1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 				    struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 				    struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 				    struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 				    struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 int e1000_open(struct net_device *netdev);
118 int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 				struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 				struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
135 static int e1000_set_mac(struct net_device *netdev, void *p);
136 static irqreturn_t e1000_intr(int irq, void *data);
137 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
138 			       struct e1000_tx_ring *tx_ring);
139 static int e1000_clean(struct napi_struct *napi, int budget);
140 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
141 			       struct e1000_rx_ring *rx_ring,
142 			       int *work_done, int work_to_do);
143 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
144 				     struct e1000_rx_ring *rx_ring,
145 				     int *work_done, int work_to_do);
146 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
147 					 struct e1000_rx_ring *rx_ring,
148 					 int cleaned_count)
149 {
150 }
151 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
152 				   struct e1000_rx_ring *rx_ring,
153 				   int cleaned_count);
154 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
155 					 struct e1000_rx_ring *rx_ring,
156 					 int cleaned_count);
157 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
158 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
159 			   int cmd);
160 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
161 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_tx_timeout(struct net_device *dev);
163 static void e1000_reset_task(struct work_struct *work);
164 static void e1000_smartspeed(struct e1000_adapter *adapter);
165 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
166 				       struct sk_buff *skb);
167 
168 static bool e1000_vlan_used(struct e1000_adapter *adapter);
169 static void e1000_vlan_mode(struct net_device *netdev,
170 			    netdev_features_t features);
171 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
172 				     bool filter_on);
173 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
174 				 __be16 proto, u16 vid);
175 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
176 				  __be16 proto, u16 vid);
177 static void e1000_restore_vlan(struct e1000_adapter *adapter);
178 
179 #ifdef CONFIG_PM
180 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
181 static int e1000_resume(struct pci_dev *pdev);
182 #endif
183 static void e1000_shutdown(struct pci_dev *pdev);
184 
185 #ifdef CONFIG_NET_POLL_CONTROLLER
186 /* for netdump / net console */
187 static void e1000_netpoll (struct net_device *netdev);
188 #endif
189 
190 #define COPYBREAK_DEFAULT 256
191 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
192 module_param(copybreak, uint, 0644);
193 MODULE_PARM_DESC(copybreak,
194 	"Maximum size of packet that is copied to a new buffer on receive");
195 
196 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
197 						pci_channel_state_t state);
198 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
199 static void e1000_io_resume(struct pci_dev *pdev);
200 
201 static const struct pci_error_handlers e1000_err_handler = {
202 	.error_detected = e1000_io_error_detected,
203 	.slot_reset = e1000_io_slot_reset,
204 	.resume = e1000_io_resume,
205 };
206 
207 static struct pci_driver e1000_driver = {
208 	.name     = e1000_driver_name,
209 	.id_table = e1000_pci_tbl,
210 	.probe    = e1000_probe,
211 	.remove   = e1000_remove,
212 #ifdef CONFIG_PM
213 	/* Power Management Hooks */
214 	.suspend  = e1000_suspend,
215 	.resume   = e1000_resume,
216 #endif
217 	.shutdown = e1000_shutdown,
218 	.err_handler = &e1000_err_handler
219 };
220 
221 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
222 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
223 MODULE_LICENSE("GPL");
224 MODULE_VERSION(DRV_VERSION);
225 
226 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
227 static int debug = -1;
228 module_param(debug, int, 0);
229 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
230 
231 /**
232  * e1000_get_hw_dev - return device
233  * used by hardware layer to print debugging information
234  *
235  **/
236 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
237 {
238 	struct e1000_adapter *adapter = hw->back;
239 	return adapter->netdev;
240 }
241 
242 /**
243  * e1000_init_module - Driver Registration Routine
244  *
245  * e1000_init_module is the first routine called when the driver is
246  * loaded. All it does is register with the PCI subsystem.
247  **/
248 static int __init e1000_init_module(void)
249 {
250 	int ret;
251 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
252 
253 	pr_info("%s\n", e1000_copyright);
254 
255 	ret = pci_register_driver(&e1000_driver);
256 	if (copybreak != COPYBREAK_DEFAULT) {
257 		if (copybreak == 0)
258 			pr_info("copybreak disabled\n");
259 		else
260 			pr_info("copybreak enabled for "
261 				   "packets <= %u bytes\n", copybreak);
262 	}
263 	return ret;
264 }
265 
266 module_init(e1000_init_module);
267 
268 /**
269  * e1000_exit_module - Driver Exit Cleanup Routine
270  *
271  * e1000_exit_module is called just before the driver is removed
272  * from memory.
273  **/
274 static void __exit e1000_exit_module(void)
275 {
276 	pci_unregister_driver(&e1000_driver);
277 }
278 
279 module_exit(e1000_exit_module);
280 
281 static int e1000_request_irq(struct e1000_adapter *adapter)
282 {
283 	struct net_device *netdev = adapter->netdev;
284 	irq_handler_t handler = e1000_intr;
285 	int irq_flags = IRQF_SHARED;
286 	int err;
287 
288 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
289 			  netdev);
290 	if (err) {
291 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
292 	}
293 
294 	return err;
295 }
296 
297 static void e1000_free_irq(struct e1000_adapter *adapter)
298 {
299 	struct net_device *netdev = adapter->netdev;
300 
301 	free_irq(adapter->pdev->irq, netdev);
302 }
303 
304 /**
305  * e1000_irq_disable - Mask off interrupt generation on the NIC
306  * @adapter: board private structure
307  **/
308 static void e1000_irq_disable(struct e1000_adapter *adapter)
309 {
310 	struct e1000_hw *hw = &adapter->hw;
311 
312 	ew32(IMC, ~0);
313 	E1000_WRITE_FLUSH();
314 	synchronize_irq(adapter->pdev->irq);
315 }
316 
317 /**
318  * e1000_irq_enable - Enable default interrupt generation settings
319  * @adapter: board private structure
320  **/
321 static void e1000_irq_enable(struct e1000_adapter *adapter)
322 {
323 	struct e1000_hw *hw = &adapter->hw;
324 
325 	ew32(IMS, IMS_ENABLE_MASK);
326 	E1000_WRITE_FLUSH();
327 }
328 
329 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
330 {
331 	struct e1000_hw *hw = &adapter->hw;
332 	struct net_device *netdev = adapter->netdev;
333 	u16 vid = hw->mng_cookie.vlan_id;
334 	u16 old_vid = adapter->mng_vlan_id;
335 
336 	if (!e1000_vlan_used(adapter))
337 		return;
338 
339 	if (!test_bit(vid, adapter->active_vlans)) {
340 		if (hw->mng_cookie.status &
341 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
342 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
343 			adapter->mng_vlan_id = vid;
344 		} else {
345 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
346 		}
347 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
348 		    (vid != old_vid) &&
349 		    !test_bit(old_vid, adapter->active_vlans))
350 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
351 					       old_vid);
352 	} else {
353 		adapter->mng_vlan_id = vid;
354 	}
355 }
356 
357 static void e1000_init_manageability(struct e1000_adapter *adapter)
358 {
359 	struct e1000_hw *hw = &adapter->hw;
360 
361 	if (adapter->en_mng_pt) {
362 		u32 manc = er32(MANC);
363 
364 		/* disable hardware interception of ARP */
365 		manc &= ~(E1000_MANC_ARP_EN);
366 
367 		ew32(MANC, manc);
368 	}
369 }
370 
371 static void e1000_release_manageability(struct e1000_adapter *adapter)
372 {
373 	struct e1000_hw *hw = &adapter->hw;
374 
375 	if (adapter->en_mng_pt) {
376 		u32 manc = er32(MANC);
377 
378 		/* re-enable hardware interception of ARP */
379 		manc |= E1000_MANC_ARP_EN;
380 
381 		ew32(MANC, manc);
382 	}
383 }
384 
385 /**
386  * e1000_configure - configure the hardware for RX and TX
387  * @adapter = private board structure
388  **/
389 static void e1000_configure(struct e1000_adapter *adapter)
390 {
391 	struct net_device *netdev = adapter->netdev;
392 	int i;
393 
394 	e1000_set_rx_mode(netdev);
395 
396 	e1000_restore_vlan(adapter);
397 	e1000_init_manageability(adapter);
398 
399 	e1000_configure_tx(adapter);
400 	e1000_setup_rctl(adapter);
401 	e1000_configure_rx(adapter);
402 	/* call E1000_DESC_UNUSED which always leaves
403 	 * at least 1 descriptor unused to make sure
404 	 * next_to_use != next_to_clean
405 	 */
406 	for (i = 0; i < adapter->num_rx_queues; i++) {
407 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
408 		adapter->alloc_rx_buf(adapter, ring,
409 				      E1000_DESC_UNUSED(ring));
410 	}
411 }
412 
413 int e1000_up(struct e1000_adapter *adapter)
414 {
415 	struct e1000_hw *hw = &adapter->hw;
416 
417 	/* hardware has been reset, we need to reload some things */
418 	e1000_configure(adapter);
419 
420 	clear_bit(__E1000_DOWN, &adapter->flags);
421 
422 	napi_enable(&adapter->napi);
423 
424 	e1000_irq_enable(adapter);
425 
426 	netif_wake_queue(adapter->netdev);
427 
428 	/* fire a link change interrupt to start the watchdog */
429 	ew32(ICS, E1000_ICS_LSC);
430 	return 0;
431 }
432 
433 /**
434  * e1000_power_up_phy - restore link in case the phy was powered down
435  * @adapter: address of board private structure
436  *
437  * The phy may be powered down to save power and turn off link when the
438  * driver is unloaded and wake on lan is not enabled (among others)
439  * *** this routine MUST be followed by a call to e1000_reset ***
440  **/
441 void e1000_power_up_phy(struct e1000_adapter *adapter)
442 {
443 	struct e1000_hw *hw = &adapter->hw;
444 	u16 mii_reg = 0;
445 
446 	/* Just clear the power down bit to wake the phy back up */
447 	if (hw->media_type == e1000_media_type_copper) {
448 		/* according to the manual, the phy will retain its
449 		 * settings across a power-down/up cycle
450 		 */
451 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
452 		mii_reg &= ~MII_CR_POWER_DOWN;
453 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
454 	}
455 }
456 
457 static void e1000_power_down_phy(struct e1000_adapter *adapter)
458 {
459 	struct e1000_hw *hw = &adapter->hw;
460 
461 	/* Power down the PHY so no link is implied when interface is down *
462 	 * The PHY cannot be powered down if any of the following is true *
463 	 * (a) WoL is enabled
464 	 * (b) AMT is active
465 	 * (c) SoL/IDER session is active
466 	 */
467 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
468 	   hw->media_type == e1000_media_type_copper) {
469 		u16 mii_reg = 0;
470 
471 		switch (hw->mac_type) {
472 		case e1000_82540:
473 		case e1000_82545:
474 		case e1000_82545_rev_3:
475 		case e1000_82546:
476 		case e1000_ce4100:
477 		case e1000_82546_rev_3:
478 		case e1000_82541:
479 		case e1000_82541_rev_2:
480 		case e1000_82547:
481 		case e1000_82547_rev_2:
482 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
483 				goto out;
484 			break;
485 		default:
486 			goto out;
487 		}
488 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
489 		mii_reg |= MII_CR_POWER_DOWN;
490 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
491 		msleep(1);
492 	}
493 out:
494 	return;
495 }
496 
497 static void e1000_down_and_stop(struct e1000_adapter *adapter)
498 {
499 	set_bit(__E1000_DOWN, &adapter->flags);
500 
501 	cancel_delayed_work_sync(&adapter->watchdog_task);
502 
503 	/*
504 	 * Since the watchdog task can reschedule other tasks, we should cancel
505 	 * it first, otherwise we can run into the situation when a work is
506 	 * still running after the adapter has been turned down.
507 	 */
508 
509 	cancel_delayed_work_sync(&adapter->phy_info_task);
510 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
511 
512 	/* Only kill reset task if adapter is not resetting */
513 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
514 		cancel_work_sync(&adapter->reset_task);
515 }
516 
517 void e1000_down(struct e1000_adapter *adapter)
518 {
519 	struct e1000_hw *hw = &adapter->hw;
520 	struct net_device *netdev = adapter->netdev;
521 	u32 rctl, tctl;
522 
523 	/* disable receives in the hardware */
524 	rctl = er32(RCTL);
525 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
526 	/* flush and sleep below */
527 
528 	netif_tx_disable(netdev);
529 
530 	/* disable transmits in the hardware */
531 	tctl = er32(TCTL);
532 	tctl &= ~E1000_TCTL_EN;
533 	ew32(TCTL, tctl);
534 	/* flush both disables and wait for them to finish */
535 	E1000_WRITE_FLUSH();
536 	msleep(10);
537 
538 	/* Set the carrier off after transmits have been disabled in the
539 	 * hardware, to avoid race conditions with e1000_watchdog() (which
540 	 * may be running concurrently to us, checking for the carrier
541 	 * bit to decide whether it should enable transmits again). Such
542 	 * a race condition would result into transmission being disabled
543 	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
544 	 */
545 	netif_carrier_off(netdev);
546 
547 	napi_disable(&adapter->napi);
548 
549 	e1000_irq_disable(adapter);
550 
551 	/* Setting DOWN must be after irq_disable to prevent
552 	 * a screaming interrupt.  Setting DOWN also prevents
553 	 * tasks from rescheduling.
554 	 */
555 	e1000_down_and_stop(adapter);
556 
557 	adapter->link_speed = 0;
558 	adapter->link_duplex = 0;
559 
560 	e1000_reset(adapter);
561 	e1000_clean_all_tx_rings(adapter);
562 	e1000_clean_all_rx_rings(adapter);
563 }
564 
565 void e1000_reinit_locked(struct e1000_adapter *adapter)
566 {
567 	WARN_ON(in_interrupt());
568 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
569 		msleep(1);
570 	e1000_down(adapter);
571 	e1000_up(adapter);
572 	clear_bit(__E1000_RESETTING, &adapter->flags);
573 }
574 
575 void e1000_reset(struct e1000_adapter *adapter)
576 {
577 	struct e1000_hw *hw = &adapter->hw;
578 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
579 	bool legacy_pba_adjust = false;
580 	u16 hwm;
581 
582 	/* Repartition Pba for greater than 9k mtu
583 	 * To take effect CTRL.RST is required.
584 	 */
585 
586 	switch (hw->mac_type) {
587 	case e1000_82542_rev2_0:
588 	case e1000_82542_rev2_1:
589 	case e1000_82543:
590 	case e1000_82544:
591 	case e1000_82540:
592 	case e1000_82541:
593 	case e1000_82541_rev_2:
594 		legacy_pba_adjust = true;
595 		pba = E1000_PBA_48K;
596 		break;
597 	case e1000_82545:
598 	case e1000_82545_rev_3:
599 	case e1000_82546:
600 	case e1000_ce4100:
601 	case e1000_82546_rev_3:
602 		pba = E1000_PBA_48K;
603 		break;
604 	case e1000_82547:
605 	case e1000_82547_rev_2:
606 		legacy_pba_adjust = true;
607 		pba = E1000_PBA_30K;
608 		break;
609 	case e1000_undefined:
610 	case e1000_num_macs:
611 		break;
612 	}
613 
614 	if (legacy_pba_adjust) {
615 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
616 			pba -= 8; /* allocate more FIFO for Tx */
617 
618 		if (hw->mac_type == e1000_82547) {
619 			adapter->tx_fifo_head = 0;
620 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
621 			adapter->tx_fifo_size =
622 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
623 			atomic_set(&adapter->tx_fifo_stall, 0);
624 		}
625 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
626 		/* adjust PBA for jumbo frames */
627 		ew32(PBA, pba);
628 
629 		/* To maintain wire speed transmits, the Tx FIFO should be
630 		 * large enough to accommodate two full transmit packets,
631 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
632 		 * the Rx FIFO should be large enough to accommodate at least
633 		 * one full receive packet and is similarly rounded up and
634 		 * expressed in KB.
635 		 */
636 		pba = er32(PBA);
637 		/* upper 16 bits has Tx packet buffer allocation size in KB */
638 		tx_space = pba >> 16;
639 		/* lower 16 bits has Rx packet buffer allocation size in KB */
640 		pba &= 0xffff;
641 		/* the Tx fifo also stores 16 bytes of information about the Tx
642 		 * but don't include ethernet FCS because hardware appends it
643 		 */
644 		min_tx_space = (hw->max_frame_size +
645 				sizeof(struct e1000_tx_desc) -
646 				ETH_FCS_LEN) * 2;
647 		min_tx_space = ALIGN(min_tx_space, 1024);
648 		min_tx_space >>= 10;
649 		/* software strips receive CRC, so leave room for it */
650 		min_rx_space = hw->max_frame_size;
651 		min_rx_space = ALIGN(min_rx_space, 1024);
652 		min_rx_space >>= 10;
653 
654 		/* If current Tx allocation is less than the min Tx FIFO size,
655 		 * and the min Tx FIFO size is less than the current Rx FIFO
656 		 * allocation, take space away from current Rx allocation
657 		 */
658 		if (tx_space < min_tx_space &&
659 		    ((min_tx_space - tx_space) < pba)) {
660 			pba = pba - (min_tx_space - tx_space);
661 
662 			/* PCI/PCIx hardware has PBA alignment constraints */
663 			switch (hw->mac_type) {
664 			case e1000_82545 ... e1000_82546_rev_3:
665 				pba &= ~(E1000_PBA_8K - 1);
666 				break;
667 			default:
668 				break;
669 			}
670 
671 			/* if short on Rx space, Rx wins and must trump Tx
672 			 * adjustment or use Early Receive if available
673 			 */
674 			if (pba < min_rx_space)
675 				pba = min_rx_space;
676 		}
677 	}
678 
679 	ew32(PBA, pba);
680 
681 	/* flow control settings:
682 	 * The high water mark must be low enough to fit one full frame
683 	 * (or the size used for early receive) above it in the Rx FIFO.
684 	 * Set it to the lower of:
685 	 * - 90% of the Rx FIFO size, and
686 	 * - the full Rx FIFO size minus the early receive size (for parts
687 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
688 	 * - the full Rx FIFO size minus one full frame
689 	 */
690 	hwm = min(((pba << 10) * 9 / 10),
691 		  ((pba << 10) - hw->max_frame_size));
692 
693 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
694 	hw->fc_low_water = hw->fc_high_water - 8;
695 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
696 	hw->fc_send_xon = 1;
697 	hw->fc = hw->original_fc;
698 
699 	/* Allow time for pending master requests to run */
700 	e1000_reset_hw(hw);
701 	if (hw->mac_type >= e1000_82544)
702 		ew32(WUC, 0);
703 
704 	if (e1000_init_hw(hw))
705 		e_dev_err("Hardware Error\n");
706 	e1000_update_mng_vlan(adapter);
707 
708 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
709 	if (hw->mac_type >= e1000_82544 &&
710 	    hw->autoneg == 1 &&
711 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
712 		u32 ctrl = er32(CTRL);
713 		/* clear phy power management bit if we are in gig only mode,
714 		 * which if enabled will attempt negotiation to 100Mb, which
715 		 * can cause a loss of link at power off or driver unload
716 		 */
717 		ctrl &= ~E1000_CTRL_SWDPIN3;
718 		ew32(CTRL, ctrl);
719 	}
720 
721 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
722 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
723 
724 	e1000_reset_adaptive(hw);
725 	e1000_phy_get_info(hw, &adapter->phy_info);
726 
727 	e1000_release_manageability(adapter);
728 }
729 
730 /* Dump the eeprom for users having checksum issues */
731 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
732 {
733 	struct net_device *netdev = adapter->netdev;
734 	struct ethtool_eeprom eeprom;
735 	const struct ethtool_ops *ops = netdev->ethtool_ops;
736 	u8 *data;
737 	int i;
738 	u16 csum_old, csum_new = 0;
739 
740 	eeprom.len = ops->get_eeprom_len(netdev);
741 	eeprom.offset = 0;
742 
743 	data = kmalloc(eeprom.len, GFP_KERNEL);
744 	if (!data)
745 		return;
746 
747 	ops->get_eeprom(netdev, &eeprom, data);
748 
749 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
750 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
751 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
752 		csum_new += data[i] + (data[i + 1] << 8);
753 	csum_new = EEPROM_SUM - csum_new;
754 
755 	pr_err("/*********************/\n");
756 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
757 	pr_err("Calculated              : 0x%04x\n", csum_new);
758 
759 	pr_err("Offset    Values\n");
760 	pr_err("========  ======\n");
761 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
762 
763 	pr_err("Include this output when contacting your support provider.\n");
764 	pr_err("This is not a software error! Something bad happened to\n");
765 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
766 	pr_err("result in further problems, possibly loss of data,\n");
767 	pr_err("corruption or system hangs!\n");
768 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
769 	pr_err("which is invalid and requires you to set the proper MAC\n");
770 	pr_err("address manually before continuing to enable this network\n");
771 	pr_err("device. Please inspect the EEPROM dump and report the\n");
772 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
773 	pr_err("/*********************/\n");
774 
775 	kfree(data);
776 }
777 
778 /**
779  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
780  * @pdev: PCI device information struct
781  *
782  * Return true if an adapter needs ioport resources
783  **/
784 static int e1000_is_need_ioport(struct pci_dev *pdev)
785 {
786 	switch (pdev->device) {
787 	case E1000_DEV_ID_82540EM:
788 	case E1000_DEV_ID_82540EM_LOM:
789 	case E1000_DEV_ID_82540EP:
790 	case E1000_DEV_ID_82540EP_LOM:
791 	case E1000_DEV_ID_82540EP_LP:
792 	case E1000_DEV_ID_82541EI:
793 	case E1000_DEV_ID_82541EI_MOBILE:
794 	case E1000_DEV_ID_82541ER:
795 	case E1000_DEV_ID_82541ER_LOM:
796 	case E1000_DEV_ID_82541GI:
797 	case E1000_DEV_ID_82541GI_LF:
798 	case E1000_DEV_ID_82541GI_MOBILE:
799 	case E1000_DEV_ID_82544EI_COPPER:
800 	case E1000_DEV_ID_82544EI_FIBER:
801 	case E1000_DEV_ID_82544GC_COPPER:
802 	case E1000_DEV_ID_82544GC_LOM:
803 	case E1000_DEV_ID_82545EM_COPPER:
804 	case E1000_DEV_ID_82545EM_FIBER:
805 	case E1000_DEV_ID_82546EB_COPPER:
806 	case E1000_DEV_ID_82546EB_FIBER:
807 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
808 		return true;
809 	default:
810 		return false;
811 	}
812 }
813 
814 static netdev_features_t e1000_fix_features(struct net_device *netdev,
815 	netdev_features_t features)
816 {
817 	/* Since there is no support for separate Rx/Tx vlan accel
818 	 * enable/disable make sure Tx flag is always in same state as Rx.
