1 // SPDX-License-Identifier: GPL-2.0 2 /******************************************************************************* 3 4 Intel PRO/1000 Linux driver 5 Copyright(c) 1999 - 2006 Intel Corporation. 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, write to the Free Software Foundation, Inc., 18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 19 20 The full GNU General Public License is included in this distribution in 21 the file called "COPYING". 22 23 Contact Information: 24 Linux NICS <linux.nics@intel.com> 25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 27 28 *******************************************************************************/ 29 30 #include "e1000.h" 31 #include <net/ip6_checksum.h> 32 #include <linux/io.h> 33 #include <linux/prefetch.h> 34 #include <linux/bitops.h> 35 #include <linux/if_vlan.h> 36 37 char e1000_driver_name[] = "e1000"; 38 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 39 #define DRV_VERSION "7.3.21-k8-NAPI" 40 const char e1000_driver_version[] = DRV_VERSION; 41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 42 43 /* e1000_pci_tbl - PCI Device ID Table 44 * 45 * Last entry must be all 0s 46 * 47 * Macro expands to... 48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 49 */ 50 static const struct pci_device_id e1000_pci_tbl[] = { 51 INTEL_E1000_ETHERNET_DEVICE(0x1000), 52 INTEL_E1000_ETHERNET_DEVICE(0x1001), 53 INTEL_E1000_ETHERNET_DEVICE(0x1004), 54 INTEL_E1000_ETHERNET_DEVICE(0x1008), 55 INTEL_E1000_ETHERNET_DEVICE(0x1009), 56 INTEL_E1000_ETHERNET_DEVICE(0x100C), 57 INTEL_E1000_ETHERNET_DEVICE(0x100D), 58 INTEL_E1000_ETHERNET_DEVICE(0x100E), 59 INTEL_E1000_ETHERNET_DEVICE(0x100F), 60 INTEL_E1000_ETHERNET_DEVICE(0x1010), 61 INTEL_E1000_ETHERNET_DEVICE(0x1011), 62 INTEL_E1000_ETHERNET_DEVICE(0x1012), 63 INTEL_E1000_ETHERNET_DEVICE(0x1013), 64 INTEL_E1000_ETHERNET_DEVICE(0x1014), 65 INTEL_E1000_ETHERNET_DEVICE(0x1015), 66 INTEL_E1000_ETHERNET_DEVICE(0x1016), 67 INTEL_E1000_ETHERNET_DEVICE(0x1017), 68 INTEL_E1000_ETHERNET_DEVICE(0x1018), 69 INTEL_E1000_ETHERNET_DEVICE(0x1019), 70 INTEL_E1000_ETHERNET_DEVICE(0x101A), 71 INTEL_E1000_ETHERNET_DEVICE(0x101D), 72 INTEL_E1000_ETHERNET_DEVICE(0x101E), 73 INTEL_E1000_ETHERNET_DEVICE(0x1026), 74 INTEL_E1000_ETHERNET_DEVICE(0x1027), 75 INTEL_E1000_ETHERNET_DEVICE(0x1028), 76 INTEL_E1000_ETHERNET_DEVICE(0x1075), 77 INTEL_E1000_ETHERNET_DEVICE(0x1076), 78 INTEL_E1000_ETHERNET_DEVICE(0x1077), 79 INTEL_E1000_ETHERNET_DEVICE(0x1078), 80 INTEL_E1000_ETHERNET_DEVICE(0x1079), 81 INTEL_E1000_ETHERNET_DEVICE(0x107A), 82 INTEL_E1000_ETHERNET_DEVICE(0x107B), 83 INTEL_E1000_ETHERNET_DEVICE(0x107C), 84 INTEL_E1000_ETHERNET_DEVICE(0x108A), 85 INTEL_E1000_ETHERNET_DEVICE(0x1099), 86 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 87 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 88 /* required last entry */ 89 {0,} 90 }; 91 92 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 93 94 int e1000_up(struct e1000_adapter *adapter); 95 void e1000_down(struct e1000_adapter *adapter); 96 void e1000_reinit_locked(struct e1000_adapter *adapter); 97 void e1000_reset(struct e1000_adapter *adapter); 98 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 99 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 100 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 101 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 102 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 103 struct e1000_tx_ring *txdr); 104 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 105 struct e1000_rx_ring *rxdr); 106 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 107 struct e1000_tx_ring *tx_ring); 108 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 109 struct e1000_rx_ring *rx_ring); 110 void e1000_update_stats(struct e1000_adapter *adapter); 111 112 static int e1000_init_module(void); 113 static void e1000_exit_module(void); 114 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 115 static void e1000_remove(struct pci_dev *pdev); 116 static int e1000_alloc_queues(struct e1000_adapter *adapter); 117 static int e1000_sw_init(struct e1000_adapter *adapter); 118 int e1000_open(struct net_device *netdev); 119 int e1000_close(struct net_device *netdev); 120 static void e1000_configure_tx(struct e1000_adapter *adapter); 121 static void e1000_configure_rx(struct e1000_adapter *adapter); 122 static void e1000_setup_rctl(struct e1000_adapter *adapter); 123 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 124 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 125 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 126 struct e1000_tx_ring *tx_ring); 127 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 128 struct e1000_rx_ring *rx_ring); 129 static void e1000_set_rx_mode(struct net_device *netdev); 130 static void e1000_update_phy_info_task(struct work_struct *work); 131 static void e1000_watchdog(struct work_struct *work); 132 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 133 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 134 struct net_device *netdev); 135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 136 static int e1000_set_mac(struct net_device *netdev, void *p); 137 static irqreturn_t e1000_intr(int irq, void *data); 138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 139 struct e1000_tx_ring *tx_ring); 140 static int e1000_clean(struct napi_struct *napi, int budget); 141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 142 struct e1000_rx_ring *rx_ring, 143 int *work_done, int work_to_do); 144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 145 struct e1000_rx_ring *rx_ring, 146 int *work_done, int work_to_do); 147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, 148 struct e1000_rx_ring *rx_ring, 149 int cleaned_count) 150 { 151 } 152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 153 struct e1000_rx_ring *rx_ring, 154 int cleaned_count); 155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 156 struct e1000_rx_ring *rx_ring, 157 int cleaned_count); 158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 160 int cmd); 161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 163 static void e1000_tx_timeout(struct net_device *dev); 164 static void e1000_reset_task(struct work_struct *work); 165 static void e1000_smartspeed(struct e1000_adapter *adapter); 166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 167 struct sk_buff *skb); 168 169 static bool e1000_vlan_used(struct e1000_adapter *adapter); 170 static void e1000_vlan_mode(struct net_device *netdev, 171 netdev_features_t features); 172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 173 bool filter_on); 174 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 175 __be16 proto, u16 vid); 176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 177 __be16 proto, u16 vid); 178 static void e1000_restore_vlan(struct e1000_adapter *adapter); 179 180 #ifdef CONFIG_PM 181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 182 static int e1000_resume(struct pci_dev *pdev); 183 #endif 184 static void e1000_shutdown(struct pci_dev *pdev); 185 186 #ifdef CONFIG_NET_POLL_CONTROLLER 187 /* for netdump / net console */ 188 static void e1000_netpoll (struct net_device *netdev); 189 #endif 190 191 #define COPYBREAK_DEFAULT 256 192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 193 module_param(copybreak, uint, 0644); 194 MODULE_PARM_DESC(copybreak, 195 "Maximum size of packet that is copied to a new buffer on receive"); 196 197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 198 pci_channel_state_t state); 199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 200 static void e1000_io_resume(struct pci_dev *pdev); 201 202 static const struct pci_error_handlers e1000_err_handler = { 203 .error_detected = e1000_io_error_detected, 204 .slot_reset = e1000_io_slot_reset, 205 .resume = e1000_io_resume, 206 }; 207 208 static struct pci_driver e1000_driver = { 209 .name = e1000_driver_name, 210 .id_table = e1000_pci_tbl, 211 .probe = e1000_probe, 212 .remove = e1000_remove, 213 #ifdef CONFIG_PM 214 /* Power Management Hooks */ 215 .suspend = e1000_suspend, 216 .resume = e1000_resume, 217 #endif 218 .shutdown = e1000_shutdown, 219 .err_handler = &e1000_err_handler 220 }; 221 222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 224 MODULE_LICENSE("GPL"); 225 MODULE_VERSION(DRV_VERSION); 226 227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 228 static int debug = -1; 229 module_param(debug, int, 0); 230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 231 232 /** 233 * e1000_get_hw_dev - return device 234 * used by hardware layer to print debugging information 235 * 236 **/ 237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 238 { 239 struct e1000_adapter *adapter = hw->back; 240 return adapter->netdev; 241 } 242 243 /** 244 * e1000_init_module - Driver Registration Routine 245 * 246 * e1000_init_module is the first routine called when the driver is 247 * loaded. All it does is register with the PCI subsystem. 248 **/ 249 static int __init e1000_init_module(void) 250 { 251 int ret; 252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); 253 254 pr_info("%s\n", e1000_copyright); 255 256 ret = pci_register_driver(&e1000_driver); 257 if (copybreak != COPYBREAK_DEFAULT) { 258 if (copybreak == 0) 259 pr_info("copybreak disabled\n"); 260 else 261 pr_info("copybreak enabled for " 262 "packets <= %u bytes\n", copybreak); 263 } 264 return ret; 265 } 266 267 module_init(e1000_init_module); 268 269 /** 270 * e1000_exit_module - Driver Exit Cleanup Routine 271 * 272 * e1000_exit_module is called just before the driver is removed 273 * from memory. 274 **/ 275 static void __exit e1000_exit_module(void) 276 { 277 pci_unregister_driver(&e1000_driver); 278 } 279 280 module_exit(e1000_exit_module); 281 282 static int e1000_request_irq(struct e1000_adapter *adapter) 283 { 284 struct net_device *netdev = adapter->netdev; 285 irq_handler_t handler = e1000_intr; 286 int irq_flags = IRQF_SHARED; 287 int err; 288 289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 290 netdev); 291 if (err) { 292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 293 } 294 295 return err; 296 } 297 298 static void e1000_free_irq(struct e1000_adapter *adapter) 299 { 300 struct net_device *netdev = adapter->netdev; 301 302 free_irq(adapter->pdev->irq, netdev); 303 } 304 305 /** 306 * e1000_irq_disable - Mask off interrupt generation on the NIC 307 * @adapter: board private structure 308 **/ 309 static void e1000_irq_disable(struct e1000_adapter *adapter) 310 { 311 struct e1000_hw *hw = &adapter->hw; 312 313 ew32(IMC, ~0); 314 E1000_WRITE_FLUSH(); 315 synchronize_irq(adapter->pdev->irq); 316 } 317 318 /** 319 * e1000_irq_enable - Enable default interrupt generation settings 320 * @adapter: board private structure 321 **/ 322 static void e1000_irq_enable(struct e1000_adapter *adapter) 323 { 324 struct e1000_hw *hw = &adapter->hw; 325 326 ew32(IMS, IMS_ENABLE_MASK); 327 E1000_WRITE_FLUSH(); 328 } 329 330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 331 { 332 struct e1000_hw *hw = &adapter->hw; 333 struct net_device *netdev = adapter->netdev; 334 u16 vid = hw->mng_cookie.vlan_id; 335 u16 old_vid = adapter->mng_vlan_id; 336 337 if (!e1000_vlan_used(adapter)) 338 return; 339 340 if (!test_bit(vid, adapter->active_vlans)) { 341 if (hw->mng_cookie.status & 342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 344 adapter->mng_vlan_id = vid; 345 } else { 346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 347 } 348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 349 (vid != old_vid) && 350 !test_bit(old_vid, adapter->active_vlans)) 351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 352 old_vid); 353 } else { 354 adapter->mng_vlan_id = vid; 355 } 356 } 357 358 static void e1000_init_manageability(struct e1000_adapter *adapter) 359 { 360 struct e1000_hw *hw = &adapter->hw; 361 362 if (adapter->en_mng_pt) { 363 u32 manc = er32(MANC); 364 365 /* disable hardware interception of ARP */ 366 manc &= ~(E1000_MANC_ARP_EN); 367 368 ew32(MANC, manc); 369 } 370 } 371 372 static void e1000_release_manageability(struct e1000_adapter *adapter) 373 { 374 struct e1000_hw *hw = &adapter->hw; 375 376 if (adapter->en_mng_pt) { 377 u32 manc = er32(MANC); 378 379 /* re-enable hardware interception of ARP */ 380 manc |= E1000_MANC_ARP_EN; 381 382 ew32(MANC, manc); 383 } 384 } 385 386 /** 387 * e1000_configure - configure the hardware for RX and TX 388 * @adapter = private board structure 389 **/ 390 static void e1000_configure(struct e1000_adapter *adapter) 391 { 392 struct net_device *netdev = adapter->netdev; 393 int i; 394 395 e1000_set_rx_mode(netdev); 396 397 e1000_restore_vlan(adapter); 398 e1000_init_manageability(adapter); 399 400 e1000_configure_tx(adapter); 401 e1000_setup_rctl(adapter); 402 e1000_configure_rx(adapter); 403 /* call E1000_DESC_UNUSED which always leaves 404 * at least 1 descriptor unused to make sure 405 * next_to_use != next_to_clean 406 */ 407 for (i = 0; i < adapter->num_rx_queues; i++) { 408 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 409 adapter->alloc_rx_buf(adapter, ring, 410 E1000_DESC_UNUSED(ring)); 411 } 412 } 413 414 int e1000_up(struct e1000_adapter *adapter) 415 { 416 struct e1000_hw *hw = &adapter->hw; 417 418 /* hardware has been reset, we need to reload some things */ 419 e1000_configure(adapter); 420 421 clear_bit(__E1000_DOWN, &adapter->flags); 422 423 napi_enable(&adapter->napi); 424 425 e1000_irq_enable(adapter); 426 427 netif_wake_queue(adapter->netdev); 428 429 /* fire a link change interrupt to start the watchdog */ 430 ew32(ICS, E1000_ICS_LSC); 431 return 0; 432 } 433 434 /** 435 * e1000_power_up_phy - restore link in case the phy was powered down 436 * @adapter: address of board private structure 437 * 438 * The phy may be powered down to save power and turn off link when the 439 * driver is unloaded and wake on lan is not enabled (among others) 440 * *** this routine MUST be followed by a call to e1000_reset *** 441 **/ 442 void e1000_power_up_phy(struct e1000_adapter *adapter) 443 { 444 struct e1000_hw *hw = &adapter->hw; 445 u16 mii_reg = 0; 446 447 /* Just clear the power down bit to wake the phy back up */ 448 if (hw->media_type == e1000_media_type_copper) { 449 /* according to the manual, the phy will retain its 450 * settings across a power-down/up cycle 451 */ 452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 453 mii_reg &= ~MII_CR_POWER_DOWN; 454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 455 } 456 } 457 458 static void e1000_power_down_phy(struct e1000_adapter *adapter) 459 { 460 struct e1000_hw *hw = &adapter->hw; 461 462 /* Power down the PHY so no link is implied when interface is down * 463 * The PHY cannot be powered down if any of the following is true * 464 * (a) WoL is enabled 465 * (b) AMT is active 466 * (c) SoL/IDER session is active 467 */ 468 if (!adapter->wol && hw->mac_type >= e1000_82540 && 469 hw->media_type == e1000_media_type_copper) { 470 u16 mii_reg = 0; 471 472 switch (hw->mac_type) { 473 case e1000_82540: 474 case e1000_82545: 475 case e1000_82545_rev_3: 476 case e1000_82546: 477 case e1000_ce4100: 478 case e1000_82546_rev_3: 479 case e1000_82541: 480 case e1000_82541_rev_2: 481 case e1000_82547: 482 case e1000_82547_rev_2: 483 if (er32(MANC) & E1000_MANC_SMBUS_EN) 484 goto out; 485 break; 486 default: 487 goto out; 488 } 489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 490 mii_reg |= MII_CR_POWER_DOWN; 491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 492 msleep(1); 493 } 494 out: 495 return; 496 } 497 498 static void e1000_down_and_stop(struct e1000_adapter *adapter) 499 { 500 set_bit(__E1000_DOWN, &adapter->flags); 501 502 cancel_delayed_work_sync(&adapter->watchdog_task); 503 504 /* 505 * Since the watchdog task can reschedule other tasks, we should cancel 506 * it first, otherwise we can run into the situation when a work is 507 * still running after the adapter has been turned down. 508 */ 509 510 cancel_delayed_work_sync(&adapter->phy_info_task); 511 cancel_delayed_work_sync(&adapter->fifo_stall_task); 512 513 /* Only kill reset task if adapter is not resetting */ 514 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 515 cancel_work_sync(&adapter->reset_task); 516 } 517 518 void e1000_down(struct e1000_adapter *adapter) 519 { 520 struct e1000_hw *hw = &adapter->hw; 521 struct net_device *netdev = adapter->netdev; 522 u32 rctl, tctl; 523 524 /* disable receives in the hardware */ 525 rctl = er32(RCTL); 526 ew32(RCTL, rctl & ~E1000_RCTL_EN); 527 /* flush and sleep below */ 528 529 netif_tx_disable(netdev); 530 531 /* disable transmits in the hardware */ 532 tctl = er32(TCTL); 533 tctl &= ~E1000_TCTL_EN; 534 ew32(TCTL, tctl); 535 /* flush both disables and wait for them to finish */ 536 E1000_WRITE_FLUSH(); 537 msleep(10); 538 539 /* Set the carrier off after transmits have been disabled in the 540 * hardware, to avoid race conditions with e1000_watchdog() (which 541 * may be running concurrently to us, checking for the carrier 542 * bit to decide whether it should enable transmits again). Such 543 * a race condition would result into transmission being disabled 544 * in the hardware until the next IFF_DOWN+IFF_UP cycle. 545 */ 546 netif_carrier_off(netdev); 547 548 napi_disable(&adapter->napi); 549 550 e1000_irq_disable(adapter); 551 552 /* Setting DOWN must be after irq_disable to prevent 553 * a screaming interrupt. Setting DOWN also prevents 554 * tasks from rescheduling. 555 */ 556 e1000_down_and_stop(adapter); 557 558 adapter->link_speed = 0; 559 adapter->link_duplex = 0; 560 561 e1000_reset(adapter); 562 e1000_clean_all_tx_rings(adapter); 563 e1000_clean_all_rx_rings(adapter); 564 } 565 566 void e1000_reinit_locked(struct e1000_adapter *adapter) 567 { 568 WARN_ON(in_interrupt()); 569 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 570 msleep(1); 571 e1000_down(adapter); 572 e1000_up(adapter); 573 clear_bit(__E1000_RESETTING, &adapter->flags); 574 } 575 576 void e1000_reset(struct e1000_adapter *adapter) 577 { 578 struct e1000_hw *hw = &adapter->hw; 579 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 580 bool legacy_pba_adjust = false; 581 u16 hwm; 582 583 /* Repartition Pba for greater than 9k mtu 584 * To take effect CTRL.RST is required. 