 		}
2850 
2851 		/* Workaround for premature desc write-backs
2852 		 * in TSO mode.  Append 4-byte sentinel desc
2853 		 */
2854 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2855 			size -= 4;
2856 		/* work-around for errata 10 and it applies
2857 		 * to all controllers in PCI-X mode
2858 		 * The fix is to make sure that the first descriptor of a
2859 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2860 		 */
2861 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2862 			     (size > 2015) && count == 0))
2863 			size = 2015;
2864 
2865 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2866 		 * terminating buffers within evenly-aligned dwords.
2867 		 */
2868 		if (unlikely(adapter->pcix_82544 &&
2869 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2870 		   size > 4))
2871 			size -= 4;
2872 
2873 		buffer_info->length = size;
2874 		/* set time_stamp *before* dma to help avoid a possible race */
2875 		buffer_info->time_stamp = jiffies;
2876 		buffer_info->mapped_as_page = false;
2877 		buffer_info->dma = dma_map_single(&pdev->dev,
2878 						  skb->data + offset,
2879 						  size, DMA_TO_DEVICE);
2880 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2881 			goto dma_error;
2882 		buffer_info->next_to_watch = i;
2883 
2884 		len -= size;
2885 		offset += size;
2886 		count++;
2887 		if (len) {
2888 			i++;
2889 			if (unlikely(i == tx_ring->count))
2890 				i = 0;
2891 		}
2892 	}
2893 
2894 	for (f = 0; f < nr_frags; f++) {
2895 		const struct skb_frag_struct *frag;
2896 
2897 		frag = &skb_shinfo(skb)->frags[f];
2898 		len = skb_frag_size(frag);
2899 		offset = 0;
2900 
2901 		while (len) {
2902 			unsigned long bufend;
2903 			i++;
2904 			if (unlikely(i == tx_ring->count))
2905 				i = 0;
2906 
2907 			buffer_info = &tx_ring->buffer_info[i];
2908 			size = min(len, max_per_txd);
2909 			/* Workaround for premature desc write-backs
2910 			 * in TSO mode.  Append 4-byte sentinel desc
2911 			 */
2912 			if (unlikely(mss && f == (nr_frags-1) &&
2913 			    size == len && size > 8))
2914 				size -= 4;
2915 			/* Workaround for potential 82544 hang in PCI-X.
2916 			 * Avoid terminating buffers within evenly-aligned
2917 			 * dwords.
2918 			 */
2919 			bufend = (unsigned long)
2920 				page_to_phys(skb_frag_page(frag));
2921 			bufend += offset + size - 1;
2922 			if (unlikely(adapter->pcix_82544 &&
2923 				     !(bufend & 4) &&
2924 				     size > 4))
2925 				size -= 4;
2926 
2927 			buffer_info->length = size;
2928 			buffer_info->time_stamp = jiffies;
2929 			buffer_info->mapped_as_page = true;
2930 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931 						offset, size, DMA_TO_DEVICE);
2932 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933 				goto dma_error;
2934 			buffer_info->next_to_watch = i;
2935 
2936 			len -= size;
2937 			offset += size;
2938 			count++;
2939 		}
2940 	}
2941 
2942 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2943 	/* multiply data chunks by size of headers */
2944 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945 
2946 	tx_ring->buffer_info[i].skb = skb;
2947 	tx_ring->buffer_info[i].segs = segs;
2948 	tx_ring->buffer_info[i].bytecount = bytecount;
2949 	tx_ring->buffer_info[first].next_to_watch = i;
2950 
2951 	return count;
2952 
2953 dma_error:
2954 	dev_err(&pdev->dev, "TX DMA map failed\n");
2955 	buffer_info->dma = 0;
2956 	if (count)
2957 		count--;
2958 
2959 	while (count--) {
2960 		if (i == 0)
2961 			i += tx_ring->count;
2962 		i--;
2963 		buffer_info = &tx_ring->buffer_info[i];
2964 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 static void e1000_tx_queue(struct e1000_adapter *adapter,
2971 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2972 			   int count)
2973 {
2974 	struct e1000_tx_desc *tx_desc = NULL;
2975 	struct e1000_tx_buffer *buffer_info;
2976 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977 	unsigned int i;
2978 
2979 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 			     E1000_TXD_CMD_TSE;
2982 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983 
2984 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986 	}
2987 
2988 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 	}
2992 
2993 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994 		txd_lower |= E1000_TXD_CMD_VLE;
2995 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 	}
2997 
2998 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000 
3001 	i = tx_ring->next_to_use;
3002 
3003 	while (count--) {
3004 		buffer_info = &tx_ring->buffer_info[i];
3005 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3006 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007 		tx_desc->lower.data =
3008 			cpu_to_le32(txd_lower | buffer_info->length);
3009 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3010 		if (unlikely(++i == tx_ring->count))
3011 			i = 0;
3012 	}
3013 
3014 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015 
3016 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019 
3020 	/* Force memory writes to complete before letting h/w
3021 	 * know there are new descriptors to fetch.  (Only
3022 	 * applicable for weak-ordered memory model archs,
3023 	 * such as IA-64).
3024 	 */
3025 	wmb();
3026 
3027 	tx_ring->next_to_use = i;
3028 }
3029 
3030 /* 82547 workaround to avoid controller hang in half-duplex environment.
3031  * The workaround is to avoid queuing a large packet that would span
3032  * the internal Tx FIFO ring boundary by notifying the stack to resend
3033  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3034  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3035  * to the beginning of the Tx FIFO.
3036  */
3037 
3038 #define E1000_FIFO_HDR			0x10
3039 #define E1000_82547_PAD_LEN		0x3E0
3040 
3041 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042 				       struct sk_buff *skb)
3043 {
3044 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046 
3047 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048 
3049 	if (adapter->link_duplex != HALF_DUPLEX)
3050 		goto no_fifo_stall_required;
3051 
3052 	if (atomic_read(&adapter->tx_fifo_stall))
3053 		return 1;
3054 
3055 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056 		atomic_set(&adapter->tx_fifo_stall, 1);
3057 		return 1;
3058 	}
3059 
3060 no_fifo_stall_required:
3061 	adapter->tx_fifo_head += skb_fifo_len;
3062 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064 	return 0;
3065 }
3066 
3067 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068 {
3069 	struct e1000_adapter *adapter = netdev_priv(netdev);
3070 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071 
3072 	netif_stop_queue(netdev);
3073 	/* Herbert's original patch had:
3074 	 *  smp_mb__after_netif_stop_queue();
3075 	 * but since that doesn't exist yet, just open code it.
3076 	 */
3077 	smp_mb();
3078 
3079 	/* We need to check again in a case another CPU has just
3080 	 * made room available.
3081 	 */
3082 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083 		return -EBUSY;
3084 
3085 	/* A reprieve! */
3086 	netif_start_queue(netdev);
3087 	++adapter->restart_queue;
3088 	return 0;
3089 }
3090 
3091 static int e1000_maybe_stop_tx(struct net_device *netdev,
3092 			       struct e1000_tx_ring *tx_ring, int size)
3093 {
3094 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095 		return 0;
3096 	return __e1000_maybe_stop_tx(netdev, size);
3097 }
3098 
3099 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101 				    struct net_device *netdev)
3102 {
3103 	struct e1000_adapter *adapter = netdev_priv(netdev);
3104 	struct e1000_hw *hw = &adapter->hw;
3105 	struct e1000_tx_ring *tx_ring;
3106 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108 	unsigned int tx_flags = 0;
3109 	unsigned int len = skb_headlen(skb);
3110 	unsigned int nr_frags;
3111 	unsigned int mss;
3112 	int count = 0;
3113 	int tso;
3114 	unsigned int f;
3115 	__be16 protocol = vlan_get_protocol(skb);
3116 
3117 	/* This goes back to the question of how to logically map a Tx queue
3118 	 * to a flow.  Right now, performance is impacted slightly negatively
3119 	 * if using multiple Tx queues.  If the stack breaks away from a
3120 	 * single qdisc implementation, we can look at this again.
3121 	 */
3122 	tx_ring = adapter->tx_ring;
3123 
3124 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125 	 * packets may get corrupted during padding by HW.
3126 	 * To WA this issue, pad all small packets manually.
3127 	 */
3128 	if (eth_skb_pad(skb))
3129 		return NETDEV_TX_OK;
3130 
3131 	mss = skb_shinfo(skb)->gso_size;
3132 	/* The controller does a simple calculation to
3133 	 * make sure there is enough room in the FIFO before
3134 	 * initiating the DMA for each buffer.  The calc is:
3135 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3136 	 * overrun the FIFO, adjust the max buffer len if mss
3137 	 * drops.
