xref: /openbmc/linux/drivers/net/ethernet/intel/e1000/e1000_main.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*******************************************************************************
3 
4   Intel PRO/1000 Linux driver
5   Copyright(c) 1999 - 2006 Intel Corporation.
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 
28 *******************************************************************************/
29 
30 #include "e1000.h"
31 #include <net/ip6_checksum.h>
32 #include <linux/io.h>
33 #include <linux/prefetch.h>
34 #include <linux/bitops.h>
35 #include <linux/if_vlan.h>
36 
37 char e1000_driver_name[] = "e1000";
38 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
39 #define DRV_VERSION "7.3.21-k8-NAPI"
40 const char e1000_driver_version[] = DRV_VERSION;
41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static const struct pci_device_id e1000_pci_tbl[] = {
51 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
80 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
83 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
84 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
85 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
86 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
87 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
88 	/* required last entry */
89 	{0,}
90 };
91 
92 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
93 
94 int e1000_up(struct e1000_adapter *adapter);
95 void e1000_down(struct e1000_adapter *adapter);
96 void e1000_reinit_locked(struct e1000_adapter *adapter);
97 void e1000_reset(struct e1000_adapter *adapter);
98 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
99 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
101 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
102 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
103 				    struct e1000_tx_ring *txdr);
104 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
105 				    struct e1000_rx_ring *rxdr);
106 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
107 				    struct e1000_tx_ring *tx_ring);
108 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
109 				    struct e1000_rx_ring *rx_ring);
110 void e1000_update_stats(struct e1000_adapter *adapter);
111 
112 static int e1000_init_module(void);
113 static void e1000_exit_module(void);
114 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
115 static void e1000_remove(struct pci_dev *pdev);
116 static int e1000_alloc_queues(struct e1000_adapter *adapter);
117 static int e1000_sw_init(struct e1000_adapter *adapter);
118 int e1000_open(struct net_device *netdev);
119 int e1000_close(struct net_device *netdev);
120 static void e1000_configure_tx(struct e1000_adapter *adapter);
121 static void e1000_configure_rx(struct e1000_adapter *adapter);
122 static void e1000_setup_rctl(struct e1000_adapter *adapter);
123 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
125 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
126 				struct e1000_tx_ring *tx_ring);
127 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
128 				struct e1000_rx_ring *rx_ring);
129 static void e1000_set_rx_mode(struct net_device *netdev);
130 static void e1000_update_phy_info_task(struct work_struct *work);
131 static void e1000_watchdog(struct work_struct *work);
132 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
133 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
134 				    struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 			       struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 			       struct e1000_rx_ring *rx_ring,
143 			       int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 				     struct e1000_rx_ring *rx_ring,
146 				     int *work_done, int work_to_do);
147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 					 struct e1000_rx_ring *rx_ring,
149 					 int cleaned_count)
150 {
151 }
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 				   struct e1000_rx_ring *rx_ring,
154 				   int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 					 struct e1000_rx_ring *rx_ring,
157 					 int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 			   int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 				       struct sk_buff *skb);
168 
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev,
171 			    netdev_features_t features);
172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 				     bool filter_on);
174 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 				 __be16 proto, u16 vid);
176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 				  __be16 proto, u16 vid);
178 static void e1000_restore_vlan(struct e1000_adapter *adapter);
179 
180 #ifdef CONFIG_PM
181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184 static void e1000_shutdown(struct pci_dev *pdev);
185 
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void e1000_netpoll (struct net_device *netdev);
189 #endif
190 
191 #define COPYBREAK_DEFAULT 256
192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193 module_param(copybreak, uint, 0644);
194 MODULE_PARM_DESC(copybreak,
195 	"Maximum size of packet that is copied to a new buffer on receive");
196 
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 						pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201 
202 static const struct pci_error_handlers e1000_err_handler = {
203 	.error_detected = e1000_io_error_detected,
204 	.slot_reset = e1000_io_slot_reset,
205 	.resume = e1000_io_resume,
206 };
207 
208 static struct pci_driver e1000_driver = {
209 	.name     = e1000_driver_name,
210 	.id_table = e1000_pci_tbl,
211 	.probe    = e1000_probe,
212 	.remove   = e1000_remove,
213 #ifdef CONFIG_PM
214 	/* Power Management Hooks */
215 	.suspend  = e1000_suspend,
216 	.resume   = e1000_resume,
217 #endif
218 	.shutdown = e1000_shutdown,
219 	.err_handler = &e1000_err_handler
220 };
221 
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226 
227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228 static int debug = -1;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231 
232 /**
233  * e1000_get_hw_dev - return device
234  * used by hardware layer to print debugging information
235  *
236  **/
237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238 {
239 	struct e1000_adapter *adapter = hw->back;
240 	return adapter->netdev;
241 }
242 
243 /**
244  * e1000_init_module - Driver Registration Routine
245  *
246  * e1000_init_module is the first routine called when the driver is
247  * loaded. All it does is register with the PCI subsystem.
248  **/
249 static int __init e1000_init_module(void)
250 {
251 	int ret;
252 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253 
254 	pr_info("%s\n", e1000_copyright);
255 
256 	ret = pci_register_driver(&e1000_driver);
257 	if (copybreak != COPYBREAK_DEFAULT) {
258 		if (copybreak == 0)
259 			pr_info("copybreak disabled\n");
260 		else
261 			pr_info("copybreak enabled for "
262 				   "packets <= %u bytes\n", copybreak);
263 	}
264 	return ret;
265 }
266 
267 module_init(e1000_init_module);
268 
269 /**
270  * e1000_exit_module - Driver Exit Cleanup Routine
271  *
272  * e1000_exit_module is called just before the driver is removed
273  * from memory.
274  **/
275 static void __exit e1000_exit_module(void)
276 {
277 	pci_unregister_driver(&e1000_driver);
278 }
279 
280 module_exit(e1000_exit_module);
281 
282 static int e1000_request_irq(struct e1000_adapter *adapter)
283 {
284 	struct net_device *netdev = adapter->netdev;
285 	irq_handler_t handler = e1000_intr;
286 	int irq_flags = IRQF_SHARED;
287 	int err;
288 
289 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 			  netdev);
291 	if (err) {
292 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 	}
294 
295 	return err;
296 }
297 
298 static void e1000_free_irq(struct e1000_adapter *adapter)
299 {
300 	struct net_device *netdev = adapter->netdev;
301 
302 	free_irq(adapter->pdev->irq, netdev);
303 }
304 
305 /**
306  * e1000_irq_disable - Mask off interrupt generation on the NIC
307  * @adapter: board private structure
308  **/
309 static void e1000_irq_disable(struct e1000_adapter *adapter)
310 {
311 	struct e1000_hw *hw = &adapter->hw;
312 
313 	ew32(IMC, ~0);
314 	E1000_WRITE_FLUSH();
315 	synchronize_irq(adapter->pdev->irq);
316 }
317 
318 /**
319  * e1000_irq_enable - Enable default interrupt generation settings
320  * @adapter: board private structure
321  **/
322 static void e1000_irq_enable(struct e1000_adapter *adapter)
323 {
324 	struct e1000_hw *hw = &adapter->hw;
325 
326 	ew32(IMS, IMS_ENABLE_MASK);
327 	E1000_WRITE_FLUSH();
328 }
329 
330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331 {
332 	struct e1000_hw *hw = &adapter->hw;
333 	struct net_device *netdev = adapter->netdev;
334 	u16 vid = hw->mng_cookie.vlan_id;
335 	u16 old_vid = adapter->mng_vlan_id;
336 
337 	if (!e1000_vlan_used(adapter))
338 		return;
339 
340 	if (!test_bit(vid, adapter->active_vlans)) {
341 		if (hw->mng_cookie.status &
342 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 			adapter->mng_vlan_id = vid;
345 		} else {
346 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 		}
348 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 		    (vid != old_vid) &&
350 		    !test_bit(old_vid, adapter->active_vlans))
351 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 					       old_vid);
353 	} else {
354 		adapter->mng_vlan_id = vid;
355 	}
356 }
357 
358 static void e1000_init_manageability(struct e1000_adapter *adapter)
359 {
360 	struct e1000_hw *hw = &adapter->hw;
361 
362 	if (adapter->en_mng_pt) {
363 		u32 manc = er32(MANC);
364 
365 		/* disable hardware interception of ARP */
366 		manc &= ~(E1000_MANC_ARP_EN);
367 
368 		ew32(MANC, manc);
369 	}
370 }
371 
372 static void e1000_release_manageability(struct e1000_adapter *adapter)
373 {
374 	struct e1000_hw *hw = &adapter->hw;
375 
376 	if (adapter->en_mng_pt) {
377 		u32 manc = er32(MANC);
378 
379 		/* re-enable hardware interception of ARP */
380 		manc |= E1000_MANC_ARP_EN;
381 
382 		ew32(MANC, manc);
383 	}
384 }
385 
386 /**
387  * e1000_configure - configure the hardware for RX and TX
388  * @adapter = private board structure
389  **/
390 static void e1000_configure(struct e1000_adapter *adapter)
391 {
392 	struct net_device *netdev = adapter->netdev;
393 	int i;
394 
395 	e1000_set_rx_mode(netdev);
396 
397 	e1000_restore_vlan(adapter);
398 	e1000_init_manageability(adapter);
399 
400 	e1000_configure_tx(adapter);
401 	e1000_setup_rctl(adapter);
402 	e1000_configure_rx(adapter);
403 	/* call E1000_DESC_UNUSED which always leaves
404 	 * at least 1 descriptor unused to make sure
405 	 * next_to_use != next_to_clean
406 	 */
407 	for (i = 0; i < adapter->num_rx_queues; i++) {
408 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 		adapter->alloc_rx_buf(adapter, ring,
410 				      E1000_DESC_UNUSED(ring));
411 	}
412 }
413 
414 int e1000_up(struct e1000_adapter *adapter)
415 {
416 	struct e1000_hw *hw = &adapter->hw;
417 
418 	/* hardware has been reset, we need to reload some things */
419 	e1000_configure(adapter);
420 
421 	clear_bit(__E1000_DOWN, &adapter->flags);
422 
423 	napi_enable(&adapter->napi);
424 
425 	e1000_irq_enable(adapter);
426 
427 	netif_wake_queue(adapter->netdev);
428 
429 	/* fire a link change interrupt to start the watchdog */
430 	ew32(ICS, E1000_ICS_LSC);
431 	return 0;
432 }
433 
434 /**
435  * e1000_power_up_phy - restore link in case the phy was powered down
436  * @adapter: address of board private structure
437  *
438  * The phy may be powered down to save power and turn off link when the
439  * driver is unloaded and wake on lan is not enabled (among others)
440  * *** this routine MUST be followed by a call to e1000_reset ***
441  **/
442 void e1000_power_up_phy(struct e1000_adapter *adapter)
443 {
444 	struct e1000_hw *hw = &adapter->hw;
445 	u16 mii_reg = 0;
446 
447 	/* Just clear the power down bit to wake the phy back up */
448 	if (hw->media_type == e1000_media_type_copper) {
449 		/* according to the manual, the phy will retain its
450 		 * settings across a power-down/up cycle
451 		 */
452 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 		mii_reg &= ~MII_CR_POWER_DOWN;
454 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 	}
456 }
457 
458 static void e1000_power_down_phy(struct e1000_adapter *adapter)
459 {
460 	struct e1000_hw *hw = &adapter->hw;
461 
462 	/* Power down the PHY so no link is implied when interface is down *
463 	 * The PHY cannot be powered down if any of the following is true *
464 	 * (a) WoL is enabled
465 	 * (b) AMT is active
466 	 * (c) SoL/IDER session is active
467 	 */
468 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 	   hw->media_type == e1000_media_type_copper) {
470 		u16 mii_reg = 0;
471 
472 		switch (hw->mac_type) {
473 		case e1000_82540:
474 		case e1000_82545:
475 		case e1000_82545_rev_3:
476 		case e1000_82546:
477 		case e1000_ce4100:
478 		case e1000_82546_rev_3:
479 		case e1000_82541:
480 		case e1000_82541_rev_2:
481 		case e1000_82547:
482 		case e1000_82547_rev_2:
483 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 				goto out;
485 			break;
486 		default:
487 			goto out;
488 		}
489 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 		mii_reg |= MII_CR_POWER_DOWN;
491 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 		msleep(1);
493 	}
494 out:
495 	return;
496 }
497 
498 static void e1000_down_and_stop(struct e1000_adapter *adapter)
499 {
500 	set_bit(__E1000_DOWN, &adapter->flags);
501 
502 	cancel_delayed_work_sync(&adapter->watchdog_task);
503 
504 	/*
505 	 * Since the watchdog task can reschedule other tasks, we should cancel
506 	 * it first, otherwise we can run into the situation when a work is
507 	 * still running after the adapter has been turned down.
508 	 */
509 
510 	cancel_delayed_work_sync(&adapter->phy_info_task);
511 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
512 
513 	/* Only kill reset task if adapter is not resetting */
514 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 		cancel_work_sync(&adapter->reset_task);
516 }
517 
518 void e1000_down(struct e1000_adapter *adapter)
519 {
520 	struct e1000_hw *hw = &adapter->hw;
521 	struct net_device *netdev = adapter->netdev;
522 	u32 rctl, tctl;
523 
524 	/* disable receives in the hardware */
525 	rctl = er32(RCTL);
526 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
527 	/* flush and sleep below */
528 
529 	netif_tx_disable(netdev);
530 
531 	/* disable transmits in the hardware */
532 	tctl = er32(TCTL);
533 	tctl &= ~E1000_TCTL_EN;
534 	ew32(TCTL, tctl);
535 	/* flush both disables and wait for them to finish */
536 	E1000_WRITE_FLUSH();
537 	msleep(10);
538 
539 	/* Set the carrier off after transmits have been disabled in the
540 	 * hardware, to avoid race conditions with e1000_watchdog() (which
541 	 * may be running concurrently to us, checking for the carrier
542 	 * bit to decide whether it should enable transmits again). Such
543 	 * a race condition would result into transmission being disabled
544 	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
545 	 */
546 	netif_carrier_off(netdev);
547 
548 	napi_disable(&adapter->napi);
549 
550 	e1000_irq_disable(adapter);
551 
552 	/* Setting DOWN must be after irq_disable to prevent
553 	 * a screaming interrupt.  Setting DOWN also prevents
554 	 * tasks from rescheduling.
555 	 */
556 	e1000_down_and_stop(adapter);
557 
558 	adapter->link_speed = 0;
559 	adapter->link_duplex = 0;
560 
561 	e1000_reset(adapter);
562 	e1000_clean_all_tx_rings(adapter);
563 	e1000_clean_all_rx_rings(adapter);
564 }
565 
566 void e1000_reinit_locked(struct e1000_adapter *adapter)
567 {
568 	WARN_ON(in_interrupt());
569 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
570 		msleep(1);
571 	e1000_down(adapter);
572 	e1000_up(adapter);
573 	clear_bit(__E1000_RESETTING, &adapter->flags);
574 }
575 
576 void e1000_reset(struct e1000_adapter *adapter)
577 {
578 	struct e1000_hw *hw = &adapter->hw;
579 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
580 	bool legacy_pba_adjust = false;
581 	u16 hwm;
582 
583 	/* Repartition Pba for greater than 9k mtu
584 	 * To take effect CTRL.RST is required.
585 	 */
586 
587 	switch (hw->mac_type) {
588 	case e1000_82542_rev2_0:
589 	case e1000_82542_rev2_1:
590 	case e1000_82543:
591 	case e1000_82544:
592 	case e1000_82540:
593 	case e1000_82541:
594 	case e1000_82541_rev_2:
595 		legacy_pba_adjust = true;
596 		pba = E1000_PBA_48K;
597 		break;
598 	case e1000_82545:
599 	case e1000_82545_rev_3:
600 	case e1000_82546:
601 	case e1000_ce4100:
602 	case e1000_82546_rev_3:
603 		pba = E1000_PBA_48K;
604 		break;
605 	case e1000_82547:
606 	case e1000_82547_rev_2:
607 		legacy_pba_adjust = true;
608 		pba = E1000_PBA_30K;
609 		break;
610 	case e1000_undefined:
611 	case e1000_num_macs:
612 		break;
613 	}
614 
615 	if (legacy_pba_adjust) {
616 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
617 			pba -= 8; /* allocate more FIFO for Tx */
618 
619 		if (hw->mac_type == e1000_82547) {
620 			adapter->tx_fifo_head = 0;
621 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
622 			adapter->tx_fifo_size =
623 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
624 			atomic_set(&adapter->tx_fifo_stall, 0);
625 		}
626 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
627 		/* adjust PBA for jumbo frames */
628 		ew32(PBA, pba);
629 
630 		/* To maintain wire speed transmits, the Tx FIFO should be
631 		 * large enough to accommodate two full transmit packets,
632 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
633 		 * the Rx FIFO should be large enough to accommodate at least
634 		 * one full receive packet and is similarly rounded up and
635 		 * expressed in KB.
636 		 */
637 		pba = er32(PBA);
638 		/* upper 16 bits has Tx packet buffer allocation size in KB */
639 		tx_space = pba >> 16;
640 		/* lower 16 bits has Rx packet buffer allocation size in KB */
641 		pba &= 0xffff;
642 		/* the Tx fifo also stores 16 bytes of information about the Tx
643 		 * but don't include ethernet FCS because hardware appends it
644 		 */
645 		min_tx_space = (hw->max_frame_size +
646 				sizeof(struct e1000_tx_desc) -
647 				ETH_FCS_LEN) * 2;
648 		min_tx_space = ALIGN(min_tx_space, 1024);
649 		min_tx_space >>= 10;
650 		/* software strips receive CRC, so leave room for it */
651 		min_rx_space = hw->max_frame_size;
652 		min_rx_space = ALIGN(min_rx_space, 1024);
653 		min_rx_space >>= 10;
654 
655 		/* If current Tx allocation is less than the min Tx FIFO size,
656 		 * and the min Tx FIFO size is less than the current Rx FIFO
657 		 * allocation, take space away from current Rx allocation
658 		 */
659 		if (tx_space < min_tx_space &&
660 		    ((min_tx_space - tx_space) < pba)) {
661 			pba = pba - (min_tx_space - tx_space);
662 
663 			/* PCI/PCIx hardware has PBA alignment constraints */
664 			switch (hw->mac_type) {
665 			case e1000_82545 ... e1000_82546_rev_3:
666 				pba &= ~(E1000_PBA_8K - 1);
667 				break;
668 			default:
669 				break;
670 			}
671 
672 			/* if short on Rx space, Rx wins and must trump Tx
673 			 * adjustment or use Early Receive if available
674 			 */
675 			if (pba < min_rx_space)
676 				pba = min_rx_space;
677 		}
678 	}
679 
680 	ew32(PBA, pba);
681 
682 	/* flow control settings:
683 	 * The high water mark must be low enough to fit one full frame
684 	 * (or the size used for early receive) above it in the Rx FIFO.