585 */ 586 587 switch (hw->mac_type) { 588 case e1000_82542_rev2_0: 589 case e1000_82542_rev2_1: 590 case e1000_82543: 591 case e1000_82544: 592 case e1000_82540: 593 case e1000_82541: 594 case e1000_82541_rev_2: 595 legacy_pba_adjust = true; 596 pba = E1000_PBA_48K; 597 break; 598 case e1000_82545: 599 case e1000_82545_rev_3: 600 case e1000_82546: 601 case e1000_ce4100: 602 case e1000_82546_rev_3: 603 pba = E1000_PBA_48K; 604 break; 605 case e1000_82547: 606 case e1000_82547_rev_2: 607 legacy_pba_adjust = true; 608 pba = E1000_PBA_30K; 609 break; 610 case e1000_undefined: 611 case e1000_num_macs: 612 break; 613 } 614 615 if (legacy_pba_adjust) { 616 if (hw->max_frame_size > E1000_RXBUFFER_8192) 617 pba -= 8; /* allocate more FIFO for Tx */ 618 619 if (hw->mac_type == e1000_82547) { 620 adapter->tx_fifo_head = 0; 621 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 622 adapter->tx_fifo_size = 623 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 624 atomic_set(&adapter->tx_fifo_stall, 0); 625 } 626 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 627 /* adjust PBA for jumbo frames */ 628 ew32(PBA, pba); 629 630 /* To maintain wire speed transmits, the Tx FIFO should be 631 * large enough to accommodate two full transmit packets, 632 * rounded up to the next 1KB and expressed in KB. Likewise, 633 * the Rx FIFO should be large enough to accommodate at least 634 * one full receive packet and is similarly rounded up and 635 * expressed in KB. 636 */ 637 pba = er32(PBA); 638 /* upper 16 bits has Tx packet buffer allocation size in KB */ 639 tx_space = pba >> 16; 640 /* lower 16 bits has Rx packet buffer allocation size in KB */ 641 pba &= 0xffff; 642 /* the Tx fifo also stores 16 bytes of information about the Tx 643 * but don't include ethernet FCS because hardware appends it 644 */ 645 min_tx_space = (hw->max_frame_size + 646 sizeof(struct e1000_tx_desc) - 647 ETH_FCS_LEN) * 2; 648 min_tx_space = ALIGN(min_tx_space, 1024); 649 min_tx_space >>= 10; 650 /* software strips receive CRC, so leave room for it */ 651 min_rx_space = hw->max_frame_size; 652 min_rx_space = ALIGN(min_rx_space, 1024); 653 min_rx_space >>= 10; 654 655 /* If current Tx allocation is less than the min Tx FIFO size, 656 * and the min Tx FIFO size is less than the current Rx FIFO 657 * allocation, take space away from current Rx allocation 658 */ 659 if (tx_space < min_tx_space && 660 ((min_tx_space - tx_space) < pba)) { 661 pba = pba - (min_tx_space - tx_space); 662 663 /* PCI/PCIx hardware has PBA alignment constraints */ 664 switch (hw->mac_type) { 665 case e1000_82545 ... e1000_82546_rev_3: 666 pba &= ~(E1000_PBA_8K - 1); 667 break; 668 default: 669 break; 670 } 671 672 /* if short on Rx space, Rx wins and must trump Tx 673 * adjustment or use Early Receive if available 674 */ 675 if (pba < min_rx_space) 676 pba = min_rx_space; 677 } 678 } 679 680 ew32(PBA, pba); 681 682 /* flow control settings: 683 * The high water mark must be low enough to fit one full frame 684 * (or the size used for early receive) above it in the Rx FIFO. 685 * Set it to the lower of: 686 * - 90% of the Rx FIFO size, and 687 * - the full Rx FIFO size minus the early receive size (for parts 688 * with ERT support assuming ERT set to E1000_ERT_2048), or 689 * - the full Rx FIFO size minus one full frame 690 */ 691 hwm = min(((pba << 10) * 9 / 10), 692 ((pba << 10) - hw->max_frame_size)); 693 694 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 695 hw->fc_low_water = hw->fc_high_water - 8; 696 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 697 hw->fc_send_xon = 1; 698 hw->fc = hw->original_fc; 699 700 /* Allow time for pending master requests to run */ 701 e1000_reset_hw(hw); 702 if (hw->mac_type >= e1000_82544) 703 ew32(WUC, 0); 704 705 if (e1000_init_hw(hw)) 706 e_dev_err("Hardware Error\n"); 707 e1000_update_mng_vlan(adapter); 708 709 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 710 if (hw->mac_type >= e1000_82544 && 711 hw->autoneg == 1 && 712 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 713 u32 ctrl = er32(CTRL); 714 /* clear phy power management bit if we are in gig only mode, 715 * which if enabled will attempt negotiation to 100Mb, which 716 * can cause a loss of link at power off or driver unload 717 */ 718 ctrl &= ~E1000_CTRL_SWDPIN3; 719 ew32(CTRL, ctrl); 720 } 721 722 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 723 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 724 725 e1000_reset_adaptive(hw); 726 e1000_phy_get_info(hw, &adapter->phy_info); 727 728 e1000_release_manageability(adapter); 729 } 730 731 /* Dump the eeprom for users having checksum issues */ 732 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 733 { 734 struct net_device *netdev = adapter->netdev; 735 struct ethtool_eeprom eeprom; 736 const struct ethtool_ops *ops = netdev->ethtool_ops; 737 u8 *data; 738 int i; 739 u16 csum_old, csum_new = 0; 740 741 eeprom.len = ops->get_eeprom_len(netdev); 742 eeprom.offset = 0; 743 744 data = kmalloc(eeprom.len, GFP_KERNEL); 745 if (!data) 746 return; 747 748 ops->get_eeprom(netdev, &eeprom, data); 749 750 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 751 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 752 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 753 csum_new += data[i] + (data[i + 1] << 8); 754 csum_new = EEPROM_SUM - csum_new; 755 756 pr_err("/*********************/\n"); 757 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 758 pr_err("Calculated : 0x%04x\n", csum_new); 759 760 pr_err("Offset Values\n"); 761 pr_err("======== ======\n"); 762 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 763 764 pr_err("Include this output when contacting your support provider.\n"); 765 pr_err("This is not a software error! Something bad happened to\n"); 766 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 767 pr_err("result in further problems, possibly loss of data,\n"); 768 pr_err("corruption or system hangs!\n"); 769 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 770 pr_err("which is invalid and requires you to set the proper MAC\n"); 771 pr_err("address manually before continuing to enable this network\n"); 772 pr_err("device. Please inspect the EEPROM dump and report the\n"); 773 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 774 pr_err("/*********************/\n"); 775 776 kfree(data); 777 } 778 779 /** 780 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 781 * @pdev: PCI device information struct 782 * 783 * Return true if an adapter needs ioport resources 784 **/ 785 static int e1000_is_need_ioport(struct pci_dev *pdev) 786 { 787 switch (pdev->device) { 788 case E1000_DEV_ID_82540EM: 789 case E1000_DEV_ID_82540EM_LOM: 790 case E1000_DEV_ID_82540EP: 791 case E1000_DEV_ID_82540EP_LOM: 792 case E1000_DEV_ID_82540EP_LP: 793 case E1000_DEV_ID_82541EI: 794 case E1000_DEV_ID_82541EI_MOBILE: 795 case E1000_DEV_ID_82541ER: 796 case E1000_DEV_ID_82541ER_LOM: 797 case E1000_DEV_ID_82541GI: 798 case E1000_DEV_ID_82541GI_LF: 799 case E1000_DEV_ID_82541GI_MOBILE: 800 case E1000_DEV_ID_82544EI_COPPER: 801 case E1000_DEV_ID_82544EI_FIBER: 802 case E1000_DEV_ID_82544GC_COPPER: 803 case E1000_DEV_ID_82544GC_LOM: 804 case E1000_DEV_ID_82545EM_COPPER: 805 case E1000_DEV_ID_82545EM_FIBER: 806 case E1000_DEV_ID_82546EB_COPPER: 807 case E1000_DEV_ID_82546EB_FIBER: 808 case E1000_DEV_ID_82546EB_QUAD_COPPER: 809 return true; 810 default: 811 return false; 812 } 813 } 814 815 static netdev_features_t e1000_fix_features(struct net_device *netdev, 816 netdev_features_t features) 817 { 818 /* Since there is no support for separate Rx/Tx vlan accel 819 * enable/disable make sure Tx flag is always in same state as Rx. 820 */ 821 if (features & NETIF_F_HW_VLAN_CTAG_RX) 822 features |= NETIF_F_HW_VLAN_CTAG_TX; 823 else 824 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 825 826 return features; 827 } 828 829 static int e1000_set_features(struct net_device *netdev, 830 netdev_features_t features) 831 { 832 struct e1000_adapter *adapter = netdev_priv(netdev); 833 netdev_features_t changed = features ^ netdev->features; 834 835 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 836 e1000_vlan_mode(netdev, features); 837 838 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 839 return 0; 840 841 netdev->features = features; 842 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 843 844 if (netif_running(netdev)) 845 e1000_reinit_locked(adapter); 846 else 847 e1000_reset(adapter); 848 849 return 0; 850 } 851 852 static const struct net_device_ops e1000_netdev_ops = { 853 .ndo_open = e1000_open, 854 .ndo_stop = e1000_close, 855 .ndo_start_xmit = e1000_xmit_frame, 856 .ndo_set_rx_mode = e1000_set_rx_mode, 857 .ndo_set_mac_address = e1000_set_mac, 858 .ndo_tx_timeout = e1000_tx_timeout, 859 .ndo_change_mtu = e1000_change_mtu, 860 .ndo_do_ioctl = e1000_ioctl, 861 .ndo_validate_addr = eth_validate_addr, 862 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 863 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 864 #ifdef CONFIG_NET_POLL_CONTROLLER 865 .ndo_poll_controller = e1000_netpoll, 866 #endif 867 .ndo_fix_features = e1000_fix_features, 868 .ndo_set_features = e1000_set_features, 869 }; 870 871 /** 872 * e1000_init_hw_struct - initialize members of hw struct 873 * @adapter: board private struct 874 * @hw: structure used by e1000_hw.c 875 * 876 * Factors out initialization of the e1000_hw struct to its own function 877 * that can be called very early at init (just after struct allocation). 878 * Fields are initialized based on PCI device information and 879 * OS network device settings (MTU size). 880 * Returns negative error codes if MAC type setup fails. 881 */ 882 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 883 struct e1000_hw *hw) 884 { 885 struct pci_dev *pdev = adapter->pdev; 886 887 /* PCI config space info */ 888 hw->vendor_id = pdev->vendor; 889 hw->device_id = pdev->device; 890 hw->subsystem_vendor_id = pdev->subsystem_vendor; 891 hw->subsystem_id = pdev->subsystem_device; 892 hw->revision_id = pdev->revision; 893 894 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 895 896 hw->max_frame_size = adapter->netdev->mtu + 897 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 898 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 899 900 /* identify the MAC */ 901 if (e1000_set_mac_type(hw)) { 902 e_err(probe, "Unknown MAC Type\n"); 903 return -EIO; 904 } 905 906 switch (hw->mac_type) { 907 default: 908 break; 909 case e1000_82541: 910 case e1000_82547: 911 case e1000_82541_rev_2: 912 case e1000_82547_rev_2: 913 hw->phy_init_script = 1; 914 break; 915 } 916 917 e1000_set_media_type(hw); 918 e1000_get_bus_info(hw); 919 920 hw->wait_autoneg_complete = false; 921 hw->tbi_compatibility_en = true; 922 hw->adaptive_ifs = true; 923 924 /* Copper options */ 925 926 if (hw->media_type == e1000_media_type_copper) { 927 hw->mdix = AUTO_ALL_MODES; 928 hw->disable_polarity_correction = false; 929 hw->master_slave = E1000_MASTER_SLAVE; 930 } 931 932 return 0; 933 } 934 935 /** 936 * e1000_probe - Device Initialization Routine 937 * @pdev: PCI device information struct 938 * @ent: entry in e1000_pci_tbl 939 * 940 * Returns 0 on success, negative on failure 941 * 942 * e1000_probe initializes an adapter identified by a pci_dev structure. 943 * The OS initialization, configuring of the adapter private structure, 944 * and a hardware reset occur. 945 **/ 946 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 947 { 948 struct net_device *netdev; 949 struct e1000_adapter *adapter = NULL; 950 struct e1000_hw *hw; 951 952 static int cards_found; 953 static int global_quad_port_a; /* global ksp3 port a indication */ 954 int i, err, pci_using_dac; 955 u16 eeprom_data = 0; 956 u16 tmp = 0; 957 u16 eeprom_apme_mask = E1000_EEPROM_APME; 958 int bars, need_ioport; 959 bool disable_dev = false; 960 961 /* do not allocate ioport bars when not needed */ 962 need_ioport = e1000_is_need_ioport(pdev); 963 if (need_ioport) { 964 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 965 err = pci_enable_device(pdev); 966 } else { 967 bars = pci_select_bars(pdev, IORESOURCE_MEM); 968 err = pci_enable_device_mem(pdev); 969 } 970 if (err) 971 return err; 972 973 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 974 if (err) 975 goto err_pci_reg; 976 977 pci_set_master(pdev); 978 err = pci_save_state(pdev); 979 if (err) 980 goto err_alloc_etherdev; 981 982 err = -ENOMEM; 983 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 984 if (!netdev) 985 goto err_alloc_etherdev; 986 987 SET_NETDEV_DEV(netdev, &pdev->dev); 988 989 pci_set_drvdata(pdev, netdev); 990 adapter = netdev_priv(netdev); 991 adapter->netdev = netdev; 992 adapter->pdev = pdev; 993 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 994 adapter->bars = bars; 995 adapter->need_ioport = need_ioport; 996 997 hw = &adapter->hw; 998 hw->back = adapter; 999 1000 err = -EIO; 1001 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 1002 if (!hw->hw_addr) 1003 goto err_ioremap; 1004 1005 if (adapter->need_ioport) { 1006 for (i = BAR_1; i <= BAR_5; i++) { 1007 if (pci_resource_len(pdev, i) == 0) 1008 continue; 1009 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 1010 hw->io_base = pci_resource_start(pdev, i); 1011 break; 1012 } 1013 } 1014 } 1015 1016 /* make ready for any if (hw->...) below */ 1017 err = e1000_init_hw_struct(adapter, hw); 1018 if (err) 1019 goto err_sw_init; 1020 1021 /* there is a workaround being applied below that limits 1022 * 64-bit DMA addresses to 64-bit hardware. There are some 1023 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 1024 */ 1025 pci_using_dac = 0; 1026 if ((hw->bus_type == e1000_bus_type_pcix) && 1027 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1028 pci_using_dac = 1; 1029 } else { 1030 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1031 if (err) { 1032 pr_err("No usable DMA config, aborting\n"); 1033 goto err_dma; 1034 } 1035 } 1036 1037 netdev->netdev_ops = &e1000_netdev_ops; 1038 e1000_set_ethtool_ops(netdev); 1039 netdev->watchdog_timeo = 5 * HZ; 1040 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1041 1042 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1043 1044 adapter->bd_number = cards_found; 1045 1046 /* setup the private structure */ 1047 1048 err = e1000_sw_init(adapter); 1049 if (err) 1050 goto err_sw_init; 1051 1052 err = -EIO; 1053 if (hw->mac_type == e1000_ce4100) { 1054 hw->ce4100_gbe_mdio_base_virt = 1055 ioremap(pci_resource_start(pdev, BAR_1), 1056 pci_resource_len(pdev, BAR_1)); 1057 1058 if (!hw->ce4100_gbe_mdio_base_virt) 1059 goto err_mdio_ioremap; 1060 } 1061 1062 if (hw->mac_type >= e1000_82543) { 1063 netdev->hw_features = NETIF_F_SG | 1064 NETIF_F_HW_CSUM | 1065 NETIF_F_HW_VLAN_CTAG_RX; 1066 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1067 NETIF_F_HW_VLAN_CTAG_FILTER; 1068 } 1069 1070 if ((hw->mac_type >= e1000_82544) && 1071 (hw->mac_type != e1000_82547)) 1072 netdev->hw_features |= NETIF_F_TSO; 1073 1074 netdev->priv_flags |= IFF_SUPP_NOFCS; 1075 1076 netdev->features |= netdev->hw_features; 1077 netdev->hw_features |= (NETIF_F_RXCSUM | 1078 NETIF_F_RXALL | 1079 NETIF_F_RXFCS); 1080 1081 if (pci_using_dac) { 1082 netdev->features |= NETIF_F_HIGHDMA; 1083 netdev->vlan_features |= NETIF_F_HIGHDMA; 1084 } 1085 1086 netdev->vlan_features |= (NETIF_F_TSO | 1087 NETIF_F_HW_CSUM | 1088 NETIF_F_SG); 1089 1090 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1091 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1092 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1093 netdev->priv_flags |= IFF_UNICAST_FLT; 1094 1095 /* MTU range: 46 - 16110 */ 1096 netdev->min_mtu = ETH_ZLEN - ETH_HLEN; 1097 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1098 1099 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1100 1101 /* initialize eeprom parameters */ 1102 if (e1000_init_eeprom_params(hw)) { 1103 e_err(probe, "EEPROM initialization failed\n"); 1104 goto err_eeprom; 1105 } 1106 1107 /* before reading the EEPROM, reset the controller to 1108 * put the device in a known good starting state 1109 */ 1110 1111 e1000_reset_hw(hw); 1112 1113 /* make sure the EEPROM is good */ 1114 if (e1000_validate_eeprom_checksum(hw) < 0) { 1115 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1116 e1000_dump_eeprom(adapter); 1117 /* set MAC address to all zeroes to invalidate and temporary 1118 * disable this device for the user. This blocks regular 1119 * traffic while still permitting ethtool ioctls from reaching 1120 * the hardware as well as allowing the user to run the 1121 * interface after manually setting a hw addr using 1122 * `ip set address` 1123 */ 1124 memset(hw->mac_addr, 0, netdev->addr_len); 1125 } else { 1126 /* copy the MAC address out of the EEPROM */ 1127 if (e1000_read_mac_addr(hw)) 1128 e_err(probe, "EEPROM Read Error\n"); 1129 } 1130 /* don't block initialization here due to bad MAC address */ 1131 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1132 1133 if (!is_valid_ether_addr(netdev->dev_addr)) 1134 e_err(probe, "Invalid MAC Address\n"); 1135 1136 1137 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1138 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1139 e1000_82547_tx_fifo_stall_task); 1140 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1141 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1142 1143 e1000_check_options(adapter); 1144 1145 /* Initial Wake on LAN setting 1146 * If APM wake is enabled in the EEPROM, 1147 * enable the ACPI Magic Packet filter 1148 */ 1149 1150 switch (hw->mac_type) { 1151 case e1000_82542_rev2_0: 1152 case e1000_82542_rev2_1: 1153 case e1000_82543: 1154 break; 1155 case e1000_82544: 1156 e1000_read_eeprom(hw, 1157 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1158 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1159 break; 1160 case e1000_82546: 1161 case e1000_82546_rev_3: 1162 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1163 e1000_read_eeprom(hw, 1164 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1165 break; 1166 } 1167 /* Fall Through */ 1168 default: 1169 e1000_read_eeprom(hw, 1170 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1171 break; 1172 } 1173 if (eeprom_data & eeprom_apme_mask) 1174 adapter->eeprom_wol |= E1000_WUFC_MAG; 1175 1176 /* now that we have the eeprom settings, apply the special cases 1177 * where the eeprom may be wrong or the board simply won't support 1178 * wake on lan on a particular port 1179 */ 1180 switch (pdev->device) { 1181 case E1000_DEV_ID_82546GB_PCIE: 1182 adapter->eeprom_wol = 0; 1183 break; 1184 case E1000_DEV_ID_82546EB_FIBER: 1185 case E1000_DEV_ID_82546GB_FIBER: 1186 /* Wake events only supported on port A for dual fiber 1187 * regardless of eeprom setting 1188 */ 1189 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1190 adapter->eeprom_wol = 0; 1191 break; 1192 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1193 /* if quad port adapter, disable WoL on all but port A */ 1194 if (global_quad_port_a != 0) 1195 adapter->eeprom_wol = 0; 1196 else 1197 adapter->quad_port_a = true; 1198 /* Reset for multiple quad port adapters */ 1199 if (++global_quad_port_a == 4) 1200 global_quad_port_a = 0; 1201 break; 1202 } 1203 1204 /* initialize the wol settings based on the eeprom settings */ 1205 adapter->wol = adapter->eeprom_wol; 1206 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1207 1208 /* Auto detect PHY address */ 1209 if (hw->mac_type == e1000_ce4100) { 1210 for (i = 0; i < 32; i++) { 1211 hw->phy_addr = i; 1212 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1213 1214 if (tmp != 0 && tmp != 0xFF) 1215 break; 1216 } 1217 1218 if (i >= 32) 1219 goto err_eeprom; 1220 } 1221 1222 /* reset the hardware with the new settings */ 1223 e1000_reset(adapter); 1224 1225 strcpy(netdev->name, "eth%d"); 1226 err = register_netdev(netdev); 1227 if (err) 1228 goto err_register; 1229 1230 e1000_vlan_filter_on_off(adapter, false); 1231 1232 /* print bus type/speed/width info */ 1233 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1234 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1235 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1236 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1237 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1238 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1239 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1240 netdev->dev_addr); 1241 1242 /* carrier off reporting is important to ethtool even BEFORE open */ 1243 netif_carrier_off(netdev); 1244 1245 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1246 1247 cards_found++; 1248 return 0; 1249 1250 err_register: 1251 err_eeprom: 1252 e1000_phy_hw_reset(hw); 1253 1254 if (hw->flash_address) 1255 iounmap(hw->flash_address); 1256 kfree(adapter->tx_ring); 1257 kfree(adapter->rx_ring); 1258 err_dma: 1259 err_sw_init: 1260 err_mdio_ioremap: 1261 iounmap(hw->ce4100_gbe_mdio_base_virt); 1262 iounmap(hw->hw_addr); 1263 err_ioremap: 1264 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1265 free_netdev(netdev); 1266 err_alloc_etherdev: 1267 pci_release_selected_regions(pdev, bars); 1268 err_pci_reg: 1269 if (!adapter || disable_dev) 1270 pci_disable_device(pdev); 1271 return err; 1272 } 1273 1274 /** 1275 * e1000_remove - Device Removal Routine 1276 * @pdev: PCI device information struct 1277 * 1278 * e1000_remove is called by the PCI subsystem to alert the driver 1279 * that it should release a PCI device. That could be caused by a 1280 * Hot-Plug event, or because the driver is going to be removed from 1281 * memory. 1282 **/ 1283 static void e1000_remove(struct pci_dev *pdev) 1284 { 1285 struct net_device *netdev = pci_get_drvdata(pdev); 1286 struct e1000_adapter *adapter = netdev_priv(netdev); 1287 struct e1000_hw *hw = &adapter->hw; 1288 bool disable_dev; 1289 1290 e1000_down_and_stop(adapter); 1291 e1000_release_manageability(adapter); 1292 1293 unregister_netdev(netdev); 1294 1295 e1000_phy_hw_reset(hw); 1296 1297 kfree(adapter->tx_ring); 1298 kfree(adapter->rx_ring); 1299 1300 if (hw->mac_type == e1000_ce4100) 1301 iounmap(hw->ce4100_gbe_mdio_base_virt); 1302 iounmap(hw->hw_addr); 1303 if (hw->flash_address) 1304 iounmap(hw->flash_address); 1305 pci_release_selected_regions(pdev, adapter->bars); 1306 1307 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1308 free_netdev(netdev); 1309 1310 if (disable_dev) 1311 pci_disable_device(pdev); 1312 } 1313 1314 /** 1315 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1316 * @adapter: board private structure to initialize 1317 * 1318 * e1000_sw_init initializes the Adapter private data structure. 