3138 	 */
3139 	if (mss) {
3140 		u8 hdr_len;
3141 		max_per_txd = min(mss << 2, max_per_txd);
3142 		max_txd_pwr = fls(max_per_txd) - 1;
3143 
3144 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3145 		if (skb->data_len && hdr_len == len) {
3146 			switch (hw->mac_type) {
3147 				unsigned int pull_size;
3148 			case e1000_82544:
3149 				/* Make sure we have room to chop off 4 bytes,
3150 				 * and that the end alignment will work out to
3151 				 * this hardware's requirements
3152 				 * NOTE: this is a TSO only workaround
3153 				 * if end byte alignment not correct move us
3154 				 * into the next dword
3155 				 */
3156 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3157 				    & 4)
3158 					break;
3159 				/* fall through */
3160 				pull_size = min((unsigned int)4, skb->data_len);
3161 				if (!__pskb_pull_tail(skb, pull_size)) {
3162 					e_err(drv, "__pskb_pull_tail "
3163 					      "failed.\n");
3164 					dev_kfree_skb_any(skb);
3165 					return NETDEV_TX_OK;
3166 				}
3167 				len = skb_headlen(skb);
3168 				break;
3169 			default:
3170 				/* do nothing */
3171 				break;
3172 			}
3173 		}
3174 	}
3175 
3176 	/* reserve a descriptor for the offload context */
3177 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3178 		count++;
3179 	count++;
3180 
3181 	/* Controller Erratum workaround */
3182 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3183 		count++;
3184 
3185 	count += TXD_USE_COUNT(len, max_txd_pwr);
3186 
3187 	if (adapter->pcix_82544)
3188 		count++;
3189 
3190 	/* work-around for errata 10 and it applies to all controllers
3191 	 * in PCI-X mode, so add one more descriptor to the count
3192 	 */
3193 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3194 			(len > 2015)))
3195 		count++;
3196 
3197 	nr_frags = skb_shinfo(skb)->nr_frags;
3198 	for (f = 0; f < nr_frags; f++)
3199 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3200 				       max_txd_pwr);
3201 	if (adapter->pcix_82544)
3202 		count += nr_frags;
3203 
3204 	/* need: count + 2 desc gap to keep tail from touching
3205 	 * head, otherwise try next time
3206 	 */
3207 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3208 		return NETDEV_TX_BUSY;
3209 
3210 	if (unlikely((hw->mac_type == e1000_82547) &&
3211 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3212 		netif_stop_queue(netdev);
3213 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3214 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3215 		return NETDEV_TX_BUSY;
3216 	}
3217 
3218 	if (skb_vlan_tag_present(skb)) {
3219 		tx_flags |= E1000_TX_FLAGS_VLAN;
3220 		tx_flags |= (skb_vlan_tag_get(skb) <<
3221 			     E1000_TX_FLAGS_VLAN_SHIFT);
3222 	}
3223 
3224 	first = tx_ring->next_to_use;
3225 
3226 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3227 	if (tso < 0) {
3228 		dev_kfree_skb_any(skb);
3229 		return NETDEV_TX_OK;
3230 	}
3231 
3232 	if (likely(tso)) {
3233 		if (likely(hw->mac_type != e1000_82544))
3234 			tx_ring->last_tx_tso = true;
3235 		tx_flags |= E1000_TX_FLAGS_TSO;
3236 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3237 		tx_flags |= E1000_TX_FLAGS_CSUM;
3238 
3239 	if (protocol == htons(ETH_P_IP))
3240 		tx_flags |= E1000_TX_FLAGS_IPV4;
3241 
3242 	if (unlikely(skb->no_fcs))
3243 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3244 
3245 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3246 			     nr_frags, mss);
3247 
3248 	if (count) {
3249 		/* The descriptors needed is higher than other Intel drivers
3250 		 * due to a number of workarounds.  The breakdown is below:
3251 		 * Data descriptors: MAX_SKB_FRAGS + 1
3252 		 * Context Descriptor: 1
3253 		 * Keep head from touching tail: 2
3254 		 * Workarounds: 3
3255 		 */
3256 		int desc_needed = MAX_SKB_FRAGS + 7;
3257 
3258 		netdev_sent_queue(netdev, skb->len);
3259 		skb_tx_timestamp(skb);
3260 
3261 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3262 
3263 		/* 82544 potentially requires twice as many data descriptors
3264 		 * in order to guarantee buffers don't end on evenly-aligned
3265 		 * dwords
3266 		 */
3267 		if (adapter->pcix_82544)
3268 			desc_needed += MAX_SKB_FRAGS + 1;
3269 
3270 		/* Make sure there is space in the ring for the next send. */
3271 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3272 
3273 		if (!skb->xmit_more ||
3274 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3275 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3276 			/* we need this if more than one processor can write to
3277 			 * our tail at a time, it synchronizes IO on IA64/Altix
3278 			 * systems
3279 			 */
3280 			mmiowb();
3281 		}
3282 	} else {
3283 		dev_kfree_skb_any(skb);
3284 		tx_ring->buffer_info[first].time_stamp = 0;
3285 		tx_ring->next_to_use = first;
3286 	}
3287 
3288 	return NETDEV_TX_OK;
3289 }
3290 
3291 #define NUM_REGS 38 /* 1 based count */
3292 static void e1000_regdump(struct e1000_adapter *adapter)
3293 {
3294 	struct e1000_hw *hw = &adapter->hw;
3295 	u32 regs[NUM_REGS];
3296 	u32 *regs_buff = regs;
3297 	int i = 0;
3298 
3299 	static const char * const reg_name[] = {
3300 		"CTRL",  "STATUS",
3301 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3302 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3303 		"TIDV", "TXDCTL", "TADV", "TARC0",
3304 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3305 		"TXDCTL1", "TARC1",
3306 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3307 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3308 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3309 	};
3310 
3311 	regs_buff[0]  = er32(CTRL);
3312 	regs_buff[1]  = er32(STATUS);
3313 
3314 	regs_buff[2]  = er32(RCTL);
3315 	regs_buff[3]  = er32(RDLEN);
3316 	regs_buff[4]  = er32(RDH);
3317 	regs_buff[5]  = er32(RDT);
3318 	regs_buff[6]  = er32(RDTR);
3319 
3320 	regs_buff[7]  = er32(TCTL);
3321 	regs_buff[8]  = er32(TDBAL);
3322 	regs_buff[9]  = er32(TDBAH);
3323 	regs_buff[10] = er32(TDLEN);
3324 	regs_buff[11] = er32(TDH);
3325 	regs_buff[12] = er32(TDT);
3326 	regs_buff[13] = er32(TIDV);
3327 	regs_buff[14] = er32(TXDCTL);
3328 	regs_buff[15] = er32(TADV);
3329 	regs_buff[16] = er32(TARC0);
3330 
3331 	regs_buff[17] = er32(TDBAL1);
3332 	regs_buff[18] = er32(TDBAH1);
3333 	regs_buff[19] = er32(TDLEN1);
3334 	regs_buff[20] = er32(TDH1);
3335 	regs_buff[21] = er32(TDT1);
3336 	regs_buff[22] = er32(TXDCTL1);
3337 	regs_buff[23] = er32(TARC1);
3338 	regs_buff[24] = er32(CTRL_EXT);
3339 	regs_buff[25] = er32(ERT);
3340 	regs_buff[26] = er32(RDBAL0);
3341 	regs_buff[27] = er32(RDBAH0);
3342 	regs_buff[28] = er32(TDFH);
3343 	regs_buff[29] = er32(TDFT);
3344 	regs_buff[30] = er32(TDFHS);
3345 	regs_buff[31] = er32(TDFTS);
3346 	regs_buff[32] = er32(TDFPC);
3347 	regs_buff[33] = er32(RDFH);
3348 	regs_buff[34] = er32(RDFT);
3349 	regs_buff[35] = er32(RDFHS);
3350 	regs_buff[36] = er32(RDFTS);
3351 	regs_buff[37] = er32(RDFPC);
3352 
3353 	pr_info("Register dump\n");
3354 	for (i = 0; i < NUM_REGS; i++)
3355 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3356 }
3357 
3358 /*
3359  * e1000_dump: Print registers, tx ring and rx ring
3360  */
3361 static void e1000_dump(struct e1000_adapter *adapter)
3362 {
3363 	/* this code doesn't handle multiple rings */
3364 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3365 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3366 	int i;
3367 
3368 	if (!netif_msg_hw(adapter))
3369 		return;
3370 
3371 	/* Print Registers */
3372 	e1000_regdump(adapter);
3373 
3374 	/* transmit dump */
3375 	pr_info("TX Desc ring0 dump\n");
3376 
3377 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3378 	 *
3379 	 * Legacy Transmit Descriptor
3380 	 *   +--------------------------------------------------------------+
3381 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3382 	 *   +--------------------------------------------------------------+
3383 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3384 	 *   +--------------------------------------------------------------+
3385 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3386 	 *
3387 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3388 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3389 	 *   +----------------------------------------------------------------+
3390 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3391 	 *   +----------------------------------------------------------------+
3392 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3393 	 *   +----------------------------------------------------------------+
3394 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3395 	 *
3396 	 * Extended Data Descriptor (DTYP=0x1)
3397 	 *   +----------------------------------------------------------------+
3398 	 * 0 |                     Buffer Address [63:0]                      |
3399 	 *   +----------------------------------------------------------------+
3400 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3401 	 *   +----------------------------------------------------------------+
3402 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3403 	 */
3404 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3405 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3406 
3407 	if (!netif_msg_tx_done(adapter))
3408 		goto rx_ring_summary;
3409 
3410 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3411 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3412 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3413 		struct my_u { __le64 a; __le64 b; };
3414 		struct my_u *u = (struct my_u *)tx_desc;
3415 		const char *type;
3416 
3417 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3418 			type = "NTC/U";
3419 		else if (i == tx_ring->next_to_use)
3420 			type = "NTU";
3421 		else if (i == tx_ring->next_to_clean)
3422 			type = "NTC";
3423 		else
3424 			type = "";
3425 
3426 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3427 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3428 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3429 			(u64)buffer_info->dma, buffer_info->length,
3430 			buffer_info->next_to_watch,
3431 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3432 	}
3433 
3434 rx_ring_summary:
3435 	/* receive dump */
3436 	pr_info("\nRX Desc ring dump\n");
3437 
3438 	/* Legacy Receive Descriptor Format
3439 	 *
3440 	 * +-----------------------------------------------------+
3441 	 * |                Buffer Address [63:0]                |
3442 	 * +-----------------------------------------------------+
3443 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3444 	 * +-----------------------------------------------------+
3445 	 * 63       48 47    40 39      32 31         16 15      0
3446 	 */
3447 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3448 
3449 	if (!netif_msg_rx_status(adapter))
3450 		goto exit;
3451 
3452 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3453 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3454 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3455 		struct my_u { __le64 a; __le64 b; };
3456 		struct my_u *u = (struct my_u *)rx_desc;
3457 		const char *type;
3458 
3459 		if (i == rx_ring->next_to_use)
3460 			type = "NTU";
3461 		else if (i == rx_ring->next_to_clean)
3462 			type = "NTC";
3463 		else
3464 			type = "";
3465 
3466 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3467 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3468 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3469 	} /* for */
3470 
3471 	/* dump the descriptor caches */
3472 	/* rx */
3473 	pr_info("Rx descriptor cache in 64bit format\n");
3474 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3475 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3476 			i,
3477 			readl(adapter->hw.hw_addr + i+4),
3478 			readl(adapter->hw.hw_addr + i),
3479 			readl(adapter->hw.hw_addr + i+12),
3480 			readl(adapter->hw.hw_addr + i+8));
3481 	}
3482 	/* tx */
3483 	pr_info("Tx descriptor cache in 64bit format\n");
3484 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3485 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3486 			i,
3487 			readl(adapter->hw.hw_addr + i+4),
3488 			readl(adapter->hw.hw_addr + i),
3489 			readl(adapter->hw.hw_addr + i+12),
3490 			readl(adapter->hw.hw_addr + i+8));
3491 	}
3492 exit:
3493 	return;
3494 }
3495 
3496 /**
3497  * e1000_tx_timeout - Respond to a Tx Hang
3498  * @netdev: network interface device structure
3499  **/
3500 static void e1000_tx_timeout(struct net_device *netdev)
3501 {
3502 	struct e1000_adapter *adapter = netdev_priv(netdev);
3503 
3504 	/* Do the reset outside of interrupt context */
3505 	adapter->tx_timeout_count++;
3506 	schedule_work(&adapter->reset_task);
3507 }
3508 
3509 static void e1000_reset_task(struct work_struct *work)
3510 {
3511 	struct e1000_adapter *adapter =
3512 		container_of(work, struct e1000_adapter, reset_task);
3513 
3514 	e_err(drv, "Reset adapter\n");
3515 	e1000_reinit_locked(adapter);
3516 }
3517 
3518 /**
3519  * e1000_change_mtu - Change the Maximum Transfer Unit
3520  * @netdev: network interface device structure
3521  * @new_mtu: new value for maximum frame size
3522  *
3523  * Returns 0 on success, negative on failure
3524  **/
3525 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3526 {
3527 	struct e1000_adapter *adapter = netdev_priv(netdev);
3528 	struct e1000_hw *hw = &adapter->hw;
3529 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3530 
3531 	/* Adapter-specific max frame size limits. */
3532 	switch (hw->mac_type) {
3533 	case e1000_undefined ... e1000_82542_rev2_1:
3534 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3535 			e_err(probe, "Jumbo Frames not supported.\n");
3536 			return -EINVAL;
3537 		}
3538 		break;
3539 	default:
3540 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3541 		break;
3542 	}
3543 
3544 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3545 		msleep(1);
3546 	/* e1000_down has a dependency on max_frame_size */
3547 	hw->max_frame_size = max_frame;
3548 	if (netif_running(netdev)) {
3549 		/* prevent buffers from being reallocated */
3550 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3551 		e1000_down(adapter);
3552 	}
3553 
3554 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3555 	 * means we reserve 2 more, this pushes us to allocate from the next
3556 	 * larger slab size.
