1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 			       struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 			       struct e1000_rx_ring *rx_ring,
143 			       int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 				     struct e1000_rx_ring *rx_ring,
146 				     int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 				   struct e1000_rx_ring *rx_ring,
149 				   int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 					 struct e1000_rx_ring *rx_ring,
152 					 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 			   int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163 
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 			    netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 				     bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170 				 __be16 proto, u16 vid);
171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172 				  __be16 proto, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174 
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180 
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185 
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190 	"Maximum size of packet that is copied to a new buffer on receive");
191 
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196 
197 static const struct pci_error_handlers e1000_err_handler = {
198 	.error_detected = e1000_io_error_detected,
199 	.slot_reset = e1000_io_slot_reset,
200 	.resume = e1000_io_resume,
201 };
202 
203 static struct pci_driver e1000_driver = {
204 	.name     = e1000_driver_name,
205 	.id_table = e1000_pci_tbl,
206 	.probe    = e1000_probe,
207 	.remove   = e1000_remove,
208 #ifdef CONFIG_PM
209 	/* Power Management Hooks */
210 	.suspend  = e1000_suspend,
211 	.resume   = e1000_resume,
212 #endif
213 	.shutdown = e1000_shutdown,
214 	.err_handler = &e1000_err_handler
215 };
216 
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221 
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223 static int debug = -1;
224 module_param(debug, int, 0);
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226 
227 /**
228  * e1000_get_hw_dev - return device
229  * used by hardware layer to print debugging information
230  *
231  **/
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233 {
234 	struct e1000_adapter *adapter = hw->back;
235 	return adapter->netdev;
236 }
237 
238 /**
239  * e1000_init_module - Driver Registration Routine
240  *
241  * e1000_init_module is the first routine called when the driver is
242  * loaded. All it does is register with the PCI subsystem.
243  **/
244 static int __init e1000_init_module(void)
245 {
246 	int ret;
247 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248 
249 	pr_info("%s\n", e1000_copyright);
250 
251 	ret = pci_register_driver(&e1000_driver);
252 	if (copybreak != COPYBREAK_DEFAULT) {
253 		if (copybreak == 0)
254 			pr_info("copybreak disabled\n");
255 		else
256 			pr_info("copybreak enabled for "
257 				   "packets <= %u bytes\n", copybreak);
258 	}
259 	return ret;
260 }
261 
262 module_init(e1000_init_module);
263 
264 /**
265  * e1000_exit_module - Driver Exit Cleanup Routine
266  *
267  * e1000_exit_module is called just before the driver is removed
268  * from memory.
269  **/
270 static void __exit e1000_exit_module(void)
271 {
272 	pci_unregister_driver(&e1000_driver);
273 }
274 
275 module_exit(e1000_exit_module);
276 
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279 	struct net_device *netdev = adapter->netdev;
280 	irq_handler_t handler = e1000_intr;
281 	int irq_flags = IRQF_SHARED;
282 	int err;
283 
284 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 	                  netdev);
286 	if (err) {
287 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 	}
289 
290 	return err;
291 }
292 
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295 	struct net_device *netdev = adapter->netdev;
296 
297 	free_irq(adapter->pdev->irq, netdev);
298 }
299 
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304 static void e1000_irq_disable(struct e1000_adapter *adapter)
305 {
306 	struct e1000_hw *hw = &adapter->hw;
307 
308 	ew32(IMC, ~0);
309 	E1000_WRITE_FLUSH();
310 	synchronize_irq(adapter->pdev->irq);
311 }
312 
313 /**
314  * e1000_irq_enable - Enable default interrupt generation settings
315  * @adapter: board private structure
316  **/
317 static void e1000_irq_enable(struct e1000_adapter *adapter)
318 {
319 	struct e1000_hw *hw = &adapter->hw;
320 
321 	ew32(IMS, IMS_ENABLE_MASK);
322 	E1000_WRITE_FLUSH();
323 }
324 
325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326 {
327 	struct e1000_hw *hw = &adapter->hw;
328 	struct net_device *netdev = adapter->netdev;
329 	u16 vid = hw->mng_cookie.vlan_id;
330 	u16 old_vid = adapter->mng_vlan_id;
331 
332 	if (!e1000_vlan_used(adapter))
333 		return;
334 
335 	if (!test_bit(vid, adapter->active_vlans)) {
336 		if (hw->mng_cookie.status &
337 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339 			adapter->mng_vlan_id = vid;
340 		} else {
341 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342 		}
343 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344 		    (vid != old_vid) &&
345 		    !test_bit(old_vid, adapter->active_vlans))
346 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347 					       old_vid);
348 	} else {
349 		adapter->mng_vlan_id = vid;
350 	}
351 }
352 
353 static void e1000_init_manageability(struct e1000_adapter *adapter)
354 {
355 	struct e1000_hw *hw = &adapter->hw;
356 
357 	if (adapter->en_mng_pt) {
358 		u32 manc = er32(MANC);
359 
360 		/* disable hardware interception of ARP */
361 		manc &= ~(E1000_MANC_ARP_EN);
362 
363 		ew32(MANC, manc);
364 	}
365 }
366 
367 static void e1000_release_manageability(struct e1000_adapter *adapter)
368 {
369 	struct e1000_hw *hw = &adapter->hw;
370 
371 	if (adapter->en_mng_pt) {
372 		u32 manc = er32(MANC);
373 
374 		/* re-enable hardware interception of ARP */
375 		manc |= E1000_MANC_ARP_EN;
376 
377 		ew32(MANC, manc);
378 	}
379 }
380 
381 /**
382  * e1000_configure - configure the hardware for RX and TX
383  * @adapter = private board structure
384  **/
385 static void e1000_configure(struct e1000_adapter *adapter)
386 {
387 	struct net_device *netdev = adapter->netdev;
388 	int i;
389 
390 	e1000_set_rx_mode(netdev);
391 
392 	e1000_restore_vlan(adapter);
393 	e1000_init_manageability(adapter);
394 
395 	e1000_configure_tx(adapter);
396 	e1000_setup_rctl(adapter);
397 	e1000_configure_rx(adapter);
398 	/* call E1000_DESC_UNUSED which always leaves
399 	 * at least 1 descriptor unused to make sure
400 	 * next_to_use != next_to_clean
401 	 */
402 	for (i = 0; i < adapter->num_rx_queues; i++) {
403 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 		adapter->alloc_rx_buf(adapter, ring,
405 				      E1000_DESC_UNUSED(ring));
406 	}
407 }
408 
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411 	struct e1000_hw *hw = &adapter->hw;
412 
413 	/* hardware has been reset, we need to reload some things */
414 	e1000_configure(adapter);
415 
416 	clear_bit(__E1000_DOWN, &adapter->flags);
417 
418 	napi_enable(&adapter->napi);
419 
420 	e1000_irq_enable(adapter);
421 
422 	netif_wake_queue(adapter->netdev);
423 
424 	/* fire a link change interrupt to start the watchdog */
425 	ew32(ICS, E1000_ICS_LSC);
426 	return 0;
427 }
428 
429 /**
430  * e1000_power_up_phy - restore link in case the phy was powered down
431  * @adapter: address of board private structure
432  *
433  * The phy may be powered down to save power and turn off link when the
434  * driver is unloaded and wake on lan is not enabled (among others)
435  * *** this routine MUST be followed by a call to e1000_reset ***
436  **/
437 void e1000_power_up_phy(struct e1000_adapter *adapter)
438 {
439 	struct e1000_hw *hw = &adapter->hw;
440 	u16 mii_reg = 0;
441 
442 	/* Just clear the power down bit to wake the phy back up */
443 	if (hw->media_type == e1000_media_type_copper) {
444 		/* according to the manual, the phy will retain its
445 		 * settings across a power-down/up cycle
446 		 */
447 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448 		mii_reg &= ~MII_CR_POWER_DOWN;
449 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450 	}
451 }
452 
453 static void e1000_power_down_phy(struct e1000_adapter *adapter)
454 {
455 	struct e1000_hw *hw = &adapter->hw;
456 
457 	/* Power down the PHY so no link is implied when interface is down *
458 	 * The PHY cannot be powered down if any of the following is true *
459 	 * (a) WoL is enabled
460 	 * (b) AMT is active
461 	 * (c) SoL/IDER session is active
462 	 */
463 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 	   hw->media_type == e1000_media_type_copper) {
465 		u16 mii_reg = 0;
466 
467 		switch (hw->mac_type) {
468 		case e1000_82540:
469 		case e1000_82545:
470 		case e1000_82545_rev_3:
471 		case e1000_82546:
472 		case e1000_ce4100:
473 		case e1000_82546_rev_3:
474 		case e1000_82541:
475 		case e1000_82541_rev_2:
476 		case e1000_82547:
477 		case e1000_82547_rev_2:
478 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 				goto out;
480 			break;
481 		default:
482 			goto out;
483 		}
484 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 		mii_reg |= MII_CR_POWER_DOWN;
486 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 		msleep(1);
488 	}
489 out:
490 	return;
491 }
492 
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495 	set_bit(__E1000_DOWN, &adapter->flags);
496 
497 	cancel_delayed_work_sync(&adapter->watchdog_task);
498 
499 	/*
500 	 * Since the watchdog task can reschedule other tasks, we should cancel
501 	 * it first, otherwise we can run into the situation when a work is
502 	 * still running after the adapter has been turned down.
503 	 */
504 
505 	cancel_delayed_work_sync(&adapter->phy_info_task);
506 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
507 
508 	/* Only kill reset task if adapter is not resetting */
509 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
510 		cancel_work_sync(&adapter->reset_task);
511 }
512 
513 void e1000_down(struct e1000_adapter *adapter)
514 {
515 	struct e1000_hw *hw = &adapter->hw;
516 	struct net_device *netdev = adapter->netdev;
517 	u32 rctl, tctl;
518 
519 
520 	/* disable receives in the hardware */
521 	rctl = er32(RCTL);
522 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
523 	/* flush and sleep below */
524 
525 	netif_tx_disable(netdev);
526 
527 	/* disable transmits in the hardware */
528 	tctl = er32(TCTL);
529 	tctl &= ~E1000_TCTL_EN;
530 	ew32(TCTL, tctl);
531 	/* flush both disables and wait for them to finish */
532 	E1000_WRITE_FLUSH();
533 	msleep(10);
534 
535 	napi_disable(&adapter->napi);
536 
537 	e1000_irq_disable(adapter);
538 
539 	/* Setting DOWN must be after irq_disable to prevent
540 	 * a screaming interrupt.  Setting DOWN also prevents
541 	 * tasks from rescheduling.
542 	 */
543 	e1000_down_and_stop(adapter);
544 
545 	adapter->link_speed = 0;
546 	adapter->link_duplex = 0;
547 	netif_carrier_off(netdev);
548 
549 	e1000_reset(adapter);
550 	e1000_clean_all_tx_rings(adapter);
551 	e1000_clean_all_rx_rings(adapter);
552 }
553 
554 void e1000_reinit_locked(struct e1000_adapter *adapter)
555 {
556 	WARN_ON(in_interrupt());
557 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558 		msleep(1);
559 	e1000_down(adapter);
560 	e1000_up(adapter);
561 	clear_bit(__E1000_RESETTING, &adapter->flags);
562 }
563 
564 void e1000_reset(struct e1000_adapter *adapter)
565 {
566 	struct e1000_hw *hw = &adapter->hw;
567 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568 	bool legacy_pba_adjust = false;
569 	u16 hwm;
570 
571 	/* Repartition Pba for greater than 9k mtu
572 	 * To take effect CTRL.RST is required.
573 	 */
574 
575 	switch (hw->mac_type) {
576 	case e1000_82542_rev2_0:
577 	case e1000_82542_rev2_1:
578 	case e1000_82543:
579 	case e1000_82544:
580 	case e1000_82540:
581 	case e1000_82541:
582 	case e1000_82541_rev_2:
583 		legacy_pba_adjust = true;
584 		pba = E1000_PBA_48K;
585 		break;
586 	case e1000_82545:
587 	case e1000_82545_rev_3:
588 	case e1000_82546:
589 	case e1000_ce4100:
590 	case e1000_82546_rev_3:
591 		pba = E1000_PBA_48K;
592 		break;
593 	case e1000_82547:
594 	case e1000_82547_rev_2:
595 		legacy_pba_adjust = true;
596 		pba = E1000_PBA_30K;
597 		break;
598 	case e1000_undefined:
599 	case e1000_num_macs:
600 		break;
601 	}
602 
603 	if (legacy_pba_adjust) {
604 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
605 			pba -= 8; /* allocate more FIFO for Tx */
606 
607 		if (hw->mac_type == e1000_82547) {
608 			adapter->tx_fifo_head = 0;
609 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610 			adapter->tx_fifo_size =
611 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612 			atomic_set(&adapter->tx_fifo_stall, 0);
613 		}
614 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
615 		/* adjust PBA for jumbo frames */
616 		ew32(PBA, pba);
617 
618 		/* To maintain wire speed transmits, the Tx FIFO should be
619 		 * large enough to accommodate two full transmit packets,
620 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
621 		 * the Rx FIFO should be large enough to accommodate at least
622 		 * one full receive packet and is similarly rounded up and
623 		 * expressed in KB.
624 		 */
625 		pba = er32(PBA);
626 		/* upper 16 bits has Tx packet buffer allocation size in KB */
627 		tx_space = pba >> 16;
628 		/* lower 16 bits has Rx packet buffer allocation size in KB */
629 		pba &= 0xffff;
630 		/* the Tx fifo also stores 16 bytes of information about the Tx
631 		 * but don't include ethernet FCS because hardware appends it
632 		 */
633 		min_tx_space = (hw->max_frame_size +
634 		                sizeof(struct e1000_tx_desc) -
635 		                ETH_FCS_LEN) * 2;
636 		min_tx_space = ALIGN(min_tx_space, 1024);
637 		min_tx_space >>= 10;
638 		/* software strips receive CRC, so leave room for it */
639 		min_rx_space = hw->max_frame_size;
640 		min_rx_space = ALIGN(min_rx_space, 1024);
641 		min_rx_space >>= 10;
642 
643 		/* If current Tx allocation is less than the min Tx FIFO size,
644 		 * and the min Tx FIFO size is less than the current Rx FIFO
645 		 * allocation, take space away from current Rx allocation
646 		 */
647 		if (tx_space < min_tx_space &&
648 		    ((min_tx_space - tx_space) < pba)) {
649 			pba = pba - (min_tx_space - tx_space);
650 
651 			/* PCI/PCIx hardware has PBA alignment constraints */
652 			switch (hw->mac_type) {
653 			case e1000_82545 ... e1000_82546_rev_3:
654 				pba &= ~(E1000_PBA_8K - 1);
655 				break;
656 			default:
657 				break;
658 			}
659 
660 			/* if short on Rx space, Rx wins and must trump Tx
661 			 * adjustment or use Early Receive if available
662 			 */
663 			if (pba < min_rx_space)
664 				pba = min_rx_space;
665 		}
666 	}
667 
668 	ew32(PBA, pba);
669 
670 	/* flow control settings:
671 	 * The high water mark must be low enough to fit one full frame
672 	 * (or the size used for early receive) above it in the Rx FIFO.
673 	 * Set it to the lower of:
674 	 * - 90% of the Rx FIFO size, and
675 	 * - the full Rx FIFO size minus the early receive size (for parts
676 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
677 	 * - the full Rx FIFO size minus one full frame
678 	 */
679 	hwm = min(((pba << 10) * 9 / 10),
680 		  ((pba << 10) - hw->max_frame_size));
681 
682 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
683 	hw->fc_low_water = hw->fc_high_water - 8;
684 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
685 	hw->fc_send_xon = 1;
686 	hw->fc = hw->original_fc;
687 
688 	/* Allow time for pending master requests to run */
689 	e1000_reset_hw(hw);
690 	if (hw->mac_type >= e1000_82544)
691 		ew32(WUC, 0);
692 
693 	if (e1000_init_hw(hw))
694 		e_dev_err("Hardware Error\n");
695 	e1000_update_mng_vlan(adapter);
696 
697 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698 	if (hw->mac_type >= e1000_82544 &&
699 	    hw->autoneg == 1 &&
700 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701 		u32 ctrl = er32(CTRL);
702 		/* clear phy power management bit if we are in gig only mode,
703 		 * which if enabled will attempt negotiation to 100Mb, which
704 		 * can cause a loss of link at power off or driver unload
705 		 */
706 		ctrl &= ~E1000_CTRL_SWDPIN3;
707 		ew32(CTRL, ctrl);
708 	}
709 
710 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
711 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
712 
713 	e1000_reset_adaptive(hw);
714 	e1000_phy_get_info(hw, &adapter->phy_info);
715 
716 	e1000_release_manageability(adapter);
717 }
718 
719 /* Dump the eeprom for users having checksum issues */
720 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721 {
722 	struct net_device *netdev = adapter->netdev;
723 	struct ethtool_eeprom eeprom;
724 	const struct ethtool_ops *ops = netdev->ethtool_ops;
725 	u8 *data;
726 	int i;
727 	u16 csum_old, csum_new = 0;
728 
729 	eeprom.len = ops->get_eeprom_len(netdev);
730 	eeprom.offset = 0;
731 
732 	data = kmalloc(eeprom.len, GFP_KERNEL);
733 	if (!data)
734 		return;
735 
736 	ops->get_eeprom(netdev, &eeprom, data);
737 
738 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741 		csum_new += data[i] + (data[i + 1] << 8);
742 	csum_new = EEPROM_SUM - csum_new;
743 
744 	pr_err("/*********************/\n");
745 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746 	pr_err("Calculated              : 0x%04x\n", csum_new);
747 
748 	pr_err("Offset    Values\n");
749 	pr_err("========  ======\n");
750 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751 
752 	pr_err("Include this output when contacting your support provider.\n");
753 	pr_err("This is not a software error! Something bad happened to\n");
754 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755 	pr_err("result in further problems, possibly loss of data,\n");
756 	pr_err("corruption or system hangs!\n");
757 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758 	pr_err("which is invalid and requires you to set the proper MAC\n");
759 	pr_err("address manually before continuing to enable this network\n");
760 	pr_err("device. Please inspect the EEPROM dump and report the\n");
761 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762 	pr_err("/*********************/\n");
763 
764 	kfree(data);
765 }
766 
767 /**
768  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769  * @pdev: PCI device information struct
770  *
771  * Return true if an adapter needs ioport resources
772  **/
773 static int e1000_is_need_ioport(struct pci_dev *pdev)
774 {
775 	switch (pdev->device) {
776 	case E1000_DEV_ID_82540EM:
777 	case E1000_DEV_ID_82540EM_LOM:
778 	case E1000_DEV_ID_82540EP:
779 	case E1000_DEV_ID_82540EP_LOM:
780 	case E1000_DEV_ID_82540EP_LP:
781 	case E1000_DEV_ID_82541EI:
782 	case E1000_DEV_ID_82541EI_MOBILE:
783 	case E1000_DEV_ID_82541ER:
784 	case E1000_DEV_ID_82541ER_LOM:
785 	case E1000_DEV_ID_82541GI:
786 	case E1000_DEV_ID_82541GI_LF:
787 	case E1000_DEV_ID_82541GI_MOBILE:
788 	case E1000_DEV_ID_82544EI_COPPER:
789 	case E1000_DEV_ID_82544EI_FIBER:
790 	case E1000_DEV_ID_82544GC_COPPER:
791 	case E1000_DEV_ID_82544GC_LOM:
792 	case E1000_DEV_ID_82545EM_COPPER:
793 	case E1000_DEV_ID_82545EM_FIBER:
794 	case E1000_DEV_ID_82546EB_COPPER:
795 	case E1000_DEV_ID_82546EB_FIBER:
796 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
797 		return true;
798 	default:
799 		return false;
800 	}
801 }
802 
803 static netdev_features_t e1000_fix_features(struct net_device *netdev,
804 	netdev_features_t features)
805 {
806 	/* Since there is no support for separate Rx/Tx vlan accel
807 	 * enable/disable make sure Tx flag is always in same state as Rx.
