1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2006 Intel Corporation. */ 3 4 #include "e1000.h" 5 #include <net/ip6_checksum.h> 6 #include <linux/io.h> 7 #include <linux/prefetch.h> 8 #include <linux/bitops.h> 9 #include <linux/if_vlan.h> 10 11 char e1000_driver_name[] = "e1000"; 12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 13 #define DRV_VERSION "7.3.21-k8-NAPI" 14 const char e1000_driver_version[] = DRV_VERSION; 15 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 16 17 /* e1000_pci_tbl - PCI Device ID Table 18 * 19 * Last entry must be all 0s 20 * 21 * Macro expands to... 22 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 23 */ 24 static const struct pci_device_id e1000_pci_tbl[] = { 25 INTEL_E1000_ETHERNET_DEVICE(0x1000), 26 INTEL_E1000_ETHERNET_DEVICE(0x1001), 27 INTEL_E1000_ETHERNET_DEVICE(0x1004), 28 INTEL_E1000_ETHERNET_DEVICE(0x1008), 29 INTEL_E1000_ETHERNET_DEVICE(0x1009), 30 INTEL_E1000_ETHERNET_DEVICE(0x100C), 31 INTEL_E1000_ETHERNET_DEVICE(0x100D), 32 INTEL_E1000_ETHERNET_DEVICE(0x100E), 33 INTEL_E1000_ETHERNET_DEVICE(0x100F), 34 INTEL_E1000_ETHERNET_DEVICE(0x1010), 35 INTEL_E1000_ETHERNET_DEVICE(0x1011), 36 INTEL_E1000_ETHERNET_DEVICE(0x1012), 37 INTEL_E1000_ETHERNET_DEVICE(0x1013), 38 INTEL_E1000_ETHERNET_DEVICE(0x1014), 39 INTEL_E1000_ETHERNET_DEVICE(0x1015), 40 INTEL_E1000_ETHERNET_DEVICE(0x1016), 41 INTEL_E1000_ETHERNET_DEVICE(0x1017), 42 INTEL_E1000_ETHERNET_DEVICE(0x1018), 43 INTEL_E1000_ETHERNET_DEVICE(0x1019), 44 INTEL_E1000_ETHERNET_DEVICE(0x101A), 45 INTEL_E1000_ETHERNET_DEVICE(0x101D), 46 INTEL_E1000_ETHERNET_DEVICE(0x101E), 47 INTEL_E1000_ETHERNET_DEVICE(0x1026), 48 INTEL_E1000_ETHERNET_DEVICE(0x1027), 49 INTEL_E1000_ETHERNET_DEVICE(0x1028), 50 INTEL_E1000_ETHERNET_DEVICE(0x1075), 51 INTEL_E1000_ETHERNET_DEVICE(0x1076), 52 INTEL_E1000_ETHERNET_DEVICE(0x1077), 53 INTEL_E1000_ETHERNET_DEVICE(0x1078), 54 INTEL_E1000_ETHERNET_DEVICE(0x1079), 55 INTEL_E1000_ETHERNET_DEVICE(0x107A), 56 INTEL_E1000_ETHERNET_DEVICE(0x107B), 57 INTEL_E1000_ETHERNET_DEVICE(0x107C), 58 INTEL_E1000_ETHERNET_DEVICE(0x108A), 59 INTEL_E1000_ETHERNET_DEVICE(0x1099), 60 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 61 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 62 /* required last entry */ 63 {0,} 64 }; 65 66 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 67 68 int e1000_up(struct e1000_adapter *adapter); 69 void e1000_down(struct e1000_adapter *adapter); 70 void e1000_reinit_locked(struct e1000_adapter *adapter); 71 void e1000_reset(struct e1000_adapter *adapter); 72 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 73 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 74 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 75 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 76 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 77 struct e1000_tx_ring *txdr); 78 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 79 struct e1000_rx_ring *rxdr); 80 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 81 struct e1000_tx_ring *tx_ring); 82 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 83 struct e1000_rx_ring *rx_ring); 84 void e1000_update_stats(struct e1000_adapter *adapter); 85 86 static int e1000_init_module(void); 87 static void e1000_exit_module(void); 88 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 89 static void e1000_remove(struct pci_dev *pdev); 90 static int e1000_alloc_queues(struct e1000_adapter *adapter); 91 static int e1000_sw_init(struct e1000_adapter *adapter); 92 int e1000_open(struct net_device *netdev); 93 int e1000_close(struct net_device *netdev); 94 static void e1000_configure_tx(struct e1000_adapter *adapter); 95 static void e1000_configure_rx(struct e1000_adapter *adapter); 96 static void e1000_setup_rctl(struct e1000_adapter *adapter); 97 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 98 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 99 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 100 struct e1000_tx_ring *tx_ring); 101 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 102 struct e1000_rx_ring *rx_ring); 103 static void e1000_set_rx_mode(struct net_device *netdev); 104 static void e1000_update_phy_info_task(struct work_struct *work); 105 static void e1000_watchdog(struct work_struct *work); 106 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 107 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 108 struct net_device *netdev); 109 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 110 static int e1000_set_mac(struct net_device *netdev, void *p); 111 static irqreturn_t e1000_intr(int irq, void *data); 112 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 113 struct e1000_tx_ring *tx_ring); 114 static int e1000_clean(struct napi_struct *napi, int budget); 115 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 116 struct e1000_rx_ring *rx_ring, 117 int *work_done, int work_to_do); 118 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 119 struct e1000_rx_ring *rx_ring, 120 int *work_done, int work_to_do); 121 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, 122 struct e1000_rx_ring *rx_ring, 123 int cleaned_count) 124 { 125 } 126 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 127 struct e1000_rx_ring *rx_ring, 128 int cleaned_count); 129 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 130 struct e1000_rx_ring *rx_ring, 131 int cleaned_count); 132 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 133 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 134 int cmd); 135 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 136 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 137 static void e1000_tx_timeout(struct net_device *dev); 138 static void e1000_reset_task(struct work_struct *work); 139 static void e1000_smartspeed(struct e1000_adapter *adapter); 140 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 141 struct sk_buff *skb); 142 143 static bool e1000_vlan_used(struct e1000_adapter *adapter); 144 static void e1000_vlan_mode(struct net_device *netdev, 145 netdev_features_t features); 146 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 147 bool filter_on); 148 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 149 __be16 proto, u16 vid); 150 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 151 __be16 proto, u16 vid); 152 static void e1000_restore_vlan(struct e1000_adapter *adapter); 153 154 #ifdef CONFIG_PM 155 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 156 static int e1000_resume(struct pci_dev *pdev); 157 #endif 158 static void e1000_shutdown(struct pci_dev *pdev); 159 160 #ifdef CONFIG_NET_POLL_CONTROLLER 161 /* for netdump / net console */ 162 static void e1000_netpoll (struct net_device *netdev); 163 #endif 164 165 #define COPYBREAK_DEFAULT 256 166 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 167 module_param(copybreak, uint, 0644); 168 MODULE_PARM_DESC(copybreak, 169 "Maximum size of packet that is copied to a new buffer on receive"); 170 171 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 172 pci_channel_state_t state); 173 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 174 static void e1000_io_resume(struct pci_dev *pdev); 175 176 static const struct pci_error_handlers e1000_err_handler = { 177 .error_detected = e1000_io_error_detected, 178 .slot_reset = e1000_io_slot_reset, 179 .resume = e1000_io_resume, 180 }; 181 182 static struct pci_driver e1000_driver = { 183 .name = e1000_driver_name, 184 .id_table = e1000_pci_tbl, 185 .probe = e1000_probe, 186 .remove = e1000_remove, 187 #ifdef CONFIG_PM 188 /* Power Management Hooks */ 189 .suspend = e1000_suspend, 190 .resume = e1000_resume, 191 #endif 192 .shutdown = e1000_shutdown, 193 .err_handler = &e1000_err_handler 194 }; 195 196 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 197 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 198 MODULE_LICENSE("GPL v2"); 199 MODULE_VERSION(DRV_VERSION); 200 201 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 202 static int debug = -1; 203 module_param(debug, int, 0); 204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 205 206 /** 207 * e1000_get_hw_dev - return device 208 * used by hardware layer to print debugging information 209 * 210 **/ 211 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 212 { 213 struct e1000_adapter *adapter = hw->back; 214 return adapter->netdev; 215 } 216 217 /** 218 * e1000_init_module - Driver Registration Routine 219 * 220 * e1000_init_module is the first routine called when the driver is 221 * loaded. All it does is register with the PCI subsystem. 222 **/ 223 static int __init e1000_init_module(void) 224 { 225 int ret; 226 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); 227 228 pr_info("%s\n", e1000_copyright); 229 230 ret = pci_register_driver(&e1000_driver); 231 if (copybreak != COPYBREAK_DEFAULT) { 232 if (copybreak == 0) 233 pr_info("copybreak disabled\n"); 234 else 235 pr_info("copybreak enabled for " 236 "packets <= %u bytes\n", copybreak); 237 } 238 return ret; 239 } 240 241 module_init(e1000_init_module); 242 243 /** 244 * e1000_exit_module - Driver Exit Cleanup Routine 245 * 246 * e1000_exit_module is called just before the driver is removed 247 * from memory. 248 **/ 249 static void __exit e1000_exit_module(void) 250 { 251 pci_unregister_driver(&e1000_driver); 252 } 253 254 module_exit(e1000_exit_module); 255 256 static int e1000_request_irq(struct e1000_adapter *adapter) 257 { 258 struct net_device *netdev = adapter->netdev; 259 irq_handler_t handler = e1000_intr; 260 int irq_flags = IRQF_SHARED; 261 int err; 262 263 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 264 netdev); 265 if (err) { 266 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 267 } 268 269 return err; 270 } 271 272 static void e1000_free_irq(struct e1000_adapter *adapter) 273 { 274 struct net_device *netdev = adapter->netdev; 275 276 free_irq(adapter->pdev->irq, netdev); 277 } 278 279 /** 280 * e1000_irq_disable - Mask off interrupt generation on the NIC 281 * @adapter: board private structure 282 **/ 283 static void e1000_irq_disable(struct e1000_adapter *adapter) 284 { 285 struct e1000_hw *hw = &adapter->hw; 286 287 ew32(IMC, ~0); 288 E1000_WRITE_FLUSH(); 289 synchronize_irq(adapter->pdev->irq); 290 } 291 292 /** 293 * e1000_irq_enable - Enable default interrupt generation settings 294 * @adapter: board private structure 295 **/ 296 static void e1000_irq_enable(struct e1000_adapter *adapter) 297 { 298 struct e1000_hw *hw = &adapter->hw; 299 300 ew32(IMS, IMS_ENABLE_MASK); 301 E1000_WRITE_FLUSH(); 302 } 303 304 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 305 { 306 struct e1000_hw *hw = &adapter->hw; 307 struct net_device *netdev = adapter->netdev; 308 u16 vid = hw->mng_cookie.vlan_id; 309 u16 old_vid = adapter->mng_vlan_id; 310 311 if (!e1000_vlan_used(adapter)) 312 return; 313 314 if (!test_bit(vid, adapter->active_vlans)) { 315 if (hw->mng_cookie.status & 316 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 317 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 318 adapter->mng_vlan_id = vid; 319 } else { 320 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 321 } 322 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 323 (vid != old_vid) && 324 !test_bit(old_vid, adapter->active_vlans)) 325 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 326 old_vid); 327 } else { 328 adapter->mng_vlan_id = vid; 329 } 330 } 331 332 static void e1000_init_manageability(struct e1000_adapter *adapter) 333 { 334 struct e1000_hw *hw = &adapter->hw; 335 336 if (adapter->en_mng_pt) { 337 u32 manc = er32(MANC); 338 339 /* disable hardware interception of ARP */ 340 manc &= ~(E1000_MANC_ARP_EN); 341 342 ew32(MANC, manc); 343 } 344 } 345 346 static void e1000_release_manageability(struct e1000_adapter *adapter) 347 { 348 struct e1000_hw *hw = &adapter->hw; 349 350 if (adapter->en_mng_pt) { 351 u32 manc = er32(MANC); 352 353 /* re-enable hardware interception of ARP */ 354 manc |= E1000_MANC_ARP_EN; 355 356 ew32(MANC, manc); 357 } 358 } 359 360 /** 361 * e1000_configure - configure the hardware for RX and TX 362 * @adapter = private board structure 363 **/ 364 static void e1000_configure(struct e1000_adapter *adapter) 365 { 366 struct net_device *netdev = adapter->netdev; 367 int i; 368 369 e1000_set_rx_mode(netdev); 370 371 e1000_restore_vlan(adapter); 372 e1000_init_manageability(adapter); 373 374 e1000_configure_tx(adapter); 375 e1000_setup_rctl(adapter); 376 e1000_configure_rx(adapter); 377 /* call E1000_DESC_UNUSED which always leaves 378 * at least 1 descriptor unused to make sure 379 * next_to_use != next_to_clean 380 */ 381 for (i = 0; i < adapter->num_rx_queues; i++) { 382 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 383 adapter->alloc_rx_buf(adapter, ring, 384 E1000_DESC_UNUSED(ring)); 385 } 386 } 387 388 int e1000_up(struct e1000_adapter *adapter) 389 { 390 struct e1000_hw *hw = &adapter->hw; 391 392 /* hardware has been reset, we need to reload some things */ 393 e1000_configure(adapter); 394 395 clear_bit(__E1000_DOWN, &adapter->flags); 396 397 napi_enable(&adapter->napi); 398 399 e1000_irq_enable(adapter); 400 401 netif_wake_queue(adapter->netdev); 402 403 /* fire a link change interrupt to start the watchdog */ 404 ew32(ICS, E1000_ICS_LSC); 405 return 0; 406 } 407 408 /** 409 * e1000_power_up_phy - restore link in case the phy was powered down 410 * @adapter: address of board private structure 411 * 412 * The phy may be powered down to save power and turn off link when the 413 * driver is unloaded and wake on lan is not enabled (among others) 414 * *** this routine MUST be followed by a call to e1000_reset *** 415 **/ 416 void e1000_power_up_phy(struct e1000_adapter *adapter) 417 { 418 struct e1000_hw *hw = &adapter->hw; 419 u16 mii_reg = 0; 420 421 /* Just clear the power down bit to wake the phy back up */ 422 if (hw->media_type == e1000_media_type_copper) { 423 /* according to the manual, the phy will retain its 424 * settings across a power-down/up cycle 425 */ 426 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 427 mii_reg &= ~MII_CR_POWER_DOWN; 428 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 429 } 430 } 431 432 static void e1000_power_down_phy(struct e1000_adapter *adapter) 433 { 434 struct e1000_hw *hw = &adapter->hw; 435 436 /* Power down the PHY so no link is implied when interface is down * 437 * The PHY cannot be powered down if any of the following is true * 438 * (a) WoL is enabled 439 * (b) AMT is active 440 * (c) SoL/IDER session is active 441 */ 442 if (!adapter->wol && hw->mac_type >= e1000_82540 && 443 hw->media_type == e1000_media_type_copper) { 444 u16 mii_reg = 0; 445 446 switch (hw->mac_type) { 447 case e1000_82540: 448 case e1000_82545: 449 case e1000_82545_rev_3: 450 case e1000_82546: 451 case e1000_ce4100: 452 case e1000_82546_rev_3: 453 case e1000_82541: 454 case e1000_82541_rev_2: 455 case e1000_82547: 456 case e1000_82547_rev_2: 457 if (er32(MANC) & E1000_MANC_SMBUS_EN) 458 goto out; 459 break; 460 default: 461 goto out; 462 } 463 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 464 mii_reg |= MII_CR_POWER_DOWN; 465 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 466 msleep(1); 467 } 468 out: 469 return; 470 } 471 472 static void e1000_down_and_stop(struct e1000_adapter *adapter) 473 { 474 set_bit(__E1000_DOWN, &adapter->flags); 475 476 cancel_delayed_work_sync(&adapter->watchdog_task); 477 478 /* 479 * Since the watchdog task can reschedule other tasks, we should cancel 480 * it first, otherwise we can run into the situation when a work is 481 * still running after the adapter has been turned down. 482 */ 483 484 cancel_delayed_work_sync(&adapter->phy_info_task); 485 cancel_delayed_work_sync(&adapter->fifo_stall_task); 486 487 /* Only kill reset task if adapter is not resetting */ 488 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 489 cancel_work_sync(&adapter->reset_task); 490 } 491 492 void e1000_down(struct e1000_adapter *adapter) 493 { 494 struct e1000_hw *hw = &adapter->hw; 495 struct net_device *netdev = adapter->netdev; 496 u32 rctl, tctl; 497 498 /* disable receives in the hardware */ 499 rctl = er32(RCTL); 500 ew32(RCTL, rctl & ~E1000_RCTL_EN); 501 /* flush and sleep below */ 502 503 netif_tx_disable(netdev); 504 505 /* disable transmits in the hardware */ 506 tctl = er32(TCTL); 507 tctl &= ~E1000_TCTL_EN; 508 ew32(TCTL, tctl); 509 /* flush both disables and wait for them to finish */ 510 E1000_WRITE_FLUSH(); 511 msleep(10); 512 513 /* Set the carrier off after transmits have been disabled in the 514 * hardware, to avoid race conditions with e1000_watchdog() (which 515 * may be running concurrently to us, checking for the carrier 516 * bit to decide whether it should enable transmits again). Such 517 * a race condition would result into transmission being disabled 518 * in the hardware until the next IFF_DOWN+IFF_UP cycle. 519 */ 520 netif_carrier_off(netdev); 521 522 napi_disable(&adapter->napi); 523 524 e1000_irq_disable(adapter); 525 526 /* Setting DOWN must be after irq_disable to prevent 527 * a screaming interrupt. Setting DOWN also prevents 528 * tasks from rescheduling. 529 */ 530 e1000_down_and_stop(adapter); 531 532 adapter->link_speed = 0; 533 adapter->link_duplex = 0; 534 535 e1000_reset(adapter); 536 e1000_clean_all_tx_rings(adapter); 537 e1000_clean_all_rx_rings(adapter); 538 } 539 540 void e1000_reinit_locked(struct e1000_adapter *adapter) 541 { 542 WARN_ON(in_interrupt()); 543 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 544 msleep(1); 545 e1000_down(adapter); 546 e1000_up(adapter); 547 clear_bit(__E1000_RESETTING, &adapter->flags); 548 } 549 550 void e1000_reset(struct e1000_adapter *adapter) 551 { 552 struct e1000_hw *hw = &adapter->hw; 553 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 554 bool legacy_pba_adjust = false; 555 u16 hwm; 556 557 /* Repartition Pba for greater than 9k mtu 558 * To take effect CTRL.RST is required. 