3557 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3558 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3559 	 * fragmented skbs
3560 	 */
3561 
3562 	if (max_frame <= E1000_RXBUFFER_2048)
3563 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3564 	else
3565 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3566 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3567 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3568 		adapter->rx_buffer_len = PAGE_SIZE;
3569 #endif
3570 
3571 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3572 	if (!hw->tbi_compatibility_on &&
3573 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3574 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3575 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3576 
3577 	pr_info("%s changing MTU from %d to %d\n",
3578 		netdev->name, netdev->mtu, new_mtu);
3579 	netdev->mtu = new_mtu;
3580 
3581 	if (netif_running(netdev))
3582 		e1000_up(adapter);
3583 	else
3584 		e1000_reset(adapter);
3585 
3586 	clear_bit(__E1000_RESETTING, &adapter->flags);
3587 
3588 	return 0;
3589 }
3590 
3591 /**
3592  * e1000_update_stats - Update the board statistics counters
3593  * @adapter: board private structure
3594  **/
3595 void e1000_update_stats(struct e1000_adapter *adapter)
3596 {
3597 	struct net_device *netdev = adapter->netdev;
3598 	struct e1000_hw *hw = &adapter->hw;
3599 	struct pci_dev *pdev = adapter->pdev;
3600 	unsigned long flags;
3601 	u16 phy_tmp;
3602 
3603 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3604 
3605 	/* Prevent stats update while adapter is being reset, or if the pci
3606 	 * connection is down.
3607 	 */
3608 	if (adapter->link_speed == 0)
3609 		return;
3610 	if (pci_channel_offline(pdev))
3611 		return;
3612 
3613 	spin_lock_irqsave(&adapter->stats_lock, flags);
3614 
3615 	/* these counters are modified from e1000_tbi_adjust_stats,
3616 	 * called from the interrupt context, so they must only
3617 	 * be written while holding adapter->stats_lock
3618 	 */
3619 
3620 	adapter->stats.crcerrs += er32(CRCERRS);
3621 	adapter->stats.gprc += er32(GPRC);
3622 	adapter->stats.gorcl += er32(GORCL);
3623 	adapter->stats.gorch += er32(GORCH);
3624 	adapter->stats.bprc += er32(BPRC);
3625 	adapter->stats.mprc += er32(MPRC);
3626 	adapter->stats.roc += er32(ROC);
3627 
3628 	adapter->stats.prc64 += er32(PRC64);
3629 	adapter->stats.prc127 += er32(PRC127);
3630 	adapter->stats.prc255 += er32(PRC255);
3631 	adapter->stats.prc511 += er32(PRC511);
3632 	adapter->stats.prc1023 += er32(PRC1023);
3633 	adapter->stats.prc1522 += er32(PRC1522);
3634 
3635 	adapter->stats.symerrs += er32(SYMERRS);
3636 	adapter->stats.mpc += er32(MPC);
3637 	adapter->stats.scc += er32(SCC);
3638 	adapter->stats.ecol += er32(ECOL);
3639 	adapter->stats.mcc += er32(MCC);
3640 	adapter->stats.latecol += er32(LATECOL);
3641 	adapter->stats.dc += er32(DC);
3642 	adapter->stats.sec += er32(SEC);
3643 	adapter->stats.rlec += er32(RLEC);
3644 	adapter->stats.xonrxc += er32(XONRXC);
3645 	adapter->stats.xontxc += er32(XONTXC);
3646 	adapter->stats.xoffrxc += er32(XOFFRXC);
3647 	adapter->stats.xofftxc += er32(XOFFTXC);
3648 	adapter->stats.fcruc += er32(FCRUC);
3649 	adapter->stats.gptc += er32(GPTC);
3650 	adapter->stats.gotcl += er32(GOTCL);
3651 	adapter->stats.gotch += er32(GOTCH);
3652 	adapter->stats.rnbc += er32(RNBC);
3653 	adapter->stats.ruc += er32(RUC);
3654 	adapter->stats.rfc += er32(RFC);
3655 	adapter->stats.rjc += er32(RJC);
3656 	adapter->stats.torl += er32(TORL);
3657 	adapter->stats.torh += er32(TORH);
3658 	adapter->stats.totl += er32(TOTL);
3659 	adapter->stats.toth += er32(TOTH);
3660 	adapter->stats.tpr += er32(TPR);
3661 
3662 	adapter->stats.ptc64 += er32(PTC64);
3663 	adapter->stats.ptc127 += er32(PTC127);
3664 	adapter->stats.ptc255 += er32(PTC255);
3665 	adapter->stats.ptc511 += er32(PTC511);
3666 	adapter->stats.ptc1023 += er32(PTC1023);
3667 	adapter->stats.ptc1522 += er32(PTC1522);
3668 
3669 	adapter->stats.mptc += er32(MPTC);
3670 	adapter->stats.bptc += er32(BPTC);
3671 
3672 	/* used for adaptive IFS */
3673 
3674 	hw->tx_packet_delta = er32(TPT);
3675 	adapter->stats.tpt += hw->tx_packet_delta;
3676 	hw->collision_delta = er32(COLC);
3677 	adapter->stats.colc += hw->collision_delta;
3678 
3679 	if (hw->mac_type >= e1000_82543) {
3680 		adapter->stats.algnerrc += er32(ALGNERRC);
3681 		adapter->stats.rxerrc += er32(RXERRC);
3682 		adapter->stats.tncrs += er32(TNCRS);
3683 		adapter->stats.cexterr += er32(CEXTERR);
3684 		adapter->stats.tsctc += er32(TSCTC);
3685 		adapter->stats.tsctfc += er32(TSCTFC);
3686 	}
3687 
3688 	/* Fill out the OS statistics structure */
3689 	netdev->stats.multicast = adapter->stats.mprc;
3690 	netdev->stats.collisions = adapter->stats.colc;
3691 
3692 	/* Rx Errors */
3693 
3694 	/* RLEC on some newer hardware can be incorrect so build
3695 	 * our own version based on RUC and ROC
3696 	 */
3697 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3698 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3699 		adapter->stats.ruc + adapter->stats.roc +
3700 		adapter->stats.cexterr;
3701 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3702 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3703 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3704 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3705 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3706 
3707 	/* Tx Errors */
3708 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3709 	netdev->stats.tx_errors = adapter->stats.txerrc;
3710 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3711 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3712 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3713 	if (hw->bad_tx_carr_stats_fd &&
3714 	    adapter->link_duplex == FULL_DUPLEX) {
3715 		netdev->stats.tx_carrier_errors = 0;
3716 		adapter->stats.tncrs = 0;
3717 	}
3718 
3719 	/* Tx Dropped needs to be maintained elsewhere */
3720 
3721 	/* Phy Stats */
3722 	if (hw->media_type == e1000_media_type_copper) {
3723 		if ((adapter->link_speed == SPEED_1000) &&
3724 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3725 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3726 			adapter->phy_stats.idle_errors += phy_tmp;
3727 		}
3728 
3729 		if ((hw->mac_type <= e1000_82546) &&
3730 		   (hw->phy_type == e1000_phy_m88) &&
3731 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3732 			adapter->phy_stats.receive_errors += phy_tmp;
3733 	}
3734 
3735 	/* Management Stats */
3736 	if (hw->has_smbus) {
3737 		adapter->stats.mgptc += er32(MGTPTC);
3738 		adapter->stats.mgprc += er32(MGTPRC);
3739 		adapter->stats.mgpdc += er32(MGTPDC);
3740 	}
3741 
3742 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3743 }
3744 
3745 /**
3746  * e1000_intr - Interrupt Handler
3747  * @irq: interrupt number
3748  * @data: pointer to a network interface device structure
3749  **/
3750 static irqreturn_t e1000_intr(int irq, void *data)
3751 {
3752 	struct net_device *netdev = data;
3753 	struct e1000_adapter *adapter = netdev_priv(netdev);
3754 	struct e1000_hw *hw = &adapter->hw;
3755 	u32 icr = er32(ICR);
3756 
3757 	if (unlikely((!icr)))
3758 		return IRQ_NONE;  /* Not our interrupt */
3759 
3760 	/* we might have caused the interrupt, but the above
3761 	 * read cleared it, and just in case the driver is
3762 	 * down there is nothing to do so return handled
3763 	 */
3764 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3765 		return IRQ_HANDLED;
3766 
3767 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3768 		hw->get_link_status = 1;
3769 		/* guard against interrupt when we're going down */
3770 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3771 			schedule_delayed_work(&adapter->watchdog_task, 1);
3772 	}
3773 
3774 	/* disable interrupts, without the synchronize_irq bit */
3775 	ew32(IMC, ~0);
3776 	E1000_WRITE_FLUSH();
3777 
3778 	if (likely(napi_schedule_prep(&adapter->napi))) {
3779 		adapter->total_tx_bytes = 0;
3780 		adapter->total_tx_packets = 0;
3781 		adapter->total_rx_bytes = 0;
3782 		adapter->total_rx_packets = 0;
3783 		__napi_schedule(&adapter->napi);
3784 	} else {
3785 		/* this really should not happen! if it does it is basically a
3786 		 * bug, but not a hard error, so enable ints and continue
3787 		 */
3788 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3789 			e1000_irq_enable(adapter);
3790 	}
3791 
3792 	return IRQ_HANDLED;
3793 }
3794 
3795 /**
3796  * e1000_clean - NAPI Rx polling callback
3797  * @adapter: board private structure
3798  **/
3799 static int e1000_clean(struct napi_struct *napi, int budget)
3800 {
3801 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802 						     napi);
3803 	int tx_clean_complete = 0, work_done = 0;
3804 
3805 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806 