1319 * e1000_init_hw_struct MUST be called before this function 1320 **/ 1321 static int e1000_sw_init(struct e1000_adapter *adapter) 1322 { 1323 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1324 1325 adapter->num_tx_queues = 1; 1326 adapter->num_rx_queues = 1; 1327 1328 if (e1000_alloc_queues(adapter)) { 1329 e_err(probe, "Unable to allocate memory for queues\n"); 1330 return -ENOMEM; 1331 } 1332 1333 /* Explicitly disable IRQ since the NIC can be in any state. */ 1334 e1000_irq_disable(adapter); 1335 1336 spin_lock_init(&adapter->stats_lock); 1337 1338 set_bit(__E1000_DOWN, &adapter->flags); 1339 1340 return 0; 1341 } 1342 1343 /** 1344 * e1000_alloc_queues - Allocate memory for all rings 1345 * @adapter: board private structure to initialize 1346 * 1347 * We allocate one ring per queue at run-time since we don't know the 1348 * number of queues at compile-time. 1349 **/ 1350 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1351 { 1352 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1353 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1354 if (!adapter->tx_ring) 1355 return -ENOMEM; 1356 1357 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1358 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1359 if (!adapter->rx_ring) { 1360 kfree(adapter->tx_ring); 1361 return -ENOMEM; 1362 } 1363 1364 return E1000_SUCCESS; 1365 } 1366 1367 /** 1368 * e1000_open - Called when a network interface is made active 1369 * @netdev: network interface device structure 1370 * 1371 * Returns 0 on success, negative value on failure 1372 * 1373 * The open entry point is called when a network interface is made 1374 * active by the system (IFF_UP). At this point all resources needed 1375 * for transmit and receive operations are allocated, the interrupt 1376 * handler is registered with the OS, the watchdog task is started, 1377 * and the stack is notified that the interface is ready. 1378 **/ 1379 int e1000_open(struct net_device *netdev) 1380 { 1381 struct e1000_adapter *adapter = netdev_priv(netdev); 1382 struct e1000_hw *hw = &adapter->hw; 1383 int err; 1384 1385 /* disallow open during test */ 1386 if (test_bit(__E1000_TESTING, &adapter->flags)) 1387 return -EBUSY; 1388 1389 netif_carrier_off(netdev); 1390 1391 /* allocate transmit descriptors */ 1392 err = e1000_setup_all_tx_resources(adapter); 1393 if (err) 1394 goto err_setup_tx; 1395 1396 /* allocate receive descriptors */ 1397 err = e1000_setup_all_rx_resources(adapter); 1398 if (err) 1399 goto err_setup_rx; 1400 1401 e1000_power_up_phy(adapter); 1402 1403 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1404 if ((hw->mng_cookie.status & 1405 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1406 e1000_update_mng_vlan(adapter); 1407 } 1408 1409 /* before we allocate an interrupt, we must be ready to handle it. 1410 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1411 * as soon as we call pci_request_irq, so we have to setup our 1412 * clean_rx handler before we do so. 1413 */ 1414 e1000_configure(adapter); 1415 1416 err = e1000_request_irq(adapter); 1417 if (err) 1418 goto err_req_irq; 1419 1420 /* From here on the code is the same as e1000_up() */ 1421 clear_bit(__E1000_DOWN, &adapter->flags); 1422 1423 napi_enable(&adapter->napi); 1424 1425 e1000_irq_enable(adapter); 1426 1427 netif_start_queue(netdev); 1428 1429 /* fire a link status change interrupt to start the watchdog */ 1430 ew32(ICS, E1000_ICS_LSC); 1431 1432 return E1000_SUCCESS; 1433 1434 err_req_irq: 1435 e1000_power_down_phy(adapter); 1436 e1000_free_all_rx_resources(adapter); 1437 err_setup_rx: 1438 e1000_free_all_tx_resources(adapter); 1439 err_setup_tx: 1440 e1000_reset(adapter); 1441 1442 return err; 1443 } 1444 1445 /** 1446 * e1000_close - Disables a network interface 1447 * @netdev: network interface device structure 1448 * 1449 * Returns 0, this is not allowed to fail 1450 * 1451 * The close entry point is called when an interface is de-activated 1452 * by the OS. The hardware is still under the drivers control, but 1453 * needs to be disabled. A global MAC reset is issued to stop the 1454 * hardware, and all transmit and receive resources are freed. 1455 **/ 1456 int e1000_close(struct net_device *netdev) 1457 { 1458 struct e1000_adapter *adapter = netdev_priv(netdev); 1459 struct e1000_hw *hw = &adapter->hw; 1460 int count = E1000_CHECK_RESET_COUNT; 1461 1462 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 1463 usleep_range(10000, 20000); 1464 1465 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 1466 e1000_down(adapter); 1467 e1000_power_down_phy(adapter); 1468 e1000_free_irq(adapter); 1469 1470 e1000_free_all_tx_resources(adapter); 1471 e1000_free_all_rx_resources(adapter); 1472 1473 /* kill manageability vlan ID if supported, but not if a vlan with 1474 * the same ID is registered on the host OS (let 8021q kill it) 1475 */ 1476 if ((hw->mng_cookie.status & 1477 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1478 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1479 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1480 adapter->mng_vlan_id); 1481 } 1482 1483 return 0; 1484 } 1485 1486 /** 1487 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1488 * @adapter: address of board private structure 1489 * @start: address of beginning of memory 1490 * @len: length of memory 1491 **/ 1492 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1493 unsigned long len) 1494 { 1495 struct e1000_hw *hw = &adapter->hw; 1496 unsigned long begin = (unsigned long)start; 1497 unsigned long end = begin + len; 1498 1499 /* First rev 82545 and 82546 need to not allow any memory 1500 * write location to cross 64k boundary due to errata 23 1501 */ 1502 if (hw->mac_type == e1000_82545 || 1503 hw->mac_type == e1000_ce4100 || 1504 hw->mac_type == e1000_82546) { 1505 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; 1506 } 1507 1508 return true; 1509 } 1510 1511 /** 1512 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1513 * @adapter: board private structure 1514 * @txdr: tx descriptor ring (for a specific queue) to setup 1515 * 1516 * Return 0 on success, negative on failure 1517 **/ 1518 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1519 struct e1000_tx_ring *txdr) 1520 { 1521 struct pci_dev *pdev = adapter->pdev; 1522 int size; 1523 1524 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1525 txdr->buffer_info = vzalloc(size); 1526 if (!txdr->buffer_info) 1527 return -ENOMEM; 1528 1529 /* round up to nearest 4K */ 1530 1531 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1532 txdr->size = ALIGN(txdr->size, 4096); 1533 1534 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1535 GFP_KERNEL); 1536 if (!txdr->desc) { 1537 setup_tx_desc_die: 1538 vfree(txdr->buffer_info); 1539 return -ENOMEM; 1540 } 1541 1542 /* Fix for errata 23, can't cross 64kB boundary */ 1543 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1544 void *olddesc = txdr->desc; 1545 dma_addr_t olddma = txdr->dma; 1546 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1547 txdr->size, txdr->desc); 1548 /* Try again, without freeing the previous */ 1549 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1550 &txdr->dma, GFP_KERNEL); 1551 /* Failed allocation, critical failure */ 1552 if (!txdr->desc) { 1553 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1554 olddma); 1555 goto setup_tx_desc_die; 1556 } 1557 1558 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1559 /* give up */ 1560 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1561 txdr->dma); 1562 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1563 olddma); 1564 e_err(probe, "Unable to allocate aligned memory " 1565 "for the transmit descriptor ring\n"); 1566 vfree(txdr->buffer_info); 1567 return -ENOMEM; 1568 } else { 1569 /* Free old allocation, new allocation was successful */ 1570 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1571 olddma); 1572 } 1573 } 1574 memset(txdr->desc, 0, txdr->size); 1575 1576 txdr->next_to_use = 0; 1577 txdr->next_to_clean = 0; 1578 1579 return 0; 1580 } 1581 1582 /** 1583 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1584 * (Descriptors) for all queues 1585 * @adapter: board private structure 1586 * 1587 * Return 0 on success, negative on failure 1588 **/ 1589 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1590 { 1591 int i, err = 0; 1592 1593 for (i = 0; i < adapter->num_tx_queues; i++) { 1594 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1595 if (err) { 1596 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1597 for (i-- ; i >= 0; i--) 1598 e1000_free_tx_resources(adapter, 1599 &adapter->tx_ring[i]); 1600 break; 1601 } 1602 } 1603 1604 return err; 1605 } 1606 1607 /** 1608 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1609 * @adapter: board private structure 1610 * 1611 * Configure the Tx unit of the MAC after a reset. 1612 **/ 1613 static void e1000_configure_tx(struct e1000_adapter *adapter) 1614 { 1615 u64 tdba; 1616 struct e1000_hw *hw = &adapter->hw; 1617 u32 tdlen, tctl, tipg; 1618 u32 ipgr1, ipgr2; 1619 1620 /* Setup the HW Tx Head and Tail descriptor pointers */ 1621 1622 switch (adapter->num_tx_queues) { 1623 case 1: 1624 default: 1625 tdba = adapter->tx_ring[0].dma; 1626 tdlen = adapter->tx_ring[0].count * 1627 sizeof(struct e1000_tx_desc); 1628 ew32(TDLEN, tdlen); 1629 ew32(TDBAH, (tdba >> 32)); 1630 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1631 ew32(TDT, 0); 1632 ew32(TDH, 0); 1633 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1634 E1000_TDH : E1000_82542_TDH); 1635 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1636 E1000_TDT : E1000_82542_TDT); 1637 break; 1638 } 1639 1640 /* Set the default values for the Tx Inter Packet Gap timer */ 1641 if ((hw->media_type == e1000_media_type_fiber || 1642 hw->media_type == e1000_media_type_internal_serdes)) 1643 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1644 else 1645 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1646 1647 switch (hw->mac_type) { 1648 case e1000_82542_rev2_0: 1649 case e1000_82542_rev2_1: 1650 tipg = DEFAULT_82542_TIPG_IPGT; 1651 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1652 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1653 break; 1654 default: 1655 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1656 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1657 break; 1658 } 1659 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1660 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1661 ew32(TIPG, tipg); 1662 1663 /* Set the Tx Interrupt Delay register */ 1664 1665 ew32(TIDV, adapter->tx_int_delay); 1666 if (hw->mac_type >= e1000_82540) 1667 ew32(TADV, adapter->tx_abs_int_delay); 1668 1669 /* Program the Transmit Control Register */ 1670 1671 tctl = er32(TCTL); 1672 tctl &= ~E1000_TCTL_CT; 1673 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1674 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1675 1676 e1000_config_collision_dist(hw); 1677 1678 /* Setup Transmit Descriptor Settings for eop descriptor */ 1679 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1680 1681 /* only set IDE if we are delaying interrupts using the timers */ 1682 if (adapter->tx_int_delay) 1683 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1684 1685 if (hw->mac_type < e1000_82543) 1686 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1687 else 1688 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1689 1690 /* Cache if we're 82544 running in PCI-X because we'll 1691 * need this to apply a workaround later in the send path. 1692 */ 1693 if (hw->mac_type == e1000_82544 && 1694 hw->bus_type == e1000_bus_type_pcix) 1695 adapter->pcix_82544 = true; 1696 1697 ew32(TCTL, tctl); 1698 1699 } 1700 1701 /** 1702 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1703 * @adapter: board private structure 1704 * @rxdr: rx descriptor ring (for a specific queue) to setup 1705 * 1706 * Returns 0 on success, negative on failure 1707 **/ 1708 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1709 struct e1000_rx_ring *rxdr) 1710 { 1711 struct pci_dev *pdev = adapter->pdev; 1712 int size, desc_len; 1713 1714 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1715 rxdr->buffer_info = vzalloc(size); 1716 if (!rxdr->buffer_info) 1717 return -ENOMEM; 1718 1719 desc_len = sizeof(struct e1000_rx_desc); 1720 1721 /* Round up to nearest 4K */ 1722 1723 rxdr->size = rxdr->count * desc_len; 1724 rxdr->size = ALIGN(rxdr->size, 4096); 1725 1726 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1727 GFP_KERNEL); 1728 if (!rxdr->desc) { 1729 setup_rx_desc_die: 1730 vfree(rxdr->buffer_info); 1731 return -ENOMEM; 1732 } 1733 1734 /* Fix for errata 23, can't cross 64kB boundary */ 1735 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1736 void *olddesc = rxdr->desc; 1737 dma_addr_t olddma = rxdr->dma; 1738 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1739 rxdr->size, rxdr->desc); 1740 /* Try again, without freeing the previous */ 1741 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1742 &rxdr->dma, GFP_KERNEL); 1743 /* Failed allocation, critical failure */ 1744 if (!rxdr->desc) { 1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1746 olddma); 1747 goto setup_rx_desc_die; 1748 } 1749 1750 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1751 /* give up */ 1752 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1753 rxdr->dma); 1754 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1755 olddma); 1756 e_err(probe, "Unable to allocate aligned memory for " 1757 "the Rx descriptor ring\n"); 1758 goto setup_rx_desc_die; 1759 } else { 1760 /* Free old allocation, new allocation was successful */ 1761 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1762 olddma); 1763 } 1764 } 1765 memset(rxdr->desc, 0, rxdr->size); 1766 1767 rxdr->next_to_clean = 0; 1768 rxdr->next_to_use = 0; 1769 rxdr->rx_skb_top = NULL; 1770 1771 return 0; 1772 } 1773 1774 /** 1775 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1776 * (Descriptors) for all queues 1777 * @adapter: board private structure 1778 * 1779 * Return 0 on success, negative on failure 1780 **/ 1781 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1782 { 1783 int i, err = 0; 1784 1785 for (i = 0; i < adapter->num_rx_queues; i++) { 1786 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1787 if (err) { 1788 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1789 for (i-- ; i >= 0; i--) 1790 e1000_free_rx_resources(adapter, 1791 &adapter->rx_ring[i]); 1792 break; 1793 } 1794 } 1795 1796 return err; 1797 } 1798 1799 /** 1800 * e1000_setup_rctl - configure the receive control registers 1801 * @adapter: Board private structure 1802 **/ 1803 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1804 { 1805 struct e1000_hw *hw = &adapter->hw; 1806 u32 rctl; 1807 1808 rctl = er32(RCTL); 1809 1810 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1811 1812 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1813 E1000_RCTL_RDMTS_HALF | 1814 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1815 1816 if (hw->tbi_compatibility_on == 1) 1817 rctl |= E1000_RCTL_SBP; 1818 else 1819 rctl &= ~E1000_RCTL_SBP; 1820 1821 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1822 rctl &= ~E1000_RCTL_LPE; 1823 else 1824 rctl |= E1000_RCTL_LPE; 1825 1826 /* Setup buffer sizes */ 1827 rctl &= ~E1000_RCTL_SZ_4096; 1828 rctl |= E1000_RCTL_BSEX; 1829 switch (adapter->rx_buffer_len) { 1830 case E1000_RXBUFFER_2048: 1831 default: 1832 rctl |= E1000_RCTL_SZ_2048; 1833 rctl &= ~E1000_RCTL_BSEX; 1834 break; 1835 case E1000_RXBUFFER_4096: 1836 rctl |= E1000_RCTL_SZ_4096; 1837 break; 1838 case E1000_RXBUFFER_8192: 1839 rctl |= E1000_RCTL_SZ_8192; 1840 break; 1841 case E1000_RXBUFFER_16384: 1842 rctl |= E1000_RCTL_SZ_16384; 1843 break; 1844 } 1845 1846 /* This is useful for sniffing bad packets. */ 1847 if (adapter->netdev->features & NETIF_F_RXALL) { 1848 /* UPE and MPE will be handled by normal PROMISC logic 1849 * in e1000e_set_rx_mode 1850 */ 1851 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1852 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1853 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1854 1855 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1856 E1000_RCTL_DPF | /* Allow filtered pause */ 1857 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1858 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1859 * and that breaks VLANs. 1860 */ 1861 } 1862 1863 ew32(RCTL, rctl); 1864 } 1865 1866 /** 1867 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1868 * @adapter: board private structure 1869 * 1870 * Configure the Rx unit of the MAC after a reset. 1871 **/ 1872 static void e1000_configure_rx(struct e1000_adapter *adapter) 1873 { 1874 u64 rdba; 1875 struct e1000_hw *hw = &adapter->hw; 1876 u32 rdlen, rctl, rxcsum; 1877 1878 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1879 rdlen = adapter->rx_ring[0].count * 1880 sizeof(struct e1000_rx_desc); 1881 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1882 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1883 } else { 1884 rdlen = adapter->rx_ring[0].count * 1885 sizeof(struct e1000_rx_desc); 1886 adapter->clean_rx = e1000_clean_rx_irq; 1887 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1888 } 1889 1890 /* disable receives while setting up the descriptors */ 1891 rctl = er32(RCTL); 1892 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1893 1894 /* set the Receive Delay Timer Register */ 1895 ew32(RDTR, adapter->rx_int_delay); 1896 1897 if (hw->mac_type >= e1000_82540) { 1898 ew32(RADV, adapter->rx_abs_int_delay); 1899 if (adapter->itr_setting != 0) 1900 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1901 } 1902 1903 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1904 * the Base and Length of the Rx Descriptor Ring 1905 */ 1906 switch (adapter->num_rx_queues) { 1907 case 1: 1908 default: 1909 rdba = adapter->rx_ring[0].dma; 1910 ew32(RDLEN, rdlen); 1911 ew32(RDBAH, (rdba >> 32)); 1912 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1913 ew32(RDT, 0); 1914 ew32(RDH, 0); 1915 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1916 E1000_RDH : E1000_82542_RDH); 1917 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1918 E1000_RDT : E1000_82542_RDT); 1919 break; 1920 } 1921 1922 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1923 if (hw->mac_type >= e1000_82543) { 1924 rxcsum = er32(RXCSUM); 1925 if (adapter->rx_csum) 1926 rxcsum |= E1000_RXCSUM_TUOFL; 1927 else 1928 /* don't need to clear IPPCSE as it defaults to 0 */ 1929 rxcsum &= ~E1000_RXCSUM_TUOFL; 1930 ew32(RXCSUM, rxcsum); 1931 } 1932 1933 /* Enable Receives */ 1934 ew32(RCTL, rctl | E1000_RCTL_EN); 1935 } 1936 1937 /** 1938 * e1000_free_tx_resources - Free Tx Resources per Queue 1939 * @adapter: board private structure 1940 * @tx_ring: Tx descriptor ring for a specific queue 1941 * 1942 * Free all transmit software resources 1943 **/ 1944 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1945 struct e1000_tx_ring *tx_ring) 1946 { 1947 struct pci_dev *pdev = adapter->pdev; 1948 1949 e1000_clean_tx_ring(adapter, tx_ring); 1950 1951 vfree(tx_ring->buffer_info); 1952 tx_ring->buffer_info = NULL; 1953 1954 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1955 tx_ring->dma); 1956 1957 tx_ring->desc = NULL; 1958 } 1959 1960 /** 1961 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1962 * @adapter: board private structure 1963 * 1964 * Free all transmit software resources 1965 **/ 1966 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1967 { 1968 int i; 1969 1970 for (i = 0; i < adapter->num_tx_queues; i++) 1971 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1972 } 1973 1974 static void 1975 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1976 struct e1000_tx_buffer *buffer_info) 1977 { 1978 if (buffer_info->dma) { 1979 if (buffer_info->mapped_as_page) 1980 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1981 buffer_info->length, DMA_TO_DEVICE); 1982 else 1983 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1984 buffer_info->length, 1985 DMA_TO_DEVICE); 1986 buffer_info->dma = 0; 1987 } 1988 if (buffer_info->skb) { 1989 dev_kfree_skb_any(buffer_info->skb); 