685 	 * Set it to the lower of:
686 	 * - 90% of the Rx FIFO size, and
687 	 * - the full Rx FIFO size minus the early receive size (for parts
688 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
689 	 * - the full Rx FIFO size minus one full frame
690 	 */
691 	hwm = min(((pba << 10) * 9 / 10),
692 		  ((pba << 10) - hw->max_frame_size));
693 
694 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
695 	hw->fc_low_water = hw->fc_high_water - 8;
696 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
697 	hw->fc_send_xon = 1;
698 	hw->fc = hw->original_fc;
699 
700 	/* Allow time for pending master requests to run */
701 	e1000_reset_hw(hw);
702 	if (hw->mac_type >= e1000_82544)
703 		ew32(WUC, 0);
704 
705 	if (e1000_init_hw(hw))
706 		e_dev_err("Hardware Error\n");
707 	e1000_update_mng_vlan(adapter);
708 
709 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
710 	if (hw->mac_type >= e1000_82544 &&
711 	    hw->autoneg == 1 &&
712 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
713 		u32 ctrl = er32(CTRL);
714 		/* clear phy power management bit if we are in gig only mode,
715 		 * which if enabled will attempt negotiation to 100Mb, which
716 		 * can cause a loss of link at power off or driver unload
717 		 */
718 		ctrl &= ~E1000_CTRL_SWDPIN3;
719 		ew32(CTRL, ctrl);
720 	}
721 
722 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
723 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
724 
725 	e1000_reset_adaptive(hw);
726 	e1000_phy_get_info(hw, &adapter->phy_info);
727 
728 	e1000_release_manageability(adapter);
729 }
730 
731 /* Dump the eeprom for users having checksum issues */
732 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
733 {
734 	struct net_device *netdev = adapter->netdev;
735 	struct ethtool_eeprom eeprom;
736 	const struct ethtool_ops *ops = netdev->ethtool_ops;
737 	u8 *data;
738 	int i;
739 	u16 csum_old, csum_new = 0;
740 
741 	eeprom.len = ops->get_eeprom_len(netdev);
742 	eeprom.offset = 0;
743 
744 	data = kmalloc(eeprom.len, GFP_KERNEL);
745 	if (!data)
746 		return;
747 
748 	ops->get_eeprom(netdev, &eeprom, data);
749 
750 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
751 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
752 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
753 		csum_new += data[i] + (data[i + 1] << 8);
754 	csum_new = EEPROM_SUM - csum_new;
755 
756 	pr_err("/*********************/\n");
757 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
758 	pr_err("Calculated              : 0x%04x\n", csum_new);
759 
760 	pr_err("Offset    Values\n");
761 	pr_err("========  ======\n");
762 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
763 
764 	pr_err("Include this output when contacting your support provider.\n");
765 	pr_err("This is not a software error! Something bad happened to\n");
766 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
767 	pr_err("result in further problems, possibly loss of data,\n");
768 	pr_err("corruption or system hangs!\n");
769 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
770 	pr_err("which is invalid and requires you to set the proper MAC\n");
771 	pr_err("address manually before continuing to enable this network\n");
772 	pr_err("device. Please inspect the EEPROM dump and report the\n");
773 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
774 	pr_err("/*********************/\n");
775 
776 	kfree(data);
777 }
778 
779 /**
780  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
781  * @pdev: PCI device information struct
782  *
783  * Return true if an adapter needs ioport resources
784  **/
785 static int e1000_is_need_ioport(struct pci_dev *pdev)
786 {
787 	switch (pdev->device) {
788 	case E1000_DEV_ID_82540EM:
789 	case E1000_DEV_ID_82540EM_LOM:
790 	case E1000_DEV_ID_82540EP:
791 	case E1000_DEV_ID_82540EP_LOM:
792 	case E1000_DEV_ID_82540EP_LP:
793 	case E1000_DEV_ID_82541EI:
794 	case E1000_DEV_ID_82541EI_MOBILE:
795 	case E1000_DEV_ID_82541ER:
796 	case E1000_DEV_ID_82541ER_LOM:
797 	case E1000_DEV_ID_82541GI:
798 	case E1000_DEV_ID_82541GI_LF:
799 	case E1000_DEV_ID_82541GI_MOBILE:
800 	case E1000_DEV_ID_82544EI_COPPER:
801 	case E1000_DEV_ID_82544EI_FIBER:
802 	case E1000_DEV_ID_82544GC_COPPER:
803 	case E1000_DEV_ID_82544GC_LOM:
804 	case E1000_DEV_ID_82545EM_COPPER:
805 	case E1000_DEV_ID_82545EM_FIBER:
806 	case E1000_DEV_ID_82546EB_COPPER:
807 	case E1000_DEV_ID_82546EB_FIBER:
808 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
809 		return true;
810 	default:
811 		return false;
812 	}
813 }
814 
815 static netdev_features_t e1000_fix_features(struct net_device *netdev,
816 	netdev_features_t features)
817 {
818 	/* Since there is no support for separate Rx/Tx vlan accel
819 	 * enable/disable make sure Tx flag is always in same state as Rx.
820 	 */
821 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
822 		features |= NETIF_F_HW_VLAN_CTAG_TX;
823 	else
824 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
825 
826 	return features;
827 }
828 
829 static int e1000_set_features(struct net_device *netdev,
830 	netdev_features_t features)
831 {
832 	struct e1000_adapter *adapter = netdev_priv(netdev);
833 	netdev_features_t changed = features ^ netdev->features;
834 
835 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
836 		e1000_vlan_mode(netdev, features);
837 
838 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
839 		return 0;
840 
841 	netdev->features = features;
842 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
843 
844 	if (netif_running(netdev))
845 		e1000_reinit_locked(adapter);
846 	else
847 		e1000_reset(adapter);
848 
849 	return 0;
850 }
851 
852 static const struct net_device_ops e1000_netdev_ops = {
853 	.ndo_open		= e1000_open,
854 	.ndo_stop		= e1000_close,
855 	.ndo_start_xmit		= e1000_xmit_frame,
856 	.ndo_set_rx_mode	= e1000_set_rx_mode,
857 	.ndo_set_mac_address	= e1000_set_mac,
858 	.ndo_tx_timeout		= e1000_tx_timeout,
859 	.ndo_change_mtu		= e1000_change_mtu,
860 	.ndo_do_ioctl		= e1000_ioctl,
861 	.ndo_validate_addr	= eth_validate_addr,
862 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
863 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
864 #ifdef CONFIG_NET_POLL_CONTROLLER
865 	.ndo_poll_controller	= e1000_netpoll,
866 #endif
867 	.ndo_fix_features	= e1000_fix_features,
868 	.ndo_set_features	= e1000_set_features,
869 };
870 
871 /**
872  * e1000_init_hw_struct - initialize members of hw struct
873  * @adapter: board private struct
874  * @hw: structure used by e1000_hw.c
875  *
876  * Factors out initialization of the e1000_hw struct to its own function
877  * that can be called very early at init (just after struct allocation).
878  * Fields are initialized based on PCI device information and
879  * OS network device settings (MTU size).
880  * Returns negative error codes if MAC type setup fails.
881  */
882 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
883 				struct e1000_hw *hw)
884 {
885 	struct pci_dev *pdev = adapter->pdev;
886 
887 	/* PCI config space info */
888 	hw->vendor_id = pdev->vendor;
889 	hw->device_id = pdev->device;
890 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
891 	hw->subsystem_id = pdev->subsystem_device;
892 	hw->revision_id = pdev->revision;
893 
894 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
895 
896 	hw->max_frame_size = adapter->netdev->mtu +
897 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
898 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
899 
900 	/* identify the MAC */
901 	if (e1000_set_mac_type(hw)) {
902 		e_err(probe, "Unknown MAC Type\n");
903 		return -EIO;
904 	}
905 
906 	switch (hw->mac_type) {
907 	default:
908 		break;
909 	case e1000_82541:
910 	case e1000_82547:
911 	case e1000_82541_rev_2:
912 	case e1000_82547_rev_2:
913 		hw->phy_init_script = 1;
914 		break;
915 	}
916 
917 	e1000_set_media_type(hw);
918 	e1000_get_bus_info(hw);
919 
920 	hw->wait_autoneg_complete = false;
921 	hw->tbi_compatibility_en = true;
922 	hw->adaptive_ifs = true;
923 
924 	/* Copper options */
925 
926 	if (hw->media_type == e1000_media_type_copper) {
927 		hw->mdix = AUTO_ALL_MODES;
928 		hw->disable_polarity_correction = false;
929 		hw->master_slave = E1000_MASTER_SLAVE;
930 	}
931 
932 	return 0;
933 }
934 
935 /**
936  * e1000_probe - Device Initialization Routine
937  * @pdev: PCI device information struct
938  * @ent: entry in e1000_pci_tbl
939  *
940  * Returns 0 on success, negative on failure
941  *
942  * e1000_probe initializes an adapter identified by a pci_dev structure.
943  * The OS initialization, configuring of the adapter private structure,
944  * and a hardware reset occur.
945  **/
946 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
947 {
948 	struct net_device *netdev;
949 	struct e1000_adapter *adapter = NULL;
950 	struct e1000_hw *hw;
951 
952 	static int cards_found;
953 	static int global_quad_port_a; /* global ksp3 port a indication */
954 	int i, err, pci_using_dac;
955 	u16 eeprom_data = 0;
956 	u16 tmp = 0;
957 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
958 	int bars, need_ioport;
959 	bool disable_dev = false;
960 
961 	/* do not allocate ioport bars when not needed */
962 	need_ioport = e1000_is_need_ioport(pdev);
963 	if (need_ioport) {
964 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
965 		err = pci_enable_device(pdev);
966 	} else {
967 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
968 		err = pci_enable_device_mem(pdev);
969 	}
970 	if (err)
971 		return err;
972 
973 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
974 	if (err)
975 		goto err_pci_reg;
976 
977 	pci_set_master(pdev);
978 	err = pci_save_state(pdev);
979 	if (err)
980 		goto err_alloc_etherdev;
981 
982 	err = -ENOMEM;
983 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
984 	if (!netdev)
985 		goto err_alloc_etherdev;
986 
987 	SET_NETDEV_DEV(netdev, &pdev->dev);
988 
989 	pci_set_drvdata(pdev, netdev);
990 	adapter = netdev_priv(netdev);
991 	adapter->netdev = netdev;
992 	adapter->pdev = pdev;
993 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
994 	adapter->bars = bars;
995 	adapter->need_ioport = need_ioport;
996 
997 	hw = &adapter->hw;
998 	hw->back = adapter;
999 
1000 	err = -EIO;
1001 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1002 	if (!hw->hw_addr)
1003 		goto err_ioremap;
1004 
1005 	if (adapter->need_ioport) {
1006 		for (i = BAR_1; i <= BAR_5; i++) {
1007 			if (pci_resource_len(pdev, i) == 0)
1008 				continue;
1009 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1010 				hw->io_base = pci_resource_start(pdev, i);
1011 				break;
1012 			}
1013 		}
1014 	}
1015 
1016 	/* make ready for any if (hw->...) below */
1017 	err = e1000_init_hw_struct(adapter, hw);
1018 	if (err)
1019 		goto err_sw_init;
1020 
1021 	/* there is a workaround being applied below that limits
1022 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1023 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1024 	 */
1025 	pci_using_dac = 0;
1026 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1027 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1028 		pci_using_dac = 1;
1029 	} else {
1030 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1031 		if (err) {
1032 			pr_err("No usable DMA config, aborting\n");
1033 			goto err_dma;
1034 		}
1035 	}
1036 
1037 	netdev->netdev_ops = &e1000_netdev_ops;
1038 	e1000_set_ethtool_ops(netdev);
1039 	netdev->watchdog_timeo = 5 * HZ;
1040 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1041 
1042 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1043 
1044 	adapter->bd_number = cards_found;
1045 
1046 	/* setup the private structure */
1047 
1048 	err = e1000_sw_init(adapter);
1049 	if (err)
1050 		goto err_sw_init;
1051 
1052 	err = -EIO;
1053 	if (hw->mac_type == e1000_ce4100) {
1054 		hw->ce4100_gbe_mdio_base_virt =
1055 					ioremap(pci_resource_start(pdev, BAR_1),
1056 						pci_resource_len(pdev, BAR_1));
1057 
1058 		if (!hw->ce4100_gbe_mdio_base_virt)
1059 			goto err_mdio_ioremap;
1060 	}
1061 
1062 	if (hw->mac_type >= e1000_82543) {
1063 		netdev->hw_features = NETIF_F_SG |
1064 				   NETIF_F_HW_CSUM |
1065 				   NETIF_F_HW_VLAN_CTAG_RX;
1066 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1067 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1068 	}
1069 
1070 	if ((hw->mac_type >= e1000_82544) &&
1071 	   (hw->mac_type != e1000_82547))
1072 		netdev->hw_features |= NETIF_F_TSO;
1073 
1074 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1075 
1076 	netdev->features |= netdev->hw_features;
1077 	netdev->hw_features |= (NETIF_F_RXCSUM |
1078 				NETIF_F_RXALL |
1079 				NETIF_F_RXFCS);
1080 
1081 	if (pci_using_dac) {
1082 		netdev->features |= NETIF_F_HIGHDMA;
1083 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1084 	}
1085 
1086 	netdev->vlan_features |= (NETIF_F_TSO |
1087 				  NETIF_F_HW_CSUM |
1088 				  NETIF_F_SG);
1089 
1090 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1091 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1092 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1093 		netdev->priv_flags |= IFF_UNICAST_FLT;
1094 
1095 	/* MTU range: 46 - 16110 */
1096 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1097 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1098 
1099 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1100 
1101 	/* initialize eeprom parameters */
1102 	if (e1000_init_eeprom_params(hw)) {
1103 		e_err(probe, "EEPROM initialization failed\n");
1104 		goto err_eeprom;
1105 	}
1106 
1107 	/* before reading the EEPROM, reset the controller to
1108 	 * put the device in a known good starting state
1109 	 */
1110 
1111 	e1000_reset_hw(hw);
1112 
1113 	/* make sure the EEPROM is good */
1114 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1115 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1116 		e1000_dump_eeprom(adapter);
1117 		/* set MAC address to all zeroes to invalidate and temporary
1118 		 * disable this device for the user. This blocks regular
1119 		 * traffic while still permitting ethtool ioctls from reaching
1120 		 * the hardware as well as allowing the user to run the
1121 		 * interface after manually setting a hw addr using
1122 		 * `ip set address`
1123 		 */
1124 		memset(hw->mac_addr, 0, netdev->addr_len);
1125 	} else {
1126 		/* copy the MAC address out of the EEPROM */
1127 		if (e1000_read_mac_addr(hw))
1128 			e_err(probe, "EEPROM Read Error\n");
1129 	}
1130 	/* don't block initialization here due to bad MAC address */
1131 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1132 
1133 	if (!is_valid_ether_addr(netdev->dev_addr))
1134 		e_err(probe, "Invalid MAC Address\n");
1135 
1136 
1137 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1138 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1139 			  e1000_82547_tx_fifo_stall_task);
1140 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1141 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1142 
1143 	e1000_check_options(adapter);
1144 
1145 	/* Initial Wake on LAN setting
1146 	 * If APM wake is enabled in the EEPROM,
1147 	 * enable the ACPI Magic Packet filter
1148 	 */
1149 
1150 	switch (hw->mac_type) {
1151 	case e1000_82542_rev2_0:
1152 	case e1000_82542_rev2_1:
1153 	case e1000_82543:
1154 		break;
1155 	case e1000_82544:
1156 		e1000_read_eeprom(hw,
1157 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1158 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1159 		break;
1160 	case e1000_82546:
1161 	case e1000_82546_rev_3:
1162 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1163 			e1000_read_eeprom(hw,
1164 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1165 			break;
1166 		}
1167 		/* Fall Through */
1168 	default:
1169 		e1000_read_eeprom(hw,
1170 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1171 		break;
1172 	}
1173 	if (eeprom_data & eeprom_apme_mask)
1174 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1175 
1176 	/* now that we have the eeprom settings, apply the special cases
1177 	 * where the eeprom may be wrong or the board simply won't support
1178 	 * wake on lan on a particular port
1179 	 */
1180 	switch (pdev->device) {
1181 	case E1000_DEV_ID_82546GB_PCIE:
1182 		adapter->eeprom_wol = 0;
1183 		break;
1184 	case E1000_DEV_ID_82546EB_FIBER:
1185 	case E1000_DEV_ID_82546GB_FIBER:
1186 		/* Wake events only supported on port A for dual fiber
1187 		 * regardless of eeprom setting
1188 		 */
1189 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1190 			adapter->eeprom_wol = 0;
1191 		break;
1192 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1193 		/* if quad port adapter, disable WoL on all but port A */
1194 		if (global_quad_port_a != 0)
1195 			adapter->eeprom_wol = 0;
1196 		else
1197 			adapter->quad_port_a = true;
1198 		/* Reset for multiple quad port adapters */
1199 		if (++global_quad_port_a == 4)
1200 			global_quad_port_a = 0;
1201 		break;
1202 	}
1203 
1204 	/* initialize the wol settings based on the eeprom settings */
1205 	adapter->wol = adapter->eeprom_wol;
1206 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1207 
1208 	/* Auto detect PHY address */
1209 	if (hw->mac_type == e1000_ce4100) {
1210 		for (i = 0; i < 32; i++) {
1211 			hw->phy_addr = i;
1212 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1213 
1214 			if (tmp != 0 && tmp != 0xFF)
1215 				break;
1216 		}
1217 
1218 		if (i >= 32)
1219 			goto err_eeprom;
1220 	}
1221 
1222 	/* reset the hardware with the new settings */
1223 	e1000_reset(adapter);
1224 
1225 	strcpy(netdev->name, "eth%d");
1226 	err = register_netdev(netdev);
1227 	if (err)
1228 		goto err_register;
1229 
1230 	e1000_vlan_filter_on_off(adapter, false);
1231 
1232 	/* print bus type/speed/width info */
1233 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1234 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1235 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1236 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1237 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1238 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1239 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1240 	       netdev->dev_addr);
1241 
1242 	/* carrier off reporting is important to ethtool even BEFORE open */
1243 	netif_carrier_off(netdev);
1244 
1245 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1246 
1247 	cards_found++;
1248 	return 0;
1249 
1250 err_register:
1251 err_eeprom:
1252 	e1000_phy_hw_reset(hw);
1253 
1254 	if (hw->flash_address)
1255 		iounmap(hw->flash_address);
1256 	kfree(adapter->tx_ring);
1257 	kfree(adapter->rx_ring);
1258 err_dma:
1259 err_sw_init:
1260 err_mdio_ioremap:
1261 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1262 	iounmap(hw->hw_addr);
1263 err_ioremap:
1264 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1265 	free_netdev(netdev);
1266 err_alloc_etherdev:
1267 	pci_release_selected_regions(pdev, bars);
1268 err_pci_reg:
1269 	if (!adapter || disable_dev)
1270 		pci_disable_device(pdev);
1271 	return err;
1272 }
1273 
1274 /**
1275  * e1000_remove - Device Removal Routine
1276  * @pdev: PCI device information struct
1277  *
1278  * e1000_remove is called by the PCI subsystem to alert the driver
1279  * that it should release a PCI device. That could be caused by a
1280  * Hot-Plug event, or because the driver is going to be removed from
1281  * memory.
1282  **/
1283 static void e1000_remove(struct pci_dev *pdev)
1284 {
1285 	struct net_device *netdev = pci_get_drvdata(pdev);
1286 	struct e1000_adapter *adapter = netdev_priv(netdev);
1287 	struct e1000_hw *hw = &adapter->hw;
1288 	bool disable_dev;
1289 
1290 	e1000_down_and_stop(adapter);
1291 	e1000_release_manageability(adapter);
1292 
1293 	unregister_netdev(netdev);
1294 
1295 	e1000_phy_hw_reset(hw);
1296 
1297 	kfree(adapter->tx_ring);
1298 	kfree(adapter->rx_ring);
1299 
1300 	if (hw->mac_type == e1000_ce4100)
1301 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1302 	iounmap(hw->hw_addr);
1303 	if (hw->flash_address)
1304 		iounmap(hw->flash_address);
1305 	pci_release_selected_regions(pdev, adapter->bars);
1306 
1307 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1308 	free_netdev(netdev);
1309 
1310 	if (disable_dev)
1311 		pci_disable_device(pdev);
1312 }
1313 
1314 /**
1315  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1316  * @adapter: board private structure to initialize
1317  *
1318  * e1000_sw_init initializes the Adapter private data structure.
1319  * e1000_init_hw_struct MUST be called before this function
1320  **/
1321 static int e1000_sw_init(struct e1000_adapter *adapter)
1322 {
1323 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1324 
1325 	adapter->num_tx_queues = 1;
1326 	adapter->num_rx_queues = 1;
1327 
1328 	if (e1000_alloc_queues(adapter)) {
1329 		e_err(probe, "Unable to allocate memory for queues\n");
1330 		return -ENOMEM;
1331 	}
1332 
1333 	/* Explicitly disable IRQ since the NIC can be in any state. */
1334 	e1000_irq_disable(adapter);
1335 
1336 	spin_lock_init(&adapter->stats_lock);
1337 
1338 	set_bit(__E1000_DOWN, &adapter->flags);
1339 
1340 	return 0;
1341 }
1342 
1343 /**
1344  * e1000_alloc_queues - Allocate memory for all rings
1345  * @adapter: board private structure to initialize
1346  *
1347  * We allocate one ring per queue at run-time since we don't know the
1348  * number of queues at compile-time.
1349  **/
1350 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1351 {
1352 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1353 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1354 	if (!adapter->tx_ring)
1355 		return -ENOMEM;
1356 
1357 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1358 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1359 	if (!adapter->rx_ring) {
1360 		kfree(adapter->tx_ring);
1361 		return -ENOMEM;
1362 	}
1363 
1364 	return E1000_SUCCESS;
1365 }
1366 
1367 /**
1368  * e1000_open - Called when a network interface is made active
1369  * @netdev: network interface device structure
1370  *
1371  * Returns 0 on success, negative value on failure
1372  *
1373  * The open entry point is called when a network interface is made
1374  * active by the system (IFF_UP).  At this point all resources needed
1375  * for transmit and receive operations are allocated, the interrupt
1376  * handler is registered with the OS, the watchdog task is started,
1377  * and the stack is notified that the interface is ready.
1378  **/
1379 int e1000_open(struct net_device *netdev)
1380 {
1381 	struct e1000_adapter *adapter = netdev_priv(netdev);
1382 	struct e1000_hw *hw = &adapter->hw;
1383 	int err;
1384 
1385 	/* disallow open during test */
1386 	if (test_bit(__E1000_TESTING, &adapter->flags))
1387 		return -EBUSY;
1388 
1389 	netif_carrier_off(netdev);
1390 
1391 	/* allocate transmit descriptors */
1392 	err = e1000_setup_all_tx_resources(adapter);
1393 	if (err)
1394 		goto err_setup_tx;
1395 
1396 	/* allocate receive descriptors */
1397 	err = e1000_setup_all_rx_resources(adapter);
1398 	if (err)
1399 		goto err_setup_rx;
1400 
1401 	e1000_power_up_phy(adapter);
1402 
1403 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1404 	if ((hw->mng_cookie.status &
1405 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1406 		e1000_update_mng_vlan(adapter);
1407 	}
1408 
1409 	/* before we allocate an interrupt, we must be ready to handle it.
1410 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1411 	 * as soon as we call pci_request_irq, so we have to setup our
1412 	 * clean_rx handler before we do so.