3807 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808 
3809 	if (!tx_clean_complete)
3810 		work_done = budget;
3811 
3812 	/* If budget not fully consumed, exit the polling mode */
3813 	if (work_done < budget) {
3814 		if (likely(adapter->itr_setting & 3))
3815 			e1000_set_itr(adapter);
3816 		napi_complete_done(napi, work_done);
3817 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3818 			e1000_irq_enable(adapter);
3819 	}
3820 
3821 	return work_done;
3822 }
3823 
3824 /**
3825  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3826  * @adapter: board private structure
3827  **/
3828 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3829 			       struct e1000_tx_ring *tx_ring)
3830 {
3831 	struct e1000_hw *hw = &adapter->hw;
3832 	struct net_device *netdev = adapter->netdev;
3833 	struct e1000_tx_desc *tx_desc, *eop_desc;
3834 	struct e1000_tx_buffer *buffer_info;
3835 	unsigned int i, eop;
3836 	unsigned int count = 0;
3837 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3838 	unsigned int bytes_compl = 0, pkts_compl = 0;
3839 
3840 	i = tx_ring->next_to_clean;
3841 	eop = tx_ring->buffer_info[i].next_to_watch;
3842 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3843 
3844 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3845 	       (count < tx_ring->count)) {
3846 		bool cleaned = false;
3847 		dma_rmb();	/* read buffer_info after eop_desc */
3848 		for ( ; !cleaned; count++) {
3849 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3850 			buffer_info = &tx_ring->buffer_info[i];
3851 			cleaned = (i == eop);
3852 
3853 			if (cleaned) {
3854 				total_tx_packets += buffer_info->segs;
3855 				total_tx_bytes += buffer_info->bytecount;
3856 				if (buffer_info->skb) {
3857 					bytes_compl += buffer_info->skb->len;
3858 					pkts_compl++;
3859 				}
3860 
3861 			}
3862 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3863 			tx_desc->upper.data = 0;
3864 
3865 			if (unlikely(++i == tx_ring->count))
3866 				i = 0;
3867 		}
3868 
3869 		eop = tx_ring->buffer_info[i].next_to_watch;
3870 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3871 	}
3872 
3873 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3874 	 * which will reuse the cleaned buffers.
3875 	 */
3876 	smp_store_release(&tx_ring->next_to_clean, i);
3877 
3878 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3879 
3880 #define TX_WAKE_THRESHOLD 32
3881 	if (unlikely(count && netif_carrier_ok(netdev) &&
3882 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3883 		/* Make sure that anybody stopping the queue after this
3884 		 * sees the new next_to_clean.
3885 		 */
3886 		smp_mb();
3887 
3888 		if (netif_queue_stopped(netdev) &&
3889 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3890 			netif_wake_queue(netdev);
3891 			++adapter->restart_queue;
3892 		}
3893 	}
3894 
3895 	if (adapter->detect_tx_hung) {
3896 		/* Detect a transmit hang in hardware, this serializes the
3897 		 * check with the clearing of time_stamp and movement of i
3898 		 */
3899 		adapter->detect_tx_hung = false;
3900 		if (tx_ring->buffer_info[eop].time_stamp &&
3901 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3902 			       (adapter->tx_timeout_factor * HZ)) &&
3903 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3904 
3905 			/* detected Tx unit hang */
3906 			e_err(drv, "Detected Tx Unit Hang\n"
3907 			      "  Tx Queue             <%lu>\n"
3908 			      "  TDH                  <%x>\n"
3909 			      "  TDT                  <%x>\n"
3910 			      "  next_to_use          <%x>\n"
3911 			      "  next_to_clean        <%x>\n"
3912 			      "buffer_info[next_to_clean]\n"
3913 			      "  time_stamp           <%lx>\n"
3914 			      "  next_to_watch        <%x>\n"
3915 			      "  jiffies              <%lx>\n"
3916 			      "  next_to_watch.status <%x>\n",
3917 				(unsigned long)(tx_ring - adapter->tx_ring),
3918 				readl(hw->hw_addr + tx_ring->tdh),
3919 				readl(hw->hw_addr + tx_ring->tdt),
3920 				tx_ring->next_to_use,
3921 				tx_ring->next_to_clean,
3922 				tx_ring->buffer_info[eop].time_stamp,
3923 				eop,
3924 				jiffies,
3925 				eop_desc->upper.fields.status);
3926 			e1000_dump(adapter);
3927 			netif_stop_queue(netdev);
3928 		}
3929 	}
3930 	adapter->total_tx_bytes += total_tx_bytes;
3931 	adapter->total_tx_packets += total_tx_packets;
3932 	netdev->stats.tx_bytes += total_tx_bytes;
3933 	netdev->stats.tx_packets += total_tx_packets;
3934 	return count < tx_ring->count;
3935 }
3936 
3937 /**
3938  * e1000_rx_checksum - Receive Checksum Offload for 82543
3939  * @adapter:     board private structure
3940  * @status_err:  receive descriptor status and error fields
3941  * @csum:        receive descriptor csum field
3942  * @sk_buff:     socket buffer with received data
3943  **/
3944 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3945 			      u32 csum, struct sk_buff *skb)
3946 {
3947 	struct e1000_hw *hw = &adapter->hw;
3948 	u16 status = (u16)status_err;
3949 	u8 errors = (u8)(status_err >> 24);
3950 
3951 	skb_checksum_none_assert(skb);
3952 
3953 	/* 82543 or newer only */
3954 	if (unlikely(hw->mac_type < e1000_82543))
3955 		return;
3956 	/* Ignore Checksum bit is set */
3957 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3958 		return;
3959 	/* TCP/UDP checksum error bit is set */
3960 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3961 		/* let the stack verify checksum errors */
3962 		adapter->hw_csum_err++;
3963 		return;
3964 	}
3965 	/* TCP/UDP Checksum has not been calculated */
3966 	if (!(status & E1000_RXD_STAT_TCPCS))
3967 		return;
3968 
3969 	/* It must be a TCP or UDP packet with a valid checksum */
3970 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3971 		/* TCP checksum is good */
3972 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3973 	}
3974 	adapter->hw_csum_good++;
3975 }
3976 
3977 /**
3978  * e1000_consume_page - helper function for jumbo Rx path
3979  **/
3980 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3981 			       u16 length)
3982 {
3983 	bi->rxbuf.page = NULL;
3984 	skb->len += length;
3985 	skb->data_len += length;
3986 	skb->truesize += PAGE_SIZE;
3987 }
3988 
3989 /**
3990  * e1000_receive_skb - helper function to handle rx indications
3991  * @adapter: board private structure
3992  * @status: descriptor status field as written by hardware
3993  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3994  * @skb: pointer to sk_buff to be indicated to stack
3995  */
3996 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3997 			      __le16 vlan, struct sk_buff *skb)
3998 {
3999 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4000 
4001 	if (status & E1000_RXD_STAT_VP) {
4002 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4003 
4004 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4005 	}
4006 	napi_gro_receive(&adapter->napi, skb);
4007 }
4008 
4009 /**
4010  * e1000_tbi_adjust_stats
4011  * @hw: Struct containing variables accessed by shared code
4012  * @frame_len: The length of the frame in question
4013  * @mac_addr: The Ethernet destination address of the frame in question
4014  *
4015  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4016  */
4017 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4018 				   struct e1000_hw_stats *stats,
4019 				   u32 frame_len, const u8 *mac_addr)
4020 {
4021 	u64 carry_bit;
4022 
4023 	/* First adjust the frame length. */
4024 	frame_len--;
4025 	/* We need to adjust the statistics counters, since the hardware
4026 	 * counters overcount this packet as a CRC error and undercount
4027 	 * the packet as a good packet
4028 	 */
4029 	/* This packet should not be counted as a CRC error. */
4030 	stats->crcerrs--;
4031 	/* This packet does count as a Good Packet Received. */
4032 	stats->gprc++;
4033 
4034 	/* Adjust the Good Octets received counters */
4035 	carry_bit = 0x80000000 & stats->gorcl;
4036 	stats->gorcl += frame_len;
4037 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4038 	 * Received Count) was one before the addition,
4039 	 * AND it is zero after, then we lost the carry out,
4040 	 * need to add one to Gorch (Good Octets Received Count High).
4041 	 * This could be simplified if all environments supported
4042 	 * 64-bit integers.
4043 	 */
4044 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4045 		stats->gorch++;
4046 	/* Is this a broadcast or multicast?  Check broadcast first,
4047 	 * since the test for a multicast frame will test positive on
4048 	 * a broadcast frame.
4049 	 */
4050 	if (is_broadcast_ether_addr(mac_addr))
4051 		stats->bprc++;
4052 	else if (is_multicast_ether_addr(mac_addr))
4053 		stats->mprc++;
4054 
4055 	if (frame_len == hw->max_frame_size) {
4056 		/* In this case, the hardware has overcounted the number of
4057 		 * oversize frames.