808 	 */
809 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
810 		features |= NETIF_F_HW_VLAN_CTAG_TX;
811 	else
812 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
813 
814 	return features;
815 }
816 
817 static int e1000_set_features(struct net_device *netdev,
818 	netdev_features_t features)
819 {
820 	struct e1000_adapter *adapter = netdev_priv(netdev);
821 	netdev_features_t changed = features ^ netdev->features;
822 
823 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
824 		e1000_vlan_mode(netdev, features);
825 
826 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
827 		return 0;
828 
829 	netdev->features = features;
830 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831 
832 	if (netif_running(netdev))
833 		e1000_reinit_locked(adapter);
834 	else
835 		e1000_reset(adapter);
836 
837 	return 0;
838 }
839 
840 static const struct net_device_ops e1000_netdev_ops = {
841 	.ndo_open		= e1000_open,
842 	.ndo_stop		= e1000_close,
843 	.ndo_start_xmit		= e1000_xmit_frame,
844 	.ndo_get_stats		= e1000_get_stats,
845 	.ndo_set_rx_mode	= e1000_set_rx_mode,
846 	.ndo_set_mac_address	= e1000_set_mac,
847 	.ndo_tx_timeout		= e1000_tx_timeout,
848 	.ndo_change_mtu		= e1000_change_mtu,
849 	.ndo_do_ioctl		= e1000_ioctl,
850 	.ndo_validate_addr	= eth_validate_addr,
851 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
852 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854 	.ndo_poll_controller	= e1000_netpoll,
855 #endif
856 	.ndo_fix_features	= e1000_fix_features,
857 	.ndo_set_features	= e1000_set_features,
858 };
859 
860 /**
861  * e1000_init_hw_struct - initialize members of hw struct
862  * @adapter: board private struct
863  * @hw: structure used by e1000_hw.c
864  *
865  * Factors out initialization of the e1000_hw struct to its own function
866  * that can be called very early at init (just after struct allocation).
867  * Fields are initialized based on PCI device information and
868  * OS network device settings (MTU size).
869  * Returns negative error codes if MAC type setup fails.
870  */
871 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872 				struct e1000_hw *hw)
873 {
874 	struct pci_dev *pdev = adapter->pdev;
875 
876 	/* PCI config space info */
877 	hw->vendor_id = pdev->vendor;
878 	hw->device_id = pdev->device;
879 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
880 	hw->subsystem_id = pdev->subsystem_device;
881 	hw->revision_id = pdev->revision;
882 
883 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884 
885 	hw->max_frame_size = adapter->netdev->mtu +
886 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888 
889 	/* identify the MAC */
890 	if (e1000_set_mac_type(hw)) {
891 		e_err(probe, "Unknown MAC Type\n");
892 		return -EIO;
893 	}
894 
895 	switch (hw->mac_type) {
896 	default:
897 		break;
898 	case e1000_82541:
899 	case e1000_82547:
900 	case e1000_82541_rev_2:
901 	case e1000_82547_rev_2:
902 		hw->phy_init_script = 1;
903 		break;
904 	}
905 
906 	e1000_set_media_type(hw);
907 	e1000_get_bus_info(hw);
908 
909 	hw->wait_autoneg_complete = false;
910 	hw->tbi_compatibility_en = true;
911 	hw->adaptive_ifs = true;
912 
913 	/* Copper options */
914 
915 	if (hw->media_type == e1000_media_type_copper) {
916 		hw->mdix = AUTO_ALL_MODES;
917 		hw->disable_polarity_correction = false;
918 		hw->master_slave = E1000_MASTER_SLAVE;
919 	}
920 
921 	return 0;
922 }
923 
924 /**
925  * e1000_probe - Device Initialization Routine
926  * @pdev: PCI device information struct
927  * @ent: entry in e1000_pci_tbl
928  *
929  * Returns 0 on success, negative on failure
930  *
931  * e1000_probe initializes an adapter identified by a pci_dev structure.
932  * The OS initialization, configuring of the adapter private structure,
933  * and a hardware reset occur.
934  **/
935 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
936 {
937 	struct net_device *netdev;
938 	struct e1000_adapter *adapter;
939 	struct e1000_hw *hw;
940 
941 	static int cards_found = 0;
942 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
943 	int i, err, pci_using_dac;
944 	u16 eeprom_data = 0;
945 	u16 tmp = 0;
946 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
947 	int bars, need_ioport;
948 
949 	/* do not allocate ioport bars when not needed */
950 	need_ioport = e1000_is_need_ioport(pdev);
951 	if (need_ioport) {
952 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
953 		err = pci_enable_device(pdev);
954 	} else {
955 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
956 		err = pci_enable_device_mem(pdev);
957 	}
958 	if (err)
959 		return err;
960 
961 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
962 	if (err)
963 		goto err_pci_reg;
964 
965 	pci_set_master(pdev);
966 	err = pci_save_state(pdev);
967 	if (err)
968 		goto err_alloc_etherdev;
969 
970 	err = -ENOMEM;
971 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972 	if (!netdev)
973 		goto err_alloc_etherdev;
974 
975 	SET_NETDEV_DEV(netdev, &pdev->dev);
976 
977 	pci_set_drvdata(pdev, netdev);
978 	adapter = netdev_priv(netdev);
979 	adapter->netdev = netdev;
980 	adapter->pdev = pdev;
981 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
982 	adapter->bars = bars;
983 	adapter->need_ioport = need_ioport;
984 
985 	hw = &adapter->hw;
986 	hw->back = adapter;
987 
988 	err = -EIO;
989 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990 	if (!hw->hw_addr)
991 		goto err_ioremap;
992 
993 	if (adapter->need_ioport) {
994 		for (i = BAR_1; i <= BAR_5; i++) {
995 			if (pci_resource_len(pdev, i) == 0)
996 				continue;
997 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998 				hw->io_base = pci_resource_start(pdev, i);
999 				break;
1000 			}
1001 		}
1002 	}
1003 
1004 	/* make ready for any if (hw->...) below */
1005 	err = e1000_init_hw_struct(adapter, hw);
1006 	if (err)
1007 		goto err_sw_init;
1008 
1009 	/* there is a workaround being applied below that limits
1010 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1011 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012 	 */
1013 	pci_using_dac = 0;
1014 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1015 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016 		pci_using_dac = 1;
1017 	} else {
1018 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019 		if (err) {
1020 			pr_err("No usable DMA config, aborting\n");
1021 			goto err_dma;
1022 		}
1023 	}
1024 
1025 	netdev->netdev_ops = &e1000_netdev_ops;
1026 	e1000_set_ethtool_ops(netdev);
1027 	netdev->watchdog_timeo = 5 * HZ;
1028 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029 
1030 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031 
1032 	adapter->bd_number = cards_found;
1033 
1034 	/* setup the private structure */
1035 
1036 	err = e1000_sw_init(adapter);
1037 	if (err)
1038 		goto err_sw_init;
1039 
1040 	err = -EIO;
1041 	if (hw->mac_type == e1000_ce4100) {
1042 		hw->ce4100_gbe_mdio_base_virt =
1043 					ioremap(pci_resource_start(pdev, BAR_1),
1044 		                                pci_resource_len(pdev, BAR_1));
1045 
1046 		if (!hw->ce4100_gbe_mdio_base_virt)
1047 			goto err_mdio_ioremap;
1048 	}
1049 
1050 	if (hw->mac_type >= e1000_82543) {
1051 		netdev->hw_features = NETIF_F_SG |
1052 				   NETIF_F_HW_CSUM |
1053 				   NETIF_F_HW_VLAN_CTAG_RX;
1054 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1056 	}
1057 
1058 	if ((hw->mac_type >= e1000_82544) &&
1059 	   (hw->mac_type != e1000_82547))
1060 		netdev->hw_features |= NETIF_F_TSO;
1061 
1062 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1063 
1064 	netdev->features |= netdev->hw_features;
1065 	netdev->hw_features |= (NETIF_F_RXCSUM |
1066 				NETIF_F_RXALL |
1067 				NETIF_F_RXFCS);
1068 
1069 	if (pci_using_dac) {
1070 		netdev->features |= NETIF_F_HIGHDMA;
1071 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1072 	}
1073 
1074 	netdev->vlan_features |= (NETIF_F_TSO |
1075 				  NETIF_F_HW_CSUM |
1076 				  NETIF_F_SG);
1077 
1078 	netdev->priv_flags |= IFF_UNICAST_FLT;
1079 
1080 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1081 
1082 	/* initialize eeprom parameters */
1083 	if (e1000_init_eeprom_params(hw)) {
1084 		e_err(probe, "EEPROM initialization failed\n");
1085 		goto err_eeprom;
1086 	}
1087 
1088 	/* before reading the EEPROM, reset the controller to
1089 	 * put the device in a known good starting state
1090 	 */
1091 
1092 	e1000_reset_hw(hw);
1093 
1094 	/* make sure the EEPROM is good */
1095 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1096 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1097 		e1000_dump_eeprom(adapter);
1098 		/* set MAC address to all zeroes to invalidate and temporary
1099 		 * disable this device for the user. This blocks regular
1100 		 * traffic while still permitting ethtool ioctls from reaching
1101 		 * the hardware as well as allowing the user to run the
1102 		 * interface after manually setting a hw addr using
1103 		 * `ip set address`
1104 		 */
1105 		memset(hw->mac_addr, 0, netdev->addr_len);
1106 	} else {
1107 		/* copy the MAC address out of the EEPROM */
1108 		if (e1000_read_mac_addr(hw))
1109 			e_err(probe, "EEPROM Read Error\n");
1110 	}
1111 	/* don't block initalization here due to bad MAC address */
1112 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1113 
1114 	if (!is_valid_ether_addr(netdev->dev_addr))
1115 		e_err(probe, "Invalid MAC Address\n");
1116 
1117 
1118 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120 			  e1000_82547_tx_fifo_stall_task);
1121 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1122 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1123 
1124 	e1000_check_options(adapter);
1125 
1126 	/* Initial Wake on LAN setting
1127 	 * If APM wake is enabled in the EEPROM,
1128 	 * enable the ACPI Magic Packet filter
1129 	 */
1130 
1131 	switch (hw->mac_type) {
1132 	case e1000_82542_rev2_0:
1133 	case e1000_82542_rev2_1:
1134 	case e1000_82543:
1135 		break;
1136 	case e1000_82544:
1137 		e1000_read_eeprom(hw,
1138 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140 		break;
1141 	case e1000_82546:
1142 	case e1000_82546_rev_3:
1143 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144 			e1000_read_eeprom(hw,
1145 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146 			break;
1147 		}
1148 		/* Fall Through */
1149 	default:
1150 		e1000_read_eeprom(hw,
1151 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152 		break;
1153 	}
1154 	if (eeprom_data & eeprom_apme_mask)
1155 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1156 
1157 	/* now that we have the eeprom settings, apply the special cases
1158 	 * where the eeprom may be wrong or the board simply won't support
1159 	 * wake on lan on a particular port
1160 	 */
1161 	switch (pdev->device) {
1162 	case E1000_DEV_ID_82546GB_PCIE:
1163 		adapter->eeprom_wol = 0;
1164 		break;
1165 	case E1000_DEV_ID_82546EB_FIBER:
1166 	case E1000_DEV_ID_82546GB_FIBER:
1167 		/* Wake events only supported on port A for dual fiber
1168 		 * regardless of eeprom setting
1169 		 */
1170 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1171 			adapter->eeprom_wol = 0;
1172 		break;
1173 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174 		/* if quad port adapter, disable WoL on all but port A */
1175 		if (global_quad_port_a != 0)
1176 			adapter->eeprom_wol = 0;
1177 		else
1178 			adapter->quad_port_a = true;
1179 		/* Reset for multiple quad port adapters */
1180 		if (++global_quad_port_a == 4)
1181 			global_quad_port_a = 0;
1182 		break;
1183 	}
1184 
1185 	/* initialize the wol settings based on the eeprom settings */
1186 	adapter->wol = adapter->eeprom_wol;
1187 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1188 
1189 	/* Auto detect PHY address */
1190 	if (hw->mac_type == e1000_ce4100) {
1191 		for (i = 0; i < 32; i++) {
1192 			hw->phy_addr = i;
1193 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194 			if (tmp == 0 || tmp == 0xFF) {
1195 				if (i == 31)
1196 					goto err_eeprom;
1197 				continue;
1198 			} else
1199 				break;
1200 		}
1201 	}
1202 
1203 	/* reset the hardware with the new settings */
1204 	e1000_reset(adapter);
1205 
1206 	strcpy(netdev->name, "eth%d");
1207 	err = register_netdev(netdev);
1208 	if (err)
1209 		goto err_register;
1210 
1211 	e1000_vlan_filter_on_off(adapter, false);
1212 
1213 	/* print bus type/speed/width info */
1214 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1215 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221 	       netdev->dev_addr);
1222 
1223 	/* carrier off reporting is important to ethtool even BEFORE open */
1224 	netif_carrier_off(netdev);
1225 
1226 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227 
1228 	cards_found++;
1229 	return 0;
1230 
1231 err_register:
1232 err_eeprom:
1233 	e1000_phy_hw_reset(hw);
1234 
1235 	if (hw->flash_address)
1236 		iounmap(hw->flash_address);
1237 	kfree(adapter->tx_ring);
1238 	kfree(adapter->rx_ring);
1239 err_dma:
1240 err_sw_init:
1241 err_mdio_ioremap:
1242 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1243 	iounmap(hw->hw_addr);
1244 err_ioremap:
1245 	free_netdev(netdev);
1246 err_alloc_etherdev:
1247 	pci_release_selected_regions(pdev, bars);
1248 err_pci_reg:
1249 	pci_disable_device(pdev);
1250 	return err;
1251 }
1252 
1253 /**
1254  * e1000_remove - Device Removal Routine
1255  * @pdev: PCI device information struct
1256  *
1257  * e1000_remove is called by the PCI subsystem to alert the driver
1258  * that it should release a PCI device.  The could be caused by a
1259  * Hot-Plug event, or because the driver is going to be removed from
1260  * memory.
1261  **/
1262 static void e1000_remove(struct pci_dev *pdev)
1263 {
1264 	struct net_device *netdev = pci_get_drvdata(pdev);
1265 	struct e1000_adapter *adapter = netdev_priv(netdev);
1266 	struct e1000_hw *hw = &adapter->hw;
1267 
1268 	e1000_down_and_stop(adapter);
1269 	e1000_release_manageability(adapter);
1270 
1271 	unregister_netdev(netdev);
1272 
1273 	e1000_phy_hw_reset(hw);
1274 
1275 	kfree(adapter->tx_ring);
1276 	kfree(adapter->rx_ring);
1277 
1278 	if (hw->mac_type == e1000_ce4100)
1279 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1280 	iounmap(hw->hw_addr);
1281 	if (hw->flash_address)
1282 		iounmap(hw->flash_address);
1283 	pci_release_selected_regions(pdev, adapter->bars);
1284 
1285 	free_netdev(netdev);
1286 
1287 	pci_disable_device(pdev);
1288 }
1289 
1290 /**
1291  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292  * @adapter: board private structure to initialize
1293  *
1294  * e1000_sw_init initializes the Adapter private data structure.
1295  * e1000_init_hw_struct MUST be called before this function
1296  **/
1297 static int e1000_sw_init(struct e1000_adapter *adapter)
1298 {
1299 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300 
1301 	adapter->num_tx_queues = 1;
1302 	adapter->num_rx_queues = 1;
1303 
1304 	if (e1000_alloc_queues(adapter)) {
1305 		e_err(probe, "Unable to allocate memory for queues\n");
1306 		return -ENOMEM;
1307 	}
1308 
1309 	/* Explicitly disable IRQ since the NIC can be in any state. */
1310 	e1000_irq_disable(adapter);
1311 
1312 	spin_lock_init(&adapter->stats_lock);
1313 
1314 	set_bit(__E1000_DOWN, &adapter->flags);
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  * e1000_alloc_queues - Allocate memory for all rings
1321  * @adapter: board private structure to initialize
1322  *
1323  * We allocate one ring per queue at run-time since we don't know the
1324  * number of queues at compile-time.
1325  **/
1326 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327 {
1328 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1330 	if (!adapter->tx_ring)
1331 		return -ENOMEM;
1332 
1333 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1335 	if (!adapter->rx_ring) {
1336 		kfree(adapter->tx_ring);
1337 		return -ENOMEM;
1338 	}
1339 
1340 	return E1000_SUCCESS;
1341 }
1342 
1343 /**
1344  * e1000_open - Called when a network interface is made active
1345  * @netdev: network interface device structure
1346  *
1347  * Returns 0 on success, negative value on failure
1348  *
1349  * The open entry point is called when a network interface is made
1350  * active by the system (IFF_UP).  At this point all resources needed
1351  * for transmit and receive operations are allocated, the interrupt
1352  * handler is registered with the OS, the watchdog task is started,
1353  * and the stack is notified that the interface is ready.
1354  **/
1355 static int e1000_open(struct net_device *netdev)
1356 {
1357 	struct e1000_adapter *adapter = netdev_priv(netdev);
1358 	struct e1000_hw *hw = &adapter->hw;
1359 	int err;
1360 
1361 	/* disallow open during test */
1362 	if (test_bit(__E1000_TESTING, &adapter->flags))
1363 		return -EBUSY;
1364 
1365 	netif_carrier_off(netdev);
1366 
1367 	/* allocate transmit descriptors */
1368 	err = e1000_setup_all_tx_resources(adapter);
1369 	if (err)
1370 		goto err_setup_tx;
1371 
1372 	/* allocate receive descriptors */
1373 	err = e1000_setup_all_rx_resources(adapter);
1374 	if (err)
1375 		goto err_setup_rx;
1376 
1377 	e1000_power_up_phy(adapter);
1378 
1379 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1380 	if ((hw->mng_cookie.status &
1381 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382 		e1000_update_mng_vlan(adapter);
1383 	}
1384 
1385 	/* before we allocate an interrupt, we must be ready to handle it.
1386 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387 	 * as soon as we call pci_request_irq, so we have to setup our
1388 	 * clean_rx handler before we do so.
1389 	 */
1390 	e1000_configure(adapter);
1391 
1392 	err = e1000_request_irq(adapter);
1393 	if (err)
1394 		goto err_req_irq;
1395 
1396 	/* From here on the code is the same as e1000_up() */
1397 	clear_bit(__E1000_DOWN, &adapter->flags);
1398 
1399 	napi_enable(&adapter->napi);
1400 
1401 	e1000_irq_enable(adapter);
1402 
1403 	netif_start_queue(netdev);
1404 
1405 	/* fire a link status change interrupt to start the watchdog */
1406 	ew32(ICS, E1000_ICS_LSC);
1407 
1408 	return E1000_SUCCESS;
1409 
1410 err_req_irq:
1411 	e1000_power_down_phy(adapter);
1412 	e1000_free_all_rx_resources(adapter);
1413 err_setup_rx:
1414 	e1000_free_all_tx_resources(adapter);
1415 err_setup_tx:
1416 	e1000_reset(adapter);
1417 
1418 	return err;
1419 }
1420 
1421 /**
1422  * e1000_close - Disables a network interface
1423  * @netdev: network interface device structure
1424  *
1425  * Returns 0, this is not allowed to fail
1426  *
1427  * The close entry point is called when an interface is de-activated
1428  * by the OS.  The hardware is still under the drivers control, but
1429  * needs to be disabled.  A global MAC reset is issued to stop the
1430  * hardware, and all transmit and receive resources are freed.