1413 	 */
1414 	e1000_configure(adapter);
1415 
1416 	err = e1000_request_irq(adapter);
1417 	if (err)
1418 		goto err_req_irq;
1419 
1420 	/* From here on the code is the same as e1000_up() */
1421 	clear_bit(__E1000_DOWN, &adapter->flags);
1422 
1423 	napi_enable(&adapter->napi);
1424 
1425 	e1000_irq_enable(adapter);
1426 
1427 	netif_start_queue(netdev);
1428 
1429 	/* fire a link status change interrupt to start the watchdog */
1430 	ew32(ICS, E1000_ICS_LSC);
1431 
1432 	return E1000_SUCCESS;
1433 
1434 err_req_irq:
1435 	e1000_power_down_phy(adapter);
1436 	e1000_free_all_rx_resources(adapter);
1437 err_setup_rx:
1438 	e1000_free_all_tx_resources(adapter);
1439 err_setup_tx:
1440 	e1000_reset(adapter);
1441 
1442 	return err;
1443 }
1444 
1445 /**
1446  * e1000_close - Disables a network interface
1447  * @netdev: network interface device structure
1448  *
1449  * Returns 0, this is not allowed to fail
1450  *
1451  * The close entry point is called when an interface is de-activated
1452  * by the OS.  The hardware is still under the drivers control, but
1453  * needs to be disabled.  A global MAC reset is issued to stop the
1454  * hardware, and all transmit and receive resources are freed.
1455  **/
1456 int e1000_close(struct net_device *netdev)
1457 {
1458 	struct e1000_adapter *adapter = netdev_priv(netdev);
1459 	struct e1000_hw *hw = &adapter->hw;
1460 	int count = E1000_CHECK_RESET_COUNT;
1461 
1462 	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1463 		usleep_range(10000, 20000);
1464 
1465 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1466 	e1000_down(adapter);
1467 	e1000_power_down_phy(adapter);
1468 	e1000_free_irq(adapter);
1469 
1470 	e1000_free_all_tx_resources(adapter);
1471 	e1000_free_all_rx_resources(adapter);
1472 
1473 	/* kill manageability vlan ID if supported, but not if a vlan with
1474 	 * the same ID is registered on the host OS (let 8021q kill it)
1475 	 */
1476 	if ((hw->mng_cookie.status &
1477 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1478 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1479 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1480 				       adapter->mng_vlan_id);
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 /**
1487  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1488  * @adapter: address of board private structure
1489  * @start: address of beginning of memory
1490  * @len: length of memory
1491  **/
1492 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1493 				  unsigned long len)
1494 {
1495 	struct e1000_hw *hw = &adapter->hw;
1496 	unsigned long begin = (unsigned long)start;
1497 	unsigned long end = begin + len;
1498 
1499 	/* First rev 82545 and 82546 need to not allow any memory
1500 	 * write location to cross 64k boundary due to errata 23
1501 	 */
1502 	if (hw->mac_type == e1000_82545 ||
1503 	    hw->mac_type == e1000_ce4100 ||
1504 	    hw->mac_type == e1000_82546) {
1505 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1506 	}
1507 
1508 	return true;
1509 }
1510 
1511 /**
1512  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1513  * @adapter: board private structure
1514  * @txdr:    tx descriptor ring (for a specific queue) to setup
1515  *
1516  * Return 0 on success, negative on failure
1517  **/
1518 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1519 				    struct e1000_tx_ring *txdr)
1520 {
1521 	struct pci_dev *pdev = adapter->pdev;
1522 	int size;
1523 
1524 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1525 	txdr->buffer_info = vzalloc(size);
1526 	if (!txdr->buffer_info)
1527 		return -ENOMEM;
1528 
1529 	/* round up to nearest 4K */
1530 
1531 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1532 	txdr->size = ALIGN(txdr->size, 4096);
1533 
1534 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1535 					GFP_KERNEL);
1536 	if (!txdr->desc) {
1537 setup_tx_desc_die:
1538 		vfree(txdr->buffer_info);
1539 		return -ENOMEM;
1540 	}
1541 
1542 	/* Fix for errata 23, can't cross 64kB boundary */
1543 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1544 		void *olddesc = txdr->desc;
1545 		dma_addr_t olddma = txdr->dma;
1546 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1547 		      txdr->size, txdr->desc);
1548 		/* Try again, without freeing the previous */
1549 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1550 						&txdr->dma, GFP_KERNEL);
1551 		/* Failed allocation, critical failure */
1552 		if (!txdr->desc) {
1553 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1554 					  olddma);
1555 			goto setup_tx_desc_die;
1556 		}
1557 
1558 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1559 			/* give up */
1560 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1561 					  txdr->dma);
1562 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1563 					  olddma);
1564 			e_err(probe, "Unable to allocate aligned memory "
1565 			      "for the transmit descriptor ring\n");
1566 			vfree(txdr->buffer_info);
1567 			return -ENOMEM;
1568 		} else {
1569 			/* Free old allocation, new allocation was successful */
1570 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1571 					  olddma);
1572 		}
1573 	}
1574 	memset(txdr->desc, 0, txdr->size);
1575 
1576 	txdr->next_to_use = 0;
1577 	txdr->next_to_clean = 0;
1578 
1579 	return 0;
1580 }
1581 
1582 /**
1583  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1584  * 				  (Descriptors) for all queues
1585  * @adapter: board private structure
1586  *
1587  * Return 0 on success, negative on failure
1588  **/
1589 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1590 {
1591 	int i, err = 0;
1592 
1593 	for (i = 0; i < adapter->num_tx_queues; i++) {
1594 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1595 		if (err) {
1596 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1597 			for (i-- ; i >= 0; i--)
1598 				e1000_free_tx_resources(adapter,
1599 							&adapter->tx_ring[i]);
1600 			break;
1601 		}
1602 	}
1603 
1604 	return err;
1605 }
1606 
1607 /**
1608  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1609  * @adapter: board private structure
1610  *
1611  * Configure the Tx unit of the MAC after a reset.
1612  **/
1613 static void e1000_configure_tx(struct e1000_adapter *adapter)
1614 {
1615 	u64 tdba;
1616 	struct e1000_hw *hw = &adapter->hw;
1617 	u32 tdlen, tctl, tipg;
1618 	u32 ipgr1, ipgr2;
1619 
1620 	/* Setup the HW Tx Head and Tail descriptor pointers */
1621 
1622 	switch (adapter->num_tx_queues) {
1623 	case 1:
1624 	default:
1625 		tdba = adapter->tx_ring[0].dma;
1626 		tdlen = adapter->tx_ring[0].count *
1627 			sizeof(struct e1000_tx_desc);
1628 		ew32(TDLEN, tdlen);
1629 		ew32(TDBAH, (tdba >> 32));
1630 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1631 		ew32(TDT, 0);
1632 		ew32(TDH, 0);
1633 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1634 					   E1000_TDH : E1000_82542_TDH);
1635 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1636 					   E1000_TDT : E1000_82542_TDT);
1637 		break;
1638 	}
1639 
1640 	/* Set the default values for the Tx Inter Packet Gap timer */
1641 	if ((hw->media_type == e1000_media_type_fiber ||
1642 	     hw->media_type == e1000_media_type_internal_serdes))
1643 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1644 	else
1645 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1646 
1647 	switch (hw->mac_type) {
1648 	case e1000_82542_rev2_0:
1649 	case e1000_82542_rev2_1:
1650 		tipg = DEFAULT_82542_TIPG_IPGT;
1651 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1652 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1653 		break;
1654 	default:
1655 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1656 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1657 		break;
1658 	}
1659 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1660 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1661 	ew32(TIPG, tipg);
1662 
1663 	/* Set the Tx Interrupt Delay register */
1664 
1665 	ew32(TIDV, adapter->tx_int_delay);
1666 	if (hw->mac_type >= e1000_82540)
1667 		ew32(TADV, adapter->tx_abs_int_delay);
1668 
1669 	/* Program the Transmit Control Register */
1670 
1671 	tctl = er32(TCTL);
1672 	tctl &= ~E1000_TCTL_CT;
1673 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1674 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1675 
1676 	e1000_config_collision_dist(hw);
1677 
1678 	/* Setup Transmit Descriptor Settings for eop descriptor */
1679 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1680 
1681 	/* only set IDE if we are delaying interrupts using the timers */
1682 	if (adapter->tx_int_delay)
1683 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1684 
1685 	if (hw->mac_type < e1000_82543)
1686 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1687 	else
1688 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1689 
1690 	/* Cache if we're 82544 running in PCI-X because we'll
1691 	 * need this to apply a workaround later in the send path.
1692 	 */
1693 	if (hw->mac_type == e1000_82544 &&
1694 	    hw->bus_type == e1000_bus_type_pcix)
1695 		adapter->pcix_82544 = true;
1696 
1697 	ew32(TCTL, tctl);
1698 
1699 }
1700 
1701 /**
1702  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1703  * @adapter: board private structure
1704  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1705  *
1706  * Returns 0 on success, negative on failure
1707  **/
1708 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1709 				    struct e1000_rx_ring *rxdr)
1710 {
1711 	struct pci_dev *pdev = adapter->pdev;
1712 	int size, desc_len;
1713 
1714 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1715 	rxdr->buffer_info = vzalloc(size);
1716 	if (!rxdr->buffer_info)
1717 		return -ENOMEM;
1718 
1719 	desc_len = sizeof(struct e1000_rx_desc);
1720 
1721 	/* Round up to nearest 4K */
1722 
1723 	rxdr->size = rxdr->count * desc_len;
1724 	rxdr->size = ALIGN(rxdr->size, 4096);
1725 
1726 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1727 					GFP_KERNEL);
1728 	if (!rxdr->desc) {
1729 setup_rx_desc_die:
1730 		vfree(rxdr->buffer_info);
1731 		return -ENOMEM;
1732 	}
1733 
1734 	/* Fix for errata 23, can't cross 64kB boundary */
1735 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1736 		void *olddesc = rxdr->desc;
1737 		dma_addr_t olddma = rxdr->dma;
1738 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1739 		      rxdr->size, rxdr->desc);
1740 		/* Try again, without freeing the previous */
1741 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1742 						&rxdr->dma, GFP_KERNEL);
1743 		/* Failed allocation, critical failure */
1744 		if (!rxdr->desc) {
1745 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 					  olddma);
1747 			goto setup_rx_desc_die;
1748 		}
1749 
1750 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1751 			/* give up */
1752 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1753 					  rxdr->dma);
1754 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755 					  olddma);
1756 			e_err(probe, "Unable to allocate aligned memory for "
1757 			      "the Rx descriptor ring\n");
1758 			goto setup_rx_desc_die;
1759 		} else {
1760 			/* Free old allocation, new allocation was successful */
1761 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1762 					  olddma);
1763 		}
1764 	}
1765 	memset(rxdr->desc, 0, rxdr->size);
1766 
1767 	rxdr->next_to_clean = 0;
1768 	rxdr->next_to_use = 0;
1769 	rxdr->rx_skb_top = NULL;
1770 
1771 	return 0;
1772 }
1773 
1774 /**
1775  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1776  * 				  (Descriptors) for all queues
1777  * @adapter: board private structure
1778  *
1779  * Return 0 on success, negative on failure
1780  **/
1781 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1782 {
1783 	int i, err = 0;
1784 
1785 	for (i = 0; i < adapter->num_rx_queues; i++) {
1786 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1787 		if (err) {
1788 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1789 			for (i-- ; i >= 0; i--)
1790 				e1000_free_rx_resources(adapter,
1791 							&adapter->rx_ring[i]);
1792 			break;
1793 		}
1794 	}
1795 
1796 	return err;
1797 }
1798 
1799 /**
1800  * e1000_setup_rctl - configure the receive control registers
1801  * @adapter: Board private structure
1802  **/
1803 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1804 {
1805 	struct e1000_hw *hw = &adapter->hw;
1806 	u32 rctl;
1807 
1808 	rctl = er32(RCTL);
1809 
1810 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1811 
1812 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1813 		E1000_RCTL_RDMTS_HALF |
1814 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1815 
1816 	if (hw->tbi_compatibility_on == 1)
1817 		rctl |= E1000_RCTL_SBP;
1818 	else
1819 		rctl &= ~E1000_RCTL_SBP;
1820 
1821 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1822 		rctl &= ~E1000_RCTL_LPE;
1823 	else
1824 		rctl |= E1000_RCTL_LPE;
1825 
1826 	/* Setup buffer sizes */
1827 	rctl &= ~E1000_RCTL_SZ_4096;
1828 	rctl |= E1000_RCTL_BSEX;
1829 	switch (adapter->rx_buffer_len) {
1830 	case E1000_RXBUFFER_2048:
1831 	default:
1832 		rctl |= E1000_RCTL_SZ_2048;
1833 		rctl &= ~E1000_RCTL_BSEX;
1834 		break;
1835 	case E1000_RXBUFFER_4096:
1836 		rctl |= E1000_RCTL_SZ_4096;
1837 		break;
1838 	case E1000_RXBUFFER_8192:
1839 		rctl |= E1000_RCTL_SZ_8192;
1840 		break;
1841 	case E1000_RXBUFFER_16384:
1842 		rctl |= E1000_RCTL_SZ_16384;
1843 		break;
1844 	}
1845 
1846 	/* This is useful for sniffing bad packets. */
1847 	if (adapter->netdev->features & NETIF_F_RXALL) {
1848 		/* UPE and MPE will be handled by normal PROMISC logic
1849 		 * in e1000e_set_rx_mode
1850 		 */
1851 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1852 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1853 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1854 
1855 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1856 			  E1000_RCTL_DPF | /* Allow filtered pause */
1857 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1858 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1859 		 * and that breaks VLANs.
1860 		 */
1861 	}
1862 
1863 	ew32(RCTL, rctl);
1864 }
1865 
1866 /**
1867  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1868  * @adapter: board private structure
1869  *
1870  * Configure the Rx unit of the MAC after a reset.
1871  **/
1872 static void e1000_configure_rx(struct e1000_adapter *adapter)
1873 {
1874 	u64 rdba;
1875 	struct e1000_hw *hw = &adapter->hw;
1876 	u32 rdlen, rctl, rxcsum;
1877 
1878 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1879 		rdlen = adapter->rx_ring[0].count *
1880 			sizeof(struct e1000_rx_desc);
1881 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1882 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1883 	} else {
1884 		rdlen = adapter->rx_ring[0].count *
1885 			sizeof(struct e1000_rx_desc);
1886 		adapter->clean_rx = e1000_clean_rx_irq;
1887 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1888 	}
1889 
1890 	/* disable receives while setting up the descriptors */
1891 	rctl = er32(RCTL);
1892 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1893 
1894 	/* set the Receive Delay Timer Register */
1895 	ew32(RDTR, adapter->rx_int_delay);
1896 
1897 	if (hw->mac_type >= e1000_82540) {
1898 		ew32(RADV, adapter->rx_abs_int_delay);
1899 		if (adapter->itr_setting != 0)
1900 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1901 	}
1902 
1903 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1904 	 * the Base and Length of the Rx Descriptor Ring
1905 	 */
1906 	switch (adapter->num_rx_queues) {
1907 	case 1:
1908 	default:
1909 		rdba = adapter->rx_ring[0].dma;
1910 		ew32(RDLEN, rdlen);
1911 		ew32(RDBAH, (rdba >> 32));
1912 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1913 		ew32(RDT, 0);
1914 		ew32(RDH, 0);
1915 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1916 					   E1000_RDH : E1000_82542_RDH);
1917 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1918 					   E1000_RDT : E1000_82542_RDT);
1919 		break;
1920 	}
1921 
1922 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1923 	if (hw->mac_type >= e1000_82543) {
1924 		rxcsum = er32(RXCSUM);
1925 		if (adapter->rx_csum)
1926 			rxcsum |= E1000_RXCSUM_TUOFL;
1927 		else
1928 			/* don't need to clear IPPCSE as it defaults to 0 */
1929 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1930 		ew32(RXCSUM, rxcsum);
1931 	}
1932 
1933 	/* Enable Receives */
1934 	ew32(RCTL, rctl | E1000_RCTL_EN);
1935 }
1936 
1937 /**
1938  * e1000_free_tx_resources - Free Tx Resources per Queue
1939  * @adapter: board private structure
1940  * @tx_ring: Tx descriptor ring for a specific queue
1941  *
1942  * Free all transmit software resources
1943  **/
1944 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1945 				    struct e1000_tx_ring *tx_ring)
1946 {
1947 	struct pci_dev *pdev = adapter->pdev;
1948 
1949 	e1000_clean_tx_ring(adapter, tx_ring);
1950 
1951 	vfree(tx_ring->buffer_info);
1952 	tx_ring->buffer_info = NULL;
1953 
1954 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1955 			  tx_ring->dma);
1956 
1957 	tx_ring->desc = NULL;
1958 }
1959 
1960 /**
1961  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1962  * @adapter: board private structure
1963  *
1964  * Free all transmit software resources
1965  **/
1966 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1967 {
1968 	int i;
1969 
1970 	for (i = 0; i < adapter->num_tx_queues; i++)
1971 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1972 }
1973 
1974 static void
1975 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1976 				 struct e1000_tx_buffer *buffer_info)
1977 {
1978 	if (buffer_info->dma) {
1979 		if (buffer_info->mapped_as_page)
1980 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1981 				       buffer_info->length, DMA_TO_DEVICE);
1982 		else
1983 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1984 					 buffer_info->length,
1985 					 DMA_TO_DEVICE);
1986 		buffer_info->dma = 0;
1987 	}
1988 	if (buffer_info->skb) {
1989 		dev_kfree_skb_any(buffer_info->skb);
1990 		buffer_info->skb = NULL;
1991 	}
1992 	buffer_info->time_stamp = 0;
1993 	/* buffer_info must be completely set up in the transmit path */
1994 }
1995 
1996 /**
1997  * e1000_clean_tx_ring - Free Tx Buffers
1998  * @adapter: board private structure
1999  * @tx_ring: ring to be cleaned
2000  **/
2001 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2002 				struct e1000_tx_ring *tx_ring)
2003 {
2004 	struct e1000_hw *hw = &adapter->hw;
2005 	struct e1000_tx_buffer *buffer_info;
2006 	unsigned long size;
2007 	unsigned int i;
2008 
2009 	/* Free all the Tx ring sk_buffs */
2010 
2011 	for (i = 0; i < tx_ring->count; i++) {
2012 		buffer_info = &tx_ring->buffer_info[i];
2013 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2014 	}
2015 
2016 	netdev_reset_queue(adapter->netdev);
2017 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2018 	memset(tx_ring->buffer_info, 0, size);
2019 
2020 	/* Zero out the descriptor ring */
2021 
2022 	memset(tx_ring->desc, 0, tx_ring->size);
2023 
2024 	tx_ring->next_to_use = 0;
2025 	tx_ring->next_to_clean = 0;
2026 	tx_ring->last_tx_tso = false;
2027 
2028 	writel(0, hw->hw_addr + tx_ring->tdh);
2029 	writel(0, hw->hw_addr + tx_ring->tdt);
2030 }
2031 
2032 /**
2033  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2034  * @adapter: board private structure
2035  **/
2036 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2037 {
2038 	int i;
2039 
2040 	for (i = 0; i < adapter->num_tx_queues; i++)
2041 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2042 }
2043 
2044 /**
2045  * e1000_free_rx_resources - Free Rx Resources
2046  * @adapter: board private structure
2047  * @rx_ring: ring to clean the resources from
2048  *
2049  * Free all receive software resources
2050  **/
2051 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2052 				    struct e1000_rx_ring *rx_ring)
2053 {
2054 	struct pci_dev *pdev = adapter->pdev;
2055 
2056 	e1000_clean_rx_ring(adapter, rx_ring);
2057 
2058 	vfree(rx_ring->buffer_info);
2059 	rx_ring->buffer_info = NULL;
2060 
2061 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2062 			  rx_ring->dma);
2063 
2064 	rx_ring->desc = NULL;
2065 }
2066 
2067 /**
2068  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2069  * @adapter: board private structure
2070  *
2071  * Free all receive software resources
2072  **/
2073 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2074 {
2075 	int i;
2076 
2077 	for (i = 0; i < adapter->num_rx_queues; i++)
2078 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2079 }
2080 
2081 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2082 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2083 {
2084 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2085 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2086 }
2087 
2088 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2089 {
2090 	unsigned int len = e1000_frag_len(a);
2091 	u8 *data = netdev_alloc_frag(len);
2092 
2093 	if (likely(data))
2094 		data += E1000_HEADROOM;
2095 	return data;
2096 }
2097 
2098 /**
2099  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2100  * @adapter: board private structure
2101  * @rx_ring: ring to free buffers from
2102  **/
2103 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2104 				struct e1000_rx_ring *rx_ring)
2105 {
2106 	struct e1000_hw *hw = &adapter->hw;
2107 	struct e1000_rx_buffer *buffer_info;
2108 	struct pci_dev *pdev = adapter->pdev;
2109 	unsigned long size;
2110 	unsigned int i;
2111 
2112 	/* Free all the Rx netfrags */
2113 	for (i = 0; i < rx_ring->count; i++) {
2114 		buffer_info = &rx_ring->buffer_info[i];
2115 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2116 			if (buffer_info->dma)
2117 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2118 						 adapter->rx_buffer_len,
2119 						 DMA_FROM_DEVICE);
2120 			if (buffer_info->rxbuf.data) {
2121 				skb_free_frag(buffer_info->rxbuf.data);
2122 				buffer_info->rxbuf.data = NULL;
2123 			}
2124 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2125 			if (buffer_info->dma)
2126 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2127 					       adapter->rx_buffer_len,
2128 					       DMA_FROM_DEVICE);
2129 			if (buffer_info->rxbuf.page) {
2130 				put_page(buffer_info->rxbuf.page);
2131 				buffer_info->rxbuf.page = NULL;
2132 			}
2133 		}
2134 
2135 		buffer_info->dma = 0;
2136 	}
2137 
2138 	/* there also may be some cached data from a chained receive */
2139 	napi_free_frags(&adapter->napi);
2140 	rx_ring->rx_skb_top = NULL;
2141 
2142 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2143 	memset(rx_ring->buffer_info, 0, size);
2144 
2145 	/* Zero out the descriptor ring */
2146 	memset(rx_ring->desc, 0, rx_ring->size);
2147 
2148 	rx_ring->next_to_clean = 0;
2149 	rx_ring->next_to_use = 0;
2150 
2151 	writel(0, hw->hw_addr + rx_ring->rdh);
2152 	writel(0, hw->hw_addr + rx_ring->rdt);
2153 }
2154 
2155 /**
2156  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2157  * @adapter: board private structure
2158  **/
2159 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2160 {
2161 	int i;
2162 
2163 	for (i = 0; i < adapter->num_rx_queues; i++)
2164 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2165 }
2166 
2167 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2168  * and memory write and invalidate disabled for certain operations
2169  */
2170 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2171 {
2172 	struct e1000_hw *hw = &adapter->hw;
2173 	struct net_device *netdev = adapter->netdev;
2174 	u32 rctl;
2175 
2176 	e1000_pci_clear_mwi(hw);
2177 
2178 	rctl = er32(RCTL);
2179 	rctl |= E1000_RCTL_RST;
2180 	ew32(RCTL, rctl);
2181 	E1000_WRITE_FLUSH();
2182 	mdelay(5);
2183 
2184 	if (netif_running(netdev))
2185 		e1000_clean_all_rx_rings(adapter);
2186 }
2187 
2188 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2189 {
2190 	struct e1000_hw *hw = &adapter->hw;
2191 	struct net_device *netdev = adapter->netdev;
2192 	u32 rctl;
2193 
2194 	rctl = er32(RCTL);
2195 	rctl &= ~E1000_RCTL_RST;
2196 	ew32(RCTL, rctl);
2197 	E1000_WRITE_FLUSH();
2198 	mdelay(5);
2199 
2200 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2201 		e1000_pci_set_mwi(hw);
2202 
2203 	if (netif_running(netdev)) {
2204 		/* No need to loop, because 82542 supports only 1 queue */
2205 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2206 		e1000_configure_rx(adapter);
2207 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2208 	}
2209 }
2210 
2211 /**
2212  * e1000_set_mac - Change the Ethernet Address of the NIC
2213  * @netdev: network interface device structure
2214  * @p: pointer to an address structure
2215  *
2216  * Returns 0 on success, negative on failure
2217  **/
2218 static int e1000_set_mac(struct net_device *netdev, void *p)
2219 {
2220 	struct e1000_adapter *adapter = netdev_priv(netdev);
2221 	struct e1000_hw *hw = &adapter->hw;
2222 	struct sockaddr *addr = p;
2223 
2224 	if (!is_valid_ether_addr(addr->sa_data))
2225 		return -EADDRNOTAVAIL;
2226 
2227 	/* 82542 2.0 needs to be in reset to write receive address registers */
2228 
2229 	if (hw->mac_type == e1000_82542_rev2_0)
2230 		e1000_enter_82542_rst(adapter);
2231 
2232 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2233 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2234 
2235 	e1000_rar_set(hw, hw->mac_addr, 0);
2236 
2237 	if (hw->mac_type == e1000_82542_rev2_0)
2238 		e1000_leave_82542_rst(adapter);
2239 
2240 	return 0;
2241 }
2242 
2243 /**
2244  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2245  * @netdev: network interface device structure
2246  *
2247  * The set_rx_mode entry point is called whenever the unicast or multicast
2248  * address lists or the network interface flags are updated. This routine is
2249  * responsible for configuring the hardware for proper unicast, multicast,
2250  * promiscuous mode, and all-multi behavior.