559 */ 560 561 switch (hw->mac_type) { 562 case e1000_82542_rev2_0: 563 case e1000_82542_rev2_1: 564 case e1000_82543: 565 case e1000_82544: 566 case e1000_82540: 567 case e1000_82541: 568 case e1000_82541_rev_2: 569 legacy_pba_adjust = true; 570 pba = E1000_PBA_48K; 571 break; 572 case e1000_82545: 573 case e1000_82545_rev_3: 574 case e1000_82546: 575 case e1000_ce4100: 576 case e1000_82546_rev_3: 577 pba = E1000_PBA_48K; 578 break; 579 case e1000_82547: 580 case e1000_82547_rev_2: 581 legacy_pba_adjust = true; 582 pba = E1000_PBA_30K; 583 break; 584 case e1000_undefined: 585 case e1000_num_macs: 586 break; 587 } 588 589 if (legacy_pba_adjust) { 590 if (hw->max_frame_size > E1000_RXBUFFER_8192) 591 pba -= 8; /* allocate more FIFO for Tx */ 592 593 if (hw->mac_type == e1000_82547) { 594 adapter->tx_fifo_head = 0; 595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 596 adapter->tx_fifo_size = 597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 598 atomic_set(&adapter->tx_fifo_stall, 0); 599 } 600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 601 /* adjust PBA for jumbo frames */ 602 ew32(PBA, pba); 603 604 /* To maintain wire speed transmits, the Tx FIFO should be 605 * large enough to accommodate two full transmit packets, 606 * rounded up to the next 1KB and expressed in KB. Likewise, 607 * the Rx FIFO should be large enough to accommodate at least 608 * one full receive packet and is similarly rounded up and 609 * expressed in KB. 610 */ 611 pba = er32(PBA); 612 /* upper 16 bits has Tx packet buffer allocation size in KB */ 613 tx_space = pba >> 16; 614 /* lower 16 bits has Rx packet buffer allocation size in KB */ 615 pba &= 0xffff; 616 /* the Tx fifo also stores 16 bytes of information about the Tx 617 * but don't include ethernet FCS because hardware appends it 618 */ 619 min_tx_space = (hw->max_frame_size + 620 sizeof(struct e1000_tx_desc) - 621 ETH_FCS_LEN) * 2; 622 min_tx_space = ALIGN(min_tx_space, 1024); 623 min_tx_space >>= 10; 624 /* software strips receive CRC, so leave room for it */ 625 min_rx_space = hw->max_frame_size; 626 min_rx_space = ALIGN(min_rx_space, 1024); 627 min_rx_space >>= 10; 628 629 /* If current Tx allocation is less than the min Tx FIFO size, 630 * and the min Tx FIFO size is less than the current Rx FIFO 631 * allocation, take space away from current Rx allocation 632 */ 633 if (tx_space < min_tx_space && 634 ((min_tx_space - tx_space) < pba)) { 635 pba = pba - (min_tx_space - tx_space); 636 637 /* PCI/PCIx hardware has PBA alignment constraints */ 638 switch (hw->mac_type) { 639 case e1000_82545 ... e1000_82546_rev_3: 640 pba &= ~(E1000_PBA_8K - 1); 641 break; 642 default: 643 break; 644 } 645 646 /* if short on Rx space, Rx wins and must trump Tx 647 * adjustment or use Early Receive if available 648 */ 649 if (pba < min_rx_space) 650 pba = min_rx_space; 651 } 652 } 653 654 ew32(PBA, pba); 655 656 /* flow control settings: 657 * The high water mark must be low enough to fit one full frame 658 * (or the size used for early receive) above it in the Rx FIFO. 659 * Set it to the lower of: 660 * - 90% of the Rx FIFO size, and 661 * - the full Rx FIFO size minus the early receive size (for parts 662 * with ERT support assuming ERT set to E1000_ERT_2048), or 663 * - the full Rx FIFO size minus one full frame 664 */ 665 hwm = min(((pba << 10) * 9 / 10), 666 ((pba << 10) - hw->max_frame_size)); 667 668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 669 hw->fc_low_water = hw->fc_high_water - 8; 670 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 671 hw->fc_send_xon = 1; 672 hw->fc = hw->original_fc; 673 674 /* Allow time for pending master requests to run */ 675 e1000_reset_hw(hw); 676 if (hw->mac_type >= e1000_82544) 677 ew32(WUC, 0); 678 679 if (e1000_init_hw(hw)) 680 e_dev_err("Hardware Error\n"); 681 e1000_update_mng_vlan(adapter); 682 683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 684 if (hw->mac_type >= e1000_82544 && 685 hw->autoneg == 1 && 686 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 687 u32 ctrl = er32(CTRL); 688 /* clear phy power management bit if we are in gig only mode, 689 * which if enabled will attempt negotiation to 100Mb, which 690 * can cause a loss of link at power off or driver unload 691 */ 692 ctrl &= ~E1000_CTRL_SWDPIN3; 693 ew32(CTRL, ctrl); 694 } 695 696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 698 699 e1000_reset_adaptive(hw); 700 e1000_phy_get_info(hw, &adapter->phy_info); 701 702 e1000_release_manageability(adapter); 703 } 704 705 /* Dump the eeprom for users having checksum issues */ 706 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 707 { 708 struct net_device *netdev = adapter->netdev; 709 struct ethtool_eeprom eeprom; 710 const struct ethtool_ops *ops = netdev->ethtool_ops; 711 u8 *data; 712 int i; 713 u16 csum_old, csum_new = 0; 714 715 eeprom.len = ops->get_eeprom_len(netdev); 716 eeprom.offset = 0; 717 718 data = kmalloc(eeprom.len, GFP_KERNEL); 719 if (!data) 720 return; 721 722 ops->get_eeprom(netdev, &eeprom, data); 723 724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 727 csum_new += data[i] + (data[i + 1] << 8); 728 csum_new = EEPROM_SUM - csum_new; 729 730 pr_err("/*********************/\n"); 731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 732 pr_err("Calculated : 0x%04x\n", csum_new); 733 734 pr_err("Offset Values\n"); 735 pr_err("======== ======\n"); 736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 737 738 pr_err("Include this output when contacting your support provider.\n"); 739 pr_err("This is not a software error! Something bad happened to\n"); 740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 741 pr_err("result in further problems, possibly loss of data,\n"); 742 pr_err("corruption or system hangs!\n"); 743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 744 pr_err("which is invalid and requires you to set the proper MAC\n"); 745 pr_err("address manually before continuing to enable this network\n"); 746 pr_err("device. Please inspect the EEPROM dump and report the\n"); 747 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 748 pr_err("/*********************/\n"); 749 750 kfree(data); 751 } 752 753 /** 754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 755 * @pdev: PCI device information struct 756 * 757 * Return true if an adapter needs ioport resources 758 **/ 759 static int e1000_is_need_ioport(struct pci_dev *pdev) 760 { 761 switch (pdev->device) { 762 case E1000_DEV_ID_82540EM: 763 case E1000_DEV_ID_82540EM_LOM: 764 case E1000_DEV_ID_82540EP: 765 case E1000_DEV_ID_82540EP_LOM: 766 case E1000_DEV_ID_82540EP_LP: 767 case E1000_DEV_ID_82541EI: 768 case E1000_DEV_ID_82541EI_MOBILE: 769 case E1000_DEV_ID_82541ER: 770 case E1000_DEV_ID_82541ER_LOM: 771 case E1000_DEV_ID_82541GI: 772 case E1000_DEV_ID_82541GI_LF: 773 case E1000_DEV_ID_82541GI_MOBILE: 774 case E1000_DEV_ID_82544EI_COPPER: 775 case E1000_DEV_ID_82544EI_FIBER: 776 case E1000_DEV_ID_82544GC_COPPER: 777 case E1000_DEV_ID_82544GC_LOM: 778 case E1000_DEV_ID_82545EM_COPPER: 779 case E1000_DEV_ID_82545EM_FIBER: 780 case E1000_DEV_ID_82546EB_COPPER: 781 case E1000_DEV_ID_82546EB_FIBER: 782 case E1000_DEV_ID_82546EB_QUAD_COPPER: 783 return true; 784 default: 785 return false; 786 } 787 } 788 789 static netdev_features_t e1000_fix_features(struct net_device *netdev, 790 netdev_features_t features) 791 { 792 /* Since there is no support for separate Rx/Tx vlan accel 793 * enable/disable make sure Tx flag is always in same state as Rx. 794 */ 795 if (features & NETIF_F_HW_VLAN_CTAG_RX) 796 features |= NETIF_F_HW_VLAN_CTAG_TX; 797 else 798 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 799 800 return features; 801 } 802 803 static int e1000_set_features(struct net_device *netdev, 804 netdev_features_t features) 805 { 806 struct e1000_adapter *adapter = netdev_priv(netdev); 807 netdev_features_t changed = features ^ netdev->features; 808 809 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 810 e1000_vlan_mode(netdev, features); 811 812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 813 return 0; 814 815 netdev->features = features; 816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 817 818 if (netif_running(netdev)) 819 e1000_reinit_locked(adapter); 820 else 821 e1000_reset(adapter); 822 823 return 1; 824 } 825 826 static const struct net_device_ops e1000_netdev_ops = { 827 .ndo_open = e1000_open, 828 .ndo_stop = e1000_close, 829 .ndo_start_xmit = e1000_xmit_frame, 830 .ndo_set_rx_mode = e1000_set_rx_mode, 831 .ndo_set_mac_address = e1000_set_mac, 832 .ndo_tx_timeout = e1000_tx_timeout, 833 .ndo_change_mtu = e1000_change_mtu, 834 .ndo_do_ioctl = e1000_ioctl, 835 .ndo_validate_addr = eth_validate_addr, 836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 838 #ifdef CONFIG_NET_POLL_CONTROLLER 839 .ndo_poll_controller = e1000_netpoll, 840 #endif 841 .ndo_fix_features = e1000_fix_features, 842 .ndo_set_features = e1000_set_features, 843 }; 844 845 /** 846 * e1000_init_hw_struct - initialize members of hw struct 847 * @adapter: board private struct 848 * @hw: structure used by e1000_hw.c 849 * 850 * Factors out initialization of the e1000_hw struct to its own function 851 * that can be called very early at init (just after struct allocation). 852 * Fields are initialized based on PCI device information and 853 * OS network device settings (MTU size). 854 * Returns negative error codes if MAC type setup fails. 855 */ 856 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 857 struct e1000_hw *hw) 858 { 859 struct pci_dev *pdev = adapter->pdev; 860 861 /* PCI config space info */ 862 hw->vendor_id = pdev->vendor; 863 hw->device_id = pdev->device; 864 hw->subsystem_vendor_id = pdev->subsystem_vendor; 865 hw->subsystem_id = pdev->subsystem_device; 866 hw->revision_id = pdev->revision; 867 868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 869 870 hw->max_frame_size = adapter->netdev->mtu + 871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 873 874 /* identify the MAC */ 875 if (e1000_set_mac_type(hw)) { 876 e_err(probe, "Unknown MAC Type\n"); 877 return -EIO; 878 } 879 880 switch (hw->mac_type) { 881 default: 882 break; 883 case e1000_82541: 884 case e1000_82547: 885 case e1000_82541_rev_2: 886 case e1000_82547_rev_2: 887 hw->phy_init_script = 1; 888 break; 889 } 890 891 e1000_set_media_type(hw); 892 e1000_get_bus_info(hw); 893 894 hw->wait_autoneg_complete = false; 895 hw->tbi_compatibility_en = true; 896 hw->adaptive_ifs = true; 897 898 /* Copper options */ 899 900 if (hw->media_type == e1000_media_type_copper) { 901 hw->mdix = AUTO_ALL_MODES; 902 hw->disable_polarity_correction = false; 903 hw->master_slave = E1000_MASTER_SLAVE; 904 } 905 906 return 0; 907 } 908 909 /** 910 * e1000_probe - Device Initialization Routine 911 * @pdev: PCI device information struct 912 * @ent: entry in e1000_pci_tbl 913 * 914 * Returns 0 on success, negative on failure 915 * 916 * e1000_probe initializes an adapter identified by a pci_dev structure. 917 * The OS initialization, configuring of the adapter private structure, 918 * and a hardware reset occur. 919 **/ 920 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 921 { 922 struct net_device *netdev; 923 struct e1000_adapter *adapter = NULL; 924 struct e1000_hw *hw; 925 926 static int cards_found; 927 static int global_quad_port_a; /* global ksp3 port a indication */ 928 int i, err, pci_using_dac; 929 u16 eeprom_data = 0; 930 u16 tmp = 0; 931 u16 eeprom_apme_mask = E1000_EEPROM_APME; 932 int bars, need_ioport; 933 bool disable_dev = false; 934 935 /* do not allocate ioport bars when not needed */ 936 need_ioport = e1000_is_need_ioport(pdev); 937 if (need_ioport) { 938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 939 err = pci_enable_device(pdev); 940 } else { 941 bars = pci_select_bars(pdev, IORESOURCE_MEM); 942 err = pci_enable_device_mem(pdev); 943 } 944 if (err) 945 return err; 946 947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 948 if (err) 949 goto err_pci_reg; 950 951 pci_set_master(pdev); 952 err = pci_save_state(pdev); 953 if (err) 954 goto err_alloc_etherdev; 955 956 err = -ENOMEM; 957 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 958 if (!netdev) 959 goto err_alloc_etherdev; 960 961 SET_NETDEV_DEV(netdev, &pdev->dev); 962 963 pci_set_drvdata(pdev, netdev); 964 adapter = netdev_priv(netdev); 965 adapter->netdev = netdev; 966 adapter->pdev = pdev; 967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 968 adapter->bars = bars; 969 adapter->need_ioport = need_ioport; 970 971 hw = &adapter->hw; 972 hw->back = adapter; 973 974 err = -EIO; 975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 976 if (!hw->hw_addr) 977 goto err_ioremap; 978 979 if (adapter->need_ioport) { 980 for (i = BAR_1; i <= BAR_5; i++) { 981 if (pci_resource_len(pdev, i) == 0) 982 continue; 983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 984 hw->io_base = pci_resource_start(pdev, i); 985 break; 986 } 987 } 988 } 989 990 /* make ready for any if (hw->...) below */ 991 err = e1000_init_hw_struct(adapter, hw); 992 if (err) 993 goto err_sw_init; 994 995 /* there is a workaround being applied below that limits 996 * 64-bit DMA addresses to 64-bit hardware. There are some 997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 998 */ 999 pci_using_dac = 0; 1000 if ((hw->bus_type == e1000_bus_type_pcix) && 1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1002 pci_using_dac = 1; 1003 } else { 1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1005 if (err) { 1006 pr_err("No usable DMA config, aborting\n"); 1007 goto err_dma; 1008 } 1009 } 1010 1011 netdev->netdev_ops = &e1000_netdev_ops; 1012 e1000_set_ethtool_ops(netdev); 1013 netdev->watchdog_timeo = 5 * HZ; 1014 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1015 1016 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1017 1018 adapter->bd_number = cards_found; 1019 1020 /* setup the private structure */ 1021 1022 err = e1000_sw_init(adapter); 1023 if (err) 1024 goto err_sw_init; 1025 1026 err = -EIO; 1027 if (hw->mac_type == e1000_ce4100) { 1028 hw->ce4100_gbe_mdio_base_virt = 1029 ioremap(pci_resource_start(pdev, BAR_1), 1030 pci_resource_len(pdev, BAR_1)); 1031 1032 if (!hw->ce4100_gbe_mdio_base_virt) 1033 goto err_mdio_ioremap; 1034 } 1035 1036 if (hw->mac_type >= e1000_82543) { 1037 netdev->hw_features = NETIF_F_SG | 1038 NETIF_F_HW_CSUM | 1039 NETIF_F_HW_VLAN_CTAG_RX; 1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1041 NETIF_F_HW_VLAN_CTAG_FILTER; 1042 } 1043 1044 if ((hw->mac_type >= e1000_82544) && 1045 (hw->mac_type != e1000_82547)) 1046 netdev->hw_features |= NETIF_F_TSO; 1047 1048 netdev->priv_flags |= IFF_SUPP_NOFCS; 1049 1050 netdev->features |= netdev->hw_features; 1051 netdev->hw_features |= (NETIF_F_RXCSUM | 1052 NETIF_F_RXALL | 1053 NETIF_F_RXFCS); 1054 1055 if (pci_using_dac) { 1056 netdev->features |= NETIF_F_HIGHDMA; 1057 netdev->vlan_features |= NETIF_F_HIGHDMA; 1058 } 1059 1060 netdev->vlan_features |= (NETIF_F_TSO | 1061 NETIF_F_HW_CSUM | 1062 NETIF_F_SG); 1063 1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1067 netdev->priv_flags |= IFF_UNICAST_FLT; 1068 1069 /* MTU range: 46 - 16110 */ 1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN; 1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1072 1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1074 1075 /* initialize eeprom parameters */ 1076 if (e1000_init_eeprom_params(hw)) { 1077 e_err(probe, "EEPROM initialization failed\n"); 1078 goto err_eeprom; 1079 } 1080 1081 /* before reading the EEPROM, reset the controller to 1082 * put the device in a known good starting state 1083 */ 1084 1085 e1000_reset_hw(hw); 1086 1087 /* make sure the EEPROM is good */ 1088 if (e1000_validate_eeprom_checksum(hw) < 0) { 1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1090 e1000_dump_eeprom(adapter); 1091 /* set MAC address to all zeroes to invalidate and temporary 1092 * disable this device for the user. This blocks regular 1093 * traffic while still permitting ethtool ioctls from reaching 1094 * the hardware as well as allowing the user to run the 1095 * interface after manually setting a hw addr using 1096 * `ip set address` 1097 */ 1098 memset(hw->mac_addr, 0, netdev->addr_len); 1099 } else { 1100 /* copy the MAC address out of the EEPROM */ 1101 if (e1000_read_mac_addr(hw)) 1102 e_err(probe, "EEPROM Read Error\n"); 1103 } 1104 /* don't block initialization here due to bad MAC address */ 1105 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1106 1107 if (!is_valid_ether_addr(netdev->dev_addr)) 1108 e_err(probe, "Invalid MAC Address\n"); 1109 1110 1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1113 e1000_82547_tx_fifo_stall_task); 1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1115 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1116 1117 e1000_check_options(adapter); 1118 1119 /* Initial Wake on LAN setting 1120 * If APM wake is enabled in the EEPROM, 1121 * enable the ACPI Magic Packet filter 1122 */ 1123 1124 switch (hw->mac_type) { 1125 case e1000_82542_rev2_0: 1126 case e1000_82542_rev2_1: 1127 case e1000_82543: 1128 break; 1129 case e1000_82544: 1130 e1000_read_eeprom(hw, 1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1132 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1133 break; 1134 case e1000_82546: 1135 case e1000_82546_rev_3: 1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1137 e1000_read_eeprom(hw, 1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1139 break; 1140 } 1141 /* Fall Through */ 1142 default: 1143 e1000_read_eeprom(hw, 1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1145 break; 1146 } 1147 if (eeprom_data & eeprom_apme_mask) 1148 adapter->eeprom_wol |= E1000_WUFC_MAG; 1149 1150 /* now that we have the eeprom settings, apply the special cases 1151 * where the eeprom may be wrong or the board simply won't support 1152 * wake on lan on a particular port 1153 */ 1154 switch (pdev->device) { 1155 case E1000_DEV_ID_82546GB_PCIE: 1156 adapter->eeprom_wol = 0; 1157 break; 1158 case E1000_DEV_ID_82546EB_FIBER: 1159 case E1000_DEV_ID_82546GB_FIBER: 1160 /* Wake events only supported on port A for dual fiber 1161 * regardless of eeprom setting 1162 */ 1163 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1164 adapter->eeprom_wol = 0; 1165 break; 1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1167 /* if quad port adapter, disable WoL on all but port A */ 1168 if (global_quad_port_a != 0) 1169 adapter->eeprom_wol = 0; 1170 else 1171 adapter->quad_port_a = true; 1172 /* Reset for multiple quad port adapters */ 1173 if (++global_quad_port_a == 4) 1174 global_quad_port_a = 0; 1175 break; 1176 } 1177 1178 /* initialize the wol settings based on the eeprom settings */ 1179 adapter->wol = adapter->eeprom_wol; 1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1181 1182 /* Auto detect PHY address */ 1183 if (hw->mac_type == e1000_ce4100) { 1184 for (i = 0; i < 32; i++) { 1185 hw->phy_addr = i; 1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1187 1188 if (tmp != 0 && tmp != 0xFF) 1189 break; 1190 } 1191 1192 if (i >= 32) 1193 goto err_eeprom; 1194 } 1195 1196 /* reset the hardware with the new settings */ 1197 e1000_reset(adapter); 1198 1199 strcpy(netdev->name, "eth%d"); 1200 err = register_netdev(netdev); 1201 if (err) 1202 goto err_register; 1203 1204 e1000_vlan_filter_on_off(adapter, false); 1205 1206 /* print bus type/speed/width info */ 1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1214 netdev->dev_addr); 1215 1216 /* carrier off reporting is important to ethtool even BEFORE open */ 1217 netif_carrier_off(netdev); 1218 1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1220 1221 cards_found++; 1222 return 0; 1223 1224 err_register: 1225 err_eeprom: 1226 e1000_phy_hw_reset(hw); 1227 1228 if (hw->flash_address) 1229 iounmap(hw->flash_address); 1230 kfree(adapter->tx_ring); 1231 kfree(adapter->rx_ring); 1232 err_dma: 1233 err_sw_init: 1234 err_mdio_ioremap: 1235 iounmap(hw->ce4100_gbe_mdio_base_virt); 1236 iounmap(hw->hw_addr); 1237 err_ioremap: 1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1239 free_netdev(netdev); 1240 err_alloc_etherdev: 1241 pci_release_selected_regions(pdev, bars); 1242 err_pci_reg: 1243 if (!adapter || disable_dev) 1244 pci_disable_device(pdev); 1245 return err; 1246 } 1247 1248 /** 1249 * e1000_remove - Device Removal Routine 1250 * @pdev: PCI device information struct 1251 * 1252 * e1000_remove is called by the PCI subsystem to alert the driver 1253 * that it should release a PCI device. That could be caused by a 1254 * Hot-Plug event, or because the driver is going to be removed from 1255 * memory. 1256 **/ 1257 static void e1000_remove(struct pci_dev *pdev) 1258 { 1259 struct net_device *netdev = pci_get_drvdata(pdev); 1260 struct e1000_adapter *adapter = netdev_priv(netdev); 1261 struct e1000_hw *hw = &adapter->hw; 1262 bool disable_dev; 1263 1264 e1000_down_and_stop(adapter); 1265 e1000_release_manageability(adapter); 1266 1267 unregister_netdev(netdev); 1268 1269 e1000_phy_hw_reset(hw); 1270 1271 kfree(adapter->tx_ring); 1272 kfree(adapter->rx_ring); 1273 1274 if (hw->mac_type == e1000_ce4100) 1275 iounmap(hw->ce4100_gbe_mdio_base_virt); 1276 iounmap(hw->hw_addr); 1277 if (hw->flash_address) 1278 iounmap(hw->flash_address); 1279 pci_release_selected_regions(pdev, adapter->bars); 1280 1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1282 free_netdev(netdev); 1283 1284 if (disable_dev) 1285 pci_disable_device(pdev); 1286 } 1287 1288 /** 1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1290 * @adapter: board private structure to initialize 1291 * 1292 * e1000_sw_init initializes the Adapter private data structure. 