1431  **/
1432 static int e1000_close(struct net_device *netdev)
1433 {
1434 	struct e1000_adapter *adapter = netdev_priv(netdev);
1435 	struct e1000_hw *hw = &adapter->hw;
1436 	int count = E1000_CHECK_RESET_COUNT;
1437 
1438 	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439 		usleep_range(10000, 20000);
1440 
1441 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1442 	e1000_down(adapter);
1443 	e1000_power_down_phy(adapter);
1444 	e1000_free_irq(adapter);
1445 
1446 	e1000_free_all_tx_resources(adapter);
1447 	e1000_free_all_rx_resources(adapter);
1448 
1449 	/* kill manageability vlan ID if supported, but not if a vlan with
1450 	 * the same ID is registered on the host OS (let 8021q kill it)
1451 	 */
1452 	if ((hw->mng_cookie.status &
1453 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1455 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456 				       adapter->mng_vlan_id);
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 /**
1463  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464  * @adapter: address of board private structure
1465  * @start: address of beginning of memory
1466  * @len: length of memory
1467  **/
1468 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469 				  unsigned long len)
1470 {
1471 	struct e1000_hw *hw = &adapter->hw;
1472 	unsigned long begin = (unsigned long)start;
1473 	unsigned long end = begin + len;
1474 
1475 	/* First rev 82545 and 82546 need to not allow any memory
1476 	 * write location to cross 64k boundary due to errata 23
1477 	 */
1478 	if (hw->mac_type == e1000_82545 ||
1479 	    hw->mac_type == e1000_ce4100 ||
1480 	    hw->mac_type == e1000_82546) {
1481 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1482 	}
1483 
1484 	return true;
1485 }
1486 
1487 /**
1488  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489  * @adapter: board private structure
1490  * @txdr:    tx descriptor ring (for a specific queue) to setup
1491  *
1492  * Return 0 on success, negative on failure
1493  **/
1494 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495 				    struct e1000_tx_ring *txdr)
1496 {
1497 	struct pci_dev *pdev = adapter->pdev;
1498 	int size;
1499 
1500 	size = sizeof(struct e1000_buffer) * txdr->count;
1501 	txdr->buffer_info = vzalloc(size);
1502 	if (!txdr->buffer_info)
1503 		return -ENOMEM;
1504 
1505 	/* round up to nearest 4K */
1506 
1507 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1508 	txdr->size = ALIGN(txdr->size, 4096);
1509 
1510 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511 					GFP_KERNEL);
1512 	if (!txdr->desc) {
1513 setup_tx_desc_die:
1514 		vfree(txdr->buffer_info);
1515 		return -ENOMEM;
1516 	}
1517 
1518 	/* Fix for errata 23, can't cross 64kB boundary */
1519 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520 		void *olddesc = txdr->desc;
1521 		dma_addr_t olddma = txdr->dma;
1522 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1523 		      txdr->size, txdr->desc);
1524 		/* Try again, without freeing the previous */
1525 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526 						&txdr->dma, GFP_KERNEL);
1527 		/* Failed allocation, critical failure */
1528 		if (!txdr->desc) {
1529 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530 					  olddma);
1531 			goto setup_tx_desc_die;
1532 		}
1533 
1534 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535 			/* give up */
1536 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537 					  txdr->dma);
1538 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539 					  olddma);
1540 			e_err(probe, "Unable to allocate aligned memory "
1541 			      "for the transmit descriptor ring\n");
1542 			vfree(txdr->buffer_info);
1543 			return -ENOMEM;
1544 		} else {
1545 			/* Free old allocation, new allocation was successful */
1546 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 					  olddma);
1548 		}
1549 	}
1550 	memset(txdr->desc, 0, txdr->size);
1551 
1552 	txdr->next_to_use = 0;
1553 	txdr->next_to_clean = 0;
1554 
1555 	return 0;
1556 }
1557 
1558 /**
1559  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560  * 				  (Descriptors) for all queues
1561  * @adapter: board private structure
1562  *
1563  * Return 0 on success, negative on failure
1564  **/
1565 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1566 {
1567 	int i, err = 0;
1568 
1569 	for (i = 0; i < adapter->num_tx_queues; i++) {
1570 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571 		if (err) {
1572 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1573 			for (i-- ; i >= 0; i--)
1574 				e1000_free_tx_resources(adapter,
1575 							&adapter->tx_ring[i]);
1576 			break;
1577 		}
1578 	}
1579 
1580 	return err;
1581 }
1582 
1583 /**
1584  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585  * @adapter: board private structure
1586  *
1587  * Configure the Tx unit of the MAC after a reset.
1588  **/
1589 static void e1000_configure_tx(struct e1000_adapter *adapter)
1590 {
1591 	u64 tdba;
1592 	struct e1000_hw *hw = &adapter->hw;
1593 	u32 tdlen, tctl, tipg;
1594 	u32 ipgr1, ipgr2;
1595 
1596 	/* Setup the HW Tx Head and Tail descriptor pointers */
1597 
1598 	switch (adapter->num_tx_queues) {
1599 	case 1:
1600 	default:
1601 		tdba = adapter->tx_ring[0].dma;
1602 		tdlen = adapter->tx_ring[0].count *
1603 			sizeof(struct e1000_tx_desc);
1604 		ew32(TDLEN, tdlen);
1605 		ew32(TDBAH, (tdba >> 32));
1606 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607 		ew32(TDT, 0);
1608 		ew32(TDH, 0);
1609 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610 					   E1000_TDH : E1000_82542_TDH);
1611 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612 					   E1000_TDT : E1000_82542_TDT);
1613 		break;
1614 	}
1615 
1616 	/* Set the default values for the Tx Inter Packet Gap timer */
1617 	if ((hw->media_type == e1000_media_type_fiber ||
1618 	     hw->media_type == e1000_media_type_internal_serdes))
1619 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620 	else
1621 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622 
1623 	switch (hw->mac_type) {
1624 	case e1000_82542_rev2_0:
1625 	case e1000_82542_rev2_1:
1626 		tipg = DEFAULT_82542_TIPG_IPGT;
1627 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1629 		break;
1630 	default:
1631 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633 		break;
1634 	}
1635 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1637 	ew32(TIPG, tipg);
1638 
1639 	/* Set the Tx Interrupt Delay register */
1640 
1641 	ew32(TIDV, adapter->tx_int_delay);
1642 	if (hw->mac_type >= e1000_82540)
1643 		ew32(TADV, adapter->tx_abs_int_delay);
1644 
1645 	/* Program the Transmit Control Register */
1646 
1647 	tctl = er32(TCTL);
1648 	tctl &= ~E1000_TCTL_CT;
1649 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1650 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651 
1652 	e1000_config_collision_dist(hw);
1653 
1654 	/* Setup Transmit Descriptor Settings for eop descriptor */
1655 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656 
1657 	/* only set IDE if we are delaying interrupts using the timers */
1658 	if (adapter->tx_int_delay)
1659 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1660 
1661 	if (hw->mac_type < e1000_82543)
1662 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663 	else
1664 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665 
1666 	/* Cache if we're 82544 running in PCI-X because we'll
1667 	 * need this to apply a workaround later in the send path.
1668 	 */
1669 	if (hw->mac_type == e1000_82544 &&
1670 	    hw->bus_type == e1000_bus_type_pcix)
1671 		adapter->pcix_82544 = true;
1672 
1673 	ew32(TCTL, tctl);
1674 
1675 }
1676 
1677 /**
1678  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679  * @adapter: board private structure
1680  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1681  *
1682  * Returns 0 on success, negative on failure
1683  **/
1684 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685 				    struct e1000_rx_ring *rxdr)
1686 {
1687 	struct pci_dev *pdev = adapter->pdev;
1688 	int size, desc_len;
1689 
1690 	size = sizeof(struct e1000_buffer) * rxdr->count;
1691 	rxdr->buffer_info = vzalloc(size);
1692 	if (!rxdr->buffer_info)
1693 		return -ENOMEM;
1694 
1695 	desc_len = sizeof(struct e1000_rx_desc);
1696 
1697 	/* Round up to nearest 4K */
1698 
1699 	rxdr->size = rxdr->count * desc_len;
1700 	rxdr->size = ALIGN(rxdr->size, 4096);
1701 
1702 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703 					GFP_KERNEL);
1704 	if (!rxdr->desc) {
1705 setup_rx_desc_die:
1706 		vfree(rxdr->buffer_info);
1707 		return -ENOMEM;
1708 	}
1709 
1710 	/* Fix for errata 23, can't cross 64kB boundary */
1711 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712 		void *olddesc = rxdr->desc;
1713 		dma_addr_t olddma = rxdr->dma;
1714 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1715 		      rxdr->size, rxdr->desc);
1716 		/* Try again, without freeing the previous */
1717 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718 						&rxdr->dma, GFP_KERNEL);
1719 		/* Failed allocation, critical failure */
1720 		if (!rxdr->desc) {
1721 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722 					  olddma);
1723 			goto setup_rx_desc_die;
1724 		}
1725 
1726 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727 			/* give up */
1728 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729 					  rxdr->dma);
1730 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731 					  olddma);
1732 			e_err(probe, "Unable to allocate aligned memory for "
1733 			      "the Rx descriptor ring\n");
1734 			goto setup_rx_desc_die;
1735 		} else {
1736 			/* Free old allocation, new allocation was successful */
1737 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738 					  olddma);
1739 		}
1740 	}
1741 	memset(rxdr->desc, 0, rxdr->size);
1742 
1743 	rxdr->next_to_clean = 0;
1744 	rxdr->next_to_use = 0;
1745 	rxdr->rx_skb_top = NULL;
1746 
1747 	return 0;
1748 }
1749 
1750 /**
1751  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752  * 				  (Descriptors) for all queues
1753  * @adapter: board private structure
1754  *
1755  * Return 0 on success, negative on failure
1756  **/
1757 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1758 {
1759 	int i, err = 0;
1760 
1761 	for (i = 0; i < adapter->num_rx_queues; i++) {
1762 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763 		if (err) {
1764 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1765 			for (i-- ; i >= 0; i--)
1766 				e1000_free_rx_resources(adapter,
1767 							&adapter->rx_ring[i]);
1768 			break;
1769 		}
1770 	}
1771 
1772 	return err;
1773 }
1774 
1775 /**
1776  * e1000_setup_rctl - configure the receive control registers
1777  * @adapter: Board private structure
1778  **/
1779 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1780 {
1781 	struct e1000_hw *hw = &adapter->hw;
1782 	u32 rctl;
1783 
1784 	rctl = er32(RCTL);
1785 
1786 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787 
1788 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789 		E1000_RCTL_RDMTS_HALF |
1790 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1791 
1792 	if (hw->tbi_compatibility_on == 1)
1793 		rctl |= E1000_RCTL_SBP;
1794 	else
1795 		rctl &= ~E1000_RCTL_SBP;
1796 
1797 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798 		rctl &= ~E1000_RCTL_LPE;
1799 	else
1800 		rctl |= E1000_RCTL_LPE;
1801 
1802 	/* Setup buffer sizes */
1803 	rctl &= ~E1000_RCTL_SZ_4096;
1804 	rctl |= E1000_RCTL_BSEX;
1805 	switch (adapter->rx_buffer_len) {
1806 		case E1000_RXBUFFER_2048:
1807 		default:
1808 			rctl |= E1000_RCTL_SZ_2048;
1809 			rctl &= ~E1000_RCTL_BSEX;
1810 			break;
1811 		case E1000_RXBUFFER_4096:
1812 			rctl |= E1000_RCTL_SZ_4096;
1813 			break;
1814 		case E1000_RXBUFFER_8192:
1815 			rctl |= E1000_RCTL_SZ_8192;
1816 			break;
1817 		case E1000_RXBUFFER_16384:
1818 			rctl |= E1000_RCTL_SZ_16384;
1819 			break;
1820 	}
1821 
1822 	/* This is useful for sniffing bad packets. */
1823 	if (adapter->netdev->features & NETIF_F_RXALL) {
1824 		/* UPE and MPE will be handled by normal PROMISC logic
1825 		 * in e1000e_set_rx_mode
1826 		 */
1827 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830 
1831 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832 			  E1000_RCTL_DPF | /* Allow filtered pause */
1833 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835 		 * and that breaks VLANs.
1836 		 */
1837 	}
1838 
1839 	ew32(RCTL, rctl);
1840 }
1841 
1842 /**
1843  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844  * @adapter: board private structure
1845  *
1846  * Configure the Rx unit of the MAC after a reset.
1847  **/
1848 static void e1000_configure_rx(struct e1000_adapter *adapter)
1849 {
1850 	u64 rdba;
1851 	struct e1000_hw *hw = &adapter->hw;
1852 	u32 rdlen, rctl, rxcsum;
1853 
1854 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855 		rdlen = adapter->rx_ring[0].count *
1856 		        sizeof(struct e1000_rx_desc);
1857 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859 	} else {
1860 		rdlen = adapter->rx_ring[0].count *
1861 		        sizeof(struct e1000_rx_desc);
1862 		adapter->clean_rx = e1000_clean_rx_irq;
1863 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864 	}
1865 
1866 	/* disable receives while setting up the descriptors */
1867 	rctl = er32(RCTL);
1868 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869 
1870 	/* set the Receive Delay Timer Register */
1871 	ew32(RDTR, adapter->rx_int_delay);
1872 
1873 	if (hw->mac_type >= e1000_82540) {
1874 		ew32(RADV, adapter->rx_abs_int_delay);
1875 		if (adapter->itr_setting != 0)
1876 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1877 	}
1878 
1879 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1880 	 * the Base and Length of the Rx Descriptor Ring
1881 	 */
1882 	switch (adapter->num_rx_queues) {
1883 	case 1:
1884 	default:
1885 		rdba = adapter->rx_ring[0].dma;
1886 		ew32(RDLEN, rdlen);
1887 		ew32(RDBAH, (rdba >> 32));
1888 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889 		ew32(RDT, 0);
1890 		ew32(RDH, 0);
1891 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892 					   E1000_RDH : E1000_82542_RDH);
1893 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894 					   E1000_RDT : E1000_82542_RDT);
1895 		break;
1896 	}
1897 
1898 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1899 	if (hw->mac_type >= e1000_82543) {
1900 		rxcsum = er32(RXCSUM);
1901 		if (adapter->rx_csum)
1902 			rxcsum |= E1000_RXCSUM_TUOFL;
1903 		else
1904 			/* don't need to clear IPPCSE as it defaults to 0 */
1905 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1906 		ew32(RXCSUM, rxcsum);
1907 	}
1908 
1909 	/* Enable Receives */
1910 	ew32(RCTL, rctl | E1000_RCTL_EN);
1911 }
1912 
1913 /**
1914  * e1000_free_tx_resources - Free Tx Resources per Queue
1915  * @adapter: board private structure
1916  * @tx_ring: Tx descriptor ring for a specific queue
1917  *
1918  * Free all transmit software resources
1919  **/
1920 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921 				    struct e1000_tx_ring *tx_ring)
1922 {
1923 	struct pci_dev *pdev = adapter->pdev;
1924 
1925 	e1000_clean_tx_ring(adapter, tx_ring);
1926 
1927 	vfree(tx_ring->buffer_info);
1928 	tx_ring->buffer_info = NULL;
1929 
1930 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931 			  tx_ring->dma);
1932 
1933 	tx_ring->desc = NULL;
1934 }
1935 
1936 /**
1937  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938  * @adapter: board private structure
1939  *
1940  * Free all transmit software resources
1941  **/
1942 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943 {
1944 	int i;
1945 
1946 	for (i = 0; i < adapter->num_tx_queues; i++)
1947 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948 }
1949 
1950 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951 					     struct e1000_buffer *buffer_info)
1952 {
1953 	if (buffer_info->dma) {
1954 		if (buffer_info->mapped_as_page)
1955 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956 				       buffer_info->length, DMA_TO_DEVICE);
1957 		else
1958 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1959 					 buffer_info->length,
1960 					 DMA_TO_DEVICE);
1961 		buffer_info->dma = 0;
1962 	}
1963 	if (buffer_info->skb) {
1964 		dev_kfree_skb_any(buffer_info->skb);
1965 		buffer_info->skb = NULL;
1966 	}
1967 	buffer_info->time_stamp = 0;
1968 	/* buffer_info must be completely set up in the transmit path */
1969 }
1970 
1971 /**
1972  * e1000_clean_tx_ring - Free Tx Buffers
1973  * @adapter: board private structure
1974  * @tx_ring: ring to be cleaned
1975  **/
1976 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977 				struct e1000_tx_ring *tx_ring)
1978 {
1979 	struct e1000_hw *hw = &adapter->hw;
1980 	struct e1000_buffer *buffer_info;
1981 	unsigned long size;
1982 	unsigned int i;
1983 
1984 	/* Free all the Tx ring sk_buffs */
1985 
1986 	for (i = 0; i < tx_ring->count; i++) {
1987 		buffer_info = &tx_ring->buffer_info[i];
1988 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989 	}
1990 
1991 	netdev_reset_queue(adapter->netdev);
1992 	size = sizeof(struct e1000_buffer) * tx_ring->count;
1993 	memset(tx_ring->buffer_info, 0, size);
1994 
1995 	/* Zero out the descriptor ring */
1996 
1997 	memset(tx_ring->desc, 0, tx_ring->size);
1998 
1999 	tx_ring->next_to_use = 0;
2000 	tx_ring->next_to_clean = 0;
2001 	tx_ring->last_tx_tso = false;
2002 
2003 	writel(0, hw->hw_addr + tx_ring->tdh);
2004 	writel(0, hw->hw_addr + tx_ring->tdt);
2005 }
2006 
2007 /**
2008  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009  * @adapter: board private structure
2010  **/
2011 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2012 {
2013 	int i;
2014 
2015 	for (i = 0; i < adapter->num_tx_queues; i++)
2016 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2017 }
2018 
2019 /**
2020  * e1000_free_rx_resources - Free Rx Resources
2021  * @adapter: board private structure
2022  * @rx_ring: ring to clean the resources from
2023  *
2024  * Free all receive software resources
2025  **/
2026 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2027 				    struct e1000_rx_ring *rx_ring)
2028 {
2029 	struct pci_dev *pdev = adapter->pdev;
2030 
2031 	e1000_clean_rx_ring(adapter, rx_ring);
2032 
2033 	vfree(rx_ring->buffer_info);
2034 	rx_ring->buffer_info = NULL;
2035 
2036 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2037 			  rx_ring->dma);
2038 
2039 	rx_ring->desc = NULL;
2040 }
2041 
2042 /**
2043  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2044  * @adapter: board private structure
2045  *
2046  * Free all receive software resources
2047  **/
2048 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2049 {
2050 	int i;
2051 
2052 	for (i = 0; i < adapter->num_rx_queues; i++)
2053 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2054 }
2055 
2056 /**
2057  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2058  * @adapter: board private structure
2059  * @rx_ring: ring to free buffers from
2060  **/
2061 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2062 				struct e1000_rx_ring *rx_ring)
2063 {
2064 	struct e1000_hw *hw = &adapter->hw;
2065 	struct e1000_buffer *buffer_info;
2066 	struct pci_dev *pdev = adapter->pdev;
2067 	unsigned long size;
2068 	unsigned int i;
2069 
2070 	/* Free all the Rx ring sk_buffs */
2071 	for (i = 0; i < rx_ring->count; i++) {
2072 		buffer_info = &rx_ring->buffer_info[i];
2073 		if (buffer_info->dma &&
2074 		    adapter->clean_rx == e1000_clean_rx_irq) {
2075 			dma_unmap_single(&pdev->dev, buffer_info->dma,
2076 			                 buffer_info->length,
2077 					 DMA_FROM_DEVICE);
2078 		} else if (buffer_info->dma &&
2079 		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2080 			dma_unmap_page(&pdev->dev, buffer_info->dma,
2081 				       buffer_info->length,
2082 				       DMA_FROM_DEVICE);
2083 		}
2084 
2085 		buffer_info->dma = 0;
2086 		if (buffer_info->page) {
2087 			put_page(buffer_info->page);
2088 			buffer_info->page = NULL;
2089 		}
2090 		if (buffer_info->skb) {
2091 			dev_kfree_skb(buffer_info->skb);
2092 			buffer_info->skb = NULL;
2093 		}
2094 	}
2095 
2096 	/* there also may be some cached data from a chained receive */
2097 	if (rx_ring->rx_skb_top) {
2098 		dev_kfree_skb(rx_ring->rx_skb_top);
2099 		rx_ring->rx_skb_top = NULL;
2100 	}
2101 
2102 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2103 	memset(rx_ring->buffer_info, 0, size);
2104 
2105 	/* Zero out the descriptor ring */
2106 	memset(rx_ring->desc, 0, rx_ring->size);
2107 
2108 	rx_ring->next_to_clean = 0;
2109 	rx_ring->next_to_use = 0;
2110 
2111 	writel(0, hw->hw_addr + rx_ring->rdh);
2112 	writel(0, hw->hw_addr + rx_ring->rdt);
2113 }
2114 
2115 /**
2116  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117  * @adapter: board private structure
2118  **/
2119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2120 {
2121 	int i;
2122 
2123 	for (i = 0; i < adapter->num_rx_queues; i++)
2124 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2125 }
2126 
2127 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2128  * and memory write and invalidate disabled for certain operations
2129  */
2130 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2131 {
2132 	struct e1000_hw *hw = &adapter->hw;
2133 	struct net_device *netdev = adapter->netdev;
2134 	u32 rctl;
2135 
2136 	e1000_pci_clear_mwi(hw);
2137 
2138 	rctl = er32(RCTL);
2139 	rctl |= E1000_RCTL_RST;
2140 	ew32(RCTL, rctl);
2141 	E1000_WRITE_FLUSH();
2142 	mdelay(5);
2143 
2144 	if (netif_running(netdev))
2145 		e1000_clean_all_rx_rings(adapter);
2146 }
2147 
2148 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2149 {
2150 	struct e1000_hw *hw = &adapter->hw;
2151 	struct net_device *netdev = adapter->netdev;
2152 	u32 rctl;
2153 
2154 	rctl = er32(RCTL);
2155 	rctl &= ~E1000_RCTL_RST;
2156 	ew32(RCTL, rctl);
2157 	E1000_WRITE_FLUSH();
2158 	mdelay(5);
2159 
2160 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2161 		e1000_pci_set_mwi(hw);
2162 
2163 	if (netif_running(netdev)) {
2164 		/* No need to loop, because 82542 supports only 1 queue */
2165 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2166 		e1000_configure_rx(adapter);
2167 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2168 	}
2169 }
2170 
2171 /**
2172  * e1000_set_mac - Change the Ethernet Address of the NIC
2173  * @netdev: network interface device structure
2174  * @p: pointer to an address structure
2175  *
2176  * Returns 0 on success, negative on failure
2177  **/
2178 static int e1000_set_mac(struct net_device *netdev, void *p)
2179 {
2180 	struct e1000_adapter *adapter = netdev_priv(netdev);
2181 	struct e1000_hw *hw = &adapter->hw;
2182 	struct sockaddr *addr = p;
2183 
2184 	if (!is_valid_ether_addr(addr->sa_data))
2185 		return -EADDRNOTAVAIL;
2186 
2187 	/* 82542 2.0 needs to be in reset to write receive address registers */
2188 
2189 	if (hw->mac_type == e1000_82542_rev2_0)
2190 		e1000_enter_82542_rst(adapter);
2191 
2192 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2193 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2194 
2195 	e1000_rar_set(hw, hw->mac_addr, 0);
2196 
2197 	if (hw->mac_type == e1000_82542_rev2_0)
2198 		e1000_leave_82542_rst(adapter);
2199 
2200 	return 0;
2201 }
2202 
2203 /**
2204  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2205  * @netdev: network interface device structure
2206  *
2207  * The set_rx_mode entry point is called whenever the unicast or multicast
2208  * address lists or the network interface flags are updated. This routine is
2209  * responsible for configuring the hardware for proper unicast, multicast,
2210  * promiscuous mode, and all-multi behavior.