1990 buffer_info->skb = NULL; 1991 } 1992 buffer_info->time_stamp = 0; 1993 /* buffer_info must be completely set up in the transmit path */ 1994 } 1995 1996 /** 1997 * e1000_clean_tx_ring - Free Tx Buffers 1998 * @adapter: board private structure 1999 * @tx_ring: ring to be cleaned 2000 **/ 2001 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 2002 struct e1000_tx_ring *tx_ring) 2003 { 2004 struct e1000_hw *hw = &adapter->hw; 2005 struct e1000_tx_buffer *buffer_info; 2006 unsigned long size; 2007 unsigned int i; 2008 2009 /* Free all the Tx ring sk_buffs */ 2010 2011 for (i = 0; i < tx_ring->count; i++) { 2012 buffer_info = &tx_ring->buffer_info[i]; 2013 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2014 } 2015 2016 netdev_reset_queue(adapter->netdev); 2017 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 2018 memset(tx_ring->buffer_info, 0, size); 2019 2020 /* Zero out the descriptor ring */ 2021 2022 memset(tx_ring->desc, 0, tx_ring->size); 2023 2024 tx_ring->next_to_use = 0; 2025 tx_ring->next_to_clean = 0; 2026 tx_ring->last_tx_tso = false; 2027 2028 writel(0, hw->hw_addr + tx_ring->tdh); 2029 writel(0, hw->hw_addr + tx_ring->tdt); 2030 } 2031 2032 /** 2033 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2034 * @adapter: board private structure 2035 **/ 2036 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2037 { 2038 int i; 2039 2040 for (i = 0; i < adapter->num_tx_queues; i++) 2041 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2042 } 2043 2044 /** 2045 * e1000_free_rx_resources - Free Rx Resources 2046 * @adapter: board private structure 2047 * @rx_ring: ring to clean the resources from 2048 * 2049 * Free all receive software resources 2050 **/ 2051 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2052 struct e1000_rx_ring *rx_ring) 2053 { 2054 struct pci_dev *pdev = adapter->pdev; 2055 2056 e1000_clean_rx_ring(adapter, rx_ring); 2057 2058 vfree(rx_ring->buffer_info); 2059 rx_ring->buffer_info = NULL; 2060 2061 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2062 rx_ring->dma); 2063 2064 rx_ring->desc = NULL; 2065 } 2066 2067 /** 2068 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2069 * @adapter: board private structure 2070 * 2071 * Free all receive software resources 2072 **/ 2073 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2074 { 2075 int i; 2076 2077 for (i = 0; i < adapter->num_rx_queues; i++) 2078 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2079 } 2080 2081 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2082 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2083 { 2084 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2085 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2086 } 2087 2088 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2089 { 2090 unsigned int len = e1000_frag_len(a); 2091 u8 *data = netdev_alloc_frag(len); 2092 2093 if (likely(data)) 2094 data += E1000_HEADROOM; 2095 return data; 2096 } 2097 2098 /** 2099 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2100 * @adapter: board private structure 2101 * @rx_ring: ring to free buffers from 2102 **/ 2103 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2104 struct e1000_rx_ring *rx_ring) 2105 { 2106 struct e1000_hw *hw = &adapter->hw; 2107 struct e1000_rx_buffer *buffer_info; 2108 struct pci_dev *pdev = adapter->pdev; 2109 unsigned long size; 2110 unsigned int i; 2111 2112 /* Free all the Rx netfrags */ 2113 for (i = 0; i < rx_ring->count; i++) { 2114 buffer_info = &rx_ring->buffer_info[i]; 2115 if (adapter->clean_rx == e1000_clean_rx_irq) { 2116 if (buffer_info->dma) 2117 dma_unmap_single(&pdev->dev, buffer_info->dma, 2118 adapter->rx_buffer_len, 2119 DMA_FROM_DEVICE); 2120 if (buffer_info->rxbuf.data) { 2121 skb_free_frag(buffer_info->rxbuf.data); 2122 buffer_info->rxbuf.data = NULL; 2123 } 2124 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2125 if (buffer_info->dma) 2126 dma_unmap_page(&pdev->dev, buffer_info->dma, 2127 adapter->rx_buffer_len, 2128 DMA_FROM_DEVICE); 2129 if (buffer_info->rxbuf.page) { 2130 put_page(buffer_info->rxbuf.page); 2131 buffer_info->rxbuf.page = NULL; 2132 } 2133 } 2134 2135 buffer_info->dma = 0; 2136 } 2137 2138 /* there also may be some cached data from a chained receive */ 2139 napi_free_frags(&adapter->napi); 2140 rx_ring->rx_skb_top = NULL; 2141 2142 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2143 memset(rx_ring->buffer_info, 0, size); 2144 2145 /* Zero out the descriptor ring */ 2146 memset(rx_ring->desc, 0, rx_ring->size); 2147 2148 rx_ring->next_to_clean = 0; 2149 rx_ring->next_to_use = 0; 2150 2151 writel(0, hw->hw_addr + rx_ring->rdh); 2152 writel(0, hw->hw_addr + rx_ring->rdt); 2153 } 2154 2155 /** 2156 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2157 * @adapter: board private structure 2158 **/ 2159 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2160 { 2161 int i; 2162 2163 for (i = 0; i < adapter->num_rx_queues; i++) 2164 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2165 } 2166 2167 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2168 * and memory write and invalidate disabled for certain operations 2169 */ 2170 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2171 { 2172 struct e1000_hw *hw = &adapter->hw; 2173 struct net_device *netdev = adapter->netdev; 2174 u32 rctl; 2175 2176 e1000_pci_clear_mwi(hw); 2177 2178 rctl = er32(RCTL); 2179 rctl |= E1000_RCTL_RST; 2180 ew32(RCTL, rctl); 2181 E1000_WRITE_FLUSH(); 2182 mdelay(5); 2183 2184 if (netif_running(netdev)) 2185 e1000_clean_all_rx_rings(adapter); 2186 } 2187 2188 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2189 { 2190 struct e1000_hw *hw = &adapter->hw; 2191 struct net_device *netdev = adapter->netdev; 2192 u32 rctl; 2193 2194 rctl = er32(RCTL); 2195 rctl &= ~E1000_RCTL_RST; 2196 ew32(RCTL, rctl); 2197 E1000_WRITE_FLUSH(); 2198 mdelay(5); 2199 2200 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2201 e1000_pci_set_mwi(hw); 2202 2203 if (netif_running(netdev)) { 2204 /* No need to loop, because 82542 supports only 1 queue */ 2205 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2206 e1000_configure_rx(adapter); 2207 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2208 } 2209 } 2210 2211 /** 2212 * e1000_set_mac - Change the Ethernet Address of the NIC 2213 * @netdev: network interface device structure 2214 * @p: pointer to an address structure 2215 * 2216 * Returns 0 on success, negative on failure 2217 **/ 2218 static int e1000_set_mac(struct net_device *netdev, void *p) 2219 { 2220 struct e1000_adapter *adapter = netdev_priv(netdev); 2221 struct e1000_hw *hw = &adapter->hw; 2222 struct sockaddr *addr = p; 2223 2224 if (!is_valid_ether_addr(addr->sa_data)) 2225 return -EADDRNOTAVAIL; 2226 2227 /* 82542 2.0 needs to be in reset to write receive address registers */ 2228 2229 if (hw->mac_type == e1000_82542_rev2_0) 2230 e1000_enter_82542_rst(adapter); 2231 2232 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2233 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2234 2235 e1000_rar_set(hw, hw->mac_addr, 0); 2236 2237 if (hw->mac_type == e1000_82542_rev2_0) 2238 e1000_leave_82542_rst(adapter); 2239 2240 return 0; 2241 } 2242 2243 /** 2244 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2245 * @netdev: network interface device structure 2246 * 2247 * The set_rx_mode entry point is called whenever the unicast or multicast 2248 * address lists or the network interface flags are updated. This routine is 2249 * responsible for configuring the hardware for proper unicast, multicast, 2250 * promiscuous mode, and all-multi behavior. 2251 **/ 2252 static void e1000_set_rx_mode(struct net_device *netdev) 2253 { 2254 struct e1000_adapter *adapter = netdev_priv(netdev); 2255 struct e1000_hw *hw = &adapter->hw; 2256 struct netdev_hw_addr *ha; 2257 bool use_uc = false; 2258 u32 rctl; 2259 u32 hash_value; 2260 int i, rar_entries = E1000_RAR_ENTRIES; 2261 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2262 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2263 2264 if (!mcarray) 2265 return; 2266 2267 /* Check for Promiscuous and All Multicast modes */ 2268 2269 rctl = er32(RCTL); 2270 2271 if (netdev->flags & IFF_PROMISC) { 2272 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2273 rctl &= ~E1000_RCTL_VFE; 2274 } else { 2275 if (netdev->flags & IFF_ALLMULTI) 2276 rctl |= E1000_RCTL_MPE; 2277 else 2278 rctl &= ~E1000_RCTL_MPE; 2279 /* Enable VLAN filter if there is a VLAN */ 2280 if (e1000_vlan_used(adapter)) 2281 rctl |= E1000_RCTL_VFE; 2282 } 2283 2284 if (netdev_uc_count(netdev) > rar_entries - 1) { 2285 rctl |= E1000_RCTL_UPE; 2286 } else if (!(netdev->flags & IFF_PROMISC)) { 2287 rctl &= ~E1000_RCTL_UPE; 2288 use_uc = true; 2289 } 2290 2291 ew32(RCTL, rctl); 2292 2293 /* 82542 2.0 needs to be in reset to write receive address registers */ 2294 2295 if (hw->mac_type == e1000_82542_rev2_0) 2296 e1000_enter_82542_rst(adapter); 2297 2298 /* load the first 14 addresses into the exact filters 1-14. Unicast 2299 * addresses take precedence to avoid disabling unicast filtering 2300 * when possible. 2301 * 2302 * RAR 0 is used for the station MAC address 2303 * if there are not 14 addresses, go ahead and clear the filters 2304 */ 2305 i = 1; 2306 if (use_uc) 2307 netdev_for_each_uc_addr(ha, netdev) { 2308 if (i == rar_entries) 2309 break; 2310 e1000_rar_set(hw, ha->addr, i++); 2311 } 2312 2313 netdev_for_each_mc_addr(ha, netdev) { 2314 if (i == rar_entries) { 2315 /* load any remaining addresses into the hash table */ 2316 u32 hash_reg, hash_bit, mta; 2317 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2318 hash_reg = (hash_value >> 5) & 0x7F; 2319 hash_bit = hash_value & 0x1F; 2320 mta = (1 << hash_bit); 2321 mcarray[hash_reg] |= mta; 2322 } else { 2323 e1000_rar_set(hw, ha->addr, i++); 2324 } 2325 } 2326 2327 for (; i < rar_entries; i++) { 2328 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2329 E1000_WRITE_FLUSH(); 2330 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2331 E1000_WRITE_FLUSH(); 2332 } 2333 2334 /* write the hash table completely, write from bottom to avoid 2335 * both stupid write combining chipsets, and flushing each write 2336 */ 2337 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2338 /* If we are on an 82544 has an errata where writing odd 2339 * offsets overwrites the previous even offset, but writing 2340 * backwards over the range solves the issue by always 2341 * writing the odd offset first 2342 */ 2343 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2344 } 2345 E1000_WRITE_FLUSH(); 2346 2347 if (hw->mac_type == e1000_82542_rev2_0) 2348 e1000_leave_82542_rst(adapter); 2349 2350 kfree(mcarray); 2351 } 2352 2353 /** 2354 * e1000_update_phy_info_task - get phy info 2355 * @work: work struct contained inside adapter struct 2356 * 2357 * Need to wait a few seconds after link up to get diagnostic information from 2358 * the phy 2359 */ 2360 static void e1000_update_phy_info_task(struct work_struct *work) 2361 { 2362 struct e1000_adapter *adapter = container_of(work, 2363 struct e1000_adapter, 2364 phy_info_task.work); 2365 2366 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2367 } 2368 2369 /** 2370 * e1000_82547_tx_fifo_stall_task - task to complete work 2371 * @work: work struct contained inside adapter struct 2372 **/ 2373 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2374 { 2375 struct e1000_adapter *adapter = container_of(work, 2376 struct e1000_adapter, 2377 fifo_stall_task.work); 2378 struct e1000_hw *hw = &adapter->hw; 2379 struct net_device *netdev = adapter->netdev; 2380 u32 tctl; 2381 2382 if (atomic_read(&adapter->tx_fifo_stall)) { 2383 if ((er32(TDT) == er32(TDH)) && 2384 (er32(TDFT) == er32(TDFH)) && 2385 (er32(TDFTS) == er32(TDFHS))) { 2386 tctl = er32(TCTL); 2387 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2388 ew32(TDFT, adapter->tx_head_addr); 2389 ew32(TDFH, adapter->tx_head_addr); 2390 ew32(TDFTS, adapter->tx_head_addr); 2391 ew32(TDFHS, adapter->tx_head_addr); 2392 ew32(TCTL, tctl); 2393 E1000_WRITE_FLUSH(); 2394 2395 adapter->tx_fifo_head = 0; 2396 atomic_set(&adapter->tx_fifo_stall, 0); 2397 netif_wake_queue(netdev); 2398 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2399 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2400 } 2401 } 2402 } 2403 2404 bool e1000_has_link(struct e1000_adapter *adapter) 2405 { 2406 struct e1000_hw *hw = &adapter->hw; 2407 bool link_active = false; 2408 2409 /* get_link_status is set on LSC (link status) interrupt or rx 2410 * sequence error interrupt (except on intel ce4100). 2411 * get_link_status will stay false until the 2412 * e1000_check_for_link establishes link for copper adapters 2413 * ONLY 2414 */ 2415 switch (hw->media_type) { 2416 case e1000_media_type_copper: 2417 if (hw->mac_type == e1000_ce4100) 2418 hw->get_link_status = 1; 2419 if (hw->get_link_status) { 2420 e1000_check_for_link(hw); 2421 link_active = !hw->get_link_status; 2422 } else { 2423 link_active = true; 2424 } 2425 break; 2426 case e1000_media_type_fiber: 2427 e1000_check_for_link(hw); 2428 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2429 break; 2430 case e1000_media_type_internal_serdes: 2431 e1000_check_for_link(hw); 2432 link_active = hw->serdes_has_link; 2433 break; 2434 default: 2435 break; 2436 } 2437 2438 return link_active; 2439 } 2440 2441 /** 2442 * e1000_watchdog - work function 2443 * @work: work struct contained inside adapter struct 2444 **/ 2445 static void e1000_watchdog(struct work_struct *work) 2446 { 2447 struct e1000_adapter *adapter = container_of(work, 2448 struct e1000_adapter, 2449 watchdog_task.work); 2450 struct e1000_hw *hw = &adapter->hw; 2451 struct net_device *netdev = adapter->netdev; 2452 struct e1000_tx_ring *txdr = adapter->tx_ring; 2453 u32 link, tctl; 2454 2455 link = e1000_has_link(adapter); 2456 if ((netif_carrier_ok(netdev)) && link) 2457 goto link_up; 2458 2459 if (link) { 2460 if (!netif_carrier_ok(netdev)) { 2461 u32 ctrl; 2462 bool txb2b = true; 2463 /* update snapshot of PHY registers on LSC */ 2464 e1000_get_speed_and_duplex(hw, 2465 &adapter->link_speed, 2466 &adapter->link_duplex); 2467 2468 ctrl = er32(CTRL); 2469 pr_info("%s NIC Link is Up %d Mbps %s, " 2470 "Flow Control: %s\n", 2471 netdev->name, 2472 adapter->link_speed, 2473 adapter->link_duplex == FULL_DUPLEX ? 2474 "Full Duplex" : "Half Duplex", 2475 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2476 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2477 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2478 E1000_CTRL_TFCE) ? "TX" : "None"))); 2479 2480 /* adjust timeout factor according to speed/duplex */ 2481 adapter->tx_timeout_factor = 1; 2482 switch (adapter->link_speed) { 2483 case SPEED_10: 2484 txb2b = false; 2485 adapter->tx_timeout_factor = 16; 2486 break; 2487 case SPEED_100: 2488 txb2b = false; 2489 /* maybe add some timeout factor ? */ 2490 break; 2491 } 2492 2493 /* enable transmits in the hardware */ 2494 tctl = er32(TCTL); 2495 tctl |= E1000_TCTL_EN; 2496 ew32(TCTL, tctl); 2497 2498 netif_carrier_on(netdev); 2499 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2500 schedule_delayed_work(&adapter->phy_info_task, 2501 2 * HZ); 2502 adapter->smartspeed = 0; 2503 } 2504 } else { 2505 if (netif_carrier_ok(netdev)) { 2506 adapter->link_speed = 0; 2507 adapter->link_duplex = 0; 2508 pr_info("%s NIC Link is Down\n", 2509 netdev->name); 2510 netif_carrier_off(netdev); 2511 2512 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2513 schedule_delayed_work(&adapter->phy_info_task, 2514 2 * HZ); 2515 } 2516 2517 e1000_smartspeed(adapter); 2518 } 2519 2520 link_up: 2521 e1000_update_stats(adapter); 2522 2523 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2524 adapter->tpt_old = adapter->stats.tpt; 2525 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2526 adapter->colc_old = adapter->stats.colc; 2527 2528 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2529 adapter->gorcl_old = adapter->stats.gorcl; 2530 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2531 adapter->gotcl_old = adapter->stats.gotcl; 2532 2533 e1000_update_adaptive(hw); 2534 2535 if (!netif_carrier_ok(netdev)) { 2536 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2537 /* We've lost link, so the controller stops DMA, 2538 * but we've got queued Tx work that's never going 2539 * to get done, so reset controller to flush Tx. 2540 * (Do the reset outside of interrupt context). 2541 */ 2542 adapter->tx_timeout_count++; 2543 schedule_work(&adapter->reset_task); 2544 /* exit immediately since reset is imminent */ 2545 return; 2546 } 2547 } 2548 2549 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2550 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2551 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2552 * Total asymmetrical Tx or Rx gets ITR=8000; 2553 * everyone else is between 2000-8000. 2554 */ 2555 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2556 u32 dif = (adapter->gotcl > adapter->gorcl ? 2557 adapter->gotcl - adapter->gorcl : 2558 adapter->gorcl - adapter->gotcl) / 10000; 2559 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2560 2561 ew32(ITR, 1000000000 / (itr * 256)); 2562 } 2563 2564 /* Cause software interrupt to ensure rx ring is cleaned */ 2565 ew32(ICS, E1000_ICS_RXDMT0); 2566 2567 /* Force detection of hung controller every watchdog period */ 2568 adapter->detect_tx_hung = true; 2569 2570 /* Reschedule the task */ 2571 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2572 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2573 } 2574 2575 enum latency_range { 2576 lowest_latency = 0, 2577 low_latency = 1, 2578 bulk_latency = 2, 2579 latency_invalid = 255 2580 }; 2581 2582 /** 2583 * e1000_update_itr - update the dynamic ITR value based on statistics 2584 * @adapter: pointer to adapter 2585 * @itr_setting: current adapter->itr 2586 * @packets: the number of packets during this measurement interval 2587 * @bytes: the number of bytes during this measurement interval 2588 * 2589 * Stores a new ITR value based on packets and byte 2590 * counts during the last interrupt. The advantage of per interrupt 2591 * computation is faster updates and more accurate ITR for the current 2592 * traffic pattern. Constants in this function were computed 2593 * based on theoretical maximum wire speed and thresholds were set based 2594 * on testing data as well as attempting to minimize response time 2595 * while increasing bulk throughput. 2596 * this functionality is controlled by the InterruptThrottleRate module 2597 * parameter (see e1000_param.c) 2598 **/ 2599 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2600 u16 itr_setting, int packets, int bytes) 2601 { 2602 unsigned int retval = itr_setting; 2603 struct e1000_hw *hw = &adapter->hw; 2604 2605 if (unlikely(hw->mac_type < e1000_82540)) 2606 goto update_itr_done; 2607 2608 if (packets == 0) 2609 goto update_itr_done; 2610 2611 switch (itr_setting) { 2612 case lowest_latency: 2613 /* jumbo frames get bulk treatment*/ 2614 if (bytes/packets > 8000) 2615 retval = bulk_latency; 2616 else if ((packets < 5) && (bytes > 512)) 2617 retval = low_latency; 2618 break; 2619 case low_latency: /* 50 usec aka 20000 ints/s */ 2620 if (bytes > 10000) { 2621 /* jumbo frames need bulk latency setting */ 2622 if (bytes/packets > 8000) 2623 retval = bulk_latency; 2624 else if ((packets < 10) || ((bytes/packets) > 1200)) 2625 retval = bulk_latency; 2626 else if ((packets > 35)) 2627 retval = lowest_latency; 2628 } else if (bytes/packets > 2000) 2629 retval = bulk_latency; 2630 else if (packets <= 2 && bytes < 512) 2631 retval = lowest_latency; 2632 break; 2633 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2634 if (bytes > 25000) { 2635 if (packets > 35) 2636 retval = low_latency; 2637 } else if (bytes < 6000) { 2638 retval = low_latency; 2639 } 2640 break; 2641 } 2642 2643 update_itr_done: 2644 return retval; 2645 } 2646 2647 static void e1000_set_itr(struct e1000_adapter *adapter) 2648 { 2649 struct e1000_hw *hw = &adapter->hw; 2650 u16 current_itr; 2651 u32 new_itr = adapter->itr; 2652 2653 if (unlikely(hw->mac_type < e1000_82540)) 2654 return; 2655 2656 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2657 if (unlikely(adapter->link_speed != SPEED_1000)) { 2658 current_itr = 0; 2659 new_itr = 4000; 2660 goto set_itr_now; 2661 } 2662 2663 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2664 adapter->total_tx_packets, 2665 adapter->total_tx_bytes); 2666 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2667 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2668 adapter->tx_itr = low_latency; 2669 2670 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2671 adapter->total_rx_packets, 2672 adapter->total_rx_bytes); 2673 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2674 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2675 adapter->rx_itr = low_latency; 2676 2677 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2678 2679 switch (current_itr) { 2680 /* counts and packets in update_itr are dependent on these numbers */ 2681 case lowest_latency: 2682 new_itr = 70000; 2683 break; 2684 case low_latency: 2685 new_itr = 20000; /* aka hwitr = ~200 */ 2686 break; 2687 case bulk_latency: 2688 new_itr = 4000; 2689 break; 2690 default: 2691 break; 2692 } 2693 2694 set_itr_now: 2695 if (new_itr != adapter->itr) { 2696 /* this attempts to bias the interrupt rate towards Bulk 2697 * by adding intermediate steps when interrupt rate is 2698 * increasing 2699 */ 2700 new_itr = new_itr > adapter->itr ? 