1293 * e1000_init_hw_struct MUST be called before this function 1294 **/ 1295 static int e1000_sw_init(struct e1000_adapter *adapter) 1296 { 1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1298 1299 adapter->num_tx_queues = 1; 1300 adapter->num_rx_queues = 1; 1301 1302 if (e1000_alloc_queues(adapter)) { 1303 e_err(probe, "Unable to allocate memory for queues\n"); 1304 return -ENOMEM; 1305 } 1306 1307 /* Explicitly disable IRQ since the NIC can be in any state. */ 1308 e1000_irq_disable(adapter); 1309 1310 spin_lock_init(&adapter->stats_lock); 1311 1312 set_bit(__E1000_DOWN, &adapter->flags); 1313 1314 return 0; 1315 } 1316 1317 /** 1318 * e1000_alloc_queues - Allocate memory for all rings 1319 * @adapter: board private structure to initialize 1320 * 1321 * We allocate one ring per queue at run-time since we don't know the 1322 * number of queues at compile-time. 1323 **/ 1324 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1325 { 1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1327 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1328 if (!adapter->tx_ring) 1329 return -ENOMEM; 1330 1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1332 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1333 if (!adapter->rx_ring) { 1334 kfree(adapter->tx_ring); 1335 return -ENOMEM; 1336 } 1337 1338 return E1000_SUCCESS; 1339 } 1340 1341 /** 1342 * e1000_open - Called when a network interface is made active 1343 * @netdev: network interface device structure 1344 * 1345 * Returns 0 on success, negative value on failure 1346 * 1347 * The open entry point is called when a network interface is made 1348 * active by the system (IFF_UP). At this point all resources needed 1349 * for transmit and receive operations are allocated, the interrupt 1350 * handler is registered with the OS, the watchdog task is started, 1351 * and the stack is notified that the interface is ready. 1352 **/ 1353 int e1000_open(struct net_device *netdev) 1354 { 1355 struct e1000_adapter *adapter = netdev_priv(netdev); 1356 struct e1000_hw *hw = &adapter->hw; 1357 int err; 1358 1359 /* disallow open during test */ 1360 if (test_bit(__E1000_TESTING, &adapter->flags)) 1361 return -EBUSY; 1362 1363 netif_carrier_off(netdev); 1364 1365 /* allocate transmit descriptors */ 1366 err = e1000_setup_all_tx_resources(adapter); 1367 if (err) 1368 goto err_setup_tx; 1369 1370 /* allocate receive descriptors */ 1371 err = e1000_setup_all_rx_resources(adapter); 1372 if (err) 1373 goto err_setup_rx; 1374 1375 e1000_power_up_phy(adapter); 1376 1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1378 if ((hw->mng_cookie.status & 1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1380 e1000_update_mng_vlan(adapter); 1381 } 1382 1383 /* before we allocate an interrupt, we must be ready to handle it. 1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1385 * as soon as we call pci_request_irq, so we have to setup our 1386 * clean_rx handler before we do so. 1387 */ 1388 e1000_configure(adapter); 1389 1390 err = e1000_request_irq(adapter); 1391 if (err) 1392 goto err_req_irq; 1393 1394 /* From here on the code is the same as e1000_up() */ 1395 clear_bit(__E1000_DOWN, &adapter->flags); 1396 1397 napi_enable(&adapter->napi); 1398 1399 e1000_irq_enable(adapter); 1400 1401 netif_start_queue(netdev); 1402 1403 /* fire a link status change interrupt to start the watchdog */ 1404 ew32(ICS, E1000_ICS_LSC); 1405 1406 return E1000_SUCCESS; 1407 1408 err_req_irq: 1409 e1000_power_down_phy(adapter); 1410 e1000_free_all_rx_resources(adapter); 1411 err_setup_rx: 1412 e1000_free_all_tx_resources(adapter); 1413 err_setup_tx: 1414 e1000_reset(adapter); 1415 1416 return err; 1417 } 1418 1419 /** 1420 * e1000_close - Disables a network interface 1421 * @netdev: network interface device structure 1422 * 1423 * Returns 0, this is not allowed to fail 1424 * 1425 * The close entry point is called when an interface is de-activated 1426 * by the OS. The hardware is still under the drivers control, but 1427 * needs to be disabled. A global MAC reset is issued to stop the 1428 * hardware, and all transmit and receive resources are freed. 1429 **/ 1430 int e1000_close(struct net_device *netdev) 1431 { 1432 struct e1000_adapter *adapter = netdev_priv(netdev); 1433 struct e1000_hw *hw = &adapter->hw; 1434 int count = E1000_CHECK_RESET_COUNT; 1435 1436 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 1437 usleep_range(10000, 20000); 1438 1439 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 1440 e1000_down(adapter); 1441 e1000_power_down_phy(adapter); 1442 e1000_free_irq(adapter); 1443 1444 e1000_free_all_tx_resources(adapter); 1445 e1000_free_all_rx_resources(adapter); 1446 1447 /* kill manageability vlan ID if supported, but not if a vlan with 1448 * the same ID is registered on the host OS (let 8021q kill it) 1449 */ 1450 if ((hw->mng_cookie.status & 1451 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1452 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1453 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1454 adapter->mng_vlan_id); 1455 } 1456 1457 return 0; 1458 } 1459 1460 /** 1461 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1462 * @adapter: address of board private structure 1463 * @start: address of beginning of memory 1464 * @len: length of memory 1465 **/ 1466 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1467 unsigned long len) 1468 { 1469 struct e1000_hw *hw = &adapter->hw; 1470 unsigned long begin = (unsigned long)start; 1471 unsigned long end = begin + len; 1472 1473 /* First rev 82545 and 82546 need to not allow any memory 1474 * write location to cross 64k boundary due to errata 23 1475 */ 1476 if (hw->mac_type == e1000_82545 || 1477 hw->mac_type == e1000_ce4100 || 1478 hw->mac_type == e1000_82546) { 1479 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; 1480 } 1481 1482 return true; 1483 } 1484 1485 /** 1486 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1487 * @adapter: board private structure 1488 * @txdr: tx descriptor ring (for a specific queue) to setup 1489 * 1490 * Return 0 on success, negative on failure 1491 **/ 1492 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1493 struct e1000_tx_ring *txdr) 1494 { 1495 struct pci_dev *pdev = adapter->pdev; 1496 int size; 1497 1498 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1499 txdr->buffer_info = vzalloc(size); 1500 if (!txdr->buffer_info) 1501 return -ENOMEM; 1502 1503 /* round up to nearest 4K */ 1504 1505 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1506 txdr->size = ALIGN(txdr->size, 4096); 1507 1508 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1509 GFP_KERNEL); 1510 if (!txdr->desc) { 1511 setup_tx_desc_die: 1512 vfree(txdr->buffer_info); 1513 return -ENOMEM; 1514 } 1515 1516 /* Fix for errata 23, can't cross 64kB boundary */ 1517 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1518 void *olddesc = txdr->desc; 1519 dma_addr_t olddma = txdr->dma; 1520 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1521 txdr->size, txdr->desc); 1522 /* Try again, without freeing the previous */ 1523 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1524 &txdr->dma, GFP_KERNEL); 1525 /* Failed allocation, critical failure */ 1526 if (!txdr->desc) { 1527 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1528 olddma); 1529 goto setup_tx_desc_die; 1530 } 1531 1532 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1533 /* give up */ 1534 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1535 txdr->dma); 1536 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1537 olddma); 1538 e_err(probe, "Unable to allocate aligned memory " 1539 "for the transmit descriptor ring\n"); 1540 vfree(txdr->buffer_info); 1541 return -ENOMEM; 1542 } else { 1543 /* Free old allocation, new allocation was successful */ 1544 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1545 olddma); 1546 } 1547 } 1548 memset(txdr->desc, 0, txdr->size); 1549 1550 txdr->next_to_use = 0; 1551 txdr->next_to_clean = 0; 1552 1553 return 0; 1554 } 1555 1556 /** 1557 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1558 * (Descriptors) for all queues 1559 * @adapter: board private structure 1560 * 1561 * Return 0 on success, negative on failure 1562 **/ 1563 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1564 { 1565 int i, err = 0; 1566 1567 for (i = 0; i < adapter->num_tx_queues; i++) { 1568 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1569 if (err) { 1570 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1571 for (i-- ; i >= 0; i--) 1572 e1000_free_tx_resources(adapter, 1573 &adapter->tx_ring[i]); 1574 break; 1575 } 1576 } 1577 1578 return err; 1579 } 1580 1581 /** 1582 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1583 * @adapter: board private structure 1584 * 1585 * Configure the Tx unit of the MAC after a reset. 1586 **/ 1587 static void e1000_configure_tx(struct e1000_adapter *adapter) 1588 { 1589 u64 tdba; 1590 struct e1000_hw *hw = &adapter->hw; 1591 u32 tdlen, tctl, tipg; 1592 u32 ipgr1, ipgr2; 1593 1594 /* Setup the HW Tx Head and Tail descriptor pointers */ 1595 1596 switch (adapter->num_tx_queues) { 1597 case 1: 1598 default: 1599 tdba = adapter->tx_ring[0].dma; 1600 tdlen = adapter->tx_ring[0].count * 1601 sizeof(struct e1000_tx_desc); 1602 ew32(TDLEN, tdlen); 1603 ew32(TDBAH, (tdba >> 32)); 1604 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1605 ew32(TDT, 0); 1606 ew32(TDH, 0); 1607 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1608 E1000_TDH : E1000_82542_TDH); 1609 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1610 E1000_TDT : E1000_82542_TDT); 1611 break; 1612 } 1613 1614 /* Set the default values for the Tx Inter Packet Gap timer */ 1615 if ((hw->media_type == e1000_media_type_fiber || 1616 hw->media_type == e1000_media_type_internal_serdes)) 1617 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1618 else 1619 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1620 1621 switch (hw->mac_type) { 1622 case e1000_82542_rev2_0: 1623 case e1000_82542_rev2_1: 1624 tipg = DEFAULT_82542_TIPG_IPGT; 1625 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1626 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1627 break; 1628 default: 1629 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1630 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1631 break; 1632 } 1633 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1634 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1635 ew32(TIPG, tipg); 1636 1637 /* Set the Tx Interrupt Delay register */ 1638 1639 ew32(TIDV, adapter->tx_int_delay); 1640 if (hw->mac_type >= e1000_82540) 1641 ew32(TADV, adapter->tx_abs_int_delay); 1642 1643 /* Program the Transmit Control Register */ 1644 1645 tctl = er32(TCTL); 1646 tctl &= ~E1000_TCTL_CT; 1647 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1648 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1649 1650 e1000_config_collision_dist(hw); 1651 1652 /* Setup Transmit Descriptor Settings for eop descriptor */ 1653 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1654 1655 /* only set IDE if we are delaying interrupts using the timers */ 1656 if (adapter->tx_int_delay) 1657 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1658 1659 if (hw->mac_type < e1000_82543) 1660 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1661 else 1662 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1663 1664 /* Cache if we're 82544 running in PCI-X because we'll 1665 * need this to apply a workaround later in the send path. 1666 */ 1667 if (hw->mac_type == e1000_82544 && 1668 hw->bus_type == e1000_bus_type_pcix) 1669 adapter->pcix_82544 = true; 1670 1671 ew32(TCTL, tctl); 1672 1673 } 1674 1675 /** 1676 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1677 * @adapter: board private structure 1678 * @rxdr: rx descriptor ring (for a specific queue) to setup 1679 * 1680 * Returns 0 on success, negative on failure 1681 **/ 1682 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1683 struct e1000_rx_ring *rxdr) 1684 { 1685 struct pci_dev *pdev = adapter->pdev; 1686 int size, desc_len; 1687 1688 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1689 rxdr->buffer_info = vzalloc(size); 1690 if (!rxdr->buffer_info) 1691 return -ENOMEM; 1692 1693 desc_len = sizeof(struct e1000_rx_desc); 1694 1695 /* Round up to nearest 4K */ 1696 1697 rxdr->size = rxdr->count * desc_len; 1698 rxdr->size = ALIGN(rxdr->size, 4096); 1699 1700 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1701 GFP_KERNEL); 1702 if (!rxdr->desc) { 1703 setup_rx_desc_die: 1704 vfree(rxdr->buffer_info); 1705 return -ENOMEM; 1706 } 1707 1708 /* Fix for errata 23, can't cross 64kB boundary */ 1709 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1710 void *olddesc = rxdr->desc; 1711 dma_addr_t olddma = rxdr->dma; 1712 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1713 rxdr->size, rxdr->desc); 1714 /* Try again, without freeing the previous */ 1715 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1716 &rxdr->dma, GFP_KERNEL); 1717 /* Failed allocation, critical failure */ 1718 if (!rxdr->desc) { 1719 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1720 olddma); 1721 goto setup_rx_desc_die; 1722 } 1723 1724 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1725 /* give up */ 1726 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1727 rxdr->dma); 1728 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1729 olddma); 1730 e_err(probe, "Unable to allocate aligned memory for " 1731 "the Rx descriptor ring\n"); 1732 goto setup_rx_desc_die; 1733 } else { 1734 /* Free old allocation, new allocation was successful */ 1735 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1736 olddma); 1737 } 1738 } 1739 memset(rxdr->desc, 0, rxdr->size); 1740 1741 rxdr->next_to_clean = 0; 1742 rxdr->next_to_use = 0; 1743 rxdr->rx_skb_top = NULL; 1744 1745 return 0; 1746 } 1747 1748 /** 1749 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1750 * (Descriptors) for all queues 1751 * @adapter: board private structure 1752 * 1753 * Return 0 on success, negative on failure 1754 **/ 1755 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1756 { 1757 int i, err = 0; 1758 1759 for (i = 0; i < adapter->num_rx_queues; i++) { 1760 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1761 if (err) { 1762 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1763 for (i-- ; i >= 0; i--) 1764 e1000_free_rx_resources(adapter, 1765 &adapter->rx_ring[i]); 1766 break; 1767 } 1768 } 1769 1770 return err; 1771 } 1772 1773 /** 1774 * e1000_setup_rctl - configure the receive control registers 1775 * @adapter: Board private structure 1776 **/ 1777 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1778 { 1779 struct e1000_hw *hw = &adapter->hw; 1780 u32 rctl; 1781 1782 rctl = er32(RCTL); 1783 1784 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1785 1786 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1787 E1000_RCTL_RDMTS_HALF | 1788 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1789 1790 if (hw->tbi_compatibility_on == 1) 1791 rctl |= E1000_RCTL_SBP; 1792 else 1793 rctl &= ~E1000_RCTL_SBP; 1794 1795 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1796 rctl &= ~E1000_RCTL_LPE; 1797 else 1798 rctl |= E1000_RCTL_LPE; 1799 1800 /* Setup buffer sizes */ 1801 rctl &= ~E1000_RCTL_SZ_4096; 1802 rctl |= E1000_RCTL_BSEX; 1803 switch (adapter->rx_buffer_len) { 1804 case E1000_RXBUFFER_2048: 1805 default: 1806 rctl |= E1000_RCTL_SZ_2048; 1807 rctl &= ~E1000_RCTL_BSEX; 1808 break; 1809 case E1000_RXBUFFER_4096: 1810 rctl |= E1000_RCTL_SZ_4096; 1811 break; 1812 case E1000_RXBUFFER_8192: 1813 rctl |= E1000_RCTL_SZ_8192; 1814 break; 1815 case E1000_RXBUFFER_16384: 1816 rctl |= E1000_RCTL_SZ_16384; 1817 break; 1818 } 1819 1820 /* This is useful for sniffing bad packets. */ 1821 if (adapter->netdev->features & NETIF_F_RXALL) { 1822 /* UPE and MPE will be handled by normal PROMISC logic 1823 * in e1000e_set_rx_mode 1824 */ 1825 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1826 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1827 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1828 1829 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1830 E1000_RCTL_DPF | /* Allow filtered pause */ 1831 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1832 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1833 * and that breaks VLANs. 1834 */ 1835 } 1836 1837 ew32(RCTL, rctl); 1838 } 1839 1840 /** 1841 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1842 * @adapter: board private structure 1843 * 1844 * Configure the Rx unit of the MAC after a reset. 1845 **/ 1846 static void e1000_configure_rx(struct e1000_adapter *adapter) 1847 { 1848 u64 rdba; 1849 struct e1000_hw *hw = &adapter->hw; 1850 u32 rdlen, rctl, rxcsum; 1851 1852 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1853 rdlen = adapter->rx_ring[0].count * 1854 sizeof(struct e1000_rx_desc); 1855 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1856 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1857 } else { 1858 rdlen = adapter->rx_ring[0].count * 1859 sizeof(struct e1000_rx_desc); 1860 adapter->clean_rx = e1000_clean_rx_irq; 1861 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1862 } 1863 1864 /* disable receives while setting up the descriptors */ 1865 rctl = er32(RCTL); 1866 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1867 1868 /* set the Receive Delay Timer Register */ 1869 ew32(RDTR, adapter->rx_int_delay); 1870 1871 if (hw->mac_type >= e1000_82540) { 1872 ew32(RADV, adapter->rx_abs_int_delay); 1873 if (adapter->itr_setting != 0) 1874 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1875 } 1876 1877 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1878 * the Base and Length of the Rx Descriptor Ring 1879 */ 1880 switch (adapter->num_rx_queues) { 1881 case 1: 1882 default: 1883 rdba = adapter->rx_ring[0].dma; 1884 ew32(RDLEN, rdlen); 1885 ew32(RDBAH, (rdba >> 32)); 1886 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1887 ew32(RDT, 0); 1888 ew32(RDH, 0); 1889 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1890 E1000_RDH : E1000_82542_RDH); 1891 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1892 E1000_RDT : E1000_82542_RDT); 1893 break; 1894 } 1895 1896 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1897 if (hw->mac_type >= e1000_82543) { 1898 rxcsum = er32(RXCSUM); 1899 if (adapter->rx_csum) 1900 rxcsum |= E1000_RXCSUM_TUOFL; 1901 else 1902 /* don't need to clear IPPCSE as it defaults to 0 */ 1903 rxcsum &= ~E1000_RXCSUM_TUOFL; 1904 ew32(RXCSUM, rxcsum); 1905 } 1906 1907 /* Enable Receives */ 1908 ew32(RCTL, rctl | E1000_RCTL_EN); 1909 } 1910 1911 /** 1912 * e1000_free_tx_resources - Free Tx Resources per Queue 1913 * @adapter: board private structure 1914 * @tx_ring: Tx descriptor ring for a specific queue 1915 * 1916 * Free all transmit software resources 1917 **/ 1918 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1919 struct e1000_tx_ring *tx_ring) 1920 { 1921 struct pci_dev *pdev = adapter->pdev; 1922 1923 e1000_clean_tx_ring(adapter, tx_ring); 1924 1925 vfree(tx_ring->buffer_info); 1926 tx_ring->buffer_info = NULL; 1927 1928 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1929 tx_ring->dma); 1930 1931 tx_ring->desc = NULL; 1932 } 1933 1934 /** 1935 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1936 * @adapter: board private structure 1937 * 1938 * Free all transmit software resources 1939 **/ 1940 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1941 { 1942 int i; 1943 1944 for (i = 0; i < adapter->num_tx_queues; i++) 1945 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1946 } 1947 1948 static void 1949 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1950 struct e1000_tx_buffer *buffer_info) 1951 { 1952 if (buffer_info->dma) { 1953 if (buffer_info->mapped_as_page) 1954 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1955 buffer_info->length, DMA_TO_DEVICE); 1956 else 1957 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1958 buffer_info->length, 1959 DMA_TO_DEVICE); 1960 buffer_info->dma = 0; 1961 } 1962 if (buffer_info->skb) { 1963 dev_kfree_skb_any(buffer_info->skb); 1964 buffer_info->skb = NULL; 1965 } 1966 buffer_info->time_stamp = 0; 1967 /* buffer_info must be completely set up in the transmit path */ 1968 } 1969 1970 /** 1971 * e1000_clean_tx_ring - Free Tx Buffers 1972 * @adapter: board private structure 1973 * @tx_ring: ring to be cleaned 1974 **/ 1975 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1976 struct e1000_tx_ring *tx_ring) 1977 { 1978 struct e1000_hw *hw = &adapter->hw; 1979 struct e1000_tx_buffer *buffer_info; 1980 unsigned long size; 1981 unsigned int i; 1982 1983 /* Free all the Tx ring sk_buffs */ 1984 1985 for (i = 0; i < tx_ring->count; i++) { 1986 buffer_info = &tx_ring->buffer_info[i]; 1987 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 1988 } 1989 1990 