2251  **/
2252 static void e1000_set_rx_mode(struct net_device *netdev)
2253 {
2254 	struct e1000_adapter *adapter = netdev_priv(netdev);
2255 	struct e1000_hw *hw = &adapter->hw;
2256 	struct netdev_hw_addr *ha;
2257 	bool use_uc = false;
2258 	u32 rctl;
2259 	u32 hash_value;
2260 	int i, rar_entries = E1000_RAR_ENTRIES;
2261 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2262 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2263 
2264 	if (!mcarray)
2265 		return;
2266 
2267 	/* Check for Promiscuous and All Multicast modes */
2268 
2269 	rctl = er32(RCTL);
2270 
2271 	if (netdev->flags & IFF_PROMISC) {
2272 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2273 		rctl &= ~E1000_RCTL_VFE;
2274 	} else {
2275 		if (netdev->flags & IFF_ALLMULTI)
2276 			rctl |= E1000_RCTL_MPE;
2277 		else
2278 			rctl &= ~E1000_RCTL_MPE;
2279 		/* Enable VLAN filter if there is a VLAN */
2280 		if (e1000_vlan_used(adapter))
2281 			rctl |= E1000_RCTL_VFE;
2282 	}
2283 
2284 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2285 		rctl |= E1000_RCTL_UPE;
2286 	} else if (!(netdev->flags & IFF_PROMISC)) {
2287 		rctl &= ~E1000_RCTL_UPE;
2288 		use_uc = true;
2289 	}
2290 
2291 	ew32(RCTL, rctl);
2292 
2293 	/* 82542 2.0 needs to be in reset to write receive address registers */
2294 
2295 	if (hw->mac_type == e1000_82542_rev2_0)
2296 		e1000_enter_82542_rst(adapter);
2297 
2298 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2299 	 * addresses take precedence to avoid disabling unicast filtering
2300 	 * when possible.
2301 	 *
2302 	 * RAR 0 is used for the station MAC address
2303 	 * if there are not 14 addresses, go ahead and clear the filters
2304 	 */
2305 	i = 1;
2306 	if (use_uc)
2307 		netdev_for_each_uc_addr(ha, netdev) {
2308 			if (i == rar_entries)
2309 				break;
2310 			e1000_rar_set(hw, ha->addr, i++);
2311 		}
2312 
2313 	netdev_for_each_mc_addr(ha, netdev) {
2314 		if (i == rar_entries) {
2315 			/* load any remaining addresses into the hash table */
2316 			u32 hash_reg, hash_bit, mta;
2317 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2318 			hash_reg = (hash_value >> 5) & 0x7F;
2319 			hash_bit = hash_value & 0x1F;
2320 			mta = (1 << hash_bit);
2321 			mcarray[hash_reg] |= mta;
2322 		} else {
2323 			e1000_rar_set(hw, ha->addr, i++);
2324 		}
2325 	}
2326 
2327 	for (; i < rar_entries; i++) {
2328 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2329 		E1000_WRITE_FLUSH();
2330 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2331 		E1000_WRITE_FLUSH();
2332 	}
2333 
2334 	/* write the hash table completely, write from bottom to avoid
2335 	 * both stupid write combining chipsets, and flushing each write
2336 	 */
2337 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2338 		/* If we are on an 82544 has an errata where writing odd
2339 		 * offsets overwrites the previous even offset, but writing
2340 		 * backwards over the range solves the issue by always
2341 		 * writing the odd offset first
2342 		 */
2343 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2344 	}
2345 	E1000_WRITE_FLUSH();
2346 
2347 	if (hw->mac_type == e1000_82542_rev2_0)
2348 		e1000_leave_82542_rst(adapter);
2349 
2350 	kfree(mcarray);
2351 }
2352 
2353 /**
2354  * e1000_update_phy_info_task - get phy info
2355  * @work: work struct contained inside adapter struct
2356  *
2357  * Need to wait a few seconds after link up to get diagnostic information from
2358  * the phy
2359  */
2360 static void e1000_update_phy_info_task(struct work_struct *work)
2361 {
2362 	struct e1000_adapter *adapter = container_of(work,
2363 						     struct e1000_adapter,
2364 						     phy_info_task.work);
2365 
2366 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2367 }
2368 
2369 /**
2370  * e1000_82547_tx_fifo_stall_task - task to complete work
2371  * @work: work struct contained inside adapter struct
2372  **/
2373 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2374 {
2375 	struct e1000_adapter *adapter = container_of(work,
2376 						     struct e1000_adapter,
2377 						     fifo_stall_task.work);
2378 	struct e1000_hw *hw = &adapter->hw;
2379 	struct net_device *netdev = adapter->netdev;
2380 	u32 tctl;
2381 
2382 	if (atomic_read(&adapter->tx_fifo_stall)) {
2383 		if ((er32(TDT) == er32(TDH)) &&
2384 		   (er32(TDFT) == er32(TDFH)) &&
2385 		   (er32(TDFTS) == er32(TDFHS))) {
2386 			tctl = er32(TCTL);
2387 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2388 			ew32(TDFT, adapter->tx_head_addr);
2389 			ew32(TDFH, adapter->tx_head_addr);
2390 			ew32(TDFTS, adapter->tx_head_addr);
2391 			ew32(TDFHS, adapter->tx_head_addr);
2392 			ew32(TCTL, tctl);
2393 			E1000_WRITE_FLUSH();
2394 
2395 			adapter->tx_fifo_head = 0;
2396 			atomic_set(&adapter->tx_fifo_stall, 0);
2397 			netif_wake_queue(netdev);
2398 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2399 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2400 		}
2401 	}
2402 }
2403 
2404 bool e1000_has_link(struct e1000_adapter *adapter)
2405 {
2406 	struct e1000_hw *hw = &adapter->hw;
2407 	bool link_active = false;
2408 
2409 	/* get_link_status is set on LSC (link status) interrupt or rx
2410 	 * sequence error interrupt (except on intel ce4100).
2411 	 * get_link_status will stay false until the
2412 	 * e1000_check_for_link establishes link for copper adapters
2413 	 * ONLY
2414 	 */
2415 	switch (hw->media_type) {
2416 	case e1000_media_type_copper:
2417 		if (hw->mac_type == e1000_ce4100)
2418 			hw->get_link_status = 1;
2419 		if (hw->get_link_status) {
2420 			e1000_check_for_link(hw);
2421 			link_active = !hw->get_link_status;
2422 		} else {
2423 			link_active = true;
2424 		}
2425 		break;
2426 	case e1000_media_type_fiber:
2427 		e1000_check_for_link(hw);
2428 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2429 		break;
2430 	case e1000_media_type_internal_serdes:
2431 		e1000_check_for_link(hw);
2432 		link_active = hw->serdes_has_link;
2433 		break;
2434 	default:
2435 		break;
2436 	}
2437 
2438 	return link_active;
2439 }
2440 
2441 /**
2442  * e1000_watchdog - work function
2443  * @work: work struct contained inside adapter struct
2444  **/
2445 static void e1000_watchdog(struct work_struct *work)
2446 {
2447 	struct e1000_adapter *adapter = container_of(work,
2448 						     struct e1000_adapter,
2449 						     watchdog_task.work);
2450 	struct e1000_hw *hw = &adapter->hw;
2451 	struct net_device *netdev = adapter->netdev;
2452 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2453 	u32 link, tctl;
2454 
2455 	link = e1000_has_link(adapter);
2456 	if ((netif_carrier_ok(netdev)) && link)
2457 		goto link_up;
2458 
2459 	if (link) {
2460 		if (!netif_carrier_ok(netdev)) {
2461 			u32 ctrl;
2462 			bool txb2b = true;
2463 			/* update snapshot of PHY registers on LSC */
2464 			e1000_get_speed_and_duplex(hw,
2465 						   &adapter->link_speed,
2466 						   &adapter->link_duplex);
2467 
2468 			ctrl = er32(CTRL);
2469 			pr_info("%s NIC Link is Up %d Mbps %s, "
2470 				"Flow Control: %s\n",
2471 				netdev->name,
2472 				adapter->link_speed,
2473 				adapter->link_duplex == FULL_DUPLEX ?
2474 				"Full Duplex" : "Half Duplex",
2475 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2476 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2477 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2478 				E1000_CTRL_TFCE) ? "TX" : "None")));
2479 
2480 			/* adjust timeout factor according to speed/duplex */
2481 			adapter->tx_timeout_factor = 1;
2482 			switch (adapter->link_speed) {
2483 			case SPEED_10:
2484 				txb2b = false;
2485 				adapter->tx_timeout_factor = 16;
2486 				break;
2487 			case SPEED_100:
2488 				txb2b = false;
2489 				/* maybe add some timeout factor ? */
2490 				break;
2491 			}
2492 
2493 			/* enable transmits in the hardware */
2494 			tctl = er32(TCTL);
2495 			tctl |= E1000_TCTL_EN;
2496 			ew32(TCTL, tctl);
2497 
2498 			netif_carrier_on(netdev);
2499 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2500 				schedule_delayed_work(&adapter->phy_info_task,
2501 						      2 * HZ);
2502 			adapter->smartspeed = 0;
2503 		}
2504 	} else {
2505 		if (netif_carrier_ok(netdev)) {
2506 			adapter->link_speed = 0;
2507 			adapter->link_duplex = 0;
2508 			pr_info("%s NIC Link is Down\n",
2509 				netdev->name);
2510 			netif_carrier_off(netdev);
2511 
2512 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2513 				schedule_delayed_work(&adapter->phy_info_task,
2514 						      2 * HZ);
2515 		}
2516 
2517 		e1000_smartspeed(adapter);
2518 	}
2519 
2520 link_up:
2521 	e1000_update_stats(adapter);
2522 
2523 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2524 	adapter->tpt_old = adapter->stats.tpt;
2525 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2526 	adapter->colc_old = adapter->stats.colc;
2527 
2528 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2529 	adapter->gorcl_old = adapter->stats.gorcl;
2530 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2531 	adapter->gotcl_old = adapter->stats.gotcl;
2532 
2533 	e1000_update_adaptive(hw);
2534 
2535 	if (!netif_carrier_ok(netdev)) {
2536 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2537 			/* We've lost link, so the controller stops DMA,
2538 			 * but we've got queued Tx work that's never going
2539 			 * to get done, so reset controller to flush Tx.
2540 			 * (Do the reset outside of interrupt context).
2541 			 */
2542 			adapter->tx_timeout_count++;
2543 			schedule_work(&adapter->reset_task);
2544 			/* exit immediately since reset is imminent */
2545 			return;
2546 		}
2547 	}
2548 
2549 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2550 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2551 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2552 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2553 		 * everyone else is between 2000-8000.
2554 		 */
2555 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2556 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2557 			    adapter->gotcl - adapter->gorcl :
2558 			    adapter->gorcl - adapter->gotcl) / 10000;
2559 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2560 
2561 		ew32(ITR, 1000000000 / (itr * 256));
2562 	}
2563 
2564 	/* Cause software interrupt to ensure rx ring is cleaned */
2565 	ew32(ICS, E1000_ICS_RXDMT0);
2566 
2567 	/* Force detection of hung controller every watchdog period */
2568 	adapter->detect_tx_hung = true;
2569 
2570 	/* Reschedule the task */
2571 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2572 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2573 }
2574 
2575 enum latency_range {
2576 	lowest_latency = 0,
2577 	low_latency = 1,
2578 	bulk_latency = 2,
2579 	latency_invalid = 255
2580 };
2581 
2582 /**
2583  * e1000_update_itr - update the dynamic ITR value based on statistics
2584  * @adapter: pointer to adapter
2585  * @itr_setting: current adapter->itr
2586  * @packets: the number of packets during this measurement interval
2587  * @bytes: the number of bytes during this measurement interval
2588  *
2589  *      Stores a new ITR value based on packets and byte
2590  *      counts during the last interrupt.  The advantage of per interrupt
2591  *      computation is faster updates and more accurate ITR for the current
2592  *      traffic pattern.  Constants in this function were computed
2593  *      based on theoretical maximum wire speed and thresholds were set based
2594  *      on testing data as well as attempting to minimize response time
2595  *      while increasing bulk throughput.
2596  *      this functionality is controlled by the InterruptThrottleRate module
2597  *      parameter (see e1000_param.c)
2598  **/
2599 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2600 				     u16 itr_setting, int packets, int bytes)
2601 {
2602 	unsigned int retval = itr_setting;
2603 	struct e1000_hw *hw = &adapter->hw;
2604 
2605 	if (unlikely(hw->mac_type < e1000_82540))
2606 		goto update_itr_done;
2607 
2608 	if (packets == 0)
2609 		goto update_itr_done;
2610 
2611 	switch (itr_setting) {
2612 	case lowest_latency:
2613 		/* jumbo frames get bulk treatment*/
2614 		if (bytes/packets > 8000)
2615 			retval = bulk_latency;
2616 		else if ((packets < 5) && (bytes > 512))
2617 			retval = low_latency;
2618 		break;
2619 	case low_latency:  /* 50 usec aka 20000 ints/s */
2620 		if (bytes > 10000) {
2621 			/* jumbo frames need bulk latency setting */
2622 			if (bytes/packets > 8000)
2623 				retval = bulk_latency;
2624 			else if ((packets < 10) || ((bytes/packets) > 1200))
2625 				retval = bulk_latency;
2626 			else if ((packets > 35))
2627 				retval = lowest_latency;
2628 		} else if (bytes/packets > 2000)
2629 			retval = bulk_latency;
2630 		else if (packets <= 2 && bytes < 512)
2631 			retval = lowest_latency;
2632 		break;
2633 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2634 		if (bytes > 25000) {
2635 			if (packets > 35)
2636 				retval = low_latency;
2637 		} else if (bytes < 6000) {
2638 			retval = low_latency;
2639 		}
2640 		break;
2641 	}
2642 
2643 update_itr_done:
2644 	return retval;
2645 }
2646 
2647 static void e1000_set_itr(struct e1000_adapter *adapter)
2648 {
2649 	struct e1000_hw *hw = &adapter->hw;
2650 	u16 current_itr;
2651 	u32 new_itr = adapter->itr;
2652 
2653 	if (unlikely(hw->mac_type < e1000_82540))
2654 		return;
2655 
2656 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2657 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2658 		current_itr = 0;
2659 		new_itr = 4000;
2660 		goto set_itr_now;
2661 	}
2662 
2663 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2664 					   adapter->total_tx_packets,
2665 					   adapter->total_tx_bytes);
2666 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2667 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2668 		adapter->tx_itr = low_latency;
2669 
2670 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2671 					   adapter->total_rx_packets,
2672 					   adapter->total_rx_bytes);
2673 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2674 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2675 		adapter->rx_itr = low_latency;
2676 
2677 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2678 
2679 	switch (current_itr) {
2680 	/* counts and packets in update_itr are dependent on these numbers */
2681 	case lowest_latency:
2682 		new_itr = 70000;
2683 		break;
2684 	case low_latency:
2685 		new_itr = 20000; /* aka hwitr = ~200 */
2686 		break;
2687 	case bulk_latency:
2688 		new_itr = 4000;
2689 		break;
2690 	default:
2691 		break;
2692 	}
2693 
2694 set_itr_now:
2695 	if (new_itr != adapter->itr) {
2696 		/* this attempts to bias the interrupt rate towards Bulk
2697 		 * by adding intermediate steps when interrupt rate is
2698 		 * increasing
2699 		 */
2700 		new_itr = new_itr > adapter->itr ?