819 	 */
820 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
821 		features |= NETIF_F_HW_VLAN_CTAG_TX;
822 	else
823 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
824 
825 	return features;
826 }
827 
828 static int e1000_set_features(struct net_device *netdev,
829 	netdev_features_t features)
830 {
831 	struct e1000_adapter *adapter = netdev_priv(netdev);
832 	netdev_features_t changed = features ^ netdev->features;
833 
834 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
835 		e1000_vlan_mode(netdev, features);
836 
837 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
838 		return 0;
839 
840 	netdev->features = features;
841 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
842 
843 	if (netif_running(netdev))
844 		e1000_reinit_locked(adapter);
845 	else
846 		e1000_reset(adapter);
847 
848 	return 0;
849 }
850 
851 static const struct net_device_ops e1000_netdev_ops = {
852 	.ndo_open		= e1000_open,
853 	.ndo_stop		= e1000_close,
854 	.ndo_start_xmit		= e1000_xmit_frame,
855 	.ndo_set_rx_mode	= e1000_set_rx_mode,
856 	.ndo_set_mac_address	= e1000_set_mac,
857 	.ndo_tx_timeout		= e1000_tx_timeout,
858 	.ndo_change_mtu		= e1000_change_mtu,
859 	.ndo_do_ioctl		= e1000_ioctl,
860 	.ndo_validate_addr	= eth_validate_addr,
861 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
862 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
863 #ifdef CONFIG_NET_POLL_CONTROLLER
864 	.ndo_poll_controller	= e1000_netpoll,
865 #endif
866 	.ndo_fix_features	= e1000_fix_features,
867 	.ndo_set_features	= e1000_set_features,
868 };
869 
870 /**
871  * e1000_init_hw_struct - initialize members of hw struct
872  * @adapter: board private struct
873  * @hw: structure used by e1000_hw.c
874  *
875  * Factors out initialization of the e1000_hw struct to its own function
876  * that can be called very early at init (just after struct allocation).
877  * Fields are initialized based on PCI device information and
878  * OS network device settings (MTU size).
879  * Returns negative error codes if MAC type setup fails.
880  */
881 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
882 				struct e1000_hw *hw)
883 {
884 	struct pci_dev *pdev = adapter->pdev;
885 
886 	/* PCI config space info */
887 	hw->vendor_id = pdev->vendor;
888 	hw->device_id = pdev->device;
889 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
890 	hw->subsystem_id = pdev->subsystem_device;
891 	hw->revision_id = pdev->revision;
892 
893 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
894 
895 	hw->max_frame_size = adapter->netdev->mtu +
896 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
897 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
898 
899 	/* identify the MAC */
900 	if (e1000_set_mac_type(hw)) {
901 		e_err(probe, "Unknown MAC Type\n");
902 		return -EIO;
903 	}
904 
905 	switch (hw->mac_type) {
906 	default:
907 		break;
908 	case e1000_82541:
909 	case e1000_82547:
910 	case e1000_82541_rev_2:
911 	case e1000_82547_rev_2:
912 		hw->phy_init_script = 1;
913 		break;
914 	}
915 
916 	e1000_set_media_type(hw);
917 	e1000_get_bus_info(hw);
918 
919 	hw->wait_autoneg_complete = false;
920 	hw->tbi_compatibility_en = true;
921 	hw->adaptive_ifs = true;
922 
923 	/* Copper options */
924 
925 	if (hw->media_type == e1000_media_type_copper) {
926 		hw->mdix = AUTO_ALL_MODES;
927 		hw->disable_polarity_correction = false;
928 		hw->master_slave = E1000_MASTER_SLAVE;
929 	}
930 
931 	return 0;
932 }
933 
934 /**
935  * e1000_probe - Device Initialization Routine
936  * @pdev: PCI device information struct
937  * @ent: entry in e1000_pci_tbl
938  *
939  * Returns 0 on success, negative on failure
940  *
941  * e1000_probe initializes an adapter identified by a pci_dev structure.
942  * The OS initialization, configuring of the adapter private structure,
943  * and a hardware reset occur.
944  **/
945 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
946 {
947 	struct net_device *netdev;
948 	struct e1000_adapter *adapter = NULL;
949 	struct e1000_hw *hw;
950 
951 	static int cards_found;
952 	static int global_quad_port_a; /* global ksp3 port a indication */
953 	int i, err, pci_using_dac;
954 	u16 eeprom_data = 0;
955 	u16 tmp = 0;
956 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
957 	int bars, need_ioport;
958 	bool disable_dev = false;
959 
960 	/* do not allocate ioport bars when not needed */
961 	need_ioport = e1000_is_need_ioport(pdev);
962 	if (need_ioport) {
963 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
964 		err = pci_enable_device(pdev);
965 	} else {
966 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
967 		err = pci_enable_device_mem(pdev);
968 	}
969 	if (err)
970 		return err;
971 
972 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
973 	if (err)
974 		goto err_pci_reg;
975 
976 	pci_set_master(pdev);
977 	err = pci_save_state(pdev);
978 	if (err)
979 		goto err_alloc_etherdev;
980 
981 	err = -ENOMEM;
982 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
983 	if (!netdev)
984 		goto err_alloc_etherdev;
985 
986 	SET_NETDEV_DEV(netdev, &pdev->dev);
987 
988 	pci_set_drvdata(pdev, netdev);
989 	adapter = netdev_priv(netdev);
990 	adapter->netdev = netdev;
991 	adapter->pdev = pdev;
992 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
993 	adapter->bars = bars;
994 	adapter->need_ioport = need_ioport;
995 
996 	hw = &adapter->hw;
997 	hw->back = adapter;
998 
999 	err = -EIO;
1000 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1001 	if (!hw->hw_addr)
1002 		goto err_ioremap;
1003 
1004 	if (adapter->need_ioport) {
1005 		for (i = BAR_1; i <= BAR_5; i++) {
1006 			if (pci_resource_len(pdev, i) == 0)
1007 				continue;
1008 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1009 				hw->io_base = pci_resource_start(pdev, i);
1010 				break;
1011 			}
1012 		}
1013 	}
1014 
1015 	/* make ready for any if (hw->...) below */
1016 	err = e1000_init_hw_struct(adapter, hw);
1017 	if (err)
1018 		goto err_sw_init;
1019 
1020 	/* there is a workaround being applied below that limits
1021 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1022 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1023 	 */
1024 	pci_using_dac = 0;
1025 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1026 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1027 		pci_using_dac = 1;
1028 	} else {
1029 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1030 		if (err) {
1031 			pr_err("No usable DMA config, aborting\n");
1032 			goto err_dma;
1033 		}
1034 	}
1035 
1036 	netdev->netdev_ops = &e1000_netdev_ops;
1037 	e1000_set_ethtool_ops(netdev);
1038 	netdev->watchdog_timeo = 5 * HZ;
1039 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1040 
1041 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1042 
1043 	adapter->bd_number = cards_found;
1044 
1045 	/* setup the private structure */
1046 
1047 	err = e1000_sw_init(adapter);
1048 	if (err)
1049 		goto err_sw_init;
1050 
1051 	err = -EIO;
1052 	if (hw->mac_type == e1000_ce4100) {
1053 		hw->ce4100_gbe_mdio_base_virt =
1054 					ioremap(pci_resource_start(pdev, BAR_1),
1055 						pci_resource_len(pdev, BAR_1));
1056 
1057 		if (!hw->ce4100_gbe_mdio_base_virt)
1058 			goto err_mdio_ioremap;
1059 	}
1060 
1061 	if (hw->mac_type >= e1000_82543) {
1062 		netdev->hw_features = NETIF_F_SG |
1063 				   NETIF_F_HW_CSUM |
1064 				   NETIF_F_HW_VLAN_CTAG_RX;
1065 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1066 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1067 	}
1068 
1069 	if ((hw->mac_type >= e1000_82544) &&
1070 	   (hw->mac_type != e1000_82547))
1071 		netdev->hw_features |= NETIF_F_TSO;
1072 
1073 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1074 
1075 	netdev->features |= netdev->hw_features;
1076 	netdev->hw_features |= (NETIF_F_RXCSUM |
1077 				NETIF_F_RXALL |
1078 				NETIF_F_RXFCS);
1079 
1080 	if (pci_using_dac) {
1081 		netdev->features |= NETIF_F_HIGHDMA;
1082 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1083 	}
1084 
1085 	netdev->vlan_features |= (NETIF_F_TSO |
1086 				  NETIF_F_HW_CSUM |
1087 				  NETIF_F_SG);
1088 
1089 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1090 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1091 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1092 		netdev->priv_flags |= IFF_UNICAST_FLT;
1093 
1094 	/* MTU range: 46 - 16110 */
1095 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1096 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1097 
1098 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1099 
1100 	/* initialize eeprom parameters */
1101 	if (e1000_init_eeprom_params(hw)) {
1102 		e_err(probe, "EEPROM initialization failed\n");
1103 		goto err_eeprom;
1104 	}
1105 
1106 	/* before reading the EEPROM, reset the controller to
1107 	 * put the device in a known good starting state
1108 	 */
1109 
1110 	e1000_reset_hw(hw);
1111 
1112 	/* make sure the EEPROM is good */
1113 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1114 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1115 		e1000_dump_eeprom(adapter);
1116 		/* set MAC address to all zeroes to invalidate and temporary
1117 		 * disable this device for the user. This blocks regular
1118 		 * traffic while still permitting ethtool ioctls from reaching
1119 		 * the hardware as well as allowing the user to run the
1120 		 * interface after manually setting a hw addr using
1121 		 * `ip set address`
1122 		 */
1123 		memset(hw->mac_addr, 0, netdev->addr_len);
1124 	} else {
1125 		/* copy the MAC address out of the EEPROM */
1126 		if (e1000_read_mac_addr(hw))
1127 			e_err(probe, "EEPROM Read Error\n");
1128 	}
1129 	/* don't block initialization here due to bad MAC address */
1130 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1131 
1132 	if (!is_valid_ether_addr(netdev->dev_addr))
1133 		e_err(probe, "Invalid MAC Address\n");
1134 
1135 
1136 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1137 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1138 			  e1000_82547_tx_fifo_stall_task);
1139 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1140 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1141 
1142 	e1000_check_options(adapter);
1143 
1144 	/* Initial Wake on LAN setting
1145 	 * If APM wake is enabled in the EEPROM,
1146 	 * enable the ACPI Magic Packet filter
1147 	 */
1148 
1149 	switch (hw->mac_type) {
1150 	case e1000_82542_rev2_0:
1151 	case e1000_82542_rev2_1:
1152 	case e1000_82543:
1153 		break;
1154 	case e1000_82544:
1155 		e1000_read_eeprom(hw,
1156 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1157 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1158 		break;
1159 	case e1000_82546:
1160 	case e1000_82546_rev_3:
1161 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1162 			e1000_read_eeprom(hw,
1163 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1164 			break;
1165 		}
1166 		/* Fall Through */
1167 	default:
1168 		e1000_read_eeprom(hw,
1169 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1170 		break;
1171 	}
1172 	if (eeprom_data & eeprom_apme_mask)
1173 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1174 
1175 	/* now that we have the eeprom settings, apply the special cases
1176 	 * where the eeprom may be wrong or the board simply won't support
1177 	 * wake on lan on a particular port
1178 	 */
1179 	switch (pdev->device) {
1180 	case E1000_DEV_ID_82546GB_PCIE:
1181 		adapter->eeprom_wol = 0;
1182 		break;
1183 	case E1000_DEV_ID_82546EB_FIBER:
1184 	case E1000_DEV_ID_82546GB_FIBER:
1185 		/* Wake events only supported on port A for dual fiber
1186 		 * regardless of eeprom setting
1187 		 */
1188 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1189 			adapter->eeprom_wol = 0;
1190 		break;
1191 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1192 		/* if quad port adapter, disable WoL on all but port A */
1193 		if (global_quad_port_a != 0)
1194 			adapter->eeprom_wol = 0;
1195 		else
1196 			adapter->quad_port_a = true;
1197 		/* Reset for multiple quad port adapters */
1198 		if (++global_quad_port_a == 4)
1199 			global_quad_port_a = 0;
1200 		break;
1201 	}
1202 
1203 	/* initialize the wol settings based on the eeprom settings */
1204 	adapter->wol = adapter->eeprom_wol;
1205 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1206 
1207 	/* Auto detect PHY address */
1208 	if (hw->mac_type == e1000_ce4100) {
1209 		for (i = 0; i < 32; i++) {
1210 			hw->phy_addr = i;
1211 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1212 
1213 			if (tmp != 0 && tmp != 0xFF)
1214 				break;
1215 		}
1216 
1217 		if (i >= 32)
1218 			goto err_eeprom;
1219 	}
1220 
1221 	/* reset the hardware with the new settings */
1222 	e1000_reset(adapter);
1223 
1224 	strcpy(netdev->name, "eth%d");
1225 	err = register_netdev(netdev);
1226 	if (err)
1227 		goto err_register;
1228 
1229 	e1000_vlan_filter_on_off(adapter, false);
1230 
1231 	/* print bus type/speed/width info */
1232 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1233 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1234 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1235 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1236 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1237 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1238 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1239 	       netdev->dev_addr);
1240 
1241 	/* carrier off reporting is important to ethtool even BEFORE open */
1242 	netif_carrier_off(netdev);
1243 
1244 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1245 
1246 	cards_found++;
1247 	return 0;
1248 
1249 err_register:
1250 err_eeprom:
1251 	e1000_phy_hw_reset(hw);
1252 
1253 	if (hw->flash_address)
1254 		iounmap(hw->flash_address);
1255 	kfree(adapter->tx_ring);
1256 	kfree(adapter->rx_ring);
1257 err_dma:
1258 err_sw_init:
1259 err_mdio_ioremap:
1260 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1261 	iounmap(hw->hw_addr);
1262 err_ioremap:
1263 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1264 	free_netdev(netdev);
1265 err_alloc_etherdev:
1266 	pci_release_selected_regions(pdev, bars);
1267 err_pci_reg:
1268 	if (!adapter || disable_dev)
1269 		pci_disable_device(pdev);
1270 	return err;
1271 }
1272 
1273 /**
1274  * e1000_remove - Device Removal Routine
1275  * @pdev: PCI device information struct
1276  *
1277  * e1000_remove is called by the PCI subsystem to alert the driver
1278  * that it should release a PCI device. That could be caused by a
1279  * Hot-Plug event, or because the driver is going to be removed from
1280  * memory.
1281  **/
1282 static void e1000_remove(struct pci_dev *pdev)
1283 {
1284 	struct net_device *netdev = pci_get_drvdata(pdev);
1285 	struct e1000_adapter *adapter = netdev_priv(netdev);
1286 	struct e1000_hw *hw = &adapter->hw;
1287 	bool disable_dev;
1288 
1289 	e1000_down_and_stop(adapter);
1290 	e1000_release_manageability(adapter);
1291 
1292 	unregister_netdev(netdev);
1293 
1294 	e1000_phy_hw_reset(hw);
1295 
1296 	kfree(adapter->tx_ring);
1297 	kfree(adapter->rx_ring);
1298 
1299 	if (hw->mac_type == e1000_ce4100)
1300 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1301 	iounmap(hw->hw_addr);
1302 	if (hw->flash_address)
1303 		iounmap(hw->flash_address);
1304 	pci_release_selected_regions(pdev, adapter->bars);
1305 
1306 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1307 	free_netdev(netdev);
1308 
1309 	if (disable_dev)
1310 		pci_disable_device(pdev);
1311 }
1312 
1313 /**
1314  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1315  * @adapter: board private structure to initialize
1316  *
1317  * e1000_sw_init initializes the Adapter private data structure.
1318  * e1000_init_hw_struct MUST be called before this function
1319  **/
1320 static int e1000_sw_init(struct e1000_adapter *adapter)
1321 {
1322 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1323 
1324 	adapter->num_tx_queues = 1;
1325 	adapter->num_rx_queues = 1;
1326 
1327 	if (e1000_alloc_queues(adapter)) {
1328 		e_err(probe, "Unable to allocate memory for queues\n");
1329 		return -ENOMEM;
1330 	}
1331 
1332 	/* Explicitly disable IRQ since the NIC can be in any state. */
1333 	e1000_irq_disable(adapter);
1334 
1335 	spin_lock_init(&adapter->stats_lock);
1336 
1337 	set_bit(__E1000_DOWN, &adapter->flags);
1338 
1339 	return 0;
1340 }
1341 
1342 /**
1343  * e1000_alloc_queues - Allocate memory for all rings
1344  * @adapter: board private structure to initialize
1345  *
1346  * We allocate one ring per queue at run-time since we don't know the
1347  * number of queues at compile-time.
1348  **/
1349 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1350 {
1351 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1352 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1353 	if (!adapter->tx_ring)
1354 		return -ENOMEM;
1355 
1356 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1357 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1358 	if (!adapter->rx_ring) {
1359 		kfree(adapter->tx_ring);
1360 		return -ENOMEM;
1361 	}
1362 
1363 	return E1000_SUCCESS;
1364 }
1365 
1366 /**
1367  * e1000_open - Called when a network interface is made active
1368  * @netdev: network interface device structure
1369  *
1370  * Returns 0 on success, negative value on failure
1371  *
1372  * The open entry point is called when a network interface is made
1373  * active by the system (IFF_UP).  At this point all resources needed
1374  * for transmit and receive operations are allocated, the interrupt
1375  * handler is registered with the OS, the watchdog task is started,
1376  * and the stack is notified that the interface is ready.
1377  **/
1378 int e1000_open(struct net_device *netdev)
1379 {
1380 	struct e1000_adapter *adapter = netdev_priv(netdev);
1381 	struct e1000_hw *hw = &adapter->hw;
1382 	int err;
1383 
1384 	/* disallow open during test */
1385 	if (test_bit(__E1000_TESTING, &adapter->flags))
1386 		return -EBUSY;
1387 
1388 	netif_carrier_off(netdev);
1389 
1390 	/* allocate transmit descriptors */
1391 	err = e1000_setup_all_tx_resources(adapter);
1392 	if (err)
1393 		goto err_setup_tx;
1394 
1395 	/* allocate receive descriptors */
1396 	err = e1000_setup_all_rx_resources(adapter);
1397 	if (err)
1398 		goto err_setup_rx;
1399 
1400 	e1000_power_up_phy(adapter);
1401 
1402 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1403 	if ((hw->mng_cookie.status &
1404 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1405 		e1000_update_mng_vlan(adapter);
1406 	}
1407 
1408 	/* before we allocate an interrupt, we must be ready to handle it.
1409 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1410 	 * as soon as we call pci_request_irq, so we have to setup our
1411 	 * clean_rx handler before we do so.
1412 	 */
1413 	e1000_configure(adapter);
1414 
1415 	err = e1000_request_irq(adapter);
1416 	if (err)
1417 		goto err_req_irq;
1418 
1419 	/* From here on the code is the same as e1000_up() */
1420 	clear_bit(__E1000_DOWN, &adapter->flags);
1421 
1422 	napi_enable(&adapter->napi);
1423 
1424 	e1000_irq_enable(adapter);
1425 
1426 	netif_start_queue(netdev);
1427 
1428 	/* fire a link status change interrupt to start the watchdog */
1429 	ew32(ICS, E1000_ICS_LSC);
1430 
1431 	return E1000_SUCCESS;
1432 
1433 err_req_irq:
1434 	e1000_power_down_phy(adapter);
1435 	e1000_free_all_rx_resources(adapter);
1436 err_setup_rx:
1437 	e1000_free_all_tx_resources(adapter);
1438 err_setup_tx:
1439 	e1000_reset(adapter);
1440 
1441 	return err;
1442 }
1443 
1444 /**
1445  * e1000_close - Disables a network interface
1446  * @netdev: network interface device structure
1447  *
1448  * Returns 0, this is not allowed to fail
1449  *
1450  * The close entry point is called when an interface is de-activated
1451  * by the OS.  The hardware is still under the drivers control, but
1452  * needs to be disabled.  A global MAC reset is issued to stop the
1453  * hardware, and all transmit and receive resources are freed.