netdev_reset_queue(adapter->netdev); 1991 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 1992 memset(tx_ring->buffer_info, 0, size); 1993 1994 /* Zero out the descriptor ring */ 1995 1996 memset(tx_ring->desc, 0, tx_ring->size); 1997 1998 tx_ring->next_to_use = 0; 1999 tx_ring->next_to_clean = 0; 2000 tx_ring->last_tx_tso = false; 2001 2002 writel(0, hw->hw_addr + tx_ring->tdh); 2003 writel(0, hw->hw_addr + tx_ring->tdt); 2004 } 2005 2006 /** 2007 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2008 * @adapter: board private structure 2009 **/ 2010 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2011 { 2012 int i; 2013 2014 for (i = 0; i < adapter->num_tx_queues; i++) 2015 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2016 } 2017 2018 /** 2019 * e1000_free_rx_resources - Free Rx Resources 2020 * @adapter: board private structure 2021 * @rx_ring: ring to clean the resources from 2022 * 2023 * Free all receive software resources 2024 **/ 2025 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2026 struct e1000_rx_ring *rx_ring) 2027 { 2028 struct pci_dev *pdev = adapter->pdev; 2029 2030 e1000_clean_rx_ring(adapter, rx_ring); 2031 2032 vfree(rx_ring->buffer_info); 2033 rx_ring->buffer_info = NULL; 2034 2035 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2036 rx_ring->dma); 2037 2038 rx_ring->desc = NULL; 2039 } 2040 2041 /** 2042 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2043 * @adapter: board private structure 2044 * 2045 * Free all receive software resources 2046 **/ 2047 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2048 { 2049 int i; 2050 2051 for (i = 0; i < adapter->num_rx_queues; i++) 2052 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2053 } 2054 2055 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2056 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2057 { 2058 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2059 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2060 } 2061 2062 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2063 { 2064 unsigned int len = e1000_frag_len(a); 2065 u8 *data = netdev_alloc_frag(len); 2066 2067 if (likely(data)) 2068 data += E1000_HEADROOM; 2069 return data; 2070 } 2071 2072 /** 2073 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2074 * @adapter: board private structure 2075 * @rx_ring: ring to free buffers from 2076 **/ 2077 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2078 struct e1000_rx_ring *rx_ring) 2079 { 2080 struct e1000_hw *hw = &adapter->hw; 2081 struct e1000_rx_buffer *buffer_info; 2082 struct pci_dev *pdev = adapter->pdev; 2083 unsigned long size; 2084 unsigned int i; 2085 2086 /* Free all the Rx netfrags */ 2087 for (i = 0; i < rx_ring->count; i++) { 2088 buffer_info = &rx_ring->buffer_info[i]; 2089 if (adapter->clean_rx == e1000_clean_rx_irq) { 2090 if (buffer_info->dma) 2091 dma_unmap_single(&pdev->dev, buffer_info->dma, 2092 adapter->rx_buffer_len, 2093 DMA_FROM_DEVICE); 2094 if (buffer_info->rxbuf.data) { 2095 skb_free_frag(buffer_info->rxbuf.data); 2096 buffer_info->rxbuf.data = NULL; 2097 } 2098 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2099 if (buffer_info->dma) 2100 dma_unmap_page(&pdev->dev, buffer_info->dma, 2101 adapter->rx_buffer_len, 2102 DMA_FROM_DEVICE); 2103 if (buffer_info->rxbuf.page) { 2104 put_page(buffer_info->rxbuf.page); 2105 buffer_info->rxbuf.page = NULL; 2106 } 2107 } 2108 2109 buffer_info->dma = 0; 2110 } 2111 2112 /* there also may be some cached data from a chained receive */ 2113 napi_free_frags(&adapter->napi); 2114 rx_ring->rx_skb_top = NULL; 2115 2116 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2117 memset(rx_ring->buffer_info, 0, size); 2118 2119 /* Zero out the descriptor ring */ 2120 memset(rx_ring->desc, 0, rx_ring->size); 2121 2122 rx_ring->next_to_clean = 0; 2123 rx_ring->next_to_use = 0; 2124 2125 writel(0, hw->hw_addr + rx_ring->rdh); 2126 writel(0, hw->hw_addr + rx_ring->rdt); 2127 } 2128 2129 /** 2130 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2131 * @adapter: board private structure 2132 **/ 2133 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2134 { 2135 int i; 2136 2137 for (i = 0; i < adapter->num_rx_queues; i++) 2138 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2139 } 2140 2141 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2142 * and memory write and invalidate disabled for certain operations 2143 */ 2144 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2145 { 2146 struct e1000_hw *hw = &adapter->hw; 2147 struct net_device *netdev = adapter->netdev; 2148 u32 rctl; 2149 2150 e1000_pci_clear_mwi(hw); 2151 2152 rctl = er32(RCTL); 2153 rctl |= E1000_RCTL_RST; 2154 ew32(RCTL, rctl); 2155 E1000_WRITE_FLUSH(); 2156 mdelay(5); 2157 2158 if (netif_running(netdev)) 2159 e1000_clean_all_rx_rings(adapter); 2160 } 2161 2162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2163 { 2164 struct e1000_hw *hw = &adapter->hw; 2165 struct net_device *netdev = adapter->netdev; 2166 u32 rctl; 2167 2168 rctl = er32(RCTL); 2169 rctl &= ~E1000_RCTL_RST; 2170 ew32(RCTL, rctl); 2171 E1000_WRITE_FLUSH(); 2172 mdelay(5); 2173 2174 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2175 e1000_pci_set_mwi(hw); 2176 2177 if (netif_running(netdev)) { 2178 /* No need to loop, because 82542 supports only 1 queue */ 2179 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2180 e1000_configure_rx(adapter); 2181 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2182 } 2183 } 2184 2185 /** 2186 * e1000_set_mac - Change the Ethernet Address of the NIC 2187 * @netdev: network interface device structure 2188 * @p: pointer to an address structure 2189 * 2190 * Returns 0 on success, negative on failure 2191 **/ 2192 static int e1000_set_mac(struct net_device *netdev, void *p) 2193 { 2194 struct e1000_adapter *adapter = netdev_priv(netdev); 2195 struct e1000_hw *hw = &adapter->hw; 2196 struct sockaddr *addr = p; 2197 2198 if (!is_valid_ether_addr(addr->sa_data)) 2199 return -EADDRNOTAVAIL; 2200 2201 /* 82542 2.0 needs to be in reset to write receive address registers */ 2202 2203 if (hw->mac_type == e1000_82542_rev2_0) 2204 e1000_enter_82542_rst(adapter); 2205 2206 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2207 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2208 2209 e1000_rar_set(hw, hw->mac_addr, 0); 2210 2211 if (hw->mac_type == e1000_82542_rev2_0) 2212 e1000_leave_82542_rst(adapter); 2213 2214 return 0; 2215 } 2216 2217 /** 2218 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2219 * @netdev: network interface device structure 2220 * 2221 * The set_rx_mode entry point is called whenever the unicast or multicast 2222 * address lists or the network interface flags are updated. This routine is 2223 * responsible for configuring the hardware for proper unicast, multicast, 2224 * promiscuous mode, and all-multi behavior. 2225 **/ 2226 static void e1000_set_rx_mode(struct net_device *netdev) 2227 { 2228 struct e1000_adapter *adapter = netdev_priv(netdev); 2229 struct e1000_hw *hw = &adapter->hw; 2230 struct netdev_hw_addr *ha; 2231 bool use_uc = false; 2232 u32 rctl; 2233 u32 hash_value; 2234 int i, rar_entries = E1000_RAR_ENTRIES; 2235 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2236 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2237 2238 if (!mcarray) 2239 return; 2240 2241 /* Check for Promiscuous and All Multicast modes */ 2242 2243 rctl = er32(RCTL); 2244 2245 if (netdev->flags & IFF_PROMISC) { 2246 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2247 rctl &= ~E1000_RCTL_VFE; 2248 } else { 2249 if (netdev->flags & IFF_ALLMULTI) 2250 rctl |= E1000_RCTL_MPE; 2251 else 2252 rctl &= ~E1000_RCTL_MPE; 2253 /* Enable VLAN filter if there is a VLAN */ 2254 if (e1000_vlan_used(adapter)) 2255 rctl |= E1000_RCTL_VFE; 2256 } 2257 2258 if (netdev_uc_count(netdev) > rar_entries - 1) { 2259 rctl |= E1000_RCTL_UPE; 2260 } else if (!(netdev->flags & IFF_PROMISC)) { 2261 rctl &= ~E1000_RCTL_UPE; 2262 use_uc = true; 2263 } 2264 2265 ew32(RCTL, rctl); 2266 2267 /* 82542 2.0 needs to be in reset to write receive address registers */ 2268 2269 if (hw->mac_type == e1000_82542_rev2_0) 2270 e1000_enter_82542_rst(adapter); 2271 2272 /* load the first 14 addresses into the exact filters 1-14. Unicast 2273 * addresses take precedence to avoid disabling unicast filtering 2274 * when possible. 2275 * 2276 * RAR 0 is used for the station MAC address 2277 * if there are not 14 addresses, go ahead and clear the filters 2278 */ 2279 i = 1; 2280 if (use_uc) 2281 netdev_for_each_uc_addr(ha, netdev) { 2282 if (i == rar_entries) 2283 break; 2284 e1000_rar_set(hw, ha->addr, i++); 2285 } 2286 2287 netdev_for_each_mc_addr(ha, netdev) { 2288 if (i == rar_entries) { 2289 /* load any remaining addresses into the hash table */ 2290 u32 hash_reg, hash_bit, mta; 2291 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2292 hash_reg = (hash_value >> 5) & 0x7F; 2293 hash_bit = hash_value & 0x1F; 2294 mta = (1 << hash_bit); 2295 mcarray[hash_reg] |= mta; 2296 } else { 2297 e1000_rar_set(hw, ha->addr, i++); 2298 } 2299 } 2300 2301 for (; i < rar_entries; i++) { 2302 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2303 E1000_WRITE_FLUSH(); 2304 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2305 E1000_WRITE_FLUSH(); 2306 } 2307 2308 /* write the hash table completely, write from bottom to avoid 2309 * both stupid write combining chipsets, and flushing each write 2310 */ 2311 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2312 /* If we are on an 82544 has an errata where writing odd 2313 * offsets overwrites the previous even offset, but writing 2314 * backwards over the range solves the issue by always 2315 * writing the odd offset first 2316 */ 2317 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2318 } 2319 E1000_WRITE_FLUSH(); 2320 2321 if (hw->mac_type == e1000_82542_rev2_0) 2322 e1000_leave_82542_rst(adapter); 2323 2324 kfree(mcarray); 2325 } 2326 2327 /** 2328 * e1000_update_phy_info_task - get phy info 2329 * @work: work struct contained inside adapter struct 2330 * 2331 * Need to wait a few seconds after link up to get diagnostic information from 2332 * the phy 2333 */ 2334 static void e1000_update_phy_info_task(struct work_struct *work) 2335 { 2336 struct e1000_adapter *adapter = container_of(work, 2337 struct e1000_adapter, 2338 phy_info_task.work); 2339 2340 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2341 } 2342 2343 /** 2344 * e1000_82547_tx_fifo_stall_task - task to complete work 2345 * @work: work struct contained inside adapter struct 2346 **/ 2347 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2348 { 2349 struct e1000_adapter *adapter = container_of(work, 2350 struct e1000_adapter, 2351 fifo_stall_task.work); 2352 struct e1000_hw *hw = &adapter->hw; 2353 struct net_device *netdev = adapter->netdev; 2354 u32 tctl; 2355 2356 if (atomic_read(&adapter->tx_fifo_stall)) { 2357 if ((er32(TDT) == er32(TDH)) && 2358 (er32(TDFT) == er32(TDFH)) && 2359 (er32(TDFTS) == er32(TDFHS))) { 2360 tctl = er32(TCTL); 2361 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2362 ew32(TDFT, adapter->tx_head_addr); 2363 ew32(TDFH, adapter->tx_head_addr); 2364 ew32(TDFTS, adapter->tx_head_addr); 2365 ew32(TDFHS, adapter->tx_head_addr); 2366 ew32(TCTL, tctl); 2367 E1000_WRITE_FLUSH(); 2368 2369 adapter->tx_fifo_head = 0; 2370 atomic_set(&adapter->tx_fifo_stall, 0); 2371 netif_wake_queue(netdev); 2372 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2373 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2374 } 2375 } 2376 } 2377 2378 bool e1000_has_link(struct e1000_adapter *adapter) 2379 { 2380 struct e1000_hw *hw = &adapter->hw; 2381 bool link_active = false; 2382 2383 /* get_link_status is set on LSC (link status) interrupt or rx 2384 * sequence error interrupt (except on intel ce4100). 2385 * get_link_status will stay false until the 2386 * e1000_check_for_link establishes link for copper adapters 2387 * ONLY 2388 */ 2389 switch (hw->media_type) { 2390 case e1000_media_type_copper: 2391 if (hw->mac_type == e1000_ce4100) 2392 hw->get_link_status = 1; 2393 if (hw->get_link_status) { 2394 e1000_check_for_link(hw); 2395 link_active = !hw->get_link_status; 2396 } else { 2397 link_active = true; 2398 } 2399 break; 2400 case e1000_media_type_fiber: 2401 e1000_check_for_link(hw); 2402 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2403 break; 2404 case e1000_media_type_internal_serdes: 2405 e1000_check_for_link(hw); 2406 link_active = hw->serdes_has_link; 2407 break; 2408 default: 2409 break; 2410 } 2411 2412 return link_active; 2413 } 2414 2415 /** 2416 * e1000_watchdog - work function 2417 * @work: work struct contained inside adapter struct 2418 **/ 2419 static void e1000_watchdog(struct work_struct *work) 2420 { 2421 struct e1000_adapter *adapter = container_of(work, 2422 struct e1000_adapter, 2423 watchdog_task.work); 2424 struct e1000_hw *hw = &adapter->hw; 2425 struct net_device *netdev = adapter->netdev; 2426 struct e1000_tx_ring *txdr = adapter->tx_ring; 2427 u32 link, tctl; 2428 2429 link = e1000_has_link(adapter); 2430 if ((netif_carrier_ok(netdev)) && link) 2431 goto link_up; 2432 2433 if (link) { 2434 if (!netif_carrier_ok(netdev)) { 2435 u32 ctrl; 2436 /* update snapshot of PHY registers on LSC */ 2437 e1000_get_speed_and_duplex(hw, 2438 &adapter->link_speed, 2439 &adapter->link_duplex); 2440 2441 ctrl = er32(CTRL); 2442 pr_info("%s NIC Link is Up %d Mbps %s, " 2443 "Flow Control: %s\n", 2444 netdev->name, 2445 adapter->link_speed, 2446 adapter->link_duplex == FULL_DUPLEX ? 2447 "Full Duplex" : "Half Duplex", 2448 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2449 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2450 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2451 E1000_CTRL_TFCE) ? "TX" : "None"))); 2452 2453 /* adjust timeout factor according to speed/duplex */ 2454 adapter->tx_timeout_factor = 1; 2455 switch (adapter->link_speed) { 2456 case SPEED_10: 2457 adapter->tx_timeout_factor = 16; 2458 break; 2459 case SPEED_100: 2460 /* maybe add some timeout factor ? */ 2461 break; 2462 } 2463 2464 /* enable transmits in the hardware */ 2465 tctl = er32(TCTL); 2466 tctl |= E1000_TCTL_EN; 2467 ew32(TCTL, tctl); 2468 2469 netif_carrier_on(netdev); 2470 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2471 schedule_delayed_work(&adapter->phy_info_task, 2472 2 * HZ); 2473 adapter->smartspeed = 0; 2474 } 2475 } else { 2476 if (netif_carrier_ok(netdev)) { 2477 adapter->link_speed = 0; 2478 adapter->link_duplex = 0; 2479 pr_info("%s NIC Link is Down\n", 2480 netdev->name); 2481 netif_carrier_off(netdev); 2482 2483 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2484 schedule_delayed_work(&adapter->phy_info_task, 2485 2 * HZ); 2486 } 2487 2488 e1000_smartspeed(adapter); 2489 } 2490 2491 link_up: 2492 e1000_update_stats(adapter); 2493 2494 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2495 adapter->tpt_old = adapter->stats.tpt; 2496 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2497 adapter->colc_old = adapter->stats.colc; 2498 2499 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2500 adapter->gorcl_old = adapter->stats.gorcl; 2501 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2502 adapter->gotcl_old = adapter->stats.gotcl; 2503 2504 e1000_update_adaptive(hw); 2505 2506 if (!netif_carrier_ok(netdev)) { 2507 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2508 /* We've lost link, so the controller stops DMA, 2509 * but we've got queued Tx work that's never going 2510 * to get done, so reset controller to flush Tx. 2511 * (Do the reset outside of interrupt context). 2512 */ 2513 adapter->tx_timeout_count++; 2514 schedule_work(&adapter->reset_task); 2515 /* exit immediately since reset is imminent */ 2516 return; 2517 } 2518 } 2519 2520 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2521 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2522 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2523 * Total asymmetrical Tx or Rx gets ITR=8000; 2524 * everyone else is between 2000-8000. 2525 */ 2526 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2527 u32 dif = (adapter->gotcl > adapter->gorcl ? 2528 adapter->gotcl - adapter->gorcl : 2529 adapter->gorcl - adapter->gotcl) / 10000; 2530 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2531 2532 ew32(ITR, 1000000000 / (itr * 256)); 2533 } 2534 2535 /* Cause software interrupt to ensure rx ring is cleaned */ 2536 ew32(ICS, E1000_ICS_RXDMT0); 2537 2538 /* Force detection of hung controller every watchdog period */ 2539 adapter->detect_tx_hung = true; 2540 2541 /* Reschedule the task */ 2542 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2543 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2544 } 2545 2546 enum latency_range { 2547 lowest_latency = 0, 2548 low_latency = 1, 2549 bulk_latency = 2, 2550 latency_invalid = 255 2551 }; 2552 2553 /** 2554 * e1000_update_itr - update the dynamic ITR value based on statistics 2555 * @adapter: pointer to adapter 2556 * @itr_setting: current adapter->itr 2557 * @packets: the number of packets during this measurement interval 2558 * @bytes: the number of bytes during this measurement interval 2559 * 2560 * Stores a new ITR value based on packets and byte 2561 * counts during the last interrupt. The advantage of per interrupt 2562 * computation is faster updates and more accurate ITR for the current 2563 * traffic pattern. Constants in this function were computed 2564 * based on theoretical maximum wire speed and thresholds were set based 2565 * on testing data as well as attempting to minimize response time 2566 * while increasing bulk throughput. 2567 * this functionality is controlled by the InterruptThrottleRate module 2568 * parameter (see e1000_param.c) 2569 **/ 2570 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2571 u16 itr_setting, int packets, int bytes) 2572 { 2573 unsigned int retval = itr_setting; 2574 struct e1000_hw *hw = &adapter->hw; 2575 2576 if (unlikely(hw->mac_type < e1000_82540)) 2577 goto update_itr_done; 2578 2579 if (packets == 0) 2580 goto update_itr_done; 2581 2582 switch (itr_setting) { 2583 case lowest_latency: 2584 /* jumbo frames get bulk treatment*/ 2585 if (bytes/packets > 8000) 2586 retval = bulk_latency; 2587 else if ((packets < 5) && (bytes > 512)) 2588 retval = low_latency; 2589 break; 2590 case low_latency: /* 50 usec aka 20000 ints/s */ 2591 if (bytes > 10000) { 2592 /* jumbo frames need bulk latency setting */ 2593 if (bytes/packets > 8000) 2594 retval = bulk_latency; 2595 else if ((packets < 10) || ((bytes/packets) > 1200)) 2596 retval = bulk_latency; 2597 else if ((packets > 35)) 2598 retval = lowest_latency; 2599 } else if (bytes/packets > 2000) 2600 retval = bulk_latency; 2601 else if (packets <= 2 && bytes < 512) 2602 retval = lowest_latency; 2603 break; 2604 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2605 if (bytes > 25000) { 2606 if (packets > 35) 2607 retval = low_latency; 2608 } else if (bytes < 6000) { 2609 retval = low_latency; 2610 } 2611 break; 2612 } 2613 2614 update_itr_done: 2615 return retval; 2616 } 2617 2618 static void e1000_set_itr(struct e1000_adapter *adapter) 2619 { 2620 struct e1000_hw *hw = &adapter->hw; 2621 u16 current_itr; 2622 u32 new_itr = adapter->itr; 2623 2624 if (unlikely(hw->mac_type < e1000_82540)) 2625 return; 2626 2627 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2628 if (unlikely(adapter->link_speed != SPEED_1000)) { 2629 current_itr = 0; 2630 new_itr = 4000; 2631 goto set_itr_now; 2632 } 2633 2634 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2635 adapter->total_tx_packets, 2636 adapter->total_tx_bytes); 2637 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2638 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2639 adapter->tx_itr = low_latency; 2640 2641 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2642 adapter->total_rx_packets, 2643 adapter->total_rx_bytes); 2644 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2645 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2646 adapter->rx_itr = low_latency; 2647 2648 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2649 2650 switch (current_itr) { 2651 /* counts and packets in update_itr are dependent on these numbers */ 2652 case lowest_latency: 2653 new_itr = 70000; 2654 break; 2655 case low_latency: 2656 new_itr = 20000; /* aka hwitr = ~200 */ 2657 break; 2658 case bulk_latency: 2659 new_itr = 4000; 2660 break; 2661 default: 2662 break; 2663 } 2664 2665 set_itr_now: 2666 if (new_itr != adapter->itr) { 2667 /* this attempts to bias the interrupt rate towards Bulk 2668 * by adding intermediate steps when interrupt rate is 2669 * increasing 2670 */ 2671 new_itr = new_itr > adapter->itr ? 