2701 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2702 			  new_itr;
2703 		adapter->itr = new_itr;
2704 		ew32(ITR, 1000000000 / (new_itr * 256));
2705 	}
2706 }
2707 
2708 #define E1000_TX_FLAGS_CSUM		0x00000001
2709 #define E1000_TX_FLAGS_VLAN		0x00000002
2710 #define E1000_TX_FLAGS_TSO		0x00000004
2711 #define E1000_TX_FLAGS_IPV4		0x00000008
2712 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2713 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2714 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2715 
2716 static int e1000_tso(struct e1000_adapter *adapter,
2717 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2718 		     __be16 protocol)
2719 {
2720 	struct e1000_context_desc *context_desc;
2721 	struct e1000_tx_buffer *buffer_info;
2722 	unsigned int i;
2723 	u32 cmd_length = 0;
2724 	u16 ipcse = 0, tucse, mss;
2725 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2726 
2727 	if (skb_is_gso(skb)) {
2728 		int err;
2729 
2730 		err = skb_cow_head(skb, 0);
2731 		if (err < 0)
2732 			return err;
2733 
2734 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2735 		mss = skb_shinfo(skb)->gso_size;
2736 		if (protocol == htons(ETH_P_IP)) {
2737 			struct iphdr *iph = ip_hdr(skb);
2738 			iph->tot_len = 0;
2739 			iph->check = 0;
2740 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2741 								 iph->daddr, 0,
2742 								 IPPROTO_TCP,
2743 								 0);
2744 			cmd_length = E1000_TXD_CMD_IP;
2745 			ipcse = skb_transport_offset(skb) - 1;
2746 		} else if (skb_is_gso_v6(skb)) {
2747 			ipv6_hdr(skb)->payload_len = 0;
2748 			tcp_hdr(skb)->check =
2749 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2750 						 &ipv6_hdr(skb)->daddr,
2751 						 0, IPPROTO_TCP, 0);
2752 			ipcse = 0;
2753 		}
2754 		ipcss = skb_network_offset(skb);
2755 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2756 		tucss = skb_transport_offset(skb);
2757 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2758 		tucse = 0;
2759 
2760 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2761 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2762 
2763 		i = tx_ring->next_to_use;
2764 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2765 		buffer_info = &tx_ring->buffer_info[i];
2766 
2767 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2768 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2769 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2770 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2771 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2772 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2773 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2774 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2775 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2776 
2777 		buffer_info->time_stamp = jiffies;
2778 		buffer_info->next_to_watch = i;
2779 
2780 		if (++i == tx_ring->count)
2781 			i = 0;
2782 
2783 		tx_ring->next_to_use = i;
2784 
2785 		return true;
2786 	}
2787 	return false;
2788 }
2789 
2790 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2791 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2792 			  __be16 protocol)
2793 {
2794 	struct e1000_context_desc *context_desc;
2795 	struct e1000_tx_buffer *buffer_info;
2796 	unsigned int i;
2797 	u8 css;
2798 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2799 
2800 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2801 		return false;
2802 
2803 	switch (protocol) {
2804 	case cpu_to_be16(ETH_P_IP):
2805 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2806 			cmd_len |= E1000_TXD_CMD_TCP;
2807 		break;
2808 	case cpu_to_be16(ETH_P_IPV6):
2809 		/* XXX not handling all IPV6 headers */
2810 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2811 			cmd_len |= E1000_TXD_CMD_TCP;
2812 		break;
2813 	default:
2814 		if (unlikely(net_ratelimit()))
2815 			e_warn(drv, "checksum_partial proto=%x!\n",
2816 			       skb->protocol);
2817 		break;
2818 	}
2819 
2820 	css = skb_checksum_start_offset(skb);
2821 
2822 	i = tx_ring->next_to_use;
2823 	buffer_info = &tx_ring->buffer_info[i];
2824 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2825 
2826 	context_desc->lower_setup.ip_config = 0;
2827 	context_desc->upper_setup.tcp_fields.tucss = css;
2828 	context_desc->upper_setup.tcp_fields.tucso =
2829 		css + skb->csum_offset;
2830 	context_desc->upper_setup.tcp_fields.tucse = 0;
2831 	context_desc->tcp_seg_setup.data = 0;
2832 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2833 
2834 	buffer_info->time_stamp = jiffies;
2835 	buffer_info->next_to_watch = i;
2836 
2837 	if (unlikely(++i == tx_ring->count))
2838 		i = 0;
2839 
2840 	tx_ring->next_to_use = i;
2841 
2842 	return true;
2843 }
2844 
2845 #define E1000_MAX_TXD_PWR	12
2846 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2847 
2848 static int e1000_tx_map(struct e1000_adapter *adapter,
2849 			struct e1000_tx_ring *tx_ring,
2850 			struct sk_buff *skb, unsigned int first,
2851 			unsigned int max_per_txd, unsigned int nr_frags,
2852 			unsigned int mss)
2853 {
2854 	struct e1000_hw *hw = &adapter->hw;
2855 	struct pci_dev *pdev = adapter->pdev;
2856 	struct e1000_tx_buffer *buffer_info;
2857 	unsigned int len = skb_headlen(skb);
2858 	unsigned int offset = 0, size, count = 0, i;
2859 	unsigned int f, bytecount, segs;
2860 
2861 	i = tx_ring->next_to_use;
2862 
2863 	while (len) {
2864 		buffer_info = &tx_ring->buffer_info[i];
2865 		size = min(len, max_per_txd);
2866 		/* Workaround for Controller erratum --
2867 		 * descriptor for non-tso packet in a linear SKB that follows a
2868 		 * tso gets written back prematurely before the data is fully
2869 		 * DMA'd to the controller
2870 		 */
2871 		if (!skb->data_len && tx_ring->last_tx_tso &&
2872 		    !skb_is_gso(skb)) {
2873 			tx_ring->last_tx_tso = false;
2874 			size -= 4;
2875 		}
2876 
2877 		/* Workaround for premature desc write-backs
2878 		 * in TSO mode.  Append 4-byte sentinel desc
2879 		 */
2880 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2881 			size -= 4;
2882 		/* work-around for errata 10 and it applies
2883 		 * to all controllers in PCI-X mode
2884 		 * The fix is to make sure that the first descriptor of a
2885 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2886 		 */
2887 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2888 			     (size > 2015) && count == 0))
2889 			size = 2015;
2890 
2891 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2892 		 * terminating buffers within evenly-aligned dwords.
2893 		 */
2894 		if (unlikely(adapter->pcix_82544 &&
2895 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2896 		   size > 4))
2897 			size -= 4;
2898 
2899 		buffer_info->length = size;
2900 		/* set time_stamp *before* dma to help avoid a possible race */
2901 		buffer_info->time_stamp = jiffies;
2902 		buffer_info->mapped_as_page = false;
2903 		buffer_info->dma = dma_map_single(&pdev->dev,
2904 						  skb->data + offset,
2905 						  size, DMA_TO_DEVICE);
2906 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2907 			goto dma_error;
2908 		buffer_info->next_to_watch = i;
2909 
2910 		len -= size;
2911 		offset += size;
2912 		count++;
2913 		if (len) {
2914 			i++;
2915 			if (unlikely(i == tx_ring->count))
2916 				i = 0;
2917 		}
2918 	}
2919 
2920 	for (f = 0; f < nr_frags; f++) {
2921 		const struct skb_frag_struct *frag;
2922 
2923 		frag = &skb_shinfo(skb)->frags[f];
2924 		len = skb_frag_size(frag);
2925 		offset = 0;
2926 
2927 		while (len) {
2928 			unsigned long bufend;
2929 			i++;
2930 			if (unlikely(i == tx_ring->count))
2931 				i = 0;
2932 
2933 			buffer_info = &tx_ring->buffer_info[i];
2934 			size = min(len, max_per_txd);
2935 			/* Workaround for premature desc write-backs
2936 			 * in TSO mode.  Append 4-byte sentinel desc
2937 			 */
2938 			if (unlikely(mss && f == (nr_frags-1) &&
2939 			    size == len && size > 8))
2940 				size -= 4;
2941 			/* Workaround for potential 82544 hang in PCI-X.
2942 			 * Avoid terminating buffers within evenly-aligned
2943 			 * dwords.
2944 			 */
2945 			bufend = (unsigned long)
2946 				page_to_phys(skb_frag_page(frag));
2947 			bufend += offset + size - 1;
2948 			if (unlikely(adapter->pcix_82544 &&
2949 				     !(bufend & 4) &&
2950 				     size > 4))
2951 				size -= 4;
2952 
2953 			buffer_info->length = size;
2954 			buffer_info->time_stamp = jiffies;
2955 			buffer_info->mapped_as_page = true;
2956 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2957 						offset, size, DMA_TO_DEVICE);
2958 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2959 				goto dma_error;
2960 			buffer_info->next_to_watch = i;
2961 
2962 			len -= size;
2963 			offset += size;
2964 			count++;
2965 		}
2966 	}
2967 
2968 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2969 	/* multiply data chunks by size of headers */
2970 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2971 
2972 	tx_ring->buffer_info[i].skb = skb;
2973 	tx_ring->buffer_info[i].segs = segs;
2974 	tx_ring->buffer_info[i].bytecount = bytecount;
2975 	tx_ring->buffer_info[first].next_to_watch = i;
2976 
2977 	return count;
2978 
2979 dma_error:
2980 	dev_err(&pdev->dev, "TX DMA map failed\n");
2981 	buffer_info->dma = 0;
2982 	if (count)
2983 		count--;
2984 
2985 	while (count--) {
2986 		if (i == 0)
2987 			i += tx_ring->count;
2988 		i--;
2989 		buffer_info = &tx_ring->buffer_info[i];
2990 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2991 	}
2992 
2993 	return 0;
2994 }
2995 
2996 static void e1000_tx_queue(struct e1000_adapter *adapter,
2997 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2998 			   int count)
2999 {
3000 	struct e1000_tx_desc *tx_desc = NULL;
3001 	struct e1000_tx_buffer *buffer_info;
3002 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3003 	unsigned int i;
3004 
3005 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3006 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3007 			     E1000_TXD_CMD_TSE;
3008 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3009 
3010 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3011 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3012 	}
3013 
3014 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3015 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3016 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3017 	}
3018 
3019 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3020 		txd_lower |= E1000_TXD_CMD_VLE;
3021 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3022 	}
3023 
3024 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3025 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3026 
3027 	i = tx_ring->next_to_use;
3028 
3029 	while (count--) {
3030 		buffer_info = &tx_ring->buffer_info[i];
3031 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3032 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3033 		tx_desc->lower.data =
3034 			cpu_to_le32(txd_lower | buffer_info->length);
3035 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3036 		if (unlikely(++i == tx_ring->count))
3037 			i = 0;
3038 	}
3039 
3040 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3041 
3042 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3043 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3044 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3045 
3046 	/* Force memory writes to complete before letting h/w
3047 	 * know there are new descriptors to fetch.  (Only
3048 	 * applicable for weak-ordered memory model archs,
3049 	 * such as IA-64).
3050 	 */
3051 	wmb();
3052 
3053 	tx_ring->next_to_use = i;
3054 }
3055 
3056 /* 82547 workaround to avoid controller hang in half-duplex environment.
3057  * The workaround is to avoid queuing a large packet that would span
3058  * the internal Tx FIFO ring boundary by notifying the stack to resend
3059  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3060  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3061  * to the beginning of the Tx FIFO.
3062  */
3063 
3064 #define E1000_FIFO_HDR			0x10
3065 #define E1000_82547_PAD_LEN		0x3E0
3066 
3067 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3068 				       struct sk_buff *skb)
3069 {
3070 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3071 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3072 
3073 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3074 
3075 	if (adapter->link_duplex != HALF_DUPLEX)
3076 		goto no_fifo_stall_required;
3077 
3078 	if (atomic_read(&adapter->tx_fifo_stall))
3079 		return 1;
3080 
3081 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3082 		atomic_set(&adapter->tx_fifo_stall, 1);
3083 		return 1;
3084 	}
3085 
3086 no_fifo_stall_required:
3087 	adapter->tx_fifo_head += skb_fifo_len;
3088 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3089 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3090 	return 0;
3091 }
3092 
3093 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3094 {
3095 	struct e1000_adapter *adapter = netdev_priv(netdev);
3096 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3097 
3098 	netif_stop_queue(netdev);
3099 	/* Herbert's original patch had:
3100 	 *  smp_mb__after_netif_stop_queue();
3101 	 * but since that doesn't exist yet, just open code it.
3102 	 */
3103 	smp_mb();
3104 
3105 	/* We need to check again in a case another CPU has just
3106 	 * made room available.
3107 	 */
3108 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3109 		return -EBUSY;
3110 
3111 	/* A reprieve! */
3112 	netif_start_queue(netdev);
3113 	++adapter->restart_queue;
3114 	return 0;
3115 }
3116 
3117 static int e1000_maybe_stop_tx(struct net_device *netdev,
3118 			       struct e1000_tx_ring *tx_ring, int size)
3119 {
3120 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3121 		return 0;
3122 	return __e1000_maybe_stop_tx(netdev, size);
3123 }
3124 
3125 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3126 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3127 				    struct net_device *netdev)
3128 {
3129 	struct e1000_adapter *adapter = netdev_priv(netdev);
3130 	struct e1000_hw *hw = &adapter->hw;
3131 	struct e1000_tx_ring *tx_ring;
3132 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3133 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3134 	unsigned int tx_flags = 0;
3135 	unsigned int len = skb_headlen(skb);
3136 	unsigned int nr_frags;
3137 	unsigned int mss;
3138 	int count = 0;
3139 	int tso;
3140 	unsigned int f;
3141 	__be16 protocol = vlan_get_protocol(skb);
3142 
3143 	/* This goes back to the question of how to logically map a Tx queue
3144 	 * to a flow.  Right now, performance is impacted slightly negatively
3145 	 * if using multiple Tx queues.  If the stack breaks away from a
3146 	 * single qdisc implementation, we can look at this again.
3147 	 */
3148 	tx_ring = adapter->tx_ring;
3149 
3150 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3151 	 * packets may get corrupted during padding by HW.
3152 	 * To WA this issue, pad all small packets manually.
3153 	 */
3154 	if (eth_skb_pad(skb))
3155 		return NETDEV_TX_OK;
3156 
3157 	mss = skb_shinfo(skb)->gso_size;
3158 	/* The controller does a simple calculation to
3159 	 * make sure there is enough room in the FIFO before
3160 	 * initiating the DMA for each buffer.  The calc is:
3161 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3162 	 * overrun the FIFO, adjust the max buffer len if mss
3163 	 * drops.
3164 	 */
3165 	if (mss) {
3166 		u8 hdr_len;
3167 		max_per_txd = min(mss << 2, max_per_txd);
3168 		max_txd_pwr = fls(max_per_txd) - 1;
3169 
3170 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3171 		if (skb->data_len && hdr_len == len) {
3172 			switch (hw->mac_type) {
3173 				unsigned int pull_size;
3174 			case e1000_82544:
3175 				/* Make sure we have room to chop off 4 bytes,
3176 				 * and that the end alignment will work out to
3177 				 * this hardware's requirements
3178 				 * NOTE: this is a TSO only workaround
3179 				 * if end byte alignment not correct move us
3180 				 * into the next dword
3181 				 */
3182 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3183 				    & 4)
3184 					break;
3185 				/* fall through */
3186 				pull_size = min((unsigned int)4, skb->data_len);
3187 				if (!__pskb_pull_tail(skb, pull_size)) {
3188 					e_err(drv, "__pskb_pull_tail "
3189 					      "failed.\n");
3190 					dev_kfree_skb_any(skb);
3191 					return NETDEV_TX_OK;
3192 				}
3193 				len = skb_headlen(skb);
3194 				break;
3195 			default:
3196 				/* do nothing */
3197 				break;
3198 			}
3199 		}
3200 	}
3201 
3202 	/* reserve a descriptor for the offload context */
3203 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3204 		count++;
3205 	count++;
3206 
3207 	/* Controller Erratum workaround */
3208 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3209 		count++;
3210 
3211 	count += TXD_USE_COUNT(len, max_txd_pwr);
3212 
3213 	if (adapter->pcix_82544)
3214 		count++;
3215 
3216 	/* work-around for errata 10 and it applies to all controllers
3217 	 * in PCI-X mode, so add one more descriptor to the count
3218 	 */
3219 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3220 			(len > 2015)))
3221 		count++;
3222 
3223 	nr_frags = skb_shinfo(skb)->nr_frags;
3224 	for (f = 0; f < nr_frags; f++)
3225 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3226 				       max_txd_pwr);
3227 	if (adapter->pcix_82544)
3228 		count += nr_frags;
3229 
3230 	/* need: count + 2 desc gap to keep tail from touching
3231 	 * head, otherwise try next time
3232 	 */
3233 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3234 		return NETDEV_TX_BUSY;
3235 
3236 	if (unlikely((hw->mac_type == e1000_82547) &&
3237 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3238 		netif_stop_queue(netdev);
3239 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3240 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3241 		return NETDEV_TX_BUSY;
3242 	}
3243 
3244 	if (skb_vlan_tag_present(skb)) {
3245 		tx_flags |= E1000_TX_FLAGS_VLAN;
3246 		tx_flags |= (skb_vlan_tag_get(skb) <<
3247 			     E1000_TX_FLAGS_VLAN_SHIFT);
3248 	}
3249 
3250 	first = tx_ring->next_to_use;
3251 
3252 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3253 	if (tso < 0) {
3254 		dev_kfree_skb_any(skb);
3255 		return NETDEV_TX_OK;
3256 	}
3257 
3258 	if (likely(tso)) {
3259 		if (likely(hw->mac_type != e1000_82544))
3260 			tx_ring->last_tx_tso = true;
3261 		tx_flags |= E1000_TX_FLAGS_TSO;
3262 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3263 		tx_flags |= E1000_TX_FLAGS_CSUM;
3264 
3265 	if (protocol == htons(ETH_P_IP))
3266 		tx_flags |= E1000_TX_FLAGS_IPV4;
3267 
3268 	if (unlikely(skb->no_fcs))
3269 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3270 
3271 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3272 			     nr_frags, mss);
3273 
3274 	if (count) {
3275 		/* The descriptors needed is higher than other Intel drivers
3276 		 * due to a number of workarounds.  The breakdown is below:
3277 		 * Data descriptors: MAX_SKB_FRAGS + 1
3278 		 * Context Descriptor: 1
3279 		 * Keep head from touching tail: 2
3280 		 * Workarounds: 3
3281 		 */
3282 		int desc_needed = MAX_SKB_FRAGS + 7;
3283 
3284 		netdev_sent_queue(netdev, skb->len);
3285 		skb_tx_timestamp(skb);
3286 
3287 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3288 
3289 		/* 82544 potentially requires twice as many data descriptors
3290 		 * in order to guarantee buffers don't end on evenly-aligned
3291 		 * dwords
3292 		 */
3293 		if (adapter->pcix_82544)
3294 			desc_needed += MAX_SKB_FRAGS + 1;
3295 
3296 		/* Make sure there is space in the ring for the next send. */
3297 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3298 
3299 		if (!skb->xmit_more ||
3300 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3301 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3302 			/* we need this if more than one processor can write to
3303 			 * our tail at a time, it synchronizes IO on IA64/Altix
3304 			 * systems
3305 			 */
3306 			mmiowb();
3307 		}
3308 	} else {
3309 		dev_kfree_skb_any(skb);
3310 		tx_ring->buffer_info[first].time_stamp = 0;
3311 		tx_ring->next_to_use = first;
3312 	}
3313 
3314 	return NETDEV_TX_OK;
3315 }
3316 
3317 #define NUM_REGS 38 /* 1 based count */
3318 static void e1000_regdump(struct e1000_adapter *adapter)
3319 {
3320 	struct e1000_hw *hw = &adapter->hw;
3321 	u32 regs[NUM_REGS];
3322 	u32 *regs_buff = regs;
3323 	int i = 0;
3324 
3325 	static const char * const reg_name[] = {
3326 		"CTRL",  "STATUS",
3327 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3328 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3329 		"TIDV", "TXDCTL", "TADV", "TARC0",
3330 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3331 		"TXDCTL1", "TARC1",
3332 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3333 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3334 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3335 	};
3336 
3337 	regs_buff[0]  = er32(CTRL);
3338 	regs_buff[1]  = er32(STATUS);
3339 
3340 	regs_buff[2]  = er32(RCTL);
3341 	regs_buff[3]  = er32(RDLEN);
3342 	regs_buff[4]  = er32(RDH);
3343 	regs_buff[5]  = er32(RDT);
3344 	regs_buff[6]  = er32(RDTR);
3345 
3346 	regs_buff[7]  = er32(TCTL);
3347 	regs_buff[8]  = er32(TDBAL);
3348 	regs_buff[9]  = er32(TDBAH);
3349 	regs_buff[10] = er32(TDLEN);
3350 	regs_buff[11] = er32(TDH);
3351 	regs_buff[12] = er32(TDT);
3352 	regs_buff[13] = er32(TIDV);
3353 	regs_buff[14] = er32(TXDCTL);
3354 	regs_buff[15] = er32(TADV);
3355 	regs_buff[16] = er32(TARC0);
3356 
3357 	regs_buff[17] = er32(TDBAL1);
3358 	regs_buff[18] = er32(TDBAH1);
3359 	regs_buff[19] = er32(TDLEN1);
3360 	regs_buff[20] = er32(TDH1);
3361 	regs_buff[21] = er32(TDT1);
3362 	regs_buff[22] = er32(TXDCTL1);
3363 	regs_buff[23] = er32(TARC1);
3364 	regs_buff[24] = er32(CTRL_EXT);
3365 	regs_buff[25] = er32(ERT);
3366 	regs_buff[26] = er32(RDBAL0);
3367 	regs_buff[27] = er32(RDBAH0);
3368 	regs_buff[28] = er32(TDFH);
3369 	regs_buff[29] = er32(TDFT);
3370 	regs_buff[30] = er32(TDFHS);
3371 	regs_buff[31] = er32(TDFTS);
3372 	regs_buff[32] = er32(TDFPC);
3373 	regs_buff[33] = er32(RDFH);
3374 	regs_buff[34] = er32(RDFT);
3375 	regs_buff[35] = er32(RDFHS);
3376 	regs_buff[36] = er32(RDFTS);
3377 	regs_buff[37] = er32(RDFPC);
3378 
3379 	pr_info("Register dump\n");
3380 	for (i = 0; i < NUM_REGS; i++)
3381 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3382 }
3383 
3384 /*
3385  * e1000_dump: Print registers, tx ring and rx ring
3386  */
3387 static void e1000_dump(struct e1000_adapter *adapter)
3388 {
3389 	/* this code doesn't handle multiple rings */
3390 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3391 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3392 	int i;
3393 
3394 	if (!netif_msg_hw(adapter))
3395 		return;
3396 
3397 	/* Print Registers */
3398 	e1000_regdump(adapter);
3399 
3400 	/* transmit dump */
3401 	pr_info("TX Desc ring0 dump\n");
3402 
3403 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3404 	 *
3405 	 * Legacy Transmit Descriptor
3406 	 *   +--------------------------------------------------------------+
3407 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3408 	 *   +--------------------------------------------------------------+
3409 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3410 	 *   +--------------------------------------------------------------+
3411 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3412 	 *
3413 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3414 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3415 	 *   +----------------------------------------------------------------+
3416 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3417 	 *   +----------------------------------------------------------------+
3418 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3419 	 *   +----------------------------------------------------------------+
3420 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3421 	 *
3422 	 * Extended Data Descriptor (DTYP=0x1)
3423 	 *   +----------------------------------------------------------------+
3424 	 * 0 |                     Buffer Address [63:0]                      |
3425 	 *   +----------------------------------------------------------------+
3426 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3427 	 *   +----------------------------------------------------------------+
3428 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3429 	 */
3430 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3431 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3432 
3433 	if (!netif_msg_tx_done(adapter))
3434 		goto rx_ring_summary;
3435 
3436 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3437 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3438 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3439 		struct my_u { __le64 a; __le64 b; };
3440 		struct my_u *u = (struct my_u *)tx_desc;
3441 		const char *type;
3442 
3443 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3444 			type = "NTC/U";
3445 		else if (i == tx_ring->next_to_use)
3446 			type = "NTU";
3447 		else if (i == tx_ring->next_to_clean)
3448 			type = "NTC";
3449 		else
3450 			type = "";
3451 
3452 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3453 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3454 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3455 			(u64)buffer_info->dma, buffer_info->length,
3456 			buffer_info->next_to_watch,
3457 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3458 	}
3459 
3460 rx_ring_summary:
3461 	/* receive dump */
3462 	pr_info("\nRX Desc ring dump\n");
3463 
3464 	/* Legacy Receive Descriptor Format
3465 	 *
3466 	 * +-----------------------------------------------------+
3467 	 * |                Buffer Address [63:0]                |
3468 	 * +-----------------------------------------------------+
3469 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3470 	 * +-----------------------------------------------------+
3471 	 * 63       48 47    40 39      32 31         16 15      0
3472 	 */
3473 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3474 
3475 	if (!netif_msg_rx_status(adapter))
3476 		goto exit;
3477 
3478 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3479 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3480 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3481 		struct my_u { __le64 a; __le64 b; };
3482 		struct my_u *u = (struct my_u *)rx_desc;
3483 		const char *type;
3484 
3485 		if (i == rx_ring->next_to_use)
3486 			type = "NTU";
3487 		else if (i == rx_ring->next_to_clean)
3488 			type = "NTC";
3489 		else
3490 			type = "";
3491 
3492 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3493 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3494 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3495 	} /* for */
3496 
3497 	/* dump the descriptor caches */
3498 	/* rx */
3499 	pr_info("Rx descriptor cache in 64bit format\n");
3500 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3501 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3502 			i,
3503 			readl(adapter->hw.hw_addr + i+4),
3504 			readl(adapter->hw.hw_addr + i),
3505 			readl(adapter->hw.hw_addr + i+12),
3506 			readl(adapter->hw.hw_addr + i+8));
3507 	}
3508 	/* tx */
3509 	pr_info("Tx descriptor cache in 64bit format\n");
3510 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3511 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3512 			i,
3513 			readl(adapter->hw.hw_addr + i+4),
3514 			readl(adapter->hw.hw_addr + i),
3515 			readl(adapter->hw.hw_addr + i+12),
3516 			readl(adapter->hw.hw_addr + i+8));
3517 	}
3518 exit:
3519 	return;
3520 }
3521 
3522 /**
3523  * e1000_tx_timeout - Respond to a Tx Hang
3524  * @netdev: network interface device structure
3525  **/
3526 static void e1000_tx_timeout(struct net_device *netdev)
3527 {
3528 	struct e1000_adapter *adapter = netdev_priv(netdev);
3529 
3530 	/* Do the reset outside of interrupt context */
3531 	adapter->tx_timeout_count++;
3532 	schedule_work(&adapter->reset_task);
3533 }
3534 
3535 static void e1000_reset_task(struct work_struct *work)
3536 {
3537 	struct e1000_adapter *adapter =
3538 		container_of(work, struct e1000_adapter, reset_task);
3539 
3540 	e_err(drv, "Reset adapter\n");
3541 	e1000_reinit_locked(adapter);
3542 }
3543 
3544 /**
3545  * e1000_change_mtu - Change the Maximum Transfer Unit
3546  * @netdev: network interface device structure
3547  * @new_mtu: new value for maximum frame size
3548  *
3549  * Returns 0 on success, negative on failure
3550  **/
3551 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3552 {
3553 	struct e1000_adapter *adapter = netdev_priv(netdev);
3554 	struct e1000_hw *hw = &adapter->hw;
3555 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3556 
3557 	/* Adapter-specific max frame size limits. */
3558 	switch (hw->mac_type) {
3559 	case e1000_undefined ... e1000_82542_rev2_1:
3560 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3561 			e_err(probe, "Jumbo Frames not supported.\n");
3562 			return -EINVAL;
3563 		}
3564 		break;
3565 	default:
3566 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3567 		break;
3568 	}
3569 
3570 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3571 		msleep(1);
3572 	/* e1000_down has a dependency on max_frame_size */
3573 	hw->max_frame_size = max_frame;
3574 	if (netif_running(netdev)) {
3575 		/* prevent buffers from being reallocated */
3576 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3577 		e1000_down(adapter);
3578 	}
3579 
3580 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3581 	 * means we reserve 2 more, this pushes us to allocate from the next
3582 	 * larger slab size.