2211  **/
2212 static void e1000_set_rx_mode(struct net_device *netdev)
2213 {
2214 	struct e1000_adapter *adapter = netdev_priv(netdev);
2215 	struct e1000_hw *hw = &adapter->hw;
2216 	struct netdev_hw_addr *ha;
2217 	bool use_uc = false;
2218 	u32 rctl;
2219 	u32 hash_value;
2220 	int i, rar_entries = E1000_RAR_ENTRIES;
2221 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2222 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2223 
2224 	if (!mcarray)
2225 		return;
2226 
2227 	/* Check for Promiscuous and All Multicast modes */
2228 
2229 	rctl = er32(RCTL);
2230 
2231 	if (netdev->flags & IFF_PROMISC) {
2232 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2233 		rctl &= ~E1000_RCTL_VFE;
2234 	} else {
2235 		if (netdev->flags & IFF_ALLMULTI)
2236 			rctl |= E1000_RCTL_MPE;
2237 		else
2238 			rctl &= ~E1000_RCTL_MPE;
2239 		/* Enable VLAN filter if there is a VLAN */
2240 		if (e1000_vlan_used(adapter))
2241 			rctl |= E1000_RCTL_VFE;
2242 	}
2243 
2244 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2245 		rctl |= E1000_RCTL_UPE;
2246 	} else if (!(netdev->flags & IFF_PROMISC)) {
2247 		rctl &= ~E1000_RCTL_UPE;
2248 		use_uc = true;
2249 	}
2250 
2251 	ew32(RCTL, rctl);
2252 
2253 	/* 82542 2.0 needs to be in reset to write receive address registers */
2254 
2255 	if (hw->mac_type == e1000_82542_rev2_0)
2256 		e1000_enter_82542_rst(adapter);
2257 
2258 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2259 	 * addresses take precedence to avoid disabling unicast filtering
2260 	 * when possible.
2261 	 *
2262 	 * RAR 0 is used for the station MAC address
2263 	 * if there are not 14 addresses, go ahead and clear the filters
2264 	 */
2265 	i = 1;
2266 	if (use_uc)
2267 		netdev_for_each_uc_addr(ha, netdev) {
2268 			if (i == rar_entries)
2269 				break;
2270 			e1000_rar_set(hw, ha->addr, i++);
2271 		}
2272 
2273 	netdev_for_each_mc_addr(ha, netdev) {
2274 		if (i == rar_entries) {
2275 			/* load any remaining addresses into the hash table */
2276 			u32 hash_reg, hash_bit, mta;
2277 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2278 			hash_reg = (hash_value >> 5) & 0x7F;
2279 			hash_bit = hash_value & 0x1F;
2280 			mta = (1 << hash_bit);
2281 			mcarray[hash_reg] |= mta;
2282 		} else {
2283 			e1000_rar_set(hw, ha->addr, i++);
2284 		}
2285 	}
2286 
2287 	for (; i < rar_entries; i++) {
2288 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289 		E1000_WRITE_FLUSH();
2290 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291 		E1000_WRITE_FLUSH();
2292 	}
2293 
2294 	/* write the hash table completely, write from bottom to avoid
2295 	 * both stupid write combining chipsets, and flushing each write
2296 	 */
2297 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2298 		/* If we are on an 82544 has an errata where writing odd
2299 		 * offsets overwrites the previous even offset, but writing
2300 		 * backwards over the range solves the issue by always
2301 		 * writing the odd offset first
2302 		 */
2303 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2304 	}
2305 	E1000_WRITE_FLUSH();
2306 
2307 	if (hw->mac_type == e1000_82542_rev2_0)
2308 		e1000_leave_82542_rst(adapter);
2309 
2310 	kfree(mcarray);
2311 }
2312 
2313 /**
2314  * e1000_update_phy_info_task - get phy info
2315  * @work: work struct contained inside adapter struct
2316  *
2317  * Need to wait a few seconds after link up to get diagnostic information from
2318  * the phy
2319  */
2320 static void e1000_update_phy_info_task(struct work_struct *work)
2321 {
2322 	struct e1000_adapter *adapter = container_of(work,
2323 						     struct e1000_adapter,
2324 						     phy_info_task.work);
2325 
2326 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2327 }
2328 
2329 /**
2330  * e1000_82547_tx_fifo_stall_task - task to complete work
2331  * @work: work struct contained inside adapter struct
2332  **/
2333 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2334 {
2335 	struct e1000_adapter *adapter = container_of(work,
2336 						     struct e1000_adapter,
2337 						     fifo_stall_task.work);
2338 	struct e1000_hw *hw = &adapter->hw;
2339 	struct net_device *netdev = adapter->netdev;
2340 	u32 tctl;
2341 
2342 	if (atomic_read(&adapter->tx_fifo_stall)) {
2343 		if ((er32(TDT) == er32(TDH)) &&
2344 		   (er32(TDFT) == er32(TDFH)) &&
2345 		   (er32(TDFTS) == er32(TDFHS))) {
2346 			tctl = er32(TCTL);
2347 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2348 			ew32(TDFT, adapter->tx_head_addr);
2349 			ew32(TDFH, adapter->tx_head_addr);
2350 			ew32(TDFTS, adapter->tx_head_addr);
2351 			ew32(TDFHS, adapter->tx_head_addr);
2352 			ew32(TCTL, tctl);
2353 			E1000_WRITE_FLUSH();
2354 
2355 			adapter->tx_fifo_head = 0;
2356 			atomic_set(&adapter->tx_fifo_stall, 0);
2357 			netif_wake_queue(netdev);
2358 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2359 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2360 		}
2361 	}
2362 }
2363 
2364 bool e1000_has_link(struct e1000_adapter *adapter)
2365 {
2366 	struct e1000_hw *hw = &adapter->hw;
2367 	bool link_active = false;
2368 
2369 	/* get_link_status is set on LSC (link status) interrupt or rx
2370 	 * sequence error interrupt (except on intel ce4100).
2371 	 * get_link_status will stay false until the
2372 	 * e1000_check_for_link establishes link for copper adapters
2373 	 * ONLY
2374 	 */
2375 	switch (hw->media_type) {
2376 	case e1000_media_type_copper:
2377 		if (hw->mac_type == e1000_ce4100)
2378 			hw->get_link_status = 1;
2379 		if (hw->get_link_status) {
2380 			e1000_check_for_link(hw);
2381 			link_active = !hw->get_link_status;
2382 		} else {
2383 			link_active = true;
2384 		}
2385 		break;
2386 	case e1000_media_type_fiber:
2387 		e1000_check_for_link(hw);
2388 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2389 		break;
2390 	case e1000_media_type_internal_serdes:
2391 		e1000_check_for_link(hw);
2392 		link_active = hw->serdes_has_link;
2393 		break;
2394 	default:
2395 		break;
2396 	}
2397 
2398 	return link_active;
2399 }
2400 
2401 /**
2402  * e1000_watchdog - work function
2403  * @work: work struct contained inside adapter struct
2404  **/
2405 static void e1000_watchdog(struct work_struct *work)
2406 {
2407 	struct e1000_adapter *adapter = container_of(work,
2408 						     struct e1000_adapter,
2409 						     watchdog_task.work);
2410 	struct e1000_hw *hw = &adapter->hw;
2411 	struct net_device *netdev = adapter->netdev;
2412 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2413 	u32 link, tctl;
2414 
2415 	link = e1000_has_link(adapter);
2416 	if ((netif_carrier_ok(netdev)) && link)
2417 		goto link_up;
2418 
2419 	if (link) {
2420 		if (!netif_carrier_ok(netdev)) {
2421 			u32 ctrl;
2422 			bool txb2b = true;
2423 			/* update snapshot of PHY registers on LSC */
2424 			e1000_get_speed_and_duplex(hw,
2425 						   &adapter->link_speed,
2426 						   &adapter->link_duplex);
2427 
2428 			ctrl = er32(CTRL);
2429 			pr_info("%s NIC Link is Up %d Mbps %s, "
2430 				"Flow Control: %s\n",
2431 				netdev->name,
2432 				adapter->link_speed,
2433 				adapter->link_duplex == FULL_DUPLEX ?
2434 				"Full Duplex" : "Half Duplex",
2435 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2436 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2437 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2438 				E1000_CTRL_TFCE) ? "TX" : "None")));
2439 
2440 			/* adjust timeout factor according to speed/duplex */
2441 			adapter->tx_timeout_factor = 1;
2442 			switch (adapter->link_speed) {
2443 			case SPEED_10:
2444 				txb2b = false;
2445 				adapter->tx_timeout_factor = 16;
2446 				break;
2447 			case SPEED_100:
2448 				txb2b = false;
2449 				/* maybe add some timeout factor ? */
2450 				break;
2451 			}
2452 
2453 			/* enable transmits in the hardware */
2454 			tctl = er32(TCTL);
2455 			tctl |= E1000_TCTL_EN;
2456 			ew32(TCTL, tctl);
2457 
2458 			netif_carrier_on(netdev);
2459 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2460 				schedule_delayed_work(&adapter->phy_info_task,
2461 						      2 * HZ);
2462 			adapter->smartspeed = 0;
2463 		}
2464 	} else {
2465 		if (netif_carrier_ok(netdev)) {
2466 			adapter->link_speed = 0;
2467 			adapter->link_duplex = 0;
2468 			pr_info("%s NIC Link is Down\n",
2469 				netdev->name);
2470 			netif_carrier_off(netdev);
2471 
2472 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2473 				schedule_delayed_work(&adapter->phy_info_task,
2474 						      2 * HZ);
2475 		}
2476 
2477 		e1000_smartspeed(adapter);
2478 	}
2479 
2480 link_up:
2481 	e1000_update_stats(adapter);
2482 
2483 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2484 	adapter->tpt_old = adapter->stats.tpt;
2485 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2486 	adapter->colc_old = adapter->stats.colc;
2487 
2488 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2489 	adapter->gorcl_old = adapter->stats.gorcl;
2490 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2491 	adapter->gotcl_old = adapter->stats.gotcl;
2492 
2493 	e1000_update_adaptive(hw);
2494 
2495 	if (!netif_carrier_ok(netdev)) {
2496 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2497 			/* We've lost link, so the controller stops DMA,
2498 			 * but we've got queued Tx work that's never going
2499 			 * to get done, so reset controller to flush Tx.
2500 			 * (Do the reset outside of interrupt context).
2501 			 */
2502 			adapter->tx_timeout_count++;
2503 			schedule_work(&adapter->reset_task);
2504 			/* exit immediately since reset is imminent */
2505 			return;
2506 		}
2507 	}
2508 
2509 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2510 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2511 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2512 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2513 		 * everyone else is between 2000-8000.
2514 		 */
2515 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2516 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2517 			    adapter->gotcl - adapter->gorcl :
2518 			    adapter->gorcl - adapter->gotcl) / 10000;
2519 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2520 
2521 		ew32(ITR, 1000000000 / (itr * 256));
2522 	}
2523 
2524 	/* Cause software interrupt to ensure rx ring is cleaned */
2525 	ew32(ICS, E1000_ICS_RXDMT0);
2526 
2527 	/* Force detection of hung controller every watchdog period */
2528 	adapter->detect_tx_hung = true;
2529 
2530 	/* Reschedule the task */
2531 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2532 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2533 }
2534 
2535 enum latency_range {
2536 	lowest_latency = 0,
2537 	low_latency = 1,
2538 	bulk_latency = 2,
2539 	latency_invalid = 255
2540 };
2541 
2542 /**
2543  * e1000_update_itr - update the dynamic ITR value based on statistics
2544  * @adapter: pointer to adapter
2545  * @itr_setting: current adapter->itr
2546  * @packets: the number of packets during this measurement interval
2547  * @bytes: the number of bytes during this measurement interval
2548  *
2549  *      Stores a new ITR value based on packets and byte
2550  *      counts during the last interrupt.  The advantage of per interrupt
2551  *      computation is faster updates and more accurate ITR for the current
2552  *      traffic pattern.  Constants in this function were computed
2553  *      based on theoretical maximum wire speed and thresholds were set based
2554  *      on testing data as well as attempting to minimize response time
2555  *      while increasing bulk throughput.
2556  *      this functionality is controlled by the InterruptThrottleRate module
2557  *      parameter (see e1000_param.c)
2558  **/
2559 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2560 				     u16 itr_setting, int packets, int bytes)
2561 {
2562 	unsigned int retval = itr_setting;
2563 	struct e1000_hw *hw = &adapter->hw;
2564 
2565 	if (unlikely(hw->mac_type < e1000_82540))
2566 		goto update_itr_done;
2567 
2568 	if (packets == 0)
2569 		goto update_itr_done;
2570 
2571 	switch (itr_setting) {
2572 	case lowest_latency:
2573 		/* jumbo frames get bulk treatment*/
2574 		if (bytes/packets > 8000)
2575 			retval = bulk_latency;
2576 		else if ((packets < 5) && (bytes > 512))
2577 			retval = low_latency;
2578 		break;
2579 	case low_latency:  /* 50 usec aka 20000 ints/s */
2580 		if (bytes > 10000) {
2581 			/* jumbo frames need bulk latency setting */
2582 			if (bytes/packets > 8000)
2583 				retval = bulk_latency;
2584 			else if ((packets < 10) || ((bytes/packets) > 1200))
2585 				retval = bulk_latency;
2586 			else if ((packets > 35))
2587 				retval = lowest_latency;
2588 		} else if (bytes/packets > 2000)
2589 			retval = bulk_latency;
2590 		else if (packets <= 2 && bytes < 512)
2591 			retval = lowest_latency;
2592 		break;
2593 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2594 		if (bytes > 25000) {
2595 			if (packets > 35)
2596 				retval = low_latency;
2597 		} else if (bytes < 6000) {
2598 			retval = low_latency;
2599 		}
2600 		break;
2601 	}
2602 
2603 update_itr_done:
2604 	return retval;
2605 }
2606 
2607 static void e1000_set_itr(struct e1000_adapter *adapter)
2608 {
2609 	struct e1000_hw *hw = &adapter->hw;
2610 	u16 current_itr;
2611 	u32 new_itr = adapter->itr;
2612 
2613 	if (unlikely(hw->mac_type < e1000_82540))
2614 		return;
2615 
2616 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2617 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2618 		current_itr = 0;
2619 		new_itr = 4000;
2620 		goto set_itr_now;
2621 	}
2622 
2623 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2624 					   adapter->total_tx_packets,
2625 					   adapter->total_tx_bytes);
2626 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2627 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2628 		adapter->tx_itr = low_latency;
2629 
2630 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2631 					   adapter->total_rx_packets,
2632 					   adapter->total_rx_bytes);
2633 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2634 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2635 		adapter->rx_itr = low_latency;
2636 
2637 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2638 
2639 	switch (current_itr) {
2640 	/* counts and packets in update_itr are dependent on these numbers */
2641 	case lowest_latency:
2642 		new_itr = 70000;
2643 		break;
2644 	case low_latency:
2645 		new_itr = 20000; /* aka hwitr = ~200 */
2646 		break;
2647 	case bulk_latency:
2648 		new_itr = 4000;
2649 		break;
2650 	default:
2651 		break;
2652 	}
2653 
2654 set_itr_now:
2655 	if (new_itr != adapter->itr) {
2656 		/* this attempts to bias the interrupt rate towards Bulk
2657 		 * by adding intermediate steps when interrupt rate is
2658 		 * increasing
2659 		 */
2660 		new_itr = new_itr > adapter->itr ?