2672 min(adapter->itr + (new_itr >> 2), new_itr) : 2673 new_itr; 2674 adapter->itr = new_itr; 2675 ew32(ITR, 1000000000 / (new_itr * 256)); 2676 } 2677 } 2678 2679 #define E1000_TX_FLAGS_CSUM 0x00000001 2680 #define E1000_TX_FLAGS_VLAN 0x00000002 2681 #define E1000_TX_FLAGS_TSO 0x00000004 2682 #define E1000_TX_FLAGS_IPV4 0x00000008 2683 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2684 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2685 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2686 2687 static int e1000_tso(struct e1000_adapter *adapter, 2688 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2689 __be16 protocol) 2690 { 2691 struct e1000_context_desc *context_desc; 2692 struct e1000_tx_buffer *buffer_info; 2693 unsigned int i; 2694 u32 cmd_length = 0; 2695 u16 ipcse = 0, tucse, mss; 2696 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2697 2698 if (skb_is_gso(skb)) { 2699 int err; 2700 2701 err = skb_cow_head(skb, 0); 2702 if (err < 0) 2703 return err; 2704 2705 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2706 mss = skb_shinfo(skb)->gso_size; 2707 if (protocol == htons(ETH_P_IP)) { 2708 struct iphdr *iph = ip_hdr(skb); 2709 iph->tot_len = 0; 2710 iph->check = 0; 2711 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2712 iph->daddr, 0, 2713 IPPROTO_TCP, 2714 0); 2715 cmd_length = E1000_TXD_CMD_IP; 2716 ipcse = skb_transport_offset(skb) - 1; 2717 } else if (skb_is_gso_v6(skb)) { 2718 ipv6_hdr(skb)->payload_len = 0; 2719 tcp_hdr(skb)->check = 2720 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2721 &ipv6_hdr(skb)->daddr, 2722 0, IPPROTO_TCP, 0); 2723 ipcse = 0; 2724 } 2725 ipcss = skb_network_offset(skb); 2726 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2727 tucss = skb_transport_offset(skb); 2728 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2729 tucse = 0; 2730 2731 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2732 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2733 2734 i = tx_ring->next_to_use; 2735 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2736 buffer_info = &tx_ring->buffer_info[i]; 2737 2738 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2739 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2740 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2741 context_desc->upper_setup.tcp_fields.tucss = tucss; 2742 context_desc->upper_setup.tcp_fields.tucso = tucso; 2743 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2744 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2745 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2746 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2747 2748 buffer_info->time_stamp = jiffies; 2749 buffer_info->next_to_watch = i; 2750 2751 if (++i == tx_ring->count) 2752 i = 0; 2753 2754 tx_ring->next_to_use = i; 2755 2756 return true; 2757 } 2758 return false; 2759 } 2760 2761 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2762 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2763 __be16 protocol) 2764 { 2765 struct e1000_context_desc *context_desc; 2766 struct e1000_tx_buffer *buffer_info; 2767 unsigned int i; 2768 u8 css; 2769 u32 cmd_len = E1000_TXD_CMD_DEXT; 2770 2771 if (skb->ip_summed != CHECKSUM_PARTIAL) 2772 return false; 2773 2774 switch (protocol) { 2775 case cpu_to_be16(ETH_P_IP): 2776 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2777 cmd_len |= E1000_TXD_CMD_TCP; 2778 break; 2779 case cpu_to_be16(ETH_P_IPV6): 2780 /* XXX not handling all IPV6 headers */ 2781 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2782 cmd_len |= E1000_TXD_CMD_TCP; 2783 break; 2784 default: 2785 if (unlikely(net_ratelimit())) 2786 e_warn(drv, "checksum_partial proto=%x!\n", 2787 skb->protocol); 2788 break; 2789 } 2790 2791 css = skb_checksum_start_offset(skb); 2792 2793 i = tx_ring->next_to_use; 2794 buffer_info = &tx_ring->buffer_info[i]; 2795 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2796 2797 context_desc->lower_setup.ip_config = 0; 2798 context_desc->upper_setup.tcp_fields.tucss = css; 2799 context_desc->upper_setup.tcp_fields.tucso = 2800 css + skb->csum_offset; 2801 context_desc->upper_setup.tcp_fields.tucse = 0; 2802 context_desc->tcp_seg_setup.data = 0; 2803 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2804 2805 buffer_info->time_stamp = jiffies; 2806 buffer_info->next_to_watch = i; 2807 2808 if (unlikely(++i == tx_ring->count)) 2809 i = 0; 2810 2811 tx_ring->next_to_use = i; 2812 2813 return true; 2814 } 2815 2816 #define E1000_MAX_TXD_PWR 12 2817 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2818 2819 static int e1000_tx_map(struct e1000_adapter *adapter, 2820 struct e1000_tx_ring *tx_ring, 2821 struct sk_buff *skb, unsigned int first, 2822 unsigned int max_per_txd, unsigned int nr_frags, 2823 unsigned int mss) 2824 { 2825 struct e1000_hw *hw = &adapter->hw; 2826 struct pci_dev *pdev = adapter->pdev; 2827 struct e1000_tx_buffer *buffer_info; 2828 unsigned int len = skb_headlen(skb); 2829 unsigned int offset = 0, size, count = 0, i; 2830 unsigned int f, bytecount, segs; 2831 2832 i = tx_ring->next_to_use; 2833 2834 while (len) { 2835 buffer_info = &tx_ring->buffer_info[i]; 2836 size = min(len, max_per_txd); 2837 /* Workaround for Controller erratum -- 2838 * descriptor for non-tso packet in a linear SKB that follows a 2839 * tso gets written back prematurely before the data is fully 2840 * DMA'd to the controller 2841 */ 2842 if (!skb->data_len && tx_ring->last_tx_tso && 2843 !skb_is_gso(skb)) { 2844 tx_ring->last_tx_tso = false; 2845 size -= 4; 2846 } 2847 2848 /* Workaround for premature desc write-backs 2849 * in TSO mode. Append 4-byte sentinel desc 2850 */ 2851 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2852 size -= 4; 2853 /* work-around for errata 10 and it applies 2854 * to all controllers in PCI-X mode 2855 * The fix is to make sure that the first descriptor of a 2856 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2857 */ 2858 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2859 (size > 2015) && count == 0)) 2860 size = 2015; 2861 2862 /* Workaround for potential 82544 hang in PCI-X. Avoid 2863 * terminating buffers within evenly-aligned dwords. 2864 */ 2865 if (unlikely(adapter->pcix_82544 && 2866 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2867 size > 4)) 2868 size -= 4; 2869 2870 buffer_info->length = size; 2871 /* set time_stamp *before* dma to help avoid a possible race */ 2872 buffer_info->time_stamp = jiffies; 2873 buffer_info->mapped_as_page = false; 2874 buffer_info->dma = dma_map_single(&pdev->dev, 2875 skb->data + offset, 2876 size, DMA_TO_DEVICE); 2877 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2878 goto dma_error; 2879 buffer_info->next_to_watch = i; 2880 2881 len -= size; 2882 offset += size; 2883 count++; 2884 if (len) { 2885 i++; 2886 if (unlikely(i == tx_ring->count)) 2887 i = 0; 2888 } 2889 } 2890 2891 for (f = 0; f < nr_frags; f++) { 2892 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2893 2894 len = skb_frag_size(frag); 2895 offset = 0; 2896 2897 while (len) { 2898 unsigned long bufend; 2899 i++; 2900 if (unlikely(i == tx_ring->count)) 2901 i = 0; 2902 2903 buffer_info = &tx_ring->buffer_info[i]; 2904 size = min(len, max_per_txd); 2905 /* Workaround for premature desc write-backs 2906 * in TSO mode. Append 4-byte sentinel desc 2907 */ 2908 if (unlikely(mss && f == (nr_frags-1) && 2909 size == len && size > 8)) 2910 size -= 4; 2911 /* Workaround for potential 82544 hang in PCI-X. 2912 * Avoid terminating buffers within evenly-aligned 2913 * dwords. 2914 */ 2915 bufend = (unsigned long) 2916 page_to_phys(skb_frag_page(frag)); 2917 bufend += offset + size - 1; 2918 if (unlikely(adapter->pcix_82544 && 2919 !(bufend & 4) && 2920 size > 4)) 2921 size -= 4; 2922 2923 buffer_info->length = size; 2924 buffer_info->time_stamp = jiffies; 2925 buffer_info->mapped_as_page = true; 2926 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2927 offset, size, DMA_TO_DEVICE); 2928 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2929 goto dma_error; 2930 buffer_info->next_to_watch = i; 2931 2932 len -= size; 2933 offset += size; 2934 count++; 2935 } 2936 } 2937 2938 segs = skb_shinfo(skb)->gso_segs ?: 1; 2939 /* multiply data chunks by size of headers */ 2940 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2941 2942 tx_ring->buffer_info[i].skb = skb; 2943 tx_ring->buffer_info[i].segs = segs; 2944 tx_ring->buffer_info[i].bytecount = bytecount; 2945 tx_ring->buffer_info[first].next_to_watch = i; 2946 2947 return count; 2948 2949 dma_error: 2950 dev_err(&pdev->dev, "TX DMA map failed\n"); 2951 buffer_info->dma = 0; 2952 if (count) 2953 count--; 2954 2955 while (count--) { 2956 if (i == 0) 2957 i += tx_ring->count; 2958 i--; 2959 buffer_info = &tx_ring->buffer_info[i]; 2960 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2961 } 2962 2963 return 0; 2964 } 2965 2966 static void e1000_tx_queue(struct e1000_adapter *adapter, 2967 struct e1000_tx_ring *tx_ring, int tx_flags, 2968 int count) 2969 { 2970 struct e1000_tx_desc *tx_desc = NULL; 2971 struct e1000_tx_buffer *buffer_info; 2972 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2973 unsigned int i; 2974 2975 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2976 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2977 E1000_TXD_CMD_TSE; 2978 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2979 2980 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2981 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2982 } 2983 2984 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2985 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 2986 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2987 } 2988 2989 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 2990 txd_lower |= E1000_TXD_CMD_VLE; 2991 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 2992 } 2993 2994 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 2995 txd_lower &= ~(E1000_TXD_CMD_IFCS); 2996 2997 i = tx_ring->next_to_use; 2998 2999 while (count--) { 3000 buffer_info = &tx_ring->buffer_info[i]; 3001 tx_desc = E1000_TX_DESC(*tx_ring, i); 3002 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3003 tx_desc->lower.data = 3004 cpu_to_le32(txd_lower | buffer_info->length); 3005 tx_desc->upper.data = cpu_to_le32(txd_upper); 3006 if (unlikely(++i == tx_ring->count)) 3007 i = 0; 3008 } 3009 3010 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3011 3012 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3013 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3014 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3015 3016 /* Force memory writes to complete before letting h/w 3017 * know there are new descriptors to fetch. (Only 3018 * applicable for weak-ordered memory model archs, 3019 * such as IA-64). 3020 */ 3021 dma_wmb(); 3022 3023 tx_ring->next_to_use = i; 3024 } 3025 3026 /* 82547 workaround to avoid controller hang in half-duplex environment. 3027 * The workaround is to avoid queuing a large packet that would span 3028 * the internal Tx FIFO ring boundary by notifying the stack to resend 3029 * the packet at a later time. This gives the Tx FIFO an opportunity to 3030 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3031 * to the beginning of the Tx FIFO. 3032 */ 3033 3034 #define E1000_FIFO_HDR 0x10 3035 #define E1000_82547_PAD_LEN 0x3E0 3036 3037 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3038 struct sk_buff *skb) 3039 { 3040 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3041 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3042 3043 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3044 3045 if (adapter->link_duplex != HALF_DUPLEX) 3046 goto no_fifo_stall_required; 3047 3048 if (atomic_read(&adapter->tx_fifo_stall)) 3049 return 1; 3050 3051 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3052 atomic_set(&adapter->tx_fifo_stall, 1); 3053 return 1; 3054 } 3055 3056 no_fifo_stall_required: 3057 adapter->tx_fifo_head += skb_fifo_len; 3058 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3059 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3060 return 0; 3061 } 3062 3063 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3064 { 3065 struct e1000_adapter *adapter = netdev_priv(netdev); 3066 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3067 3068 netif_stop_queue(netdev); 3069 /* Herbert's original patch had: 3070 * smp_mb__after_netif_stop_queue(); 3071 * but since that doesn't exist yet, just open code it. 3072 */ 3073 smp_mb(); 3074 3075 /* We need to check again in a case another CPU has just 3076 * made room available. 3077 */ 3078 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3079 return -EBUSY; 3080 3081 /* A reprieve! */ 3082 netif_start_queue(netdev); 3083 ++adapter->restart_queue; 3084 return 0; 3085 } 3086 3087 static int e1000_maybe_stop_tx(struct net_device *netdev, 3088 struct e1000_tx_ring *tx_ring, int size) 3089 { 3090 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3091 return 0; 3092 return __e1000_maybe_stop_tx(netdev, size); 3093 } 3094 3095 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) 3096 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3097 struct net_device *netdev) 3098 { 3099 struct e1000_adapter *adapter = netdev_priv(netdev); 3100 struct e1000_hw *hw = &adapter->hw; 3101 struct e1000_tx_ring *tx_ring; 3102 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3103 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3104 unsigned int tx_flags = 0; 3105 unsigned int len = skb_headlen(skb); 3106 unsigned int nr_frags; 3107 unsigned int mss; 3108 int count = 0; 3109 int tso; 3110 unsigned int f; 3111 __be16 protocol = vlan_get_protocol(skb); 3112 3113 /* This goes back to the question of how to logically map a Tx queue 3114 * to a flow. Right now, performance is impacted slightly negatively 3115 * if using multiple Tx queues. If the stack breaks away from a 3116 * single qdisc implementation, we can look at this again. 3117 */ 3118 tx_ring = adapter->tx_ring; 3119 3120 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3121 * packets may get corrupted during padding by HW. 3122 * To WA this issue, pad all small packets manually. 3123 */ 3124 if (eth_skb_pad(skb)) 3125 return NETDEV_TX_OK; 3126 3127 mss = skb_shinfo(skb)->gso_size; 3128 /* The controller does a simple calculation to 3129 * make sure there is enough room in the FIFO before 3130 * initiating the DMA for each buffer. The calc is: 3131 * 4 = ceil(buffer len/mss). To make sure we don't 3132 * overrun the FIFO, adjust the max buffer len if mss 3133 * drops. 3134 */ 3135 if (mss) { 3136 u8 hdr_len; 3137 max_per_txd = min(mss << 2, max_per_txd); 3138 max_txd_pwr = fls(max_per_txd) - 1; 3139 3140 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3141 if (skb->data_len && hdr_len == len) { 3142 switch (hw->mac_type) { 3143 unsigned int pull_size; 3144 case e1000_82544: 3145 /* Make sure we have room to chop off 4 bytes, 3146 * and that the end alignment will work out to 3147 * this hardware's requirements 3148 * NOTE: this is a TSO only workaround 3149 * if end byte alignment not correct move us 3150 * into the next dword 3151 */ 3152 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3153 & 4) 3154 break; 3155 /* fall through */ 3156 pull_size = min((unsigned int)4, skb->data_len); 3157 if (!__pskb_pull_tail(skb, pull_size)) { 3158 e_err(drv, "__pskb_pull_tail " 3159 "failed.\n"); 3160 dev_kfree_skb_any(skb); 3161 return NETDEV_TX_OK; 3162 } 3163 len = skb_headlen(skb); 3164 break; 3165 default: 3166 /* do nothing */ 3167 break; 3168 } 3169 } 3170 } 3171 3172 /* reserve a descriptor for the offload context */ 3173 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3174 count++; 3175 count++; 3176 3177 /* Controller Erratum workaround */ 3178 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3179 count++; 3180 3181 count += TXD_USE_COUNT(len, max_txd_pwr); 3182 3183 if (adapter->pcix_82544) 3184 count++; 3185 3186 /* work-around for errata 10 and it applies to all controllers 3187 * in PCI-X mode, so add one more descriptor to the count 3188 */ 3189 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3190 (len > 2015))) 3191 count++; 3192 3193 nr_frags = skb_shinfo(skb)->nr_frags; 3194 for (f = 0; f < nr_frags; f++) 3195 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3196 max_txd_pwr); 3197 if (adapter->pcix_82544) 3198 count += nr_frags; 3199 3200 /* need: count + 2 desc gap to keep tail from touching 3201 * head, otherwise try next time 3202 */ 3203 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3204 return NETDEV_TX_BUSY; 3205 3206 if (unlikely((hw->mac_type == e1000_82547) && 3207 (e1000_82547_fifo_workaround(adapter, skb)))) { 3208 netif_stop_queue(netdev); 3209 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3210 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3211 return NETDEV_TX_BUSY; 3212 } 3213 3214 if (skb_vlan_tag_present(skb)) { 3215 tx_flags |= E1000_TX_FLAGS_VLAN; 3216 tx_flags |= (skb_vlan_tag_get(skb) << 3217 E1000_TX_FLAGS_VLAN_SHIFT); 3218 } 3219 3220 first = tx_ring->next_to_use; 3221 3222 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3223 if (tso < 0) { 3224 dev_kfree_skb_any(skb); 3225 return NETDEV_TX_OK; 3226 } 3227 3228 if (likely(tso)) { 3229 if (likely(hw->mac_type != e1000_82544)) 3230 tx_ring->last_tx_tso = true; 3231 tx_flags |= E1000_TX_FLAGS_TSO; 3232 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3233 tx_flags |= E1000_TX_FLAGS_CSUM; 3234 3235 if (protocol == htons(ETH_P_IP)) 3236 tx_flags |= E1000_TX_FLAGS_IPV4; 3237 3238 if (unlikely(skb->no_fcs)) 3239 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3240 3241 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3242 nr_frags, mss); 3243 3244 if (count) { 3245 /* The descriptors needed is higher than other Intel drivers 3246 * due to a number of workarounds. The breakdown is below: 3247 * Data descriptors: MAX_SKB_FRAGS + 1 3248 * Context Descriptor: 1 3249 * Keep head from touching tail: 2 3250 * Workarounds: 3 3251 */ 3252 int desc_needed = MAX_SKB_FRAGS + 7; 3253 3254 netdev_sent_queue(netdev, skb->len); 3255 skb_tx_timestamp(skb); 3256 3257 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3258 3259 /* 82544 potentially requires twice as many data descriptors 3260 * in order to guarantee buffers don't end on evenly-aligned 3261 * dwords 3262 */ 3263 if (adapter->pcix_82544) 3264 desc_needed += MAX_SKB_FRAGS + 1; 3265 3266 /* Make sure there is space in the ring for the next send. */ 3267 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); 3268 3269 if (!netdev_xmit_more() || 3270 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 3271 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); 3272 } 3273 } else { 3274 dev_kfree_skb_any(skb); 3275 tx_ring->buffer_info[first].time_stamp = 0; 3276 tx_ring->next_to_use = first; 3277 } 3278 3279 return NETDEV_TX_OK; 3280 } 3281 3282 #define NUM_REGS 38 /* 1 based count */ 3283 static void e1000_regdump(struct e1000_adapter *adapter) 3284 { 3285 struct e1000_hw *hw = &adapter->hw; 3286 u32 regs[NUM_REGS]; 3287 u32 *regs_buff = regs; 3288 int i = 0; 3289 3290 static const char * const reg_name[] = { 3291 "CTRL", "STATUS", 3292 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3293 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3294 "TIDV", "TXDCTL", "TADV", "TARC0", 3295 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3296 "TXDCTL1", "TARC1", 3297 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3298 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3299 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3300 }; 3301 3302 regs_buff[0] = er32(CTRL); 3303 