3583 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3584 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3585 	 * fragmented skbs
3586 	 */
3587 
3588 	if (max_frame <= E1000_RXBUFFER_2048)
3589 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3590 	else
3591 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3592 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3593 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3594 		adapter->rx_buffer_len = PAGE_SIZE;
3595 #endif
3596 
3597 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3598 	if (!hw->tbi_compatibility_on &&
3599 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3600 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3601 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3602 
3603 	pr_info("%s changing MTU from %d to %d\n",
3604 		netdev->name, netdev->mtu, new_mtu);
3605 	netdev->mtu = new_mtu;
3606 
3607 	if (netif_running(netdev))
3608 		e1000_up(adapter);
3609 	else
3610 		e1000_reset(adapter);
3611 
3612 	clear_bit(__E1000_RESETTING, &adapter->flags);
3613 
3614 	return 0;
3615 }
3616 
3617 /**
3618  * e1000_update_stats - Update the board statistics counters
3619  * @adapter: board private structure
3620  **/
3621 void e1000_update_stats(struct e1000_adapter *adapter)
3622 {
3623 	struct net_device *netdev = adapter->netdev;
3624 	struct e1000_hw *hw = &adapter->hw;
3625 	struct pci_dev *pdev = adapter->pdev;
3626 	unsigned long flags;
3627 	u16 phy_tmp;
3628 
3629 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3630 
3631 	/* Prevent stats update while adapter is being reset, or if the pci
3632 	 * connection is down.
3633 	 */
3634 	if (adapter->link_speed == 0)
3635 		return;
3636 	if (pci_channel_offline(pdev))
3637 		return;
3638 
3639 	spin_lock_irqsave(&adapter->stats_lock, flags);
3640 
3641 	/* these counters are modified from e1000_tbi_adjust_stats,
3642 	 * called from the interrupt context, so they must only
3643 	 * be written while holding adapter->stats_lock
3644 	 */
3645 
3646 	adapter->stats.crcerrs += er32(CRCERRS);
3647 	adapter->stats.gprc += er32(GPRC);
3648 	adapter->stats.gorcl += er32(GORCL);
3649 	adapter->stats.gorch += er32(GORCH);
3650 	adapter->stats.bprc += er32(BPRC);
3651 	adapter->stats.mprc += er32(MPRC);
3652 	adapter->stats.roc += er32(ROC);
3653 
3654 	adapter->stats.prc64 += er32(PRC64);
3655 	adapter->stats.prc127 += er32(PRC127);
3656 	adapter->stats.prc255 += er32(PRC255);
3657 	adapter->stats.prc511 += er32(PRC511);
3658 	adapter->stats.prc1023 += er32(PRC1023);
3659 	adapter->stats.prc1522 += er32(PRC1522);
3660 
3661 	adapter->stats.symerrs += er32(SYMERRS);
3662 	adapter->stats.mpc += er32(MPC);
3663 	adapter->stats.scc += er32(SCC);
3664 	adapter->stats.ecol += er32(ECOL);
3665 	adapter->stats.mcc += er32(MCC);
3666 	adapter->stats.latecol += er32(LATECOL);
3667 	adapter->stats.dc += er32(DC);
3668 	adapter->stats.sec += er32(SEC);
3669 	adapter->stats.rlec += er32(RLEC);
3670 	adapter->stats.xonrxc += er32(XONRXC);
3671 	adapter->stats.xontxc += er32(XONTXC);
3672 	adapter->stats.xoffrxc += er32(XOFFRXC);
3673 	adapter->stats.xofftxc += er32(XOFFTXC);
3674 	adapter->stats.fcruc += er32(FCRUC);
3675 	adapter->stats.gptc += er32(GPTC);
3676 	adapter->stats.gotcl += er32(GOTCL);
3677 	adapter->stats.gotch += er32(GOTCH);
3678 	adapter->stats.rnbc += er32(RNBC);
3679 	adapter->stats.ruc += er32(RUC);
3680 	adapter->stats.rfc += er32(RFC);
3681 	adapter->stats.rjc += er32(RJC);
3682 	adapter->stats.torl += er32(TORL);
3683 	adapter->stats.torh += er32(TORH);
3684 	adapter->stats.totl += er32(TOTL);
3685 	adapter->stats.toth += er32(TOTH);
3686 	adapter->stats.tpr += er32(TPR);
3687 
3688 	adapter->stats.ptc64 += er32(PTC64);
3689 	adapter->stats.ptc127 += er32(PTC127);
3690 	adapter->stats.ptc255 += er32(PTC255);
3691 	adapter->stats.ptc511 += er32(PTC511);
3692 	adapter->stats.ptc1023 += er32(PTC1023);
3693 	adapter->stats.ptc1522 += er32(PTC1522);
3694 
3695 	adapter->stats.mptc += er32(MPTC);
3696 	adapter->stats.bptc += er32(BPTC);
3697 
3698 	/* used for adaptive IFS */
3699 
3700 	hw->tx_packet_delta = er32(TPT);
3701 	adapter->stats.tpt += hw->tx_packet_delta;
3702 	hw->collision_delta = er32(COLC);
3703 	adapter->stats.colc += hw->collision_delta;
3704 
3705 	if (hw->mac_type >= e1000_82543) {
3706 		adapter->stats.algnerrc += er32(ALGNERRC);
3707 		adapter->stats.rxerrc += er32(RXERRC);
3708 		adapter->stats.tncrs += er32(TNCRS);
3709 		adapter->stats.cexterr += er32(CEXTERR);
3710 		adapter->stats.tsctc += er32(TSCTC);
3711 		adapter->stats.tsctfc += er32(TSCTFC);
3712 	}
3713 
3714 	/* Fill out the OS statistics structure */
3715 	netdev->stats.multicast = adapter->stats.mprc;
3716 	netdev->stats.collisions = adapter->stats.colc;
3717 
3718 	/* Rx Errors */
3719 
3720 	/* RLEC on some newer hardware can be incorrect so build
3721 	 * our own version based on RUC and ROC
3722 	 */
3723 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3724 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3725 		adapter->stats.ruc + adapter->stats.roc +
3726 		adapter->stats.cexterr;
3727 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3728 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3729 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3730 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3731 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3732 
3733 	/* Tx Errors */
3734 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3735 	netdev->stats.tx_errors = adapter->stats.txerrc;
3736 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3737 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3738 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3739 	if (hw->bad_tx_carr_stats_fd &&
3740 	    adapter->link_duplex == FULL_DUPLEX) {
3741 		netdev->stats.tx_carrier_errors = 0;
3742 		adapter->stats.tncrs = 0;
3743 	}
3744 
3745 	/* Tx Dropped needs to be maintained elsewhere */
3746 
3747 	/* Phy Stats */
3748 	if (hw->media_type == e1000_media_type_copper) {
3749 		if ((adapter->link_speed == SPEED_1000) &&
3750 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3751 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3752 			adapter->phy_stats.idle_errors += phy_tmp;
3753 		}
3754 
3755 		if ((hw->mac_type <= e1000_82546) &&
3756 		   (hw->phy_type == e1000_phy_m88) &&
3757 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3758 			adapter->phy_stats.receive_errors += phy_tmp;
3759 	}
3760 
3761 	/* Management Stats */
3762 	if (hw->has_smbus) {
3763 		adapter->stats.mgptc += er32(MGTPTC);
3764 		adapter->stats.mgprc += er32(MGTPRC);
3765 		adapter->stats.mgpdc += er32(MGTPDC);
3766 	}
3767 
3768 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3769 }
3770 
3771 /**
3772  * e1000_intr - Interrupt Handler
3773  * @irq: interrupt number
3774  * @data: pointer to a network interface device structure
3775  **/
3776 static irqreturn_t e1000_intr(int irq, void *data)
3777 {
3778 	struct net_device *netdev = data;
3779 	struct e1000_adapter *adapter = netdev_priv(netdev);
3780 	struct e1000_hw *hw = &adapter->hw;
3781 	u32 icr = er32(ICR);
3782 
3783 	if (unlikely((!icr)))
3784 		return IRQ_NONE;  /* Not our interrupt */
3785 
3786 	/* we might have caused the interrupt, but the above
3787 	 * read cleared it, and just in case the driver is
3788 	 * down there is nothing to do so return handled
3789 	 */
3790 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3791 		return IRQ_HANDLED;
3792 
3793 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3794 		hw->get_link_status = 1;
3795 		/* guard against interrupt when we're going down */
3796 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3797 			schedule_delayed_work(&adapter->watchdog_task, 1);
3798 	}
3799 
3800 	/* disable interrupts, without the synchronize_irq bit */
3801 	ew32(IMC, ~0);
3802 	E1000_WRITE_FLUSH();
3803 
3804 	if (likely(napi_schedule_prep(&adapter->napi))) {
3805 		adapter->total_tx_bytes = 0;
3806 		adapter->total_tx_packets = 0;
3807 		adapter->total_rx_bytes = 0;
3808 		adapter->total_rx_packets = 0;
3809 		__napi_schedule(&adapter->napi);
3810 	} else {
3811 		/* this really should not happen! if it does it is basically a
3812 		 * bug, but not a hard error, so enable ints and continue
3813 		 */
3814 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3815 			e1000_irq_enable(adapter);
3816 	}
3817 
3818 	return IRQ_HANDLED;
3819 }
3820 
3821 /**
3822  * e1000_clean - NAPI Rx polling callback
3823  * @adapter: board private structure
3824  **/
3825 static int e1000_clean(struct napi_struct *napi, int budget)
3826 {
3827 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3828 						     napi);
3829 	int tx_clean_complete = 0, work_done = 0;
3830 
3831 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3832 
3833 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3834 
3835 	if (!tx_clean_complete)
3836 		work_done = budget;
3837 
3838 	/* If budget not fully consumed, exit the polling mode */
3839 	if (work_done < budget) {
3840 		if (likely(adapter->itr_setting & 3))
3841 			e1000_set_itr(adapter);
3842 		napi_complete_done(napi, work_done);
3843 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3844 			e1000_irq_enable(adapter);
3845 	}
3846 
3847 	return work_done;
3848 }
3849 
3850 /**
3851  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3852  * @adapter: board private structure
3853  **/
3854 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3855 			       struct e1000_tx_ring *tx_ring)
3856 {
3857 	struct e1000_hw *hw = &adapter->hw;
3858 	struct net_device *netdev = adapter->netdev;
3859 	struct e1000_tx_desc *tx_desc, *eop_desc;
3860 	struct e1000_tx_buffer *buffer_info;
3861 	unsigned int i, eop;
3862 	unsigned int count = 0;
3863 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3864 	unsigned int bytes_compl = 0, pkts_compl = 0;
3865 
3866 	i = tx_ring->next_to_clean;
3867 	eop = tx_ring->buffer_info[i].next_to_watch;
3868 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3869 
3870 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3871 	       (count < tx_ring->count)) {
3872 		bool cleaned = false;
3873 		dma_rmb();	/* read buffer_info after eop_desc */
3874 		for ( ; !cleaned; count++) {
3875 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3876 			buffer_info = &tx_ring->buffer_info[i];
3877 			cleaned = (i == eop);
3878 
3879 			if (cleaned) {
3880 				total_tx_packets += buffer_info->segs;
3881 				total_tx_bytes += buffer_info->bytecount;
3882 				if (buffer_info->skb) {
3883 					bytes_compl += buffer_info->skb->len;
3884 					pkts_compl++;
3885 				}
3886 
3887 			}
3888 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3889 			tx_desc->upper.data = 0;
3890 
3891 			if (unlikely(++i == tx_ring->count))
3892 				i = 0;
3893 		}
3894 
3895 		eop = tx_ring->buffer_info[i].next_to_watch;
3896 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3897 	}
3898 
3899 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3900 	 * which will reuse the cleaned buffers.
3901 	 */
3902 	smp_store_release(&tx_ring->next_to_clean, i);
3903 
3904 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3905 
3906 #define TX_WAKE_THRESHOLD 32
3907 	if (unlikely(count && netif_carrier_ok(netdev) &&
3908 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3909 		/* Make sure that anybody stopping the queue after this
3910 		 * sees the new next_to_clean.
3911 		 */
3912 		smp_mb();
3913 
3914 		if (netif_queue_stopped(netdev) &&
3915 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3916 			netif_wake_queue(netdev);
3917 			++adapter->restart_queue;
3918 		}
3919 	}
3920 
3921 	if (adapter->detect_tx_hung) {
3922 		/* Detect a transmit hang in hardware, this serializes the
3923 		 * check with the clearing of time_stamp and movement of i
3924 		 */
3925 		adapter->detect_tx_hung = false;
3926 		if (tx_ring->buffer_info[eop].time_stamp &&
3927 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3928 			       (adapter->tx_timeout_factor * HZ)) &&
3929 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3930 
3931 			/* detected Tx unit hang */
3932 			e_err(drv, "Detected Tx Unit Hang\n"
3933 			      "  Tx Queue             <%lu>\n"
3934 			      "  TDH                  <%x>\n"
3935 			      "  TDT                  <%x>\n"
3936 			      "  next_to_use          <%x>\n"
3937 			      "  next_to_clean        <%x>\n"
3938 			      "buffer_info[next_to_clean]\n"
3939 			      "  time_stamp           <%lx>\n"
3940 			      "  next_to_watch        <%x>\n"
3941 			      "  jiffies              <%lx>\n"
3942 			      "  next_to_watch.status <%x>\n",
3943 				(unsigned long)(tx_ring - adapter->tx_ring),
3944 				readl(hw->hw_addr + tx_ring->tdh),
3945 				readl(hw->hw_addr + tx_ring->tdt),
3946 				tx_ring->next_to_use,
3947 				tx_ring->next_to_clean,
3948 				tx_ring->buffer_info[eop].time_stamp,
3949 				eop,
3950 				jiffies,
3951 				eop_desc->upper.fields.status);
3952 			e1000_dump(adapter);
3953 			netif_stop_queue(netdev);
3954 		}
3955 	}
3956 	adapter->total_tx_bytes += total_tx_bytes;
3957 	adapter->total_tx_packets += total_tx_packets;
3958 	netdev->stats.tx_bytes += total_tx_bytes;
3959 	netdev->stats.tx_packets += total_tx_packets;
3960 	return count < tx_ring->count;
3961 }
3962 
3963 /**
3964  * e1000_rx_checksum - Receive Checksum Offload for 82543
3965  * @adapter:     board private structure
3966  * @status_err:  receive descriptor status and error fields
3967  * @csum:        receive descriptor csum field
3968  * @sk_buff:     socket buffer with received data
3969  **/
3970 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3971 			      u32 csum, struct sk_buff *skb)
3972 {
3973 	struct e1000_hw *hw = &adapter->hw;
3974 	u16 status = (u16)status_err;
3975 	u8 errors = (u8)(status_err >> 24);
3976 
3977 	skb_checksum_none_assert(skb);
3978 
3979 	/* 82543 or newer only */
3980 	if (unlikely(hw->mac_type < e1000_82543))
3981 		return;
3982 	/* Ignore Checksum bit is set */
3983 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3984 		return;
3985 	/* TCP/UDP checksum error bit is set */
3986 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3987 		/* let the stack verify checksum errors */
3988 		adapter->hw_csum_err++;
3989 		return;
3990 	}
3991 	/* TCP/UDP Checksum has not been calculated */
3992 	if (!(status & E1000_RXD_STAT_TCPCS))
3993 		return;
3994 
3995 	/* It must be a TCP or UDP packet with a valid checksum */
3996 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3997 		/* TCP checksum is good */
3998 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3999 	}
4000 	adapter->hw_csum_good++;
4001 }
4002 
4003 /**
4004  * e1000_consume_page - helper function for jumbo Rx path
4005  **/
4006 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4007 			       u16 length)
4008 {
4009 	bi->rxbuf.page = NULL;
4010 	skb->len += length;
4011 	skb->data_len += length;
4012 	skb->truesize += PAGE_SIZE;
4013 }
4014 
4015 /**
4016  * e1000_receive_skb - helper function to handle rx indications
4017  * @adapter: board private structure
4018  * @status: descriptor status field as written by hardware
4019  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4020  * @skb: pointer to sk_buff to be indicated to stack
4021  */
4022 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4023 			      __le16 vlan, struct sk_buff *skb)
4024 {
4025 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4026 
4027 	if (status & E1000_RXD_STAT_VP) {
4028 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4029 
4030 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4031 	}
4032 	napi_gro_receive(&adapter->napi, skb);
4033 }
4034 
4035 /**
4036  * e1000_tbi_adjust_stats
4037  * @hw: Struct containing variables accessed by shared code
4038  * @frame_len: The length of the frame in question
4039  * @mac_addr: The Ethernet destination address of the frame in question
4040  *
4041  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4042  */
4043 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4044 				   struct e1000_hw_stats *stats,
4045 				   u32 frame_len, const u8 *mac_addr)
4046 {
4047 	u64 carry_bit;
4048 
4049 	/* First adjust the frame length. */
4050 	frame_len--;
4051 	/* We need to adjust the statistics counters, since the hardware
4052 	 * counters overcount this packet as a CRC error and undercount
4053 	 * the packet as a good packet
4054 	 */
4055 	/* This packet should not be counted as a CRC error. */
4056 	stats->crcerrs--;
4057 	/* This packet does count as a Good Packet Received. */
4058 	stats->gprc++;
4059 
4060 	/* Adjust the Good Octets received counters */
4061 	carry_bit = 0x80000000 & stats->gorcl;
4062 	stats->gorcl += frame_len;
4063 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4064 	 * Received Count) was one before the addition,
4065 	 * AND it is zero after, then we lost the carry out,
4066 	 * need to add one to Gorch (Good Octets Received Count High).