2661 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2662 			  new_itr;
2663 		adapter->itr = new_itr;
2664 		ew32(ITR, 1000000000 / (new_itr * 256));
2665 	}
2666 }
2667 
2668 #define E1000_TX_FLAGS_CSUM		0x00000001
2669 #define E1000_TX_FLAGS_VLAN		0x00000002
2670 #define E1000_TX_FLAGS_TSO		0x00000004
2671 #define E1000_TX_FLAGS_IPV4		0x00000008
2672 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2673 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2674 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2675 
2676 static int e1000_tso(struct e1000_adapter *adapter,
2677 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2678 {
2679 	struct e1000_context_desc *context_desc;
2680 	struct e1000_buffer *buffer_info;
2681 	unsigned int i;
2682 	u32 cmd_length = 0;
2683 	u16 ipcse = 0, tucse, mss;
2684 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2685 	int err;
2686 
2687 	if (skb_is_gso(skb)) {
2688 		if (skb_header_cloned(skb)) {
2689 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2690 			if (err)
2691 				return err;
2692 		}
2693 
2694 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2695 		mss = skb_shinfo(skb)->gso_size;
2696 		if (skb->protocol == htons(ETH_P_IP)) {
2697 			struct iphdr *iph = ip_hdr(skb);
2698 			iph->tot_len = 0;
2699 			iph->check = 0;
2700 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2701 								 iph->daddr, 0,
2702 								 IPPROTO_TCP,
2703 								 0);
2704 			cmd_length = E1000_TXD_CMD_IP;
2705 			ipcse = skb_transport_offset(skb) - 1;
2706 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2707 			ipv6_hdr(skb)->payload_len = 0;
2708 			tcp_hdr(skb)->check =
2709 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2710 						 &ipv6_hdr(skb)->daddr,
2711 						 0, IPPROTO_TCP, 0);
2712 			ipcse = 0;
2713 		}
2714 		ipcss = skb_network_offset(skb);
2715 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2716 		tucss = skb_transport_offset(skb);
2717 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2718 		tucse = 0;
2719 
2720 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2721 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2722 
2723 		i = tx_ring->next_to_use;
2724 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2725 		buffer_info = &tx_ring->buffer_info[i];
2726 
2727 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2728 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2729 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2730 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2731 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2732 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2733 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2734 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2735 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2736 
2737 		buffer_info->time_stamp = jiffies;
2738 		buffer_info->next_to_watch = i;
2739 
2740 		if (++i == tx_ring->count) i = 0;
2741 		tx_ring->next_to_use = i;
2742 
2743 		return true;
2744 	}
2745 	return false;
2746 }
2747 
2748 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2749 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2750 {
2751 	struct e1000_context_desc *context_desc;
2752 	struct e1000_buffer *buffer_info;
2753 	unsigned int i;
2754 	u8 css;
2755 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2756 
2757 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2758 		return false;
2759 
2760 	switch (skb->protocol) {
2761 	case cpu_to_be16(ETH_P_IP):
2762 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2763 			cmd_len |= E1000_TXD_CMD_TCP;
2764 		break;
2765 	case cpu_to_be16(ETH_P_IPV6):
2766 		/* XXX not handling all IPV6 headers */
2767 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2768 			cmd_len |= E1000_TXD_CMD_TCP;
2769 		break;
2770 	default:
2771 		if (unlikely(net_ratelimit()))
2772 			e_warn(drv, "checksum_partial proto=%x!\n",
2773 			       skb->protocol);
2774 		break;
2775 	}
2776 
2777 	css = skb_checksum_start_offset(skb);
2778 
2779 	i = tx_ring->next_to_use;
2780 	buffer_info = &tx_ring->buffer_info[i];
2781 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2782 
2783 	context_desc->lower_setup.ip_config = 0;
2784 	context_desc->upper_setup.tcp_fields.tucss = css;
2785 	context_desc->upper_setup.tcp_fields.tucso =
2786 		css + skb->csum_offset;
2787 	context_desc->upper_setup.tcp_fields.tucse = 0;
2788 	context_desc->tcp_seg_setup.data = 0;
2789 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2790 
2791 	buffer_info->time_stamp = jiffies;
2792 	buffer_info->next_to_watch = i;
2793 
2794 	if (unlikely(++i == tx_ring->count)) i = 0;
2795 	tx_ring->next_to_use = i;
2796 
2797 	return true;
2798 }
2799 
2800 #define E1000_MAX_TXD_PWR	12
2801 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2802 
2803 static int e1000_tx_map(struct e1000_adapter *adapter,
2804 			struct e1000_tx_ring *tx_ring,
2805 			struct sk_buff *skb, unsigned int first,
2806 			unsigned int max_per_txd, unsigned int nr_frags,
2807 			unsigned int mss)
2808 {
2809 	struct e1000_hw *hw = &adapter->hw;
2810 	struct pci_dev *pdev = adapter->pdev;
2811 	struct e1000_buffer *buffer_info;
2812 	unsigned int len = skb_headlen(skb);
2813 	unsigned int offset = 0, size, count = 0, i;
2814 	unsigned int f, bytecount, segs;
2815 
2816 	i = tx_ring->next_to_use;
2817 
2818 	while (len) {
2819 		buffer_info = &tx_ring->buffer_info[i];
2820 		size = min(len, max_per_txd);
2821 		/* Workaround for Controller erratum --
2822 		 * descriptor for non-tso packet in a linear SKB that follows a
2823 		 * tso gets written back prematurely before the data is fully
2824 		 * DMA'd to the controller
2825 		 */
2826 		if (!skb->data_len && tx_ring->last_tx_tso &&
2827 		    !skb_is_gso(skb)) {
2828 			tx_ring->last_tx_tso = false;
2829 			size -= 4;
2830 		}
2831 
2832 		/* Workaround for premature desc write-backs
2833 		 * in TSO mode.  Append 4-byte sentinel desc
2834 		 */
2835 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2836 			size -= 4;
2837 		/* work-around for errata 10 and it applies
2838 		 * to all controllers in PCI-X mode
2839 		 * The fix is to make sure that the first descriptor of a
2840 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2841 		 */
2842 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2843 		                (size > 2015) && count == 0))
2844 		        size = 2015;
2845 
2846 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2847 		 * terminating buffers within evenly-aligned dwords.
2848 		 */
2849 		if (unlikely(adapter->pcix_82544 &&
2850 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2851 		   size > 4))
2852 			size -= 4;
2853 
2854 		buffer_info->length = size;
2855 		/* set time_stamp *before* dma to help avoid a possible race */
2856 		buffer_info->time_stamp = jiffies;
2857 		buffer_info->mapped_as_page = false;
2858 		buffer_info->dma = dma_map_single(&pdev->dev,
2859 						  skb->data + offset,
2860 						  size, DMA_TO_DEVICE);
2861 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2862 			goto dma_error;
2863 		buffer_info->next_to_watch = i;
2864 
2865 		len -= size;
2866 		offset += size;
2867 		count++;
2868 		if (len) {
2869 			i++;
2870 			if (unlikely(i == tx_ring->count))
2871 				i = 0;
2872 		}
2873 	}
2874 
2875 	for (f = 0; f < nr_frags; f++) {
2876 		const struct skb_frag_struct *frag;
2877 
2878 		frag = &skb_shinfo(skb)->frags[f];
2879 		len = skb_frag_size(frag);
2880 		offset = 0;
2881 
2882 		while (len) {
2883 			unsigned long bufend;
2884 			i++;
2885 			if (unlikely(i == tx_ring->count))
2886 				i = 0;
2887 
2888 			buffer_info = &tx_ring->buffer_info[i];
2889 			size = min(len, max_per_txd);
2890 			/* Workaround for premature desc write-backs
2891 			 * in TSO mode.  Append 4-byte sentinel desc
2892 			 */
2893 			if (unlikely(mss && f == (nr_frags-1) &&
2894 			    size == len && size > 8))
2895 				size -= 4;
2896 			/* Workaround for potential 82544 hang in PCI-X.
2897 			 * Avoid terminating buffers within evenly-aligned
2898 			 * dwords.
2899 			 */
2900 			bufend = (unsigned long)
2901 				page_to_phys(skb_frag_page(frag));
2902 			bufend += offset + size - 1;
2903 			if (unlikely(adapter->pcix_82544 &&
2904 				     !(bufend & 4) &&
2905 				     size > 4))
2906 				size -= 4;
2907 
2908 			buffer_info->length = size;
2909 			buffer_info->time_stamp = jiffies;
2910 			buffer_info->mapped_as_page = true;
2911 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2912 						offset, size, DMA_TO_DEVICE);
2913 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2914 				goto dma_error;
2915 			buffer_info->next_to_watch = i;
2916 
2917 			len -= size;
2918 			offset += size;
2919 			count++;
2920 		}
2921 	}
2922 
2923 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2924 	/* multiply data chunks by size of headers */
2925 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2926 
2927 	tx_ring->buffer_info[i].skb = skb;
2928 	tx_ring->buffer_info[i].segs = segs;
2929 	tx_ring->buffer_info[i].bytecount = bytecount;
2930 	tx_ring->buffer_info[first].next_to_watch = i;
2931 
2932 	return count;
2933 
2934 dma_error:
2935 	dev_err(&pdev->dev, "TX DMA map failed\n");
2936 	buffer_info->dma = 0;
2937 	if (count)
2938 		count--;
2939 
2940 	while (count--) {
2941 		if (i==0)
2942 			i += tx_ring->count;
2943 		i--;
2944 		buffer_info = &tx_ring->buffer_info[i];
2945 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2946 	}
2947 
2948 	return 0;
2949 }
2950 
2951 static void e1000_tx_queue(struct e1000_adapter *adapter,
2952 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2953 			   int count)
2954 {
2955 	struct e1000_hw *hw = &adapter->hw;
2956 	struct e1000_tx_desc *tx_desc = NULL;
2957 	struct e1000_buffer *buffer_info;
2958 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2959 	unsigned int i;
2960 
2961 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2962 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2963 			     E1000_TXD_CMD_TSE;
2964 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2965 
2966 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2967 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2968 	}
2969 
2970 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2971 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2972 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2973 	}
2974 
2975 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2976 		txd_lower |= E1000_TXD_CMD_VLE;
2977 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2978 	}
2979 
2980 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2981 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2982 
2983 	i = tx_ring->next_to_use;
2984 
2985 	while (count--) {
2986 		buffer_info = &tx_ring->buffer_info[i];
2987 		tx_desc = E1000_TX_DESC(*tx_ring, i);
2988 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2989 		tx_desc->lower.data =
2990 			cpu_to_le32(txd_lower | buffer_info->length);
2991 		tx_desc->upper.data = cpu_to_le32(txd_upper);
2992 		if (unlikely(++i == tx_ring->count)) i = 0;
2993 	}
2994 
2995 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2996 
2997 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
2998 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3000 
3001 	/* Force memory writes to complete before letting h/w
3002 	 * know there are new descriptors to fetch.  (Only
3003 	 * applicable for weak-ordered memory model archs,
3004 	 * such as IA-64).
3005 	 */
3006 	wmb();
3007 
3008 	tx_ring->next_to_use = i;
3009 	writel(i, hw->hw_addr + tx_ring->tdt);
3010 	/* we need this if more than one processor can write to our tail
3011 	 * at a time, it synchronizes IO on IA64/Altix systems
3012 	 */
3013 	mmiowb();
3014 }
3015 
3016 /* 82547 workaround to avoid controller hang in half-duplex environment.
3017  * The workaround is to avoid queuing a large packet that would span
3018  * the internal Tx FIFO ring boundary by notifying the stack to resend
3019  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3020  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3021  * to the beginning of the Tx FIFO.
3022  */
3023 
3024 #define E1000_FIFO_HDR			0x10
3025 #define E1000_82547_PAD_LEN		0x3E0
3026 
3027 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3028 				       struct sk_buff *skb)
3029 {
3030 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3031 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3032 
3033 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3034 
3035 	if (adapter->link_duplex != HALF_DUPLEX)
3036 		goto no_fifo_stall_required;
3037 
3038 	if (atomic_read(&adapter->tx_fifo_stall))
3039 		return 1;
3040 
3041 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3042 		atomic_set(&adapter->tx_fifo_stall, 1);
3043 		return 1;
3044 	}
3045 
3046 no_fifo_stall_required:
3047 	adapter->tx_fifo_head += skb_fifo_len;
3048 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3049 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3050 	return 0;
3051 }
3052 
3053 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3054 {
3055 	struct e1000_adapter *adapter = netdev_priv(netdev);
3056 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3057 
3058 	netif_stop_queue(netdev);
3059 	/* Herbert's original patch had:
3060 	 *  smp_mb__after_netif_stop_queue();
3061 	 * but since that doesn't exist yet, just open code it.
3062 	 */
3063 	smp_mb();
3064 
3065 	/* We need to check again in a case another CPU has just
3066 	 * made room available.
3067 	 */
3068 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3069 		return -EBUSY;
3070 
3071 	/* A reprieve! */
3072 	netif_start_queue(netdev);
3073 	++adapter->restart_queue;
3074 	return 0;
3075 }
3076 
3077 static int e1000_maybe_stop_tx(struct net_device *netdev,
3078 			       struct e1000_tx_ring *tx_ring, int size)
3079 {
3080 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3081 		return 0;
3082 	return __e1000_maybe_stop_tx(netdev, size);
3083 }
3084 
3085 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3086 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3087 				    struct net_device *netdev)
3088 {
3089 	struct e1000_adapter *adapter = netdev_priv(netdev);
3090 	struct e1000_hw *hw = &adapter->hw;
3091 	struct e1000_tx_ring *tx_ring;
3092 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3093 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3094 	unsigned int tx_flags = 0;
3095 	unsigned int len = skb_headlen(skb);
3096 	unsigned int nr_frags;
3097 	unsigned int mss;
3098 	int count = 0;
3099 	int tso;
3100 	unsigned int f;
3101 
3102 	/* This goes back to the question of how to logically map a Tx queue
3103 	 * to a flow.  Right now, performance is impacted slightly negatively
3104 	 * if using multiple Tx queues.  If the stack breaks away from a
3105 	 * single qdisc implementation, we can look at this again.
3106 	 */
3107 	tx_ring = adapter->tx_ring;
3108 
3109 	if (unlikely(skb->len <= 0)) {
3110 		dev_kfree_skb_any(skb);
3111 		return NETDEV_TX_OK;
3112 	}
3113 
3114 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3115 	 * packets may get corrupted during padding by HW.
3116 	 * To WA this issue, pad all small packets manually.
3117 	 */
3118 	if (skb->len < ETH_ZLEN) {
3119 		if (skb_pad(skb, ETH_ZLEN - skb->len))
3120 			return NETDEV_TX_OK;
3121 		skb->len = ETH_ZLEN;
3122 		skb_set_tail_pointer(skb, ETH_ZLEN);
3123 	}
3124 
3125 	mss = skb_shinfo(skb)->gso_size;
3126 	/* The controller does a simple calculation to
3127 	 * make sure there is enough room in the FIFO before
3128 	 * initiating the DMA for each buffer.  The calc is:
3129 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3130 	 * overrun the FIFO, adjust the max buffer len if mss
3131 	 * drops.
3132 	 */
3133 	if (mss) {
3134 		u8 hdr_len;
3135 		max_per_txd = min(mss << 2, max_per_txd);
3136 		max_txd_pwr = fls(max_per_txd) - 1;
3137 
3138 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3139 		if (skb->data_len && hdr_len == len) {
3140 			switch (hw->mac_type) {
3141 				unsigned int pull_size;
3142 			case e1000_82544:
3143 				/* Make sure we have room to chop off 4 bytes,
3144 				 * and that the end alignment will work out to
3145 				 * this hardware's requirements
3146 				 * NOTE: this is a TSO only workaround
3147 				 * if end byte alignment not correct move us
3148 				 * into the next dword
3149 				 */
3150 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3151 				    & 4)
3152 					break;
3153 				/* fall through */
3154 				pull_size = min((unsigned int)4, skb->data_len);
3155 				if (!__pskb_pull_tail(skb, pull_size)) {
3156 					e_err(drv, "__pskb_pull_tail "
3157 					      "failed.\n");
3158 					dev_kfree_skb_any(skb);
3159 					return NETDEV_TX_OK;
3160 				}
3161 				len = skb_headlen(skb);
3162 				break;
3163 			default:
3164 				/* do nothing */
3165 				break;
3166 			}
3167 		}
3168 	}
3169 
3170 	/* reserve a descriptor for the offload context */
3171 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3172 		count++;
3173 	count++;
3174 
3175 	/* Controller Erratum workaround */
3176 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3177 		count++;
3178 
3179 	count += TXD_USE_COUNT(len, max_txd_pwr);
3180 
3181 	if (adapter->pcix_82544)
3182 		count++;
3183 
3184 	/* work-around for errata 10 and it applies to all controllers
3185 	 * in PCI-X mode, so add one more descriptor to the count
3186 	 */
3187 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3188 			(len > 2015)))
3189 		count++;
3190 
3191 	nr_frags = skb_shinfo(skb)->nr_frags;
3192 	for (f = 0; f < nr_frags; f++)
3193 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3194 				       max_txd_pwr);
3195 	if (adapter->pcix_82544)
3196 		count += nr_frags;
3197 
3198 	/* need: count + 2 desc gap to keep tail from touching
3199 	 * head, otherwise try next time
3200 	 */
3201 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3202 		return NETDEV_TX_BUSY;
3203 
3204 	if (unlikely((hw->mac_type == e1000_82547) &&
3205 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3206 		netif_stop_queue(netdev);
3207 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3208 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3209 		return NETDEV_TX_BUSY;
3210 	}
3211 
3212 	if (vlan_tx_tag_present(skb)) {
3213 		tx_flags |= E1000_TX_FLAGS_VLAN;
3214 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3215 	}
3216 
3217 	first = tx_ring->next_to_use;
3218 
3219 	tso = e1000_tso(adapter, tx_ring, skb);
3220 	if (tso < 0) {
3221 		dev_kfree_skb_any(skb);
3222 		return NETDEV_TX_OK;
3223 	}
3224 
3225 	if (likely(tso)) {
3226 		if (likely(hw->mac_type != e1000_82544))
3227 			tx_ring->last_tx_tso = true;
3228 		tx_flags |= E1000_TX_FLAGS_TSO;
3229 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3230 		tx_flags |= E1000_TX_FLAGS_CSUM;
3231 
3232 	if (likely(skb->protocol == htons(ETH_P_IP)))
3233 		tx_flags |= E1000_TX_FLAGS_IPV4;
3234 
3235 	if (unlikely(skb->no_fcs))
3236 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3237 
3238 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3239 			     nr_frags, mss);
3240 
3241 	if (count) {
3242 		netdev_sent_queue(netdev, skb->len);
3243 		skb_tx_timestamp(skb);
3244 
3245 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3246 		/* Make sure there is space in the ring for the next send. */
3247 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3248 
3249 	} else {
3250 		dev_kfree_skb_any(skb);
3251 		tx_ring->buffer_info[first].time_stamp = 0;
3252 		tx_ring->next_to_use = first;
3253 	}
3254 
3255 	return NETDEV_TX_OK;
3256 }
3257 
3258 #define NUM_REGS 38 /* 1 based count */
3259 static void e1000_regdump(struct e1000_adapter *adapter)
3260 {
3261 	struct e1000_hw *hw = &adapter->hw;
3262 	u32 regs[NUM_REGS];
3263 	u32 *regs_buff = regs;
3264 	int i = 0;
3265 
3266 	static const char * const reg_name[] = {
3267 		"CTRL",  "STATUS",
3268 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3269 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3270 		"TIDV", "TXDCTL", "TADV", "TARC0",
3271 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3272 		"TXDCTL1", "TARC1",
3273 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3274 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3275 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3276 	};
3277 
3278 	regs_buff[0]  = er32(CTRL);
3279 	regs_buff[1]  = er32(STATUS);
3280 
3281 	regs_buff[2]  = er32(RCTL);
3282 	regs_buff[3]  = er32(RDLEN);
3283 	regs_buff[4]  = er32(RDH);
3284 	regs_buff[5]  = er32(RDT);
3285 	regs_buff[6]  = er32(RDTR);
3286 
3287 	regs_buff[7]  = er32(TCTL);
3288 	regs_buff[8]  = er32(TDBAL);
3289 	regs_buff[9]  = er32(TDBAH);
3290 	regs_buff[10] = er32(TDLEN);
3291 	regs_buff[11] = er32(TDH);
3292 	regs_buff[12] = er32(TDT);
3293 	regs_buff[13] = er32(TIDV);
3294 	regs_buff[14] = er32(TXDCTL);
3295 	regs_buff[15] = er32(TADV);
3296 	regs_buff[16] = er32(TARC0);
3297 
3298 	regs_buff[17] = er32(TDBAL1);
3299 	regs_buff[18] = er32(TDBAH1);
3300 	regs_buff[19] = er32(TDLEN1);
3301 	regs_buff[20] = er32(TDH1);
3302 	regs_buff[21] = er32(TDT1);
3303 	regs_buff[22] = er32(TXDCTL1);
3304 	regs_buff[23] = er32(TARC1);
3305 	regs_buff[24] = er32(CTRL_EXT);
3306 	regs_buff[25] = er32(ERT);
3307 	regs_buff[26] = er32(RDBAL0);
3308 	regs_buff[27] = er32(RDBAH0);
3309 	regs_buff[28] = er32(TDFH);
3310 	regs_buff[29] = er32(TDFT);
3311 	regs_buff[30] = er32(TDFHS);
3312 	regs_buff[31] = er32(TDFTS);
3313 	regs_buff[32] = er32(TDFPC);
3314 	regs_buff[33] = er32(RDFH);
3315 	regs_buff[34] = er32(RDFT);
3316 	regs_buff[35] = er32(RDFHS);
3317 	regs_buff[36] = er32(RDFTS);
3318 	regs_buff[37] = er32(RDFPC);
3319 
3320 	pr_info("Register dump\n");
3321 	for (i = 0; i < NUM_REGS; i++)
3322 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3323 }
3324 
3325 /*
3326  * e1000_dump: Print registers, tx ring and rx ring
3327  */
3328 static void e1000_dump(struct e1000_adapter *adapter)
3329 {
3330 	/* this code doesn't handle multiple rings */
3331 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3332 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3333 	int i;
3334 
3335 	if (!netif_msg_hw(adapter))
3336 		return;
3337 
3338 	/* Print Registers */
3339 	e1000_regdump(adapter);
3340 
3341 	/* transmit dump */
3342 	pr_info("TX Desc ring0 dump\n");
3343 
3344 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3345 	 *
3346 	 * Legacy Transmit Descriptor
3347 	 *   +--------------------------------------------------------------+
3348 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3349 	 *   +--------------------------------------------------------------+
3350 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3351 	 *   +--------------------------------------------------------------+
3352 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3353 	 *
3354 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3355 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3356 	 *   +----------------------------------------------------------------+
3357 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3358 	 *   +----------------------------------------------------------------+
3359 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3360 	 *   +----------------------------------------------------------------+
3361 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3362 	 *
3363 	 * Extended Data Descriptor (DTYP=0x1)
3364 	 *   +----------------------------------------------------------------+
3365 	 * 0 |                     Buffer Address [63:0]                      |
3366 	 *   +----------------------------------------------------------------+
3367 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3368 	 *   +----------------------------------------------------------------+
3369 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3370 	 */
3371 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3372 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3373 
3374 	if (!netif_msg_tx_done(adapter))
3375 		goto rx_ring_summary;
3376 
3377 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3378 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3379 		struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3380 		struct my_u { __le64 a; __le64 b; };
3381 		struct my_u *u = (struct my_u *)tx_desc;
3382 		const char *type;
3383 
3384 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3385 			type = "NTC/U";
3386 		else if (i == tx_ring->next_to_use)
3387 			type = "NTU";
3388 		else if (i == tx_ring->next_to_clean)
3389 			type = "NTC";
3390 		else
3391 			type = "";
3392 
3393 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3394 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3395 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3396 			(u64)buffer_info->dma, buffer_info->length,
3397 			buffer_info->next_to_watch,
3398 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3399 	}
3400 
3401 rx_ring_summary:
3402 	/* receive dump */
3403 	pr_info("\nRX Desc ring dump\n");
3404 
3405 	/* Legacy Receive Descriptor Format
3406 	 *
3407 	 * +-----------------------------------------------------+
3408 	 * |                Buffer Address [63:0]                |
3409 	 * +-----------------------------------------------------+
3410 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3411 	 * +-----------------------------------------------------+
3412 	 * 63       48 47    40 39      32 31         16 15      0
3413 	 */
3414 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3415 
3416 	if (!netif_msg_rx_status(adapter))
3417 		goto exit;
3418 
3419 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3420 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3421 		struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3422 		struct my_u { __le64 a; __le64 b; };
3423 		struct my_u *u = (struct my_u *)rx_desc;
3424 		const char *type;
3425 
3426 		if (i == rx_ring->next_to_use)
3427 			type = "NTU";
3428 		else if (i == rx_ring->next_to_clean)
3429 			type = "NTC";
3430 		else
3431 			type = "";
3432 
3433 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3434 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3435 			(u64)buffer_info->dma, buffer_info->skb, type);
3436 	} /* for */
3437 
3438 	/* dump the descriptor caches */
3439 	/* rx */
3440 	pr_info("Rx descriptor cache in 64bit format\n");
3441 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3442 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3443 			i,
3444 			readl(adapter->hw.hw_addr + i+4),
3445 			readl(adapter->hw.hw_addr + i),
3446 			readl(adapter->hw.hw_addr + i+12),
3447 			readl(adapter->hw.hw_addr + i+8));
3448 	}
3449 	/* tx */
3450 	pr_info("Tx descriptor cache in 64bit format\n");
3451 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3452 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3453 			i,
3454 			readl(adapter->hw.hw_addr + i+4),
3455 			readl(adapter->hw.hw_addr + i),
3456 			readl(adapter->hw.hw_addr + i+12),
3457 			readl(adapter->hw.hw_addr + i+8));
3458 	}
3459 exit:
3460 	return;
3461 }
3462 
3463 /**
3464  * e1000_tx_timeout - Respond to a Tx Hang
3465  * @netdev: network interface device structure
3466  **/
3467 static void e1000_tx_timeout(struct net_device *netdev)
3468 {
3469 	struct e1000_adapter *adapter = netdev_priv(netdev);
3470 
3471 	/* Do the reset outside of interrupt context */
3472 	adapter->tx_timeout_count++;
3473 	schedule_work(&adapter->reset_task);
3474 }
3475 
3476 static void e1000_reset_task(struct work_struct *work)
3477 {
3478 	struct e1000_adapter *adapter =
3479 		container_of(work, struct e1000_adapter, reset_task);
3480 
3481 	e_err(drv, "Reset adapter\n");
3482 	e1000_reinit_locked(adapter);
3483 }
3484 
3485 /**
3486  * e1000_get_stats - Get System Network Statistics
3487  * @netdev: network interface device structure
3488  *
3489  * Returns the address of the device statistics structure.