4058 		 */
4059 		if (stats->roc > 0)
4060 			stats->roc--;
4061 	}
4062 
4063 	/* Adjust the bin counters when the extra byte put the frame in the
4064 	 * wrong bin. Remember that the frame_len was adjusted above.
4065 	 */
4066 	if (frame_len == 64) {
4067 		stats->prc64++;
4068 		stats->prc127--;
4069 	} else if (frame_len == 127) {
4070 		stats->prc127++;
4071 		stats->prc255--;
4072 	} else if (frame_len == 255) {
4073 		stats->prc255++;
4074 		stats->prc511--;
4075 	} else if (frame_len == 511) {
4076 		stats->prc511++;
4077 		stats->prc1023--;
4078 	} else if (frame_len == 1023) {
4079 		stats->prc1023++;
4080 		stats->prc1522--;
4081 	} else if (frame_len == 1522) {
4082 		stats->prc1522++;
4083 	}
4084 }
4085 
4086 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4087 				    u8 status, u8 errors,
4088 				    u32 length, const u8 *data)
4089 {
4090 	struct e1000_hw *hw = &adapter->hw;
4091 	u8 last_byte = *(data + length - 1);
4092 
4093 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4094 		unsigned long irq_flags;
4095 
4096 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4097 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4098 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4099 
4100 		return true;
4101 	}
4102 
4103 	return false;
4104 }
4105 
4106 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4107 					  unsigned int bufsz)
4108 {
4109 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4110 
4111 	if (unlikely(!skb))
4112 		adapter->alloc_rx_buff_failed++;
4113 	return skb;
4114 }
4115 
4116 /**
4117  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4118  * @adapter: board private structure
4119  * @rx_ring: ring to clean
4120  * @work_done: amount of napi work completed this call
4121  * @work_to_do: max amount of work allowed for this call to do
4122  *
4123  * the return value indicates whether actual cleaning was done, there
4124  * is no guarantee that everything was cleaned
4125  */
4126 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4127 				     struct e1000_rx_ring *rx_ring,
4128 				     int *work_done, int work_to_do)
4129 {
4130 	struct net_device *netdev = adapter->netdev;
4131 	struct pci_dev *pdev = adapter->pdev;
4132 	struct e1000_rx_desc *rx_desc, *next_rxd;
4133 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4134 	u32 length;
4135 	unsigned int i;
4136 	int cleaned_count = 0;
4137 	bool cleaned = false;
4138 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4139 
4140 	i = rx_ring->next_to_clean;
4141 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4142 	buffer_info = &rx_ring->buffer_info[i];
4143 
4144 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4145 		struct sk_buff *skb;
4146 		u8 status;
4147 
4148 		if (*work_done >= work_to_do)
4149 			break;
4150 		(*work_done)++;
4151 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4152 
4153 		status = rx_desc->status;
4154 
4155 		if (++i == rx_ring->count)
4156 			i = 0;
4157 
4158 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4159 		prefetch(next_rxd);
4160 
4161 		next_buffer = &rx_ring->buffer_info[i];
4162 
4163 		cleaned = true;
4164 		cleaned_count++;
4165 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4166 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4167 		buffer_info->dma = 0;
4168 
4169 		length = le16_to_cpu(rx_desc->length);
4170 
4171 		/* errors is only valid for DD + EOP descriptors */
4172 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4173 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4174 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4175 
4176 			if (e1000_tbi_should_accept(adapter, status,
4177 						    rx_desc->errors,
4178 						    length, mapped)) {
4179 				length--;
4180 			} else if (netdev->features & NETIF_F_RXALL) {
4181 				goto process_skb;
4182 			} else {
4183 				/* an error means any chain goes out the window
4184 				 * too
4185 				 */
4186 				if (rx_ring->rx_skb_top)
4187 					dev_kfree_skb(rx_ring->rx_skb_top);
4188 				rx_ring->rx_skb_top = NULL;
4189 				goto next_desc;
4190 			}
4191 		}
4192 
4193 #define rxtop rx_ring->rx_skb_top
4194 process_skb:
4195 		if (!(status & E1000_RXD_STAT_EOP)) {
4196 			/* this descriptor is only the beginning (or middle) */
4197 			if (!rxtop) {
4198 				/* this is the beginning of a chain */
4199 				rxtop = napi_get_frags(&adapter->napi);
4200 				if (!rxtop)
4201 					break;
4202 
4203 				skb_fill_page_desc(rxtop, 0,
4204 						   buffer_info->rxbuf.page,
4205 						   0, length);
4206 			} else {
4207 				/* this is the middle of a chain */
4208 				skb_fill_page_desc(rxtop,
4209 				    skb_shinfo(rxtop)->nr_frags,
4210 				    buffer_info->rxbuf.page, 0, length);
4211 			}
4212 			e1000_consume_page(buffer_info, rxtop, length);
4213 			goto next_desc;
4214 		} else {
4215 			if (rxtop) {
4216 				/* end of the chain */
4217 				skb_fill_page_desc(rxtop,
4218 				    skb_shinfo(rxtop)->nr_frags,
4219 				    buffer_info->rxbuf.page, 0, length);
4220 				skb = rxtop;
4221 				rxtop = NULL;
4222 				e1000_consume_page(buffer_info, skb, length);
4223 			} else {
4224 				struct page *p;
4225 				/* no chain, got EOP, this buf is the packet
4226 				 * copybreak to save the put_page/alloc_page
4227 				 */
4228 				p = buffer_info->rxbuf.page;
4229 				if (length <= copybreak) {
4230 					u8 *vaddr;
4231 
4232 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4233 						length -= 4;
4234 					skb = e1000_alloc_rx_skb(adapter,
4235 								 length);
4236 					if (!skb)
4237 						break;
4238 
4239 					vaddr = kmap_atomic(p);
4240 					memcpy(skb_tail_pointer(skb), vaddr,
4241 					       length);
4242 					kunmap_atomic(vaddr);
4243 					/* re-use the page, so don't erase
4244 					 * buffer_info->rxbuf.page
4245 					 */
4246 					skb_put(skb, length);
4247 					e1000_rx_checksum(adapter,
4248 							  status | rx_desc->errors << 24,
4249 							  le16_to_cpu(rx_desc->csum), skb);
4250 
4251 					total_rx_bytes += skb->len;
4252 					total_rx_packets++;
4253 
4254 					e1000_receive_skb(adapter, status,
4255 							  rx_desc->special, skb);
4256 					goto next_desc;
4257 				} else {
4258 					skb = napi_get_frags(&adapter->napi);
4259 					if (!skb) {
4260 						adapter->alloc_rx_buff_failed++;
4261 						break;
4262 					}
4263 					skb_fill_page_desc(skb, 0, p, 0,
4264 							   length);
4265 					e1000_consume_page(buffer_info, skb,
4266 							   length);
4267 				}
4268 			}
4269 		}
4270 
4271 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4272 		e1000_rx_checksum(adapter,
4273 				  (u32)(status) |
4274 				  ((u32)(rx_desc->errors) << 24),
4275 				  le16_to_cpu(rx_desc->csum), skb);
4276 
4277 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4278 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4279 			pskb_trim(skb, skb->len - 4);
4280 		total_rx_packets++;
4281 
4282 		if (status & E1000_RXD_STAT_VP) {
4283 			__le16 vlan = rx_desc->special;
4284 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4285 
4286 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4287 		}
4288 
4289 		napi_gro_frags(&adapter->napi);
4290 
4291 next_desc:
4292 		rx_desc->status = 0;
4293 
4294 		/* return some buffers to hardware, one at a time is too slow */
4295 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4296 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4297 			cleaned_count = 0;
4298 		}
4299 
4300 		/* use prefetched values */
4301 		rx_desc = next_rxd;
4302 		buffer_info = next_buffer;
4303 	}
4304 	rx_ring->next_to_clean = i;
4305 
4306 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4307 	if (cleaned_count)
4308 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4309 
4310 	adapter->total_rx_packets += total_rx_packets;
4311 	adapter->total_rx_bytes += total_rx_bytes;
4312 	netdev->stats.rx_bytes += total_rx_bytes;
4313 	netdev->stats.rx_packets += total_rx_packets;
4314 	return cleaned;
4315 }
4316 
4317 /* this should improve performance for small packets with large amounts
4318  * of reassembly being done in the stack
4319  */
4320 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4321 				       struct e1000_rx_buffer *buffer_info,
4322 				       u32 length, const void *data)
4323 {
4324 	struct sk_buff *skb;
4325 
4326 	if (length > copybreak)
4327 		return NULL;
4328 
4329 	skb = e1000_alloc_rx_skb(adapter, length);
4330 	if (!skb)
4331 		return NULL;
4332 
4333 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4334 				length, DMA_FROM_DEVICE);
4335 
4336 	skb_put_data(skb, data, length);
4337 
4338 	return skb;
4339 }
4340 
4341 /**
4342  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4343  * @adapter: board private structure
4344  * @rx_ring: ring to clean
4345  * @work_done: amount of napi work completed this call
4346  * @work_to_do: max amount of work allowed for this call to do
4347  */
4348 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4349 			       struct e1000_rx_ring *rx_ring,
4350 			       int *work_done, int work_to_do)
4351 {
4352 	struct net_device *netdev = adapter->netdev;
4353 	struct pci_dev *pdev = adapter->pdev;
4354 	struct e1000_rx_desc *rx_desc, *next_rxd;
4355 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4356 	u32 length;
4357 	unsigned int i;
4358 	int cleaned_count = 0;
4359 	bool cleaned = false;
4360 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4361 
4362 	i = rx_ring->next_to_clean;