1454  **/
1455 int e1000_close(struct net_device *netdev)
1456 {
1457 	struct e1000_adapter *adapter = netdev_priv(netdev);
1458 	struct e1000_hw *hw = &adapter->hw;
1459 	int count = E1000_CHECK_RESET_COUNT;
1460 
1461 	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1462 		usleep_range(10000, 20000);
1463 
1464 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1465 	e1000_down(adapter);
1466 	e1000_power_down_phy(adapter);
1467 	e1000_free_irq(adapter);
1468 
1469 	e1000_free_all_tx_resources(adapter);
1470 	e1000_free_all_rx_resources(adapter);
1471 
1472 	/* kill manageability vlan ID if supported, but not if a vlan with
1473 	 * the same ID is registered on the host OS (let 8021q kill it)
1474 	 */
1475 	if ((hw->mng_cookie.status &
1476 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1477 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1478 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1479 				       adapter->mng_vlan_id);
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 /**
1486  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1487  * @adapter: address of board private structure
1488  * @start: address of beginning of memory
1489  * @len: length of memory
1490  **/
1491 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1492 				  unsigned long len)
1493 {
1494 	struct e1000_hw *hw = &adapter->hw;
1495 	unsigned long begin = (unsigned long)start;
1496 	unsigned long end = begin + len;
1497 
1498 	/* First rev 82545 and 82546 need to not allow any memory
1499 	 * write location to cross 64k boundary due to errata 23
1500 	 */
1501 	if (hw->mac_type == e1000_82545 ||
1502 	    hw->mac_type == e1000_ce4100 ||
1503 	    hw->mac_type == e1000_82546) {
1504 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1505 	}
1506 
1507 	return true;
1508 }
1509 
1510 /**
1511  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1512  * @adapter: board private structure
1513  * @txdr:    tx descriptor ring (for a specific queue) to setup
1514  *
1515  * Return 0 on success, negative on failure
1516  **/
1517 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1518 				    struct e1000_tx_ring *txdr)
1519 {
1520 	struct pci_dev *pdev = adapter->pdev;
1521 	int size;
1522 
1523 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1524 	txdr->buffer_info = vzalloc(size);
1525 	if (!txdr->buffer_info)
1526 		return -ENOMEM;
1527 
1528 	/* round up to nearest 4K */
1529 
1530 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1531 	txdr->size = ALIGN(txdr->size, 4096);
1532 
1533 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1534 					GFP_KERNEL);
1535 	if (!txdr->desc) {
1536 setup_tx_desc_die:
1537 		vfree(txdr->buffer_info);
1538 		return -ENOMEM;
1539 	}
1540 
1541 	/* Fix for errata 23, can't cross 64kB boundary */
1542 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543 		void *olddesc = txdr->desc;
1544 		dma_addr_t olddma = txdr->dma;
1545 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1546 		      txdr->size, txdr->desc);
1547 		/* Try again, without freeing the previous */
1548 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1549 						&txdr->dma, GFP_KERNEL);
1550 		/* Failed allocation, critical failure */
1551 		if (!txdr->desc) {
1552 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553 					  olddma);
1554 			goto setup_tx_desc_die;
1555 		}
1556 
1557 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1558 			/* give up */
1559 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1560 					  txdr->dma);
1561 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1562 					  olddma);
1563 			e_err(probe, "Unable to allocate aligned memory "
1564 			      "for the transmit descriptor ring\n");
1565 			vfree(txdr->buffer_info);
1566 			return -ENOMEM;
1567 		} else {
1568 			/* Free old allocation, new allocation was successful */
1569 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1570 					  olddma);
1571 		}
1572 	}
1573 	memset(txdr->desc, 0, txdr->size);
1574 
1575 	txdr->next_to_use = 0;
1576 	txdr->next_to_clean = 0;
1577 
1578 	return 0;
1579 }
1580 
1581 /**
1582  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1583  * 				  (Descriptors) for all queues
1584  * @adapter: board private structure
1585  *
1586  * Return 0 on success, negative on failure
1587  **/
1588 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1589 {
1590 	int i, err = 0;
1591 
1592 	for (i = 0; i < adapter->num_tx_queues; i++) {
1593 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1594 		if (err) {
1595 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1596 			for (i-- ; i >= 0; i--)
1597 				e1000_free_tx_resources(adapter,
1598 							&adapter->tx_ring[i]);
1599 			break;
1600 		}
1601 	}
1602 
1603 	return err;
1604 }
1605 
1606 /**
1607  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1608  * @adapter: board private structure
1609  *
1610  * Configure the Tx unit of the MAC after a reset.
1611  **/
1612 static void e1000_configure_tx(struct e1000_adapter *adapter)
1613 {
1614 	u64 tdba;
1615 	struct e1000_hw *hw = &adapter->hw;
1616 	u32 tdlen, tctl, tipg;
1617 	u32 ipgr1, ipgr2;
1618 
1619 	/* Setup the HW Tx Head and Tail descriptor pointers */
1620 
1621 	switch (adapter->num_tx_queues) {
1622 	case 1:
1623 	default:
1624 		tdba = adapter->tx_ring[0].dma;
1625 		tdlen = adapter->tx_ring[0].count *
1626 			sizeof(struct e1000_tx_desc);
1627 		ew32(TDLEN, tdlen);
1628 		ew32(TDBAH, (tdba >> 32));
1629 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1630 		ew32(TDT, 0);
1631 		ew32(TDH, 0);
1632 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1633 					   E1000_TDH : E1000_82542_TDH);
1634 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1635 					   E1000_TDT : E1000_82542_TDT);
1636 		break;
1637 	}
1638 
1639 	/* Set the default values for the Tx Inter Packet Gap timer */
1640 	if ((hw->media_type == e1000_media_type_fiber ||
1641 	     hw->media_type == e1000_media_type_internal_serdes))
1642 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1643 	else
1644 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1645 
1646 	switch (hw->mac_type) {
1647 	case e1000_82542_rev2_0:
1648 	case e1000_82542_rev2_1:
1649 		tipg = DEFAULT_82542_TIPG_IPGT;
1650 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1651 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1652 		break;
1653 	default:
1654 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1655 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1656 		break;
1657 	}
1658 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1659 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1660 	ew32(TIPG, tipg);
1661 
1662 	/* Set the Tx Interrupt Delay register */
1663 
1664 	ew32(TIDV, adapter->tx_int_delay);
1665 	if (hw->mac_type >= e1000_82540)
1666 		ew32(TADV, adapter->tx_abs_int_delay);
1667 
1668 	/* Program the Transmit Control Register */
1669 
1670 	tctl = er32(TCTL);
1671 	tctl &= ~E1000_TCTL_CT;
1672 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1673 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1674 
1675 	e1000_config_collision_dist(hw);
1676 
1677 	/* Setup Transmit Descriptor Settings for eop descriptor */
1678 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1679 
1680 	/* only set IDE if we are delaying interrupts using the timers */
1681 	if (adapter->tx_int_delay)
1682 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1683 
1684 	if (hw->mac_type < e1000_82543)
1685 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1686 	else
1687 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1688 
1689 	/* Cache if we're 82544 running in PCI-X because we'll
1690 	 * need this to apply a workaround later in the send path.
1691 	 */
1692 	if (hw->mac_type == e1000_82544 &&
1693 	    hw->bus_type == e1000_bus_type_pcix)
1694 		adapter->pcix_82544 = true;
1695 
1696 	ew32(TCTL, tctl);
1697 
1698 }
1699 
1700 /**
1701  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1702  * @adapter: board private structure
1703  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1704  *
1705  * Returns 0 on success, negative on failure
1706  **/
1707 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1708 				    struct e1000_rx_ring *rxdr)
1709 {
1710 	struct pci_dev *pdev = adapter->pdev;
1711 	int size, desc_len;
1712 
1713 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1714 	rxdr->buffer_info = vzalloc(size);
1715 	if (!rxdr->buffer_info)
1716 		return -ENOMEM;
1717 
1718 	desc_len = sizeof(struct e1000_rx_desc);
1719 
1720 	/* Round up to nearest 4K */
1721 
1722 	rxdr->size = rxdr->count * desc_len;
1723 	rxdr->size = ALIGN(rxdr->size, 4096);
1724 
1725 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1726 					GFP_KERNEL);
1727 	if (!rxdr->desc) {
1728 setup_rx_desc_die:
1729 		vfree(rxdr->buffer_info);
1730 		return -ENOMEM;
1731 	}
1732 
1733 	/* Fix for errata 23, can't cross 64kB boundary */
1734 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 		void *olddesc = rxdr->desc;
1736 		dma_addr_t olddma = rxdr->dma;
1737 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1738 		      rxdr->size, rxdr->desc);
1739 		/* Try again, without freeing the previous */
1740 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1741 						&rxdr->dma, GFP_KERNEL);
1742 		/* Failed allocation, critical failure */
1743 		if (!rxdr->desc) {
1744 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1745 					  olddma);
1746 			goto setup_rx_desc_die;
1747 		}
1748 
1749 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1750 			/* give up */
1751 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1752 					  rxdr->dma);
1753 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1754 					  olddma);
1755 			e_err(probe, "Unable to allocate aligned memory for "
1756 			      "the Rx descriptor ring\n");
1757 			goto setup_rx_desc_die;
1758 		} else {
1759 			/* Free old allocation, new allocation was successful */
1760 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1761 					  olddma);
1762 		}
1763 	}
1764 	memset(rxdr->desc, 0, rxdr->size);
1765 
1766 	rxdr->next_to_clean = 0;
1767 	rxdr->next_to_use = 0;
1768 	rxdr->rx_skb_top = NULL;
1769 
1770 	return 0;
1771 }
1772 
1773 /**
1774  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1775  * 				  (Descriptors) for all queues
1776  * @adapter: board private structure
1777  *
1778  * Return 0 on success, negative on failure
1779  **/
1780 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1781 {
1782 	int i, err = 0;
1783 
1784 	for (i = 0; i < adapter->num_rx_queues; i++) {
1785 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1786 		if (err) {
1787 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1788 			for (i-- ; i >= 0; i--)
1789 				e1000_free_rx_resources(adapter,
1790 							&adapter->rx_ring[i]);
1791 			break;
1792 		}
1793 	}
1794 
1795 	return err;
1796 }
1797 
1798 /**
1799  * e1000_setup_rctl - configure the receive control registers
1800  * @adapter: Board private structure
1801  **/
1802 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1803 {
1804 	struct e1000_hw *hw = &adapter->hw;
1805 	u32 rctl;
1806 
1807 	rctl = er32(RCTL);
1808 
1809 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1810 
1811 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1812 		E1000_RCTL_RDMTS_HALF |
1813 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1814 
1815 	if (hw->tbi_compatibility_on == 1)
1816 		rctl |= E1000_RCTL_SBP;
1817 	else
1818 		rctl &= ~E1000_RCTL_SBP;
1819 
1820 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1821 		rctl &= ~E1000_RCTL_LPE;
1822 	else
1823 		rctl |= E1000_RCTL_LPE;
1824 
1825 	/* Setup buffer sizes */
1826 	rctl &= ~E1000_RCTL_SZ_4096;
1827 	rctl |= E1000_RCTL_BSEX;
1828 	switch (adapter->rx_buffer_len) {
1829 	case E1000_RXBUFFER_2048:
1830 	default:
1831 		rctl |= E1000_RCTL_SZ_2048;
1832 		rctl &= ~E1000_RCTL_BSEX;
1833 		break;
1834 	case E1000_RXBUFFER_4096:
1835 		rctl |= E1000_RCTL_SZ_4096;
1836 		break;
1837 	case E1000_RXBUFFER_8192:
1838 		rctl |= E1000_RCTL_SZ_8192;
1839 		break;
1840 	case E1000_RXBUFFER_16384:
1841 		rctl |= E1000_RCTL_SZ_16384;
1842 		break;
1843 	}
1844 
1845 	/* This is useful for sniffing bad packets. */
1846 	if (adapter->netdev->features & NETIF_F_RXALL) {
1847 		/* UPE and MPE will be handled by normal PROMISC logic
1848 		 * in e1000e_set_rx_mode
1849 		 */
1850 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1851 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1852 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1853 
1854 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1855 			  E1000_RCTL_DPF | /* Allow filtered pause */
1856 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1857 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1858 		 * and that breaks VLANs.
1859 		 */
1860 	}
1861 
1862 	ew32(RCTL, rctl);
1863 }
1864 
1865 /**
1866  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1867  * @adapter: board private structure
1868  *
1869  * Configure the Rx unit of the MAC after a reset.
1870  **/
1871 static void e1000_configure_rx(struct e1000_adapter *adapter)
1872 {
1873 	u64 rdba;
1874 	struct e1000_hw *hw = &adapter->hw;
1875 	u32 rdlen, rctl, rxcsum;
1876 
1877 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1878 		rdlen = adapter->rx_ring[0].count *
1879 			sizeof(struct e1000_rx_desc);
1880 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1881 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1882 	} else {
1883 		rdlen = adapter->rx_ring[0].count *
1884 			sizeof(struct e1000_rx_desc);
1885 		adapter->clean_rx = e1000_clean_rx_irq;
1886 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1887 	}
1888 
1889 	/* disable receives while setting up the descriptors */
1890 	rctl = er32(RCTL);
1891 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1892 
1893 	/* set the Receive Delay Timer Register */
1894 	ew32(RDTR, adapter->rx_int_delay);
1895 
1896 	if (hw->mac_type >= e1000_82540) {
1897 		ew32(RADV, adapter->rx_abs_int_delay);
1898 		if (adapter->itr_setting != 0)
1899 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1900 	}
1901 
1902 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1903 	 * the Base and Length of the Rx Descriptor Ring
1904 	 */
1905 	switch (adapter->num_rx_queues) {
1906 	case 1:
1907 	default:
1908 		rdba = adapter->rx_ring[0].dma;
1909 		ew32(RDLEN, rdlen);
1910 		ew32(RDBAH, (rdba >> 32));
1911 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1912 		ew32(RDT, 0);
1913 		ew32(RDH, 0);
1914 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1915 					   E1000_RDH : E1000_82542_RDH);
1916 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1917 					   E1000_RDT : E1000_82542_RDT);
1918 		break;
1919 	}
1920 
1921 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1922 	if (hw->mac_type >= e1000_82543) {
1923 		rxcsum = er32(RXCSUM);
1924 		if (adapter->rx_csum)
1925 			rxcsum |= E1000_RXCSUM_TUOFL;
1926 		else
1927 			/* don't need to clear IPPCSE as it defaults to 0 */
1928 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1929 		ew32(RXCSUM, rxcsum);
1930 	}
1931 
1932 	/* Enable Receives */
1933 	ew32(RCTL, rctl | E1000_RCTL_EN);
1934 }
1935 
1936 /**
1937  * e1000_free_tx_resources - Free Tx Resources per Queue
1938  * @adapter: board private structure
1939  * @tx_ring: Tx descriptor ring for a specific queue
1940  *
1941  * Free all transmit software resources
1942  **/
1943 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1944 				    struct e1000_tx_ring *tx_ring)
1945 {
1946 	struct pci_dev *pdev = adapter->pdev;
1947 
1948 	e1000_clean_tx_ring(adapter, tx_ring);
1949 
1950 	vfree(tx_ring->buffer_info);
1951 	tx_ring->buffer_info = NULL;
1952 
1953 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1954 			  tx_ring->dma);
1955 
1956 	tx_ring->desc = NULL;
1957 }
1958 
1959 /**
1960  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1961  * @adapter: board private structure
1962  *
1963  * Free all transmit software resources
1964  **/
1965 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1966 {
1967 	int i;
1968 
1969 	for (i = 0; i < adapter->num_tx_queues; i++)
1970 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1971 }
1972 
1973 static void
1974 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1975 				 struct e1000_tx_buffer *buffer_info)
1976 {
1977 	if (buffer_info->dma) {
1978 		if (buffer_info->mapped_as_page)
1979 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1980 				       buffer_info->length, DMA_TO_DEVICE);
1981 		else
1982 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1983 					 buffer_info->length,
1984 					 DMA_TO_DEVICE);
1985 		buffer_info->dma = 0;
1986 	}
1987 	if (buffer_info->skb) {
1988 		dev_kfree_skb_any(buffer_info->skb);
1989 		buffer_info->skb = NULL;
1990 	}
1991 	buffer_info->time_stamp = 0;
1992 	/* buffer_info must be completely set up in the transmit path */
1993 }
1994 
1995 /**
1996  * e1000_clean_tx_ring - Free Tx Buffers
1997  * @adapter: board private structure
1998  * @tx_ring: ring to be cleaned
1999  **/
2000 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2001 				struct e1000_tx_ring *tx_ring)
2002 {
2003 	struct e1000_hw *hw = &adapter->hw;
2004 	struct e1000_tx_buffer *buffer_info;
2005 	unsigned long size;
2006 	unsigned int i;
2007 
2008 	/* Free all the Tx ring sk_buffs */
2009 
2010 	for (i = 0; i < tx_ring->count; i++) {
2011 		buffer_info = &tx_ring->buffer_info[i];
2012 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2013 	}
2014 
2015 	netdev_reset_queue(adapter->netdev);
2016 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2017 	memset(tx_ring->buffer_info, 0, size);
2018 
2019 	/* Zero out the descriptor ring */
2020 
2021 	memset(tx_ring->desc, 0, tx_ring->size);
2022 
2023 	tx_ring->next_to_use = 0;
2024 	tx_ring->next_to_clean = 0;
2025 	tx_ring->last_tx_tso = false;
2026 
2027 	writel(0, hw->hw_addr + tx_ring->tdh);
2028 	writel(0, hw->hw_addr + tx_ring->tdt);
2029 }
2030 
2031 /**
2032  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2033  * @adapter: board private structure
2034  **/
2035 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2036 {
2037 	int i;
2038 
2039 	for (i = 0; i < adapter->num_tx_queues; i++)
2040 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2041 }
2042 
2043 /**
2044  * e1000_free_rx_resources - Free Rx Resources
2045  * @adapter: board private structure
2046  * @rx_ring: ring to clean the resources from
2047  *
2048  * Free all receive software resources
2049  **/
2050 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2051 				    struct e1000_rx_ring *rx_ring)
2052 {
2053 	struct pci_dev *pdev = adapter->pdev;
2054 
2055 	e1000_clean_rx_ring(adapter, rx_ring);
2056 
2057 	vfree(rx_ring->buffer_info);
2058 	rx_ring->buffer_info = NULL;
2059 
2060 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2061 			  rx_ring->dma);
2062 
2063 	rx_ring->desc = NULL;
2064 }
2065 
2066 /**
2067  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2068  * @adapter: board private structure
2069  *
2070  * Free all receive software resources
2071  **/
2072 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2073 {
2074 	int i;
2075 
2076 	for (i = 0; i < adapter->num_rx_queues; i++)
2077 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2078 }
2079 
2080 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2081 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2082 {
2083 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2084 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2085 }
2086 
2087 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2088 {
2089 	unsigned int len = e1000_frag_len(a);
2090 	u8 *data = netdev_alloc_frag(len);
2091 
2092 	if (likely(data))
2093 		data += E1000_HEADROOM;
2094 	return data;
2095 }
2096 
2097 /**
2098  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2099  * @adapter: board private structure
2100  * @rx_ring: ring to free buffers from
2101  **/
2102 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2103 				struct e1000_rx_ring *rx_ring)
2104 {
2105 	struct e1000_hw *hw = &adapter->hw;
2106 	struct e1000_rx_buffer *buffer_info;
2107 	struct pci_dev *pdev = adapter->pdev;
2108 	unsigned long size;
2109 	unsigned int i;
2110 
2111 	/* Free all the Rx netfrags */
2112 	for (i = 0; i < rx_ring->count; i++) {
2113 		buffer_info = &rx_ring->buffer_info[i];
2114 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2115 			if (buffer_info->dma)
2116 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2117 						 adapter->rx_buffer_len,
2118 						 DMA_FROM_DEVICE);
2119 			if (buffer_info->rxbuf.data) {
2120 				skb_free_frag(buffer_info->rxbuf.data);
2121 				buffer_info->rxbuf.data = NULL;
2122 			}
2123 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2124 			if (buffer_info->dma)
2125 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2126 					       adapter->rx_buffer_len,
2127 					       DMA_FROM_DEVICE);
2128 			if (buffer_info->rxbuf.page) {
2129 				put_page(buffer_info->rxbuf.page);
2130 				buffer_info->rxbuf.page = NULL;
2131 			}
2132 		}
2133 
2134 		buffer_info->dma = 0;
2135 	}
2136 
2137 	/* there also may be some cached data from a chained receive */
2138 	napi_free_frags(&adapter->napi);
2139 	rx_ring->rx_skb_top = NULL;
2140 
2141 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2142 	memset(rx_ring->buffer_info, 0, size);
2143 
2144 	/* Zero out the descriptor ring */
2145 	memset(rx_ring->desc, 0, rx_ring->size);
2146 
2147 	rx_ring->next_to_clean = 0;
2148 	rx_ring->next_to_use = 0;
2149 
2150 	writel(0, hw->hw_addr + rx_ring->rdh);
2151 	writel(0, hw->hw_addr + rx_ring->rdt);
2152 }
2153 
2154 /**
2155  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2156  * @adapter: board private structure
2157  **/
2158 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2159 {
2160 	int i;
2161 
2162 	for (i = 0; i < adapter->num_rx_queues; i++)
2163 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2164 }
2165 
2166 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2167  * and memory write and invalidate disabled for certain operations
2168  */
2169 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2170 {
2171 	struct e1000_hw *hw = &adapter->hw;
2172 	struct net_device *netdev = adapter->netdev;
2173 	u32 rctl;
2174 
2175 	e1000_pci_clear_mwi(hw);
2176 
2177 	rctl = er32(RCTL);
2178 	rctl |= E1000_RCTL_RST;
2179 	ew32(RCTL, rctl);
2180 	E1000_WRITE_FLUSH();
2181 	mdelay(5);
2182 
2183 	if (netif_running(netdev))
2184 		e1000_clean_all_rx_rings(adapter);
2185 }
2186 
2187 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2188 {
2189 	struct e1000_hw *hw = &adapter->hw;
2190 	struct net_device *netdev = adapter->netdev;
2191 	u32 rctl;
2192 
2193 	rctl = er32(RCTL);
2194 	rctl &= ~E1000_RCTL_RST;
2195 	ew32(RCTL, rctl);
2196 	E1000_WRITE_FLUSH();
2197 	mdelay(5);
2198 
2199 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2200 		e1000_pci_set_mwi(hw);
2201 
2202 	if (netif_running(netdev)) {
2203 		/* No need to loop, because 82542 supports only 1 queue */
2204 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2205 		e1000_configure_rx(adapter);
2206 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2207 	}
2208 }
2209 
2210 /**
2211  * e1000_set_mac - Change the Ethernet Address of the NIC
2212  * @netdev: network interface device structure
2213  * @p: pointer to an address structure
2214  *
2215  * Returns 0 on success, negative on failure
2216  **/
2217 static int e1000_set_mac(struct net_device *netdev, void *p)
2218 {
2219 	struct e1000_adapter *adapter = netdev_priv(netdev);
2220 	struct e1000_hw *hw = &adapter->hw;
2221 	struct sockaddr *addr = p;
2222 
2223 	if (!is_valid_ether_addr(addr->sa_data))
2224 		return -EADDRNOTAVAIL;
2225 
2226 	/* 82542 2.0 needs to be in reset to write receive address registers */
2227 
2228 	if (hw->mac_type == e1000_82542_rev2_0)
2229 		e1000_enter_82542_rst(adapter);
2230 
2231 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2232 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2233 
2234 	e1000_rar_set(hw, hw->mac_addr, 0);
2235 
2236 	if (hw->mac_type == e1000_82542_rev2_0)
2237 		e1000_leave_82542_rst(adapter);
2238 
2239 	return 0;
2240 }
2241 
2242 /**
2243  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2244  * @netdev: network interface device structure
2245  *
2246  * The set_rx_mode entry point is called whenever the unicast or multicast
2247  * address lists or the network interface flags are updated. This routine is
2248  * responsible for configuring the hardware for proper unicast, multicast,
2249  * promiscuous mode, and all-multi behavior.