3490  * The statistics are actually updated from the watchdog.
3491  **/
3492 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3493 {
3494 	/* only return the current stats */
3495 	return &netdev->stats;
3496 }
3497 
3498 /**
3499  * e1000_change_mtu - Change the Maximum Transfer Unit
3500  * @netdev: network interface device structure
3501  * @new_mtu: new value for maximum frame size
3502  *
3503  * Returns 0 on success, negative on failure
3504  **/
3505 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3506 {
3507 	struct e1000_adapter *adapter = netdev_priv(netdev);
3508 	struct e1000_hw *hw = &adapter->hw;
3509 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3510 
3511 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3512 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3513 		e_err(probe, "Invalid MTU setting\n");
3514 		return -EINVAL;
3515 	}
3516 
3517 	/* Adapter-specific max frame size limits. */
3518 	switch (hw->mac_type) {
3519 	case e1000_undefined ... e1000_82542_rev2_1:
3520 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3521 			e_err(probe, "Jumbo Frames not supported.\n");
3522 			return -EINVAL;
3523 		}
3524 		break;
3525 	default:
3526 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3527 		break;
3528 	}
3529 
3530 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3531 		msleep(1);
3532 	/* e1000_down has a dependency on max_frame_size */
3533 	hw->max_frame_size = max_frame;
3534 	if (netif_running(netdev))
3535 		e1000_down(adapter);
3536 
3537 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3538 	 * means we reserve 2 more, this pushes us to allocate from the next
3539 	 * larger slab size.
3540 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3541 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3542 	 * fragmented skbs
3543 	 */
3544 
3545 	if (max_frame <= E1000_RXBUFFER_2048)
3546 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3547 	else
3548 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3549 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3550 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3551 		adapter->rx_buffer_len = PAGE_SIZE;
3552 #endif
3553 
3554 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3555 	if (!hw->tbi_compatibility_on &&
3556 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3557 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3558 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3559 
3560 	pr_info("%s changing MTU from %d to %d\n",
3561 		netdev->name, netdev->mtu, new_mtu);
3562 	netdev->mtu = new_mtu;
3563 
3564 	if (netif_running(netdev))
3565 		e1000_up(adapter);
3566 	else
3567 		e1000_reset(adapter);
3568 
3569 	clear_bit(__E1000_RESETTING, &adapter->flags);
3570 
3571 	return 0;
3572 }
3573 
3574 /**
3575  * e1000_update_stats - Update the board statistics counters
3576  * @adapter: board private structure
3577  **/
3578 void e1000_update_stats(struct e1000_adapter *adapter)
3579 {
3580 	struct net_device *netdev = adapter->netdev;
3581 	struct e1000_hw *hw = &adapter->hw;
3582 	struct pci_dev *pdev = adapter->pdev;
3583 	unsigned long flags;
3584 	u16 phy_tmp;
3585 
3586 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3587 
3588 	/* Prevent stats update while adapter is being reset, or if the pci
3589 	 * connection is down.
3590 	 */
3591 	if (adapter->link_speed == 0)
3592 		return;
3593 	if (pci_channel_offline(pdev))
3594 		return;
3595 
3596 	spin_lock_irqsave(&adapter->stats_lock, flags);
3597 
3598 	/* these counters are modified from e1000_tbi_adjust_stats,
3599 	 * called from the interrupt context, so they must only
3600 	 * be written while holding adapter->stats_lock
3601 	 */
3602 
3603 	adapter->stats.crcerrs += er32(CRCERRS);
3604 	adapter->stats.gprc += er32(GPRC);
3605 	adapter->stats.gorcl += er32(GORCL);
3606 	adapter->stats.gorch += er32(GORCH);
3607 	adapter->stats.bprc += er32(BPRC);
3608 	adapter->stats.mprc += er32(MPRC);
3609 	adapter->stats.roc += er32(ROC);
3610 
3611 	adapter->stats.prc64 += er32(PRC64);
3612 	adapter->stats.prc127 += er32(PRC127);
3613 	adapter->stats.prc255 += er32(PRC255);
3614 	adapter->stats.prc511 += er32(PRC511);
3615 	adapter->stats.prc1023 += er32(PRC1023);
3616 	adapter->stats.prc1522 += er32(PRC1522);
3617 
3618 	adapter->stats.symerrs += er32(SYMERRS);
3619 	adapter->stats.mpc += er32(MPC);
3620 	adapter->stats.scc += er32(SCC);
3621 	adapter->stats.ecol += er32(ECOL);
3622 	adapter->stats.mcc += er32(MCC);
3623 	adapter->stats.latecol += er32(LATECOL);
3624 	adapter->stats.dc += er32(DC);
3625 	adapter->stats.sec += er32(SEC);
3626 	adapter->stats.rlec += er32(RLEC);
3627 	adapter->stats.xonrxc += er32(XONRXC);
3628 	adapter->stats.xontxc += er32(XONTXC);
3629 	adapter->stats.xoffrxc += er32(XOFFRXC);
3630 	adapter->stats.xofftxc += er32(XOFFTXC);
3631 	adapter->stats.fcruc += er32(FCRUC);
3632 	adapter->stats.gptc += er32(GPTC);
3633 	adapter->stats.gotcl += er32(GOTCL);
3634 	adapter->stats.gotch += er32(GOTCH);
3635 	adapter->stats.rnbc += er32(RNBC);
3636 	adapter->stats.ruc += er32(RUC);
3637 	adapter->stats.rfc += er32(RFC);
3638 	adapter->stats.rjc += er32(RJC);
3639 	adapter->stats.torl += er32(TORL);
3640 	adapter->stats.torh += er32(TORH);
3641 	adapter->stats.totl += er32(TOTL);
3642 	adapter->stats.toth += er32(TOTH);
3643 	adapter->stats.tpr += er32(TPR);
3644 
3645 	adapter->stats.ptc64 += er32(PTC64);
3646 	adapter->stats.ptc127 += er32(PTC127);
3647 	adapter->stats.ptc255 += er32(PTC255);
3648 	adapter->stats.ptc511 += er32(PTC511);
3649 	adapter->stats.ptc1023 += er32(PTC1023);
3650 	adapter->stats.ptc1522 += er32(PTC1522);
3651 
3652 	adapter->stats.mptc += er32(MPTC);
3653 	adapter->stats.bptc += er32(BPTC);
3654 
3655 	/* used for adaptive IFS */
3656 
3657 	hw->tx_packet_delta = er32(TPT);
3658 	adapter->stats.tpt += hw->tx_packet_delta;
3659 	hw->collision_delta = er32(COLC);
3660 	adapter->stats.colc += hw->collision_delta;
3661 
3662 	if (hw->mac_type >= e1000_82543) {
3663 		adapter->stats.algnerrc += er32(ALGNERRC);
3664 		adapter->stats.rxerrc += er32(RXERRC);
3665 		adapter->stats.tncrs += er32(TNCRS);
3666 		adapter->stats.cexterr += er32(CEXTERR);
3667 		adapter->stats.tsctc += er32(TSCTC);
3668 		adapter->stats.tsctfc += er32(TSCTFC);
3669 	}
3670 
3671 	/* Fill out the OS statistics structure */
3672 	netdev->stats.multicast = adapter->stats.mprc;
3673 	netdev->stats.collisions = adapter->stats.colc;
3674 
3675 	/* Rx Errors */
3676 
3677 	/* RLEC on some newer hardware can be incorrect so build
3678 	 * our own version based on RUC and ROC
3679 	 */
3680 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3681 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3682 		adapter->stats.ruc + adapter->stats.roc +
3683 		adapter->stats.cexterr;
3684 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3685 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3686 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3687 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3688 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3689 
3690 	/* Tx Errors */
3691 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3692 	netdev->stats.tx_errors = adapter->stats.txerrc;
3693 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3694 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3695 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3696 	if (hw->bad_tx_carr_stats_fd &&
3697 	    adapter->link_duplex == FULL_DUPLEX) {
3698 		netdev->stats.tx_carrier_errors = 0;
3699 		adapter->stats.tncrs = 0;
3700 	}
3701 
3702 	/* Tx Dropped needs to be maintained elsewhere */
3703 
3704 	/* Phy Stats */
3705 	if (hw->media_type == e1000_media_type_copper) {
3706 		if ((adapter->link_speed == SPEED_1000) &&
3707 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3708 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3709 			adapter->phy_stats.idle_errors += phy_tmp;
3710 		}
3711 
3712 		if ((hw->mac_type <= e1000_82546) &&
3713 		   (hw->phy_type == e1000_phy_m88) &&
3714 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3715 			adapter->phy_stats.receive_errors += phy_tmp;
3716 	}
3717 
3718 	/* Management Stats */
3719 	if (hw->has_smbus) {
3720 		adapter->stats.mgptc += er32(MGTPTC);
3721 		adapter->stats.mgprc += er32(MGTPRC);
3722 		adapter->stats.mgpdc += er32(MGTPDC);
3723 	}
3724 
3725 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3726 }
3727 
3728 /**
3729  * e1000_intr - Interrupt Handler
3730  * @irq: interrupt number
3731  * @data: pointer to a network interface device structure
3732  **/
3733 static irqreturn_t e1000_intr(int irq, void *data)
3734 {
3735 	struct net_device *netdev = data;
3736 	struct e1000_adapter *adapter = netdev_priv(netdev);
3737 	struct e1000_hw *hw = &adapter->hw;
3738 	u32 icr = er32(ICR);
3739 
3740 	if (unlikely((!icr)))
3741 		return IRQ_NONE;  /* Not our interrupt */
3742 
3743 	/* we might have caused the interrupt, but the above
3744 	 * read cleared it, and just in case the driver is
3745 	 * down there is nothing to do so return handled
3746 	 */
3747 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3748 		return IRQ_HANDLED;
3749 
3750 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3751 		hw->get_link_status = 1;
3752 		/* guard against interrupt when we're going down */
3753 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3754 			schedule_delayed_work(&adapter->watchdog_task, 1);
3755 	}
3756 
3757 	/* disable interrupts, without the synchronize_irq bit */
3758 	ew32(IMC, ~0);
3759 	E1000_WRITE_FLUSH();
3760 
3761 	if (likely(napi_schedule_prep(&adapter->napi))) {
3762 		adapter->total_tx_bytes = 0;
3763 		adapter->total_tx_packets = 0;
3764 		adapter->total_rx_bytes = 0;
3765 		adapter->total_rx_packets = 0;
3766 		__napi_schedule(&adapter->napi);
3767 	} else {
3768 		/* this really should not happen! if it does it is basically a
3769 		 * bug, but not a hard error, so enable ints and continue
3770 		 */
3771 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3772 			e1000_irq_enable(adapter);
3773 	}
3774 
3775 	return IRQ_HANDLED;
3776 }
3777 
3778 /**
3779  * e1000_clean - NAPI Rx polling callback
3780  * @adapter: board private structure
3781  **/
3782 static int e1000_clean(struct napi_struct *napi, int budget)
3783 {
3784 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3785 						     napi);
3786 	int tx_clean_complete = 0, work_done = 0;
3787 
3788 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3789 
3790 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3791 
3792 	if (!tx_clean_complete)
3793 		work_done = budget;
3794 
3795 	/* If budget not fully consumed, exit the polling mode */
3796 	if (work_done < budget) {
3797 		if (likely(adapter->itr_setting & 3))
3798 			e1000_set_itr(adapter);
3799 		napi_complete(napi);
3800 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3801 			e1000_irq_enable(adapter);
3802 	}
3803 
3804 	return work_done;
3805 }
3806 
3807 /**
3808  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3809  * @adapter: board private structure
3810  **/
3811 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3812 			       struct e1000_tx_ring *tx_ring)
3813 {
3814 	struct e1000_hw *hw = &adapter->hw;
3815 	struct net_device *netdev = adapter->netdev;
3816 	struct e1000_tx_desc *tx_desc, *eop_desc;
3817 	struct e1000_buffer *buffer_info;
3818 	unsigned int i, eop;
3819 	unsigned int count = 0;
3820 	unsigned int total_tx_bytes=0, total_tx_packets=0;
3821 	unsigned int bytes_compl = 0, pkts_compl = 0;
3822 
3823 	i = tx_ring->next_to_clean;
3824 	eop = tx_ring->buffer_info[i].next_to_watch;
3825 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3826 
3827 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3828 	       (count < tx_ring->count)) {
3829 		bool cleaned = false;
3830 		rmb();	/* read buffer_info after eop_desc */
3831 		for ( ; !cleaned; count++) {
3832 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3833 			buffer_info = &tx_ring->buffer_info[i];
3834 			cleaned = (i == eop);
3835 
3836 			if (cleaned) {
3837 				total_tx_packets += buffer_info->segs;
3838 				total_tx_bytes += buffer_info->bytecount;
3839 				if (buffer_info->skb) {
3840 					bytes_compl += buffer_info->skb->len;
3841 					pkts_compl++;
3842 				}
3843 
3844 			}
3845 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3846 			tx_desc->upper.data = 0;
3847 
3848 			if (unlikely(++i == tx_ring->count)) i = 0;
3849 		}
3850 
3851 		eop = tx_ring->buffer_info[i].next_to_watch;
3852 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3853 	}
3854 
3855 	tx_ring->next_to_clean = i;
3856 
3857 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3858 
3859 #define TX_WAKE_THRESHOLD 32
3860 	if (unlikely(count && netif_carrier_ok(netdev) &&
3861 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3862 		/* Make sure that anybody stopping the queue after this
3863 		 * sees the new next_to_clean.