regs_buff[1] = er32(STATUS); 3304 3305 regs_buff[2] = er32(RCTL); 3306 regs_buff[3] = er32(RDLEN); 3307 regs_buff[4] = er32(RDH); 3308 regs_buff[5] = er32(RDT); 3309 regs_buff[6] = er32(RDTR); 3310 3311 regs_buff[7] = er32(TCTL); 3312 regs_buff[8] = er32(TDBAL); 3313 regs_buff[9] = er32(TDBAH); 3314 regs_buff[10] = er32(TDLEN); 3315 regs_buff[11] = er32(TDH); 3316 regs_buff[12] = er32(TDT); 3317 regs_buff[13] = er32(TIDV); 3318 regs_buff[14] = er32(TXDCTL); 3319 regs_buff[15] = er32(TADV); 3320 regs_buff[16] = er32(TARC0); 3321 3322 regs_buff[17] = er32(TDBAL1); 3323 regs_buff[18] = er32(TDBAH1); 3324 regs_buff[19] = er32(TDLEN1); 3325 regs_buff[20] = er32(TDH1); 3326 regs_buff[21] = er32(TDT1); 3327 regs_buff[22] = er32(TXDCTL1); 3328 regs_buff[23] = er32(TARC1); 3329 regs_buff[24] = er32(CTRL_EXT); 3330 regs_buff[25] = er32(ERT); 3331 regs_buff[26] = er32(RDBAL0); 3332 regs_buff[27] = er32(RDBAH0); 3333 regs_buff[28] = er32(TDFH); 3334 regs_buff[29] = er32(TDFT); 3335 regs_buff[30] = er32(TDFHS); 3336 regs_buff[31] = er32(TDFTS); 3337 regs_buff[32] = er32(TDFPC); 3338 regs_buff[33] = er32(RDFH); 3339 regs_buff[34] = er32(RDFT); 3340 regs_buff[35] = er32(RDFHS); 3341 regs_buff[36] = er32(RDFTS); 3342 regs_buff[37] = er32(RDFPC); 3343 3344 pr_info("Register dump\n"); 3345 for (i = 0; i < NUM_REGS; i++) 3346 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3347 } 3348 3349 /* 3350 * e1000_dump: Print registers, tx ring and rx ring 3351 */ 3352 static void e1000_dump(struct e1000_adapter *adapter) 3353 { 3354 /* this code doesn't handle multiple rings */ 3355 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3356 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3357 int i; 3358 3359 if (!netif_msg_hw(adapter)) 3360 return; 3361 3362 /* Print Registers */ 3363 e1000_regdump(adapter); 3364 3365 /* transmit dump */ 3366 pr_info("TX Desc ring0 dump\n"); 3367 3368 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3369 * 3370 * Legacy Transmit Descriptor 3371 * +--------------------------------------------------------------+ 3372 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3373 * +--------------------------------------------------------------+ 3374 * 8 | Special | CSS | Status | CMD | CSO | Length | 3375 * +--------------------------------------------------------------+ 3376 * 63 48 47 36 35 32 31 24 23 16 15 0 3377 * 3378 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3379 * 63 48 47 40 39 32 31 16 15 8 7 0 3380 * +----------------------------------------------------------------+ 3381 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3382 * +----------------------------------------------------------------+ 3383 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3384 * +----------------------------------------------------------------+ 3385 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3386 * 3387 * Extended Data Descriptor (DTYP=0x1) 3388 * +----------------------------------------------------------------+ 3389 * 0 | Buffer Address [63:0] | 3390 * +----------------------------------------------------------------+ 3391 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3392 * +----------------------------------------------------------------+ 3393 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3394 */ 3395 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3396 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3397 3398 if (!netif_msg_tx_done(adapter)) 3399 goto rx_ring_summary; 3400 3401 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3402 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3403 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3404 struct my_u { __le64 a; __le64 b; }; 3405 struct my_u *u = (struct my_u *)tx_desc; 3406 const char *type; 3407 3408 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3409 type = "NTC/U"; 3410 else if (i == tx_ring->next_to_use) 3411 type = "NTU"; 3412 else if (i == tx_ring->next_to_clean) 3413 type = "NTC"; 3414 else 3415 type = ""; 3416 3417 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3418 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3419 le64_to_cpu(u->a), le64_to_cpu(u->b), 3420 (u64)buffer_info->dma, buffer_info->length, 3421 buffer_info->next_to_watch, 3422 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3423 } 3424 3425 rx_ring_summary: 3426 /* receive dump */ 3427 pr_info("\nRX Desc ring dump\n"); 3428 3429 /* Legacy Receive Descriptor Format 3430 * 3431 * +-----------------------------------------------------+ 3432 * | Buffer Address [63:0] | 3433 * +-----------------------------------------------------+ 3434 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3435 * +-----------------------------------------------------+ 3436 * 63 48 47 40 39 32 31 16 15 0 3437 */ 3438 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3439 3440 if (!netif_msg_rx_status(adapter)) 3441 goto exit; 3442 3443 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3444 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3445 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3446 struct my_u { __le64 a; __le64 b; }; 3447 struct my_u *u = (struct my_u *)rx_desc; 3448 const char *type; 3449 3450 if (i == rx_ring->next_to_use) 3451 type = "NTU"; 3452 else if (i == rx_ring->next_to_clean) 3453 type = "NTC"; 3454 else 3455 type = ""; 3456 3457 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3458 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3459 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3460 } /* for */ 3461 3462 /* dump the descriptor caches */ 3463 /* rx */ 3464 pr_info("Rx descriptor cache in 64bit format\n"); 3465 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3466 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3467 i, 3468 readl(adapter->hw.hw_addr + i+4), 3469 readl(adapter->hw.hw_addr + i), 3470 readl(adapter->hw.hw_addr + i+12), 3471 readl(adapter->hw.hw_addr + i+8)); 3472 } 3473 /* tx */ 3474 pr_info("Tx descriptor cache in 64bit format\n"); 3475 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3476 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3477 i, 3478 readl(adapter->hw.hw_addr + i+4), 3479 readl(adapter->hw.hw_addr + i), 3480 readl(adapter->hw.hw_addr + i+12), 3481 readl(adapter->hw.hw_addr + i+8)); 3482 } 3483 exit: 3484 return; 3485 } 3486 3487 /** 3488 * e1000_tx_timeout - Respond to a Tx Hang 3489 * @netdev: network interface device structure 3490 **/ 3491 static void e1000_tx_timeout(struct net_device *netdev) 3492 { 3493 struct e1000_adapter *adapter = netdev_priv(netdev); 3494 3495 /* Do the reset outside of interrupt context */ 3496 adapter->tx_timeout_count++; 3497 schedule_work(&adapter->reset_task); 3498 } 3499 3500 static void e1000_reset_task(struct work_struct *work) 3501 { 3502 struct e1000_adapter *adapter = 3503 container_of(work, struct e1000_adapter, reset_task); 3504 3505 e_err(drv, "Reset adapter\n"); 3506 e1000_reinit_locked(adapter); 3507 } 3508 3509 /** 3510 * e1000_change_mtu - Change the Maximum Transfer Unit 3511 * @netdev: network interface device structure 3512 * @new_mtu: new value for maximum frame size 3513 * 3514 * Returns 0 on success, negative on failure 3515 **/ 3516 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3517 { 3518 struct e1000_adapter *adapter = netdev_priv(netdev); 3519 struct e1000_hw *hw = &adapter->hw; 3520 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3521 3522 /* Adapter-specific max frame size limits. */ 3523 switch (hw->mac_type) { 3524 case e1000_undefined ... e1000_82542_rev2_1: 3525 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3526 e_err(probe, "Jumbo Frames not supported.\n"); 3527 return -EINVAL; 3528 } 3529 break; 3530 default: 3531 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3532 break; 3533 } 3534 3535 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3536 msleep(1); 3537 /* e1000_down has a dependency on max_frame_size */ 3538 hw->max_frame_size = max_frame; 3539 if (netif_running(netdev)) { 3540 /* prevent buffers from being reallocated */ 3541 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; 3542 e1000_down(adapter); 3543 } 3544 3545 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3546 * means we reserve 2 more, this pushes us to allocate from the next 3547 * larger slab size. 3548 * i.e. RXBUFFER_2048 --> size-4096 slab 3549 * however with the new *_jumbo_rx* routines, jumbo receives will use 3550 * fragmented skbs 3551 */ 3552 3553 if (max_frame <= E1000_RXBUFFER_2048) 3554 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3555 else 3556 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3557 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3558 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3559 adapter->rx_buffer_len = PAGE_SIZE; 3560 #endif 3561 3562 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3563 if (!hw->tbi_compatibility_on && 3564 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3565 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3566 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3567 3568 pr_info("%s changing MTU from %d to %d\n", 3569 netdev->name, netdev->mtu, new_mtu); 3570 netdev->mtu = new_mtu; 3571 3572 if (netif_running(netdev)) 3573 e1000_up(adapter); 3574 else 3575 e1000_reset(adapter); 3576 3577 clear_bit(__E1000_RESETTING, &adapter->flags); 3578 3579 return 0; 3580 } 3581 3582 /** 3583 * e1000_update_stats - Update the board statistics counters 3584 * @adapter: board private structure 3585 **/ 3586 void e1000_update_stats(struct e1000_adapter *adapter) 3587 { 3588 struct net_device *netdev = adapter->netdev; 3589 struct e1000_hw *hw = &adapter->hw; 3590 struct pci_dev *pdev = adapter->pdev; 3591 unsigned long flags; 3592 u16 phy_tmp; 3593 3594 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3595 3596 /* Prevent stats update while adapter is being reset, or if the pci 3597 * connection is down. 3598 */ 3599 if (adapter->link_speed == 0) 3600 return; 3601 if (pci_channel_offline(pdev)) 3602 return; 3603 3604 spin_lock_irqsave(&adapter->stats_lock, flags); 3605 3606 /* these counters are modified from e1000_tbi_adjust_stats, 3607 * called from the interrupt context, so they must only 3608 * be written while holding adapter->stats_lock 3609 */ 3610 3611 adapter->stats.crcerrs += er32(CRCERRS); 3612 adapter->stats.gprc += er32(GPRC); 3613 adapter->stats.gorcl += er32(GORCL); 3614 adapter->stats.gorch += er32(GORCH); 3615 adapter->stats.bprc += er32(BPRC); 3616 adapter->stats.mprc += er32(MPRC); 3617 adapter->stats.roc += er32(ROC); 3618 3619 adapter->stats.prc64 += er32(PRC64); 3620 adapter->stats.prc127 += er32(PRC127); 3621 adapter->stats.prc255 += er32(PRC255); 3622 adapter->stats.prc511 += er32(PRC511); 3623 adapter->stats.prc1023 += er32(PRC1023); 3624 adapter->stats.prc1522 += er32(PRC1522); 3625 3626 adapter->stats.symerrs += er32(SYMERRS); 3627 adapter->stats.mpc += er32(MPC); 3628 adapter->stats.scc += er32(SCC); 3629 adapter->stats.ecol += er32(ECOL); 3630 adapter->stats.mcc += er32(MCC); 3631 adapter->stats.latecol += er32(LATECOL); 3632 adapter->stats.dc += er32(DC); 3633 adapter->stats.sec += er32(SEC); 3634 adapter->stats.rlec += er32(RLEC); 3635 adapter->stats.xonrxc += er32(XONRXC); 3636 adapter->stats.xontxc += er32(XONTXC); 3637 adapter->stats.xoffrxc += er32(XOFFRXC); 3638 adapter->stats.xofftxc += er32(XOFFTXC); 3639 adapter->stats.fcruc += er32(FCRUC); 3640 adapter->stats.gptc += er32(GPTC); 3641 adapter->stats.gotcl += er32(GOTCL); 3642 adapter->stats.gotch += er32(GOTCH); 3643 adapter->stats.rnbc += er32(RNBC); 3644 adapter->stats.ruc += er32(RUC); 3645 adapter->stats.rfc += er32(RFC); 3646 adapter->stats.rjc += er32(RJC); 3647 adapter->stats.torl += er32(TORL); 3648 adapter->stats.torh += er32(TORH); 3649 adapter->stats.totl += er32(TOTL); 3650 adapter->stats.toth += er32(TOTH); 3651 adapter->stats.tpr += er32(TPR); 3652 3653 adapter->stats.ptc64 += er32(PTC64); 3654 adapter->stats.ptc127 += er32(PTC127); 3655 adapter->stats.ptc255 += er32(PTC255); 3656 adapter->stats.ptc511 += er32(PTC511); 3657 adapter->stats.ptc1023 += er32(PTC1023); 3658 adapter->stats.ptc1522 += er32(PTC1522); 3659 3660 adapter->stats.mptc += er32(MPTC); 3661 adapter->stats.bptc += er32(BPTC); 3662 3663 /* used for adaptive IFS */ 3664 3665 hw->tx_packet_delta = er32(TPT); 3666 adapter->stats.tpt += hw->tx_packet_delta; 3667 hw->collision_delta = er32(COLC); 3668 adapter->stats.colc += hw->collision_delta; 3669 3670 if (hw->mac_type >= e1000_82543) { 3671 adapter->stats.algnerrc += er32(ALGNERRC); 3672 adapter->stats.rxerrc += er32(RXERRC); 3673 adapter->stats.tncrs += er32(TNCRS); 3674 adapter->stats.cexterr += er32(CEXTERR); 3675 adapter->stats.tsctc += er32(TSCTC); 3676 adapter->stats.tsctfc += er32(TSCTFC); 3677 } 3678 3679 /* Fill out the OS statistics structure */ 3680 netdev->stats.multicast = adapter->stats.mprc; 3681 netdev->stats.collisions = adapter->stats.colc; 3682 3683 /* Rx Errors */ 3684 3685 /* RLEC on some newer hardware can be incorrect so build 3686 * our own version based on RUC and ROC 3687 */ 3688 netdev->stats.rx_errors = adapter->stats.rxerrc + 3689 adapter->stats.crcerrs + adapter->stats.algnerrc + 3690 adapter->stats.ruc + adapter->stats.roc + 3691 adapter->stats.cexterr; 3692 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3693 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3694 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3695 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3696 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3697 3698 /* Tx Errors */ 3699 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3700 netdev->stats.tx_errors = adapter->stats.txerrc; 3701 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3702 netdev->stats.tx_window_errors = adapter->stats.latecol; 3703 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3704 if (hw->bad_tx_carr_stats_fd && 3705 adapter->link_duplex == FULL_DUPLEX) { 3706 netdev->stats.tx_carrier_errors = 0; 3707 adapter->stats.tncrs = 0; 3708 } 3709 3710 /* Tx Dropped needs to be maintained elsewhere */ 3711 3712 /* Phy Stats */ 3713 if (hw->media_type == e1000_media_type_copper) { 3714 if ((adapter->link_speed == SPEED_1000) && 3715 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3716 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3717 adapter->phy_stats.idle_errors += phy_tmp; 3718 } 3719 3720 if ((hw->mac_type <= e1000_82546) && 3721 (hw->phy_type == e1000_phy_m88) && 3722 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3723 adapter->phy_stats.receive_errors += phy_tmp; 3724 } 3725 3726 /* Management Stats */ 3727 if (hw->has_smbus) { 3728 adapter->stats.mgptc += er32(MGTPTC); 3729 adapter->stats.mgprc += er32(MGTPRC); 3730 adapter->stats.mgpdc += er32(MGTPDC); 3731 } 3732 3733 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3734 } 3735 3736 /** 3737 * e1000_intr - Interrupt Handler 3738 * @irq: interrupt number 3739 * @data: pointer to a network interface device structure 3740 **/ 3741 static irqreturn_t e1000_intr(int irq, void *data) 3742 { 3743 struct net_device *netdev = data; 3744 struct e1000_adapter *adapter = netdev_priv(netdev); 3745 struct e1000_hw *hw = &adapter->hw; 3746 u32 icr = er32(ICR); 3747 3748 if (unlikely((!icr))) 3749 return IRQ_NONE; /* Not our interrupt */ 3750 3751 /* we might have caused the interrupt, but the above 3752 * read cleared it, and just in case the driver is 3753 * down there is nothing to do so return handled 3754 */ 3755 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3756 return IRQ_HANDLED; 3757 3758 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3759 hw->get_link_status = 1; 3760 /* guard against interrupt when we're going down */ 3761 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3762 schedule_delayed_work(&adapter->watchdog_task, 1); 3763 } 3764 3765 /* disable interrupts, without the synchronize_irq bit */ 3766 ew32(IMC, ~0); 3767 E1000_WRITE_FLUSH(); 3768 3769 if (likely(napi_schedule_prep(&adapter->napi))) { 3770 adapter->total_tx_bytes = 0; 3771 adapter->total_tx_packets = 0; 3772 adapter->total_rx_bytes = 0; 3773 adapter->total_rx_packets = 0; 3774 __napi_schedule(&adapter->napi); 3775 } else { 3776 /* this really should not happen! if it does it is basically a 3777 * bug, but not a hard error, so enable ints and continue 3778 */ 3779 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3780 e1000_irq_enable(adapter); 3781 } 3782 3783 return IRQ_HANDLED; 3784 } 3785 3786 /** 3787 * e1000_clean - NAPI Rx polling callback 3788 * @adapter: board private structure 3789 **/ 3790 static int e1000_clean(struct napi_struct *napi, int budget) 3791 { 3792 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3793 napi); 3794 int tx_clean_complete = 0, work_done = 0; 3795 3796 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3797 3798 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3799 3800 if (!tx_clean_complete || work_done == budget) 3801 return budget; 3802 3803 /* Exit the polling mode, but don't re-enable interrupts if stack might 3804 * poll us due to busy-polling 3805 */ 3806 if (likely(napi_complete_done(napi, work_done))) { 3807 if (likely(adapter->itr_setting & 3)) 3808 e1000_set_itr(adapter); 3809 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3810 e1000_irq_enable(adapter); 3811 } 3812 3813 return work_done; 3814 } 3815 3816 /** 3817 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3818 * @adapter: board private structure 3819 **/ 3820 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3821 struct e1000_tx_ring *tx_ring) 3822 { 3823 struct e1000_hw *hw = &adapter->hw; 3824 struct net_device *netdev = adapter->netdev; 3825 struct e1000_tx_desc *tx_desc, *eop_desc; 3826 struct e1000_tx_buffer *buffer_info; 3827 unsigned int i, eop; 3828 unsigned int count = 0; 3829 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 3830 unsigned int bytes_compl = 0, pkts_compl = 0; 3831 3832 i = tx_ring->next_to_clean; 3833 eop = tx_ring->buffer_info[i].next_to_watch; 3834 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3835 3836 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3837 (count < tx_ring->count)) { 3838 bool cleaned = false; 3839 dma_rmb(); /* read buffer_info after eop_desc */ 3840 for ( ; !cleaned; count++) { 3841 tx_desc = E1000_TX_DESC(*tx_ring, i); 3842 buffer_info = &tx_ring->buffer_info[i]; 3843 cleaned = (i == eop); 3844 3845 if (cleaned) { 3846 total_tx_packets += buffer_info->segs; 3847 total_tx_bytes += buffer_info->bytecount; 3848 if (buffer_info->skb) { 3849 bytes_compl += buffer_info->skb->len; 3850 pkts_compl++; 3851 } 3852 3853 } 3854 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3855 tx_desc->upper.data = 0; 3856 3857 if (unlikely(++i == tx_ring->count)) 3858 i = 0; 3859 } 3860 3861 eop = tx_ring->buffer_info[i].next_to_watch; 3862 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3863 } 3864 3865 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, 3866 * which will reuse the cleaned buffers. 3867 */ 3868 smp_store_release(&tx_ring->next_to_clean, i); 3869 3870 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3871 3872 #define TX_WAKE_THRESHOLD 32 3873 if (unlikely(count && netif_carrier_ok(netdev) && 3874 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3875 /* Make sure that anybody stopping the queue after this 3876 * sees the new next_to_clean. 