2250  **/
2251 static void e1000_set_rx_mode(struct net_device *netdev)
2252 {
2253 	struct e1000_adapter *adapter = netdev_priv(netdev);
2254 	struct e1000_hw *hw = &adapter->hw;
2255 	struct netdev_hw_addr *ha;
2256 	bool use_uc = false;
2257 	u32 rctl;
2258 	u32 hash_value;
2259 	int i, rar_entries = E1000_RAR_ENTRIES;
2260 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2261 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2262 
2263 	if (!mcarray)
2264 		return;
2265 
2266 	/* Check for Promiscuous and All Multicast modes */
2267 
2268 	rctl = er32(RCTL);
2269 
2270 	if (netdev->flags & IFF_PROMISC) {
2271 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2272 		rctl &= ~E1000_RCTL_VFE;
2273 	} else {
2274 		if (netdev->flags & IFF_ALLMULTI)
2275 			rctl |= E1000_RCTL_MPE;
2276 		else
2277 			rctl &= ~E1000_RCTL_MPE;
2278 		/* Enable VLAN filter if there is a VLAN */
2279 		if (e1000_vlan_used(adapter))
2280 			rctl |= E1000_RCTL_VFE;
2281 	}
2282 
2283 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2284 		rctl |= E1000_RCTL_UPE;
2285 	} else if (!(netdev->flags & IFF_PROMISC)) {
2286 		rctl &= ~E1000_RCTL_UPE;
2287 		use_uc = true;
2288 	}
2289 
2290 	ew32(RCTL, rctl);
2291 
2292 	/* 82542 2.0 needs to be in reset to write receive address registers */
2293 
2294 	if (hw->mac_type == e1000_82542_rev2_0)
2295 		e1000_enter_82542_rst(adapter);
2296 
2297 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2298 	 * addresses take precedence to avoid disabling unicast filtering
2299 	 * when possible.
2300 	 *
2301 	 * RAR 0 is used for the station MAC address
2302 	 * if there are not 14 addresses, go ahead and clear the filters
2303 	 */
2304 	i = 1;
2305 	if (use_uc)
2306 		netdev_for_each_uc_addr(ha, netdev) {
2307 			if (i == rar_entries)
2308 				break;
2309 			e1000_rar_set(hw, ha->addr, i++);
2310 		}
2311 
2312 	netdev_for_each_mc_addr(ha, netdev) {
2313 		if (i == rar_entries) {
2314 			/* load any remaining addresses into the hash table */
2315 			u32 hash_reg, hash_bit, mta;
2316 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2317 			hash_reg = (hash_value >> 5) & 0x7F;
2318 			hash_bit = hash_value & 0x1F;
2319 			mta = (1 << hash_bit);
2320 			mcarray[hash_reg] |= mta;
2321 		} else {
2322 			e1000_rar_set(hw, ha->addr, i++);
2323 		}
2324 	}
2325 
2326 	for (; i < rar_entries; i++) {
2327 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2328 		E1000_WRITE_FLUSH();
2329 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2330 		E1000_WRITE_FLUSH();
2331 	}
2332 
2333 	/* write the hash table completely, write from bottom to avoid
2334 	 * both stupid write combining chipsets, and flushing each write
2335 	 */
2336 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2337 		/* If we are on an 82544 has an errata where writing odd
2338 		 * offsets overwrites the previous even offset, but writing
2339 		 * backwards over the range solves the issue by always
2340 		 * writing the odd offset first
2341 		 */
2342 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2343 	}
2344 	E1000_WRITE_FLUSH();
2345 
2346 	if (hw->mac_type == e1000_82542_rev2_0)
2347 		e1000_leave_82542_rst(adapter);
2348 
2349 	kfree(mcarray);
2350 }
2351 
2352 /**
2353  * e1000_update_phy_info_task - get phy info
2354  * @work: work struct contained inside adapter struct
2355  *
2356  * Need to wait a few seconds after link up to get diagnostic information from
2357  * the phy
2358  */
2359 static void e1000_update_phy_info_task(struct work_struct *work)
2360 {
2361 	struct e1000_adapter *adapter = container_of(work,
2362 						     struct e1000_adapter,
2363 						     phy_info_task.work);
2364 
2365 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2366 }
2367 
2368 /**
2369  * e1000_82547_tx_fifo_stall_task - task to complete work
2370  * @work: work struct contained inside adapter struct
2371  **/
2372 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2373 {
2374 	struct e1000_adapter *adapter = container_of(work,
2375 						     struct e1000_adapter,
2376 						     fifo_stall_task.work);
2377 	struct e1000_hw *hw = &adapter->hw;
2378 	struct net_device *netdev = adapter->netdev;
2379 	u32 tctl;
2380 
2381 	if (atomic_read(&adapter->tx_fifo_stall)) {
2382 		if ((er32(TDT) == er32(TDH)) &&
2383 		   (er32(TDFT) == er32(TDFH)) &&
2384 		   (er32(TDFTS) == er32(TDFHS))) {
2385 			tctl = er32(TCTL);
2386 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2387 			ew32(TDFT, adapter->tx_head_addr);
2388 			ew32(TDFH, adapter->tx_head_addr);
2389 			ew32(TDFTS, adapter->tx_head_addr);
2390 			ew32(TDFHS, adapter->tx_head_addr);
2391 			ew32(TCTL, tctl);
2392 			E1000_WRITE_FLUSH();
2393 
2394 			adapter->tx_fifo_head = 0;
2395 			atomic_set(&adapter->tx_fifo_stall, 0);
2396 			netif_wake_queue(netdev);
2397 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2398 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2399 		}
2400 	}
2401 }
2402 
2403 bool e1000_has_link(struct e1000_adapter *adapter)
2404 {
2405 	struct e1000_hw *hw = &adapter->hw;
2406 	bool link_active = false;
2407 
2408 	/* get_link_status is set on LSC (link status) interrupt or rx
2409 	 * sequence error interrupt (except on intel ce4100).
2410 	 * get_link_status will stay false until the
2411 	 * e1000_check_for_link establishes link for copper adapters
2412 	 * ONLY
2413 	 */
2414 	switch (hw->media_type) {
2415 	case e1000_media_type_copper:
2416 		if (hw->mac_type == e1000_ce4100)
2417 			hw->get_link_status = 1;
2418 		if (hw->get_link_status) {
2419 			e1000_check_for_link(hw);
2420 			link_active = !hw->get_link_status;
2421 		} else {
2422 			link_active = true;
2423 		}
2424 		break;
2425 	case e1000_media_type_fiber:
2426 		e1000_check_for_link(hw);
2427 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2428 		break;
2429 	case e1000_media_type_internal_serdes:
2430 		e1000_check_for_link(hw);
2431 		link_active = hw->serdes_has_link;
2432 		break;
2433 	default:
2434 		break;
2435 	}
2436 
2437 	return link_active;
2438 }
2439 
2440 /**
2441  * e1000_watchdog - work function
2442  * @work: work struct contained inside adapter struct
2443  **/
2444 static void e1000_watchdog(struct work_struct *work)
2445 {
2446 	struct e1000_adapter *adapter = container_of(work,
2447 						     struct e1000_adapter,
2448 						     watchdog_task.work);
2449 	struct e1000_hw *hw = &adapter->hw;
2450 	struct net_device *netdev = adapter->netdev;
2451 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2452 	u32 link, tctl;
2453 
2454 	link = e1000_has_link(adapter);
2455 	if ((netif_carrier_ok(netdev)) && link)
2456 		goto link_up;
2457 
2458 	if (link) {
2459 		if (!netif_carrier_ok(netdev)) {
2460 			u32 ctrl;
2461 			bool txb2b = true;
2462 			/* update snapshot of PHY registers on LSC */
2463 			e1000_get_speed_and_duplex(hw,
2464 						   &adapter->link_speed,
2465 						   &adapter->link_duplex);
2466 
2467 			ctrl = er32(CTRL);
2468 			pr_info("%s NIC Link is Up %d Mbps %s, "
2469 				"Flow Control: %s\n",
2470 				netdev->name,
2471 				adapter->link_speed,
2472 				adapter->link_duplex == FULL_DUPLEX ?
2473 				"Full Duplex" : "Half Duplex",
2474 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2475 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2476 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2477 				E1000_CTRL_TFCE) ? "TX" : "None")));
2478 
2479 			/* adjust timeout factor according to speed/duplex */
2480 			adapter->tx_timeout_factor = 1;
2481 			switch (adapter->link_speed) {
2482 			case SPEED_10:
2483 				txb2b = false;
2484 				adapter->tx_timeout_factor = 16;
2485 				break;
2486 			case SPEED_100:
2487 				txb2b = false;
2488 				/* maybe add some timeout factor ? */
2489 				break;
2490 			}
2491 
2492 			/* enable transmits in the hardware */
2493 			tctl = er32(TCTL);
2494 			tctl |= E1000_TCTL_EN;
2495 			ew32(TCTL, tctl);
2496 
2497 			netif_carrier_on(netdev);
2498 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2499 				schedule_delayed_work(&adapter->phy_info_task,
2500 						      2 * HZ);
2501 			adapter->smartspeed = 0;
2502 		}
2503 	} else {
2504 		if (netif_carrier_ok(netdev)) {
2505 			adapter->link_speed = 0;
2506 			adapter->link_duplex = 0;
2507 			pr_info("%s NIC Link is Down\n",
2508 				netdev->name);
2509 			netif_carrier_off(netdev);
2510 
2511 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2512 				schedule_delayed_work(&adapter->phy_info_task,
2513 						      2 * HZ);
2514 		}
2515 
2516 		e1000_smartspeed(adapter);
2517 	}
2518 
2519 link_up:
2520 	e1000_update_stats(adapter);
2521 
2522 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2523 	adapter->tpt_old = adapter->stats.tpt;
2524 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2525 	adapter->colc_old = adapter->stats.colc;
2526 
2527 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2528 	adapter->gorcl_old = adapter->stats.gorcl;
2529 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2530 	adapter->gotcl_old = adapter->stats.gotcl;
2531 
2532 	e1000_update_adaptive(hw);
2533 
2534 	if (!netif_carrier_ok(netdev)) {
2535 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2536 			/* We've lost link, so the controller stops DMA,
2537 			 * but we've got queued Tx work that's never going
2538 			 * to get done, so reset controller to flush Tx.
2539 			 * (Do the reset outside of interrupt context).
2540 			 */
2541 			adapter->tx_timeout_count++;
2542 			schedule_work(&adapter->reset_task);
2543 			/* exit immediately since reset is imminent */
2544 			return;
2545 		}
2546 	}
2547 
2548 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2549 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2550 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2551 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2552 		 * everyone else is between 2000-8000.
2553 		 */
2554 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2555 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2556 			    adapter->gotcl - adapter->gorcl :
2557 			    adapter->gorcl - adapter->gotcl) / 10000;
2558 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2559 
2560 		ew32(ITR, 1000000000 / (itr * 256));
2561 	}
2562 
2563 	/* Cause software interrupt to ensure rx ring is cleaned */
2564 	ew32(ICS, E1000_ICS_RXDMT0);
2565 
2566 	/* Force detection of hung controller every watchdog period */
2567 	adapter->detect_tx_hung = true;
2568 
2569 	/* Reschedule the task */
2570 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2571 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2572 }
2573 
2574 enum latency_range {
2575 	lowest_latency = 0,
2576 	low_latency = 1,
2577 	bulk_latency = 2,
2578 	latency_invalid = 255
2579 };
2580 
2581 /**
2582  * e1000_update_itr - update the dynamic ITR value based on statistics
2583  * @adapter: pointer to adapter
2584  * @itr_setting: current adapter->itr
2585  * @packets: the number of packets during this measurement interval
2586  * @bytes: the number of bytes during this measurement interval
2587  *
2588  *      Stores a new ITR value based on packets and byte
2589  *      counts during the last interrupt.  The advantage of per interrupt
2590  *      computation is faster updates and more accurate ITR for the current
2591  *      traffic pattern.  Constants in this function were computed
2592  *      based on theoretical maximum wire speed and thresholds were set based
2593  *      on testing data as well as attempting to minimize response time
2594  *      while increasing bulk throughput.
2595  *      this functionality is controlled by the InterruptThrottleRate module
2596  *      parameter (see e1000_param.c)
2597  **/
2598 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2599 				     u16 itr_setting, int packets, int bytes)
2600 {
2601 	unsigned int retval = itr_setting;
2602 	struct e1000_hw *hw = &adapter->hw;
2603 
2604 	if (unlikely(hw->mac_type < e1000_82540))
2605 		goto update_itr_done;
2606 
2607 	if (packets == 0)
2608 		goto update_itr_done;
2609 
2610 	switch (itr_setting) {
2611 	case lowest_latency:
2612 		/* jumbo frames get bulk treatment*/
2613 		if (bytes/packets > 8000)
2614 			retval = bulk_latency;
2615 		else if ((packets < 5) && (bytes > 512))
2616 			retval = low_latency;
2617 		break;
2618 	case low_latency:  /* 50 usec aka 20000 ints/s */
2619 		if (bytes > 10000) {
2620 			/* jumbo frames need bulk latency setting */
2621 			if (bytes/packets > 8000)
2622 				retval = bulk_latency;
2623 			else if ((packets < 10) || ((bytes/packets) > 1200))
2624 				retval = bulk_latency;
2625 			else if ((packets > 35))
2626 				retval = lowest_latency;
2627 		} else if (bytes/packets > 2000)
2628 			retval = bulk_latency;
2629 		else if (packets <= 2 && bytes < 512)
2630 			retval = lowest_latency;
2631 		break;
2632 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2633 		if (bytes > 25000) {
2634 			if (packets > 35)
2635 				retval = low_latency;
2636 		} else if (bytes < 6000) {
2637 			retval = low_latency;
2638 		}
2639 		break;
2640 	}
2641 
2642 update_itr_done:
2643 	return retval;
2644 }
2645 
2646 static void e1000_set_itr(struct e1000_adapter *adapter)
2647 {
2648 	struct e1000_hw *hw = &adapter->hw;
2649 	u16 current_itr;
2650 	u32 new_itr = adapter->itr;
2651 
2652 	if (unlikely(hw->mac_type < e1000_82540))
2653 		return;
2654 
2655 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2656 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2657 		current_itr = 0;
2658 		new_itr = 4000;
2659 		goto set_itr_now;
2660 	}
2661 
2662 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2663 					   adapter->total_tx_packets,
2664 					   adapter->total_tx_bytes);
2665 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2666 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2667 		adapter->tx_itr = low_latency;
2668 
2669 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2670 					   adapter->total_rx_packets,
2671 					   adapter->total_rx_bytes);
2672 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2673 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2674 		adapter->rx_itr = low_latency;
2675 
2676 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2677 
2678 	switch (current_itr) {
2679 	/* counts and packets in update_itr are dependent on these numbers */
2680 	case lowest_latency:
2681 		new_itr = 70000;
2682 		break;
2683 	case low_latency:
2684 		new_itr = 20000; /* aka hwitr = ~200 */
2685 		break;
2686 	case bulk_latency:
2687 		new_itr = 4000;
2688 		break;
2689 	default:
2690 		break;
2691 	}
2692 
2693 set_itr_now:
2694 	if (new_itr != adapter->itr) {
2695 		/* this attempts to bias the interrupt rate towards Bulk
2696 		 * by adding intermediate steps when interrupt rate is
2697 		 * increasing
2698 		 */
2699 		new_itr = new_itr > adapter->itr ?