3864 		 */
3865 		smp_mb();
3866 
3867 		if (netif_queue_stopped(netdev) &&
3868 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3869 			netif_wake_queue(netdev);
3870 			++adapter->restart_queue;
3871 		}
3872 	}
3873 
3874 	if (adapter->detect_tx_hung) {
3875 		/* Detect a transmit hang in hardware, this serializes the
3876 		 * check with the clearing of time_stamp and movement of i
3877 		 */
3878 		adapter->detect_tx_hung = false;
3879 		if (tx_ring->buffer_info[eop].time_stamp &&
3880 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3881 			       (adapter->tx_timeout_factor * HZ)) &&
3882 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3883 
3884 			/* detected Tx unit hang */
3885 			e_err(drv, "Detected Tx Unit Hang\n"
3886 			      "  Tx Queue             <%lu>\n"
3887 			      "  TDH                  <%x>\n"
3888 			      "  TDT                  <%x>\n"
3889 			      "  next_to_use          <%x>\n"
3890 			      "  next_to_clean        <%x>\n"
3891 			      "buffer_info[next_to_clean]\n"
3892 			      "  time_stamp           <%lx>\n"
3893 			      "  next_to_watch        <%x>\n"
3894 			      "  jiffies              <%lx>\n"
3895 			      "  next_to_watch.status <%x>\n",
3896 				(unsigned long)(tx_ring - adapter->tx_ring),
3897 				readl(hw->hw_addr + tx_ring->tdh),
3898 				readl(hw->hw_addr + tx_ring->tdt),
3899 				tx_ring->next_to_use,
3900 				tx_ring->next_to_clean,
3901 				tx_ring->buffer_info[eop].time_stamp,
3902 				eop,
3903 				jiffies,
3904 				eop_desc->upper.fields.status);
3905 			e1000_dump(adapter);
3906 			netif_stop_queue(netdev);
3907 		}
3908 	}
3909 	adapter->total_tx_bytes += total_tx_bytes;
3910 	adapter->total_tx_packets += total_tx_packets;
3911 	netdev->stats.tx_bytes += total_tx_bytes;
3912 	netdev->stats.tx_packets += total_tx_packets;
3913 	return count < tx_ring->count;
3914 }
3915 
3916 /**
3917  * e1000_rx_checksum - Receive Checksum Offload for 82543
3918  * @adapter:     board private structure
3919  * @status_err:  receive descriptor status and error fields
3920  * @csum:        receive descriptor csum field
3921  * @sk_buff:     socket buffer with received data
3922  **/
3923 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3924 			      u32 csum, struct sk_buff *skb)
3925 {
3926 	struct e1000_hw *hw = &adapter->hw;
3927 	u16 status = (u16)status_err;
3928 	u8 errors = (u8)(status_err >> 24);
3929 
3930 	skb_checksum_none_assert(skb);
3931 
3932 	/* 82543 or newer only */
3933 	if (unlikely(hw->mac_type < e1000_82543)) return;
3934 	/* Ignore Checksum bit is set */
3935 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3936 	/* TCP/UDP checksum error bit is set */
3937 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3938 		/* let the stack verify checksum errors */
3939 		adapter->hw_csum_err++;
3940 		return;
3941 	}
3942 	/* TCP/UDP Checksum has not been calculated */
3943 	if (!(status & E1000_RXD_STAT_TCPCS))
3944 		return;
3945 
3946 	/* It must be a TCP or UDP packet with a valid checksum */
3947 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3948 		/* TCP checksum is good */
3949 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3950 	}
3951 	adapter->hw_csum_good++;
3952 }
3953 
3954 /**
3955  * e1000_consume_page - helper function
3956  **/
3957 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3958 			       u16 length)
3959 {
3960 	bi->page = NULL;
3961 	skb->len += length;
3962 	skb->data_len += length;
3963 	skb->truesize += PAGE_SIZE;
3964 }
3965 
3966 /**
3967  * e1000_receive_skb - helper function to handle rx indications
3968  * @adapter: board private structure
3969  * @status: descriptor status field as written by hardware
3970  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3971  * @skb: pointer to sk_buff to be indicated to stack
3972  */
3973 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3974 			      __le16 vlan, struct sk_buff *skb)
3975 {
3976 	skb->protocol = eth_type_trans(skb, adapter->netdev);
3977 
3978 	if (status & E1000_RXD_STAT_VP) {
3979 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3980 
3981 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3982 	}
3983 	napi_gro_receive(&adapter->napi, skb);
3984 }
3985 
3986 /**
3987  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3988  * @adapter: board private structure
3989  * @rx_ring: ring to clean
3990  * @work_done: amount of napi work completed this call
3991  * @work_to_do: max amount of work allowed for this call to do
3992  *
3993  * the return value indicates whether actual cleaning was done, there
3994  * is no guarantee that everything was cleaned
3995  */
3996 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3997 				     struct e1000_rx_ring *rx_ring,
3998 				     int *work_done, int work_to_do)
3999 {
4000 	struct e1000_hw *hw = &adapter->hw;
4001 	struct net_device *netdev = adapter->netdev;
4002 	struct pci_dev *pdev = adapter->pdev;
4003 	struct e1000_rx_desc *rx_desc, *next_rxd;
4004 	struct e1000_buffer *buffer_info, *next_buffer;
4005 	unsigned long irq_flags;
4006 	u32 length;
4007 	unsigned int i;
4008 	int cleaned_count = 0;
4009 	bool cleaned = false;
4010 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4011 
4012 	i = rx_ring->next_to_clean;
4013 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4014 	buffer_info = &rx_ring->buffer_info[i];
4015 
4016 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4017 		struct sk_buff *skb;
4018 		u8 status;
4019 
4020 		if (*work_done >= work_to_do)
4021 			break;
4022 		(*work_done)++;
4023 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4024 
4025 		status = rx_desc->status;
4026 		skb = buffer_info->skb;
4027 		buffer_info->skb = NULL;
4028 
4029 		if (++i == rx_ring->count) i = 0;
4030 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4031 		prefetch(next_rxd);
4032 
4033 		next_buffer = &rx_ring->buffer_info[i];
4034 
4035 		cleaned = true;
4036 		cleaned_count++;
4037 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4038 			       buffer_info->length, DMA_FROM_DEVICE);
4039 		buffer_info->dma = 0;
4040 
4041 		length = le16_to_cpu(rx_desc->length);
4042 
4043 		/* errors is only valid for DD + EOP descriptors */
4044 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4045 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4046 			u8 *mapped;
4047 			u8 last_byte;
4048 
4049 			mapped = page_address(buffer_info->page);
4050 			last_byte = *(mapped + length - 1);
4051 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4052 				       last_byte)) {
4053 				spin_lock_irqsave(&adapter->stats_lock,
4054 						  irq_flags);
4055 				e1000_tbi_adjust_stats(hw, &adapter->stats,
4056 						       length, mapped);
4057 				spin_unlock_irqrestore(&adapter->stats_lock,
4058 						       irq_flags);
4059 				length--;
4060 			} else {
4061 				if (netdev->features & NETIF_F_RXALL)
4062 					goto process_skb;
4063 				/* recycle both page and skb */
4064 				buffer_info->skb = skb;
4065 				/* an error means any chain goes out the window
4066 				 * too
4067 				 */
4068 				if (rx_ring->rx_skb_top)
4069 					dev_kfree_skb(rx_ring->rx_skb_top);
4070 				rx_ring->rx_skb_top = NULL;
4071 				goto next_desc;
4072 			}
4073 		}
4074 
4075 #define rxtop rx_ring->rx_skb_top
4076 process_skb:
4077 		if (!(status & E1000_RXD_STAT_EOP)) {
4078 			/* this descriptor is only the beginning (or middle) */
4079 			if (!rxtop) {
4080 				/* this is the beginning of a chain */
4081 				rxtop = skb;
4082 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
4083 						   0, length);
4084 			} else {
4085 				/* this is the middle of a chain */
4086 				skb_fill_page_desc(rxtop,
4087 				    skb_shinfo(rxtop)->nr_frags,
4088 				    buffer_info->page, 0, length);
4089 				/* re-use the skb, only consumed the page */
4090 				buffer_info->skb = skb;
4091 			}
4092 			e1000_consume_page(buffer_info, rxtop, length);
4093 			goto next_desc;
4094 		} else {
4095 			if (rxtop) {
4096 				/* end of the chain */
4097 				skb_fill_page_desc(rxtop,
4098 				    skb_shinfo(rxtop)->nr_frags,
4099 				    buffer_info->page, 0, length);
4100 				/* re-use the current skb, we only consumed the
4101 				 * page
4102 				 */
4103 				buffer_info->skb = skb;
4104 				skb = rxtop;
4105 				rxtop = NULL;
4106 				e1000_consume_page(buffer_info, skb, length);
4107 			} else {
4108 				/* no chain, got EOP, this buf is the packet
4109 				 * copybreak to save the put_page/alloc_page
4110 				 */
4111 				if (length <= copybreak &&
4112 				    skb_tailroom(skb) >= length) {
4113 					u8 *vaddr;
4114 					vaddr = kmap_atomic(buffer_info->page);
4115 					memcpy(skb_tail_pointer(skb), vaddr,
4116 					       length);
4117 					kunmap_atomic(vaddr);
4118 					/* re-use the page, so don't erase
4119 					 * buffer_info->page
4120 					 */
4121 					skb_put(skb, length);
4122 				} else {
4123 					skb_fill_page_desc(skb, 0,
4124 							   buffer_info->page, 0,
4125 							   length);
4126 					e1000_consume_page(buffer_info, skb,
4127 							   length);
4128 				}
4129 			}
4130 		}
4131 
4132 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4133 		e1000_rx_checksum(adapter,
4134 				  (u32)(status) |
4135 				  ((u32)(rx_desc->errors) << 24),
4136 				  le16_to_cpu(rx_desc->csum), skb);
4137 
4138 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4139 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4140 			pskb_trim(skb, skb->len - 4);
4141 		total_rx_packets++;
4142 
4143 		/* eth type trans needs skb->data to point to something */
4144 		if (!pskb_may_pull(skb, ETH_HLEN)) {
4145 			e_err(drv, "pskb_may_pull failed.\n");
4146 			dev_kfree_skb(skb);
4147 			goto next_desc;
4148 		}
4149 
4150 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4151 
4152 next_desc:
4153 		rx_desc->status = 0;
4154 
4155 		/* return some buffers to hardware, one at a time is too slow */
4156 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4157 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4158 			cleaned_count = 0;
4159 		}
4160 
4161 		/* use prefetched values */
4162 		rx_desc = next_rxd;
4163 		buffer_info = next_buffer;
4164 	}
4165 	rx_ring->next_to_clean = i;
4166 
4167 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4168 	if (cleaned_count)
4169 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4170 
4171 	adapter->total_rx_packets += total_rx_packets;
4172 	adapter->total_rx_bytes += total_rx_bytes;
4173 	netdev->stats.rx_bytes += total_rx_bytes;
4174 	netdev->stats.rx_packets += total_rx_packets;
4175 	return cleaned;
4176 }
4177 
4178 /* this should improve performance for small packets with large amounts
4179  * of reassembly being done in the stack
4180  */
4181 static void e1000_check_copybreak(struct net_device *netdev,
4182 				 struct e1000_buffer *buffer_info,
4183 				 u32 length, struct sk_buff **skb)
4184 {
4185 	struct sk_buff *new_skb;
4186 
4187 	if (length > copybreak)
4188 		return;
4189 
4190 	new_skb = netdev_alloc_skb_ip_align(netdev, length);
4191 	if (!new_skb)
4192 		return;
4193 
4194 	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4195 				       (*skb)->data - NET_IP_ALIGN,
4196 				       length + NET_IP_ALIGN);
4197 	/* save the skb in buffer_info as good */
4198 	buffer_info->skb = *skb;
4199 	*skb = new_skb;
4200 }
4201 
4202 /**
4203  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4204  * @adapter: board private structure
4205  * @rx_ring: ring to clean
4206  * @work_done: amount of napi work completed this call
4207  * @work_to_do: max amount of work allowed for this call to do
4208  */
4209 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4210 			       struct e1000_rx_ring *rx_ring,
4211 			       int *work_done, int work_to_do)
4212 {
4213 	struct e1000_hw *hw = &adapter->hw;
4214 	struct net_device *netdev = adapter->netdev;
4215 	struct pci_dev *pdev = adapter->pdev;
4216 	struct e1000_rx_desc *rx_desc, *next_rxd;
4217 	struct e1000_buffer *buffer_info, *next_buffer;
4218 	unsigned long flags;
4219 	u32 length;
4220 	unsigned int i;
4221 	int cleaned_count = 0;
4222 	bool cleaned = false;
4223 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4224 
4225 	i = rx_ring->next_to_clean;
4226 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4227 	buffer_info = &rx_ring->buffer_info[i];
4228 
4229 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4230 		struct sk_buff *skb;
4231 		u8 status;
4232 
4233 		if (*work_done >= work_to_do)
4234 			break;
4235 		(*work_done)++;
4236 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4237 
4238 		status = rx_desc->status;
4239 		skb = buffer_info->skb;
4240 		buffer_info->skb = NULL;
4241 
4242 		prefetch(skb->data - NET_IP_ALIGN);
4243 
4244 		if (++i == rx_ring->count) i = 0;
4245 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4246 		prefetch(next_rxd);
4247 
4248 		next_buffer = &rx_ring->buffer_info[i];
4249 
4250 		cleaned = true;
4251 		cleaned_count++;
4252 		dma_unmap_single(&pdev->dev, buffer_info->dma,
4253 				 buffer_info->length, DMA_FROM_DEVICE);
4254 		buffer_info->dma = 0;
4255 
4256 		length = le16_to_cpu(rx_desc->length);
4257 		/* !EOP means multiple descriptors were used to store a single
4258 		 * packet, if thats the case we need to toss it.  In fact, we
4259 		 * to toss every packet with the EOP bit clear and the next
4260 		 * frame that _does_ have the EOP bit set, as it is by
4261 		 * definition only a frame fragment
4262 		 */
4263 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4264 			adapter->discarding = true;
4265 
4266 		if (adapter->discarding) {
4267 			/* All receives must fit into a single buffer */
4268 			e_dbg("Receive packet consumed multiple buffers\n");
4269 			/* recycle */
4270 			buffer_info->skb = skb;
4271 			if (status & E1000_RXD_STAT_EOP)
4272 				adapter->discarding = false;
4273 			goto next_desc;
4274 		}
4275 
4276 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4277 			u8 last_byte = *(skb->data + length - 1);
4278 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4279 				       last_byte)) {
4280 				spin_lock_irqsave(&adapter->stats_lock, flags);
4281 				e1000_tbi_adjust_stats(hw, &adapter->stats,
4282 						       length, skb->data);
4283 				spin_unlock_irqrestore(&adapter->stats_lock,
4284 						       flags);
4285 				length--;
4286 			} else {
4287 				if (netdev->features & NETIF_F_RXALL)
4288 					goto process_skb;
4289 				/* recycle */
4290 				buffer_info->skb = skb;
4291 				goto next_desc;
4292 			}
4293 		}
4294 
4295 process_skb:
4296 		total_rx_bytes += (length - 4); /* don't count FCS */
4297 		total_rx_packets++;
4298 
4299 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4300 			/* adjust length to remove Ethernet CRC, this must be
4301 			 * done after the TBI_ACCEPT workaround above
4302 			 */
4303 			length -= 4;
4304 
4305 		e1000_check_copybreak(netdev, buffer_info, length, &skb);
4306 
4307 		skb_put(skb, length);
4308 
4309 		/* Receive Checksum Offload */
4310 		e1000_rx_checksum(adapter,
4311 				  (u32)(status) |
4312 				  ((u32)(rx_desc->errors) << 24),
4313 				  le16_to_cpu(rx_desc->csum), skb);
4314 
4315 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4316 
4317 next_desc:
4318 		rx_desc->status = 0;
4319 
4320 		/* return some buffers to hardware, one at a time is too slow */
4321 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4322 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4323 			cleaned_count = 0;
4324 		}
4325 
4326 		/* use prefetched values */
4327 		rx_desc = next_rxd;
4328 		buffer_info = next_buffer;
4329 	}
4330 	rx_ring->next_to_clean = i;
4331 
4332 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4333 	if (cleaned_count)
4334 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4335 
4336 	adapter->total_rx_packets += total_rx_packets;
4337 	adapter->total_rx_bytes += total_rx_bytes;
4338 	netdev->stats.rx_bytes += total_rx_bytes;
4339 	netdev->stats.rx_packets += total_rx_packets;
4340 	return cleaned;
4341 }
4342 
4343 /**
4344  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4345  * @adapter: address of board private structure
4346  * @rx_ring: pointer to receive ring structure
4347  * @cleaned_count: number of buffers to allocate this pass
4348  **/
4349 static void
4350 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4351 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4352 {
4353 	struct net_device *netdev = adapter->netdev;
4354 	struct pci_dev *pdev = adapter->pdev;
4355 	struct e1000_rx_desc *rx_desc;
4356 	struct e1000_buffer *buffer_info;
4357 	struct sk_buff *skb;
4358 	unsigned int i;
4359 	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4360 
4361 	i = rx_ring->next_to_use;
4362 	buffer_info = &rx_ring->buffer_info[i];
4363 
4364 	while (cleaned_count--) {
4365 		skb = buffer_info->skb;
4366 		if (skb) {
4367 			skb_trim(skb, 0);
4368 			goto check_page;
4369 		}
4370 
4371 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4372 		if (unlikely(!skb)) {
4373 			/* Better luck next round */
4374 			adapter->alloc_rx_buff_failed++;
4375 			break;
4376 		}
4377 
4378 		buffer_info->skb = skb;
4379 		buffer_info->length = adapter->rx_buffer_len;
4380 check_page:
4381 		/* allocate a new page if necessary */
4382 		if (!buffer_info->page) {
4383 			buffer_info->page = alloc_page(GFP_ATOMIC);
4384 			if (unlikely(!buffer_info->page)) {
4385 				adapter->alloc_rx_buff_failed++;
4386 				break;
4387 			}
4388 		}
4389 
4390 		if (!buffer_info->dma) {
4391 			buffer_info->dma = dma_map_page(&pdev->dev,
4392 							buffer_info->page, 0,
4393 							buffer_info->length,
4394 							DMA_FROM_DEVICE);
4395 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4396 				put_page(buffer_info->page);
4397 				dev_kfree_skb(skb);
4398 				buffer_info->page = NULL;
4399 				buffer_info->skb = NULL;
4400 				buffer_info->dma = 0;
4401 				adapter->alloc_rx_buff_failed++;
4402 				break; /* while !buffer_info->skb */
4403 			}
4404 		}
4405 
4406 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4407 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4408 
4409 		if (unlikely(++i == rx_ring->count))
4410 			i = 0;
4411 		buffer_info = &rx_ring->buffer_info[i];
4412 	}
4413 
4414 	if (likely(rx_ring->next_to_use != i)) {
4415 		rx_ring->next_to_use = i;
4416 		if (unlikely(i-- == 0))
4417 			i = (rx_ring->count - 1);
4418 
4419 		/* Force memory writes to complete before letting h/w
4420 		 * know there are new descriptors to fetch.  (Only
4421 		 * applicable for weak-ordered memory model archs,
4422 		 * such as IA-64).
4423 		 */
4424 		wmb();
4425 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4426 	}
4427 }
4428 
4429 /**
4430  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4431  * @adapter: address of board private structure
4432  **/
4433 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4434 				   struct e1000_rx_ring *rx_ring,
4435 				   int cleaned_count)
4436 {
4437 	struct e1000_hw *hw = &adapter->hw;
4438 	struct net_device *netdev = adapter->netdev;
4439 	struct pci_dev *pdev = adapter->pdev;
4440 	struct e1000_rx_desc *rx_desc;
4441 	struct e1000_buffer *buffer_info;
4442 	struct sk_buff *skb;
4443 	unsigned int i;
4444 	unsigned int bufsz = adapter->rx_buffer_len;
4445 
4446 	i = rx_ring->next_to_use;
4447 	buffer_info = &rx_ring->buffer_info[i];
4448 
4449 	while (cleaned_count--) {
4450 		skb = buffer_info->skb;
4451 		if (skb) {
4452 			skb_trim(skb, 0);
4453 			goto map_skb;
4454 		}
4455 
4456 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4457 		if (unlikely(!skb)) {
4458 			/* Better luck next round */
4459 			adapter->alloc_rx_buff_failed++;
4460 			break;
4461 		}
4462 
4463 		/* Fix for errata 23, can't cross 64kB boundary */
4464 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4465 			struct sk_buff *oldskb = skb;
4466 			e_err(rx_err, "skb align check failed: %u bytes at "
4467 			      "%p\n", bufsz, skb->data);
4468 			/* Try again, without freeing the previous */
4469 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4470 			/* Failed allocation, critical failure */
4471 			if (!skb) {
4472 				dev_kfree_skb(oldskb);
4473 				adapter->alloc_rx_buff_failed++;
4474 				break;
4475 			}
4476 
4477 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4478 				/* give up */
4479 				dev_kfree_skb(skb);
4480 				dev_kfree_skb(oldskb);
4481 				adapter->alloc_rx_buff_failed++;
4482 				break; /* while !buffer_info->skb */
4483 			}
4484 
4485 			/* Use new allocation */
4486 			dev_kfree_skb(oldskb);
4487 		}
4488 		buffer_info->skb = skb;
4489 		buffer_info->length = adapter->rx_buffer_len;
4490 map_skb:
4491 		buffer_info->dma = dma_map_single(&pdev->dev,
4492 						  skb->data,
4493 						  buffer_info->length,
4494 						  DMA_FROM_DEVICE);
4495 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4496 			dev_kfree_skb(skb);
4497 			buffer_info->skb = NULL;
4498 			buffer_info->dma = 0;
4499 			adapter->alloc_rx_buff_failed++;
4500 			break; /* while !buffer_info->skb */
4501 		}
4502 
4503 		/* XXX if it was allocated cleanly it will never map to a
4504 		 * boundary crossing
4505 		 */
4506 
4507 		/* Fix for errata 23, can't cross 64kB boundary */
4508 		if (!e1000_check_64k_bound(adapter,
4509 					(void *)(unsigned long)buffer_info->dma,
4510 					adapter->rx_buffer_len)) {
4511 			e_err(rx_err, "dma align check failed: %u bytes at "
4512 			      "%p\n", adapter->rx_buffer_len,
4513 			      (void *)(unsigned long)buffer_info->dma);
4514 			dev_kfree_skb(skb);
4515 			buffer_info->skb = NULL;
4516 
4517 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4518 					 adapter->rx_buffer_len,
4519 					 DMA_FROM_DEVICE);
4520 			buffer_info->dma = 0;
4521 
4522 			adapter->alloc_rx_buff_failed++;
4523 			break; /* while !buffer_info->skb */
4524 		}
4525 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4526 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4527 
4528 		if (unlikely(++i == rx_ring->count))
4529 			i = 0;
4530 		buffer_info = &rx_ring->buffer_info[i];
4531 	}
4532 
4533 	if (likely(rx_ring->next_to_use != i)) {
4534 		rx_ring->next_to_use = i;
4535 		if (unlikely(i-- == 0))
4536 			i = (rx_ring->count - 1);
4537 
4538 		/* Force memory writes to complete before letting h/w
4539 		 * know there are new descriptors to fetch.  (Only
4540 		 * applicable for weak-ordered memory model archs,
4541 		 * such as IA-64).