3877 */ 3878 smp_mb(); 3879 3880 if (netif_queue_stopped(netdev) && 3881 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3882 netif_wake_queue(netdev); 3883 ++adapter->restart_queue; 3884 } 3885 } 3886 3887 if (adapter->detect_tx_hung) { 3888 /* Detect a transmit hang in hardware, this serializes the 3889 * check with the clearing of time_stamp and movement of i 3890 */ 3891 adapter->detect_tx_hung = false; 3892 if (tx_ring->buffer_info[eop].time_stamp && 3893 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3894 (adapter->tx_timeout_factor * HZ)) && 3895 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3896 3897 /* detected Tx unit hang */ 3898 e_err(drv, "Detected Tx Unit Hang\n" 3899 " Tx Queue <%lu>\n" 3900 " TDH <%x>\n" 3901 " TDT <%x>\n" 3902 " next_to_use <%x>\n" 3903 " next_to_clean <%x>\n" 3904 "buffer_info[next_to_clean]\n" 3905 " time_stamp <%lx>\n" 3906 " next_to_watch <%x>\n" 3907 " jiffies <%lx>\n" 3908 " next_to_watch.status <%x>\n", 3909 (unsigned long)(tx_ring - adapter->tx_ring), 3910 readl(hw->hw_addr + tx_ring->tdh), 3911 readl(hw->hw_addr + tx_ring->tdt), 3912 tx_ring->next_to_use, 3913 tx_ring->next_to_clean, 3914 tx_ring->buffer_info[eop].time_stamp, 3915 eop, 3916 jiffies, 3917 eop_desc->upper.fields.status); 3918 e1000_dump(adapter); 3919 netif_stop_queue(netdev); 3920 } 3921 } 3922 adapter->total_tx_bytes += total_tx_bytes; 3923 adapter->total_tx_packets += total_tx_packets; 3924 netdev->stats.tx_bytes += total_tx_bytes; 3925 netdev->stats.tx_packets += total_tx_packets; 3926 return count < tx_ring->count; 3927 } 3928 3929 /** 3930 * e1000_rx_checksum - Receive Checksum Offload for 82543 3931 * @adapter: board private structure 3932 * @status_err: receive descriptor status and error fields 3933 * @csum: receive descriptor csum field 3934 * @sk_buff: socket buffer with received data 3935 **/ 3936 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3937 u32 csum, struct sk_buff *skb) 3938 { 3939 struct e1000_hw *hw = &adapter->hw; 3940 u16 status = (u16)status_err; 3941 u8 errors = (u8)(status_err >> 24); 3942 3943 skb_checksum_none_assert(skb); 3944 3945 /* 82543 or newer only */ 3946 if (unlikely(hw->mac_type < e1000_82543)) 3947 return; 3948 /* Ignore Checksum bit is set */ 3949 if (unlikely(status & E1000_RXD_STAT_IXSM)) 3950 return; 3951 /* TCP/UDP checksum error bit is set */ 3952 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3953 /* let the stack verify checksum errors */ 3954 adapter->hw_csum_err++; 3955 return; 3956 } 3957 /* TCP/UDP Checksum has not been calculated */ 3958 if (!(status & E1000_RXD_STAT_TCPCS)) 3959 return; 3960 3961 /* It must be a TCP or UDP packet with a valid checksum */ 3962 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3963 /* TCP checksum is good */ 3964 skb->ip_summed = CHECKSUM_UNNECESSARY; 3965 } 3966 adapter->hw_csum_good++; 3967 } 3968 3969 /** 3970 * e1000_consume_page - helper function for jumbo Rx path 3971 **/ 3972 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 3973 u16 length) 3974 { 3975 bi->rxbuf.page = NULL; 3976 skb->len += length; 3977 skb->data_len += length; 3978 skb->truesize += PAGE_SIZE; 3979 } 3980 3981 /** 3982 * e1000_receive_skb - helper function to handle rx indications 3983 * @adapter: board private structure 3984 * @status: descriptor status field as written by hardware 3985 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3986 * @skb: pointer to sk_buff to be indicated to stack 3987 */ 3988 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3989 __le16 vlan, struct sk_buff *skb) 3990 { 3991 skb->protocol = eth_type_trans(skb, adapter->netdev); 3992 3993 if (status & E1000_RXD_STAT_VP) { 3994 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 3995 3996 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 3997 } 3998 napi_gro_receive(&adapter->napi, skb); 3999 } 4000 4001 /** 4002 * e1000_tbi_adjust_stats 4003 * @hw: Struct containing variables accessed by shared code 4004 * @frame_len: The length of the frame in question 4005 * @mac_addr: The Ethernet destination address of the frame in question 4006 * 4007 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4008 */ 4009 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4010 struct e1000_hw_stats *stats, 4011 u32 frame_len, const u8 *mac_addr) 4012 { 4013 u64 carry_bit; 4014 4015 /* First adjust the frame length. */ 4016 frame_len--; 4017 /* We need to adjust the statistics counters, since the hardware 4018 * counters overcount this packet as a CRC error and undercount 4019 * the packet as a good packet 4020 */ 4021 /* This packet should not be counted as a CRC error. */ 4022 stats->crcerrs--; 4023 /* This packet does count as a Good Packet Received. */ 4024 stats->gprc++; 4025 4026 /* Adjust the Good Octets received counters */ 4027 carry_bit = 0x80000000 & stats->gorcl; 4028 stats->gorcl += frame_len; 4029 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4030 * Received Count) was one before the addition, 4031 * AND it is zero after, then we lost the carry out, 4032 * need to add one to Gorch (Good Octets Received Count High). 4033 * This could be simplified if all environments supported 4034 * 64-bit integers. 4035 */ 4036 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4037 stats->gorch++; 4038 /* Is this a broadcast or multicast? Check broadcast first, 4039 * since the test for a multicast frame will test positive on 4040 * a broadcast frame. 4041 */ 4042 if (is_broadcast_ether_addr(mac_addr)) 4043 stats->bprc++; 4044 else if (is_multicast_ether_addr(mac_addr)) 4045 stats->mprc++; 4046 4047 if (frame_len == hw->max_frame_size) { 4048 /* In this case, the hardware has overcounted the number of 4049 * oversize frames. 4050 */ 4051 if (stats->roc > 0) 4052 stats->roc--; 4053 } 4054 4055 /* Adjust the bin counters when the extra byte put the frame in the 4056 * wrong bin. Remember that the frame_len was adjusted above. 4057 */ 4058 if (frame_len == 64) { 4059 stats->prc64++; 4060 stats->prc127--; 4061 } else if (frame_len == 127) { 4062 stats->prc127++; 4063 stats->prc255--; 4064 } else if (frame_len == 255) { 4065 stats->prc255++; 4066 stats->prc511--; 4067 } else if (frame_len == 511) { 4068 stats->prc511++; 4069 stats->prc1023--; 4070 } else if (frame_len == 1023) { 4071 stats->prc1023++; 4072 stats->prc1522--; 4073 } else if (frame_len == 1522) { 4074 stats->prc1522++; 4075 } 4076 } 4077 4078 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4079 u8 status, u8 errors, 4080 u32 length, const u8 *data) 4081 { 4082 struct e1000_hw *hw = &adapter->hw; 4083 u8 last_byte = *(data + length - 1); 4084 4085 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4086 unsigned long irq_flags; 4087 4088 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4089 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4090 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4091 4092 return true; 4093 } 4094 4095 return false; 4096 } 4097 4098 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4099 unsigned int bufsz) 4100 { 4101 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4102 4103 if (unlikely(!skb)) 4104 adapter->alloc_rx_buff_failed++; 4105 return skb; 4106 } 4107 4108 /** 4109 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4110 * @adapter: board private structure 4111 * @rx_ring: ring to clean 4112 * @work_done: amount of napi work completed this call 4113 * @work_to_do: max amount of work allowed for this call to do 4114 * 4115 * the return value indicates whether actual cleaning was done, there 4116 * is no guarantee that everything was cleaned 4117 */ 4118 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4119 struct e1000_rx_ring *rx_ring, 4120 int *work_done, int work_to_do) 4121 { 4122 struct net_device *netdev = adapter->netdev; 4123 struct pci_dev *pdev = adapter->pdev; 4124 struct e1000_rx_desc *rx_desc, *next_rxd; 4125 struct e1000_rx_buffer *buffer_info, *next_buffer; 4126 u32 length; 4127 unsigned int i; 4128 int cleaned_count = 0; 4129 bool cleaned = false; 4130 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4131 4132 i = rx_ring->next_to_clean; 4133 rx_desc = E1000_RX_DESC(*rx_ring, i); 4134 buffer_info = &rx_ring->buffer_info[i]; 4135 4136 while (rx_desc->status & E1000_RXD_STAT_DD) { 4137 struct sk_buff *skb; 4138 u8 status; 4139 4140 if (*work_done >= work_to_do) 4141 break; 4142 (*work_done)++; 4143 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4144 4145 status = rx_desc->status; 4146 4147 if (++i == rx_ring->count) 4148 i = 0; 4149 4150 next_rxd = E1000_RX_DESC(*rx_ring, i); 4151 prefetch(next_rxd); 4152 4153 next_buffer = &rx_ring->buffer_info[i]; 4154 4155 cleaned = true; 4156 cleaned_count++; 4157 dma_unmap_page(&pdev->dev, buffer_info->dma, 4158 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4159 buffer_info->dma = 0; 4160 4161 length = le16_to_cpu(rx_desc->length); 4162 4163 /* errors is only valid for DD + EOP descriptors */ 4164 if (unlikely((status & E1000_RXD_STAT_EOP) && 4165 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4166 u8 *mapped = page_address(buffer_info->rxbuf.page); 4167 4168 if (e1000_tbi_should_accept(adapter, status, 4169 rx_desc->errors, 4170 length, mapped)) { 4171 length--; 4172 } else if (netdev->features & NETIF_F_RXALL) { 4173 goto process_skb; 4174 } else { 4175 /* an error means any chain goes out the window 4176 * too 4177 */ 4178 if (rx_ring->rx_skb_top) 4179 dev_kfree_skb(rx_ring->rx_skb_top); 4180 rx_ring->rx_skb_top = NULL; 4181 goto next_desc; 4182 } 4183 } 4184 4185 #define rxtop rx_ring->rx_skb_top 4186 process_skb: 4187 if (!(status & E1000_RXD_STAT_EOP)) { 4188 /* this descriptor is only the beginning (or middle) */ 4189 if (!rxtop) { 4190 /* this is the beginning of a chain */ 4191 rxtop = napi_get_frags(&adapter->napi); 4192 if (!rxtop) 4193 break; 4194 4195 skb_fill_page_desc(rxtop, 0, 4196 buffer_info->rxbuf.page, 4197 0, length); 4198 } else { 4199 /* this is the middle of a chain */ 4200 skb_fill_page_desc(rxtop, 4201 skb_shinfo(rxtop)->nr_frags, 4202 buffer_info->rxbuf.page, 0, length); 4203 } 4204 e1000_consume_page(buffer_info, rxtop, length); 4205 goto next_desc; 4206 } else { 4207 if (rxtop) { 4208 /* end of the chain */ 4209 skb_fill_page_desc(rxtop, 4210 skb_shinfo(rxtop)->nr_frags, 4211 buffer_info->rxbuf.page, 0, length); 4212 skb = rxtop; 4213 rxtop = NULL; 4214 e1000_consume_page(buffer_info, skb, length); 4215 } else { 4216 struct page *p; 4217 /* no chain, got EOP, this buf is the packet 4218 * copybreak to save the put_page/alloc_page 4219 */ 4220 p = buffer_info->rxbuf.page; 4221 if (length <= copybreak) { 4222 u8 *vaddr; 4223 4224 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4225 length -= 4; 4226 skb = e1000_alloc_rx_skb(adapter, 4227 length); 4228 if (!skb) 4229 break; 4230 4231 vaddr = kmap_atomic(p); 4232 memcpy(skb_tail_pointer(skb), vaddr, 4233 length); 4234 kunmap_atomic(vaddr); 4235 /* re-use the page, so don't erase 4236 * buffer_info->rxbuf.page 4237 */ 4238 skb_put(skb, length); 4239 e1000_rx_checksum(adapter, 4240 status | rx_desc->errors << 24, 4241 le16_to_cpu(rx_desc->csum), skb); 4242 4243 total_rx_bytes += skb->len; 4244 total_rx_packets++; 4245 4246 e1000_receive_skb(adapter, status, 4247 rx_desc->special, skb); 4248 goto next_desc; 4249 } else { 4250 skb = napi_get_frags(&adapter->napi); 4251 if (!skb) { 4252 adapter->alloc_rx_buff_failed++; 4253 break; 4254 } 4255 skb_fill_page_desc(skb, 0, p, 0, 4256 length); 4257 e1000_consume_page(buffer_info, skb, 4258 length); 4259 } 4260 } 4261 } 4262 4263 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4264 e1000_rx_checksum(adapter, 4265 (u32)(status) | 4266 ((u32)(rx_desc->errors) << 24), 4267 le16_to_cpu(rx_desc->csum), skb); 4268 4269 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4270 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4271 pskb_trim(skb, skb->len - 4); 4272 total_rx_packets++; 4273 4274 if (status & E1000_RXD_STAT_VP) { 4275 __le16 vlan = rx_desc->special; 4276 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4277 4278 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4279 } 4280 4281 napi_gro_frags(&adapter->napi); 4282 4283 next_desc: 4284 rx_desc->status = 0; 4285 4286 /* return some buffers to hardware, one at a time is too slow */ 4287 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4288 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4289 cleaned_count = 0; 4290 } 4291 4292 /* use prefetched values */ 4293 rx_desc = next_rxd; 4294 buffer_info = next_buffer; 4295 } 4296 rx_ring->next_to_clean = i; 4297 4298 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4299 if (cleaned_count) 4300 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4301 4302 adapter->total_rx_packets += total_rx_packets; 4303 adapter->total_rx_bytes += total_rx_bytes; 4304 netdev->stats.rx_bytes += total_rx_bytes; 4305 netdev->stats.rx_packets += total_rx_packets; 4306 return cleaned; 4307 } 4308 4309 /* this should improve performance for small packets with large amounts 4310 * of reassembly being done in the stack 4311 */ 4312 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4313 struct e1000_rx_buffer *buffer_info, 4314 u32 length, const void *data) 4315 { 4316 struct sk_buff *skb; 4317 4318 if (length > copybreak) 4319 return NULL; 4320 4321 skb = e1000_alloc_rx_skb(adapter, length); 4322 if (!skb) 4323 return NULL; 4324 4325 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4326 length, DMA_FROM_DEVICE); 4327 4328 skb_put_data(skb, data, length); 4329 4330 return skb; 4331 } 4332 4333 /** 4334 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4335 * @adapter: board private structure 4336 * @rx_ring: ring to clean 4337 * @work_done: amount of napi work completed this call 4338 * @work_to_do: max amount of work allowed for this call to do 4339 */ 4340 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4341 struct e1000_rx_ring *rx_ring, 4342 int *work_done, int work_to_do) 4343 { 4344 struct net_device *netdev = adapter->netdev; 4345 struct pci_dev *pdev = adapter->pdev; 4346 struct e1000_rx_desc *rx_desc, *next_rxd; 4347 struct e1000_rx_buffer *buffer_info, *next_buffer; 4348 u32 length; 4349 unsigned int i; 4350 int cleaned_count = 0; 4351 bool cleaned = false; 4352 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4353 4354 i = rx_ring->next_to_clean; 4355 rx_desc = E1000_RX_DESC(*rx_ring, i); 4356 buffer_info = &rx_ring->buffer_info[i]; 4357 4358 while (rx_desc->status & E1000_RXD_STAT_DD) { 4359 struct sk_buff *skb; 4360 u8 *data; 4361 u8 status; 4362 4363 if (*work_done >= work_to_do) 4364 break; 4365 (*work_done)++; 4366 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4367 4368 status = rx_desc->status; 4369 length = le16_to_cpu(rx_desc->length); 4370 4371 data = buffer_info->rxbuf.data; 4372 prefetch(data); 4373 skb = e1000_copybreak(adapter, buffer_info, length, data); 4374 if (!skb) { 4375 unsigned int frag_len = e1000_frag_len(adapter); 4376 4377 skb = build_skb(data - E1000_HEADROOM, frag_len); 4378 if (!skb) { 4379 adapter->alloc_rx_buff_failed++; 4380 break; 4381 } 4382 4383 skb_reserve(skb, E1000_HEADROOM); 4384 dma_unmap_single(&pdev->dev, buffer_info->dma, 4385 adapter->rx_buffer_len, 4386 DMA_FROM_DEVICE); 4387 buffer_info->dma = 0; 4388 buffer_info->rxbuf.data = NULL; 4389 } 4390 4391 if (++i == rx_ring->count) 4392 i = 0; 4393 4394 next_rxd = E1000_RX_DESC(*rx_ring, i); 4395 prefetch(next_rxd); 4396 4397 next_buffer = &rx_ring->buffer_info[i]; 4398 4399 cleaned = true; 4400 cleaned_count++; 4401 4402 /* !EOP means multiple descriptors were used to store a single 4403 * packet, if thats the case we need to toss it. In fact, we 4404 * to toss every packet with the EOP bit clear and the next 4405 * frame that _does_ have the EOP bit set, as it is by 4406 * definition only a frame fragment 4407 */ 4408 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4409 adapter->discarding = true; 4410 4411 if (adapter->discarding) { 4412 /* All receives must fit into a single buffer */ 4413 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4414 dev_kfree_skb(skb); 4415 if (status & E1000_RXD_STAT_EOP) 4416 adapter->discarding = false; 4417 goto next_desc; 4418 } 4419 4420 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4421 if (e1000_tbi_should_accept(adapter, status, 4422 rx_desc->errors, 4423 length, data)) { 4424 length--; 4425 } else if (netdev->features & NETIF_F_RXALL) { 4426 goto process_skb; 4427 } else { 4428 dev_kfree_skb(skb); 4429 goto next_desc; 4430 } 4431 } 4432 4433 process_skb: 4434 total_rx_bytes += (length - 4); /* don't count FCS */ 4435 total_rx_packets++; 4436 4437 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4438 /* adjust length to remove Ethernet CRC, this must be 4439 * done after the TBI_ACCEPT workaround above 4440 */ 4441 length -= 4; 4442 4443 if (buffer_info->rxbuf.data == NULL) 4444 skb_put(skb, length); 4445 else /* copybreak skb */ 4446 skb_trim(skb, length); 4447 4448 /* Receive Checksum Offload */ 4449 e1000_rx_checksum(adapter, 4450 (u32)(status) | 4451 ((u32)(rx_desc->errors) << 24), 4452 le16_to_cpu(rx_desc->csum), skb); 4453 4454 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4455 4456 next_desc: 4457 rx_desc->status = 0; 4458 4459 /* return some buffers to hardware, one at a time is too slow */ 4460 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4461 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4462 cleaned_count = 0; 4463 } 4464 4465 /* use prefetched values */ 4466 rx_desc = next_rxd; 4467 buffer_info = next_buffer; 4468 } 4469 rx_ring->next_to_clean = i; 4470 4471 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4472 if (cleaned_count) 4473 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4474 4475 adapter->total_rx_packets += total_rx_packets; 4476 adapter->total_rx_bytes += total_rx_bytes; 4477 netdev->stats.rx_bytes += total_rx_bytes; 4478 netdev->stats.rx_packets += total_rx_packets; 4479 return cleaned; 4480 } 4481 4482 /** 4483 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4484 * @adapter: address of board private structure 4485 * @rx_ring: pointer to receive ring structure 4486 * @cleaned_count: number of buffers to allocate this pass 4487 **/ 4488 static void 4489 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4490 struct e1000_rx_ring *rx_ring, int cleaned_count) 4491 { 4492 struct pci_dev *pdev = adapter->pdev; 4493 struct e1000_rx_desc *rx_desc; 4494 struct e1000_rx_buffer *buffer_info; 4495 unsigned int i; 4496 4497 i = rx_ring->next_to_use; 4498 buffer_info = &rx_ring->buffer_info[i]; 4499 4500 while (cleaned_count--) { 4501 /* allocate a new page if necessary */ 4502 if (!buffer_info->rxbuf.page) { 4503 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4504 if (unlikely(!buffer_info->rxbuf.page)) { 4505 adapter->alloc_rx_buff_failed++; 4506 break; 4507 } 4508 } 4509 4510 if (!buffer_info->dma) { 4511 buffer_info->dma = dma_map_page(&pdev->dev, 4512 buffer_info->rxbuf.page, 0, 4513 adapter->rx_buffer_len, 4514 DMA_FROM_DEVICE); 4515 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4516 put_page(buffer_info->rxbuf.page); 4517 buffer_info->rxbuf.page = NULL; 4518 buffer_info->dma = 0; 4519 adapter->alloc_rx_buff_failed++; 4520 break; 4521 } 4522 } 4523 4524 rx_desc = E1000_RX_DESC(*rx_ring, i); 4525 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4526 4527 if (unlikely(++i == rx_ring->count)) 4528 i = 0; 4529 buffer_info = &rx_ring->buffer_info[i]; 4530 } 4531 4532 if (likely(rx_ring->next_to_use != i)) { 4533 rx_ring->next_to_use = i; 4534 if (unlikely(i-- == 0)) 4535 i = (rx_ring->count - 1); 4536 4537 /* Force memory writes to complete before letting h/w 4538 * know there are new descriptors to fetch. (Only 4539 * applicable for weak-ordered memory model archs, 4540 * such as IA-64). 