2700 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2701 			  new_itr;
2702 		adapter->itr = new_itr;
2703 		ew32(ITR, 1000000000 / (new_itr * 256));
2704 	}
2705 }
2706 
2707 #define E1000_TX_FLAGS_CSUM		0x00000001
2708 #define E1000_TX_FLAGS_VLAN		0x00000002
2709 #define E1000_TX_FLAGS_TSO		0x00000004
2710 #define E1000_TX_FLAGS_IPV4		0x00000008
2711 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2712 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2713 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2714 
2715 static int e1000_tso(struct e1000_adapter *adapter,
2716 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2717 		     __be16 protocol)
2718 {
2719 	struct e1000_context_desc *context_desc;
2720 	struct e1000_tx_buffer *buffer_info;
2721 	unsigned int i;
2722 	u32 cmd_length = 0;
2723 	u16 ipcse = 0, tucse, mss;
2724 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2725 
2726 	if (skb_is_gso(skb)) {
2727 		int err;
2728 
2729 		err = skb_cow_head(skb, 0);
2730 		if (err < 0)
2731 			return err;
2732 
2733 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2734 		mss = skb_shinfo(skb)->gso_size;
2735 		if (protocol == htons(ETH_P_IP)) {
2736 			struct iphdr *iph = ip_hdr(skb);
2737 			iph->tot_len = 0;
2738 			iph->check = 0;
2739 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2740 								 iph->daddr, 0,
2741 								 IPPROTO_TCP,
2742 								 0);
2743 			cmd_length = E1000_TXD_CMD_IP;
2744 			ipcse = skb_transport_offset(skb) - 1;
2745 		} else if (skb_is_gso_v6(skb)) {
2746 			ipv6_hdr(skb)->payload_len = 0;
2747 			tcp_hdr(skb)->check =
2748 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2749 						 &ipv6_hdr(skb)->daddr,
2750 						 0, IPPROTO_TCP, 0);
2751 			ipcse = 0;
2752 		}
2753 		ipcss = skb_network_offset(skb);
2754 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2755 		tucss = skb_transport_offset(skb);
2756 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2757 		tucse = 0;
2758 
2759 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2760 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2761 
2762 		i = tx_ring->next_to_use;
2763 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2764 		buffer_info = &tx_ring->buffer_info[i];
2765 
2766 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2767 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2768 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2769 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2770 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2771 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2772 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2773 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2774 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2775 
2776 		buffer_info->time_stamp = jiffies;
2777 		buffer_info->next_to_watch = i;
2778 
2779 		if (++i == tx_ring->count)
2780 			i = 0;
2781 
2782 		tx_ring->next_to_use = i;
2783 
2784 		return true;
2785 	}
2786 	return false;
2787 }
2788 
2789 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2790 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2791 			  __be16 protocol)
2792 {
2793 	struct e1000_context_desc *context_desc;
2794 	struct e1000_tx_buffer *buffer_info;
2795 	unsigned int i;
2796 	u8 css;
2797 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2798 
2799 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2800 		return false;
2801 
2802 	switch (protocol) {
2803 	case cpu_to_be16(ETH_P_IP):
2804 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2805 			cmd_len |= E1000_TXD_CMD_TCP;
2806 		break;
2807 	case cpu_to_be16(ETH_P_IPV6):
2808 		/* XXX not handling all IPV6 headers */
2809 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2810 			cmd_len |= E1000_TXD_CMD_TCP;
2811 		break;
2812 	default:
2813 		if (unlikely(net_ratelimit()))
2814 			e_warn(drv, "checksum_partial proto=%x!\n",
2815 			       skb->protocol);
2816 		break;
2817 	}
2818 
2819 	css = skb_checksum_start_offset(skb);
2820 
2821 	i = tx_ring->next_to_use;
2822 	buffer_info = &tx_ring->buffer_info[i];
2823 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2824 
2825 	context_desc->lower_setup.ip_config = 0;
2826 	context_desc->upper_setup.tcp_fields.tucss = css;
2827 	context_desc->upper_setup.tcp_fields.tucso =
2828 		css + skb->csum_offset;
2829 	context_desc->upper_setup.tcp_fields.tucse = 0;
2830 	context_desc->tcp_seg_setup.data = 0;
2831 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2832 
2833 	buffer_info->time_stamp = jiffies;
2834 	buffer_info->next_to_watch = i;
2835 
2836 	if (unlikely(++i == tx_ring->count))
2837 		i = 0;
2838 
2839 	tx_ring->next_to_use = i;
2840 
2841 	return true;
2842 }
2843 
2844 #define E1000_MAX_TXD_PWR	12
2845 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2846 
2847 static int e1000_tx_map(struct e1000_adapter *adapter,
2848 			struct e1000_tx_ring *tx_ring,
2849 			struct sk_buff *skb, unsigned int first,
2850 			unsigned int max_per_txd, unsigned int nr_frags,
2851 			unsigned int mss)
2852 {
2853 	struct e1000_hw *hw = &adapter->hw;
2854 	struct pci_dev *pdev = adapter->pdev;
2855 	struct e1000_tx_buffer *buffer_info;
2856 	unsigned int len = skb_headlen(skb);
2857 	unsigned int offset = 0, size, count = 0, i;
2858 	unsigned int f, bytecount, segs;
2859 
2860 	i = tx_ring->next_to_use;
2861 
2862 	while (len) {
2863 		buffer_info = &tx_ring->buffer_info[i];
2864 		size = min(len, max_per_txd);
2865 		/* Workaround for Controller erratum --
2866 		 * descriptor for non-tso packet in a linear SKB that follows a
2867 		 * tso gets written back prematurely before the data is fully
2868 		 * DMA'd to the controller
2869 		 */
2870 		if (!skb->data_len && tx_ring->last_tx_tso &&
2871 		    !skb_is_gso(skb)) {
2872 			tx_ring->last_tx_tso = false;
2873 			size -= 4;
2874 		}
2875 
2876 		/* Workaround for premature desc write-backs
2877 		 * in TSO mode.  Append 4-byte sentinel desc
2878 		 */
2879 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2880 			size -= 4;
2881 		/* work-around for errata 10 and it applies
2882 		 * to all controllers in PCI-X mode
2883 		 * The fix is to make sure that the first descriptor of a
2884 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2885 		 */
2886 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2887 			     (size > 2015) && count == 0))
2888 			size = 2015;
2889 
2890 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2891 		 * terminating buffers within evenly-aligned dwords.
2892 		 */
2893 		if (unlikely(adapter->pcix_82544 &&
2894 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2895 		   size > 4))
2896 			size -= 4;
2897 
2898 		buffer_info->length = size;
2899 		/* set time_stamp *before* dma to help avoid a possible race */
2900 		buffer_info->time_stamp = jiffies;
2901 		buffer_info->mapped_as_page = false;
2902 		buffer_info->dma = dma_map_single(&pdev->dev,
2903 						  skb->data + offset,
2904 						  size, DMA_TO_DEVICE);
2905 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2906 			goto dma_error;
2907 		buffer_info->next_to_watch = i;
2908 
2909 		len -= size;
2910 		offset += size;
2911 		count++;
2912 		if (len) {
2913 			i++;
2914 			if (unlikely(i == tx_ring->count))
2915 				i = 0;
2916 		}
2917 	}
2918 
2919 	for (f = 0; f < nr_frags; f++) {
2920 		const struct skb_frag_struct *frag;
2921 
2922 		frag = &skb_shinfo(skb)->frags[f];
2923 		len = skb_frag_size(frag);
2924 		offset = 0;
2925 
2926 		while (len) {
2927 			unsigned long bufend;
2928 			i++;
2929 			if (unlikely(i == tx_ring->count))
2930 				i = 0;
2931 
2932 			buffer_info = &tx_ring->buffer_info[i];
2933 			size = min(len, max_per_txd);
2934 			/* Workaround for premature desc write-backs
2935 			 * in TSO mode.  Append 4-byte sentinel desc
2936 			 */
2937 			if (unlikely(mss && f == (nr_frags-1) &&
2938 			    size == len && size > 8))
2939 				size -= 4;
2940 			/* Workaround for potential 82544 hang in PCI-X.
2941 			 * Avoid terminating buffers within evenly-aligned
2942 			 * dwords.
2943 			 */
2944 			bufend = (unsigned long)
2945 				page_to_phys(skb_frag_page(frag));
2946 			bufend += offset + size - 1;
2947 			if (unlikely(adapter->pcix_82544 &&
2948 				     !(bufend & 4) &&
2949 				     size > 4))
2950 				size -= 4;
2951 
2952 			buffer_info->length = size;
2953 			buffer_info->time_stamp = jiffies;
2954 			buffer_info->mapped_as_page = true;
2955 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2956 						offset, size, DMA_TO_DEVICE);
2957 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2958 				goto dma_error;
2959 			buffer_info->next_to_watch = i;
2960 
2961 			len -= size;
2962 			offset += size;
2963 			count++;
2964 		}
2965 	}
2966 
2967 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2968 	/* multiply data chunks by size of headers */
2969 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2970 
2971 	tx_ring->buffer_info[i].skb = skb;
2972 	tx_ring->buffer_info[i].segs = segs;
2973 	tx_ring->buffer_info[i].bytecount = bytecount;
2974 	tx_ring->buffer_info[first].next_to_watch = i;
2975 
2976 	return count;
2977 
2978 dma_error:
2979 	dev_err(&pdev->dev, "TX DMA map failed\n");
2980 	buffer_info->dma = 0;
2981 	if (count)
2982 		count--;
2983 
2984 	while (count--) {
2985 		if (i == 0)
2986 			i += tx_ring->count;
2987 		i--;
2988 		buffer_info = &tx_ring->buffer_info[i];
2989 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2990 	}
2991 
2992 	return 0;
2993 }
2994 
2995 static void e1000_tx_queue(struct e1000_adapter *adapter,
2996 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2997 			   int count)
2998 {
2999 	struct e1000_tx_desc *tx_desc = NULL;
3000 	struct e1000_tx_buffer *buffer_info;
3001 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3002 	unsigned int i;
3003 
3004 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3005 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3006 			     E1000_TXD_CMD_TSE;
3007 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3008 
3009 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3010 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3011 	}
3012 
3013 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3014 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3015 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3016 	}
3017 
3018 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3019 		txd_lower |= E1000_TXD_CMD_VLE;
3020 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3021 	}
3022 
3023 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3024 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3025 
3026 	i = tx_ring->next_to_use;
3027 
3028 	while (count--) {
3029 		buffer_info = &tx_ring->buffer_info[i];
3030 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3031 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3032 		tx_desc->lower.data =
3033 			cpu_to_le32(txd_lower | buffer_info->length);
3034 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3035 		if (unlikely(++i == tx_ring->count))
3036 			i = 0;
3037 	}
3038 
3039 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3040 
3041 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3042 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3043 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3044 
3045 	/* Force memory writes to complete before letting h/w
3046 	 * know there are new descriptors to fetch.  (Only
3047 	 * applicable for weak-ordered memory model archs,
3048 	 * such as IA-64).
3049 	 */
3050 	wmb();
3051 
3052 	tx_ring->next_to_use = i;
3053 }
3054 
3055 /* 82547 workaround to avoid controller hang in half-duplex environment.
3056  * The workaround is to avoid queuing a large packet that would span
3057  * the internal Tx FIFO ring boundary by notifying the stack to resend
3058  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3059  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3060  * to the beginning of the Tx FIFO.
3061  */
3062 
3063 #define E1000_FIFO_HDR			0x10
3064 #define E1000_82547_PAD_LEN		0x3E0
3065 
3066 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3067 				       struct sk_buff *skb)
3068 {
3069 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3070 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3071 
3072 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3073 
3074 	if (adapter->link_duplex != HALF_DUPLEX)
3075 		goto no_fifo_stall_required;
3076 
3077 	if (atomic_read(&adapter->tx_fifo_stall))
3078 		return 1;
3079 
3080 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3081 		atomic_set(&adapter->tx_fifo_stall, 1);
3082 		return 1;
3083 	}
3084 
3085 no_fifo_stall_required:
3086 	adapter->tx_fifo_head += skb_fifo_len;
3087 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3088 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3089 	return 0;
3090 }
3091 
3092 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3093 {
3094 	struct e1000_adapter *adapter = netdev_priv(netdev);
3095 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3096 
3097 	netif_stop_queue(netdev);
3098 	/* Herbert's original patch had:
3099 	 *  smp_mb__after_netif_stop_queue();
3100 	 * but since that doesn't exist yet, just open code it.
3101 	 */
3102 	smp_mb();
3103 
3104 	/* We need to check again in a case another CPU has just
3105 	 * made room available.
3106 	 */
3107 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3108 		return -EBUSY;
3109 
3110 	/* A reprieve! */
3111 	netif_start_queue(netdev);
3112 	++adapter->restart_queue;
3113 	return 0;
3114 }
3115 
3116 static int e1000_maybe_stop_tx(struct net_device *netdev,
3117 			       struct e1000_tx_ring *tx_ring, int size)
3118 {
3119 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3120 		return 0;
3121 	return __e1000_maybe_stop_tx(netdev, size);
3122 }
3123 
3124 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3125 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3126 				    struct net_device *netdev)
3127 {
3128 	struct e1000_adapter *adapter = netdev_priv(netdev);
3129 	struct e1000_hw *hw = &adapter->hw;
3130 	struct e1000_tx_ring *tx_ring;
3131 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3132 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3133 	unsigned int tx_flags = 0;
3134 	unsigned int len = skb_headlen(skb);
3135 	unsigned int nr_frags;
3136 	unsigned int mss;
3137 	int count = 0;
3138 	int tso;
3139 	unsigned int f;
3140 	__be16 protocol = vlan_get_protocol(skb);
3141 
3142 	/* This goes back to the question of how to logically map a Tx queue
3143 	 * to a flow.  Right now, performance is impacted slightly negatively
3144 	 * if using multiple Tx queues.  If the stack breaks away from a
3145 	 * single qdisc implementation, we can look at this again.
3146 	 */
3147 	tx_ring = adapter->tx_ring;
3148 
3149 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3150 	 * packets may get corrupted during padding by HW.
3151 	 * To WA this issue, pad all small packets manually.
3152 	 */
3153 	if (eth_skb_pad(skb))
3154 		return NETDEV_TX_OK;
3155 
3156 	mss = skb_shinfo(skb)->gso_size;
3157 	/* The controller does a simple calculation to
3158 	 * make sure there is enough room in the FIFO before
3159 	 * initiating the DMA for each buffer.  The calc is:
3160 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3161 	 * overrun the FIFO, adjust the max buffer len if mss
3162 	 * drops.
3163 	 */
3164 	if (mss) {
3165 		u8 hdr_len;
3166 		max_per_txd = min(mss << 2, max_per_txd);
3167 		max_txd_pwr = fls(max_per_txd) - 1;
3168 
3169 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3170 		if (skb->data_len && hdr_len == len) {
3171 			switch (hw->mac_type) {
3172 				unsigned int pull_size;
3173 			case e1000_82544:
3174 				/* Make sure we have room to chop off 4 bytes,
3175 				 * and that the end alignment will work out to
3176 				 * this hardware's requirements
3177 				 * NOTE: this is a TSO only workaround
3178 				 * if end byte alignment not correct move us
3179 				 * into the next dword
3180 				 */
3181 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3182 				    & 4)
3183 					break;
3184 				/* fall through */
3185 				pull_size = min((unsigned int)4, skb->data_len);
3186 				if (!__pskb_pull_tail(skb, pull_size)) {
3187 					e_err(drv, "__pskb_pull_tail "
3188 					      "failed.\n");
3189 					dev_kfree_skb_any(skb);
3190 					return NETDEV_TX_OK;
3191 				}
3192 				len = skb_headlen(skb);
3193 				break;
3194 			default:
3195 				/* do nothing */
3196 				break;
3197 			}
3198 		}
3199 	}
3200 
3201 	/* reserve a descriptor for the offload context */
3202 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3203 		count++;
3204 	count++;
3205 
3206 	/* Controller Erratum workaround */
3207 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3208 		count++;
3209 
3210 	count += TXD_USE_COUNT(len, max_txd_pwr);
3211 
3212 	if (adapter->pcix_82544)
3213 		count++;
3214 
3215 	/* work-around for errata 10 and it applies to all controllers
3216 	 * in PCI-X mode, so add one more descriptor to the count
3217 	 */
3218 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3219 			(len > 2015)))
3220 		count++;
3221 
3222 	nr_frags = skb_shinfo(skb)->nr_frags;
3223 	for (f = 0; f < nr_frags; f++)
3224 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3225 				       max_txd_pwr);
3226 	if (adapter->pcix_82544)
3227 		count += nr_frags;
3228 
3229 	/* need: count + 2 desc gap to keep tail from touching
3230 	 * head, otherwise try next time
3231 	 */
3232 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3233 		return NETDEV_TX_BUSY;
3234 
3235 	if (unlikely((hw->mac_type == e1000_82547) &&
3236 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3237 		netif_stop_queue(netdev);
3238 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3239 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3240 		return NETDEV_TX_BUSY;
3241 	}
3242 
3243 	if (skb_vlan_tag_present(skb)) {
3244 		tx_flags |= E1000_TX_FLAGS_VLAN;
3245 		tx_flags |= (skb_vlan_tag_get(skb) <<
3246 			     E1000_TX_FLAGS_VLAN_SHIFT);
3247 	}
3248 
3249 	first = tx_ring->next_to_use;
3250 
3251 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3252 	if (tso < 0) {
3253 		dev_kfree_skb_any(skb);
3254 		return NETDEV_TX_OK;
3255 	}
3256 
3257 	if (likely(tso)) {
3258 		if (likely(hw->mac_type != e1000_82544))
3259 			tx_ring->last_tx_tso = true;
3260 		tx_flags |= E1000_TX_FLAGS_TSO;
3261 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3262 		tx_flags |= E1000_TX_FLAGS_CSUM;
3263 
3264 	if (protocol == htons(ETH_P_IP))
3265 		tx_flags |= E1000_TX_FLAGS_IPV4;
3266 
3267 	if (unlikely(skb->no_fcs))
3268 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3269 
3270 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3271 			     nr_frags, mss);
3272 
3273 	if (count) {
3274 		/* The descriptors needed is higher than other Intel drivers
3275 		 * due to a number of workarounds.  The breakdown is below:
3276 		 * Data descriptors: MAX_SKB_FRAGS + 1
3277 		 * Context Descriptor: 1
3278 		 * Keep head from touching tail: 2
3279 		 * Workarounds: 3
3280 		 */
3281 		int desc_needed = MAX_SKB_FRAGS + 7;
3282 
3283 		netdev_sent_queue(netdev, skb->len);
3284 		skb_tx_timestamp(skb);
3285 
3286 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3287 
3288 		/* 82544 potentially requires twice as many data descriptors
3289 		 * in order to guarantee buffers don't end on evenly-aligned
3290 		 * dwords
3291 		 */
3292 		if (adapter->pcix_82544)
3293 			desc_needed += MAX_SKB_FRAGS + 1;
3294 
3295 		/* Make sure there is space in the ring for the next send. */
3296 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3297 
3298 		if (!skb->xmit_more ||
3299 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3300 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3301 			/* we need this if more than one processor can write to
3302 			 * our tail at a time, it synchronizes IO on IA64/Altix
3303 			 * systems
3304 			 */
3305 			mmiowb();
3306 		}
3307 	} else {
3308 		dev_kfree_skb_any(skb);
3309 		tx_ring->buffer_info[first].time_stamp = 0;
3310 		tx_ring->next_to_use = first;
3311 	}
3312 
3313 	return NETDEV_TX_OK;
3314 }
3315 
3316 #define NUM_REGS 38 /* 1 based count */
3317 static void e1000_regdump(struct e1000_adapter *adapter)
3318 {
3319 	struct e1000_hw *hw = &adapter->hw;
3320 	u32 regs[NUM_REGS];
3321 	u32 *regs_buff = regs;
3322 	int i = 0;
3323 
3324 	static const char * const reg_name[] = {
3325 		"CTRL",  "STATUS",
3326 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3327 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3328 		"TIDV", "TXDCTL", "TADV", "TARC0",
3329 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3330 		"TXDCTL1", "TARC1",
3331 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3332 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3333 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3334 	};
3335 
3336 	regs_buff[0]  = er32(CTRL);
3337 	regs_buff[1]  = er32(STATUS);
3338 
3339 	regs_buff[2]  = er32(RCTL);
3340 	regs_buff[3]  = er32(RDLEN);
3341 	regs_buff[4]  = er32(RDH);
3342 	regs_buff[5]  = er32(RDT);
3343 	regs_buff[6]  = er32(RDTR);
3344 
3345 	regs_buff[7]  = er32(TCTL);
3346 	regs_buff[8]  = er32(TDBAL);
3347 	regs_buff[9]  = er32(TDBAH);
3348 	regs_buff[10] = er32(TDLEN);
3349 	regs_buff[11] = er32(TDH);
3350 	regs_buff[12] = er32(TDT);
3351 	regs_buff[13] = er32(TIDV);
3352 	regs_buff[14] = er32(TXDCTL);
3353 	regs_buff[15] = er32(TADV);
3354 	regs_buff[16] = er32(TARC0);
3355 
3356 	regs_buff[17] = er32(TDBAL1);
3357 	regs_buff[18] = er32(TDBAH1);
3358 	regs_buff[19] = er32(TDLEN1);
3359 	regs_buff[20] = er32(TDH1);
3360 	regs_buff[21] = er32(TDT1);
3361 	regs_buff[22] = er32(TXDCTL1);
3362 	regs_buff[23] = er32(TARC1);
3363 	regs_buff[24] = er32(CTRL_EXT);
3364 	regs_buff[25] = er32(ERT);
3365 	regs_buff[26] = er32(RDBAL0);
3366 	regs_buff[27] = er32(RDBAH0);
3367 	regs_buff[28] = er32(TDFH);
3368 	regs_buff[29] = er32(TDFT);
3369 	regs_buff[30] = er32(TDFHS);
3370 	regs_buff[31] = er32(TDFTS);
3371 	regs_buff[32] = er32(TDFPC);
3372 	regs_buff[33] = er32(RDFH);
3373 	regs_buff[34] = er32(RDFT);
3374 	regs_buff[35] = er32(RDFHS);
3375 	regs_buff[36] = er32(RDFTS);
3376 	regs_buff[37] = er32(RDFPC);
3377 
3378 	pr_info("Register dump\n");
3379 	for (i = 0; i < NUM_REGS; i++)
3380 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3381 }
3382 
3383 /*
3384  * e1000_dump: Print registers, tx ring and rx ring
3385  */
3386 static void e1000_dump(struct e1000_adapter *adapter)
3387 {
3388 	/* this code doesn't handle multiple rings */
3389 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3390 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3391 	int i;
3392 
3393 	if (!netif_msg_hw(adapter))
3394 		return;
3395 
3396 	/* Print Registers */
3397 	e1000_regdump(adapter);
3398 
3399 	/* transmit dump */
3400 	pr_info("TX Desc ring0 dump\n");
3401 
3402 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3403 	 *
3404 	 * Legacy Transmit Descriptor
3405 	 *   +--------------------------------------------------------------+
3406 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3407 	 *   +--------------------------------------------------------------+
3408 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3409 	 *   +--------------------------------------------------------------+
3410 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3411 	 *
3412 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3413 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3414 	 *   +----------------------------------------------------------------+
3415 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3416 	 *   +----------------------------------------------------------------+
3417 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3418 	 *   +----------------------------------------------------------------+
3419 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3420 	 *
3421 	 * Extended Data Descriptor (DTYP=0x1)
3422 	 *   +----------------------------------------------------------------+
3423 	 * 0 |                     Buffer Address [63:0]                      |
3424 	 *   +----------------------------------------------------------------+
3425 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3426 	 *   +----------------------------------------------------------------+
3427 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3428 	 */
3429 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3430 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3431 
3432 	if (!netif_msg_tx_done(adapter))
3433 		goto rx_ring_summary;
3434 
3435 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3436 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3437 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3438 		struct my_u { __le64 a; __le64 b; };
3439 		struct my_u *u = (struct my_u *)tx_desc;
3440 		const char *type;
3441 
3442 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3443 			type = "NTC/U";
3444 		else if (i == tx_ring->next_to_use)
3445 			type = "NTU";
3446 		else if (i == tx_ring->next_to_clean)
3447 			type = "NTC";
3448 		else
3449 			type = "";
3450 
3451 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3452 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3453 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3454 			(u64)buffer_info->dma, buffer_info->length,
3455 			buffer_info->next_to_watch,
3456 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3457 	}
3458 
3459 rx_ring_summary:
3460 	/* receive dump */
3461 	pr_info("\nRX Desc ring dump\n");
3462 
3463 	/* Legacy Receive Descriptor Format
3464 	 *
3465 	 * +-----------------------------------------------------+
3466 	 * |                Buffer Address [63:0]                |
3467 	 * +-----------------------------------------------------+
3468 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3469 	 * +-----------------------------------------------------+
3470 	 * 63       48 47    40 39      32 31         16 15      0
3471 	 */
3472 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3473 
3474 	if (!netif_msg_rx_status(adapter))
3475 		goto exit;
3476 
3477 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3478 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3479 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3480 		struct my_u { __le64 a; __le64 b; };
3481 		struct my_u *u = (struct my_u *)rx_desc;
3482 		const char *type;
3483 
3484 		if (i == rx_ring->next_to_use)
3485 			type = "NTU";
3486 		else if (i == rx_ring->next_to_clean)
3487 			type = "NTC";
3488 		else
3489 			type = "";
3490 
3491 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3492 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3493 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3494 	} /* for */
3495 
3496 	/* dump the descriptor caches */
3497 	/* rx */
3498 	pr_info("Rx descriptor cache in 64bit format\n");
3499 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3500 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3501 			i,
3502 			readl(adapter->hw.hw_addr + i+4),
3503 			readl(adapter->hw.hw_addr + i),
3504 			readl(adapter->hw.hw_addr + i+12),
3505 			readl(adapter->hw.hw_addr + i+8));
3506 	}
3507 	/* tx */
3508 	pr_info("Tx descriptor cache in 64bit format\n");
3509 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3510 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3511 			i,
3512 			readl(adapter->hw.hw_addr + i+4),
3513 			readl(adapter->hw.hw_addr + i),
3514 			readl(adapter->hw.hw_addr + i+12),
3515 			readl(adapter->hw.hw_addr + i+8));
3516 	}
3517 exit:
3518 	return;
3519 }
3520 
3521 /**
3522  * e1000_tx_timeout - Respond to a Tx Hang
3523  * @netdev: network interface device structure
3524  **/
3525 static void e1000_tx_timeout(struct net_device *netdev)
3526 {
3527 	struct e1000_adapter *adapter = netdev_priv(netdev);
3528 
3529 	/* Do the reset outside of interrupt context */
3530 	adapter->tx_timeout_count++;
3531 	schedule_work(&adapter->reset_task);
3532 }
3533 
3534 static void e1000_reset_task(struct work_struct *work)
3535 {
3536 	struct e1000_adapter *adapter =
3537 		container_of(work, struct e1000_adapter, reset_task);
3538 
3539 	e_err(drv, "Reset adapter\n");
3540 	e1000_reinit_locked(adapter);
3541 }
3542 
3543 /**
3544  * e1000_change_mtu - Change the Maximum Transfer Unit
3545  * @netdev: network interface device structure
3546  * @new_mtu: new value for maximum frame size
3547  *
3548  * Returns 0 on success, negative on failure
3549  **/
3550 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3551 {
3552 	struct e1000_adapter *adapter = netdev_priv(netdev);
3553 	struct e1000_hw *hw = &adapter->hw;
3554 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3555 
3556 	/* Adapter-specific max frame size limits. */
3557 	switch (hw->mac_type) {
3558 	case e1000_undefined ... e1000_82542_rev2_1:
3559 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3560 			e_err(probe, "Jumbo Frames not supported.\n");
3561 			return -EINVAL;
3562 		}
3563 		break;
3564 	default:
3565 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3566 		break;
3567 	}
3568 
3569 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3570 		msleep(1);
3571 	/* e1000_down has a dependency on max_frame_size */
3572 	hw->max_frame_size = max_frame;
3573 	if (netif_running(netdev)) {
3574 		/* prevent buffers from being reallocated */
3575 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3576 		e1000_down(adapter);
3577 	}
3578 
3579 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3580 	 * means we reserve 2 more, this pushes us to allocate from the next
3581 	 * larger slab size.