4542 		 */
4543 		wmb();
4544 		writel(i, hw->hw_addr + rx_ring->rdt);
4545 	}
4546 }
4547 
4548 /**
4549  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4550  * @adapter:
4551  **/
4552 static void e1000_smartspeed(struct e1000_adapter *adapter)
4553 {
4554 	struct e1000_hw *hw = &adapter->hw;
4555 	u16 phy_status;
4556 	u16 phy_ctrl;
4557 
4558 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4559 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4560 		return;
4561 
4562 	if (adapter->smartspeed == 0) {
4563 		/* If Master/Slave config fault is asserted twice,
4564 		 * we assume back-to-back
4565 		 */
4566 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4567 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4568 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4569 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4570 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4571 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4572 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4573 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4574 					    phy_ctrl);
4575 			adapter->smartspeed++;
4576 			if (!e1000_phy_setup_autoneg(hw) &&
4577 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4578 					       &phy_ctrl)) {
4579 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4580 					     MII_CR_RESTART_AUTO_NEG);
4581 				e1000_write_phy_reg(hw, PHY_CTRL,
4582 						    phy_ctrl);
4583 			}
4584 		}
4585 		return;
4586 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4587 		/* If still no link, perhaps using 2/3 pair cable */
4588 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4589 		phy_ctrl |= CR_1000T_MS_ENABLE;
4590 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4591 		if (!e1000_phy_setup_autoneg(hw) &&
4592 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4593 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4594 				     MII_CR_RESTART_AUTO_NEG);
4595 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4596 		}
4597 	}
4598 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4599 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4600 		adapter->smartspeed = 0;
4601 }
4602 
4603 /**
4604  * e1000_ioctl -
4605  * @netdev:
4606  * @ifreq:
4607  * @cmd:
4608  **/
4609 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4610 {
4611 	switch (cmd) {
4612 	case SIOCGMIIPHY:
4613 	case SIOCGMIIREG:
4614 	case SIOCSMIIREG:
4615 		return e1000_mii_ioctl(netdev, ifr, cmd);
4616 	default:
4617 		return -EOPNOTSUPP;
4618 	}
4619 }
4620 
4621 /**
4622  * e1000_mii_ioctl -
4623  * @netdev:
4624  * @ifreq:
4625  * @cmd:
4626  **/
4627 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4628 			   int cmd)
4629 {
4630 	struct e1000_adapter *adapter = netdev_priv(netdev);
4631 	struct e1000_hw *hw = &adapter->hw;
4632 	struct mii_ioctl_data *data = if_mii(ifr);
4633 	int retval;
4634 	u16 mii_reg;
4635 	unsigned long flags;
4636 
4637 	if (hw->media_type != e1000_media_type_copper)
4638 		return -EOPNOTSUPP;
4639 
4640 	switch (cmd) {
4641 	case SIOCGMIIPHY:
4642 		data->phy_id = hw->phy_addr;
4643 		break;
4644 	case SIOCGMIIREG:
4645 		spin_lock_irqsave(&adapter->stats_lock, flags);
4646 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4647 				   &data->val_out)) {
4648 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4649 			return -EIO;
4650 		}
4651 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4652 		break;
4653 	case SIOCSMIIREG:
4654 		if (data->reg_num & ~(0x1F))
4655 			return -EFAULT;
4656 		mii_reg = data->val_in;
4657 		spin_lock_irqsave(&adapter->stats_lock, flags);
4658 		if (e1000_write_phy_reg(hw, data->reg_num,
4659 					mii_reg)) {
4660 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4661 			return -EIO;
4662 		}
4663 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4664 		if (hw->media_type == e1000_media_type_copper) {
4665 			switch (data->reg_num) {
4666 			case PHY_CTRL:
4667 				if (mii_reg & MII_CR_POWER_DOWN)
4668 					break;
4669 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4670 					hw->autoneg = 1;
4671 					hw->autoneg_advertised = 0x2F;
4672 				} else {
4673 					u32 speed;
4674 					if (mii_reg & 0x40)
4675 						speed = SPEED_1000;
4676 					else if (mii_reg & 0x2000)
4677 						speed = SPEED_100;
4678 					else
4679 						speed = SPEED_10;
4680 					retval = e1000_set_spd_dplx(
4681 						adapter, speed,
4682 						((mii_reg & 0x100)
4683 						 ? DUPLEX_FULL :
4684 						 DUPLEX_HALF));
4685 					if (retval)
4686 						return retval;
4687 				}
4688 				if (netif_running(adapter->netdev))
4689 					e1000_reinit_locked(adapter);
4690 				else
4691 					e1000_reset(adapter);
4692 				break;
4693 			case M88E1000_PHY_SPEC_CTRL:
4694 			case M88E1000_EXT_PHY_SPEC_CTRL:
4695 				if (e1000_phy_reset(hw))
4696 					return -EIO;
4697 				break;
4698 			}
4699 		} else {
4700 			switch (data->reg_num) {
4701 			case PHY_CTRL:
4702 				if (mii_reg & MII_CR_POWER_DOWN)
4703 					break;
4704 				if (netif_running(adapter->netdev))
4705 					e1000_reinit_locked(adapter);
4706 				else
4707 					e1000_reset(adapter);
4708 				break;
4709 			}
4710 		}
4711 		break;
4712 	default:
4713 		return -EOPNOTSUPP;
4714 	}
4715 	return E1000_SUCCESS;
4716 }
4717 
4718 void e1000_pci_set_mwi(struct e1000_hw *hw)
4719 {
4720 	struct e1000_adapter *adapter = hw->back;
4721 	int ret_val = pci_set_mwi(adapter->pdev);
4722 
4723 	if (ret_val)
4724 		e_err(probe, "Error in setting MWI\n");
4725 }
4726 
4727 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4728 {
4729 	struct e1000_adapter *adapter = hw->back;
4730 
4731 	pci_clear_mwi(adapter->pdev);
4732 }
4733 
4734 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4735 {
4736 	struct e1000_adapter *adapter = hw->back;
4737 	return pcix_get_mmrbc(adapter->pdev);
4738 }
4739 
4740 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4741 {
4742 	struct e1000_adapter *adapter = hw->back;
4743 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4744 }
4745 
4746 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4747 {
4748 	outl(value, port);
4749 }
4750 
4751 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4752 {
4753 	u16 vid;
4754 
4755 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4756 		return true;
4757 	return false;
4758 }
4759 
4760 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4761 			      netdev_features_t features)
4762 {
4763 	struct e1000_hw *hw = &adapter->hw;
4764 	u32 ctrl;
4765 
4766 	ctrl = er32(CTRL);
4767 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4768 		/* enable VLAN tag insert/strip */
4769 		ctrl |= E1000_CTRL_VME;
4770 	} else {
4771 		/* disable VLAN tag insert/strip */
4772 		ctrl &= ~E1000_CTRL_VME;
4773 	}
4774 	ew32(CTRL, ctrl);
4775 }
4776 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4777 				     bool filter_on)
4778 {
4779 	struct e1000_hw *hw = &adapter->hw;
4780 	u32 rctl;
4781 
4782 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4783 		e1000_irq_disable(adapter);
4784 
4785 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4786 	if (filter_on) {
4787 		/* enable VLAN receive filtering */
4788 		rctl = er32(RCTL);
4789 		rctl &= ~E1000_RCTL_CFIEN;
4790 		if (!(adapter->netdev->flags & IFF_PROMISC))
4791 			rctl |= E1000_RCTL_VFE;
4792 		ew32(RCTL, rctl);
4793 		e1000_update_mng_vlan(adapter);
4794 	} else {
4795 		/* disable VLAN receive filtering */
4796 		rctl = er32(RCTL);
4797 		rctl &= ~E1000_RCTL_VFE;
4798 		ew32(RCTL, rctl);
4799 	}
4800 
4801 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4802 		e1000_irq_enable(adapter);
4803 }
4804 
4805 static void e1000_vlan_mode(struct net_device *netdev,
4806 			    netdev_features_t features)
4807 {
4808 	struct e1000_adapter *adapter = netdev_priv(netdev);
4809 
4810 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4811 		e1000_irq_disable(adapter);
4812 
4813 	__e1000_vlan_mode(adapter, features);
4814 
4815 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4816 		e1000_irq_enable(adapter);
4817 }
4818 
4819 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4820 				 __be16 proto, u16 vid)
4821 {
4822 	struct e1000_adapter *adapter = netdev_priv(netdev);
4823 	struct e1000_hw *hw = &adapter->hw;
4824 	u32 vfta, index;
4825 
4826 	if ((hw->mng_cookie.status &
4827 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4828 	    (vid == adapter->mng_vlan_id))
4829 		return 0;
4830 
4831 	if (!e1000_vlan_used(adapter))
4832 		e1000_vlan_filter_on_off(adapter, true);
4833 
4834 	/* add VID to filter table */
4835 	index = (vid >> 5) & 0x7F;
4836 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4837 	vfta |= (1 << (vid & 0x1F));
4838 	e1000_write_vfta(hw, index, vfta);
4839 
4840 	set_bit(vid, adapter->active_vlans);
4841 
4842 	return 0;
4843 }
4844 
4845 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4846 				  __be16 proto, u16 vid)
4847 {
4848 	struct e1000_adapter *adapter = netdev_priv(netdev);
4849 	struct e1000_hw *hw = &adapter->hw;
4850 	u32 vfta, index;
4851 
4852 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4853 		e1000_irq_disable(adapter);
4854 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4855 		e1000_irq_enable(adapter);
4856 
4857 	/* remove VID from filter table */
4858 	index = (vid >> 5) & 0x7F;
4859 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4860 	vfta &= ~(1 << (vid & 0x1F));
4861 	e1000_write_vfta(hw, index, vfta);
4862 
4863 	clear_bit(vid, adapter->active_vlans);
4864 
4865 	if (!e1000_vlan_used(adapter))
4866 		e1000_vlan_filter_on_off(adapter, false);
4867 
4868 	return 0;
4869 }
4870 
4871 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4872 {
4873 	u16 vid;
4874 
4875 	if (!e1000_vlan_used(adapter))
4876 		return;
4877 
4878 	e1000_vlan_filter_on_off(adapter, true);
4879 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4880 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4881 }
4882 
4883 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4884 {
4885 	struct e1000_hw *hw = &adapter->hw;
4886 
4887 	hw->autoneg = 0;
4888 
4889 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4890 	 * for the switch() below to work
4891 	 */
4892 	if ((spd & 1) || (dplx & ~1))
4893 		goto err_inval;
4894 
4895 	/* Fiber NICs only allow 1000 gbps Full duplex */
4896 	if ((hw->media_type == e1000_media_type_fiber) &&
4897 	    spd != SPEED_1000 &&
4898 	    dplx != DUPLEX_FULL)
4899 		goto err_inval;
4900 
4901 	switch (spd + dplx) {
4902 	case SPEED_10 + DUPLEX_HALF:
4903 		hw->forced_speed_duplex = e1000_10_half;
4904 		break;
4905 	case SPEED_10 + DUPLEX_FULL:
4906 		hw->forced_speed_duplex = e1000_10_full;
4907 		break;
4908 	case SPEED_100 + DUPLEX_HALF:
4909 		hw->forced_speed_duplex = e1000_100_half;
4910 		break;
4911 	case SPEED_100 + DUPLEX_FULL:
4912 		hw->forced_speed_duplex = e1000_100_full;
4913 		break;
4914 	case SPEED_1000 + DUPLEX_FULL:
4915 		hw->autoneg = 1;
4916 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
4917 		break;
4918 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4919 	default:
4920 		goto err_inval;
4921 	}
4922 
4923 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4924 	hw->mdix = AUTO_ALL_MODES;
4925 
4926 	return 0;
4927 
4928 err_inval:
4929 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
4930 	return -EINVAL;
4931 }
4932 
4933 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4934 {
4935 	struct net_device *netdev = pci_get_drvdata(pdev);
4936 	struct e1000_adapter *adapter = netdev_priv(netdev);
4937 	struct e1000_hw *hw = &adapter->hw;
4938 	u32 ctrl, ctrl_ext, rctl, status;
4939 	u32 wufc = adapter->wol;
4940 #ifdef CONFIG_PM
4941 	int retval = 0;
4942 #endif
4943 
4944 	netif_device_detach(netdev);
4945 
4946 	if (netif_running(netdev)) {
4947 		int count = E1000_CHECK_RESET_COUNT;
4948 
4949 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
4950 			usleep_range(10000, 20000);
4951 
4952 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4953 		e1000_down(adapter);
4954 	}
4955 
4956 #ifdef CONFIG_PM
4957 	retval = pci_save_state(pdev);
4958 	if (retval)
4959 		return retval;
4960 #endif
4961 
4962 	status = er32(STATUS);
4963 	if (status & E1000_STATUS_LU)
4964 		wufc &= ~E1000_WUFC_LNKC;
4965 
4966 	if (wufc) {
4967 		e1000_setup_rctl(adapter);
4968 		e1000_set_rx_mode(netdev);
4969 
4970 		rctl = er32(RCTL);
4971 
4972 		/* turn on all-multi mode if wake on multicast is enabled */
4973 		if (wufc & E1000_WUFC_MC)
4974 			rctl |= E1000_RCTL_MPE;
4975 
4976 		/* enable receives in the hardware */
4977 		ew32(RCTL, rctl | E1000_RCTL_EN);
4978 
4979 		if (hw->mac_type >= e1000_82540) {
4980 			ctrl = er32(CTRL);
4981 			/* advertise wake from D3Cold */
4982 			#define E1000_CTRL_ADVD3WUC 0x00100000
4983 			/* phy power management enable */
4984 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4985 			ctrl |= E1000_CTRL_ADVD3WUC |
4986 				E1000_CTRL_EN_PHY_PWR_MGMT;
4987 			ew32(CTRL, ctrl);
4988 		}
4989 
4990 		if (hw->media_type == e1000_media_type_fiber ||
4991 		    hw->media_type == e1000_media_type_internal_serdes) {
4992 			/* keep the laser running in D3 */
4993 			ctrl_ext = er32(CTRL_EXT);
4994 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4995 			ew32(CTRL_EXT, ctrl_ext);
4996 		}
4997 
4998 		ew32(WUC, E1000_WUC_PME_EN);
4999 		ew32(WUFC, wufc);
5000 	} else {
5001 		ew32(WUC, 0);
5002 		ew32(WUFC, 0);
5003 	}
5004 
5005 	e1000_release_manageability(adapter);
5006 
5007 	*enable_wake = !!wufc;
5008 
5009 	/* make sure adapter isn't asleep if manageability is enabled */
5010 	if (adapter->en_mng_pt)
5011 		*enable_wake = true;
5012 
5013 	if (netif_running(netdev))
5014 		e1000_free_irq(adapter);
5015 
5016 	pci_disable_device(pdev);
5017 
5018 	return 0;
5019 }
5020 
5021 #ifdef CONFIG_PM
5022 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5023 {
5024 	int retval;
5025 	bool wake;
5026 
5027 	retval = __e1000_shutdown(pdev, &wake);
5028 	if (retval)
5029 		return retval;
5030 
5031 	if (wake) {
5032 		pci_prepare_to_sleep(pdev);
5033 	} else {
5034 		pci_wake_from_d3(pdev, false);
5035 		pci_set_power_state(pdev, PCI_D3hot);
5036 	}
5037 
5038 	return 0;
5039 }
5040 
5041 static int e1000_resume(struct pci_dev *pdev)
5042 {
5043 	struct net_device *netdev = pci_get_drvdata(pdev);
5044 	struct e1000_adapter *adapter = netdev_priv(netdev);
5045 	struct e1000_hw *hw = &adapter->hw;
5046 	u32 err;
5047 
5048 	pci_set_power_state(pdev, PCI_D0);
5049 	pci_restore_state(pdev);
5050 	pci_save_state(pdev);
5051 
5052 	if (adapter->need_ioport)
5053 		err = pci_enable_device(pdev);
5054 	else
5055 		err = pci_enable_device_mem(pdev);
5056 	if (err) {
5057 		pr_err("Cannot enable PCI device from suspend\n");
5058 		return err;
5059 	}
5060 	pci_set_master(pdev);
5061 
5062 	pci_enable_wake(pdev, PCI_D3hot, 0);
5063 	pci_enable_wake(pdev, PCI_D3cold, 0);
5064 
5065 	if (netif_running(netdev)) {
5066 		err = e1000_request_irq(adapter);
5067 		if (err)
5068 			return err;
5069 	}
5070 
5071 	e1000_power_up_phy(adapter);
5072 	e1000_reset(adapter);
5073 	ew32(WUS, ~0);
5074 
5075 	e1000_init_manageability(adapter);
5076 
5077 	if (netif_running(netdev))
5078 		e1000_up(adapter);
5079 
5080 	netif_device_attach(netdev);
5081 
5082 	return 0;
5083 }
5084 #endif
5085 
5086 static void e1000_shutdown(struct pci_dev *pdev)
5087 {
5088 	bool wake;
5089 
5090 	__e1000_shutdown(pdev, &wake);
5091 
5092 	if (system_state == SYSTEM_POWER_OFF) {
5093 		pci_wake_from_d3(pdev, wake);
5094 		pci_set_power_state(pdev, PCI_D3hot);
5095 	}
5096 }
5097 
5098 #ifdef CONFIG_NET_POLL_CONTROLLER
5099 /* Polling 'interrupt' - used by things like netconsole to send skbs
5100  * without having to re-enable interrupts. It's not called while
5101  * the interrupt routine is executing.
5102  */
5103 static void e1000_netpoll(struct net_device *netdev)
5104 {
5105 	struct e1000_adapter *adapter = netdev_priv(netdev);
5106 
5107 	disable_irq(adapter->pdev->irq);
5108 	e1000_intr(adapter->pdev->irq, netdev);
5109 	enable_irq(adapter->pdev->irq);
5110 }
5111 #endif
5112 
5113 /**
5114  * e1000_io_error_detected - called when PCI error is detected
5115  * @pdev: Pointer to PCI device
5116  * @state: The current pci connection state
5117  *
5118  * This function is called after a PCI bus error affecting
5119  * this device has been detected.
5120  */
5121 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5122 						pci_channel_state_t state)
5123 {
5124 	struct net_device *netdev = pci_get_drvdata(pdev);
5125 	struct e1000_adapter *adapter = netdev_priv(netdev);
5126 
5127 	netif_device_detach(netdev);
5128 
5129 	if (state == pci_channel_io_perm_failure)
5130 		return PCI_ERS_RESULT_DISCONNECT;
5131 
5132 	if (netif_running(netdev))
5133 		e1000_down(adapter);
5134 	pci_disable_device(pdev);
5135 
5136 	/* Request a slot slot reset. */
5137 	return PCI_ERS_RESULT_NEED_RESET;
5138 }
5139 
5140 /**
5141  * e1000_io_slot_reset - called after the pci bus has been reset.
5142  * @pdev: Pointer to PCI device
5143  *
5144  * Restart the card from scratch, as if from a cold-boot. Implementation
5145  * resembles the first-half of the e1000_resume routine.
5146  */
5147 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5148 {
5149 	struct net_device *netdev = pci_get_drvdata(pdev);
5150 	struct e1000_adapter *adapter = netdev_priv(netdev);
5151 	struct e1000_hw *hw = &adapter->hw;
5152 	int err;
5153 
5154 	if (adapter->need_ioport)
5155 		err = pci_enable_device(pdev);
5156 	else
5157 		err = pci_enable_device_mem(pdev);
5158 	if (err) {
5159 		pr_err("Cannot re-enable PCI device after reset.\n");
5160 		return PCI_ERS_RESULT_DISCONNECT;
5161 	}
5162 	pci_set_master(pdev);
5163 
5164 	pci_enable_wake(pdev, PCI_D3hot, 0);
5165 	pci_enable_wake(pdev, PCI_D3cold, 0);
5166 
5167 	e1000_reset(adapter);
5168 	ew32(WUS, ~0);
5169 
5170 	return PCI_ERS_RESULT_RECOVERED;
5171 }
5172 
5173 /**
5174  * e1000_io_resume - called when traffic can start flowing again.
5175  * @pdev: Pointer to PCI device
5176  *
5177  * This callback is called when the error recovery driver tells us that
5178  * its OK to resume normal operation. Implementation resembles the
5179  * second-half of the e1000_resume routine.
5180  */
5181 static void e1000_io_resume(struct pci_dev *pdev)
5182 {
5183 	struct net_device *netdev = pci_get_drvdata(pdev);
5184 	struct e1000_adapter *adapter = netdev_priv(netdev);
5185 
5186 	e1000_init_manageability(adapter);
5187 
5188 	if (netif_running(netdev)) {
5189 		if (e1000_up(adapter)) {
5190 			pr_info("can't bring device back up after reset\n");
5191 			return;
5192 		}
5193 	}
5194 
5195 	netif_device_attach(netdev);
5196 }
5197 
5198 /* e1000_main.c */
5199