4541 */ 4542 dma_wmb(); 4543 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4544 } 4545 } 4546 4547 /** 4548 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4549 * @adapter: address of board private structure 4550 **/ 4551 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4552 struct e1000_rx_ring *rx_ring, 4553 int cleaned_count) 4554 { 4555 struct e1000_hw *hw = &adapter->hw; 4556 struct pci_dev *pdev = adapter->pdev; 4557 struct e1000_rx_desc *rx_desc; 4558 struct e1000_rx_buffer *buffer_info; 4559 unsigned int i; 4560 unsigned int bufsz = adapter->rx_buffer_len; 4561 4562 i = rx_ring->next_to_use; 4563 buffer_info = &rx_ring->buffer_info[i]; 4564 4565 while (cleaned_count--) { 4566 void *data; 4567 4568 if (buffer_info->rxbuf.data) 4569 goto skip; 4570 4571 data = e1000_alloc_frag(adapter); 4572 if (!data) { 4573 /* Better luck next round */ 4574 adapter->alloc_rx_buff_failed++; 4575 break; 4576 } 4577 4578 /* Fix for errata 23, can't cross 64kB boundary */ 4579 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4580 void *olddata = data; 4581 e_err(rx_err, "skb align check failed: %u bytes at " 4582 "%p\n", bufsz, data); 4583 /* Try again, without freeing the previous */ 4584 data = e1000_alloc_frag(adapter); 4585 /* Failed allocation, critical failure */ 4586 if (!data) { 4587 skb_free_frag(olddata); 4588 adapter->alloc_rx_buff_failed++; 4589 break; 4590 } 4591 4592 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4593 /* give up */ 4594 skb_free_frag(data); 4595 skb_free_frag(olddata); 4596 adapter->alloc_rx_buff_failed++; 4597 break; 4598 } 4599 4600 /* Use new allocation */ 4601 skb_free_frag(olddata); 4602 } 4603 buffer_info->dma = dma_map_single(&pdev->dev, 4604 data, 4605 adapter->rx_buffer_len, 4606 DMA_FROM_DEVICE); 4607 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4608 skb_free_frag(data); 4609 buffer_info->dma = 0; 4610 adapter->alloc_rx_buff_failed++; 4611 break; 4612 } 4613 4614 /* XXX if it was allocated cleanly it will never map to a 4615 * boundary crossing 4616 */ 4617 4618 /* Fix for errata 23, can't cross 64kB boundary */ 4619 if (!e1000_check_64k_bound(adapter, 4620 (void *)(unsigned long)buffer_info->dma, 4621 adapter->rx_buffer_len)) { 4622 e_err(rx_err, "dma align check failed: %u bytes at " 4623 "%p\n", adapter->rx_buffer_len, 4624 (void *)(unsigned long)buffer_info->dma); 4625 4626 dma_unmap_single(&pdev->dev, buffer_info->dma, 4627 adapter->rx_buffer_len, 4628 DMA_FROM_DEVICE); 4629 4630 skb_free_frag(data); 4631 buffer_info->rxbuf.data = NULL; 4632 buffer_info->dma = 0; 4633 4634 adapter->alloc_rx_buff_failed++; 4635 break; 4636 } 4637 buffer_info->rxbuf.data = data; 4638 skip: 4639 rx_desc = E1000_RX_DESC(*rx_ring, i); 4640 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4641 4642 if (unlikely(++i == rx_ring->count)) 4643 i = 0; 4644 buffer_info = &rx_ring->buffer_info[i]; 4645 } 4646 4647 if (likely(rx_ring->next_to_use != i)) { 4648 rx_ring->next_to_use = i; 4649 if (unlikely(i-- == 0)) 4650 i = (rx_ring->count - 1); 4651 4652 /* Force memory writes to complete before letting h/w 4653 * know there are new descriptors to fetch. (Only 4654 * applicable for weak-ordered memory model archs, 4655 * such as IA-64). 4656 */ 4657 dma_wmb(); 4658 writel(i, hw->hw_addr + rx_ring->rdt); 4659 } 4660 } 4661 4662 /** 4663 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4664 * @adapter: 4665 **/ 4666 static void e1000_smartspeed(struct e1000_adapter *adapter) 4667 { 4668 struct e1000_hw *hw = &adapter->hw; 4669 u16 phy_status; 4670 u16 phy_ctrl; 4671 4672 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4673 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4674 return; 4675 4676 if (adapter->smartspeed == 0) { 4677 /* If Master/Slave config fault is asserted twice, 4678 * we assume back-to-back 4679 */ 4680 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4681 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4682 return; 4683 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4684 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4685 return; 4686 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4687 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4688 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4689 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4690 phy_ctrl); 4691 adapter->smartspeed++; 4692 if (!e1000_phy_setup_autoneg(hw) && 4693 !e1000_read_phy_reg(hw, PHY_CTRL, 4694 &phy_ctrl)) { 4695 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4696 MII_CR_RESTART_AUTO_NEG); 4697 e1000_write_phy_reg(hw, PHY_CTRL, 4698 phy_ctrl); 4699 } 4700 } 4701 return; 4702 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4703 /* If still no link, perhaps using 2/3 pair cable */ 4704 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4705 phy_ctrl |= CR_1000T_MS_ENABLE; 4706 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4707 if (!e1000_phy_setup_autoneg(hw) && 4708 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4709 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4710 MII_CR_RESTART_AUTO_NEG); 4711 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4712 } 4713 } 4714 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4715 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4716 adapter->smartspeed = 0; 4717 } 4718 4719 /** 4720 * e1000_ioctl - 4721 * @netdev: 4722 * @ifreq: 4723 * @cmd: 4724 **/ 4725 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4726 { 4727 switch (cmd) { 4728 case SIOCGMIIPHY: 4729 case SIOCGMIIREG: 4730 case SIOCSMIIREG: 4731 return e1000_mii_ioctl(netdev, ifr, cmd); 4732 default: 4733 return -EOPNOTSUPP; 4734 } 4735 } 4736 4737 /** 4738 * e1000_mii_ioctl - 4739 * @netdev: 4740 * @ifreq: 4741 * @cmd: 4742 **/ 4743 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4744 int cmd) 4745 { 4746 struct e1000_adapter *adapter = netdev_priv(netdev); 4747 struct e1000_hw *hw = &adapter->hw; 4748 struct mii_ioctl_data *data = if_mii(ifr); 4749 int retval; 4750 u16 mii_reg; 4751 unsigned long flags; 4752 4753 if (hw->media_type != e1000_media_type_copper) 4754 return -EOPNOTSUPP; 4755 4756 switch (cmd) { 4757 case SIOCGMIIPHY: 4758 data->phy_id = hw->phy_addr; 4759 break; 4760 case SIOCGMIIREG: 4761 spin_lock_irqsave(&adapter->stats_lock, flags); 4762 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4763 &data->val_out)) { 4764 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4765 return -EIO; 4766 } 4767 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4768 break; 4769 case SIOCSMIIREG: 4770 if (data->reg_num & ~(0x1F)) 4771 return -EFAULT; 4772 mii_reg = data->val_in; 4773 spin_lock_irqsave(&adapter->stats_lock, flags); 4774 if (e1000_write_phy_reg(hw, data->reg_num, 4775 mii_reg)) { 4776 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4777 return -EIO; 4778 } 4779 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4780 if (hw->media_type == e1000_media_type_copper) { 4781 switch (data->reg_num) { 4782 case PHY_CTRL: 4783 if (mii_reg & MII_CR_POWER_DOWN) 4784 break; 4785 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4786 hw->autoneg = 1; 4787 hw->autoneg_advertised = 0x2F; 4788 } else { 4789 u32 speed; 4790 if (mii_reg & 0x40) 4791 speed = SPEED_1000; 4792 else if (mii_reg & 0x2000) 4793 speed = SPEED_100; 4794 else 4795 speed = SPEED_10; 4796 retval = e1000_set_spd_dplx( 4797 adapter, speed, 4798 ((mii_reg & 0x100) 4799 ? DUPLEX_FULL : 4800 DUPLEX_HALF)); 4801 if (retval) 4802 return retval; 4803 } 4804 if (netif_running(adapter->netdev)) 4805 e1000_reinit_locked(adapter); 4806 else 4807 e1000_reset(adapter); 4808 break; 4809 case M88E1000_PHY_SPEC_CTRL: 4810 case M88E1000_EXT_PHY_SPEC_CTRL: 4811 if (e1000_phy_reset(hw)) 4812 return -EIO; 4813 break; 4814 } 4815 } else { 4816 switch (data->reg_num) { 4817 case PHY_CTRL: 4818 if (mii_reg & MII_CR_POWER_DOWN) 4819 break; 4820 if (netif_running(adapter->netdev)) 4821 e1000_reinit_locked(adapter); 4822 else 4823 e1000_reset(adapter); 4824 break; 4825 } 4826 } 4827 break; 4828 default: 4829 return -EOPNOTSUPP; 4830 } 4831 return E1000_SUCCESS; 4832 } 4833 4834 void e1000_pci_set_mwi(struct e1000_hw *hw) 4835 { 4836 struct e1000_adapter *adapter = hw->back; 4837 int ret_val = pci_set_mwi(adapter->pdev); 4838 4839 if (ret_val) 4840 e_err(probe, "Error in setting MWI\n"); 4841 } 4842 4843 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4844 { 4845 struct e1000_adapter *adapter = hw->back; 4846 4847 pci_clear_mwi(adapter->pdev); 4848 } 4849 4850 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4851 { 4852 struct e1000_adapter *adapter = hw->back; 4853 return pcix_get_mmrbc(adapter->pdev); 4854 } 4855 4856 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4857 { 4858 struct e1000_adapter *adapter = hw->back; 4859 pcix_set_mmrbc(adapter->pdev, mmrbc); 4860 } 4861 4862 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4863 { 4864 outl(value, port); 4865 } 4866 4867 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4868 { 4869 u16 vid; 4870 4871 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4872 return true; 4873 return false; 4874 } 4875 4876 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4877 netdev_features_t features) 4878 { 4879 struct e1000_hw *hw = &adapter->hw; 4880 u32 ctrl; 4881 4882 ctrl = er32(CTRL); 4883 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4884 /* enable VLAN tag insert/strip */ 4885 ctrl |= E1000_CTRL_VME; 4886 } else { 4887 /* disable VLAN tag insert/strip */ 4888 ctrl &= ~E1000_CTRL_VME; 4889 } 4890 ew32(CTRL, ctrl); 4891 } 4892 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4893 bool filter_on) 4894 { 4895 struct e1000_hw *hw = &adapter->hw; 4896 u32 rctl; 4897 4898 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4899 e1000_irq_disable(adapter); 4900 4901 __e1000_vlan_mode(adapter, adapter->netdev->features); 4902 if (filter_on) { 4903 /* enable VLAN receive filtering */ 4904 rctl = er32(RCTL); 4905 rctl &= ~E1000_RCTL_CFIEN; 4906 if (!(adapter->netdev->flags & IFF_PROMISC)) 4907 rctl |= E1000_RCTL_VFE; 4908 ew32(RCTL, rctl); 4909 e1000_update_mng_vlan(adapter); 4910 } else { 4911 /* disable VLAN receive filtering */ 4912 rctl = er32(RCTL); 4913 rctl &= ~E1000_RCTL_VFE; 4914 ew32(RCTL, rctl); 4915 } 4916 4917 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4918 e1000_irq_enable(adapter); 4919 } 4920 4921 static void e1000_vlan_mode(struct net_device *netdev, 4922 netdev_features_t features) 4923 { 4924 struct e1000_adapter *adapter = netdev_priv(netdev); 4925 4926 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4927 e1000_irq_disable(adapter); 4928 4929 __e1000_vlan_mode(adapter, features); 4930 4931 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4932 e1000_irq_enable(adapter); 4933 } 4934 4935 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4936 __be16 proto, u16 vid) 4937 { 4938 struct e1000_adapter *adapter = netdev_priv(netdev); 4939 struct e1000_hw *hw = &adapter->hw; 4940 u32 vfta, index; 4941 4942 if ((hw->mng_cookie.status & 4943 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4944 (vid == adapter->mng_vlan_id)) 4945 return 0; 4946 4947 if (!e1000_vlan_used(adapter)) 4948 e1000_vlan_filter_on_off(adapter, true); 4949 4950 /* add VID to filter table */ 4951 index = (vid >> 5) & 0x7F; 4952 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4953 vfta |= (1 << (vid & 0x1F)); 4954 e1000_write_vfta(hw, index, vfta); 4955 4956 set_bit(vid, adapter->active_vlans); 4957 4958 return 0; 4959 } 4960 4961 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4962 __be16 proto, u16 vid) 4963 { 4964 struct e1000_adapter *adapter = netdev_priv(netdev); 4965 struct e1000_hw *hw = &adapter->hw; 4966 u32 vfta, index; 4967 4968 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4969 e1000_irq_disable(adapter); 4970 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4971 e1000_irq_enable(adapter); 4972 4973 /* remove VID from filter table */ 4974 index = (vid >> 5) & 0x7F; 4975 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4976 vfta &= ~(1 << (vid & 0x1F)); 4977 e1000_write_vfta(hw, index, vfta); 4978 4979 clear_bit(vid, adapter->active_vlans); 4980 4981 if (!e1000_vlan_used(adapter)) 4982 e1000_vlan_filter_on_off(adapter, false); 4983 4984 return 0; 4985 } 4986 4987 static void e1000_restore_vlan(struct e1000_adapter *adapter) 4988 { 4989 u16 vid; 4990 4991 if (!e1000_vlan_used(adapter)) 4992 return; 4993 4994 e1000_vlan_filter_on_off(adapter, true); 4995 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4996 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 4997 } 4998 4999 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 5000 { 5001 struct e1000_hw *hw = &adapter->hw; 5002 5003 hw->autoneg = 0; 5004 5005 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5006 * for the switch() below to work 5007 */ 5008 if ((spd & 1) || (dplx & ~1)) 5009 goto err_inval; 5010 5011 /* Fiber NICs only allow 1000 gbps Full duplex */ 5012 if ((hw->media_type == e1000_media_type_fiber) && 5013 spd != SPEED_1000 && 5014 dplx != DUPLEX_FULL) 5015 goto err_inval; 5016 5017 switch (spd + dplx) { 5018 case SPEED_10 + DUPLEX_HALF: 5019 hw->forced_speed_duplex = e1000_10_half; 5020 break; 5021 case SPEED_10 + DUPLEX_FULL: 5022 hw->forced_speed_duplex = e1000_10_full; 5023 break; 5024 case SPEED_100 + DUPLEX_HALF: 5025 hw->forced_speed_duplex = e1000_100_half; 5026 break; 5027 case SPEED_100 + DUPLEX_FULL: 5028 hw->forced_speed_duplex = e1000_100_full; 5029 break; 5030 case SPEED_1000 + DUPLEX_FULL: 5031 hw->autoneg = 1; 5032 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5033 break; 5034 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5035 default: 5036 goto err_inval; 5037 } 5038 5039 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5040 hw->mdix = AUTO_ALL_MODES; 5041 5042 return 0; 5043 5044 err_inval: 5045 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5046 return -EINVAL; 5047 } 5048 5049 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5050 { 5051 struct net_device *netdev = pci_get_drvdata(pdev); 5052 struct e1000_adapter *adapter = netdev_priv(netdev); 5053 struct e1000_hw *hw = &adapter->hw; 5054 u32 ctrl, ctrl_ext, rctl, status; 5055 u32 wufc = adapter->wol; 5056 #ifdef CONFIG_PM 5057 int retval = 0; 5058 #endif 5059 5060 netif_device_detach(netdev); 5061 5062 if (netif_running(netdev)) { 5063 int count = E1000_CHECK_RESET_COUNT; 5064 5065 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5066 usleep_range(10000, 20000); 5067 5068 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5069 e1000_down(adapter); 5070 } 5071 5072 #ifdef CONFIG_PM 5073 retval = pci_save_state(pdev); 5074 if (retval) 5075 return retval; 5076 #endif 5077 5078 status = er32(STATUS); 5079 if (status & E1000_STATUS_LU) 5080 wufc &= ~E1000_WUFC_LNKC; 5081 5082 if (wufc) { 5083 e1000_setup_rctl(adapter); 5084 e1000_set_rx_mode(netdev); 5085 5086 rctl = er32(RCTL); 5087 5088 /* turn on all-multi mode if wake on multicast is enabled */ 5089 if (wufc & E1000_WUFC_MC) 5090 rctl |= E1000_RCTL_MPE; 5091 5092 /* enable receives in the hardware */ 5093 ew32(RCTL, rctl | E1000_RCTL_EN); 5094 5095 if (hw->mac_type >= e1000_82540) { 5096 ctrl = er32(CTRL); 5097 /* advertise wake from D3Cold */ 5098 #define E1000_CTRL_ADVD3WUC 0x00100000 5099 /* phy power management enable */ 5100 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5101 ctrl |= E1000_CTRL_ADVD3WUC | 5102 E1000_CTRL_EN_PHY_PWR_MGMT; 5103 ew32(CTRL, ctrl); 5104 } 5105 5106 if (hw->media_type == e1000_media_type_fiber || 5107 hw->media_type == e1000_media_type_internal_serdes) { 5108 /* keep the laser running in D3 */ 5109 ctrl_ext = er32(CTRL_EXT); 5110 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5111 ew32(CTRL_EXT, ctrl_ext); 5112 } 5113 5114 ew32(WUC, E1000_WUC_PME_EN); 5115 ew32(WUFC, wufc); 5116 } else { 5117 ew32(WUC, 0); 5118 ew32(WUFC, 0); 5119 } 5120 5121 e1000_release_manageability(adapter); 5122 5123 *enable_wake = !!wufc; 5124 5125 /* make sure adapter isn't asleep if manageability is enabled */ 5126 if (adapter->en_mng_pt) 5127 *enable_wake = true; 5128 5129 if (netif_running(netdev)) 5130 e1000_free_irq(adapter); 5131 5132 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5133 pci_disable_device(pdev); 5134 5135 return 0; 5136 } 5137 5138 #ifdef CONFIG_PM 5139 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 5140 { 5141 int retval; 5142 bool wake; 5143 5144 retval = __e1000_shutdown(pdev, &wake); 5145 if (retval) 5146 return retval; 5147 5148 if (wake) { 5149 pci_prepare_to_sleep(pdev); 5150 } else { 5151 pci_wake_from_d3(pdev, false); 5152 pci_set_power_state(pdev, PCI_D3hot); 5153 } 5154 5155 return 0; 5156 } 5157 5158 static int e1000_resume(struct pci_dev *pdev) 5159 { 5160 struct net_device *netdev = pci_get_drvdata(pdev); 5161 struct e1000_adapter *adapter = netdev_priv(netdev); 5162 struct e1000_hw *hw = &adapter->hw; 5163 u32 err; 5164 5165 pci_set_power_state(pdev, PCI_D0); 5166 pci_restore_state(pdev); 5167 pci_save_state(pdev); 5168 5169 if (adapter->need_ioport) 5170 err = pci_enable_device(pdev); 5171 else 5172 err = pci_enable_device_mem(pdev); 5173 if (err) { 5174 pr_err("Cannot enable PCI device from suspend\n"); 5175 return err; 5176 } 5177 5178 /* flush memory to make sure state is correct */ 5179 smp_mb__before_atomic(); 5180 clear_bit(__E1000_DISABLED, &adapter->flags); 5181 pci_set_master(pdev); 5182 5183 pci_enable_wake(pdev, PCI_D3hot, 0); 5184 pci_enable_wake(pdev, PCI_D3cold, 0); 5185 5186 if (netif_running(netdev)) { 5187 err = e1000_request_irq(adapter); 5188 if (err) 5189 return err; 5190 } 5191 5192 e1000_power_up_phy(adapter); 5193 e1000_reset(adapter); 5194 ew32(WUS, ~0); 5195 5196 e1000_init_manageability(adapter); 5197 5198 if (netif_running(netdev)) 5199 e1000_up(adapter); 5200 5201 netif_device_attach(netdev); 5202 5203 return 0; 5204 } 5205 #endif 5206 5207 static void e1000_shutdown(struct pci_dev *pdev) 5208 { 5209 bool wake; 5210 5211 __e1000_shutdown(pdev, &wake); 5212 5213 if (system_state == SYSTEM_POWER_OFF) { 5214 pci_wake_from_d3(pdev, wake); 5215 pci_set_power_state(pdev, PCI_D3hot); 5216 } 5217 } 5218 5219 #ifdef CONFIG_NET_POLL_CONTROLLER 5220 /* Polling 'interrupt' - used by things like netconsole to send skbs 5221 * without having to re-enable interrupts. It's not called while 5222 * the interrupt routine is executing. 5223 */ 5224 static void e1000_netpoll(struct net_device *netdev) 5225 { 5226 struct e1000_adapter *adapter = netdev_priv(netdev); 5227 5228 if (disable_hardirq(adapter->pdev->irq)) 5229 e1000_intr(adapter->pdev->irq, netdev); 5230 enable_irq(adapter->pdev->irq); 5231 } 5232 #endif 5233 5234 /** 5235 * e1000_io_error_detected - called when PCI error is detected 5236 * @pdev: Pointer to PCI device 5237 * @state: The current pci connection state 5238 * 5239 * This function is called after a PCI bus error affecting 5240 * this device has been detected. 5241 */ 5242 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5243 pci_channel_state_t state) 5244 { 5245 struct net_device *netdev = pci_get_drvdata(pdev); 5246 struct e1000_adapter *adapter = netdev_priv(netdev); 5247 5248 netif_device_detach(netdev); 5249 5250 if (state == pci_channel_io_perm_failure) 5251 return PCI_ERS_RESULT_DISCONNECT; 5252 5253 if (netif_running(netdev)) 5254 e1000_down(adapter); 5255 5256 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5257 pci_disable_device(pdev); 5258 5259 /* Request a slot slot reset. */ 5260 return PCI_ERS_RESULT_NEED_RESET; 5261 } 5262 5263 /** 5264 * e1000_io_slot_reset - called after the pci bus has been reset. 5265 * @pdev: Pointer to PCI device 5266 * 5267 * Restart the card from scratch, as if from a cold-boot. Implementation 5268 * resembles the first-half of the e1000_resume routine. 5269 */ 5270 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5271 { 5272 struct net_device *netdev = pci_get_drvdata(pdev); 5273 struct e1000_adapter *adapter = netdev_priv(netdev); 5274 struct e1000_hw *hw = &adapter->hw; 5275 int err; 5276 5277 if (adapter->need_ioport) 5278 err = pci_enable_device(pdev); 5279 else 5280 err = pci_enable_device_mem(pdev); 5281 if (err) { 5282 pr_err("Cannot re-enable PCI device after reset.\n"); 5283 return PCI_ERS_RESULT_DISCONNECT; 5284 } 5285 5286 /* flush memory to make sure state is correct */ 5287 smp_mb__before_atomic(); 5288 clear_bit(__E1000_DISABLED, &adapter->flags); 5289 pci_set_master(pdev); 5290 5291 pci_enable_wake(pdev, PCI_D3hot, 0); 5292 pci_enable_wake(pdev, PCI_D3cold, 0); 5293 5294 e1000_reset(adapter); 5295 ew32(WUS, ~0); 5296 5297 return PCI_ERS_RESULT_RECOVERED; 5298 } 5299 5300 /** 5301 * e1000_io_resume - called when traffic can start flowing again. 5302 * @pdev: Pointer to PCI device 5303 * 5304 * This callback is called when the error recovery driver tells us that 5305 * its OK to resume normal operation. Implementation resembles the 5306 * second-half of the e1000_resume routine. 5307 */ 5308 static void e1000_io_resume(struct pci_dev *pdev) 5309 { 5310 struct net_device *netdev = pci_get_drvdata(pdev); 5311 struct e1000_adapter *adapter = netdev_priv(netdev); 5312 5313 e1000_init_manageability(adapter); 5314 5315 if (netif_running(netdev)) { 5316 if (e1000_up(adapter)) { 5317 pr_info("can't bring device back up after reset\n"); 5318 return; 5319 } 5320 } 5321 5322 netif_device_attach(netdev); 5323 } 5324 5325 /* e1000_main.c */ 5326