4067 	 * This could be simplified if all environments supported
4068 	 * 64-bit integers.
4069 	 */
4070 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4071 		stats->gorch++;
4072 	/* Is this a broadcast or multicast?  Check broadcast first,
4073 	 * since the test for a multicast frame will test positive on
4074 	 * a broadcast frame.
4075 	 */
4076 	if (is_broadcast_ether_addr(mac_addr))
4077 		stats->bprc++;
4078 	else if (is_multicast_ether_addr(mac_addr))
4079 		stats->mprc++;
4080 
4081 	if (frame_len == hw->max_frame_size) {
4082 		/* In this case, the hardware has overcounted the number of
4083 		 * oversize frames.
4084 		 */
4085 		if (stats->roc > 0)
4086 			stats->roc--;
4087 	}
4088 
4089 	/* Adjust the bin counters when the extra byte put the frame in the
4090 	 * wrong bin. Remember that the frame_len was adjusted above.
4091 	 */
4092 	if (frame_len == 64) {
4093 		stats->prc64++;
4094 		stats->prc127--;
4095 	} else if (frame_len == 127) {
4096 		stats->prc127++;
4097 		stats->prc255--;
4098 	} else if (frame_len == 255) {
4099 		stats->prc255++;
4100 		stats->prc511--;
4101 	} else if (frame_len == 511) {
4102 		stats->prc511++;
4103 		stats->prc1023--;
4104 	} else if (frame_len == 1023) {
4105 		stats->prc1023++;
4106 		stats->prc1522--;
4107 	} else if (frame_len == 1522) {
4108 		stats->prc1522++;
4109 	}
4110 }
4111 
4112 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4113 				    u8 status, u8 errors,
4114 				    u32 length, const u8 *data)
4115 {
4116 	struct e1000_hw *hw = &adapter->hw;
4117 	u8 last_byte = *(data + length - 1);
4118 
4119 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4120 		unsigned long irq_flags;
4121 
4122 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4123 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4124 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4125 
4126 		return true;
4127 	}
4128 
4129 	return false;
4130 }
4131 
4132 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4133 					  unsigned int bufsz)
4134 {
4135 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4136 
4137 	if (unlikely(!skb))
4138 		adapter->alloc_rx_buff_failed++;
4139 	return skb;
4140 }
4141 
4142 /**
4143  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4144  * @adapter: board private structure
4145  * @rx_ring: ring to clean
4146  * @work_done: amount of napi work completed this call
4147  * @work_to_do: max amount of work allowed for this call to do
4148  *
4149  * the return value indicates whether actual cleaning was done, there
4150  * is no guarantee that everything was cleaned
4151  */
4152 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4153 				     struct e1000_rx_ring *rx_ring,
4154 				     int *work_done, int work_to_do)
4155 {
4156 	struct net_device *netdev = adapter->netdev;
4157 	struct pci_dev *pdev = adapter->pdev;
4158 	struct e1000_rx_desc *rx_desc, *next_rxd;
4159 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4160 	u32 length;
4161 	unsigned int i;
4162 	int cleaned_count = 0;
4163 	bool cleaned = false;
4164 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4165 
4166 	i = rx_ring->next_to_clean;
4167 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4168 	buffer_info = &rx_ring->buffer_info[i];
4169 
4170 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4171 		struct sk_buff *skb;
4172 		u8 status;
4173 
4174 		if (*work_done >= work_to_do)
4175 			break;
4176 		(*work_done)++;
4177 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4178 
4179 		status = rx_desc->status;
4180 
4181 		if (++i == rx_ring->count)
4182 			i = 0;
4183 
4184 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4185 		prefetch(next_rxd);
4186 
4187 		next_buffer = &rx_ring->buffer_info[i];
4188 
4189 		cleaned = true;
4190 		cleaned_count++;
4191 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4192 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4193 		buffer_info->dma = 0;
4194 
4195 		length = le16_to_cpu(rx_desc->length);
4196 
4197 		/* errors is only valid for DD + EOP descriptors */
4198 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4199 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4200 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4201 
4202 			if (e1000_tbi_should_accept(adapter, status,
4203 						    rx_desc->errors,
4204 						    length, mapped)) {
4205 				length--;
4206 			} else if (netdev->features & NETIF_F_RXALL) {
4207 				goto process_skb;
4208 			} else {
4209 				/* an error means any chain goes out the window
4210 				 * too
4211 				 */
4212 				if (rx_ring->rx_skb_top)
4213 					dev_kfree_skb(rx_ring->rx_skb_top);
4214 				rx_ring->rx_skb_top = NULL;
4215 				goto next_desc;
4216 			}
4217 		}
4218 
4219 #define rxtop rx_ring->rx_skb_top
4220 process_skb:
4221 		if (!(status & E1000_RXD_STAT_EOP)) {
4222 			/* this descriptor is only the beginning (or middle) */
4223 			if (!rxtop) {
4224 				/* this is the beginning of a chain */
4225 				rxtop = napi_get_frags(&adapter->napi);
4226 				if (!rxtop)
4227 					break;
4228 
4229 				skb_fill_page_desc(rxtop, 0,
4230 						   buffer_info->rxbuf.page,
4231 						   0, length);
4232 			} else {
4233 				/* this is the middle of a chain */
4234 				skb_fill_page_desc(rxtop,
4235 				    skb_shinfo(rxtop)->nr_frags,
4236 				    buffer_info->rxbuf.page, 0, length);
4237 			}
4238 			e1000_consume_page(buffer_info, rxtop, length);
4239 			goto next_desc;
4240 		} else {
4241 			if (rxtop) {
4242 				/* end of the chain */
4243 				skb_fill_page_desc(rxtop,
4244 				    skb_shinfo(rxtop)->nr_frags,
4245 				    buffer_info->rxbuf.page, 0, length);
4246 				skb = rxtop;
4247 				rxtop = NULL;
4248 				e1000_consume_page(buffer_info, skb, length);
4249 			} else {
4250 				struct page *p;
4251 				/* no chain, got EOP, this buf is the packet
4252 				 * copybreak to save the put_page/alloc_page
4253 				 */
4254 				p = buffer_info->rxbuf.page;
4255 				if (length <= copybreak) {
4256 					u8 *vaddr;
4257 
4258 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4259 						length -= 4;
4260 					skb = e1000_alloc_rx_skb(adapter,
4261 								 length);
4262 					if (!skb)
4263 						break;
4264 
4265 					vaddr = kmap_atomic(p);
4266 					memcpy(skb_tail_pointer(skb), vaddr,
4267 					       length);
4268 					kunmap_atomic(vaddr);
4269 					/* re-use the page, so don't erase
4270 					 * buffer_info->rxbuf.page
4271 					 */
4272 					skb_put(skb, length);
4273 					e1000_rx_checksum(adapter,
4274 							  status | rx_desc->errors << 24,
4275 							  le16_to_cpu(rx_desc->csum), skb);
4276 
4277 					total_rx_bytes += skb->len;
4278 					total_rx_packets++;
4279 
4280 					e1000_receive_skb(adapter, status,
4281 							  rx_desc->special, skb);
4282 					goto next_desc;
4283 				} else {
4284 					skb = napi_get_frags(&adapter->napi);
4285 					if (!skb) {
4286 						adapter->alloc_rx_buff_failed++;
4287 						break;
4288 					}
4289 					skb_fill_page_desc(skb, 0, p, 0,
4290 							   length);
4291 					e1000_consume_page(buffer_info, skb,
4292 							   length);
4293 				}
4294 			}
4295 		}
4296 
4297 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4298 		e1000_rx_checksum(adapter,
4299 				  (u32)(status) |
4300 				  ((u32)(rx_desc->errors) << 24),
4301 				  le16_to_cpu(rx_desc->csum), skb);
4302 
4303 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4304 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4305 			pskb_trim(skb, skb->len - 4);
4306 		total_rx_packets++;
4307 
4308 		if (status & E1000_RXD_STAT_VP) {
4309 			__le16 vlan = rx_desc->special;
4310 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4311 
4312 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4313 		}
4314 
4315 		napi_gro_frags(&adapter->napi);
4316 
4317 next_desc:
4318 		rx_desc->status = 0;
4319 
4320 		/* return some buffers to hardware, one at a time is too slow */
4321 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4322 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4323 			cleaned_count = 0;
4324 		}
4325 
4326 		/* use prefetched values */
4327 		rx_desc = next_rxd;
4328 		buffer_info = next_buffer;
4329 	}
4330 	rx_ring->next_to_clean = i;
4331 
4332 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4333 	if (cleaned_count)
4334 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4335 
4336 	adapter->total_rx_packets += total_rx_packets;
4337 	adapter->total_rx_bytes += total_rx_bytes;
4338 	netdev->stats.rx_bytes += total_rx_bytes;
4339 	netdev->stats.rx_packets += total_rx_packets;
4340 	return cleaned;
4341 }
4342 
4343 /* this should improve performance for small packets with large amounts
4344  * of reassembly being done in the stack
4345  */
4346 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4347 				       struct e1000_rx_buffer *buffer_info,
4348 				       u32 length, const void *data)
4349 {
4350 	struct sk_buff *skb;
4351 
4352 	if (length > copybreak)
4353 		return NULL;
4354 
4355 	skb = e1000_alloc_rx_skb(adapter, length);
4356 	if (!skb)
4357 		return NULL;
4358 
4359 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4360 				length, DMA_FROM_DEVICE);
4361 
4362 	skb_put_data(skb, data, length);
4363 
4364 	return skb;
4365 }
4366 
4367 /**
4368  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4369  * @adapter: board private structure
4370  * @rx_ring: ring to clean
4371  * @work_done: amount of napi work completed this call
4372  * @work_to_do: max amount of work allowed for this call to do
4373  */
4374 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4375 			       struct e1000_rx_ring *rx_ring,
4376 			       int *work_done, int work_to_do)
4377 {
4378 	struct net_device *netdev = adapter->netdev;
4379 	struct pci_dev *pdev = adapter->pdev;
4380 	struct e1000_rx_desc *rx_desc, *next_rxd;
4381 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4382 	u32 length;
4383 	unsigned int i;
4384 	int cleaned_count = 0;
4385 	bool cleaned = false;
4386 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4387 
4388 	i = rx_ring->next_to_clean;
4389 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4390 	buffer_info = &rx_ring->buffer_info[i];
4391 
4392 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4393 		struct sk_buff *skb;
4394 		u8 *data;
4395 		u8 status;
4396 
4397 		if (*work_done >= work_to_do)
4398 			break;
4399 		(*work_done)++;
4400 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4401 
4402 		status = rx_desc->status;
4403 		length = le16_to_cpu(rx_desc->length);
4404 
4405 		data = buffer_info->rxbuf.data;
4406 		prefetch(data);
4407 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4408 		if (!skb) {
4409 			unsigned int frag_len = e1000_frag_len(adapter);
4410 
4411 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4412 			if (!skb) {
4413 				adapter->alloc_rx_buff_failed++;
4414 				break;
4415 			}
4416 
4417 			skb_reserve(skb, E1000_HEADROOM);
4418 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4419 					 adapter->rx_buffer_len,
4420 					 DMA_FROM_DEVICE);
4421 			buffer_info->dma = 0;
4422 			buffer_info->rxbuf.data = NULL;
4423 		}
4424 
4425 		if (++i == rx_ring->count)
4426 			i = 0;
4427 
4428 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4429 		prefetch(next_rxd);
4430 
4431 		next_buffer = &rx_ring->buffer_info[i];
4432 
4433 		cleaned = true;
4434 		cleaned_count++;
4435 
4436 		/* !EOP means multiple descriptors were used to store a single
4437 		 * packet, if thats the case we need to toss it.  In fact, we
4438 		 * to toss every packet with the EOP bit clear and the next
4439 		 * frame that _does_ have the EOP bit set, as it is by
4440 		 * definition only a frame fragment
4441 		 */
4442 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4443 			adapter->discarding = true;
4444 
4445 		if (adapter->discarding) {
4446 			/* All receives must fit into a single buffer */
4447 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4448 			dev_kfree_skb(skb);
4449 			if (status & E1000_RXD_STAT_EOP)
4450 				adapter->discarding = false;
4451 			goto next_desc;
4452 		}
4453 
4454 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4455 			if (e1000_tbi_should_accept(adapter, status,
4456 						    rx_desc->errors,
4457 						    length, data)) {
4458 				length--;
4459 			} else if (netdev->features & NETIF_F_RXALL) {
4460 				goto process_skb;
4461 			} else {
4462 				dev_kfree_skb(skb);
4463 				goto next_desc;
4464 			}
4465 		}
4466 
4467 process_skb:
4468 		total_rx_bytes += (length - 4); /* don't count FCS */
4469 		total_rx_packets++;
4470 
4471 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4472 			/* adjust length to remove Ethernet CRC, this must be
4473 			 * done after the TBI_ACCEPT workaround above
4474 			 */
4475 			length -= 4;
4476 
4477 		if (buffer_info->rxbuf.data == NULL)
4478 			skb_put(skb, length);
4479 		else /* copybreak skb */
4480 			skb_trim(skb, length);
4481 
4482 		/* Receive Checksum Offload */
4483 		e1000_rx_checksum(adapter,
4484 				  (u32)(status) |
4485 				  ((u32)(rx_desc->errors) << 24),
4486 				  le16_to_cpu(rx_desc->csum), skb);
4487 
4488 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4489 
4490 next_desc:
4491 		rx_desc->status = 0;
4492 
4493 		/* return some buffers to hardware, one at a time is too slow */
4494 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4495 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4496 			cleaned_count = 0;
4497 		}
4498 
4499 		/* use prefetched values */
4500 		rx_desc = next_rxd;
4501 		buffer_info = next_buffer;
4502 	}
4503 	rx_ring->next_to_clean = i;
4504 
4505 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4506 	if (cleaned_count)
4507 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4508 
4509 	adapter->total_rx_packets += total_rx_packets;
4510 	adapter->total_rx_bytes += total_rx_bytes;
4511 	netdev->stats.rx_bytes += total_rx_bytes;
4512 	netdev->stats.rx_packets += total_rx_packets;
4513 	return cleaned;
4514 }
4515 
4516 /**
4517  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4518  * @adapter: address of board private structure
4519  * @rx_ring: pointer to receive ring structure
4520  * @cleaned_count: number of buffers to allocate this pass
4521  **/
4522 static void
4523 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4524 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4525 {
4526 	struct pci_dev *pdev = adapter->pdev;
4527 	struct e1000_rx_desc *rx_desc;
4528 	struct e1000_rx_buffer *buffer_info;
4529 	unsigned int i;
4530 
4531 	i = rx_ring->next_to_use;
4532 	buffer_info = &rx_ring->buffer_info[i];
4533 
4534 	while (cleaned_count--) {
4535 		/* allocate a new page if necessary */
4536 		if (!buffer_info->rxbuf.page) {
4537 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4538 			if (unlikely(!buffer_info->rxbuf.page)) {
4539 				adapter->alloc_rx_buff_failed++;
4540 				break;
4541 			}
4542 		}
4543 
4544 		if (!buffer_info->dma) {
4545 			buffer_info->dma = dma_map_page(&pdev->dev,
4546 							buffer_info->rxbuf.page, 0,
4547 							adapter->rx_buffer_len,
4548 							DMA_FROM_DEVICE);
4549 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4550 				put_page(buffer_info->rxbuf.page);
4551 				buffer_info->rxbuf.page = NULL;
4552 				buffer_info->dma = 0;
4553 				adapter->alloc_rx_buff_failed++;
4554 				break;
4555 			}
4556 		}
4557 
4558 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4559 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4560 
4561 		if (unlikely(++i == rx_ring->count))
4562 			i = 0;
4563 		buffer_info = &rx_ring->buffer_info[i];
4564 	}
4565 
4566 	if (likely(rx_ring->next_to_use != i)) {
4567 		rx_ring->next_to_use = i;
4568 		if (unlikely(i-- == 0))
4569 			i = (rx_ring->count - 1);
4570 
4571 		/* Force memory writes to complete before letting h/w
4572 		 * know there are new descriptors to fetch.  (Only
4573 		 * applicable for weak-ordered memory model archs,
4574 		 * such as IA-64).
4575 		 */
4576 		wmb();
4577 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4578 	}
4579 }
4580 
4581 /**
4582  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4583  * @adapter: address of board private structure
4584  **/
4585 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4586 				   struct e1000_rx_ring *rx_ring,
4587 				   int cleaned_count)
4588 {
4589 	struct e1000_hw *hw = &adapter->hw;
4590 	struct pci_dev *pdev = adapter->pdev;
4591 	struct e1000_rx_desc *rx_desc;
4592 	struct e1000_rx_buffer *buffer_info;
4593 	unsigned int i;
4594 	unsigned int bufsz = adapter->rx_buffer_len;
4595 
4596 	i = rx_ring->next_to_use;
4597 	buffer_info = &rx_ring->buffer_info[i];
4598 
4599 	while (cleaned_count--) {
4600 		void *data;
4601 
4602 		if (buffer_info->rxbuf.data)
4603 			goto skip;
4604 
4605 		data = e1000_alloc_frag(adapter);
4606 		if (!data) {
4607 			/* Better luck next round */
4608 			adapter->alloc_rx_buff_failed++;
4609 			break;
4610 		}
4611 
4612 		/* Fix for errata 23, can't cross 64kB boundary */
4613 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4614 			void *olddata = data;
4615 			e_err(rx_err, "skb align check failed: %u bytes at "
4616 			      "%p\n", bufsz, data);
4617 			/* Try again, without freeing the previous */
4618 			data = e1000_alloc_frag(adapter);
4619 			/* Failed allocation, critical failure */
4620 			if (!data) {
4621 				skb_free_frag(olddata);
4622 				adapter->alloc_rx_buff_failed++;
4623 				break;
4624 			}
4625 
4626 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4627 				/* give up */
4628 				skb_free_frag(data);
4629 				skb_free_frag(olddata);
4630 				adapter->alloc_rx_buff_failed++;
4631 				break;
4632 			}
4633 
4634 			/* Use new allocation */
4635 			skb_free_frag(olddata);
4636 		}
4637 		buffer_info->dma = dma_map_single(&pdev->dev,
4638 						  data,
4639 						  adapter->rx_buffer_len,
4640 						  DMA_FROM_DEVICE);
4641 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4642 			skb_free_frag(data);
4643 			buffer_info->dma = 0;
4644 			adapter->alloc_rx_buff_failed++;
4645 			break;
4646 		}
4647 
4648 		/* XXX if it was allocated cleanly it will never map to a
4649 		 * boundary crossing
4650 		 */
4651 
4652 		/* Fix for errata 23, can't cross 64kB boundary */
4653 		if (!e1000_check_64k_bound(adapter,
4654 					(void *)(unsigned long)buffer_info->dma,
4655 					adapter->rx_buffer_len)) {
4656 			e_err(rx_err, "dma align check failed: %u bytes at "
4657 			      "%p\n", adapter->rx_buffer_len,
4658 			      (void *)(unsigned long)buffer_info->dma);
4659 
4660 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4661 					 adapter->rx_buffer_len,
4662 					 DMA_FROM_DEVICE);
4663 
4664 			skb_free_frag(data);
4665 			buffer_info->rxbuf.data = NULL;
4666 			buffer_info->dma = 0;
4667 
4668 			adapter->alloc_rx_buff_failed++;
4669 			break;
4670 		}
4671 		buffer_info->rxbuf.data = data;
4672  skip:
4673 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4674 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4675 
4676 		if (unlikely(++i == rx_ring->count))
4677 			i = 0;
4678 		buffer_info = &rx_ring->buffer_info[i];
4679 	}
4680 
4681 	if (likely(rx_ring->next_to_use != i)) {
4682 		rx_ring->next_to_use = i;
4683 		if (unlikely(i-- == 0))
4684 			i = (rx_ring->count - 1);
4685 
4686 		/* Force memory writes to complete before letting h/w
4687 		 * know there are new descriptors to fetch.  (Only
4688 		 * applicable for weak-ordered memory model archs,
4689 		 * such as IA-64).