4363 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4364 	buffer_info = &rx_ring->buffer_info[i];
4365 
4366 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4367 		struct sk_buff *skb;
4368 		u8 *data;
4369 		u8 status;
4370 
4371 		if (*work_done >= work_to_do)
4372 			break;
4373 		(*work_done)++;
4374 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4375 
4376 		status = rx_desc->status;
4377 		length = le16_to_cpu(rx_desc->length);
4378 
4379 		data = buffer_info->rxbuf.data;
4380 		prefetch(data);
4381 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4382 		if (!skb) {
4383 			unsigned int frag_len = e1000_frag_len(adapter);
4384 
4385 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4386 			if (!skb) {
4387 				adapter->alloc_rx_buff_failed++;
4388 				break;
4389 			}
4390 
4391 			skb_reserve(skb, E1000_HEADROOM);
4392 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4393 					 adapter->rx_buffer_len,
4394 					 DMA_FROM_DEVICE);
4395 			buffer_info->dma = 0;
4396 			buffer_info->rxbuf.data = NULL;
4397 		}
4398 
4399 		if (++i == rx_ring->count)
4400 			i = 0;
4401 
4402 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4403 		prefetch(next_rxd);
4404 
4405 		next_buffer = &rx_ring->buffer_info[i];
4406 
4407 		cleaned = true;
4408 		cleaned_count++;
4409 
4410 		/* !EOP means multiple descriptors were used to store a single
4411 		 * packet, if thats the case we need to toss it.  In fact, we
4412 		 * to toss every packet with the EOP bit clear and the next
4413 		 * frame that _does_ have the EOP bit set, as it is by
4414 		 * definition only a frame fragment
4415 		 */
4416 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4417 			adapter->discarding = true;
4418 
4419 		if (adapter->discarding) {
4420 			/* All receives must fit into a single buffer */
4421 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4422 			dev_kfree_skb(skb);
4423 			if (status & E1000_RXD_STAT_EOP)
4424 				adapter->discarding = false;
4425 			goto next_desc;
4426 		}
4427 
4428 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4429 			if (e1000_tbi_should_accept(adapter, status,
4430 						    rx_desc->errors,
4431 						    length, data)) {
4432 				length--;
4433 			} else if (netdev->features & NETIF_F_RXALL) {
4434 				goto process_skb;
4435 			} else {
4436 				dev_kfree_skb(skb);
4437 				goto next_desc;
4438 			}
4439 		}
4440 
4441 process_skb:
4442 		total_rx_bytes += (length - 4); /* don't count FCS */
4443 		total_rx_packets++;
4444 
4445 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4446 			/* adjust length to remove Ethernet CRC, this must be
4447 			 * done after the TBI_ACCEPT workaround above
4448 			 */
4449 			length -= 4;
4450 
4451 		if (buffer_info->rxbuf.data == NULL)
4452 			skb_put(skb, length);
4453 		else /* copybreak skb */
4454 			skb_trim(skb, length);
4455 
4456 		/* Receive Checksum Offload */
4457 		e1000_rx_checksum(adapter,
4458 				  (u32)(status) |
4459 				  ((u32)(rx_desc->errors) << 24),
4460 				  le16_to_cpu(rx_desc->csum), skb);
4461 
4462 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4463 
4464 next_desc:
4465 		rx_desc->status = 0;
4466 
4467 		/* return some buffers to hardware, one at a time is too slow */
4468 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4469 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4470 			cleaned_count = 0;
4471 		}
4472 
4473 		/* use prefetched values */
4474 		rx_desc = next_rxd;
4475 		buffer_info = next_buffer;
4476 	}
4477 	rx_ring->next_to_clean = i;
4478 
4479 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4480 	if (cleaned_count)
4481 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4482 
4483 	adapter->total_rx_packets += total_rx_packets;
4484 	adapter->total_rx_bytes += total_rx_bytes;
4485 	netdev->stats.rx_bytes += total_rx_bytes;
4486 	netdev->stats.rx_packets += total_rx_packets;
4487 	return cleaned;
4488 }
4489 
4490 /**
4491  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4492  * @adapter: address of board private structure
4493  * @rx_ring: pointer to receive ring structure
4494  * @cleaned_count: number of buffers to allocate this pass
4495  **/
4496 static void
4497 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4498 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4499 {
4500 	struct pci_dev *pdev = adapter->pdev;
4501 	struct e1000_rx_desc *rx_desc;
4502 	struct e1000_rx_buffer *buffer_info;
4503 	unsigned int i;
4504 
4505 	i = rx_ring->next_to_use;
4506 	buffer_info = &rx_ring->buffer_info[i];
4507 
4508 	while (cleaned_count--) {
4509 		/* allocate a new page if necessary */
4510 		if (!buffer_info->rxbuf.page) {
4511 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4512 			if (unlikely(!buffer_info->rxbuf.page)) {
4513 				adapter->alloc_rx_buff_failed++;
4514 				break;
4515 			}
4516 		}
4517 
4518 		if (!buffer_info->dma) {
4519 			buffer_info->dma = dma_map_page(&pdev->dev,
4520 							buffer_info->rxbuf.page, 0,
4521 							adapter->rx_buffer_len,
4522 							DMA_FROM_DEVICE);
4523 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4524 				put_page(buffer_info->rxbuf.page);
4525 				buffer_info->rxbuf.page = NULL;
4526 				buffer_info->dma = 0;
4527 				adapter->alloc_rx_buff_failed++;
4528 				break;
4529 			}
4530 		}
4531 
4532 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4533 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4534 
4535 		if (unlikely(++i == rx_ring->count))
4536 			i = 0;
4537 		buffer_info = &rx_ring->buffer_info[i];
4538 	}
4539 
4540 	if (likely(rx_ring->next_to_use != i)) {
4541 		rx_ring->next_to_use = i;
4542 		if (unlikely(i-- == 0))
4543 			i = (rx_ring->count - 1);
4544 
4545 		/* Force memory writes to complete before letting h/w
4546 		 * know there are new descriptors to fetch.  (Only
4547 		 * applicable for weak-ordered memory model archs,
4548 		 * such as IA-64).
4549 		 */
4550 		wmb();
4551 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4552 	}
4553 }
4554 
4555 /**
4556  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4557  * @adapter: address of board private structure
4558  **/
4559 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4560 				   struct e1000_rx_ring *rx_ring,
4561 				   int cleaned_count)
4562 {
4563 	struct e1000_hw *hw = &adapter->hw;
4564 	struct pci_dev *pdev = adapter->pdev;
4565 	struct e1000_rx_desc *rx_desc;
4566 	struct e1000_rx_buffer *buffer_info;
4567 	unsigned int i;
4568 	unsigned int bufsz = adapter->rx_buffer_len;
4569 
4570 	i = rx_ring->next_to_use;
4571 	buffer_info = &rx_ring->buffer_info[i];
4572 
4573 	while (cleaned_count--) {
4574 		void *data;
4575 
4576 		if (buffer_info->rxbuf.data)
4577 			goto skip;
4578 
4579 		data = e1000_alloc_frag(adapter);
4580 		if (!data) {
4581 			/* Better luck next round */
4582 			adapter->alloc_rx_buff_failed++;
4583 			break;
4584 		}
4585 
4586 		/* Fix for errata 23, can't cross 64kB boundary */
4587 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4588 			void *olddata = data;
4589 			e_err(rx_err, "skb align check failed: %u bytes at "
4590 			      "%p\n", bufsz, data);
4591 			/* Try again, without freeing the previous */
4592 			data = e1000_alloc_frag(adapter);
4593 			/* Failed allocation, critical failure */
4594 			if (!data) {
4595 				skb_free_frag(olddata);
4596 				adapter->alloc_rx_buff_failed++;
4597 				break;
4598 			}
4599 
4600 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4601 				/* give up */
4602 				skb_free_frag(data);
4603 				skb_free_frag(olddata);
4604 				adapter->alloc_rx_buff_failed++;
4605 				break;
4606 			}
4607 
4608 			/* Use new allocation */
4609 			skb_free_frag(olddata);
4610 		}
4611 		buffer_info->dma = dma_map_single(&pdev->dev,
4612 						  data,
4613 						  adapter->rx_buffer_len,
4614 						  DMA_FROM_DEVICE);
4615 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4616 			skb_free_frag(data);
4617 			buffer_info->dma = 0;
4618 			adapter->alloc_rx_buff_failed++;
4619 			break;
4620 		}
4621 
4622 		/* XXX if it was allocated cleanly it will never map to a
4623 		 * boundary crossing
4624 		 */
4625 
4626 		/* Fix for errata 23, can't cross 64kB boundary */
4627 		if (!e1000_check_64k_bound(adapter,
4628 					(void *)(unsigned long)buffer_info->dma,
4629 					adapter->rx_buffer_len)) {
4630 			e_err(rx_err, "dma align check failed: %u bytes at "
4631 			      "%p\n", adapter->rx_buffer_len,
4632 			      (void *)(unsigned long)buffer_info->dma);
4633 
4634 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4635 					 adapter->rx_buffer_len,
4636 					 DMA_FROM_DEVICE);
4637 
4638 			skb_free_frag(data);
4639 			buffer_info->rxbuf.data = NULL;
4640 			buffer_info->dma = 0;
4641 
4642 			adapter->alloc_rx_buff_failed++;
4643 			break;
4644 		}
4645 		buffer_info->rxbuf.data = data;
4646  skip:
4647 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4648 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4649 
4650 		if (unlikely(++i == rx_ring->count))
4651 			i = 0;
4652 		buffer_info = &rx_ring->buffer_info[i];
4653 	}
4654 
4655 	if (likely(rx_ring->next_to_use != i)) {
4656 		rx_ring->next_to_use = i;
4657 		if (unlikely(i-- == 0))
4658 			i = (rx_ring->count - 1);
4659 
4660 		/* Force memory writes to complete before letting h/w
4661 		 * know there are new descriptors to fetch.  (Only
4662 		 * applicable for weak-ordered memory model archs,
4663 		 * such as IA-64).