2701 min(adapter->itr + (new_itr >> 2), new_itr) : 2702 new_itr; 2703 adapter->itr = new_itr; 2704 ew32(ITR, 1000000000 / (new_itr * 256)); 2705 } 2706 } 2707 2708 #define E1000_TX_FLAGS_CSUM 0x00000001 2709 #define E1000_TX_FLAGS_VLAN 0x00000002 2710 #define E1000_TX_FLAGS_TSO 0x00000004 2711 #define E1000_TX_FLAGS_IPV4 0x00000008 2712 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2713 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2714 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2715 2716 static int e1000_tso(struct e1000_adapter *adapter, 2717 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2718 __be16 protocol) 2719 { 2720 struct e1000_context_desc *context_desc; 2721 struct e1000_tx_buffer *buffer_info; 2722 unsigned int i; 2723 u32 cmd_length = 0; 2724 u16 ipcse = 0, tucse, mss; 2725 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2726 2727 if (skb_is_gso(skb)) { 2728 int err; 2729 2730 err = skb_cow_head(skb, 0); 2731 if (err < 0) 2732 return err; 2733 2734 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2735 mss = skb_shinfo(skb)->gso_size; 2736 if (protocol == htons(ETH_P_IP)) { 2737 struct iphdr *iph = ip_hdr(skb); 2738 iph->tot_len = 0; 2739 iph->check = 0; 2740 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2741 iph->daddr, 0, 2742 IPPROTO_TCP, 2743 0); 2744 cmd_length = E1000_TXD_CMD_IP; 2745 ipcse = skb_transport_offset(skb) - 1; 2746 } else if (skb_is_gso_v6(skb)) { 2747 ipv6_hdr(skb)->payload_len = 0; 2748 tcp_hdr(skb)->check = 2749 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2750 &ipv6_hdr(skb)->daddr, 2751 0, IPPROTO_TCP, 0); 2752 ipcse = 0; 2753 } 2754 ipcss = skb_network_offset(skb); 2755 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2756 tucss = skb_transport_offset(skb); 2757 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2758 tucse = 0; 2759 2760 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2761 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2762 2763 i = tx_ring->next_to_use; 2764 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2765 buffer_info = &tx_ring->buffer_info[i]; 2766 2767 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2768 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2769 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2770 context_desc->upper_setup.tcp_fields.tucss = tucss; 2771 context_desc->upper_setup.tcp_fields.tucso = tucso; 2772 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2773 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2774 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2775 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2776 2777 buffer_info->time_stamp = jiffies; 2778 buffer_info->next_to_watch = i; 2779 2780 if (++i == tx_ring->count) 2781 i = 0; 2782 2783 tx_ring->next_to_use = i; 2784 2785 return true; 2786 } 2787 return false; 2788 } 2789 2790 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2791 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2792 __be16 protocol) 2793 { 2794 struct e1000_context_desc *context_desc; 2795 struct e1000_tx_buffer *buffer_info; 2796 unsigned int i; 2797 u8 css; 2798 u32 cmd_len = E1000_TXD_CMD_DEXT; 2799 2800 if (skb->ip_summed != CHECKSUM_PARTIAL) 2801 return false; 2802 2803 switch (protocol) { 2804 case cpu_to_be16(ETH_P_IP): 2805 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2806 cmd_len |= E1000_TXD_CMD_TCP; 2807 break; 2808 case cpu_to_be16(ETH_P_IPV6): 2809 /* XXX not handling all IPV6 headers */ 2810 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2811 cmd_len |= E1000_TXD_CMD_TCP; 2812 break; 2813 default: 2814 if (unlikely(net_ratelimit())) 2815 e_warn(drv, "checksum_partial proto=%x!\n", 2816 skb->protocol); 2817 break; 2818 } 2819 2820 css = skb_checksum_start_offset(skb); 2821 2822 i = tx_ring->next_to_use; 2823 buffer_info = &tx_ring->buffer_info[i]; 2824 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2825 2826 context_desc->lower_setup.ip_config = 0; 2827 context_desc->upper_setup.tcp_fields.tucss = css; 2828 context_desc->upper_setup.tcp_fields.tucso = 2829 css + skb->csum_offset; 2830 context_desc->upper_setup.tcp_fields.tucse = 0; 2831 context_desc->tcp_seg_setup.data = 0; 2832 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2833 2834 buffer_info->time_stamp = jiffies; 2835 buffer_info->next_to_watch = i; 2836 2837 if (unlikely(++i == tx_ring->count)) 2838 i = 0; 2839 2840 tx_ring->next_to_use = i; 2841 2842 return true; 2843 } 2844 2845 #define E1000_MAX_TXD_PWR 12 2846 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2847 2848 static int e1000_tx_map(struct e1000_adapter *adapter, 2849 struct e1000_tx_ring *tx_ring, 2850 struct sk_buff *skb, unsigned int first, 2851 unsigned int max_per_txd, unsigned int nr_frags, 2852 unsigned int mss) 2853 { 2854 struct e1000_hw *hw = &adapter->hw; 2855 struct pci_dev *pdev = adapter->pdev; 2856 struct e1000_tx_buffer *buffer_info; 2857 unsigned int len = skb_headlen(skb); 2858 unsigned int offset = 0, size, count = 0, i; 2859 unsigned int f, bytecount, segs; 2860 2861 i = tx_ring->next_to_use; 2862 2863 while (len) { 2864 buffer_info = &tx_ring->buffer_info[i]; 2865 size = min(len, max_per_txd); 2866 /* Workaround for Controller erratum -- 2867 * descriptor for non-tso packet in a linear SKB that follows a 2868 * tso gets written back prematurely before the data is fully 2869 * DMA'd to the controller 2870 */ 2871 if (!skb->data_len && tx_ring->last_tx_tso && 2872 !skb_is_gso(skb)) { 2873 tx_ring->last_tx_tso = false; 2874 size -= 4; 2875 } 2876 2877 /* Workaround for premature desc write-backs 2878 * in TSO mode. Append 4-byte sentinel desc 2879 */ 2880 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2881 size -= 4; 2882 /* work-around for errata 10 and it applies 2883 * to all controllers in PCI-X mode 2884 * The fix is to make sure that the first descriptor of a 2885 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2886 */ 2887 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2888 (size > 2015) && count == 0)) 2889 size = 2015; 2890 2891 /* Workaround for potential 82544 hang in PCI-X. Avoid 2892 * terminating buffers within evenly-aligned dwords. 2893 */ 2894 if (unlikely(adapter->pcix_82544 && 2895 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2896 size > 4)) 2897 size -= 4; 2898 2899 buffer_info->length = size; 2900 /* set time_stamp *before* dma to help avoid a possible race */ 2901 buffer_info->time_stamp = jiffies; 2902 buffer_info->mapped_as_page = false; 2903 buffer_info->dma = dma_map_single(&pdev->dev, 2904 skb->data + offset, 2905 size, DMA_TO_DEVICE); 2906 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2907 goto dma_error; 2908 buffer_info->next_to_watch = i; 2909 2910 len -= size; 2911 offset += size; 2912 count++; 2913 if (len) { 2914 i++; 2915 if (unlikely(i == tx_ring->count)) 2916 i = 0; 2917 } 2918 } 2919 2920 for (f = 0; f < nr_frags; f++) { 2921 const struct skb_frag_struct *frag; 2922 2923 frag = &skb_shinfo(skb)->frags[f]; 2924 len = skb_frag_size(frag); 2925 offset = 0; 2926 2927 while (len) { 2928 unsigned long bufend; 2929 i++; 2930 if (unlikely(i == tx_ring->count)) 2931 i = 0; 2932 2933 buffer_info = &tx_ring->buffer_info[i]; 2934 size = min(len, max_per_txd); 2935 /* Workaround for premature desc write-backs 2936 * in TSO mode. Append 4-byte sentinel desc 2937 */ 2938 if (unlikely(mss && f == (nr_frags-1) && 2939 size == len && size > 8)) 2940 size -= 4; 2941 /* Workaround for potential 82544 hang in PCI-X. 2942 * Avoid terminating buffers within evenly-aligned 2943 * dwords. 2944 */ 2945 bufend = (unsigned long) 2946 page_to_phys(skb_frag_page(frag)); 2947 bufend += offset + size - 1; 2948 if (unlikely(adapter->pcix_82544 && 2949 !(bufend & 4) && 2950 size > 4)) 2951 size -= 4; 2952 2953 buffer_info->length = size; 2954 buffer_info->time_stamp = jiffies; 2955 buffer_info->mapped_as_page = true; 2956 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2957 offset, size, DMA_TO_DEVICE); 2958 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2959 goto dma_error; 2960 buffer_info->next_to_watch = i; 2961 2962 len -= size; 2963 offset += size; 2964 count++; 2965 } 2966 } 2967 2968 segs = skb_shinfo(skb)->gso_segs ?: 1; 2969 /* multiply data chunks by size of headers */ 2970 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2971 2972 tx_ring->buffer_info[i].skb = skb; 2973 tx_ring->buffer_info[i].segs = segs; 2974 tx_ring->buffer_info[i].bytecount = bytecount; 2975 tx_ring->buffer_info[first].next_to_watch = i; 2976 2977 return count; 2978 2979 dma_error: 2980 dev_err(&pdev->dev, "TX DMA map failed\n"); 2981 buffer_info->dma = 0; 2982 if (count) 2983 count--; 2984 2985 while (count--) { 2986 if (i == 0) 2987 i += tx_ring->count; 2988 i--; 2989 buffer_info = &tx_ring->buffer_info[i]; 2990 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2991 } 2992 2993 return 0; 2994 } 2995 2996 static void e1000_tx_queue(struct e1000_adapter *adapter, 2997 struct e1000_tx_ring *tx_ring, int tx_flags, 2998 int count) 2999 { 3000 struct e1000_tx_desc *tx_desc = NULL; 3001 struct e1000_tx_buffer *buffer_info; 3002 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 3003 unsigned int i; 3004 3005 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 3006 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 3007 E1000_TXD_CMD_TSE; 3008 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3009 3010 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 3011 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 3012 } 3013 3014 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 3015 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 3016 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3017 } 3018 3019 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 3020 txd_lower |= E1000_TXD_CMD_VLE; 3021 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 3022 } 3023 3024 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3025 txd_lower &= ~(E1000_TXD_CMD_IFCS); 3026 3027 i = tx_ring->next_to_use; 3028 3029 while (count--) { 3030 buffer_info = &tx_ring->buffer_info[i]; 3031 tx_desc = E1000_TX_DESC(*tx_ring, i); 3032 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3033 tx_desc->lower.data = 3034 cpu_to_le32(txd_lower | buffer_info->length); 3035 tx_desc->upper.data = cpu_to_le32(txd_upper); 3036 if (unlikely(++i == tx_ring->count)) 3037 i = 0; 3038 } 3039 3040 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3041 3042 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3043 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3044 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3045 3046 /* Force memory writes to complete before letting h/w 3047 * know there are new descriptors to fetch. (Only 3048 * applicable for weak-ordered memory model archs, 3049 * such as IA-64). 3050 */ 3051 wmb(); 3052 3053 tx_ring->next_to_use = i; 3054 } 3055 3056 /* 82547 workaround to avoid controller hang in half-duplex environment. 3057 * The workaround is to avoid queuing a large packet that would span 3058 * the internal Tx FIFO ring boundary by notifying the stack to resend 3059 * the packet at a later time. This gives the Tx FIFO an opportunity to 3060 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3061 * to the beginning of the Tx FIFO. 3062 */ 3063 3064 #define E1000_FIFO_HDR 0x10 3065 #define E1000_82547_PAD_LEN 0x3E0 3066 3067 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3068 struct sk_buff *skb) 3069 { 3070 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3071 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3072 3073 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3074 3075 if (adapter->link_duplex != HALF_DUPLEX) 3076 goto no_fifo_stall_required; 3077 3078 if (atomic_read(&adapter->tx_fifo_stall)) 3079 return 1; 3080 3081 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3082 atomic_set(&adapter->tx_fifo_stall, 1); 3083 return 1; 3084 } 3085 3086 no_fifo_stall_required: 3087 adapter->tx_fifo_head += skb_fifo_len; 3088 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3089 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3090 return 0; 3091 } 3092 3093 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3094 { 3095 struct e1000_adapter *adapter = netdev_priv(netdev); 3096 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3097 3098 netif_stop_queue(netdev); 3099 /* Herbert's original patch had: 3100 * smp_mb__after_netif_stop_queue(); 3101 * but since that doesn't exist yet, just open code it. 3102 */ 3103 smp_mb(); 3104 3105 /* We need to check again in a case another CPU has just 3106 * made room available. 3107 */ 3108 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3109 return -EBUSY; 3110 3111 /* A reprieve! */ 3112 netif_start_queue(netdev); 3113 ++adapter->restart_queue; 3114 return 0; 3115 } 3116 3117 static int e1000_maybe_stop_tx(struct net_device *netdev, 3118 struct e1000_tx_ring *tx_ring, int size) 3119 { 3120 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3121 return 0; 3122 return __e1000_maybe_stop_tx(netdev, size); 3123 } 3124 3125 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) 3126 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3127 struct net_device *netdev) 3128 { 3129 struct e1000_adapter *adapter = netdev_priv(netdev); 3130 struct e1000_hw *hw = &adapter->hw; 3131 struct e1000_tx_ring *tx_ring; 3132 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3133 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3134 unsigned int tx_flags = 0; 3135 unsigned int len = skb_headlen(skb); 3136 unsigned int nr_frags; 3137 unsigned int mss; 3138 int count = 0; 3139 int tso; 3140 unsigned int f; 3141 __be16 protocol = vlan_get_protocol(skb); 3142 3143 /* This goes back to the question of how to logically map a Tx queue 3144 * to a flow. Right now, performance is impacted slightly negatively 3145 * if using multiple Tx queues. If the stack breaks away from a 3146 * single qdisc implementation, we can look at this again. 3147 */ 3148 tx_ring = adapter->tx_ring; 3149 3150 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3151 * packets may get corrupted during padding by HW. 3152 * To WA this issue, pad all small packets manually. 3153 */ 3154 if (eth_skb_pad(skb)) 3155 return NETDEV_TX_OK; 3156 3157 mss = skb_shinfo(skb)->gso_size; 3158 /* The controller does a simple calculation to 3159 * make sure there is enough room in the FIFO before 3160 * initiating the DMA for each buffer. The calc is: 3161 * 4 = ceil(buffer len/mss). To make sure we don't 3162 * overrun the FIFO, adjust the max buffer len if mss 3163 * drops. 3164 */ 3165 if (mss) { 3166 u8 hdr_len; 3167 max_per_txd = min(mss << 2, max_per_txd); 3168 max_txd_pwr = fls(max_per_txd) - 1; 3169 3170 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3171 if (skb->data_len && hdr_len == len) { 3172 switch (hw->mac_type) { 3173 unsigned int pull_size; 3174 case e1000_82544: 3175 /* Make sure we have room to chop off 4 bytes, 3176 * and that the end alignment will work out to 3177 * this hardware's requirements 3178 * NOTE: this is a TSO only workaround 3179 * if end byte alignment not correct move us 3180 * into the next dword 3181 */ 3182 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3183 & 4) 3184 break; 3185 /* fall through */ 3186 pull_size = min((unsigned int)4, skb->data_len); 3187 if (!__pskb_pull_tail(skb, pull_size)) { 3188 e_err(drv, "__pskb_pull_tail " 3189 "failed.\n"); 3190 dev_kfree_skb_any(skb); 3191 return NETDEV_TX_OK; 3192 } 3193 len = skb_headlen(skb); 3194 break; 3195 default: 3196 /* do nothing */ 3197 break; 3198 } 3199 } 3200 } 3201 3202 /* reserve a descriptor for the offload context */ 3203 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3204 count++; 3205 count++; 3206 3207 /* Controller Erratum workaround */ 3208 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3209 count++; 3210 3211 count += TXD_USE_COUNT(len, max_txd_pwr); 3212 3213 if (adapter->pcix_82544) 3214 count++; 3215 3216 /* work-around for errata 10 and it applies to all controllers 3217 * in PCI-X mode, so add one more descriptor to the count 3218 */ 3219 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3220 (len > 2015))) 3221 count++; 3222 3223 nr_frags = skb_shinfo(skb)->nr_frags; 3224 for (f = 0; f < nr_frags; f++) 3225 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3226 max_txd_pwr); 3227 if (adapter->pcix_82544) 3228 count += nr_frags; 3229 3230 /* need: count + 2 desc gap to keep tail from touching 3231 * head, otherwise try next time 3232 */ 3233 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3234 return NETDEV_TX_BUSY; 3235 3236 if (unlikely((hw->mac_type == e1000_82547) && 3237 (e1000_82547_fifo_workaround(adapter, skb)))) { 3238 netif_stop_queue(netdev); 3239 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3240 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3241 return NETDEV_TX_BUSY; 3242 } 3243 3244 if (skb_vlan_tag_present(skb)) { 3245 tx_flags |= E1000_TX_FLAGS_VLAN; 3246 tx_flags |= (skb_vlan_tag_get(skb) << 3247 E1000_TX_FLAGS_VLAN_SHIFT); 3248 } 3249 3250 first = tx_ring->next_to_use; 3251 3252 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3253 if (tso < 0) { 3254 dev_kfree_skb_any(skb); 3255 return NETDEV_TX_OK; 3256 } 3257 3258 if (likely(tso)) { 3259 if (likely(hw->mac_type != e1000_82544)) 3260 tx_ring->last_tx_tso = true; 3261 tx_flags |= E1000_TX_FLAGS_TSO; 3262 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3263 tx_flags |= E1000_TX_FLAGS_CSUM; 3264 3265 if (protocol == htons(ETH_P_IP)) 3266 tx_flags |= E1000_TX_FLAGS_IPV4; 3267 3268 if (unlikely(skb->no_fcs)) 3269 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3270 3271 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3272 nr_frags, mss); 3273 3274 if (count) { 3275 /* The descriptors needed is higher than other Intel drivers 3276 * due to a number of workarounds. The breakdown is below: 3277 * Data descriptors: MAX_SKB_FRAGS + 1 3278 * Context Descriptor: 1 3279 * Keep head from touching tail: 2 3280 * Workarounds: 3 3281 */ 3282 int desc_needed = MAX_SKB_FRAGS + 7; 3283 3284 netdev_sent_queue(netdev, skb->len); 3285 skb_tx_timestamp(skb); 3286 3287 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3288 3289 /* 82544 potentially requires twice as many data descriptors 3290 * in order to guarantee buffers don't end on evenly-aligned 3291 * dwords 3292 */ 3293 if (adapter->pcix_82544) 3294 desc_needed += MAX_SKB_FRAGS + 1; 3295 3296 /* Make sure there is space in the ring for the next send. */ 3297 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); 3298 3299 if (!skb->xmit_more || 3300 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 3301 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); 3302 /* we need this if more than one processor can write to 3303 * our tail at a time, it synchronizes IO on IA64/Altix 3304 * systems 3305 */ 3306 mmiowb(); 3307 } 3308 } else { 3309 dev_kfree_skb_any(skb); 3310 tx_ring->buffer_info[first].time_stamp = 0; 3311 tx_ring->next_to_use = first; 3312 } 3313 3314 return NETDEV_TX_OK; 3315 } 3316 3317 #define NUM_REGS 38 /* 1 based count */ 3318 static void e1000_regdump(struct e1000_adapter *adapter) 3319 { 3320 struct e1000_hw *hw = &adapter->hw; 3321 u32 regs[NUM_REGS]; 3322 u32 *regs_buff = regs; 3323 int i = 0; 3324 3325 static const char * const reg_name[] = { 3326 "CTRL", "STATUS", 3327 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3328 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3329 "TIDV", "TXDCTL", "TADV", "TARC0", 3330 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3331 "TXDCTL1", "TARC1", 3332 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3333 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3334 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3335 }; 3336 3337 regs_buff[0] = er32(CTRL); 3338 regs_buff[1] = er32(STATUS); 3339 3340 regs_buff[2] = er32(RCTL); 3341 regs_buff[3] = er32(RDLEN); 3342 regs_buff[4] = er32(RDH); 3343 regs_buff[5] = er32(RDT); 3344 regs_buff[6] = er32(RDTR); 3345 3346 regs_buff[7] = er32(TCTL); 3347 regs_buff[8] = er32(TDBAL); 3348 regs_buff[9] = er32(TDBAH); 3349 regs_buff[10] = er32(TDLEN); 3350 regs_buff[11] = er32(TDH); 3351 regs_buff[12] = er32(TDT); 3352 regs_buff[13] = er32(TIDV); 3353 regs_buff[14] = er32(TXDCTL); 3354 regs_buff[15] = er32(TADV); 3355 regs_buff[16] = er32(TARC0); 3356 3357 regs_buff[17] = er32(TDBAL1); 3358 regs_buff[18] = er32(TDBAH1); 3359 regs_buff[19] = er32(TDLEN1); 3360 regs_buff[20] = er32(TDH1); 3361 regs_buff[21] = er32(TDT1); 3362 regs_buff[22] = er32(TXDCTL1); 3363 regs_buff[23] = er32(TARC1); 3364 regs_buff[24] = er32(CTRL_EXT); 3365 regs_buff[25] = er32(ERT); 3366 regs_buff[26] = er32(RDBAL0); 3367 regs_buff[27] = er32(RDBAH0); 3368 regs_buff[28] = er32(TDFH); 3369 regs_buff[29] = er32(TDFT); 3370 regs_buff[30] = er32(TDFHS); 3371 regs_buff[31] = er32(TDFTS); 3372 regs_buff[32] = er32(TDFPC); 3373 regs_buff[33] = er32(RDFH); 3374 regs_buff[34] = er32(RDFT); 3375 regs_buff[35] = er32(RDFHS); 3376 regs_buff[36] = er32(RDFTS); 3377 regs_buff[37] = er32(RDFPC); 3378 3379 pr_info("Register dump\n"); 3380 for (i = 0; i < NUM_REGS; i++) 3381 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3382 } 3383 3384 /* 3385 * e1000_dump: Print registers, tx ring and rx ring 3386 */ 3387 static void e1000_dump(struct e1000_adapter *adapter) 3388 { 3389 /* this code doesn't handle multiple rings */ 3390 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3391 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3392 int i; 3393 3394 if (!netif_msg_hw(adapter)) 3395 return; 3396 3397 /* Print Registers */ 3398 e1000_regdump(adapter); 3399 3400 /* transmit dump */ 3401 pr_info("TX Desc ring0 dump\n"); 3402 3403 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3404 * 3405 * Legacy Transmit Descriptor 3406 * +--------------------------------------------------------------+ 3407 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3408 * +--------------------------------------------------------------+ 3409 * 8 | Special | CSS | Status | CMD | CSO | Length | 3410 * +--------------------------------------------------------------+ 3411 * 63 48 47 36 35 32 31 24 23 16 15 0 3412 * 3413 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3414 * 63 48 47 40 39 32 31 16 15 8 7 0 3415 * +----------------------------------------------------------------+ 3416 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3417 * +----------------------------------------------------------------+ 3418 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3419 * +----------------------------------------------------------------+ 3420 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3421 * 3422 * Extended Data Descriptor (DTYP=0x1) 3423 * +----------------------------------------------------------------+ 3424 * 0 | Buffer Address [63:0] | 3425 * +----------------------------------------------------------------+ 3426 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3427 * +----------------------------------------------------------------+ 3428 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3429 */ 3430 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3431 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3432 3433 if (!netif_msg_tx_done(adapter)) 3434 goto rx_ring_summary; 3435 3436 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3437 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3438 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3439 struct my_u { __le64 a; __le64 b; }; 3440 struct my_u *u = (struct my_u *)tx_desc; 3441 const char *type; 3442 3443 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3444 type = "NTC/U"; 3445 else if (i == tx_ring->next_to_use) 3446 type = "NTU"; 3447 else if (i == tx_ring->next_to_clean) 3448 type = "NTC"; 3449 else 3450 type = ""; 3451 3452 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3453 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3454 le64_to_cpu(u->a), le64_to_cpu(u->b), 3455 (u64)buffer_info->dma, buffer_info->length, 3456 buffer_info->next_to_watch, 3457 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3458 } 3459 3460 rx_ring_summary: 3461 /* receive dump */ 3462 pr_info("\nRX Desc ring dump\n"); 3463 3464 /* Legacy Receive Descriptor Format 3465 * 3466 * +-----------------------------------------------------+ 3467 * | Buffer Address [63:0] | 3468 * +-----------------------------------------------------+ 3469 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3470 * +-----------------------------------------------------+ 3471 * 63 48 47 40 39 32 31 16 15 0 3472 */ 3473 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3474 3475 if (!netif_msg_rx_status(adapter)) 3476 goto exit; 3477 3478 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3479 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3480 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3481 struct my_u { __le64 a; __le64 b; }; 3482 struct my_u *u = (struct my_u *)rx_desc; 3483 const char *type; 3484 3485 if (i == rx_ring->next_to_use) 3486 type = "NTU"; 3487 else if (i == rx_ring->next_to_clean) 3488 type = "NTC"; 3489 else 3490 type = ""; 3491 3492 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3493 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3494 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3495 } /* for */ 3496 3497 /* dump the descriptor caches */ 3498 /* rx */ 3499 pr_info("Rx descriptor cache in 64bit format\n"); 3500 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3501 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3502 i, 3503 readl(adapter->hw.hw_addr + i+4), 3504 readl(adapter->hw.hw_addr + i), 3505 readl(adapter->hw.hw_addr + i+12), 3506 readl(adapter->hw.hw_addr + i+8)); 3507 } 3508 /* tx */ 3509 pr_info("Tx descriptor cache in 64bit format\n"); 3510 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3511 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3512 i, 3513 readl(adapter->hw.hw_addr + i+4), 3514 readl(adapter->hw.hw_addr + i), 3515 readl(adapter->hw.hw_addr + i+12), 3516 readl(adapter->hw.hw_addr + i+8)); 3517 } 3518 exit: 3519 return; 3520 } 3521 3522 /** 3523 * e1000_tx_timeout - Respond to a Tx Hang 3524 * @netdev: network interface device structure 3525 **/ 3526 static void e1000_tx_timeout(struct net_device *netdev) 3527 { 3528 struct e1000_adapter *adapter = netdev_priv(netdev); 3529 3530 /* Do the reset outside of interrupt context */ 3531 adapter->tx_timeout_count++; 3532 schedule_work(&adapter->reset_task); 3533 } 3534 3535 static void e1000_reset_task(struct work_struct *work) 3536 { 3537 struct e1000_adapter *adapter = 3538 container_of(work, struct e1000_adapter, reset_task); 3539 3540 e_err(drv, "Reset adapter\n"); 3541 e1000_reinit_locked(adapter); 3542 } 3543 3544 /** 3545 * e1000_change_mtu - Change the Maximum Transfer Unit 3546 * @netdev: network interface device structure 3547 * @new_mtu: new value for maximum frame size 3548 * 3549 * Returns 0 on success, negative on failure 3550 **/ 3551 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3552 { 3553 struct e1000_adapter *adapter = netdev_priv(netdev); 3554 struct e1000_hw *hw = &adapter->hw; 3555 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3556 3557 /* Adapter-specific max frame size limits. */ 3558 switch (hw->mac_type) { 3559 case e1000_undefined ... e1000_82542_rev2_1: 3560 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3561 e_err(probe, "Jumbo Frames not supported.\n"); 3562 return -EINVAL; 3563 } 3564 break; 3565 default: 3566 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3567 break; 3568 } 3569 3570 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3571 msleep(1); 3572 /* e1000_down has a dependency on max_frame_size */ 3573 hw->max_frame_size = max_frame; 3574 if (netif_running(netdev)) { 3575 /* prevent buffers from being reallocated */ 3576 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; 3577 e1000_down(adapter); 3578 } 3579 3580 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3581 * means we reserve 2 more, this pushes us to allocate from the next 3582 * larger slab size. 3583 * i.e. RXBUFFER_2048 --> size-4096 slab 3584 * however with the new *_jumbo_rx* routines, jumbo receives will use 3585 * fragmented skbs 3586 */ 3587 3588 if (max_frame <= E1000_RXBUFFER_2048) 3589 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3590 else 3591 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3592 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3593 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3594 adapter->rx_buffer_len = PAGE_SIZE; 3595 #endif 3596 3597 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3598 if (!hw->tbi_compatibility_on && 3599 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3600 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3601 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3602 3603 pr_info("%s changing MTU from %d to %d\n", 3604 netdev->name, netdev->mtu, new_mtu); 3605 netdev->mtu = new_mtu; 3606 3607 if (netif_running(netdev)) 3608 e1000_up(adapter); 3609 else 3610 e1000_reset(adapter); 3611 3612 clear_bit(__E1000_RESETTING, &adapter->flags); 3613 3614 return 0; 3615 } 3616 3617 /** 3618 * e1000_update_stats - Update the board statistics counters 3619 * @adapter: board private structure 3620 **/ 3621 void e1000_update_stats(struct e1000_adapter *adapter) 3622 { 3623 struct net_device *netdev = adapter->netdev; 3624 struct e1000_hw *hw = &adapter->hw; 3625 struct pci_dev *pdev = adapter->pdev; 3626 unsigned long flags; 3627 u16 phy_tmp; 3628 3629 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3630 3631 /* Prevent stats update while adapter is being reset, or if the pci 3632 * connection is down. 3633 */ 3634 if (adapter->link_speed == 0) 3635 return; 3636 if (pci_channel_offline(pdev)) 3637 return; 3638 3639 spin_lock_irqsave(&adapter->stats_lock, flags); 3640 3641 /* these counters are modified from e1000_tbi_adjust_stats, 3642 * called from the interrupt context, so they must only 3643 * be written while holding adapter->stats_lock 3644 */ 3645 3646 adapter->stats.crcerrs += er32(CRCERRS); 3647 adapter->stats.gprc += er32(GPRC); 3648 adapter->stats.gorcl += er32(GORCL); 3649 adapter->stats.gorch += er32(GORCH); 3650 adapter->stats.bprc += er32(BPRC); 3651 adapter->stats.mprc += er32(MPRC); 3652 adapter->stats.roc += er32(ROC); 3653 3654 adapter->stats.prc64 += er32(PRC64); 3655 adapter->stats.prc127 += er32(PRC127); 3656 adapter->stats.prc255 += er32(PRC255); 3657 adapter->stats.prc511 += er32(PRC511); 3658 adapter->stats.prc1023 += er32(PRC1023); 3659 adapter->stats.prc1522 += er32(PRC1522); 3660 3661 adapter->stats.symerrs += er32(SYMERRS); 3662 adapter->stats.mpc += er32(MPC); 3663 adapter->stats.scc += er32(SCC); 3664 adapter->stats.ecol += er32(ECOL); 3665 adapter->stats.mcc += er32(MCC); 3666 adapter->stats.latecol += er32(LATECOL); 3667 adapter->stats.dc += er32(DC); 3668 adapter->stats.sec += er32(SEC); 3669 adapter->stats.rlec += er32(RLEC); 3670 adapter->stats.xonrxc += er32(XONRXC); 3671 adapter->stats.xontxc += er32(XONTXC); 3672 adapter->stats.xoffrxc += er32(XOFFRXC); 3673 adapter->stats.xofftxc += er32(XOFFTXC); 3674 adapter->stats.fcruc += er32(FCRUC); 3675 adapter->stats.gptc += er32(GPTC); 3676 adapter->stats.gotcl += er32(GOTCL); 3677 adapter->stats.gotch += er32(GOTCH); 3678 adapter->stats.rnbc += er32(RNBC); 3679 adapter->stats.ruc += er32(RUC); 3680 adapter->stats.rfc += er32(RFC); 3681 adapter->stats.rjc += er32(RJC); 3682 adapter->stats.torl += er32(TORL); 3683 adapter->stats.torh += er32(TORH); 3684 adapter->stats.totl += er32(TOTL); 3685 adapter->stats.toth += er32(TOTH); 3686 adapter->stats.tpr += er32(TPR); 3687 3688 adapter->stats.ptc64 += er32(PTC64); 3689 adapter->stats.ptc127 += er32(PTC127); 3690 adapter->stats.ptc255 += er32(PTC255); 3691 adapter->stats.ptc511 += er32(PTC511); 3692 adapter->stats.ptc1023 += er32(PTC1023); 3693 adapter->stats.ptc1522 += er32(PTC1522); 3694 3695 adapter->stats.mptc += er32(MPTC); 3696 adapter->stats.bptc += er32(BPTC); 3697 3698 /* used for adaptive IFS */ 3699 3700 hw->tx_packet_delta = er32(TPT); 3701 adapter->stats.tpt += hw->tx_packet_delta; 3702 hw->collision_delta = er32(COLC); 3703 adapter->stats.colc += hw->collision_delta; 3704 3705 if (hw->mac_type >= e1000_82543) { 3706 adapter->stats.algnerrc += er32(ALGNERRC); 3707 adapter->stats.rxerrc += er32(RXERRC); 3708 adapter->stats.tncrs += er32(TNCRS); 3709 adapter->stats.cexterr += er32(CEXTERR); 3710 adapter->stats.tsctc += er32(TSCTC); 3711 adapter->stats.tsctfc += er32(TSCTFC); 3712 } 3713 3714 /* Fill out the OS statistics structure */ 3715 netdev->stats.multicast = adapter->stats.mprc; 3716 netdev->stats.collisions = adapter->stats.colc; 3717 3718 /* Rx Errors */ 3719 3720 /* RLEC on some newer hardware can be incorrect so build 3721 * our own version based on RUC and ROC 3722 */ 3723 netdev->stats.rx_errors = adapter->stats.rxerrc + 3724 adapter->stats.crcerrs + adapter->stats.algnerrc + 3725 adapter->stats.ruc + adapter->stats.roc + 3726 adapter->stats.cexterr; 3727 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3728 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3729 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3730 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3731 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3732 3733 /* Tx Errors */ 3734 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3735 netdev->stats.tx_errors = adapter->stats.txerrc; 3736 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3737 netdev->stats.tx_window_errors = adapter->stats.latecol; 3738 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3739 if (hw->bad_tx_carr_stats_fd && 3740 adapter->link_duplex == FULL_DUPLEX) { 3741 netdev->stats.tx_carrier_errors = 0; 3742 adapter->stats.tncrs = 0; 3743 } 3744 3745 /* Tx Dropped needs to be maintained elsewhere */ 3746 3747 /* Phy Stats */ 3748 if (hw->media_type == e1000_media_type_copper) { 3749 if ((adapter->link_speed == SPEED_1000) && 3750 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3751 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3752 adapter->phy_stats.idle_errors += phy_tmp; 3753 } 3754 3755 if ((hw->mac_type <= e1000_82546) && 3756 (hw->phy_type == e1000_phy_m88) && 3757 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3758 adapter->phy_stats.receive_errors += phy_tmp; 3759 } 3760 3761 /* Management Stats */ 3762 if (hw->has_smbus) { 3763 adapter->stats.mgptc += er32(MGTPTC); 3764 adapter->stats.mgprc += er32(MGTPRC); 3765 adapter->stats.mgpdc += er32(MGTPDC); 3766 } 3767 3768 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3769 } 3770 3771 /** 3772 * e1000_intr - Interrupt Handler 3773 * @irq: interrupt number 3774 * @data: pointer to a network interface device structure 3775 **/ 3776 static irqreturn_t e1000_intr(int irq, void *data) 3777 { 3778 struct net_device *netdev = data; 3779 struct e1000_adapter *adapter = netdev_priv(netdev); 3780 struct e1000_hw *hw = &adapter->hw; 3781 u32 icr = er32(ICR); 3782 3783 if (unlikely((!icr))) 3784 return IRQ_NONE; /* Not our interrupt */ 3785 3786 /* we might have caused the interrupt, but the above 3787 * read cleared it, and just in case the driver is 3788 * down there is nothing to do so return handled 3789 */ 3790 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3791 return IRQ_HANDLED; 3792 3793 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3794 hw->get_link_status = 1; 3795 /* guard against interrupt when we're going down */ 3796 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3797 schedule_delayed_work(&adapter->watchdog_task, 1); 3798 } 3799 3800 /* disable interrupts, without the synchronize_irq bit */ 3801 ew32(IMC, ~0); 3802 E1000_WRITE_FLUSH(); 3803 3804 if (likely(napi_schedule_prep(&adapter->napi))) { 3805 adapter->total_tx_bytes = 0; 3806 adapter->total_tx_packets = 0; 3807 adapter->total_rx_bytes = 0; 3808 adapter->total_rx_packets = 0; 3809 __napi_schedule(&adapter->napi); 3810 } else { 3811 /* this really should not happen! if it does it is basically a 3812 * bug, but not a hard error, so enable ints and continue 3813 */ 3814 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3815 e1000_irq_enable(adapter); 3816 } 3817 3818 return IRQ_HANDLED; 3819 } 3820 3821 /** 3822 * e1000_clean - NAPI Rx polling callback 3823 * @adapter: board private structure 3824 **/ 3825 static int e1000_clean(struct napi_struct *napi, int budget) 3826 { 3827 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3828 napi); 3829 int tx_clean_complete = 0, work_done = 0; 3830 3831 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3832 3833 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3834 3835 if (!tx_clean_complete) 3836 work_done = budget; 3837 3838 /* If budget not fully consumed, exit the polling mode */ 3839 if (work_done < budget) { 3840 if (likely(adapter->itr_setting & 3)) 3841 e1000_set_itr(adapter); 3842 napi_complete_done(napi, work_done); 3843 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3844 e1000_irq_enable(adapter); 3845 } 3846 3847 return work_done; 3848 } 3849 3850 /** 3851 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3852 * @adapter: board private structure 3853 **/ 3854 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3855 struct e1000_tx_ring *tx_ring) 3856 { 3857 struct e1000_hw *hw = &adapter->hw; 3858 struct net_device *netdev = adapter->netdev; 3859 struct e1000_tx_desc *tx_desc, *eop_desc; 3860 struct e1000_tx_buffer *buffer_info; 3861 unsigned int i, eop; 3862 unsigned int count = 0; 3863 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 3864 unsigned int bytes_compl = 0, pkts_compl = 0; 3865 3866 i = tx_ring->next_to_clean; 3867 eop = tx_ring->buffer_info[i].next_to_watch; 3868 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3869 3870 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3871 (count < tx_ring->count)) { 3872 bool cleaned = false; 3873 dma_rmb(); /* read buffer_info after eop_desc */ 3874 for ( ; !cleaned; count++) { 3875 tx_desc = E1000_TX_DESC(*tx_ring, i); 3876 buffer_info = &tx_ring->buffer_info[i]; 3877 cleaned = (i == eop); 3878 3879 if (cleaned) { 3880 total_tx_packets += buffer_info->segs; 3881 total_tx_bytes += buffer_info->bytecount; 3882 if (buffer_info->skb) { 3883 bytes_compl += buffer_info->skb->len; 3884 pkts_compl++; 3885 } 3886 3887 } 3888 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3889 tx_desc->upper.data = 0; 3890 3891 if (unlikely(++i == tx_ring->count)) 3892 i = 0; 3893 } 3894 3895 eop = tx_ring->buffer_info[i].next_to_watch; 3896 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3897 } 3898 3899 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, 3900 * which will reuse the cleaned buffers. 3901 */ 3902 smp_store_release(&tx_ring->next_to_clean, i); 3903 3904 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3905 3906 #define TX_WAKE_THRESHOLD 32 3907 if (unlikely(count && netif_carrier_ok(netdev) && 3908 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3909 /* Make sure that anybody stopping the queue after this 3910 * sees the new next_to_clean. 