3582 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3583 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3584 	 * fragmented skbs
3585 	 */
3586 
3587 	if (max_frame <= E1000_RXBUFFER_2048)
3588 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3589 	else
3590 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3591 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3592 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3593 		adapter->rx_buffer_len = PAGE_SIZE;
3594 #endif
3595 
3596 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3597 	if (!hw->tbi_compatibility_on &&
3598 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3599 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3600 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3601 
3602 	pr_info("%s changing MTU from %d to %d\n",
3603 		netdev->name, netdev->mtu, new_mtu);
3604 	netdev->mtu = new_mtu;
3605 
3606 	if (netif_running(netdev))
3607 		e1000_up(adapter);
3608 	else
3609 		e1000_reset(adapter);
3610 
3611 	clear_bit(__E1000_RESETTING, &adapter->flags);
3612 
3613 	return 0;
3614 }
3615 
3616 /**
3617  * e1000_update_stats - Update the board statistics counters
3618  * @adapter: board private structure
3619  **/
3620 void e1000_update_stats(struct e1000_adapter *adapter)
3621 {
3622 	struct net_device *netdev = adapter->netdev;
3623 	struct e1000_hw *hw = &adapter->hw;
3624 	struct pci_dev *pdev = adapter->pdev;
3625 	unsigned long flags;
3626 	u16 phy_tmp;
3627 
3628 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3629 
3630 	/* Prevent stats update while adapter is being reset, or if the pci
3631 	 * connection is down.
3632 	 */
3633 	if (adapter->link_speed == 0)
3634 		return;
3635 	if (pci_channel_offline(pdev))
3636 		return;
3637 
3638 	spin_lock_irqsave(&adapter->stats_lock, flags);
3639 
3640 	/* these counters are modified from e1000_tbi_adjust_stats,
3641 	 * called from the interrupt context, so they must only
3642 	 * be written while holding adapter->stats_lock
3643 	 */
3644 
3645 	adapter->stats.crcerrs += er32(CRCERRS);
3646 	adapter->stats.gprc += er32(GPRC);
3647 	adapter->stats.gorcl += er32(GORCL);
3648 	adapter->stats.gorch += er32(GORCH);
3649 	adapter->stats.bprc += er32(BPRC);
3650 	adapter->stats.mprc += er32(MPRC);
3651 	adapter->stats.roc += er32(ROC);
3652 
3653 	adapter->stats.prc64 += er32(PRC64);
3654 	adapter->stats.prc127 += er32(PRC127);
3655 	adapter->stats.prc255 += er32(PRC255);
3656 	adapter->stats.prc511 += er32(PRC511);
3657 	adapter->stats.prc1023 += er32(PRC1023);
3658 	adapter->stats.prc1522 += er32(PRC1522);
3659 
3660 	adapter->stats.symerrs += er32(SYMERRS);
3661 	adapter->stats.mpc += er32(MPC);
3662 	adapter->stats.scc += er32(SCC);
3663 	adapter->stats.ecol += er32(ECOL);
3664 	adapter->stats.mcc += er32(MCC);
3665 	adapter->stats.latecol += er32(LATECOL);
3666 	adapter->stats.dc += er32(DC);
3667 	adapter->stats.sec += er32(SEC);
3668 	adapter->stats.rlec += er32(RLEC);
3669 	adapter->stats.xonrxc += er32(XONRXC);
3670 	adapter->stats.xontxc += er32(XONTXC);
3671 	adapter->stats.xoffrxc += er32(XOFFRXC);
3672 	adapter->stats.xofftxc += er32(XOFFTXC);
3673 	adapter->stats.fcruc += er32(FCRUC);
3674 	adapter->stats.gptc += er32(GPTC);
3675 	adapter->stats.gotcl += er32(GOTCL);
3676 	adapter->stats.gotch += er32(GOTCH);
3677 	adapter->stats.rnbc += er32(RNBC);
3678 	adapter->stats.ruc += er32(RUC);
3679 	adapter->stats.rfc += er32(RFC);
3680 	adapter->stats.rjc += er32(RJC);
3681 	adapter->stats.torl += er32(TORL);
3682 	adapter->stats.torh += er32(TORH);
3683 	adapter->stats.totl += er32(TOTL);
3684 	adapter->stats.toth += er32(TOTH);
3685 	adapter->stats.tpr += er32(TPR);
3686 
3687 	adapter->stats.ptc64 += er32(PTC64);
3688 	adapter->stats.ptc127 += er32(PTC127);
3689 	adapter->stats.ptc255 += er32(PTC255);
3690 	adapter->stats.ptc511 += er32(PTC511);
3691 	adapter->stats.ptc1023 += er32(PTC1023);
3692 	adapter->stats.ptc1522 += er32(PTC1522);
3693 
3694 	adapter->stats.mptc += er32(MPTC);
3695 	adapter->stats.bptc += er32(BPTC);
3696 
3697 	/* used for adaptive IFS */
3698 
3699 	hw->tx_packet_delta = er32(TPT);
3700 	adapter->stats.tpt += hw->tx_packet_delta;
3701 	hw->collision_delta = er32(COLC);
3702 	adapter->stats.colc += hw->collision_delta;
3703 
3704 	if (hw->mac_type >= e1000_82543) {
3705 		adapter->stats.algnerrc += er32(ALGNERRC);
3706 		adapter->stats.rxerrc += er32(RXERRC);
3707 		adapter->stats.tncrs += er32(TNCRS);
3708 		adapter->stats.cexterr += er32(CEXTERR);
3709 		adapter->stats.tsctc += er32(TSCTC);
3710 		adapter->stats.tsctfc += er32(TSCTFC);
3711 	}
3712 
3713 	/* Fill out the OS statistics structure */
3714 	netdev->stats.multicast = adapter->stats.mprc;
3715 	netdev->stats.collisions = adapter->stats.colc;
3716 
3717 	/* Rx Errors */
3718 
3719 	/* RLEC on some newer hardware can be incorrect so build
3720 	 * our own version based on RUC and ROC
3721 	 */
3722 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3723 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3724 		adapter->stats.ruc + adapter->stats.roc +
3725 		adapter->stats.cexterr;
3726 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3727 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3728 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3729 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3730 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3731 
3732 	/* Tx Errors */
3733 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3734 	netdev->stats.tx_errors = adapter->stats.txerrc;
3735 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3736 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3737 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3738 	if (hw->bad_tx_carr_stats_fd &&
3739 	    adapter->link_duplex == FULL_DUPLEX) {
3740 		netdev->stats.tx_carrier_errors = 0;
3741 		adapter->stats.tncrs = 0;
3742 	}
3743 
3744 	/* Tx Dropped needs to be maintained elsewhere */
3745 
3746 	/* Phy Stats */
3747 	if (hw->media_type == e1000_media_type_copper) {
3748 		if ((adapter->link_speed == SPEED_1000) &&
3749 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3750 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3751 			adapter->phy_stats.idle_errors += phy_tmp;
3752 		}
3753 
3754 		if ((hw->mac_type <= e1000_82546) &&
3755 		   (hw->phy_type == e1000_phy_m88) &&
3756 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3757 			adapter->phy_stats.receive_errors += phy_tmp;
3758 	}
3759 
3760 	/* Management Stats */
3761 	if (hw->has_smbus) {
3762 		adapter->stats.mgptc += er32(MGTPTC);
3763 		adapter->stats.mgprc += er32(MGTPRC);
3764 		adapter->stats.mgpdc += er32(MGTPDC);
3765 	}
3766 
3767 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3768 }
3769 
3770 /**
3771  * e1000_intr - Interrupt Handler
3772  * @irq: interrupt number
3773  * @data: pointer to a network interface device structure
3774  **/
3775 static irqreturn_t e1000_intr(int irq, void *data)
3776 {
3777 	struct net_device *netdev = data;
3778 	struct e1000_adapter *adapter = netdev_priv(netdev);
3779 	struct e1000_hw *hw = &adapter->hw;
3780 	u32 icr = er32(ICR);
3781 
3782 	if (unlikely((!icr)))
3783 		return IRQ_NONE;  /* Not our interrupt */
3784 
3785 	/* we might have caused the interrupt, but the above
3786 	 * read cleared it, and just in case the driver is
3787 	 * down there is nothing to do so return handled
3788 	 */
3789 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3790 		return IRQ_HANDLED;
3791 
3792 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3793 		hw->get_link_status = 1;
3794 		/* guard against interrupt when we're going down */
3795 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3796 			schedule_delayed_work(&adapter->watchdog_task, 1);
3797 	}
3798 
3799 	/* disable interrupts, without the synchronize_irq bit */
3800 	ew32(IMC, ~0);
3801 	E1000_WRITE_FLUSH();
3802 
3803 	if (likely(napi_schedule_prep(&adapter->napi))) {
3804 		adapter->total_tx_bytes = 0;
3805 		adapter->total_tx_packets = 0;
3806 		adapter->total_rx_bytes = 0;
3807 		adapter->total_rx_packets = 0;
3808 		__napi_schedule(&adapter->napi);
3809 	} else {
3810 		/* this really should not happen! if it does it is basically a
3811 		 * bug, but not a hard error, so enable ints and continue
3812 		 */
3813 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3814 			e1000_irq_enable(adapter);
3815 	}
3816 
3817 	return IRQ_HANDLED;
3818 }
3819 
3820 /**
3821  * e1000_clean - NAPI Rx polling callback
3822  * @adapter: board private structure
3823  **/
3824 static int e1000_clean(struct napi_struct *napi, int budget)
3825 {
3826 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3827 						     napi);
3828 	int tx_clean_complete = 0, work_done = 0;
3829 
3830 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3831 
3832 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3833 
3834 	if (!tx_clean_complete)
3835 		work_done = budget;
3836 
3837 	/* If budget not fully consumed, exit the polling mode */
3838 	if (work_done < budget) {
3839 		if (likely(adapter->itr_setting & 3))
3840 			e1000_set_itr(adapter);
3841 		napi_complete_done(napi, work_done);
3842 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3843 			e1000_irq_enable(adapter);
3844 	}
3845 
3846 	return work_done;
3847 }
3848 
3849 /**
3850  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3851  * @adapter: board private structure
3852  **/
3853 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3854 			       struct e1000_tx_ring *tx_ring)
3855 {
3856 	struct e1000_hw *hw = &adapter->hw;
3857 	struct net_device *netdev = adapter->netdev;
3858 	struct e1000_tx_desc *tx_desc, *eop_desc;
3859 	struct e1000_tx_buffer *buffer_info;
3860 	unsigned int i, eop;
3861 	unsigned int count = 0;
3862 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3863 	unsigned int bytes_compl = 0, pkts_compl = 0;
3864 
3865 	i = tx_ring->next_to_clean;
3866 	eop = tx_ring->buffer_info[i].next_to_watch;
3867 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3868 
3869 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3870 	       (count < tx_ring->count)) {
3871 		bool cleaned = false;
3872 		dma_rmb();	/* read buffer_info after eop_desc */
3873 		for ( ; !cleaned; count++) {
3874 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3875 			buffer_info = &tx_ring->buffer_info[i];
3876 			cleaned = (i == eop);
3877 
3878 			if (cleaned) {
3879 				total_tx_packets += buffer_info->segs;
3880 				total_tx_bytes += buffer_info->bytecount;
3881 				if (buffer_info->skb) {
3882 					bytes_compl += buffer_info->skb->len;
3883 					pkts_compl++;
3884 				}
3885 
3886 			}
3887 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3888 			tx_desc->upper.data = 0;
3889 
3890 			if (unlikely(++i == tx_ring->count))
3891 				i = 0;
3892 		}
3893 
3894 		eop = tx_ring->buffer_info[i].next_to_watch;
3895 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3896 	}
3897 
3898 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3899 	 * which will reuse the cleaned buffers.
3900 	 */
3901 	smp_store_release(&tx_ring->next_to_clean, i);
3902 
3903 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3904 
3905 #define TX_WAKE_THRESHOLD 32
3906 	if (unlikely(count && netif_carrier_ok(netdev) &&
3907 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3908 		/* Make sure that anybody stopping the queue after this
3909 		 * sees the new next_to_clean.
3910 		 */
3911 		smp_mb();
3912 
3913 		if (netif_queue_stopped(netdev) &&
3914 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3915 			netif_wake_queue(netdev);
3916 			++adapter->restart_queue;
3917 		}
3918 	}
3919 
3920 	if (adapter->detect_tx_hung) {
3921 		/* Detect a transmit hang in hardware, this serializes the
3922 		 * check with the clearing of time_stamp and movement of i
3923 		 */
3924 		adapter->detect_tx_hung = false;
3925 		if (tx_ring->buffer_info[eop].time_stamp &&
3926 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3927 			       (adapter->tx_timeout_factor * HZ)) &&
3928 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3929 
3930 			/* detected Tx unit hang */
3931 			e_err(drv, "Detected Tx Unit Hang\n"
3932 			      "  Tx Queue             <%lu>\n"
3933 			      "  TDH                  <%x>\n"
3934 			      "  TDT                  <%x>\n"
3935 			      "  next_to_use          <%x>\n"
3936 			      "  next_to_clean        <%x>\n"
3937 			      "buffer_info[next_to_clean]\n"
3938 			      "  time_stamp           <%lx>\n"
3939 			      "  next_to_watch        <%x>\n"
3940 			      "  jiffies              <%lx>\n"
3941 			      "  next_to_watch.status <%x>\n",
3942 				(unsigned long)(tx_ring - adapter->tx_ring),
3943 				readl(hw->hw_addr + tx_ring->tdh),
3944 				readl(hw->hw_addr + tx_ring->tdt),
3945 				tx_ring->next_to_use,
3946 				tx_ring->next_to_clean,
3947 				tx_ring->buffer_info[eop].time_stamp,
3948 				eop,
3949 				jiffies,
3950 				eop_desc->upper.fields.status);
3951 			e1000_dump(adapter);
3952 			netif_stop_queue(netdev);
3953 		}
3954 	}
3955 	adapter->total_tx_bytes += total_tx_bytes;
3956 	adapter->total_tx_packets += total_tx_packets;
3957 	netdev->stats.tx_bytes += total_tx_bytes;
3958 	netdev->stats.tx_packets += total_tx_packets;
3959 	return count < tx_ring->count;
3960 }
3961 
3962 /**
3963  * e1000_rx_checksum - Receive Checksum Offload for 82543
3964  * @adapter:     board private structure
3965  * @status_err:  receive descriptor status and error fields
3966  * @csum:        receive descriptor csum field
3967  * @sk_buff:     socket buffer with received data
3968  **/
3969 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3970 			      u32 csum, struct sk_buff *skb)
3971 {
3972 	struct e1000_hw *hw = &adapter->hw;
3973 	u16 status = (u16)status_err;
3974 	u8 errors = (u8)(status_err >> 24);
3975 
3976 	skb_checksum_none_assert(skb);
3977 
3978 	/* 82543 or newer only */
3979 	if (unlikely(hw->mac_type < e1000_82543))
3980 		return;
3981 	/* Ignore Checksum bit is set */
3982 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3983 		return;
3984 	/* TCP/UDP checksum error bit is set */
3985 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3986 		/* let the stack verify checksum errors */
3987 		adapter->hw_csum_err++;
3988 		return;
3989 	}
3990 	/* TCP/UDP Checksum has not been calculated */
3991 	if (!(status & E1000_RXD_STAT_TCPCS))
3992 		return;
3993 
3994 	/* It must be a TCP or UDP packet with a valid checksum */
3995 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3996 		/* TCP checksum is good */
3997 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3998 	}
3999 	adapter->hw_csum_good++;
4000 }
4001 
4002 /**
4003  * e1000_consume_page - helper function for jumbo Rx path
4004  **/
4005 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4006 			       u16 length)
4007 {
4008 	bi->rxbuf.page = NULL;
4009 	skb->len += length;
4010 	skb->data_len += length;
4011 	skb->truesize += PAGE_SIZE;
4012 }
4013 
4014 /**
4015  * e1000_receive_skb - helper function to handle rx indications
4016  * @adapter: board private structure
4017  * @status: descriptor status field as written by hardware
4018  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4019  * @skb: pointer to sk_buff to be indicated to stack
4020  */
4021 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4022 			      __le16 vlan, struct sk_buff *skb)
4023 {
4024 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4025 
4026 	if (status & E1000_RXD_STAT_VP) {
4027 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4028 
4029 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4030 	}
4031 	napi_gro_receive(&adapter->napi, skb);
4032 }
4033 
4034 /**
4035  * e1000_tbi_adjust_stats
4036  * @hw: Struct containing variables accessed by shared code
4037  * @frame_len: The length of the frame in question
4038  * @mac_addr: The Ethernet destination address of the frame in question
4039  *
4040  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4041  */
4042 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4043 				   struct e1000_hw_stats *stats,
4044 				   u32 frame_len, const u8 *mac_addr)
4045 {
4046 	u64 carry_bit;
4047 
4048 	/* First adjust the frame length. */
4049 	frame_len--;
4050 	/* We need to adjust the statistics counters, since the hardware
4051 	 * counters overcount this packet as a CRC error and undercount
4052 	 * the packet as a good packet
4053 	 */
4054 	/* This packet should not be counted as a CRC error. */
4055 	stats->crcerrs--;
4056 	/* This packet does count as a Good Packet Received. */
4057 	stats->gprc++;
4058 
4059 	/* Adjust the Good Octets received counters */
4060 	carry_bit = 0x80000000 & stats->gorcl;
4061 	stats->gorcl += frame_len;
4062 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4063 	 * Received Count) was one before the addition,
4064 	 * AND it is zero after, then we lost the carry out,
4065 	 * need to add one to Gorch (Good Octets Received Count High).