4664 		 */
4665 		wmb();
4666 		writel(i, hw->hw_addr + rx_ring->rdt);
4667 	}
4668 }
4669 
4670 /**
4671  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4672  * @adapter:
4673  **/
4674 static void e1000_smartspeed(struct e1000_adapter *adapter)
4675 {
4676 	struct e1000_hw *hw = &adapter->hw;
4677 	u16 phy_status;
4678 	u16 phy_ctrl;
4679 
4680 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4681 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4682 		return;
4683 
4684 	if (adapter->smartspeed == 0) {
4685 		/* If Master/Slave config fault is asserted twice,
4686 		 * we assume back-to-back
4687 		 */
4688 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4689 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4690 			return;
4691 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4692 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4693 			return;
4694 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4695 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4696 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4697 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4698 					    phy_ctrl);
4699 			adapter->smartspeed++;
4700 			if (!e1000_phy_setup_autoneg(hw) &&
4701 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4702 					       &phy_ctrl)) {
4703 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4704 					     MII_CR_RESTART_AUTO_NEG);
4705 				e1000_write_phy_reg(hw, PHY_CTRL,
4706 						    phy_ctrl);
4707 			}
4708 		}
4709 		return;
4710 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4711 		/* If still no link, perhaps using 2/3 pair cable */
4712 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4713 		phy_ctrl |= CR_1000T_MS_ENABLE;
4714 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4715 		if (!e1000_phy_setup_autoneg(hw) &&
4716 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4717 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4718 				     MII_CR_RESTART_AUTO_NEG);
4719 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4720 		}
4721 	}
4722 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4723 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4724 		adapter->smartspeed = 0;
4725 }
4726 
4727 /**
4728  * e1000_ioctl -
4729  * @netdev:
4730  * @ifreq:
4731  * @cmd:
4732  **/
4733 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4734 {
4735 	switch (cmd) {
4736 	case SIOCGMIIPHY:
4737 	case SIOCGMIIREG:
4738 	case SIOCSMIIREG:
4739 		return e1000_mii_ioctl(netdev, ifr, cmd);
4740 	default:
4741 		return -EOPNOTSUPP;
4742 	}
4743 }
4744 
4745 /**
4746  * e1000_mii_ioctl -
4747  * @netdev:
4748  * @ifreq:
4749  * @cmd:
4750  **/
4751 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4752 			   int cmd)
4753 {
4754 	struct e1000_adapter *adapter = netdev_priv(netdev);
4755 	struct e1000_hw *hw = &adapter->hw;
4756 	struct mii_ioctl_data *data = if_mii(ifr);
4757 	int retval;
4758 	u16 mii_reg;
4759 	unsigned long flags;
4760 
4761 	if (hw->media_type != e1000_media_type_copper)
4762 		return -EOPNOTSUPP;
4763 
4764 	switch (cmd) {
4765 	case SIOCGMIIPHY:
4766 		data->phy_id = hw->phy_addr;
4767 		break;
4768 	case SIOCGMIIREG:
4769 		spin_lock_irqsave(&adapter->stats_lock, flags);
4770 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4771 				   &data->val_out)) {
4772 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4773 			return -EIO;
4774 		}
4775 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4776 		break;
4777 	case SIOCSMIIREG:
4778 		if (data->reg_num & ~(0x1F))
4779 			return -EFAULT;
4780 		mii_reg = data->val_in;
4781 		spin_lock_irqsave(&adapter->stats_lock, flags);
4782 		if (e1000_write_phy_reg(hw, data->reg_num,
4783 					mii_reg)) {
4784 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4785 			return -EIO;
4786 		}
4787 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4788 		if (hw->media_type == e1000_media_type_copper) {
4789 			switch (data->reg_num) {
4790 			case PHY_CTRL:
4791 				if (mii_reg & MII_CR_POWER_DOWN)
4792 					break;
4793 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4794 					hw->autoneg = 1;
4795 					hw->autoneg_advertised = 0x2F;
4796 				} else {
4797 					u32 speed;
4798 					if (mii_reg & 0x40)
4799 						speed = SPEED_1000;
4800 					else if (mii_reg & 0x2000)
4801 						speed = SPEED_100;
4802 					else
4803 						speed = SPEED_10;
4804 					retval = e1000_set_spd_dplx(
4805 						adapter, speed,
4806 						((mii_reg & 0x100)
4807 						 ? DUPLEX_FULL :
4808 						 DUPLEX_HALF));
4809 					if (retval)
4810 						return retval;
4811 				}
4812 				if (netif_running(adapter->netdev))
4813 					e1000_reinit_locked(adapter);
4814 				else
4815 					e1000_reset(adapter);
4816 				break;
4817 			case M88E1000_PHY_SPEC_CTRL:
4818 			case M88E1000_EXT_PHY_SPEC_CTRL:
4819 				if (e1000_phy_reset(hw))
4820 					return -EIO;
4821 				break;
4822 			}
4823 		} else {
4824 			switch (data->reg_num) {
4825 			case PHY_CTRL:
4826 				if (mii_reg & MII_CR_POWER_DOWN)
4827 					break;
4828 				if (netif_running(adapter->netdev))
4829 					e1000_reinit_locked(adapter);
4830 				else
4831 					e1000_reset(adapter);
4832 				break;
4833 			}
4834 		}
4835 		break;
4836 	default:
4837 		return -EOPNOTSUPP;
4838 	}
4839 	return E1000_SUCCESS;
4840 }
4841 
4842 void e1000_pci_set_mwi(struct e1000_hw *hw)
4843 {
4844 	struct e1000_adapter *adapter = hw->back;
4845 	int ret_val = pci_set_mwi(adapter->pdev);
4846 
4847 	if (ret_val)
4848 		e_err(probe, "Error in setting MWI\n");
4849 }
4850 
4851 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4852 {
4853 	struct e1000_adapter *adapter = hw->back;
4854 
4855 	pci_clear_mwi(adapter->pdev);
4856 }
4857 
4858 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4859 {
4860 	struct e1000_adapter *adapter = hw->back;
4861 	return pcix_get_mmrbc(adapter->pdev);
4862 }
4863 
4864 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4865 {
4866 	struct e1000_adapter *adapter = hw->back;
4867 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4868 }
4869 
4870 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4871 {
4872 	outl(value, port);
4873 }
4874 
4875 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4876 {
4877 	u16 vid;
4878 
4879 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4880 		return true;
4881 	return false;
4882 }
4883 
4884 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4885 			      netdev_features_t features)
4886 {
4887 	struct e1000_hw *hw = &adapter->hw;
4888 	u32 ctrl;
4889 
4890 	ctrl = er32(CTRL);
4891 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4892 		/* enable VLAN tag insert/strip */
4893 		ctrl |= E1000_CTRL_VME;
4894 	} else {
4895 		/* disable VLAN tag insert/strip */
4896 		ctrl &= ~E1000_CTRL_VME;
4897 	}
4898 	ew32(CTRL, ctrl);
4899 }
4900 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4901 				     bool filter_on)
4902 {
4903 	struct e1000_hw *hw = &adapter->hw;
4904 	u32 rctl;
4905 
4906 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4907 		e1000_irq_disable(adapter);
4908 
4909 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4910 	if (filter_on) {
4911 		/* enable VLAN receive filtering */
4912 		rctl = er32(RCTL);
4913 		rctl &= ~E1000_RCTL_CFIEN;
4914 		if (!(adapter->netdev->flags & IFF_PROMISC))
4915 			rctl |= E1000_RCTL_VFE;
4916 		ew32(RCTL, rctl);
4917 		e1000_update_mng_vlan(adapter);
4918 	} else {
4919 		/* disable VLAN receive filtering */
4920 		rctl = er32(RCTL);
4921 		rctl &= ~E1000_RCTL_VFE;
4922 		ew32(RCTL, rctl);
4923 	}
4924 
4925 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4926 		e1000_irq_enable(adapter);
4927 }
4928 
4929 static void e1000_vlan_mode(struct net_device *netdev,
4930 			    netdev_features_t features)
4931 {
4932 	struct e1000_adapter *adapter = netdev_priv(netdev);
4933 
4934 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4935 		e1000_irq_disable(adapter);
4936 
4937 	__e1000_vlan_mode(adapter, features);
4938 
4939 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4940 		e1000_irq_enable(adapter);
4941 }
4942 
4943 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4944 				 __be16 proto, u16 vid)
4945 {
4946 	struct e1000_adapter *adapter = netdev_priv(netdev);
4947 	struct e1000_hw *hw = &adapter->hw;
4948 	u32 vfta, index;
4949 
4950 	if ((hw->mng_cookie.status &
4951 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4952 	    (vid == adapter->mng_vlan_id))
4953 		return 0;
4954 
4955 	if (!e1000_vlan_used(adapter))
4956 		e1000_vlan_filter_on_off(adapter, true);
4957 
4958 	/* add VID to filter table */
4959 	index = (vid >> 5) & 0x7F;
4960 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4961 	vfta |= (1 << (vid & 0x1F));
4962 	e1000_write_vfta(hw, index, vfta);
4963 
4964 	set_bit(vid, adapter->active_vlans);
4965 
4966 	return 0;
4967 }
4968 
4969 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4970 				  __be16 proto, u16 vid)
4971 {
4972 	struct e1000_adapter *adapter = netdev_priv(netdev);
4973 	struct e1000_hw *hw = &adapter->hw;
4974 	u32 vfta, index;
4975 
4976 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4977 		e1000_irq_disable(adapter);
4978 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4979 		e1000_irq_enable(adapter);
4980 
4981 	/* remove VID from filter table */
4982 	index = (vid >> 5) & 0x7F;
4983 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4984 	vfta &= ~(1 << (vid & 0x1F));
4985 	e1000_write_vfta(hw, index, vfta);
4986 
4987 	clear_bit(vid, adapter->active_vlans);
4988 
4989 	if (!e1000_vlan_used(adapter))