3911 */ 3912 smp_mb(); 3913 3914 if (netif_queue_stopped(netdev) && 3915 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3916 netif_wake_queue(netdev); 3917 ++adapter->restart_queue; 3918 } 3919 } 3920 3921 if (adapter->detect_tx_hung) { 3922 /* Detect a transmit hang in hardware, this serializes the 3923 * check with the clearing of time_stamp and movement of i 3924 */ 3925 adapter->detect_tx_hung = false; 3926 if (tx_ring->buffer_info[eop].time_stamp && 3927 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3928 (adapter->tx_timeout_factor * HZ)) && 3929 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3930 3931 /* detected Tx unit hang */ 3932 e_err(drv, "Detected Tx Unit Hang\n" 3933 " Tx Queue <%lu>\n" 3934 " TDH <%x>\n" 3935 " TDT <%x>\n" 3936 " next_to_use <%x>\n" 3937 " next_to_clean <%x>\n" 3938 "buffer_info[next_to_clean]\n" 3939 " time_stamp <%lx>\n" 3940 " next_to_watch <%x>\n" 3941 " jiffies <%lx>\n" 3942 " next_to_watch.status <%x>\n", 3943 (unsigned long)(tx_ring - adapter->tx_ring), 3944 readl(hw->hw_addr + tx_ring->tdh), 3945 readl(hw->hw_addr + tx_ring->tdt), 3946 tx_ring->next_to_use, 3947 tx_ring->next_to_clean, 3948 tx_ring->buffer_info[eop].time_stamp, 3949 eop, 3950 jiffies, 3951 eop_desc->upper.fields.status); 3952 e1000_dump(adapter); 3953 netif_stop_queue(netdev); 3954 } 3955 } 3956 adapter->total_tx_bytes += total_tx_bytes; 3957 adapter->total_tx_packets += total_tx_packets; 3958 netdev->stats.tx_bytes += total_tx_bytes; 3959 netdev->stats.tx_packets += total_tx_packets; 3960 return count < tx_ring->count; 3961 } 3962 3963 /** 3964 * e1000_rx_checksum - Receive Checksum Offload for 82543 3965 * @adapter: board private structure 3966 * @status_err: receive descriptor status and error fields 3967 * @csum: receive descriptor csum field 3968 * @sk_buff: socket buffer with received data 3969 **/ 3970 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3971 u32 csum, struct sk_buff *skb) 3972 { 3973 struct e1000_hw *hw = &adapter->hw; 3974 u16 status = (u16)status_err; 3975 u8 errors = (u8)(status_err >> 24); 3976 3977 skb_checksum_none_assert(skb); 3978 3979 /* 82543 or newer only */ 3980 if (unlikely(hw->mac_type < e1000_82543)) 3981 return; 3982 /* Ignore Checksum bit is set */ 3983 if (unlikely(status & E1000_RXD_STAT_IXSM)) 3984 return; 3985 /* TCP/UDP checksum error bit is set */ 3986 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3987 /* let the stack verify checksum errors */ 3988 adapter->hw_csum_err++; 3989 return; 3990 } 3991 /* TCP/UDP Checksum has not been calculated */ 3992 if (!(status & E1000_RXD_STAT_TCPCS)) 3993 return; 3994 3995 /* It must be a TCP or UDP packet with a valid checksum */ 3996 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3997 /* TCP checksum is good */ 3998 skb->ip_summed = CHECKSUM_UNNECESSARY; 3999 } 4000 adapter->hw_csum_good++; 4001 } 4002 4003 /** 4004 * e1000_consume_page - helper function for jumbo Rx path 4005 **/ 4006 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 4007 u16 length) 4008 { 4009 bi->rxbuf.page = NULL; 4010 skb->len += length; 4011 skb->data_len += length; 4012 skb->truesize += PAGE_SIZE; 4013 } 4014 4015 /** 4016 * e1000_receive_skb - helper function to handle rx indications 4017 * @adapter: board private structure 4018 * @status: descriptor status field as written by hardware 4019 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 4020 * @skb: pointer to sk_buff to be indicated to stack 4021 */ 4022 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 4023 __le16 vlan, struct sk_buff *skb) 4024 { 4025 skb->protocol = eth_type_trans(skb, adapter->netdev); 4026 4027 if (status & E1000_RXD_STAT_VP) { 4028 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4029 4030 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4031 } 4032 napi_gro_receive(&adapter->napi, skb); 4033 } 4034 4035 /** 4036 * e1000_tbi_adjust_stats 4037 * @hw: Struct containing variables accessed by shared code 4038 * @frame_len: The length of the frame in question 4039 * @mac_addr: The Ethernet destination address of the frame in question 4040 * 4041 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4042 */ 4043 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4044 struct e1000_hw_stats *stats, 4045 u32 frame_len, const u8 *mac_addr) 4046 { 4047 u64 carry_bit; 4048 4049 /* First adjust the frame length. */ 4050 frame_len--; 4051 /* We need to adjust the statistics counters, since the hardware 4052 * counters overcount this packet as a CRC error and undercount 4053 * the packet as a good packet 4054 */ 4055 /* This packet should not be counted as a CRC error. */ 4056 stats->crcerrs--; 4057 /* This packet does count as a Good Packet Received. */ 4058 stats->gprc++; 4059 4060 /* Adjust the Good Octets received counters */ 4061 carry_bit = 0x80000000 & stats->gorcl; 4062 stats->gorcl += frame_len; 4063 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4064 * Received Count) was one before the addition, 4065 * AND it is zero after, then we lost the carry out, 4066 * need to add one to Gorch (Good Octets Received Count High). 4067 * This could be simplified if all environments supported 4068 * 64-bit integers. 4069 */ 4070 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4071 stats->gorch++; 4072 /* Is this a broadcast or multicast? Check broadcast first, 4073 * since the test for a multicast frame will test positive on 4074 * a broadcast frame. 4075 */ 4076 if (is_broadcast_ether_addr(mac_addr)) 4077 stats->bprc++; 4078 else if (is_multicast_ether_addr(mac_addr)) 4079 stats->mprc++; 4080 4081 if (frame_len == hw->max_frame_size) { 4082 /* In this case, the hardware has overcounted the number of 4083 * oversize frames. 4084 */ 4085 if (stats->roc > 0) 4086 stats->roc--; 4087 } 4088 4089 /* Adjust the bin counters when the extra byte put the frame in the 4090 * wrong bin. Remember that the frame_len was adjusted above. 4091 */ 4092 if (frame_len == 64) { 4093 stats->prc64++; 4094 stats->prc127--; 4095 } else if (frame_len == 127) { 4096 stats->prc127++; 4097 stats->prc255--; 4098 } else if (frame_len == 255) { 4099 stats->prc255++; 4100 stats->prc511--; 4101 } else if (frame_len == 511) { 4102 stats->prc511++; 4103 stats->prc1023--; 4104 } else if (frame_len == 1023) { 4105 stats->prc1023++; 4106 stats->prc1522--; 4107 } else if (frame_len == 1522) { 4108 stats->prc1522++; 4109 } 4110 } 4111 4112 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4113 u8 status, u8 errors, 4114 u32 length, const u8 *data) 4115 { 4116 struct e1000_hw *hw = &adapter->hw; 4117 u8 last_byte = *(data + length - 1); 4118 4119 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4120 unsigned long irq_flags; 4121 4122 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4123 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4124 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4125 4126 return true; 4127 } 4128 4129 return false; 4130 } 4131 4132 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4133 unsigned int bufsz) 4134 { 4135 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4136 4137 if (unlikely(!skb)) 4138 adapter->alloc_rx_buff_failed++; 4139 return skb; 4140 } 4141 4142 /** 4143 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4144 * @adapter: board private structure 4145 * @rx_ring: ring to clean 4146 * @work_done: amount of napi work completed this call 4147 * @work_to_do: max amount of work allowed for this call to do 4148 * 4149 * the return value indicates whether actual cleaning was done, there 4150 * is no guarantee that everything was cleaned 4151 */ 4152 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4153 struct e1000_rx_ring *rx_ring, 4154 int *work_done, int work_to_do) 4155 { 4156 struct net_device *netdev = adapter->netdev; 4157 struct pci_dev *pdev = adapter->pdev; 4158 struct e1000_rx_desc *rx_desc, *next_rxd; 4159 struct e1000_rx_buffer *buffer_info, *next_buffer; 4160 u32 length; 4161 unsigned int i; 4162 int cleaned_count = 0; 4163 bool cleaned = false; 4164 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4165 4166 i = rx_ring->next_to_clean; 4167 rx_desc = E1000_RX_DESC(*rx_ring, i); 4168 buffer_info = &rx_ring->buffer_info[i]; 4169 4170 while (rx_desc->status & E1000_RXD_STAT_DD) { 4171 struct sk_buff *skb; 4172 u8 status; 4173 4174 if (*work_done >= work_to_do) 4175 break; 4176 (*work_done)++; 4177 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4178 4179 status = rx_desc->status; 4180 4181 if (++i == rx_ring->count) 4182 i = 0; 4183 4184 next_rxd = E1000_RX_DESC(*rx_ring, i); 4185 prefetch(next_rxd); 4186 4187 next_buffer = &rx_ring->buffer_info[i]; 4188 4189 cleaned = true; 4190 cleaned_count++; 4191 dma_unmap_page(&pdev->dev, buffer_info->dma, 4192 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4193 buffer_info->dma = 0; 4194 4195 length = le16_to_cpu(rx_desc->length); 4196 4197 /* errors is only valid for DD + EOP descriptors */ 4198 if (unlikely((status & E1000_RXD_STAT_EOP) && 4199 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4200 u8 *mapped = page_address(buffer_info->rxbuf.page); 4201 4202 if (e1000_tbi_should_accept(adapter, status, 4203 rx_desc->errors, 4204 length, mapped)) { 4205 length--; 4206 } else if (netdev->features & NETIF_F_RXALL) { 4207 goto process_skb; 4208 } else { 4209 /* an error means any chain goes out the window 4210 * too 4211 */ 4212 if (rx_ring->rx_skb_top) 4213 dev_kfree_skb(rx_ring->rx_skb_top); 4214 rx_ring->rx_skb_top = NULL; 4215 goto next_desc; 4216 } 4217 } 4218 4219 #define rxtop rx_ring->rx_skb_top 4220 process_skb: 4221 if (!(status & E1000_RXD_STAT_EOP)) { 4222 /* this descriptor is only the beginning (or middle) */ 4223 if (!rxtop) { 4224 /* this is the beginning of a chain */ 4225 rxtop = napi_get_frags(&adapter->napi); 4226 if (!rxtop) 4227 break; 4228 4229 skb_fill_page_desc(rxtop, 0, 4230 buffer_info->rxbuf.page, 4231 0, length); 4232 } else { 4233 /* this is the middle of a chain */ 4234 skb_fill_page_desc(rxtop, 4235 skb_shinfo(rxtop)->nr_frags, 4236 buffer_info->rxbuf.page, 0, length); 4237 } 4238 e1000_consume_page(buffer_info, rxtop, length); 4239 goto next_desc; 4240 } else { 4241 if (rxtop) { 4242 /* end of the chain */ 4243 skb_fill_page_desc(rxtop, 4244 skb_shinfo(rxtop)->nr_frags, 4245 buffer_info->rxbuf.page, 0, length); 4246 skb = rxtop; 4247 rxtop = NULL; 4248 e1000_consume_page(buffer_info, skb, length); 4249 } else { 4250 struct page *p; 4251 /* no chain, got EOP, this buf is the packet 4252 * copybreak to save the put_page/alloc_page 4253 */ 4254 p = buffer_info->rxbuf.page; 4255 if (length <= copybreak) { 4256 u8 *vaddr; 4257 4258 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4259 length -= 4; 4260 skb = e1000_alloc_rx_skb(adapter, 4261 length); 4262 if (!skb) 4263 break; 4264 4265 vaddr = kmap_atomic(p); 4266 memcpy(skb_tail_pointer(skb), vaddr, 4267 length); 4268 kunmap_atomic(vaddr); 4269 /* re-use the page, so don't erase 4270 * buffer_info->rxbuf.page 4271 */ 4272 skb_put(skb, length); 4273 e1000_rx_checksum(adapter, 4274 status | rx_desc->errors << 24, 4275 le16_to_cpu(rx_desc->csum), skb); 4276 4277 total_rx_bytes += skb->len; 4278 total_rx_packets++; 4279 4280 e1000_receive_skb(adapter, status, 4281 rx_desc->special, skb); 4282 goto next_desc; 4283 } else { 4284 skb = napi_get_frags(&adapter->napi); 4285 if (!skb) { 4286 adapter->alloc_rx_buff_failed++; 4287 break; 4288 } 4289 skb_fill_page_desc(skb, 0, p, 0, 4290 length); 4291 e1000_consume_page(buffer_info, skb, 4292 length); 4293 } 4294 } 4295 } 4296 4297 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4298 e1000_rx_checksum(adapter, 4299 (u32)(status) | 4300 ((u32)(rx_desc->errors) << 24), 4301 le16_to_cpu(rx_desc->csum), skb); 4302 4303 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4304 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4305 pskb_trim(skb, skb->len - 4); 4306 total_rx_packets++; 4307 4308 if (status & E1000_RXD_STAT_VP) { 4309 __le16 vlan = rx_desc->special; 4310 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4311 4312 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4313 } 4314 4315 napi_gro_frags(&adapter->napi); 4316 4317 next_desc: 4318 rx_desc->status = 0; 4319 4320 /* return some buffers to hardware, one at a time is too slow */ 4321 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4322 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4323 cleaned_count = 0; 4324 } 4325 4326 /* use prefetched values */ 4327 rx_desc = next_rxd; 4328 buffer_info = next_buffer; 4329 } 4330 rx_ring->next_to_clean = i; 4331 4332 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4333 if (cleaned_count) 4334 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4335 4336 adapter->total_rx_packets += total_rx_packets; 4337 adapter->total_rx_bytes += total_rx_bytes; 4338 netdev->stats.rx_bytes += total_rx_bytes; 4339 netdev->stats.rx_packets += total_rx_packets; 4340 return cleaned; 4341 } 4342 4343 /* this should improve performance for small packets with large amounts 4344 * of reassembly being done in the stack 4345 */ 4346 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4347 struct e1000_rx_buffer *buffer_info, 4348 u32 length, const void *data) 4349 { 4350 struct sk_buff *skb; 4351 4352 if (length > copybreak) 4353 return NULL; 4354 4355 skb = e1000_alloc_rx_skb(adapter, length); 4356 if (!skb) 4357 return NULL; 4358 4359 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4360 length, DMA_FROM_DEVICE); 4361 4362 skb_put_data(skb, data, length); 4363 4364 return skb; 4365 } 4366 4367 /** 4368 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4369 * @adapter: board private structure 4370 * @rx_ring: ring to clean 4371 * @work_done: amount of napi work completed this call 4372 * @work_to_do: max amount of work allowed for this call to do 4373 */ 4374 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4375 struct e1000_rx_ring *rx_ring, 4376 int *work_done, int work_to_do) 4377 { 4378 struct net_device *netdev = adapter->netdev; 4379 struct pci_dev *pdev = adapter->pdev; 4380 struct e1000_rx_desc *rx_desc, *next_rxd; 4381 struct e1000_rx_buffer *buffer_info, *next_buffer; 4382 u32 length; 4383 unsigned int i; 4384 int cleaned_count = 0; 4385 bool cleaned = false; 4386 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4387 4388 i = rx_ring->next_to_clean; 4389 rx_desc = E1000_RX_DESC(*rx_ring, i); 4390 buffer_info = &rx_ring->buffer_info[i]; 4391 4392 while (rx_desc->status & E1000_RXD_STAT_DD) { 4393 struct sk_buff *skb; 4394 u8 *data; 4395 u8 status; 4396 4397 if (*work_done >= work_to_do) 4398 break; 4399 (*work_done)++; 4400 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4401 4402 status = rx_desc->status; 4403 length = le16_to_cpu(rx_desc->length); 4404 4405 data = buffer_info->rxbuf.data; 4406 prefetch(data); 4407 skb = e1000_copybreak(adapter, buffer_info, length, data); 4408 if (!skb) { 4409 unsigned int frag_len = e1000_frag_len(adapter); 4410 4411 skb = build_skb(data - E1000_HEADROOM, frag_len); 4412 if (!skb) { 4413 adapter->alloc_rx_buff_failed++; 4414 break; 4415 } 4416 4417 skb_reserve(skb, E1000_HEADROOM); 4418 dma_unmap_single(&pdev->dev, buffer_info->dma, 4419 adapter->rx_buffer_len, 4420 DMA_FROM_DEVICE); 4421 buffer_info->dma = 0; 4422 buffer_info->rxbuf.data = NULL; 4423 } 4424 4425 if (++i == rx_ring->count) 4426 i = 0; 4427 4428 next_rxd = E1000_RX_DESC(*rx_ring, i); 4429 prefetch(next_rxd); 4430 4431 next_buffer = &rx_ring->buffer_info[i]; 4432 4433 cleaned = true; 4434 cleaned_count++; 4435 4436 /* !EOP means multiple descriptors were used to store a single 4437 * packet, if thats the case we need to toss it. In fact, we 4438 * to toss every packet with the EOP bit clear and the next 4439 * frame that _does_ have the EOP bit set, as it is by 4440 * definition only a frame fragment 4441 */ 4442 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4443 adapter->discarding = true; 4444 4445 if (adapter->discarding) { 4446 /* All receives must fit into a single buffer */ 4447 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4448 dev_kfree_skb(skb); 4449 if (status & E1000_RXD_STAT_EOP) 4450 adapter->discarding = false; 4451 goto next_desc; 4452 } 4453 4454 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4455 if (e1000_tbi_should_accept(adapter, status, 4456 rx_desc->errors, 4457 length, data)) { 4458 length--; 4459 } else if (netdev->features & NETIF_F_RXALL) { 4460 goto process_skb; 4461 } else { 4462 dev_kfree_skb(skb); 4463 goto next_desc; 4464 } 4465 } 4466 4467 process_skb: 4468 total_rx_bytes += (length - 4); /* don't count FCS */ 4469 total_rx_packets++; 4470 4471 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4472 /* adjust length to remove Ethernet CRC, this must be 4473 * done after the TBI_ACCEPT workaround above 4474 */ 4475 length -= 4; 4476 4477 if (buffer_info->rxbuf.data == NULL) 4478 skb_put(skb, length); 4479 else /* copybreak skb */ 4480 skb_trim(skb, length); 4481 4482 /* Receive Checksum Offload */ 4483 e1000_rx_checksum(adapter, 4484 (u32)(status) | 4485 ((u32)(rx_desc->errors) << 24), 4486 le16_to_cpu(rx_desc->csum), skb); 4487 4488 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4489 4490 next_desc: 4491 rx_desc->status = 0; 4492 4493 /* return some buffers to hardware, one at a time is too slow */ 4494 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4495 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4496 cleaned_count = 0; 4497 } 4498 4499 /* use prefetched values */ 4500 rx_desc = next_rxd; 4501 buffer_info = next_buffer; 4502 } 4503 rx_ring->next_to_clean = i; 4504 4505 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4506 if (cleaned_count) 4507 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4508 4509 adapter->total_rx_packets += total_rx_packets; 4510 adapter->total_rx_bytes += total_rx_bytes; 4511 netdev->stats.rx_bytes += total_rx_bytes; 4512 netdev->stats.rx_packets += total_rx_packets; 4513 return cleaned; 4514 } 4515 4516 /** 4517 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4518 * @adapter: address of board private structure 4519 * @rx_ring: pointer to receive ring structure 4520 * @cleaned_count: number of buffers to allocate this pass 4521 **/ 4522 static void 4523 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4524 struct e1000_rx_ring *rx_ring, int cleaned_count) 4525 { 4526 struct pci_dev *pdev = adapter->pdev; 4527 struct e1000_rx_desc *rx_desc; 4528 struct e1000_rx_buffer *buffer_info; 4529 unsigned int i; 4530 4531 i = rx_ring->next_to_use; 4532 buffer_info = &rx_ring->buffer_info[i]; 4533 4534 while (cleaned_count--) { 4535 /* allocate a new page if necessary */ 4536 if (!buffer_info->rxbuf.page) { 4537 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4538 if (unlikely(!buffer_info->rxbuf.page)) { 4539 adapter->alloc_rx_buff_failed++; 4540 break; 4541 } 4542 } 4543 4544 if (!buffer_info->dma) { 4545 buffer_info->dma = dma_map_page(&pdev->dev, 4546 buffer_info->rxbuf.page, 0, 4547 adapter->rx_buffer_len, 4548 DMA_FROM_DEVICE); 4549 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4550 put_page(buffer_info->rxbuf.page); 4551 buffer_info->rxbuf.page = NULL; 4552 buffer_info->dma = 0; 4553 adapter->alloc_rx_buff_failed++; 4554 break; 4555 } 4556 } 4557 4558 rx_desc = E1000_RX_DESC(*rx_ring, i); 4559 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4560 4561 if (unlikely(++i == rx_ring->count)) 4562 i = 0; 4563 buffer_info = &rx_ring->buffer_info[i]; 4564 } 4565 4566 if (likely(rx_ring->next_to_use != i)) { 4567 rx_ring->next_to_use = i; 4568 if (unlikely(i-- == 0)) 4569 i = (rx_ring->count - 1); 4570 4571 /* Force memory writes to complete before letting h/w 4572 * know there are new descriptors to fetch. (Only 4573 * applicable for weak-ordered memory model archs, 4574 * such as IA-64). 