4066 	 * This could be simplified if all environments supported
4067 	 * 64-bit integers.
4068 	 */
4069 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4070 		stats->gorch++;
4071 	/* Is this a broadcast or multicast?  Check broadcast first,
4072 	 * since the test for a multicast frame will test positive on
4073 	 * a broadcast frame.
4074 	 */
4075 	if (is_broadcast_ether_addr(mac_addr))
4076 		stats->bprc++;
4077 	else if (is_multicast_ether_addr(mac_addr))
4078 		stats->mprc++;
4079 
4080 	if (frame_len == hw->max_frame_size) {
4081 		/* In this case, the hardware has overcounted the number of
4082 		 * oversize frames.
4083 		 */
4084 		if (stats->roc > 0)
4085 			stats->roc--;
4086 	}
4087 
4088 	/* Adjust the bin counters when the extra byte put the frame in the
4089 	 * wrong bin. Remember that the frame_len was adjusted above.
4090 	 */
4091 	if (frame_len == 64) {
4092 		stats->prc64++;
4093 		stats->prc127--;
4094 	} else if (frame_len == 127) {
4095 		stats->prc127++;
4096 		stats->prc255--;
4097 	} else if (frame_len == 255) {
4098 		stats->prc255++;
4099 		stats->prc511--;
4100 	} else if (frame_len == 511) {
4101 		stats->prc511++;
4102 		stats->prc1023--;
4103 	} else if (frame_len == 1023) {
4104 		stats->prc1023++;
4105 		stats->prc1522--;
4106 	} else if (frame_len == 1522) {
4107 		stats->prc1522++;
4108 	}
4109 }
4110 
4111 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4112 				    u8 status, u8 errors,
4113 				    u32 length, const u8 *data)
4114 {
4115 	struct e1000_hw *hw = &adapter->hw;
4116 	u8 last_byte = *(data + length - 1);
4117 
4118 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4119 		unsigned long irq_flags;
4120 
4121 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4122 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4123 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4124 
4125 		return true;
4126 	}
4127 
4128 	return false;
4129 }
4130 
4131 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4132 					  unsigned int bufsz)
4133 {
4134 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4135 
4136 	if (unlikely(!skb))
4137 		adapter->alloc_rx_buff_failed++;
4138 	return skb;
4139 }
4140 
4141 /**
4142  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4143  * @adapter: board private structure
4144  * @rx_ring: ring to clean
4145  * @work_done: amount of napi work completed this call
4146  * @work_to_do: max amount of work allowed for this call to do
4147  *
4148  * the return value indicates whether actual cleaning was done, there
4149  * is no guarantee that everything was cleaned
4150  */
4151 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4152 				     struct e1000_rx_ring *rx_ring,
4153 				     int *work_done, int work_to_do)
4154 {
4155 	struct net_device *netdev = adapter->netdev;
4156 	struct pci_dev *pdev = adapter->pdev;
4157 	struct e1000_rx_desc *rx_desc, *next_rxd;
4158 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4159 	u32 length;
4160 	unsigned int i;
4161 	int cleaned_count = 0;
4162 	bool cleaned = false;
4163 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4164 
4165 	i = rx_ring->next_to_clean;
4166 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4167 	buffer_info = &rx_ring->buffer_info[i];
4168 
4169 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4170 		struct sk_buff *skb;
4171 		u8 status;
4172 
4173 		if (*work_done >= work_to_do)
4174 			break;
4175 		(*work_done)++;
4176 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4177 
4178 		status = rx_desc->status;
4179 
4180 		if (++i == rx_ring->count)
4181 			i = 0;
4182 
4183 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4184 		prefetch(next_rxd);
4185 
4186 		next_buffer = &rx_ring->buffer_info[i];
4187 
4188 		cleaned = true;
4189 		cleaned_count++;
4190 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4191 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4192 		buffer_info->dma = 0;
4193 
4194 		length = le16_to_cpu(rx_desc->length);
4195 
4196 		/* errors is only valid for DD + EOP descriptors */
4197 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4198 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4199 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4200 
4201 			if (e1000_tbi_should_accept(adapter, status,
4202 						    rx_desc->errors,
4203 						    length, mapped)) {
4204 				length--;
4205 			} else if (netdev->features & NETIF_F_RXALL) {
4206 				goto process_skb;
4207 			} else {
4208 				/* an error means any chain goes out the window
4209 				 * too
4210 				 */
4211 				if (rx_ring->rx_skb_top)
4212 					dev_kfree_skb(rx_ring->rx_skb_top);
4213 				rx_ring->rx_skb_top = NULL;
4214 				goto next_desc;
4215 			}
4216 		}
4217 
4218 #define rxtop rx_ring->rx_skb_top
4219 process_skb:
4220 		if (!(status & E1000_RXD_STAT_EOP)) {
4221 			/* this descriptor is only the beginning (or middle) */
4222 			if (!rxtop) {
4223 				/* this is the beginning of a chain */
4224 				rxtop = napi_get_frags(&adapter->napi);
4225 				if (!rxtop)
4226 					break;
4227 
4228 				skb_fill_page_desc(rxtop, 0,
4229 						   buffer_info->rxbuf.page,
4230 						   0, length);
4231 			} else {
4232 				/* this is the middle of a chain */
4233 				skb_fill_page_desc(rxtop,
4234 				    skb_shinfo(rxtop)->nr_frags,
4235 				    buffer_info->rxbuf.page, 0, length);
4236 			}
4237 			e1000_consume_page(buffer_info, rxtop, length);
4238 			goto next_desc;
4239 		} else {
4240 			if (rxtop) {
4241 				/* end of the chain */
4242 				skb_fill_page_desc(rxtop,
4243 				    skb_shinfo(rxtop)->nr_frags,
4244 				    buffer_info->rxbuf.page, 0, length);
4245 				skb = rxtop;
4246 				rxtop = NULL;
4247 				e1000_consume_page(buffer_info, skb, length);
4248 			} else {
4249 				struct page *p;
4250 				/* no chain, got EOP, this buf is the packet
4251 				 * copybreak to save the put_page/alloc_page
4252 				 */
4253 				p = buffer_info->rxbuf.page;
4254 				if (length <= copybreak) {
4255 					u8 *vaddr;
4256 
4257 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4258 						length -= 4;
4259 					skb = e1000_alloc_rx_skb(adapter,
4260 								 length);
4261 					if (!skb)
4262 						break;
4263 
4264 					vaddr = kmap_atomic(p);
4265 					memcpy(skb_tail_pointer(skb), vaddr,
4266 					       length);
4267 					kunmap_atomic(vaddr);
4268 					/* re-use the page, so don't erase
4269 					 * buffer_info->rxbuf.page
4270 					 */
4271 					skb_put(skb, length);
4272 					e1000_rx_checksum(adapter,
4273 							  status | rx_desc->errors << 24,
4274 							  le16_to_cpu(rx_desc->csum), skb);
4275 
4276 					total_rx_bytes += skb->len;
4277 					total_rx_packets++;
4278 
4279 					e1000_receive_skb(adapter, status,
4280 							  rx_desc->special, skb);
4281 					goto next_desc;
4282 				} else {
4283 					skb = napi_get_frags(&adapter->napi);
4284 					if (!skb) {
4285 						adapter->alloc_rx_buff_failed++;
4286 						break;
4287 					}
4288 					skb_fill_page_desc(skb, 0, p, 0,
4289 							   length);
4290 					e1000_consume_page(buffer_info, skb,
4291 							   length);
4292 				}
4293 			}
4294 		}
4295 
4296 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4297 		e1000_rx_checksum(adapter,
4298 				  (u32)(status) |
4299 				  ((u32)(rx_desc->errors) << 24),
4300 				  le16_to_cpu(rx_desc->csum), skb);
4301 
4302 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4303 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4304 			pskb_trim(skb, skb->len - 4);
4305 		total_rx_packets++;
4306 
4307 		if (status & E1000_RXD_STAT_VP) {
4308 			__le16 vlan = rx_desc->special;
4309 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4310 
4311 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4312 		}
4313 
4314 		napi_gro_frags(&adapter->napi);
4315 
4316 next_desc:
4317 		rx_desc->status = 0;
4318 
4319 		/* return some buffers to hardware, one at a time is too slow */
4320 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4321 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4322 			cleaned_count = 0;
4323 		}
4324 
4325 		/* use prefetched values */
4326 		rx_desc = next_rxd;
4327 		buffer_info = next_buffer;
4328 	}
4329 	rx_ring->next_to_clean = i;
4330 
4331 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4332 	if (cleaned_count)
4333 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4334 
4335 	adapter->total_rx_packets += total_rx_packets;
4336 	adapter->total_rx_bytes += total_rx_bytes;
4337 	netdev->stats.rx_bytes += total_rx_bytes;
4338 	netdev->stats.rx_packets += total_rx_packets;
4339 	return cleaned;
4340 }
4341 
4342 /* this should improve performance for small packets with large amounts
4343  * of reassembly being done in the stack
4344  */
4345 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4346 				       struct e1000_rx_buffer *buffer_info,
4347 				       u32 length, const void *data)
4348 {
4349 	struct sk_buff *skb;
4350 
4351 	if (length > copybreak)
4352 		return NULL;
4353 
4354 	skb = e1000_alloc_rx_skb(adapter, length);
4355 	if (!skb)
4356 		return NULL;
4357 
4358 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4359 				length, DMA_FROM_DEVICE);
4360 
4361 	skb_put_data(skb, data, length);
4362 
4363 	return skb;
4364 }
4365 
4366 /**
4367  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4368  * @adapter: board private structure
4369  * @rx_ring: ring to clean
4370  * @work_done: amount of napi work completed this call
4371  * @work_to_do: max amount of work allowed for this call to do
4372  */
4373 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4374 			       struct e1000_rx_ring *rx_ring,
4375 			       int *work_done, int work_to_do)
4376 {
4377 	struct net_device *netdev = adapter->netdev;
4378 	struct pci_dev *pdev = adapter->pdev;
4379 	struct e1000_rx_desc *rx_desc, *next_rxd;
4380 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4381 	u32 length;
4382 	unsigned int i;
4383 	int cleaned_count = 0;
4384 	bool cleaned = false;
4385 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4386 
4387 	i = rx_ring->next_to_clean;
4388 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4389 	buffer_info = &rx_ring->buffer_info[i];
4390 
4391 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4392 		struct sk_buff *skb;
4393 		u8 *data;
4394 		u8 status;
4395 
4396 		if (*work_done >= work_to_do)
4397 			break;
4398 		(*work_done)++;
4399 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4400 
4401 		status = rx_desc->status;
4402 		length = le16_to_cpu(rx_desc->length);
4403 
4404 		data = buffer_info->rxbuf.data;
4405 		prefetch(data);
4406 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4407 		if (!skb) {
4408 			unsigned int frag_len = e1000_frag_len(adapter);
4409 
4410 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4411 			if (!skb) {
4412 				adapter->alloc_rx_buff_failed++;
4413 				break;
4414 			}
4415 
4416 			skb_reserve(skb, E1000_HEADROOM);
4417 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4418 					 adapter->rx_buffer_len,
4419 					 DMA_FROM_DEVICE);
4420 			buffer_info->dma = 0;
4421 			buffer_info->rxbuf.data = NULL;
4422 		}
4423 
4424 		if (++i == rx_ring->count)
4425 			i = 0;
4426 
4427 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4428 		prefetch(next_rxd);
4429 
4430 		next_buffer = &rx_ring->buffer_info[i];
4431 
4432 		cleaned = true;
4433 		cleaned_count++;
4434 
4435 		/* !EOP means multiple descriptors were used to store a single
4436 		 * packet, if thats the case we need to toss it.  In fact, we
4437 		 * to toss every packet with the EOP bit clear and the next
4438 		 * frame that _does_ have the EOP bit set, as it is by
4439 		 * definition only a frame fragment
4440 		 */
4441 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4442 			adapter->discarding = true;
4443 
4444 		if (adapter->discarding) {
4445 			/* All receives must fit into a single buffer */
4446 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4447 			dev_kfree_skb(skb);
4448 			if (status & E1000_RXD_STAT_EOP)
4449 				adapter->discarding = false;
4450 			goto next_desc;
4451 		}
4452 
4453 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4454 			if (e1000_tbi_should_accept(adapter, status,
4455 						    rx_desc->errors,
4456 						    length, data)) {
4457 				length--;
4458 			} else if (netdev->features & NETIF_F_RXALL) {
4459 				goto process_skb;
4460 			} else {
4461 				dev_kfree_skb(skb);
4462 				goto next_desc;
4463 			}
4464 		}
4465 
4466 process_skb:
4467 		total_rx_bytes += (length - 4); /* don't count FCS */
4468 		total_rx_packets++;
4469 
4470 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4471 			/* adjust length to remove Ethernet CRC, this must be
4472 			 * done after the TBI_ACCEPT workaround above
4473 			 */
4474 			length -= 4;
4475 
4476 		if (buffer_info->rxbuf.data == NULL)
4477 			skb_put(skb, length);
4478 		else /* copybreak skb */
4479 			skb_trim(skb, length);
4480 
4481 		/* Receive Checksum Offload */
4482 		e1000_rx_checksum(adapter,
4483 				  (u32)(status) |
4484 				  ((u32)(rx_desc->errors) << 24),
4485 				  le16_to_cpu(rx_desc->csum), skb);
4486 
4487 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4488 
4489 next_desc:
4490 		rx_desc->status = 0;
4491 
4492 		/* return some buffers to hardware, one at a time is too slow */
4493 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4494 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4495 			cleaned_count = 0;
4496 		}
4497 
4498 		/* use prefetched values */
4499 		rx_desc = next_rxd;
4500 		buffer_info = next_buffer;
4501 	}
4502 	rx_ring->next_to_clean = i;
4503 
4504 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4505 	if (cleaned_count)
4506 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4507 
4508 	adapter->total_rx_packets += total_rx_packets;
4509 	adapter->total_rx_bytes += total_rx_bytes;
4510 	netdev->stats.rx_bytes += total_rx_bytes;
4511 	netdev->stats.rx_packets += total_rx_packets;
4512 	return cleaned;
4513 }
4514 
4515 /**
4516  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4517  * @adapter: address of board private structure
4518  * @rx_ring: pointer to receive ring structure
4519  * @cleaned_count: number of buffers to allocate this pass
4520  **/
4521 static void
4522 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4523 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4524 {
4525 	struct pci_dev *pdev = adapter->pdev;
4526 	struct e1000_rx_desc *rx_desc;
4527 	struct e1000_rx_buffer *buffer_info;
4528 	unsigned int i;
4529 
4530 	i = rx_ring->next_to_use;
4531 	buffer_info = &rx_ring->buffer_info[i];
4532 
4533 	while (cleaned_count--) {
4534 		/* allocate a new page if necessary */
4535 		if (!buffer_info->rxbuf.page) {
4536 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4537 			if (unlikely(!buffer_info->rxbuf.page)) {
4538 				adapter->alloc_rx_buff_failed++;
4539 				break;
4540 			}
4541 		}
4542 
4543 		if (!buffer_info->dma) {
4544 			buffer_info->dma = dma_map_page(&pdev->dev,
4545 							buffer_info->rxbuf.page, 0,
4546 							adapter->rx_buffer_len,
4547 							DMA_FROM_DEVICE);
4548 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4549 				put_page(buffer_info->rxbuf.page);
4550 				buffer_info->rxbuf.page = NULL;
4551 				buffer_info->dma = 0;
4552 				adapter->alloc_rx_buff_failed++;
4553 				break;
4554 			}
4555 		}
4556 
4557 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4558 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4559 
4560 		if (unlikely(++i == rx_ring->count))
4561 			i = 0;
4562 		buffer_info = &rx_ring->buffer_info[i];
4563 	}
4564 
4565 	if (likely(rx_ring->next_to_use != i)) {
4566 		rx_ring->next_to_use = i;
4567 		if (unlikely(i-- == 0))
4568 			i = (rx_ring->count - 1);
4569 
4570 		/* Force memory writes to complete before letting h/w
4571 		 * know there are new descriptors to fetch.  (Only
4572 		 * applicable for weak-ordered memory model archs,
4573 		 * such as IA-64).
4574 		 */
4575 		wmb();
4576 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4577 	}
4578 }
4579 
4580 /**
4581  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4582  * @adapter: address of board private structure
4583  **/
4584 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4585 				   struct e1000_rx_ring *rx_ring,
4586 				   int cleaned_count)
4587 {
4588 	struct e1000_hw *hw = &adapter->hw;
4589 	struct pci_dev *pdev = adapter->pdev;
4590 	struct e1000_rx_desc *rx_desc;
4591 	struct e1000_rx_buffer *buffer_info;
4592 	unsigned int i;
4593 	unsigned int bufsz = adapter->rx_buffer_len;
4594 
4595 	i = rx_ring->next_to_use;
4596 	buffer_info = &rx_ring->buffer_info[i];
4597 
4598 	while (cleaned_count--) {
4599 		void *data;
4600 
4601 		if (buffer_info->rxbuf.data)
4602 			goto skip;
4603 
4604 		data = e1000_alloc_frag(adapter);
4605 		if (!data) {
4606 			/* Better luck next round */
4607 			adapter->alloc_rx_buff_failed++;
4608 			break;
4609 		}
4610 
4611 		/* Fix for errata 23, can't cross 64kB boundary */
4612 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4613 			void *olddata = data;
4614 			e_err(rx_err, "skb align check failed: %u bytes at "
4615 			      "%p\n", bufsz, data);
4616 			/* Try again, without freeing the previous */
4617 			data = e1000_alloc_frag(adapter);
4618 			/* Failed allocation, critical failure */
4619 			if (!data) {
4620 				skb_free_frag(olddata);
4621 				adapter->alloc_rx_buff_failed++;
4622 				break;
4623 			}
4624 
4625 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4626 				/* give up */
4627 				skb_free_frag(data);
4628 				skb_free_frag(olddata);
4629 				adapter->alloc_rx_buff_failed++;
4630 				break;
4631 			}
4632 
4633 			/* Use new allocation */
4634 			skb_free_frag(olddata);
4635 		}
4636 		buffer_info->dma = dma_map_single(&pdev->dev,
4637 						  data,
4638 						  adapter->rx_buffer_len,
4639 						  DMA_FROM_DEVICE);
4640 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4641 			skb_free_frag(data);
4642 			buffer_info->dma = 0;
4643 			adapter->alloc_rx_buff_failed++;
4644 			break;
4645 		}
4646 
4647 		/* XXX if it was allocated cleanly it will never map to a
4648 		 * boundary crossing
4649 		 */
4650 
4651 		/* Fix for errata 23, can't cross 64kB boundary */
4652 		if (!e1000_check_64k_bound(adapter,
4653 					(void *)(unsigned long)buffer_info->dma,
4654 					adapter->rx_buffer_len)) {
4655 			e_err(rx_err, "dma align check failed: %u bytes at "
4656 			      "%p\n", adapter->rx_buffer_len,
4657 			      (void *)(unsigned long)buffer_info->dma);
4658 
4659 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4660 					 adapter->rx_buffer_len,
4661 					 DMA_FROM_DEVICE);
4662 
4663 			skb_free_frag(data);
4664 			buffer_info->rxbuf.data = NULL;
4665 			buffer_info->dma = 0;
4666 
4667 			adapter->alloc_rx_buff_failed++;
4668 			break;
4669 		}
4670 		buffer_info->rxbuf.data = data;
4671  skip:
4672 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4673 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4674 
4675 		if (unlikely(++i == rx_ring->count))
4676 			i = 0;
4677 		buffer_info = &rx_ring->buffer_info[i];
4678 	}
4679 
4680 	if (likely(rx_ring->next_to_use != i)) {
4681 		rx_ring->next_to_use = i;
4682 		if (unlikely(i-- == 0))
4683 			i = (rx_ring->count - 1);
4684 
4685 		/* Force memory writes to complete before letting h/w
4686 		 * know there are new descriptors to fetch.  (Only
4687 		 * applicable for weak-ordered memory model archs,
4688 		 * such as IA-64).