4990 		e1000_vlan_filter_on_off(adapter, false);
4991 
4992 	return 0;
4993 }
4994 
4995 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4996 {
4997 	u16 vid;
4998 
4999 	if (!e1000_vlan_used(adapter))
5000 		return;
5001 
5002 	e1000_vlan_filter_on_off(adapter, true);
5003 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5004 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5005 }
5006 
5007 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5008 {
5009 	struct e1000_hw *hw = &adapter->hw;
5010 
5011 	hw->autoneg = 0;
5012 
5013 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5014 	 * for the switch() below to work
5015 	 */
5016 	if ((spd & 1) || (dplx & ~1))
5017 		goto err_inval;
5018 
5019 	/* Fiber NICs only allow 1000 gbps Full duplex */
5020 	if ((hw->media_type == e1000_media_type_fiber) &&
5021 	    spd != SPEED_1000 &&
5022 	    dplx != DUPLEX_FULL)
5023 		goto err_inval;
5024 
5025 	switch (spd + dplx) {
5026 	case SPEED_10 + DUPLEX_HALF:
5027 		hw->forced_speed_duplex = e1000_10_half;
5028 		break;
5029 	case SPEED_10 + DUPLEX_FULL:
5030 		hw->forced_speed_duplex = e1000_10_full;
5031 		break;
5032 	case SPEED_100 + DUPLEX_HALF:
5033 		hw->forced_speed_duplex = e1000_100_half;
5034 		break;
5035 	case SPEED_100 + DUPLEX_FULL:
5036 		hw->forced_speed_duplex = e1000_100_full;
5037 		break;
5038 	case SPEED_1000 + DUPLEX_FULL:
5039 		hw->autoneg = 1;
5040 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5041 		break;
5042 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5043 	default:
5044 		goto err_inval;
5045 	}
5046 
5047 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5048 	hw->mdix = AUTO_ALL_MODES;
5049 
5050 	return 0;
5051 
5052 err_inval:
5053 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5054 	return -EINVAL;
5055 }
5056 
5057 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5058 {
5059 	struct net_device *netdev = pci_get_drvdata(pdev);
5060 	struct e1000_adapter *adapter = netdev_priv(netdev);
5061 	struct e1000_hw *hw = &adapter->hw;
5062 	u32 ctrl, ctrl_ext, rctl, status;
5063 	u32 wufc = adapter->wol;
5064 #ifdef CONFIG_PM
5065 	int retval = 0;
5066 #endif
5067 
5068 	netif_device_detach(netdev);
5069 
5070 	if (netif_running(netdev)) {
5071 		int count = E1000_CHECK_RESET_COUNT;
5072 
5073 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5074 			usleep_range(10000, 20000);
5075 
5076 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5077 		e1000_down(adapter);
5078 	}
5079 
5080 #ifdef CONFIG_PM
5081 	retval = pci_save_state(pdev);
5082 	if (retval)
5083 		return retval;
5084 #endif
5085 
5086 	status = er32(STATUS);
5087 	if (status & E1000_STATUS_LU)
5088 		wufc &= ~E1000_WUFC_LNKC;
5089 
5090 	if (wufc) {
5091 		e1000_setup_rctl(adapter);
5092 		e1000_set_rx_mode(netdev);
5093 
5094 		rctl = er32(RCTL);
5095 
5096 		/* turn on all-multi mode if wake on multicast is enabled */
5097 		if (wufc & E1000_WUFC_MC)
5098 			rctl |= E1000_RCTL_MPE;
5099 
5100 		/* enable receives in the hardware */
5101 		ew32(RCTL, rctl | E1000_RCTL_EN);
5102 
5103 		if (hw->mac_type >= e1000_82540) {
5104 			ctrl = er32(CTRL);
5105 			/* advertise wake from D3Cold */
5106 			#define E1000_CTRL_ADVD3WUC 0x00100000
5107 			/* phy power management enable */
5108 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5109 			ctrl |= E1000_CTRL_ADVD3WUC |
5110 				E1000_CTRL_EN_PHY_PWR_MGMT;
5111 			ew32(CTRL, ctrl);
5112 		}
5113 
5114 		if (hw->media_type == e1000_media_type_fiber ||
5115 		    hw->media_type == e1000_media_type_internal_serdes) {
5116 			/* keep the laser running in D3 */
5117 			ctrl_ext = er32(CTRL_EXT);
5118 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5119 			ew32(CTRL_EXT, ctrl_ext);
5120 		}
5121 
5122 		ew32(WUC, E1000_WUC_PME_EN);
5123 		ew32(WUFC, wufc);
5124 	} else {
5125 		ew32(WUC, 0);
5126 		ew32(WUFC, 0);
5127 	}
5128 
5129 	e1000_release_manageability(adapter);
5130 
5131 	*enable_wake = !!wufc;
5132 
5133 	/* make sure adapter isn't asleep if manageability is enabled */
5134 	if (adapter->en_mng_pt)
5135 		*enable_wake = true;
5136 
5137 	if (netif_running(netdev))
5138 		e1000_free_irq(adapter);
5139 
5140 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5141 		pci_disable_device(pdev);
5142 
5143 	return 0;
5144 }
5145 
5146 #ifdef CONFIG_PM
5147 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5148 {
5149 	int retval;
5150 	bool wake;
5151 
5152 	retval = __e1000_shutdown(pdev, &wake);
5153 	if (retval)
5154 		return retval;
5155 
5156 	if (wake) {
5157 		pci_prepare_to_sleep(pdev);
5158 	} else {
5159 		pci_wake_from_d3(pdev, false);
5160 		pci_set_power_state(pdev, PCI_D3hot);
5161 	}
5162 
5163 	return 0;
5164 }
5165 
5166 static int e1000_resume(struct pci_dev *pdev)
5167 {
5168 	struct net_device *netdev = pci_get_drvdata(pdev);
5169 	struct e1000_adapter *adapter = netdev_priv(netdev);
5170 	struct e1000_hw *hw = &adapter->hw;
5171 	u32 err;
5172 
5173 	pci_set_power_state(pdev, PCI_D0);
5174 	pci_restore_state(pdev);
5175 	pci_save_state(pdev);
5176 
5177 	if (adapter->need_ioport)
5178 		err = pci_enable_device(pdev);
5179 	else
5180 		err = pci_enable_device_mem(pdev);
5181 	if (err) {
5182 		pr_err("Cannot enable PCI device from suspend\n");
5183 		return err;
5184 	}
5185 
5186 	/* flush memory to make sure state is correct */
5187 	smp_mb__before_atomic();
5188 	clear_bit(__E1000_DISABLED, &adapter->flags);
5189 	pci_set_master(pdev);
5190 
5191 	pci_enable_wake(pdev, PCI_D3hot, 0);
5192 	pci_enable_wake(pdev, PCI_D3cold, 0);
5193 
5194 	if (netif_running(netdev)) {
5195 		err = e1000_request_irq(adapter);
5196 		if (err)
5197 			return err;
5198 	}
5199 
5200 	e1000_power_up_phy(adapter);
5201 	e1000_reset(adapter);
5202 	ew32(WUS, ~0);
5203 
5204 	e1000_init_manageability(adapter);
5205 
5206 	if (netif_running(netdev))
5207 		e1000_up(adapter);
5208 
5209 	netif_device_attach(netdev);
5210 
5211 	return 0;
5212 }
5213 #endif
5214 
5215 static void e1000_shutdown(struct pci_dev *pdev)
5216 {
5217 	bool wake;
5218 
5219 	__e1000_shutdown(pdev, &wake);
5220 
5221 	if (system_state == SYSTEM_POWER_OFF) {
5222 		pci_wake_from_d3(pdev, wake);
5223 		pci_set_power_state(pdev, PCI_D3hot);
5224 	}
5225 }
5226 
5227 #ifdef CONFIG_NET_POLL_CONTROLLER
5228 /* Polling 'interrupt' - used by things like netconsole to send skbs
5229  * without having to re-enable interrupts. It's not called while
5230  * the interrupt routine is executing.
5231  */
5232 static void e1000_netpoll(struct net_device *netdev)
5233 {
5234 	struct e1000_adapter *adapter = netdev_priv(netdev);
5235 
5236 	if (disable_hardirq(adapter->pdev->irq))
5237 		e1000_intr(adapter->pdev->irq, netdev);
5238 	enable_irq(adapter->pdev->irq);
5239 }
5240 #endif
5241 
5242 /**
5243  * e1000_io_error_detected - called when PCI error is detected
5244  * @pdev: Pointer to PCI device
5245  * @state: The current pci connection state
5246  *
5247  * This function is called after a PCI bus error affecting
5248  * this device has been detected.
5249  */
5250 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5251 						pci_channel_state_t state)
5252 {
5253 	struct net_device *netdev = pci_get_drvdata(pdev);
5254 	struct e1000_adapter *adapter = netdev_priv(netdev);
5255 
5256 	netif_device_detach(netdev);
5257 
5258 	if (state == pci_channel_io_perm_failure)
5259 		return PCI_ERS_RESULT_DISCONNECT;
5260 
5261 	if (netif_running(netdev))
5262 		e1000_down(adapter);
5263 
5264 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5265 		pci_disable_device(pdev);
5266 
5267 	/* Request a slot slot reset. */
5268 	return PCI_ERS_RESULT_NEED_RESET;
5269 }
5270 
5271 /**
5272  * e1000_io_slot_reset - called after the pci bus has been reset.
5273  * @pdev: Pointer to PCI device
5274  *
5275  * Restart the card from scratch, as if from a cold-boot. Implementation
5276  * resembles the first-half of the e1000_resume routine.
5277  */
5278 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5279 {
5280 	struct net_device *netdev = pci_get_drvdata(pdev);
5281 	struct e1000_adapter *adapter = netdev_priv(netdev);
5282 	struct e1000_hw *hw = &adapter->hw;
5283 	int err;
5284 
5285 	if (adapter->need_ioport)
5286 		err = pci_enable_device(pdev);
5287 	else
5288 		err = pci_enable_device_mem(pdev);
5289 	if (err) {
5290 		pr_err("Cannot re-enable PCI device after reset.\n");
5291 		return PCI_ERS_RESULT_DISCONNECT;
5292 	}
5293 
5294 	/* flush memory to make sure state is correct */
5295 	smp_mb__before_atomic();
5296 	clear_bit(__E1000_DISABLED, &adapter->flags);
5297 	pci_set_master(pdev);
5298 
5299 	pci_enable_wake(pdev, PCI_D3hot, 0);
5300 	pci_enable_wake(pdev, PCI_D3cold, 0);
5301 
5302 	e1000_reset(adapter);
5303 	ew32(WUS, ~0);
5304 
5305 	return PCI_ERS_RESULT_RECOVERED;
5306 }
5307 
5308 /**
5309  * e1000_io_resume - called when traffic can start flowing again.
5310  * @pdev: Pointer to PCI device
5311  *
5312  * This callback is called when the error recovery driver tells us that
5313  * its OK to resume normal operation. Implementation resembles the
5314  * second-half of the e1000_resume routine.
5315  */
5316 static void e1000_io_resume(struct pci_dev *pdev)
5317 {
5318 	struct net_device *netdev = pci_get_drvdata(pdev);
5319 	struct e1000_adapter *adapter = netdev_priv(netdev);
5320 
5321 	e1000_init_manageability(adapter);
5322 
5323 	if (netif_running(netdev)) {
5324 		if (e1000_up(adapter)) {
5325 			pr_info("can't bring device back up after reset\n");
5326 			return;
5327 		}
5328 	}
5329 
5330 	netif_device_attach(netdev);
5331 }
5332 
5333 /* e1000_main.c */
5334