4575 */ 4576 wmb(); 4577 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4578 } 4579 } 4580 4581 /** 4582 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4583 * @adapter: address of board private structure 4584 **/ 4585 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4586 struct e1000_rx_ring *rx_ring, 4587 int cleaned_count) 4588 { 4589 struct e1000_hw *hw = &adapter->hw; 4590 struct pci_dev *pdev = adapter->pdev; 4591 struct e1000_rx_desc *rx_desc; 4592 struct e1000_rx_buffer *buffer_info; 4593 unsigned int i; 4594 unsigned int bufsz = adapter->rx_buffer_len; 4595 4596 i = rx_ring->next_to_use; 4597 buffer_info = &rx_ring->buffer_info[i]; 4598 4599 while (cleaned_count--) { 4600 void *data; 4601 4602 if (buffer_info->rxbuf.data) 4603 goto skip; 4604 4605 data = e1000_alloc_frag(adapter); 4606 if (!data) { 4607 /* Better luck next round */ 4608 adapter->alloc_rx_buff_failed++; 4609 break; 4610 } 4611 4612 /* Fix for errata 23, can't cross 64kB boundary */ 4613 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4614 void *olddata = data; 4615 e_err(rx_err, "skb align check failed: %u bytes at " 4616 "%p\n", bufsz, data); 4617 /* Try again, without freeing the previous */ 4618 data = e1000_alloc_frag(adapter); 4619 /* Failed allocation, critical failure */ 4620 if (!data) { 4621 skb_free_frag(olddata); 4622 adapter->alloc_rx_buff_failed++; 4623 break; 4624 } 4625 4626 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4627 /* give up */ 4628 skb_free_frag(data); 4629 skb_free_frag(olddata); 4630 adapter->alloc_rx_buff_failed++; 4631 break; 4632 } 4633 4634 /* Use new allocation */ 4635 skb_free_frag(olddata); 4636 } 4637 buffer_info->dma = dma_map_single(&pdev->dev, 4638 data, 4639 adapter->rx_buffer_len, 4640 DMA_FROM_DEVICE); 4641 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4642 skb_free_frag(data); 4643 buffer_info->dma = 0; 4644 adapter->alloc_rx_buff_failed++; 4645 break; 4646 } 4647 4648 /* XXX if it was allocated cleanly it will never map to a 4649 * boundary crossing 4650 */ 4651 4652 /* Fix for errata 23, can't cross 64kB boundary */ 4653 if (!e1000_check_64k_bound(adapter, 4654 (void *)(unsigned long)buffer_info->dma, 4655 adapter->rx_buffer_len)) { 4656 e_err(rx_err, "dma align check failed: %u bytes at " 4657 "%p\n", adapter->rx_buffer_len, 4658 (void *)(unsigned long)buffer_info->dma); 4659 4660 dma_unmap_single(&pdev->dev, buffer_info->dma, 4661 adapter->rx_buffer_len, 4662 DMA_FROM_DEVICE); 4663 4664 skb_free_frag(data); 4665 buffer_info->rxbuf.data = NULL; 4666 buffer_info->dma = 0; 4667 4668 adapter->alloc_rx_buff_failed++; 4669 break; 4670 } 4671 buffer_info->rxbuf.data = data; 4672 skip: 4673 rx_desc = E1000_RX_DESC(*rx_ring, i); 4674 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4675 4676 if (unlikely(++i == rx_ring->count)) 4677 i = 0; 4678 buffer_info = &rx_ring->buffer_info[i]; 4679 } 4680 4681 if (likely(rx_ring->next_to_use != i)) { 4682 rx_ring->next_to_use = i; 4683 if (unlikely(i-- == 0)) 4684 i = (rx_ring->count - 1); 4685 4686 /* Force memory writes to complete before letting h/w 4687 * know there are new descriptors to fetch. (Only 4688 * applicable for weak-ordered memory model archs, 4689 * such as IA-64). 4690 */ 4691 wmb(); 4692 writel(i, hw->hw_addr + rx_ring->rdt); 4693 } 4694 } 4695 4696 /** 4697 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4698 * @adapter: 4699 **/ 4700 static void e1000_smartspeed(struct e1000_adapter *adapter) 4701 { 4702 struct e1000_hw *hw = &adapter->hw; 4703 u16 phy_status; 4704 u16 phy_ctrl; 4705 4706 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4707 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4708 return; 4709 4710 if (adapter->smartspeed == 0) { 4711 /* If Master/Slave config fault is asserted twice, 4712 * we assume back-to-back 4713 */ 4714 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4715 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4716 return; 4717 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4718 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4719 return; 4720 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4721 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4722 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4723 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4724 phy_ctrl); 4725 adapter->smartspeed++; 4726 if (!e1000_phy_setup_autoneg(hw) && 4727 !e1000_read_phy_reg(hw, PHY_CTRL, 4728 &phy_ctrl)) { 4729 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4730 MII_CR_RESTART_AUTO_NEG); 4731 e1000_write_phy_reg(hw, PHY_CTRL, 4732 phy_ctrl); 4733 } 4734 } 4735 return; 4736 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4737 /* If still no link, perhaps using 2/3 pair cable */ 4738 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4739 phy_ctrl |= CR_1000T_MS_ENABLE; 4740 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4741 if (!e1000_phy_setup_autoneg(hw) && 4742 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4743 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4744 MII_CR_RESTART_AUTO_NEG); 4745 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4746 } 4747 } 4748 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4749 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4750 adapter->smartspeed = 0; 4751 } 4752 4753 /** 4754 * e1000_ioctl - 4755 * @netdev: 4756 * @ifreq: 4757 * @cmd: 4758 **/ 4759 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4760 { 4761 switch (cmd) { 4762 case SIOCGMIIPHY: 4763 case SIOCGMIIREG: 4764 case SIOCSMIIREG: 4765 return e1000_mii_ioctl(netdev, ifr, cmd); 4766 default: 4767 return -EOPNOTSUPP; 4768 } 4769 } 4770 4771 /** 4772 * e1000_mii_ioctl - 4773 * @netdev: 4774 * @ifreq: 4775 * @cmd: 4776 **/ 4777 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4778 int cmd) 4779 { 4780 struct e1000_adapter *adapter = netdev_priv(netdev); 4781 struct e1000_hw *hw = &adapter->hw; 4782 struct mii_ioctl_data *data = if_mii(ifr); 4783 int retval; 4784 u16 mii_reg; 4785 unsigned long flags; 4786 4787 if (hw->media_type != e1000_media_type_copper) 4788 return -EOPNOTSUPP; 4789 4790 switch (cmd) { 4791 case SIOCGMIIPHY: 4792 data->phy_id = hw->phy_addr; 4793 break; 4794 case SIOCGMIIREG: 4795 spin_lock_irqsave(&adapter->stats_lock, flags); 4796 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4797 &data->val_out)) { 4798 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4799 return -EIO; 4800 } 4801 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4802 break; 4803 case SIOCSMIIREG: 4804 if (data->reg_num & ~(0x1F)) 4805 return -EFAULT; 4806 mii_reg = data->val_in; 4807 spin_lock_irqsave(&adapter->stats_lock, flags); 4808 if (e1000_write_phy_reg(hw, data->reg_num, 4809 mii_reg)) { 4810 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4811 return -EIO; 4812 } 4813 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4814 if (hw->media_type == e1000_media_type_copper) { 4815 switch (data->reg_num) { 4816 case PHY_CTRL: 4817 if (mii_reg & MII_CR_POWER_DOWN) 4818 break; 4819 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4820 hw->autoneg = 1; 4821 hw->autoneg_advertised = 0x2F; 4822 } else { 4823 u32 speed; 4824 if (mii_reg & 0x40) 4825 speed = SPEED_1000; 4826 else if (mii_reg & 0x2000) 4827 speed = SPEED_100; 4828 else 4829 speed = SPEED_10; 4830 retval = e1000_set_spd_dplx( 4831 adapter, speed, 4832 ((mii_reg & 0x100) 4833 ? DUPLEX_FULL : 4834 DUPLEX_HALF)); 4835 if (retval) 4836 return retval; 4837 } 4838 if (netif_running(adapter->netdev)) 4839 e1000_reinit_locked(adapter); 4840 else 4841 e1000_reset(adapter); 4842 break; 4843 case M88E1000_PHY_SPEC_CTRL: 4844 case M88E1000_EXT_PHY_SPEC_CTRL: 4845 if (e1000_phy_reset(hw)) 4846 return -EIO; 4847 break; 4848 } 4849 } else { 4850 switch (data->reg_num) { 4851 case PHY_CTRL: 4852 if (mii_reg & MII_CR_POWER_DOWN) 4853 break; 4854 if (netif_running(adapter->netdev)) 4855 e1000_reinit_locked(adapter); 4856 else 4857 e1000_reset(adapter); 4858 break; 4859 } 4860 } 4861 break; 4862 default: 4863 return -EOPNOTSUPP; 4864 } 4865 return E1000_SUCCESS; 4866 } 4867 4868 void e1000_pci_set_mwi(struct e1000_hw *hw) 4869 { 4870 struct e1000_adapter *adapter = hw->back; 4871 int ret_val = pci_set_mwi(adapter->pdev); 4872 4873 if (ret_val) 4874 e_err(probe, "Error in setting MWI\n"); 4875 } 4876 4877 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4878 { 4879 struct e1000_adapter *adapter = hw->back; 4880 4881 pci_clear_mwi(adapter->pdev); 4882 } 4883 4884 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4885 { 4886 struct e1000_adapter *adapter = hw->back; 4887 return pcix_get_mmrbc(adapter->pdev); 4888 } 4889 4890 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4891 { 4892 struct e1000_adapter *adapter = hw->back; 4893 pcix_set_mmrbc(adapter->pdev, mmrbc); 4894 } 4895 4896 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4897 { 4898 outl(value, port); 4899 } 4900 4901 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4902 { 4903 u16 vid; 4904 4905 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4906 return true; 4907 return false; 4908 } 4909 4910 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4911 netdev_features_t features) 4912 { 4913 struct e1000_hw *hw = &adapter->hw; 4914 u32 ctrl; 4915 4916 ctrl = er32(CTRL); 4917 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4918 /* enable VLAN tag insert/strip */ 4919 ctrl |= E1000_CTRL_VME; 4920 } else { 4921 /* disable VLAN tag insert/strip */ 4922 ctrl &= ~E1000_CTRL_VME; 4923 } 4924 ew32(CTRL, ctrl); 4925 } 4926 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4927 bool filter_on) 4928 { 4929 struct e1000_hw *hw = &adapter->hw; 4930 u32 rctl; 4931 4932 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4933 e1000_irq_disable(adapter); 4934 4935 __e1000_vlan_mode(adapter, adapter->netdev->features); 4936 if (filter_on) { 4937 /* enable VLAN receive filtering */ 4938 rctl = er32(RCTL); 4939 rctl &= ~E1000_RCTL_CFIEN; 4940 if (!(adapter->netdev->flags & IFF_PROMISC)) 4941 rctl |= E1000_RCTL_VFE; 4942 ew32(RCTL, rctl); 4943 e1000_update_mng_vlan(adapter); 4944 } else { 4945 /* disable VLAN receive filtering */ 4946 rctl = er32(RCTL); 4947 rctl &= ~E1000_RCTL_VFE; 4948 ew32(RCTL, rctl); 4949 } 4950 4951 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4952 e1000_irq_enable(adapter); 4953 } 4954 4955 static void e1000_vlan_mode(struct net_device *netdev, 4956 netdev_features_t features) 4957 { 4958 struct e1000_adapter *adapter = netdev_priv(netdev); 4959 4960 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4961 e1000_irq_disable(adapter); 4962 4963 __e1000_vlan_mode(adapter, features); 4964 4965 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4966 e1000_irq_enable(adapter); 4967 } 4968 4969 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4970 __be16 proto, u16 vid) 4971 { 4972 struct e1000_adapter *adapter = netdev_priv(netdev); 4973 struct e1000_hw *hw = &adapter->hw; 4974 u32 vfta, index; 4975 4976 if ((hw->mng_cookie.status & 4977 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4978 (vid == adapter->mng_vlan_id)) 4979 return 0; 4980 4981 if (!e1000_vlan_used(adapter)) 4982 e1000_vlan_filter_on_off(adapter, true); 4983 4984 /* add VID to filter table */ 4985 index = (vid >> 5) & 0x7F; 4986 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4987 vfta |= (1 << (vid & 0x1F)); 4988 e1000_write_vfta(hw, index, vfta); 4989 4990 set_bit(vid, adapter->active_vlans); 4991 4992 return 0; 4993 } 4994 4995 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4996 __be16 proto, u16 vid) 4997 { 4998 struct e1000_adapter *adapter = netdev_priv(netdev); 4999 struct e1000_hw *hw = &adapter->hw; 5000 u32 vfta, index; 5001 5002 if (!test_bit(__E1000_DOWN, &adapter->flags)) 5003 e1000_irq_disable(adapter); 5004 if (!test_bit(__E1000_DOWN, &adapter->flags)) 5005 e1000_irq_enable(adapter); 5006 5007 /* remove VID from filter table */ 5008 index = (vid >> 5) & 0x7F; 5009 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 5010 vfta &= ~(1 << (vid & 0x1F)); 5011 e1000_write_vfta(hw, index, vfta); 5012 5013 clear_bit(vid, adapter->active_vlans); 5014 5015 if (!e1000_vlan_used(adapter)) 5016 e1000_vlan_filter_on_off(adapter, false); 5017 5018 return 0; 5019 } 5020 5021 static void e1000_restore_vlan(struct e1000_adapter *adapter) 5022 { 5023 u16 vid; 5024 5025 if (!e1000_vlan_used(adapter)) 5026 return; 5027 5028 e1000_vlan_filter_on_off(adapter, true); 5029 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 5030 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 5031 } 5032 5033 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 5034 { 5035 struct e1000_hw *hw = &adapter->hw; 5036 5037 hw->autoneg = 0; 5038 5039 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5040 * for the switch() below to work 5041 */ 5042 if ((spd & 1) || (dplx & ~1)) 5043 goto err_inval; 5044 5045 /* Fiber NICs only allow 1000 gbps Full duplex */ 5046 if ((hw->media_type == e1000_media_type_fiber) && 5047 spd != SPEED_1000 && 5048 dplx != DUPLEX_FULL) 5049 goto err_inval; 5050 5051 switch (spd + dplx) { 5052 case SPEED_10 + DUPLEX_HALF: 5053 hw->forced_speed_duplex = e1000_10_half; 5054 break; 5055 case SPEED_10 + DUPLEX_FULL: 5056 hw->forced_speed_duplex = e1000_10_full; 5057 break; 5058 case SPEED_100 + DUPLEX_HALF: 5059 hw->forced_speed_duplex = e1000_100_half; 5060 break; 5061 case SPEED_100 + DUPLEX_FULL: 5062 hw->forced_speed_duplex = e1000_100_full; 5063 break; 5064 case SPEED_1000 + DUPLEX_FULL: 5065 hw->autoneg = 1; 5066 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5067 break; 5068 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5069 default: 5070 goto err_inval; 5071 } 5072 5073 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5074 hw->mdix = AUTO_ALL_MODES; 5075 5076 return 0; 5077 5078 err_inval: 5079 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5080 return -EINVAL; 5081 } 5082 5083 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5084 { 5085 struct net_device *netdev = pci_get_drvdata(pdev); 5086 struct e1000_adapter *adapter = netdev_priv(netdev); 5087 struct e1000_hw *hw = &adapter->hw; 5088 u32 ctrl, ctrl_ext, rctl, status; 5089 u32 wufc = adapter->wol; 5090 #ifdef CONFIG_PM 5091 int retval = 0; 5092 #endif 5093 5094 netif_device_detach(netdev); 5095 5096 if (netif_running(netdev)) { 5097 int count = E1000_CHECK_RESET_COUNT; 5098 5099 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5100 usleep_range(10000, 20000); 5101 5102 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5103 e1000_down(adapter); 5104 } 5105 5106 #ifdef CONFIG_PM 5107 retval = pci_save_state(pdev); 5108 if (retval) 5109 return retval; 5110 #endif 5111 5112 status = er32(STATUS); 5113 if (status & E1000_STATUS_LU) 5114 wufc &= ~E1000_WUFC_LNKC; 5115 5116 if (wufc) { 5117 e1000_setup_rctl(adapter); 5118 e1000_set_rx_mode(netdev); 5119 5120 rctl = er32(RCTL); 5121 5122 /* turn on all-multi mode if wake on multicast is enabled */ 5123 if (wufc & E1000_WUFC_MC) 5124 rctl |= E1000_RCTL_MPE; 5125 5126 /* enable receives in the hardware */ 5127 ew32(RCTL, rctl | E1000_RCTL_EN); 5128 5129 if (hw->mac_type >= e1000_82540) { 5130 ctrl = er32(CTRL); 5131 /* advertise wake from D3Cold */ 5132 #define E1000_CTRL_ADVD3WUC 0x00100000 5133 /* phy power management enable */ 5134 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5135 ctrl |= E1000_CTRL_ADVD3WUC | 5136 E1000_CTRL_EN_PHY_PWR_MGMT; 5137 ew32(CTRL, ctrl); 5138 } 5139 5140 if (hw->media_type == e1000_media_type_fiber || 5141 hw->media_type == e1000_media_type_internal_serdes) { 5142 /* keep the laser running in D3 */ 5143 ctrl_ext = er32(CTRL_EXT); 5144 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5145 ew32(CTRL_EXT, ctrl_ext); 5146 } 5147 5148 ew32(WUC, E1000_WUC_PME_EN); 5149 ew32(WUFC, wufc); 5150 } else { 5151 ew32(WUC, 0); 5152 ew32(WUFC, 0); 5153 } 5154 5155 e1000_release_manageability(adapter); 5156 5157 *enable_wake = !!wufc; 5158 5159 /* make sure adapter isn't asleep if manageability is enabled */ 5160 if (adapter->en_mng_pt) 5161 *enable_wake = true; 5162 5163 if (netif_running(netdev)) 5164 e1000_free_irq(adapter); 5165 5166 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5167 pci_disable_device(pdev); 5168 5169 return 0; 5170 } 5171 5172 #ifdef CONFIG_PM 5173 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 5174 { 5175 int retval; 5176 bool wake; 5177 5178 retval = __e1000_shutdown(pdev, &wake); 5179 if (retval) 5180 return retval; 5181 5182 if (wake) { 5183 pci_prepare_to_sleep(pdev); 5184 } else { 5185 pci_wake_from_d3(pdev, false); 5186 pci_set_power_state(pdev, PCI_D3hot); 5187 } 5188 5189 return 0; 5190 } 5191 5192 static int e1000_resume(struct pci_dev *pdev) 5193 { 5194 struct net_device *netdev = pci_get_drvdata(pdev); 5195 struct e1000_adapter *adapter = netdev_priv(netdev); 5196 struct e1000_hw *hw = &adapter->hw; 5197 u32 err; 5198 5199 pci_set_power_state(pdev, PCI_D0); 5200 pci_restore_state(pdev); 5201 pci_save_state(pdev); 5202 5203 if (adapter->need_ioport) 5204 err = pci_enable_device(pdev); 5205 else 5206 err = pci_enable_device_mem(pdev); 5207 if (err) { 5208 pr_err("Cannot enable PCI device from suspend\n"); 5209 return err; 5210 } 5211 5212 /* flush memory to make sure state is correct */ 5213 smp_mb__before_atomic(); 5214 clear_bit(__E1000_DISABLED, &adapter->flags); 5215 pci_set_master(pdev); 5216 5217 pci_enable_wake(pdev, PCI_D3hot, 0); 5218 pci_enable_wake(pdev, PCI_D3cold, 0); 5219 5220 if (netif_running(netdev)) { 5221 err = e1000_request_irq(adapter); 5222 if (err) 5223 return err; 5224 } 5225 5226 e1000_power_up_phy(adapter); 5227 e1000_reset(adapter); 5228 ew32(WUS, ~0); 5229 5230 e1000_init_manageability(adapter); 5231 5232 if (netif_running(netdev)) 5233 e1000_up(adapter); 5234 5235 netif_device_attach(netdev); 5236 5237 return 0; 5238 } 5239 #endif 5240 5241 static void e1000_shutdown(struct pci_dev *pdev) 5242 { 5243 bool wake; 5244 5245 __e1000_shutdown(pdev, &wake); 5246 5247 if (system_state == SYSTEM_POWER_OFF) { 5248 pci_wake_from_d3(pdev, wake); 5249 pci_set_power_state(pdev, PCI_D3hot); 5250 } 5251 } 5252 5253 #ifdef CONFIG_NET_POLL_CONTROLLER 5254 /* Polling 'interrupt' - used by things like netconsole to send skbs 5255 * without having to re-enable interrupts. It's not called while 5256 * the interrupt routine is executing. 5257 */ 5258 static void e1000_netpoll(struct net_device *netdev) 5259 { 5260 struct e1000_adapter *adapter = netdev_priv(netdev); 5261 5262 if (disable_hardirq(adapter->pdev->irq)) 5263 e1000_intr(adapter->pdev->irq, netdev); 5264 enable_irq(adapter->pdev->irq); 5265 } 5266 #endif 5267 5268 /** 5269 * e1000_io_error_detected - called when PCI error is detected 5270 * @pdev: Pointer to PCI device 5271 * @state: The current pci connection state 5272 * 5273 * This function is called after a PCI bus error affecting 5274 * this device has been detected. 5275 */ 5276 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5277 pci_channel_state_t state) 5278 { 5279 struct net_device *netdev = pci_get_drvdata(pdev); 5280 struct e1000_adapter *adapter = netdev_priv(netdev); 5281 5282 netif_device_detach(netdev); 5283 5284 if (state == pci_channel_io_perm_failure) 5285 return PCI_ERS_RESULT_DISCONNECT; 5286 5287 if (netif_running(netdev)) 5288 e1000_down(adapter); 5289 5290 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5291 pci_disable_device(pdev); 5292 5293 /* Request a slot slot reset. */ 5294 return PCI_ERS_RESULT_NEED_RESET; 5295 } 5296 5297 /** 5298 * e1000_io_slot_reset - called after the pci bus has been reset. 5299 * @pdev: Pointer to PCI device 5300 * 5301 * Restart the card from scratch, as if from a cold-boot. Implementation 5302 * resembles the first-half of the e1000_resume routine. 5303 */ 5304 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5305 { 5306 struct net_device *netdev = pci_get_drvdata(pdev); 5307 struct e1000_adapter *adapter = netdev_priv(netdev); 5308 struct e1000_hw *hw = &adapter->hw; 5309 int err; 5310 5311 if (adapter->need_ioport) 5312 err = pci_enable_device(pdev); 5313 else 5314 err = pci_enable_device_mem(pdev); 5315 if (err) { 5316 pr_err("Cannot re-enable PCI device after reset.\n"); 5317 return PCI_ERS_RESULT_DISCONNECT; 5318 } 5319 5320 /* flush memory to make sure state is correct */ 5321 smp_mb__before_atomic(); 5322 clear_bit(__E1000_DISABLED, &adapter->flags); 5323 pci_set_master(pdev); 5324 5325 pci_enable_wake(pdev, PCI_D3hot, 0); 5326 pci_enable_wake(pdev, PCI_D3cold, 0); 5327 5328 e1000_reset(adapter); 5329 ew32(WUS, ~0); 5330 5331 return PCI_ERS_RESULT_RECOVERED; 5332 } 5333 5334 /** 5335 * e1000_io_resume - called when traffic can start flowing again. 5336 * @pdev: Pointer to PCI device 5337 * 5338 * This callback is called when the error recovery driver tells us that 5339 * its OK to resume normal operation. Implementation resembles the 5340 * second-half of the e1000_resume routine. 5341 */ 5342 static void e1000_io_resume(struct pci_dev *pdev) 5343 { 5344 struct net_device *netdev = pci_get_drvdata(pdev); 5345 struct e1000_adapter *adapter = netdev_priv(netdev); 5346 5347 e1000_init_manageability(adapter); 5348 5349 if (netif_running(netdev)) { 5350 if (e1000_up(adapter)) { 5351 pr_info("can't bring device back up after reset\n"); 5352 return; 5353 } 5354 } 5355 5356 netif_device_attach(netdev); 5357 } 5358 5359 /* e1000_main.c */ 5360