4689 		 */
4690 		wmb();
4691 		writel(i, hw->hw_addr + rx_ring->rdt);
4692 	}
4693 }
4694 
4695 /**
4696  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4697  * @adapter:
4698  **/
4699 static void e1000_smartspeed(struct e1000_adapter *adapter)
4700 {
4701 	struct e1000_hw *hw = &adapter->hw;
4702 	u16 phy_status;
4703 	u16 phy_ctrl;
4704 
4705 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4706 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4707 		return;
4708 
4709 	if (adapter->smartspeed == 0) {
4710 		/* If Master/Slave config fault is asserted twice,
4711 		 * we assume back-to-back
4712 		 */
4713 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4714 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4715 			return;
4716 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4717 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4718 			return;
4719 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4720 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4721 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4722 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4723 					    phy_ctrl);
4724 			adapter->smartspeed++;
4725 			if (!e1000_phy_setup_autoneg(hw) &&
4726 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4727 					       &phy_ctrl)) {
4728 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4729 					     MII_CR_RESTART_AUTO_NEG);
4730 				e1000_write_phy_reg(hw, PHY_CTRL,
4731 						    phy_ctrl);
4732 			}
4733 		}
4734 		return;
4735 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4736 		/* If still no link, perhaps using 2/3 pair cable */
4737 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4738 		phy_ctrl |= CR_1000T_MS_ENABLE;
4739 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4740 		if (!e1000_phy_setup_autoneg(hw) &&
4741 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4742 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4743 				     MII_CR_RESTART_AUTO_NEG);
4744 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4745 		}
4746 	}
4747 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4748 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4749 		adapter->smartspeed = 0;
4750 }
4751 
4752 /**
4753  * e1000_ioctl -
4754  * @netdev:
4755  * @ifreq:
4756  * @cmd:
4757  **/
4758 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4759 {
4760 	switch (cmd) {
4761 	case SIOCGMIIPHY:
4762 	case SIOCGMIIREG:
4763 	case SIOCSMIIREG:
4764 		return e1000_mii_ioctl(netdev, ifr, cmd);
4765 	default:
4766 		return -EOPNOTSUPP;
4767 	}
4768 }
4769 
4770 /**
4771  * e1000_mii_ioctl -
4772  * @netdev:
4773  * @ifreq:
4774  * @cmd:
4775  **/
4776 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4777 			   int cmd)
4778 {
4779 	struct e1000_adapter *adapter = netdev_priv(netdev);
4780 	struct e1000_hw *hw = &adapter->hw;
4781 	struct mii_ioctl_data *data = if_mii(ifr);
4782 	int retval;
4783 	u16 mii_reg;
4784 	unsigned long flags;
4785 
4786 	if (hw->media_type != e1000_media_type_copper)
4787 		return -EOPNOTSUPP;
4788 
4789 	switch (cmd) {
4790 	case SIOCGMIIPHY:
4791 		data->phy_id = hw->phy_addr;
4792 		break;
4793 	case SIOCGMIIREG:
4794 		spin_lock_irqsave(&adapter->stats_lock, flags);
4795 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4796 				   &data->val_out)) {
4797 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4798 			return -EIO;
4799 		}
4800 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4801 		break;
4802 	case SIOCSMIIREG:
4803 		if (data->reg_num & ~(0x1F))
4804 			return -EFAULT;
4805 		mii_reg = data->val_in;
4806 		spin_lock_irqsave(&adapter->stats_lock, flags);
4807 		if (e1000_write_phy_reg(hw, data->reg_num,
4808 					mii_reg)) {
4809 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4810 			return -EIO;
4811 		}
4812 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4813 		if (hw->media_type == e1000_media_type_copper) {
4814 			switch (data->reg_num) {
4815 			case PHY_CTRL:
4816 				if (mii_reg & MII_CR_POWER_DOWN)
4817 					break;
4818 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4819 					hw->autoneg = 1;
4820 					hw->autoneg_advertised = 0x2F;
4821 				} else {
4822 					u32 speed;
4823 					if (mii_reg & 0x40)
4824 						speed = SPEED_1000;
4825 					else if (mii_reg & 0x2000)
4826 						speed = SPEED_100;
4827 					else
4828 						speed = SPEED_10;
4829 					retval = e1000_set_spd_dplx(
4830 						adapter, speed,
4831 						((mii_reg & 0x100)
4832 						 ? DUPLEX_FULL :
4833 						 DUPLEX_HALF));
4834 					if (retval)
4835 						return retval;
4836 				}
4837 				if (netif_running(adapter->netdev))
4838 					e1000_reinit_locked(adapter);
4839 				else
4840 					e1000_reset(adapter);
4841 				break;
4842 			case M88E1000_PHY_SPEC_CTRL:
4843 			case M88E1000_EXT_PHY_SPEC_CTRL:
4844 				if (e1000_phy_reset(hw))
4845 					return -EIO;
4846 				break;
4847 			}
4848 		} else {
4849 			switch (data->reg_num) {
4850 			case PHY_CTRL:
4851 				if (mii_reg & MII_CR_POWER_DOWN)
4852 					break;
4853 				if (netif_running(adapter->netdev))
4854 					e1000_reinit_locked(adapter);
4855 				else
4856 					e1000_reset(adapter);
4857 				break;
4858 			}
4859 		}
4860 		break;
4861 	default:
4862 		return -EOPNOTSUPP;
4863 	}
4864 	return E1000_SUCCESS;
4865 }
4866 
4867 void e1000_pci_set_mwi(struct e1000_hw *hw)
4868 {
4869 	struct e1000_adapter *adapter = hw->back;
4870 	int ret_val = pci_set_mwi(adapter->pdev);
4871 
4872 	if (ret_val)
4873 		e_err(probe, "Error in setting MWI\n");
4874 }
4875 
4876 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4877 {
4878 	struct e1000_adapter *adapter = hw->back;
4879 
4880 	pci_clear_mwi(adapter->pdev);
4881 }
4882 
4883 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4884 {
4885 	struct e1000_adapter *adapter = hw->back;
4886 	return pcix_get_mmrbc(adapter->pdev);
4887 }
4888 
4889 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4890 {
4891 	struct e1000_adapter *adapter = hw->back;
4892 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4893 }
4894 
4895 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4896 {
4897 	outl(value, port);
4898 }
4899 
4900 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4901 {
4902 	u16 vid;
4903 
4904 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4905 		return true;
4906 	return false;
4907 }
4908 
4909 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4910 			      netdev_features_t features)
4911 {
4912 	struct e1000_hw *hw = &adapter->hw;
4913 	u32 ctrl;
4914 
4915 	ctrl = er32(CTRL);
4916 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4917 		/* enable VLAN tag insert/strip */
4918 		ctrl |= E1000_CTRL_VME;
4919 	} else {
4920 		/* disable VLAN tag insert/strip */
4921 		ctrl &= ~E1000_CTRL_VME;
4922 	}
4923 	ew32(CTRL, ctrl);
4924 }
4925 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4926 				     bool filter_on)
4927 {
4928 	struct e1000_hw *hw = &adapter->hw;
4929 	u32 rctl;
4930 
4931 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4932 		e1000_irq_disable(adapter);
4933 
4934 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4935 	if (filter_on) {
4936 		/* enable VLAN receive filtering */
4937 		rctl = er32(RCTL);
4938 		rctl &= ~E1000_RCTL_CFIEN;
4939 		if (!(adapter->netdev->flags & IFF_PROMISC))
4940 			rctl |= E1000_RCTL_VFE;
4941 		ew32(RCTL, rctl);
4942 		e1000_update_mng_vlan(adapter);
4943 	} else {
4944 		/* disable VLAN receive filtering */
4945 		rctl = er32(RCTL);
4946 		rctl &= ~E1000_RCTL_VFE;
4947 		ew32(RCTL, rctl);
4948 	}
4949 
4950 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4951 		e1000_irq_enable(adapter);
4952 }
4953 
4954 static void e1000_vlan_mode(struct net_device *netdev,
4955 			    netdev_features_t features)
4956 {
4957 	struct e1000_adapter *adapter = netdev_priv(netdev);
4958 
4959 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4960 		e1000_irq_disable(adapter);
4961 
4962 	__e1000_vlan_mode(adapter, features);
4963 
4964 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4965 		e1000_irq_enable(adapter);
4966 }
4967 
4968 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4969 				 __be16 proto, u16 vid)
4970 {
4971 	struct e1000_adapter *adapter = netdev_priv(netdev);
4972 	struct e1000_hw *hw = &adapter->hw;
4973 	u32 vfta, index;
4974 
4975 	if ((hw->mng_cookie.status &
4976 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4977 	    (vid == adapter->mng_vlan_id))
4978 		return 0;
4979 
4980 	if (!e1000_vlan_used(adapter))
4981 		e1000_vlan_filter_on_off(adapter, true);
4982 
4983 	/* add VID to filter table */
4984 	index = (vid >> 5) & 0x7F;
4985 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4986 	vfta |= (1 << (vid & 0x1F));
4987 	e1000_write_vfta(hw, index, vfta);
4988 
4989 	set_bit(vid, adapter->active_vlans);
4990 
4991 	return 0;
4992 }
4993 
4994 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4995 				  __be16 proto, u16 vid)
4996 {
4997 	struct e1000_adapter *adapter = netdev_priv(netdev);
4998 	struct e1000_hw *hw = &adapter->hw;
4999 	u32 vfta, index;
5000 
5001 	if (!test_bit(__E1000_DOWN, &adapter->flags))
5002 		e1000_irq_disable(adapter);
5003 	if (!test_bit(__E1000_DOWN, &adapter->flags))
5004 		e1000_irq_enable(adapter);
5005 
5006 	/* remove VID from filter table */
5007 	index = (vid >> 5) & 0x7F;
5008 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5009 	vfta &= ~(1 << (vid & 0x1F));
5010 	e1000_write_vfta(hw, index, vfta);
5011 
5012 	clear_bit(vid, adapter->active_vlans);
5013 
5014 	if (!e1000_vlan_used(adapter))
5015 		e1000_vlan_filter_on_off(adapter, false);
5016 
5017 	return 0;
5018 }
5019 
5020 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5021 {
5022 	u16 vid;
5023 
5024 	if (!e1000_vlan_used(adapter))
5025 		return;
5026 
5027 	e1000_vlan_filter_on_off(adapter, true);
5028 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5029 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5030 }
5031 
5032 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5033 {
5034 	struct e1000_hw *hw = &adapter->hw;
5035 
5036 	hw->autoneg = 0;
5037 
5038 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5039 	 * for the switch() below to work
5040 	 */
5041 	if ((spd & 1) || (dplx & ~1))
5042 		goto err_inval;
5043 
5044 	/* Fiber NICs only allow 1000 gbps Full duplex */
5045 	if ((hw->media_type == e1000_media_type_fiber) &&
5046 	    spd != SPEED_1000 &&
5047 	    dplx != DUPLEX_FULL)
5048 		goto err_inval;
5049 
5050 	switch (spd + dplx) {
5051 	case SPEED_10 + DUPLEX_HALF:
5052 		hw->forced_speed_duplex = e1000_10_half;
5053 		break;
5054 	case SPEED_10 + DUPLEX_FULL:
5055 		hw->forced_speed_duplex = e1000_10_full;
5056 		break;
5057 	case SPEED_100 + DUPLEX_HALF:
5058 		hw->forced_speed_duplex = e1000_100_half;
5059 		break;
5060 	case SPEED_100 + DUPLEX_FULL:
5061 		hw->forced_speed_duplex = e1000_100_full;
5062 		break;
5063 	case SPEED_1000 + DUPLEX_FULL:
5064 		hw->autoneg = 1;
5065 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5066 		break;
5067 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5068 	default:
5069 		goto err_inval;
5070 	}
5071 
5072 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5073 	hw->mdix = AUTO_ALL_MODES;
5074 
5075 	return 0;
5076 
5077 err_inval:
5078 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5079 	return -EINVAL;
5080 }
5081 
5082 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5083 {
5084 	struct net_device *netdev = pci_get_drvdata(pdev);
5085 	struct e1000_adapter *adapter = netdev_priv(netdev);
5086 	struct e1000_hw *hw = &adapter->hw;
5087 	u32 ctrl, ctrl_ext, rctl, status;
5088 	u32 wufc = adapter->wol;
5089 #ifdef CONFIG_PM
5090 	int retval = 0;
5091 #endif
5092 
5093 	netif_device_detach(netdev);
5094 
5095 	if (netif_running(netdev)) {
5096 		int count = E1000_CHECK_RESET_COUNT;
5097 
5098 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5099 			usleep_range(10000, 20000);
5100 
5101 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5102 		e1000_down(adapter);
5103 	}
5104 
5105 #ifdef CONFIG_PM
5106 	retval = pci_save_state(pdev);
5107 	if (retval)
5108 		return retval;
5109 #endif
5110 
5111 	status = er32(STATUS);
5112 	if (status & E1000_STATUS_LU)
5113 		wufc &= ~E1000_WUFC_LNKC;
5114 
5115 	if (wufc) {
5116 		e1000_setup_rctl(adapter);
5117 		e1000_set_rx_mode(netdev);
5118 
5119 		rctl = er32(RCTL);
5120 
5121 		/* turn on all-multi mode if wake on multicast is enabled */
5122 		if (wufc & E1000_WUFC_MC)
5123 			rctl |= E1000_RCTL_MPE;
5124 
5125 		/* enable receives in the hardware */
5126 		ew32(RCTL, rctl | E1000_RCTL_EN);
5127 
5128 		if (hw->mac_type >= e1000_82540) {
5129 			ctrl = er32(CTRL);
5130 			/* advertise wake from D3Cold */
5131 			#define E1000_CTRL_ADVD3WUC 0x00100000
5132 			/* phy power management enable */
5133 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5134 			ctrl |= E1000_CTRL_ADVD3WUC |
5135 				E1000_CTRL_EN_PHY_PWR_MGMT;
5136 			ew32(CTRL, ctrl);
5137 		}
5138 
5139 		if (hw->media_type == e1000_media_type_fiber ||
5140 		    hw->media_type == e1000_media_type_internal_serdes) {
5141 			/* keep the laser running in D3 */
5142 			ctrl_ext = er32(CTRL_EXT);
5143 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5144 			ew32(CTRL_EXT, ctrl_ext);
5145 		}
5146 
5147 		ew32(WUC, E1000_WUC_PME_EN);
5148 		ew32(WUFC, wufc);
5149 	} else {
5150 		ew32(WUC, 0);
5151 		ew32(WUFC, 0);
5152 	}
5153 
5154 	e1000_release_manageability(adapter);
5155 
5156 	*enable_wake = !!wufc;
5157 
5158 	/* make sure adapter isn't asleep if manageability is enabled */
5159 	if (adapter->en_mng_pt)
5160 		*enable_wake = true;
5161 
5162 	if (netif_running(netdev))
5163 		e1000_free_irq(adapter);
5164 
5165 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5166 		pci_disable_device(pdev);
5167 
5168 	return 0;
5169 }
5170 
5171 #ifdef CONFIG_PM
5172 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5173 {
5174 	int retval;
5175 	bool wake;
5176 
5177 	retval = __e1000_shutdown(pdev, &wake);
5178 	if (retval)
5179 		return retval;
5180 
5181 	if (wake) {
5182 		pci_prepare_to_sleep(pdev);
5183 	} else {
5184 		pci_wake_from_d3(pdev, false);
5185 		pci_set_power_state(pdev, PCI_D3hot);
5186 	}
5187 
5188 	return 0;
5189 }
5190 
5191 static int e1000_resume(struct pci_dev *pdev)
5192 {
5193 	struct net_device *netdev = pci_get_drvdata(pdev);
5194 	struct e1000_adapter *adapter = netdev_priv(netdev);
5195 	struct e1000_hw *hw = &adapter->hw;
5196 	u32 err;
5197 
5198 	pci_set_power_state(pdev, PCI_D0);
5199 	pci_restore_state(pdev);
5200 	pci_save_state(pdev);
5201 
5202 	if (adapter->need_ioport)
5203 		err = pci_enable_device(pdev);
5204 	else
5205 		err = pci_enable_device_mem(pdev);
5206 	if (err) {
5207 		pr_err("Cannot enable PCI device from suspend\n");
5208 		return err;
5209 	}
5210 
5211 	/* flush memory to make sure state is correct */
5212 	smp_mb__before_atomic();
5213 	clear_bit(__E1000_DISABLED, &adapter->flags);
5214 	pci_set_master(pdev);
5215 
5216 	pci_enable_wake(pdev, PCI_D3hot, 0);
5217 	pci_enable_wake(pdev, PCI_D3cold, 0);
5218 
5219 	if (netif_running(netdev)) {
5220 		err = e1000_request_irq(adapter);
5221 		if (err)
5222 			return err;
5223 	}
5224 
5225 	e1000_power_up_phy(adapter);
5226 	e1000_reset(adapter);
5227 	ew32(WUS, ~0);
5228 
5229 	e1000_init_manageability(adapter);
5230 
5231 	if (netif_running(netdev))
5232 		e1000_up(adapter);
5233 
5234 	netif_device_attach(netdev);
5235 
5236 	return 0;
5237 }
5238 #endif
5239 
5240 static void e1000_shutdown(struct pci_dev *pdev)
5241 {
5242 	bool wake;
5243 
5244 	__e1000_shutdown(pdev, &wake);
5245 
5246 	if (system_state == SYSTEM_POWER_OFF) {
5247 		pci_wake_from_d3(pdev, wake);
5248 		pci_set_power_state(pdev, PCI_D3hot);
5249 	}
5250 }
5251 
5252 #ifdef CONFIG_NET_POLL_CONTROLLER
5253 /* Polling 'interrupt' - used by things like netconsole to send skbs
5254  * without having to re-enable interrupts. It's not called while
5255  * the interrupt routine is executing.
5256  */
5257 static void e1000_netpoll(struct net_device *netdev)
5258 {
5259 	struct e1000_adapter *adapter = netdev_priv(netdev);
5260 
5261 	if (disable_hardirq(adapter->pdev->irq))
5262 		e1000_intr(adapter->pdev->irq, netdev);
5263 	enable_irq(adapter->pdev->irq);
5264 }
5265 #endif
5266 
5267 /**
5268  * e1000_io_error_detected - called when PCI error is detected
5269  * @pdev: Pointer to PCI device
5270  * @state: The current pci connection state
5271  *
5272  * This function is called after a PCI bus error affecting
5273  * this device has been detected.
5274  */
5275 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5276 						pci_channel_state_t state)
5277 {
5278 	struct net_device *netdev = pci_get_drvdata(pdev);
5279 	struct e1000_adapter *adapter = netdev_priv(netdev);
5280 
5281 	netif_device_detach(netdev);
5282 
5283 	if (state == pci_channel_io_perm_failure)
5284 		return PCI_ERS_RESULT_DISCONNECT;
5285 
5286 	if (netif_running(netdev))
5287 		e1000_down(adapter);
5288 
5289 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5290 		pci_disable_device(pdev);
5291 
5292 	/* Request a slot slot reset. */
5293 	return PCI_ERS_RESULT_NEED_RESET;
5294 }
5295 
5296 /**
5297  * e1000_io_slot_reset - called after the pci bus has been reset.
5298  * @pdev: Pointer to PCI device
5299  *
5300  * Restart the card from scratch, as if from a cold-boot. Implementation
5301  * resembles the first-half of the e1000_resume routine.
5302  */
5303 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5304 {
5305 	struct net_device *netdev = pci_get_drvdata(pdev);
5306 	struct e1000_adapter *adapter = netdev_priv(netdev);
5307 	struct e1000_hw *hw = &adapter->hw;
5308 	int err;
5309 
5310 	if (adapter->need_ioport)
5311 		err = pci_enable_device(pdev);
5312 	else
5313 		err = pci_enable_device_mem(pdev);
5314 	if (err) {
5315 		pr_err("Cannot re-enable PCI device after reset.\n");
5316 		return PCI_ERS_RESULT_DISCONNECT;
5317 	}
5318 
5319 	/* flush memory to make sure state is correct */
5320 	smp_mb__before_atomic();
5321 	clear_bit(__E1000_DISABLED, &adapter->flags);
5322 	pci_set_master(pdev);
5323 
5324 	pci_enable_wake(pdev, PCI_D3hot, 0);
5325 	pci_enable_wake(pdev, PCI_D3cold, 0);
5326 
5327 	e1000_reset(adapter);
5328 	ew32(WUS, ~0);
5329 
5330 	return PCI_ERS_RESULT_RECOVERED;
5331 }
5332 
5333 /**
5334  * e1000_io_resume - called when traffic can start flowing again.
5335  * @pdev: Pointer to PCI device
5336  *
5337  * This callback is called when the error recovery driver tells us that
5338  * its OK to resume normal operation. Implementation resembles the
5339  * second-half of the e1000_resume routine.
5340  */
5341 static void e1000_io_resume(struct pci_dev *pdev)
5342 {
5343 	struct net_device *netdev = pci_get_drvdata(pdev);
5344 	struct e1000_adapter *adapter = netdev_priv(netdev);
5345 
5346 	e1000_init_manageability(adapter);
5347 
5348 	if (netif_running(netdev)) {
5349 		if (e1000_up(adapter)) {
5350 			pr_info("can't bring device back up after reset\n");
5351 			return;
5352 		}
5353 	}
5354 
5355 	netif_device_attach(netdev);
5356 }
5357 
5358 /* e1000_main.c */
5359