4690 		 */
4691 		wmb();
4692 		writel(i, hw->hw_addr + rx_ring->rdt);
4693 	}
4694 }
4695 
4696 /**
4697  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4698  * @adapter:
4699  **/
4700 static void e1000_smartspeed(struct e1000_adapter *adapter)
4701 {
4702 	struct e1000_hw *hw = &adapter->hw;
4703 	u16 phy_status;
4704 	u16 phy_ctrl;
4705 
4706 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4707 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4708 		return;
4709 
4710 	if (adapter->smartspeed == 0) {
4711 		/* If Master/Slave config fault is asserted twice,
4712 		 * we assume back-to-back
4713 		 */
4714 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4715 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4716 			return;
4717 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719 			return;
4720 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4721 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4722 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4723 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4724 					    phy_ctrl);
4725 			adapter->smartspeed++;
4726 			if (!e1000_phy_setup_autoneg(hw) &&
4727 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4728 					       &phy_ctrl)) {
4729 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4730 					     MII_CR_RESTART_AUTO_NEG);
4731 				e1000_write_phy_reg(hw, PHY_CTRL,
4732 						    phy_ctrl);
4733 			}
4734 		}
4735 		return;
4736 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4737 		/* If still no link, perhaps using 2/3 pair cable */
4738 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4739 		phy_ctrl |= CR_1000T_MS_ENABLE;
4740 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4741 		if (!e1000_phy_setup_autoneg(hw) &&
4742 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4743 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4744 				     MII_CR_RESTART_AUTO_NEG);
4745 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4746 		}
4747 	}
4748 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4749 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4750 		adapter->smartspeed = 0;
4751 }
4752 
4753 /**
4754  * e1000_ioctl -
4755  * @netdev:
4756  * @ifreq:
4757  * @cmd:
4758  **/
4759 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4760 {
4761 	switch (cmd) {
4762 	case SIOCGMIIPHY:
4763 	case SIOCGMIIREG:
4764 	case SIOCSMIIREG:
4765 		return e1000_mii_ioctl(netdev, ifr, cmd);
4766 	default:
4767 		return -EOPNOTSUPP;
4768 	}
4769 }
4770 
4771 /**
4772  * e1000_mii_ioctl -
4773  * @netdev:
4774  * @ifreq:
4775  * @cmd:
4776  **/
4777 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4778 			   int cmd)
4779 {
4780 	struct e1000_adapter *adapter = netdev_priv(netdev);
4781 	struct e1000_hw *hw = &adapter->hw;
4782 	struct mii_ioctl_data *data = if_mii(ifr);
4783 	int retval;
4784 	u16 mii_reg;
4785 	unsigned long flags;
4786 
4787 	if (hw->media_type != e1000_media_type_copper)
4788 		return -EOPNOTSUPP;
4789 
4790 	switch (cmd) {
4791 	case SIOCGMIIPHY:
4792 		data->phy_id = hw->phy_addr;
4793 		break;
4794 	case SIOCGMIIREG:
4795 		spin_lock_irqsave(&adapter->stats_lock, flags);
4796 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4797 				   &data->val_out)) {
4798 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4799 			return -EIO;
4800 		}
4801 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802 		break;
4803 	case SIOCSMIIREG:
4804 		if (data->reg_num & ~(0x1F))
4805 			return -EFAULT;
4806 		mii_reg = data->val_in;
4807 		spin_lock_irqsave(&adapter->stats_lock, flags);
4808 		if (e1000_write_phy_reg(hw, data->reg_num,
4809 					mii_reg)) {
4810 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4811 			return -EIO;
4812 		}
4813 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814 		if (hw->media_type == e1000_media_type_copper) {
4815 			switch (data->reg_num) {
4816 			case PHY_CTRL:
4817 				if (mii_reg & MII_CR_POWER_DOWN)
4818 					break;
4819 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4820 					hw->autoneg = 1;
4821 					hw->autoneg_advertised = 0x2F;
4822 				} else {
4823 					u32 speed;
4824 					if (mii_reg & 0x40)
4825 						speed = SPEED_1000;
4826 					else if (mii_reg & 0x2000)
4827 						speed = SPEED_100;
4828 					else
4829 						speed = SPEED_10;
4830 					retval = e1000_set_spd_dplx(
4831 						adapter, speed,
4832 						((mii_reg & 0x100)
4833 						 ? DUPLEX_FULL :
4834 						 DUPLEX_HALF));
4835 					if (retval)
4836 						return retval;
4837 				}
4838 				if (netif_running(adapter->netdev))
4839 					e1000_reinit_locked(adapter);
4840 				else
4841 					e1000_reset(adapter);
4842 				break;
4843 			case M88E1000_PHY_SPEC_CTRL:
4844 			case M88E1000_EXT_PHY_SPEC_CTRL:
4845 				if (e1000_phy_reset(hw))
4846 					return -EIO;
4847 				break;
4848 			}
4849 		} else {
4850 			switch (data->reg_num) {
4851 			case PHY_CTRL:
4852 				if (mii_reg & MII_CR_POWER_DOWN)
4853 					break;
4854 				if (netif_running(adapter->netdev))
4855 					e1000_reinit_locked(adapter);
4856 				else
4857 					e1000_reset(adapter);
4858 				break;
4859 			}
4860 		}
4861 		break;
4862 	default:
4863 		return -EOPNOTSUPP;
4864 	}
4865 	return E1000_SUCCESS;
4866 }
4867 
4868 void e1000_pci_set_mwi(struct e1000_hw *hw)
4869 {
4870 	struct e1000_adapter *adapter = hw->back;
4871 	int ret_val = pci_set_mwi(adapter->pdev);
4872 
4873 	if (ret_val)
4874 		e_err(probe, "Error in setting MWI\n");
4875 }
4876 
4877 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4878 {
4879 	struct e1000_adapter *adapter = hw->back;
4880 
4881 	pci_clear_mwi(adapter->pdev);
4882 }
4883 
4884 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4885 {
4886 	struct e1000_adapter *adapter = hw->back;
4887 	return pcix_get_mmrbc(adapter->pdev);
4888 }
4889 
4890 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4891 {
4892 	struct e1000_adapter *adapter = hw->back;
4893 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4894 }
4895 
4896 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4897 {
4898 	outl(value, port);
4899 }
4900 
4901 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4902 {
4903 	u16 vid;
4904 
4905 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4906 		return true;
4907 	return false;
4908 }
4909 
4910 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4911 			      netdev_features_t features)
4912 {
4913 	struct e1000_hw *hw = &adapter->hw;
4914 	u32 ctrl;
4915 
4916 	ctrl = er32(CTRL);
4917 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4918 		/* enable VLAN tag insert/strip */
4919 		ctrl |= E1000_CTRL_VME;
4920 	} else {
4921 		/* disable VLAN tag insert/strip */
4922 		ctrl &= ~E1000_CTRL_VME;
4923 	}
4924 	ew32(CTRL, ctrl);
4925 }
4926 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4927 				     bool filter_on)
4928 {
4929 	struct e1000_hw *hw = &adapter->hw;
4930 	u32 rctl;
4931 
4932 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4933 		e1000_irq_disable(adapter);
4934 
4935 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4936 	if (filter_on) {
4937 		/* enable VLAN receive filtering */
4938 		rctl = er32(RCTL);
4939 		rctl &= ~E1000_RCTL_CFIEN;
4940 		if (!(adapter->netdev->flags & IFF_PROMISC))
4941 			rctl |= E1000_RCTL_VFE;
4942 		ew32(RCTL, rctl);
4943 		e1000_update_mng_vlan(adapter);
4944 	} else {
4945 		/* disable VLAN receive filtering */
4946 		rctl = er32(RCTL);
4947 		rctl &= ~E1000_RCTL_VFE;
4948 		ew32(RCTL, rctl);
4949 	}
4950 
4951 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4952 		e1000_irq_enable(adapter);
4953 }
4954 
4955 static void e1000_vlan_mode(struct net_device *netdev,
4956 			    netdev_features_t features)
4957 {
4958 	struct e1000_adapter *adapter = netdev_priv(netdev);
4959 
4960 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4961 		e1000_irq_disable(adapter);
4962 
4963 	__e1000_vlan_mode(adapter, features);
4964 
4965 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4966 		e1000_irq_enable(adapter);
4967 }
4968 
4969 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4970 				 __be16 proto, u16 vid)
4971 {
4972 	struct e1000_adapter *adapter = netdev_priv(netdev);
4973 	struct e1000_hw *hw = &adapter->hw;
4974 	u32 vfta, index;
4975 
4976 	if ((hw->mng_cookie.status &
4977 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4978 	    (vid == adapter->mng_vlan_id))
4979 		return 0;
4980 
4981 	if (!e1000_vlan_used(adapter))
4982 		e1000_vlan_filter_on_off(adapter, true);
4983 
4984 	/* add VID to filter table */
4985 	index = (vid >> 5) & 0x7F;
4986 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4987 	vfta |= (1 << (vid & 0x1F));
4988 	e1000_write_vfta(hw, index, vfta);
4989 
4990 	set_bit(vid, adapter->active_vlans);
4991 
4992 	return 0;
4993 }
4994 
4995 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4996 				  __be16 proto, u16 vid)
4997 {
4998 	struct e1000_adapter *adapter = netdev_priv(netdev);
4999 	struct e1000_hw *hw = &adapter->hw;
5000 	u32 vfta, index;
5001 
5002 	if (!test_bit(__E1000_DOWN, &adapter->flags))
5003 		e1000_irq_disable(adapter);
5004 	if (!test_bit(__E1000_DOWN, &adapter->flags))
5005 		e1000_irq_enable(adapter);
5006 
5007 	/* remove VID from filter table */
5008 	index = (vid >> 5) & 0x7F;
5009 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5010 	vfta &= ~(1 << (vid & 0x1F));
5011 	e1000_write_vfta(hw, index, vfta);
5012 
5013 	clear_bit(vid, adapter->active_vlans);
5014 
5015 	if (!e1000_vlan_used(adapter))
5016 		e1000_vlan_filter_on_off(adapter, false);
5017 
5018 	return 0;
5019 }
5020 
5021 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5022 {
5023 	u16 vid;
5024 
5025 	if (!e1000_vlan_used(adapter))
5026 		return;
5027 
5028 	e1000_vlan_filter_on_off(adapter, true);
5029 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5030 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5031 }
5032 
5033 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5034 {
5035 	struct e1000_hw *hw = &adapter->hw;
5036 
5037 	hw->autoneg = 0;
5038 
5039 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5040 	 * for the switch() below to work
5041 	 */
5042 	if ((spd & 1) || (dplx & ~1))
5043 		goto err_inval;
5044 
5045 	/* Fiber NICs only allow 1000 gbps Full duplex */
5046 	if ((hw->media_type == e1000_media_type_fiber) &&
5047 	    spd != SPEED_1000 &&
5048 	    dplx != DUPLEX_FULL)
5049 		goto err_inval;
5050 
5051 	switch (spd + dplx) {
5052 	case SPEED_10 + DUPLEX_HALF:
5053 		hw->forced_speed_duplex = e1000_10_half;
5054 		break;
5055 	case SPEED_10 + DUPLEX_FULL:
5056 		hw->forced_speed_duplex = e1000_10_full;
5057 		break;
5058 	case SPEED_100 + DUPLEX_HALF:
5059 		hw->forced_speed_duplex = e1000_100_half;
5060 		break;
5061 	case SPEED_100 + DUPLEX_FULL:
5062 		hw->forced_speed_duplex = e1000_100_full;
5063 		break;
5064 	case SPEED_1000 + DUPLEX_FULL:
5065 		hw->autoneg = 1;
5066 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5067 		break;
5068 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5069 	default:
5070 		goto err_inval;
5071 	}
5072 
5073 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5074 	hw->mdix = AUTO_ALL_MODES;
5075 
5076 	return 0;
5077 
5078 err_inval:
5079 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5080 	return -EINVAL;
5081 }
5082 
5083 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5084 {
5085 	struct net_device *netdev = pci_get_drvdata(pdev);
5086 	struct e1000_adapter *adapter = netdev_priv(netdev);
5087 	struct e1000_hw *hw = &adapter->hw;
5088 	u32 ctrl, ctrl_ext, rctl, status;
5089 	u32 wufc = adapter->wol;
5090 #ifdef CONFIG_PM
5091 	int retval = 0;
5092 #endif
5093 
5094 	netif_device_detach(netdev);
5095 
5096 	if (netif_running(netdev)) {
5097 		int count = E1000_CHECK_RESET_COUNT;
5098 
5099 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5100 			usleep_range(10000, 20000);
5101 
5102 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5103 		e1000_down(adapter);
5104 	}
5105 
5106 #ifdef CONFIG_PM
5107 	retval = pci_save_state(pdev);
5108 	if (retval)
5109 		return retval;
5110 #endif
5111 
5112 	status = er32(STATUS);
5113 	if (status & E1000_STATUS_LU)
5114 		wufc &= ~E1000_WUFC_LNKC;
5115 
5116 	if (wufc) {
5117 		e1000_setup_rctl(adapter);
5118 		e1000_set_rx_mode(netdev);
5119 
5120 		rctl = er32(RCTL);
5121 
5122 		/* turn on all-multi mode if wake on multicast is enabled */
5123 		if (wufc & E1000_WUFC_MC)
5124 			rctl |= E1000_RCTL_MPE;
5125 
5126 		/* enable receives in the hardware */
5127 		ew32(RCTL, rctl | E1000_RCTL_EN);
5128 
5129 		if (hw->mac_type >= e1000_82540) {
5130 			ctrl = er32(CTRL);
5131 			/* advertise wake from D3Cold */
5132 			#define E1000_CTRL_ADVD3WUC 0x00100000
5133 			/* phy power management enable */
5134 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5135 			ctrl |= E1000_CTRL_ADVD3WUC |
5136 				E1000_CTRL_EN_PHY_PWR_MGMT;
5137 			ew32(CTRL, ctrl);
5138 		}
5139 
5140 		if (hw->media_type == e1000_media_type_fiber ||
5141 		    hw->media_type == e1000_media_type_internal_serdes) {
5142 			/* keep the laser running in D3 */
5143 			ctrl_ext = er32(CTRL_EXT);
5144 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5145 			ew32(CTRL_EXT, ctrl_ext);
5146 		}
5147 
5148 		ew32(WUC, E1000_WUC_PME_EN);
5149 		ew32(WUFC, wufc);
5150 	} else {
5151 		ew32(WUC, 0);
5152 		ew32(WUFC, 0);
5153 	}
5154 
5155 	e1000_release_manageability(adapter);
5156 
5157 	*enable_wake = !!wufc;
5158 
5159 	/* make sure adapter isn't asleep if manageability is enabled */
5160 	if (adapter->en_mng_pt)
5161 		*enable_wake = true;
5162 
5163 	if (netif_running(netdev))
5164 		e1000_free_irq(adapter);
5165 
5166 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5167 		pci_disable_device(pdev);
5168 
5169 	return 0;
5170 }
5171 
5172 #ifdef CONFIG_PM
5173 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5174 {
5175 	int retval;
5176 	bool wake;
5177 
5178 	retval = __e1000_shutdown(pdev, &wake);
5179 	if (retval)
5180 		return retval;
5181 
5182 	if (wake) {
5183 		pci_prepare_to_sleep(pdev);
5184 	} else {
5185 		pci_wake_from_d3(pdev, false);
5186 		pci_set_power_state(pdev, PCI_D3hot);
5187 	}
5188 
5189 	return 0;
5190 }
5191 
5192 static int e1000_resume(struct pci_dev *pdev)
5193 {
5194 	struct net_device *netdev = pci_get_drvdata(pdev);
5195 	struct e1000_adapter *adapter = netdev_priv(netdev);
5196 	struct e1000_hw *hw = &adapter->hw;
5197 	u32 err;
5198 
5199 	pci_set_power_state(pdev, PCI_D0);
5200 	pci_restore_state(pdev);
5201 	pci_save_state(pdev);
5202 
5203 	if (adapter->need_ioport)
5204 		err = pci_enable_device(pdev);
5205 	else
5206 		err = pci_enable_device_mem(pdev);
5207 	if (err) {
5208 		pr_err("Cannot enable PCI device from suspend\n");
5209 		return err;
5210 	}
5211 
5212 	/* flush memory to make sure state is correct */
5213 	smp_mb__before_atomic();
5214 	clear_bit(__E1000_DISABLED, &adapter->flags);
5215 	pci_set_master(pdev);
5216 
5217 	pci_enable_wake(pdev, PCI_D3hot, 0);
5218 	pci_enable_wake(pdev, PCI_D3cold, 0);
5219 
5220 	if (netif_running(netdev)) {
5221 		err = e1000_request_irq(adapter);
5222 		if (err)
5223 			return err;
5224 	}
5225 
5226 	e1000_power_up_phy(adapter);
5227 	e1000_reset(adapter);
5228 	ew32(WUS, ~0);
5229 
5230 	e1000_init_manageability(adapter);
5231 
5232 	if (netif_running(netdev))
5233 		e1000_up(adapter);
5234 
5235 	netif_device_attach(netdev);
5236 
5237 	return 0;
5238 }
5239 #endif
5240 
5241 static void e1000_shutdown(struct pci_dev *pdev)
5242 {
5243 	bool wake;
5244 
5245 	__e1000_shutdown(pdev, &wake);
5246 
5247 	if (system_state == SYSTEM_POWER_OFF) {
5248 		pci_wake_from_d3(pdev, wake);
5249 		pci_set_power_state(pdev, PCI_D3hot);
5250 	}
5251 }
5252 
5253 #ifdef CONFIG_NET_POLL_CONTROLLER
5254 /* Polling 'interrupt' - used by things like netconsole to send skbs
5255  * without having to re-enable interrupts. It's not called while
5256  * the interrupt routine is executing.
5257  */
5258 static void e1000_netpoll(struct net_device *netdev)
5259 {
5260 	struct e1000_adapter *adapter = netdev_priv(netdev);
5261 
5262 	if (disable_hardirq(adapter->pdev->irq))
5263 		e1000_intr(adapter->pdev->irq, netdev);
5264 	enable_irq(adapter->pdev->irq);
5265 }
5266 #endif
5267 
5268 /**
5269  * e1000_io_error_detected - called when PCI error is detected
5270  * @pdev: Pointer to PCI device
5271  * @state: The current pci connection state
5272  *
5273  * This function is called after a PCI bus error affecting
5274  * this device has been detected.
5275  */
5276 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5277 						pci_channel_state_t state)
5278 {
5279 	struct net_device *netdev = pci_get_drvdata(pdev);
5280 	struct e1000_adapter *adapter = netdev_priv(netdev);
5281 
5282 	netif_device_detach(netdev);
5283 
5284 	if (state == pci_channel_io_perm_failure)
5285 		return PCI_ERS_RESULT_DISCONNECT;
5286 
5287 	if (netif_running(netdev))
5288 		e1000_down(adapter);
5289 
5290 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5291 		pci_disable_device(pdev);
5292 
5293 	/* Request a slot slot reset. */
5294 	return PCI_ERS_RESULT_NEED_RESET;
5295 }
5296 
5297 /**
5298  * e1000_io_slot_reset - called after the pci bus has been reset.
5299  * @pdev: Pointer to PCI device
5300  *
5301  * Restart the card from scratch, as if from a cold-boot. Implementation
5302  * resembles the first-half of the e1000_resume routine.
5303  */
5304 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5305 {
5306 	struct net_device *netdev = pci_get_drvdata(pdev);
5307 	struct e1000_adapter *adapter = netdev_priv(netdev);
5308 	struct e1000_hw *hw = &adapter->hw;
5309 	int err;
5310 
5311 	if (adapter->need_ioport)
5312 		err = pci_enable_device(pdev);
5313 	else
5314 		err = pci_enable_device_mem(pdev);
5315 	if (err) {
5316 		pr_err("Cannot re-enable PCI device after reset.\n");
5317 		return PCI_ERS_RESULT_DISCONNECT;
5318 	}
5319 
5320 	/* flush memory to make sure state is correct */
5321 	smp_mb__before_atomic();
5322 	clear_bit(__E1000_DISABLED, &adapter->flags);
5323 	pci_set_master(pdev);
5324 
5325 	pci_enable_wake(pdev, PCI_D3hot, 0);
5326 	pci_enable_wake(pdev, PCI_D3cold, 0);
5327 
5328 	e1000_reset(adapter);
5329 	ew32(WUS, ~0);
5330 
5331 	return PCI_ERS_RESULT_RECOVERED;
5332 }
5333 
5334 /**
5335  * e1000_io_resume - called when traffic can start flowing again.
5336  * @pdev: Pointer to PCI device
5337  *
5338  * This callback is called when the error recovery driver tells us that
5339  * its OK to resume normal operation. Implementation resembles the
5340  * second-half of the e1000_resume routine.
5341  */
5342 static void e1000_io_resume(struct pci_dev *pdev)
5343 {
5344 	struct net_device *netdev = pci_get_drvdata(pdev);
5345 	struct e1000_adapter *adapter = netdev_priv(netdev);
5346 
5347 	e1000_init_manageability(adapter);
5348 
5349 	if (netif_running(netdev)) {
5350 		if (e1000_up(adapter)) {
5351 			pr_info("can't bring device back up after reset\n");
5352 			return;
5353 		}
5354 	}
5355 
5356 	netif_device_attach(netdev);
5357 }
5358 
5359 /* e1000_main.c */
5360